
An Architectural Style for Ajax

Ali Mesbah
Software Evolution Research Laboratory

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

A.Mesbah@tudelft.nl

Arie van Deursen
Software Engineering Group

Delft Univ. of Technology and CWI
Mekelweg 4, 2628 CD Delft, The Netherlands

Arie.vanDeursen@tudelft.nl

Abstract
A new breed of web application, dubbed AJAX, is emerging
in response to a limited degree of interactivity in large-grain
stateless Web interactions. At the heart of this new approach
lies a single page interaction model that facilitates rich in-
teractivity. We have studied and experimented with several
AJAX frameworks trying to understand their architectural
properties. In this paper, we summarize three of these frame-
works and examine their properties and introduce the SPIAR

architectural style. We describe the guiding software engi-
neering principles and the constraints chosen to induce the
desired properties. The style emphasizes user interface com-
ponent development, and intermediary delta-communication
between client/server components, to improve user interac-
tivity and ease of development. In addition, we use the con-
cepts and principles to discuss various open issues in AJAX

frameworks and application development.

1. Introduction

Over the course of the past decade, the move from desktop
applications towards web applications has gained much at-
tention and acceptance. Within this movement, however, a
great deal of user interactiveness has been lost. Classical web
applications are based on a multi page interface model, in
which interactions are based on a page-sequence paradigm.
While simple and elegant in design for exchanging docu-
ments, this model has many limitations for developing mod-
ern web applications with user friendly human-computer in-
teraction.

Recently, there has been a shift in the direction of web de-
velopment. A new breed of web application, dubbed AJAX

(Asynchronous JavaScript And XML) [14], is emerging in
response to the limited degree of interactivity in large-grain
stateless Web interactions. At the heart of this new approach
lies a single page interface model that facilitates rich inter-
activity. In this model, changes are made to individual user
interface components contained in a web page, as opposed
to refreshing the entire page.

Thanks to the momentum of AJAX, single page interfaces

have attracted a strong interest in the web application de-
velopment community. After the name AJAX was coined
in February 2005 [14], numerous frameworks1 and libraries
have appeared, many web applications have adopted one or
more of the ideas underpinning AJAX, and an overwhelming
number of articles in developer sites and professional mag-
azines have appeared. Adopting AJAX-based techniques is
a serious option not only for newly developed applications,
but also for existing web sites if their user friendliness is in-
adequate.

A software engineer considering adopting AJAX, how-
ever, is faced with a number of challenges. What are the
fundamental architectural differences between designing a
legacy web application and an AJAX web application? What
are the different characteristics of AJAX frameworks? What
do these frameworks hide? Is there enough support for de-
signing such applications? What problems can one expect
during the development phase? Will there be some sort
of convergence between the many different technologies?
Which architectural elements will remain, and which ones
will be replaced by more elegant solutions?

Addressing these questions calls for a more abstract per-
spective on AJAX web applications. Despite all the attention
the technology is receiving in the web community, there is a
lack of a coherent and precisely described set of architectural
formalisms for AJAX enabled web applications. In this paper
we explore whether concepts and principles as developed in
the software architecture research community can be of help
to answer such questions. In particular, we propose SPIAR,
an architectural style for AJAX applications, and study to
what extent this style can help in addressing our questions.

This paper is organized as follows. We start out, in
Section 2 by exploring AJAX, studying three frameworks
(Google’s GWT, Backbase, and the open source Echo2) that
have made substantially different design choices. Then, in
Section 3, we survey existing architectural styles (such as
the Representational State Transfer architectural style REST

on which the World Wide Web is based [12]), and analyze

1At the time of writing more than 150 frameworks are listed at http:
//ajaxpatterns.org/Frameworks.

©0-7695-2744-2/06/$20.00 2006 IEEE

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 13, 2008 at 03:12 from IEEE Xplore. Restrictions apply.

their suitability for characterizing AJAX. Next, in Section 4,
we propose SPIAR, describing the architectural properties,
elements, and constraints of this style. Given SPIAR, in Sec-
tion 5 we use its concepts and principles to discuss various
open issues in AJAX frameworks and application develop-
ment. We conclude with a summary of related work, contri-
butions, and an outlook to future work.

2. Ajax Frameworks

2.1. Ajax

AJAX [14] is the name given to a set of modern web appli-
cation development technologies, previously known as Dy-
namic HTML (DHTML) and remote scripting, to provide a
more interactive web-based user interface.

As defined by Garrett [14], AJAX incorporates: standards-
based presentation using XHTML and CSS, dynamic display
and interaction using the Document Object Model, data in-
terchange and manipulation, asynchronous data retrieval us-
ing XMLHttpRequest, and JavaScript binding everything to-
gether. This definition, however, only focuses on the client
side of the web application setting.

AJAX is an approach to web application development uti-
lizing a combination of established web technologies. It
is the combination of these technologies that makes AJAX

unique and powerful on the Web.
Even before the term AJAX was coined, its power was be-

coming evident by web applications such as Google Suggest
and Google Map. Other well known examples are Flickr,
Gmail, and the new version of Yahoo Mail. For more techni-
cal details of AJAX see [1, 9].

2.2. Frameworks

Web application developers have struggled constantly with
the limits of the HTML page-sequence experience, and the
complexities of client-side JavaScript programming to add
some degree of dynamism to the user interface. Issues re-
garding cross-browser compatibility are, for instance, known
to everyone who has built a real-world web application. The
rich user interface (UI) experience AJAX promises comes at
the price of facing all such problems. Developers are re-
quired to have advanced skills in a variety of Web technolo-
gies, if they are to build robust AJAX applications. Also,
much effort has to be spent on testing these applications be-
fore going in production. This is where frameworks come to
the rescue. At least many of them claim to.

