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Abstract

The Generalized Lotka-Volterra (GLV) model, widely employed in population dynamics,
serves to characterize how interactions between species influence system equilibria. This
model can be extended to the economic domain to quantify wealth inequality among indi-
viduals. In this thesis, we explore the impact of the underlying random network structure
on the final distribution of abundances, with a focus on homogeneous degree settings, par-
ticularly regular random graphs. While the GLV model has been extensively studied in
competitive and predator-prey scenarios, the mutualistic (or cooperative) case has received
less attention due to the divergence of species abundances. In the context of this divergence,
we investigate the hierarchy of infinities by revisiting the GLV model and introducing a
framework wherein species undergo relative extinction when compared to others. For large
interaction strengths, we observe the emergence of effective competition within a coopera-
tive system, resulting in localization, a phenomenon in which a few highly connected species
dominate and accumulate most of the wealth. As interaction strength decreases, the surviv-
ing component follows a geometrical evolution, which we analytically quantify in this work.
Finally, we discuss the implications of this framework for wealth inequality through the Gini
index and extend the analysis to heterogeneous degree settings using the Erdős-Rényi ran-
dom graph model.

Keywords: Generalized Lotka-Volterra, mutualistic divergence, regular random graph,
Erdos-Renyi random graph, replicator equations, wealth condensation, Anderson localiza-
tion.
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per condividere. Grazie a Stefano, che è la prima persona di cui chiedo il consiglio e che mi ha
insegnato il valore di una vita alla ricerca della bellezza e della diversità. Grazie a Marilisa,
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anni vorrei creare un rapporto di spontanea complicità. Ringrazio Nice per essere stata la di-
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1 Introduction

1.1 Background and context of the research

To explain the motivations behind this thesis, we will initially explore the roles of statisti-
cal physics and populations biology in Econophysics: the study of complex systems central
to understanding the multifaceted nature of economic dynamics. A complex system, char-
acterized by numerous interacting components that exhibit collective behavior, cannot be
comprehensively described by simple, linear models. This complexity requires the use of
statistical physics, a field adept at modeling systems composed of large numbers of parti-
cles, each obeying specific rules governing their dynamics and interactions. The application
of these principles to economics, particularly after the financial crisis, highlighted the in-
adequacies of classical economic theories, which often failed to account for the emergent
and nonlinear behaviors observed in real-world markets. J.P. Bouchaud in ”The (Unfortu-
nate) Complexity of the Economy” [11] underscores this shift, emphasizing how traditional
models struggled to predict and manage the complexities revealed during economic turmoil.
Econophysics treats wealth, income, and money distributions akin to particle distributions in
physical systems. In [29] and [52], T. Lux and V. M. Yovanenko merged statistical mechan-
ics principles with economic measures like the Gini index and the Lorenz curve (we will use
them later) to model the heavy-tailed distributions observed in real economies, where wealth
and income are unevenly distributed across the population. In the book The economy as an
evolving complex system by P. W. Anderson [4], multiple physics phenomena that arise in
economics are explained, such as self-reinforcing mechanisms that describe processes where
initial advantages tend to accumulate over time, leading to increasing returns and potential
market dominance by particular firms. Or the influence of nonlinear dynamics that occur
when changes in input do not result in proportional changes in output, leading to phenomena
such as bifurcations, where a small change in initial conditions can cause a sudden shift from
one equilibrium to another [14]. In the context of economic development, dynamics away
from attractors provide a framework for understanding how economies transition between
different states of equilibrium. Traditional economic models often assume that economies
tend toward a single, stable equilibrium. However, M. Kauffman and D. Farmer ’s work sug-
gests that economies can exhibit complex adaptive behaviors, moving away from traditional
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1. INTRODUCTION