Because of the momentum AJAX has gained, a vast num-
ber of frameworks are being developed. The importance of
bringing order to this competitive chaotic world becomes ev-
ident when we learn that ‘almost one new framework per
day’ is being added to the list of known frameworks2.

2 http://ajaxpatterns.org/wiki/index.php?title=AJAXFrameworks

We have studied and experimented with several AJAX

frameworks trying to understand their architectural proper-
ties. We summarize three of these frameworks in this section.
Our selection includes a widely used open source framework
called Echo2, the web framework offered by Google called
GWT, and the commercial package delivered by Backbase.
All three frameworks are major players in the AJAX market,
and their underlying technologies differ substantially.

Echo2
Echo23 is an open-source AJAX framework which allows
the developer to create web applications using an object-
oriented, UI component-based, and event-driven paradigm
for Web development. Its Java Application Framework pro-
vides the APIs (UI components, property objects, and even-
t/listeners) to represent and manage the state of an applica-
tion and its user interface.

All functionality for rendering a component or communi-
cating with the client browser is specifically assembled in a
separate module called the Web Rendering Engine. The en-
gine consists of a server-side portion (written in Java/J2EE)
and a client-side portion (JavaScript). The client/server in-
teraction protocol is hidden behind this module and as such,
it is entirely decoupled from other modules. Echo2 has an
Update Manager which is responsible for tracking updates
to the user interface component model, and for processing
input received from the rendering agent and communicating
it to the components.

The Echo2 Client Engine runs in the client browser and
provides a remote user interface to the server-side applica-
tion. Its main activity is to synchronize client/server state
when user operations occur on the interface.

A ClientMessage in XML format is used to transfer the
client state changes to the server by explicitly stating the
nature of the change and the corresponding component ID
the change has taken place on. The server processes the
ClientMessage, updating the component model to reflect the
user’s actions. Events are fired on interested listeners, possi-
bly resulting in further changes to the server-side state of the
application. The server responds by rendering a ServerMes-
sage which is again an XML message containing directives
to perform partial updates to the DOM representation on the
client.

GWT
Google has a novel approach to implementing its AJAX

framework, Google Web Framework (GWT)4. Just like
Echo2, GWT facilitates the development of UIs in a fash-
ion similar to AWT or Swing and comes with a library of
widgets that can be used. The unique character of GWT
lies in the way it renders the client-side UI. Instead of keep-
ing the UI components on the server and communicating the

3 Echo2 2.0.0, www.nextapp.com/platform/echo2/echo/. Their on line demo
is worth looking at!

4 http://code.google.com/webtoolkit/

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 13, 2008 at 03:12 from IEEE Xplore. Restrictions apply.

state changes, GWT compiles all the Java UI components
to JavaScript code (compile-time). Within the components
the developer is allowed to use a subset of Java 1.4 API to
implement needed functionality.

GWT uses a small generic client engine and, using the
compiler, all the UI functionality becomes available to the
user on the client. This approach decreases round-trips to the
server drastically. The server is only consulted if raw data is
needed to populate the client-side UI components. This is
carried out by making server calls to defined services. The
services (which are not the same as Web Services) are imple-
mented in Java and data is passed both ways over the network
using serialization techniques.

Backbase
Backbase5 is an Amsterdam-based company that provided
one of the first commercial AJAX frameworks. The frame-
work is still in continuous development, and in use by nu-
merous customers world wide.

A key element of the Backbase framework is the Back-
base Presentation Client. This a standards-based engine writ-
ten in Javascript that runs in the web browser. It can be
programmed via a declarative user interface language called
BXML. BXML offers library of UI controls, a mechanism
for attaching actions to them, as well as facilities for con-
necting to the server asynchronously.

The server side of the Backbase framework is formed
by BJS, the Backbase Java Server. It is built on top of
JavaServer Faces (JSF)6, the new J2EE presentation architec-
ture. JSF provides a user interface component-based frame-
work following the model-view-controller pattern. The in-
teraction in JSF is, however, based on the classical page se-
quence model, making integration in a single page frame-
work non trivial.

Backbase Java Server provides its own set of UI compo-
nents and extends the JSF framework to provide a single page
interface implementation. Any Java class that offers getters
and setters for its properties can be directly assigned to a
UI component property. Developers can use the components
declaratively (web-scripting) to build an AJAX application.

The framework renders each declared server-side UI com-
ponent to a corresponding client-side (BXML) UI compo-
nent, and keeps track of changes on both component trees
for synchronization.

The state changes on the client are sent to the server on
certain defined events. These can be action events like click-
ing a button, or value change events such as checking a radio
button. The server translates these state changes and identi-
fies the corresponding component(s) in the server component
tree. After the required action, the server renders the changes
to be responded to the engine again in BXML format.

5www.backbase.com
6 JavaServer Faces Specification v1.1, http://java.sun.com/j2ee/javaserverfaces/

2.3. Features

While different in many ways, these frameworks share some
common architectural characteristics. Generally, the goals of
these frameworks can be summarized as follows:

• Hide the complexity of developing AJAX applications -
which is a tedious, difficult, and error-prone task,

• Hide the incompatibilities between different web
browsers and platforms,

• Hide the client/server communication complexities,

• All this to achieve rich interactivity and portability for
end users, and ease of development for developers.