attractors toward new configurations in response to shocks or innovations [22]. In this last
paper the interactions between different market participants can be modeled as ecological
interactions, where profits and losses correspond to the survival and reproduction of species.
There, D. Farmer explores how reinvestment of profits within markets leads to a capital al-
location model analogous to population dynamics, where trend followers and value investors
play roles similar to different species within an ecosystem. This approach also demonstrates
how market efficiency is influenced by the behaviors of these participants, with trend follow-
ers often impeding the progress toward market efficiency, much like invasive species might
disrupt ecological balance. Among the models from population biology, which describe the
interactions between different economic agents as analogous to predator-prey dynamics, the
Generalized Lotka Volterra (GLV) is the most versatile. For instance, R. Goodwin applied
it to provide insights into the cyclical nature of economic growth and income distribution,
highlighting how competition and cooperation between different economic actors can lead to
emergent behaviors in markets. This approach, combined with the insights in J. Moran and
J.P. Bouchaud ’s work on instability in large economies, underscores the inherent fragility of
economic systems as they become larger and more interconnected [39].

Motivated by these considerations, we will investigate the GLV, focusing on the influence
of the underlying network to the final state of the system. To do that we will introduce
some concept from random graph theory for which the reader can refer to the book by R.
V. Hofstad [51]. The role of the underlying graph was studied both from an economical
point of view [7] and, more extensively, from an ecological point of view [2], [30], [15].
Recently, three notable studies were published almost simultaneously, focusing on the effects
of heterogeneous interactions on the equilibria of systems governed by GLV dynamics [47],
[42], [1]. Of particular relevance is the study by F. A. Lopez, which serves as a primary
inspiration for our analysis. A common thread among these studies is the assumption of
the high connectivity limit, denoted as 1 ≪ C ≪ N , where N represents the population
size and C the average degree of connectivity, leading to dense adjacency matrices. This
assumption is crucial as it facilitates the application of Dynamic Mean Field Theory (DMFT),
a powerful tool that simplifies the analysis of such complex systems. DMFT enables the
reduction of a high-dimensional problem, wherein the dynamics of each species are influenced
by interactions with many others, to a more tractable one-dimensional stochastic process. In
essence, the mean field approach approximates the intricate, individual interactions within
the system by an average effect that each species experiences from the collective influence of
the entire population.

An alternative approach to studying the stability of equilibria in the context of underlying
random networks was pioneered by R. M. May [31]. This approach involves determining the
spectral boundary of the Jacobian matrix, heavily relying on the principles of random matrix
theory. Specifically, the stability of an equilibrium is assessed by evaluating the eigenvalues of
the Jacobian at that equilibrium; if all eigenvalues are negative, the equilibrium is considered
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1. INTRODUCTION

a stable attractor. In its most basic form, this approach reduces to analyzing the maximum
eigenvalue. However, the challenge arises in defining the spectrum of an interaction ma-
trix, particularly when its entries are random variables following a specific distribution [43].
While this spectral approach has the advantage of being applicable to systems with finite
N and sparse interaction matrices with low connectivity, it is often complex to manage and
generalize due to its case dependent nature.

In our case we will mainly deal with homogeneous degree random graphs which lead to de-
terministic equilibria. The goal is then to find those equilibria (or fixed points) and find the
Jacobian spectrum boundary. In our framework, given the regularity of the graph, we could
always expect the same final structures. Therefore, what we did was to run the simulations,
observing the structure of the equilibria and building the theory on top of it. In general,
for more complex networks, Message Passing Algorithm (MPA) can be used to find (or ap-
proximate) the fixed points [35], [20]. It works by iteratively updating the messages based
on information from neighboring nodes which are propagated throughout the network. This
propagation continues until the messages converge to stable values, representing the fixed
points of the system. It is particularly well-suited to sparse matrices where the number of
non-zero elements is relatively small compared to the size of the matrix, and the algorithm
efficiently handles the propagation of information through the network. Moreover, thanks to
the Schur Complement formula which simplifies the matrix by iteratively eliminating rows,
the determinant of the Jacobian evaluated in the fixed point found with the MPA can be
factorized. In most cases it is an approximation, but in the case of trees (regular and non-
regular) the factorization of the characteristic equation is exact as there are no cycles or
multi-edges. This algorithm proved to be a very useful tool also in information theory and
compressed sensing because it drastically reduces the dimension of a complex system. For
what concerns the topics of information theory that we will use in this research, like the
Shannon Entropy and the Fractal Exponent, the reader can refer to the book Information,
Physics and Computation by A. Montanari and M. Mezard [35].