The frameworks achieve these goals by providing a li-
brary of user interface components and a development en-
vironment to create reusable custom components. The archi-
tectures have a well defined protocol for small interactions
among known client/server components. Data needed to be
transferred over the network is significantly reduced. This
can result in faster response data transfers. Their architec-
ture takes advantage of client side processing resulting in
improved user interactivity, smaller number of round-trips,
and a reduced web server load.

3. Architectural Styles

3.1. Terminology

In this paper we use the software architectural concepts and
terminology as used by Fielding [11] which in turn is based
on the work of Perry and Wolf [23]. Thus, a software ar-
chitecture is defined [23] as a configuration of architectural
elements — processing, connectors, and data — constrained
in their relationships in order to achieve a desired set of ar-
chitectural properties.

An architectural style, in turn, [11] is a coordinated set
of architectural constraints that restricts the roles of archi-
tectural elements and the allowed relationships among those
elements within any architecture that conforms to that style.
An architectural style constrains both the design elements
and the relationships among them [23] in such a way as to
result in software systems with certain desired properties.

An architectural system can be composed of multiple
styles and a style can be hybrids of other styles. Styles can be
seen as reusable [20] common architectural patterns within
different system architectures and hence the term architec-
tural pattern is also used to describe the same concept [3].

3.2. Existing Styles

User interface applications generally make use of popular
styles such as Module/View/Controler [17] to describe large
scale architecture and, in more specific cases, styles like C2

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 13, 2008 at 03:12 from IEEE Xplore. Restrictions apply.

[27] to rely on asynchronous notification of state changes and
request messages between independent components.

Many different network-based architectural styles [11],
such as client/server [24], n-tier [29], and Code on Demand,
exist but in our view the most complete and appropriate style
for the Web, thus far, is the REpresentational State Transfer
(REST) [12].

REST emphasizes the abstraction of data and services
as resources that can be requested by clients using the re-
source’s name and address, specified as a Uniform Resource
Locator (URL) [4]. The style inherits characteristics from a
number of other styles such as client/server, pipe-and-filter,
and distributed objects.

The style is a description of the main features of the Web
architecture through architectural constraints which have
contributed significantly to the success of the Web.

It revolves around five fundamental notions: a resource
which can be anything that has identity, e.g., a document
or image, the representation of a resource which is in the
form of a media type, synchronous request-response inter-
action over HTTP to obtain or modify representations, a web
page as an instance of the application state, and engines (e.g.,
browser, crawler) to move from one state to the next.

REST specifies a client-stateless-server architecture in
which a series of proxies, caches, and filters can be used and
each request is independent of the previous ones, inducing
the property of scalability. It also emphasizes on a uniform
interface between components constraining information to
be transferred in a standardized form.

3.3. A Style for Ajax

AJAX applications can be seen as a hybrid of desktop
and web applications, inheriting characteristics from both
worlds. Can we reuse styles from these worlds?

User interface styles such as C2 are meant specifically for
peer-to-peer environments and thus are not suitable for Web
applications.

AJAX frameworks provide back-end services through UI
components to the client in an event-driven style whereas
REST provides resources. AJAX architectures are also not
so easily captured in REST, due to the following differences:

• While REST is suited for large-grain hypermedia data
transfers, because of its uniform interface constraint it is
not optimal for small data interactions required in AJAX

applications.

• REST focuses on a hyper-linked resource-based inter-
action in which the client requests a specific resource.
In contrast, in AJAX applications the user interacts with
the system much like in a desktop application, request-
ing a response to a specific action.

• All interactions for obtaining a resource’s represen-
tation are performed through a synchronous request-

response pair in REST. AJAX applications, however,
require a model for asynchronous communication.

• REST explicitly constrains the server to be stateless, i.e.,
each request from the client must contain all the infor-
mation necessary for the server to understand the re-
quest. While this constraint can improve scalability, the
tradeoffs with respect to network performance and user
interactivity are of greater importance when designing
an AJAX architecture.

Because of these requirement mismatches, we do not see
how existing styles such as REST or C2 can help to address
some of the questions raised in the introduction. Therefore,
we will propose a style specifically tailored towards AJAX

applications, and study if this style can be used for this pur-
pose instead.

4. SPIAR Architectural Style

In this section, we first focus on the essential architectural
properties of AJAX frameworks. Then the common archi-
tectural elements are presented and finally the constraints
on those elements to achieve the properties are discussed.
Our SPIAR architectural style describes the essence of what
AJAX frameworks hide and prescribes constraints that such
frameworks should adhere to. The style can be used when
high user interaction and responsiveness is desired in web
applications.

4.1. Architectural Properties

Below we discuss a number of architectural properties that
relate to the essence of AJAX. Other properties, such as ex-
tensibility or security, that may be desirable for any system
but are less directly affected by a decision to adopt AJAX,
are not taken into account. Note that some of the properties
discussed below are related to each other: for instance, user
interactivity is influenced by user-perceived latency, which
in turn is affected by network performance.

User Interactivity
Human-computer interaction literature defines interactivity
as the degree to which participants in a communication pro-
cess have control over, and can exchange roles in their mu-
tual discourse. User interactivity is closely related to usabil-
ity [13], the term used in software architecture literature. Teo
et al. [28] provide a thorough study of user interactivity on
commercial web applications. Their results suggest that an
increased level of interactivity has positive effects on user’s
perceived satisfaction, effectiveness, efficiency, value, and
overall attitude towards a Web site. Improving this property
on the Web has been the main motivating force behind the
AJAX movement.

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 13, 2008 at 03:12 from IEEE Xplore. Restrictions apply.

User-perceived Latency
User-perceived latency is defined as the period between the
moment a user issues a request and the first indication of a
response from the system. Generally, there are two primary
ways to improve user-perceived performance. First, by re-
ducing the round-trip time and second, by allowing the user
to interact asynchronously with the system. This is an impor-
tant property in all distributed applications with a front-end
to the user.

Network Performance
Network performance is influenced by throughput which is
the rate of data transmitted on the network and bandwidth,
i.e., a measure of the maximum available throughput. Net-
work performance can be improved by means of reducing
the amount and the granularity of transmitted data.

Simplicity
Simplicity or development effort is defined as the effort that
is needed to understand, design, implement, and re-engineer
a web application. It is an important factor for the usage and
acceptance of any new approach.

Scalability
In distributed environments scalability is defined by the de-
gree of a systems ability to handle growing number of com-
ponents. In Web engineering, a system’s scalability is deter-
mined, for instance, by the degree in which a client can be
served by different servers without affecting the results. A
scalable Web architecture can be easily configured to serve a
growing number of client requests.

Portability
Software that can be used in different environments is said to
be portable. On the Web, being able to use the Web browser
without the need for any extra actions required from the user,
e.g., downloading plug-ins, induces the property of portabil-
ity.

Visibility
Visibility [11] is determined by the degree in which an exter-
nal mediator is able to understand the interactions between
two components. The easier it is for the mediator to un-
derstand the interactions, the more visible is the interaction
between those two components. Looking at the current im-
plementations of AJAX frameworks, visibility in the client/-
server interactions is poor, as they are based on proprietary
protocols.

4.2. Architectural Elements

Following [11, 23] the key architectural elements of SPIAR

are divided into three categories, namely processing, data,
and connecting elements. An overview of the elements is
depicted in Figure 1, which will be explained in Section 4.3.

Processing Elements
The processing elements are defined as those components
that supply the transformation on the data elements.

The Client Browser offers support for a set of standards
such as HTTP, HTML, Cascading Style Sheets, JavaScript,
and Document Object Model. It processes the representa-
tional model of a web page to produce the user interface.
The user interaction can be based on a single page user in-
terface model. All the visual transitions and effects are pre-
sented to the user through this interface. Just like a desktop
client application, it consists of a single main page with a
set of identifiable widgets. The properties of widgets can be
manipulated individually while changes are made in-place
without requiring a page refresh.

The AJAX Engine is a client engine that loads and runs in
the client browser. There is no need for a plug-in for the web
application to function. However, downloading the engine
does introduce an initial latency for the user which can be
compensated by the smaller data transfers once the engine is
in place. The engine is responsible for the initialization and
manipulation of the representational model. It handles the
events initiated by the user, communicates with the server,
and has the ability to perform client-side processing.

The Server Application resides on the server and operates
by accepting HTTP-based requests from the network, and
providing responses to the requester. All server-side func-
tionality resides in the server application processing element.

The Service Provider represents the logic engine of the
server and processes state changes and user requested ac-
tions. It is capable of accessing any resource (e.g., database,
Web Services) needed to carry out its action. A Service
Provider’s functionality is invoked by event listeners, at-
tached to components, initiated by incoming requests.

The Delta Encoder/Decoder processes outgoing/incom-
ing delta messages. It is at this point that the communication
protocol between the client and the server is defined and hid-
den behind an interface. This element supports delta com-
munication between client and server which improves user-
perceived latency and network performance.

UI Components consist of a set of server-side UI compo-
nents. The component model on the server is capable of ren-
dering the representational model on the client. Each server-
side component contains the data and behavior of that part
of the corresponding client-side widget which is relevant for
state changes; There are different approaches as when and
how to render the client-side UI code. GWT, for instance,
renders the entire client-side UI code compile-time from the
server-side Java components. Echo2, on the other hand, ren-
ders the components at run-time and keeps a tree of compo-
nents on both client and server side. These UI components
have event listeners that can be attached to client-side user
initiated events such as clicking on a button. This element
enhances simplicity by providing off-the-shelf components

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 13, 2008 at 03:12 from IEEE Xplore. Restrictions apply.

Server App.Client Browser

update

HTTP

Encoder

Decoder

Service
Provider

update
 C

 S

 update invoke update event

DOM
Ajax

Engine

UI

UI Comp.
event

update

Figure 1. Processing View of a SPIAR-based architecture.

to build web applications.

Data Elements
The data elements contain the information that is used and
transformed by the processing elements.

The Representation element consists of any media type
just like in REST. HTML, CSS, and images are all members
of this data element.

The Representational Model is a run-time abstraction of
how a UI is represented on the client browser. The Document
Object Model inside the browser has gained a very important
role in AJAX applications. It is through dynamically manipu-
lating this representational model that rich effects have been
made possible. Some frameworks such as Backbase use a
domain-specific language to declaratively define the struc-
ture and behaviour of the representational model. Others like
GWT use a direct approach by utilizing JavaScript.

Delta communicating messages form the means of the
delta communication protocol between client and server.
SPIAR makes a distinction between the client delta data
(DELTA-CLIENT) and the server delta data (DELTA-SERVER).
The former is created by the client to represent the client-side
state changes and the corresponding actions causing those
changes, while the latter is the response of the server as a
result of those actions on the server components. The delta
communicating data are found in a variety of formats in the
current frameworks, e.g., XML, BXML, JavaScript Object
Notation (JSON), JavaScript. The client delta messages con-
tain the needed information for the server to know for in-
stance which action on which component has to be carried
out. GWT uses an RPC style of calling services while in
Backbase and Echo2 a component-based approach is imple-
mented to invoke event listeners.

Connecting Elements
The connecting elements serve as the glue that holds the
components together by enabling them to communicate.

Events form the basis of the interaction model in SPIAR.
An event is initiated by each action of the user on the in-
terface, which propagates to the engine. Depending on the

type of the event, a request to the server, or a partial update
of the interface might be needed. The event can be handled
asynchronously, if desired, in which case the control is im-
mediately returned to the user.

On the server, the request initiated by an event invokes a
service. The service can be either invoked directly or through
the corresponding UI component’s event listeners.

Delta connectors are light-weight communication media
connecting the engine and the server using a request/re-
sponse mechanism over HTTP.

Delta updates are used to update the representational
model on the client and the component model on the server
to reflect the state changes. While a delta update of the rep-
resentational model results in a direct apparent result on the
user interface, an update of the component model invokes
the appropriate listeners. These updates are usually through
procedural invocations of methods.

4.3. Processing View

Given the processing, data, and connecting elements, we can
use different architectural views to describe how the ele-
ments work together to form an architecture. Here we use
a processing view, which concentrates on the data flow and
some aspects of the connections among the processing ele-
ments with respect to the data [11]. This view is fits in the
Components and Connectors viewtype as discussed by [8].

Figure 1 depicts the processing view of an SPIAR-based
architecture based on run-time components rendering as in,
e.g., Echo2. The view shows the interaction of the differ-
ent components some time after the initial page request (the
engine is running on the client). User activity on the user in-
terface fires off an event to indicate some kind of component-
defined action which is delegated to the AJAX engine. If a
listener on a server-side component has registered itself with
the event, the engine will make a DELTA-CLIENT message
of the current state changes with the corresponding events
and send it to the server. On the server, the decoder will con-
vert the message, and identify and notify the relevant compo-

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 13, 2008 at 03:12 from IEEE Xplore. Restrictions apply.

nents in the component tree. The changed components will
ultimately invoke the event listeners of the service provider.
The service provider, after handling the actions, will update
the corresponding components with the new state which will
be rendered by the encoder. The rendered DELTA-SERVER

message is then sent back to the engine which will be used
to update the representational model and eventually the in-
terface. The engine has also the ability to update the repre-
sentational model directly after an event, if no round-trip to
the server is required.

4.4. Architectural Constraints

Architectural constraints can be used as restrictions on the
roles of the architectural elements to induce the architectural
properties desired of a system. Table 1 presents an overview
of the constraints and induced properties. A “+” marks a di-
rect positive effect, whereas a “–” indicates a direct negative
effect.

SPIAR rests upon the following constraints chosen to re-
tain the properties identified previously in this section.

Interaction and Synchronicity
The client-server interaction can be realized in both a push-
or pull-based style. In a push-based style [15], the server
broadcasts the state changes to the clients asynchronously
every time its state changes. Event-based Integration [2]
and Asynchronous REST [16] are event-based styles allow-
ing asynchronous notification of state changes by the server.
This style of interaction is mainly supported in peer-to-peer
architectural environments.

In a pull-based style, client components actively request
state changes. Event-driven [22] architectures are found in
distributed applications that require asynchronous commu-
nication, for instance, a desktop application, where user ini-
tiated UI inputs serve as the events that activate a process.

AJAX applications are designed to have a high user inter-
activity and a low user-perceived latency. Asynchronous in-
teraction allows the user to, subsequently, initiate a request
to the server at any time, and receive the control back from
the client instantly. The requests are handled by the client
at the background and the interface is updated according to
server responses. This model of interaction is substantially
different from the classic synchronous request, wait for re-
sponse, and continue model.

Delta-communication
Redundant data transfer which is mainly attributed to re-
transmissions of unchanged pages is one of the limitations of
classic web applications. Many techniques such as caching,
proxy servers and fragment-based resource change estima-
tion and reduction [5], have been adopted in order to reduce
data redundancy. Delta-encoding [19] uses caching tech-
niques to reduce network traffic, however, it does not reduce

Table 1. Constraints and induced properties

U
se

r
In

te
ra

ct
iv

ity

U
se

r-
pe

rc
ei

ve
d

L
at

en
cy

N
et

w
or

k
Pe

rf
or

m
an

ce

Si
m

pl
ic

ity

Sc
al

ab
ili

ty

Po
rt

ab
ili

ty

V
is

ib
ili

ty

Asynchronous Interaction + +
Delta Communication + + + – –
Client-side processing + + +
UI Component-based + +
Web standards-based + +
Stateful + + + – –

the computational load since the server generates the entire
page for each request [21].

SPIAR goes one step further, and uses a delta-
communication style of interaction. Here merely the state
changes are interchanged between the client and the server as
opposed to the full-page retrieval approach in classic web ap-
plications. Delta-communication is based on delta-encoding
architectural principles but is different: delta-communication
does not rely on caching and as a result, the client only needs
to process the deltas. All AJAX frameworks hide the delta-
communication details from the developers.

This constraint induces the properties of network perfor-
mance directly and as a consequence user-perceived latency
and user interactivity. Network performance is improved be-
cause there are less redundant data (merely the delta) being
transported.

User Interface Component-based
SPIAR relies on a single page user interface with components
similar to that of desktop applications, e.g., AWT’s UI com-
ponent model. This model defines the state and behavior of
UI components and the way they can interact.

UI component programming improves simplicity because
developers can use reusable components to assemble a Web
page either declaratively or programmatically. User inter-
activity is improved because the user can interact with the
application on a component level, similar to desktop appli-
cations.

Web standards-based
Constraining the Web elements to a set of standardized for-
mats is one way of inducing portability on the Web. This
constraint excludes approaches that need extra functionality
(e.g., plug-ins, virtual machine) to run on the Web browser,
such as Flash and Java applets, and makes the client cross-
browser compatible. This constraint limits the nature of the
data elements to those that are supported by web browsers.

Client-side Processing
Client-side processing improves user interactivity and user-
perceived latency through round-trip reduction. For instance,
client-side form validation reduces unnecessary server-side

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 13, 2008 at 03:12 from IEEE Xplore. Restrictions apply.

error reports and reentry messages. Additionally, some
server-side processing (e.g., sorting items) can be off-loaded
to clients using mobile code that will improve server per-
formance and increase the availability to more simultaneous
connections. As a tradeoff, client performance can become
an issue if many widgets need processing resources on the
client. GWT takes advantage of client-side processing to the
fullest, by generating all the UI client-side code as JavaScript
and run it on the client.

Stateful
A stateless server is one which treats each request as an in-
dependent transaction, unrelated to any previous request, i.e.,
each request must contain all of the information necessary to
understand it, and cannot take advantage of any stored con-
text on the server [12]. Even though the Web architecture and
HTTP are designed to be stateless, it is difficult to think of
stateless Web applications. Within a Web application, the or-
der of interactions is relevant, making interactions depend on
each other, which requires an awareness of the overall com-
ponent topology. The statefulness is imitated by a combi-
nation of HTTP, client-side cookies, and server-side session
management.

Unlike REST, SPIAR does not constrain the nature of the
state explicitly. Nevertheless, since a stateless approach may
decrease network performance (by increasing the repetitive
data), and because of the component-based nature of the user
interactions, a stateful solution might become favorable at
the cost of scalability and visibility.

5. Discussion

In this section we use SPIAR to discuss various decisions and
tradeoffs to be made when developing AJAX frameworks and
applications.

Resource-based versus Component-based
The architecture of the World Wide Web [31] is based on
resources identified by Uniform Resource Identifiers (URI),
and on the protocols that support the interaction between
agents and resources. Using a generic interface and pro-
viding identification that is common across the Web for re-
sources has been one of the key success factors of the Web.

The nature of Web architecture which deals with Web
pages as resources causes redundant data transfers [5]. The
delta-communication way of interaction in SPIAR is based
on the component level and does not comply with the Re-
source/URI constraint of the Web architecture. The question
is whether this choice is justifiable. To be able to answer this
question we need to take a look at the nature of interactions
within single page applications: safe versus unsafe interac-
tions.

Safe versus Unsafe Interactions
Generally, client/server interactions in a Web application can

be divided into two categories of Safe and Unsafe interac-
tions [30]. A safe interaction is one where the user is not
to be held accountable for the result of the interaction, e.g.,
simple queries. An unsafe interaction is one where a user
request has the potential to change the state of the resource.

In single page Internet applications, where interaction be-
comes more and more desktop-like, where eventually Un-
do/Redo replaces Back/Forward, the safe interactions remain
using URIs while the unsafe ones can be safely carried out at
the background using delta-communication in which neither
the data transmitted nor the data received in the response nec-
essarily correspond to any resource identified by a URI. This
implies the engine should also provide the means of linking
to safe operations as well as hyper-linked documents. The
URI’s fragment identifier can be used for this purpose. In-
terpretation of the fragment identifier is then performed by
the engine that dereferences a URI to identify and represent
a state of the application.

Client- or server-side processing
Within the current frameworks it is not possible for develop-
ers to choose whether some certain functionality should be
processed on the client or on the server. How the computa-
tion is distributed can be an important factor in tunning a web
application. AJAX frameworks architectures should provide
the means for the developer to decide if and to what extend
computation should be done on the client.

Asynchronous Synchronization
The asynchronous interaction in AJAX applications may
cause race conditions if not implemented with care. The user
can send a request to the server before a previous one has
been responded. In a server processor that handles the re-
quests in parallel, the second request can potentially be pro-
cessed before the first one. This behavior could have dras-
tic effects on the synchronization and state of the entire ap-
plication. A possible solution would be handling the event-
triggered requests for each client sequentially at the cost of
server performance.

Communication Protocol
As we have seen, currently each AJAX framework has im-
plemented its own specific communication protocol. This
makes the visibility of client/server interactions poor as one
must know the exact protocol to be able to make sense of the
delta messages. It also results in a low level of scalability for
these applications. For a client to be able to communicate
with an AJAX server, again it needs to know the protocol
of that server application. These two properties can be im-
proved by defining a standard protocol specification for the
communication by and for the AJAX community.

Design Models
Figure 2 shows a meta-model of an AJAX web application.
The UI is composed of widgets of UI components. The client
single page is built by the server-side widgets. Delta changes

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 13, 2008 at 03:12 from IEEE Xplore. Restrictions apply.

UI

Widget View
<<build>>

deltaChange

deltaUpdate

viewChange

1..*

1..*

Web App
1

<<UI Component>>

Page

1..*

Server app Client Browser

Figure 2. A single page web application composed of UI components.

as well as view changes occur on the widget level. A view
change, can be seen as navigating through the available wid-
gets. AJAX frameworks should provide clear navigational
models for developers. Research is needed to propose de-
sign models for AJAX developers by for instance extend-
ing the UML language to model user interaction, navigation
through components, asynchronous/synchronous actions and
client versus server side processing.

Fragment-based Approach
The page-sequence model of the Web makes it difficult
to treat portions of Web pages (fragments), independently.
Fragment-based research [5, 6, 7] aims at providing mecha-
nisms to efficiently assemble a Web page from different parts
to be able to cache the fragments. Recently proposed ap-
proaches include several server-side and cache-side mecha-
nisms. Server-side techniques aim at reducing the load on the
server by allowing reuse of previously generated content to
serve user requests. Cache-side techniques attempt to reduce
the latency by moving some functionality to the edge of the
network. These fragment-based techniques can improve net-
work and server performance, and user-perceived latency by
allowing only the modified or new fragments to be retrieved.

Although the fragments can be retrieved independently,
these techniques lack the user interface component in-
teractivity required in interactive applications. The UI
component-based model of the SPIAR style in conjunction
with its delta-communication provides a means for a client-
/server interaction based on state changes that does not rely
on caching.

6. Related Work

While the attention for rich Internet applications in general
and AJAX in particular in professional magazines and Inter-
net technology related web sites has been overwhelming, few
research papers have been published on the topic so far.

Recently a number of technical books have appeared on
the subject of developing AJAX applications. Asleson and
Schutta [1] focus primarily on the client side aspects of

the technology and remain ‘pretty agnostic’ to the server
side. Crane et al. [9] provide an in-depth presentation of
AJAX web programming techniques and prescriptions for
best practices with detailed discussions of relevant design
patterns. They also mention improved user experience and
reduced network latency by introducing asynchronous inter-
actions as the main features of such applications. While these
books focus mainly on the implementation issues, our work
examines the architectural design decisions and properties
from an abstraction level by focusing on the interactions be-
tween the different client/server components.

Pace [26] is an event- based architectural style for trust
management in decentralized applications. TIGRA [10] is a
distributed system style for integrating front-office systems
with middle- and back-office applications. Aura [25], an ar-
chitectural framework for user mobility in ubiquitous envi-
ronments, uses models of user tasks as first class entities to
set up, monitor and adapt computing environments.

Khare and Taylor [16] evaluate and extend REST for de-
centralized settings and represent an event-based architec-
tural style called ARRESTED. The asynchronous extension
of REST, called A+REST, permits a server to broadcast no-
tifications of its state changes to ‘watchers’. This work is
highly related to the concepts of AJAX applications. Ap-
plying a real push-based interaction style to AJAX, however,
will probably take some time as the standard browsers and
servers do not support this form of communication yet.

The SPIAR style itself draws from many existing styles
[16, 22, 24, 27] and software fields [11, 19, 23], discussed
and referenced in the paper. Our work relates closely to
the software engineering principles of the REST style [12].
While REST deals with the architecture of the Web [31] as a
whole, SPIAR focuses on the specific architectural decisions
of AJAX frameworks.

7. Concluding Remarks

In this paper we have discussed SPIAR, an architectural style
for AJAX. The contributions of this paper are in two research

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 13, 2008 at 03:12 from IEEE Xplore. Restrictions apply.

fields: web application development and software architec-
ture.

From a software architecture perspective, our contribu-
tion consists of the use of concepts and methodologies ob-
tained from software architecture research in the setting of
AJAX Internet applications. Our paper further illustrates how
the architectural concepts such as properties, constraints, and
different types of architectural elements can help to organize
and understand a complex and dynamic field such as single
page Internet development. In order to do this, our paper
builds upon the foundations offered by the REST style, and
offers a further analysis of this style for the purpose of build-
ing web applications with rich user interactivity.

From a web engineering perspective, our contribution
consists of the SPIAR style itself, which captures the guid-
ing software engineering principles that practitioners can use
when constructing and analyzing AJAX frameworks as well
as applications. The style is based on an analysis of various
of such frameworks, and we have used it to address various
design tradeoffs and open issues in AJAX applications.

Future work encompasses the use of SPIAR to analyze
and influence AJAX developments. One route we foresee is
the extension of SPIAR to incorporate additional models for
representing, e.g., navigation or UI components, thus mak-
ing it possible to adopt a model-driven approach to AJAX

development. At the time of writing, we are using SPIAR in
the context of enriching existing web applications with AJAX

capabilities.

Acknowledgments Partial support was received from SenterNovem,

project Single Page Computer Interaction (SPCI). We thank Bas Graaf (TU

Delft), Tijs van der Storm (CWI), and Mark Schieffelbein (Backbase) for

their feedback on our paper. We particularly would like to thank Kees

Broenink (Backbase) for our earlier collaboration on SPIAR [18].

References
[1] R. Asleson and N. T. Schutta. Foundations of Ajax. Apress, 2005.
[2] D. J. Barrett, L. A. Clarke, P. L. Tarr, and A. E. Wise. A framework for

event-based software integration. ACM Trans. Softw. Eng. Methodol.,
5(4):378–421, 1996.

[3] L. Bass, P. Clements, and R. Kazman. Software architecture in prac-
tice, 2nd ed. Addison-Wesley, 2003.

[4] T. Berners-Lee, L. Masinter, and M. McCahill. RFC 1738: Uniform
Resource Locators (URL), 1994.

[5] C. Bouras and A. Konidaris. Estimating and eliminating redundant
data transfers over the Web: a fragment based approach: Research
articles. Int. J. Commun. Syst., 18(2):119–142, 2005.

[6] D. Brodie, A. Gupta, and W. Shi. Accelerating dynamic web con-
tent delivery using keyword-based fragment detection. J. Web Eng.,
4(1):079–099, 2005.

[7] J. Challenger, P. Dantzig, A. Iyengar, and K. Witting. A Fragment-
based approach for efficiently creating dynamic Web content. ACM
Trans. Inter. Tech., 5(2):359–389, 2005.

[8] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and
R. Little. Documenting Software Architectures: Views and Beyond.
Pearson Education, 2002.

[9] D. Crane, E. Pascarello, and D. James. Ajax in Action. Manning
Publications Co., 2005.

[10] W. Emmerich, E. Ellmer, and H. Fieglein. TIGRA an architectural
style for enterprise application integration. In ICSE ’01: 23rd Inter-
national Conference on Software Engineering, pages 567–576. IEEE
Computer Society, 2001.

[11] R. Fielding. Architectural styles and the design of network-based soft-
ware architectures. PhD thesis, UC, Irvine, Information and Computer
Science, 2000.

[12] R. Fielding and R. N. Taylor. Principled design of the modern Web
architecture. ACM Trans. Inter. Tech. (TOIT), 2(2):115–150, 2002.

[13] E. Folmer. Software Architecture analysis of Usability. PhD thesis,
Univ. of Groningen, Mathematics and Computer Science, 2005.

[14] J. Garrett. AJAX: A new approach to web applications. Adaptive path,
2005.

[15] M. Hauswirth and M. Jazayeri. A component and communication
model for push systems. In 7th European Software Engineering Con-
ference (ESEC/FSE-7), pages 20–38. Springer-Verlag, 1999.

[16] R. Khare and R. N. Taylor. Extending the Representational State
Transfer (REST) architectural style for decentralized systems. In ICSE
’04: 26th International Conference on Software Engineering, pages
428–437. IEEE Computer Society, 2004.

[17] G. E. Krasner and S. T. Pope. A cookbook for using the model-view
controller user interface paradigm in Smalltalk-80. Journal of Object
Oriented Program, 1(3):26–49, 1988.

[18] A. Mesbah, K. Broenink, and A. van Deursen. SPIAR: An archi-
tectural style for single page Internet applications. Technical Report
SEN-R0603, CWI, 2006.

[19] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy. Po-
tential benefits of delta encoding and data compression for HTTP. In
ACM SIGCOMM Conf. on Applications, technologies, architectures,
and protocols for computer communication, pages 181–194. ACM,
1997.

[20] R. T. Monroe and D. Garlan. Style-based reuse for software architec-
tures. In ICSR ’96: 4th International Conference on Software Reuse,
page 84. IEEE Computer Society, 1996.

[21] M. Naaman, H. Garcia-Molina, and A. Paepcke. Evaluation of ESI
and class-based delta encoding. In 8th International Workshop Web
content caching and distribution, pages 323–343. Kluwer Academic
Publishers, 2004.

[22] W. M. Newman and R. F. Sproull. Principles of Interactive Computer
Graphics. McGraw-Hill, 1979. 2nd Edition.

[23] D. E. Perry and A. L. Wolf. Foundations for the study of software
architecture. SIGSOFT Softw. Eng. Notes, 17(4):40–52, 1992.

[24] A. Sinha. Client-server computing. Communications of the ACM,
35(7):77–98, 1992.

[25] J. P. Sousa and D. Garlan. Aura: an architectural framework for user
mobility in ubiquitous computing environments. In WICSA 3: IFIP
17th World Computer Congress - TC2 Stream / 3rd IEEE/IFIP Con-
ference on Software Architecture, pages 29–43. Kluwer, B.V., 2002.

[26] G. Suryanarayana, J. R. Erenkrantz, S. A. Hendrickson, and R. N.
Taylor. PACE: An architectural style for trust management in decen-
tralized applications. In WICSA ’04: 4th Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA’04), page 221. IEEE Computer
Society, 2004.

[27] R. N. Taylor, N. Medvidovic, K. M. Anderson, J. E. J. Whitehead,
J. E. Robbins, K. A. Nies, P. Oreizy, and D. L. Dubrow. A component-
and message-based architectural style for GUI software. IEEE Trans.
Softw. Eng., 22(6):390–406, 1996.

[28] H.-H. Teo, L.-B. Oh, C. Liu, and K.-K. Wei. An empirical study of
the effects of interactivity on web user attitude. Int. J. Hum.-Comput.
Stud., 58(3):281–305, 2003.

[29] A. Umar. Object-oriented client/server Internet environments. Pren-
tice Hall Press, 1997.

[30] W3C. URIs, Addressability, and the use of HTTP GET and POST,
Mar. 21 2004. W3C Tag Finding.

[31] W3C Technical Architecture Group. Architecture of the World Wide
Web, Volume One, Dec. 15, 2004. W3C Recommendation.

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00 © 2007

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 13, 2008 at 03:12 from IEEE Xplore. Restrictions apply.