I will now anticipate the explanations of two results that we will observe later. In particular
there are two phenomena that belong to information theory, whose origins come from statis-
tical mechanics. In order to achieve that, I have to introduce the underlying process of my
research. We will observe the dynamics of a system of N species that are connected via an
underlying random graph. It is a one dimensional problem because the only variable that
changes in time is the abundance of each species. Finally the dynamics converge to a stable
attractor (or fixed point or equilibrium) and I have a final state given by the N-dimensional
vector with the final abundances of each species. In general, a state at time t is the vector of
abundances in that instant. After this incipit, we can delve into the description of the two
phenomena.

3



1. INTRODUCTION

In statistical mechanics, condensation describes the phenomenon where a large fraction of
particles occupies a single quantum state, as in Bose-Einstein condensation [23]. In the con-
text of the GLV dynamics, in a condensed final state, the total abundance of the system is
dominated by a few species whose abundances are large (of O(N)) and whose normalization
against the total sum of abundances does not drop to zero when the total number of species
N is brought to infinity. We then have a highly skewed abundances distribution where the
majority of species might have negligible or zero abundance (we say that they go extinct),
analogous to the way particles in a Bose-Einstein condensate occupy a single quantum state.
This phenomenon is studied also with respect to the wealth of individuals in [12], [52] where
it is measured with the inverse participation ratio.

Anderson localization refers to the phenomenon where electrons become localized in space
due to disorder in the system, hindering their ability to move across a lattice. When the
disorder in the system is sufficiently strong, the wave functions of the particles become expo-
nentially localized, preventing them from contributing to transport phenomena like electrical
conduction. In the paper by V. E. Kravtsov [28], which we will take as a term of compari-
son for our results, the Anderson localization is detected by showing the fractal dimension
D of wave functions with respect to the disorder strength W (see Figure 4.24). If D = 1
corresponds to the regime of ergodic extended states and D = 0 is the one for non-ergodic
localized states where particles are confined to specific regions, then D undergoes a smooth
transition from 1 to 0. Simply think of an ergodic regime as one where no single species
or small group of species dominates. While in the non-ergodic regime, the system’s state is
”localized” in a subset of the possible configurations. In this case, the Anderson localization
is anticipated by the non-ergodic extended phase with 0 < D < 1 where the wave functions
are extended but still localized in a fractal-like manner. In the context of the final state
in the GLV, the fractal exponent (or fractal dimension) describes the spatial distribution
of species abundances at equilibrium. With spatial distribution I mean the clusters of the
distribution, i.e. regions where the abundance values are dense, separated by regions where
abundances are sparse or zero. For example, if there areM species with final abundances all
at y = 100, and N–M species that go extinct with abundances around 0, then I have only
two clusters and no self-similarity in the first one. Let us see what it means. If you zoom in
on a portion of this distribution, you might find that within a cluster, the distribution still
has irregularities, or if you look at the distribution on different scales, similar patterns might
appear. Fractal dimensions are indeed a mathematical tool used to describe the complexity
of structures that exhibit patterns repeating at different scales. This is self similarity and it
means that the structure looks similar at different scales. In the GLV framework, this could
manifest as similar patterns of clustering at different levels of abundance. In the GLV, in
a localized regime, many species might go extinct because the interaction strengths lead to
highly competitive dynamics where only a few species can sustain themselves. Indeed the
disorder strength W of Kravtsov ’s paper corresponds to our interaction strength. This is
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1. INTRODUCTION

analogous to the wave function in a quantum system being concentrated in a small region,
with most of the space having near-zero amplitude [8], [16]. We will observe this localization
in the case of a C-regular trees which is a finite size simplification of an infinite size Bethe
lattice where the Anderson localization was observed in [41], [46].

One last consideration before delving into our research and the first description of the model
we are going to use. In this study we cite many research projects on Agent Based Model
(ABM), it is then worth mentioning whether the GLV is an ABM and whether we can get
some insights that could be useful for the ABM scope [27], [44], [12].
A GLV model with N species and an ABM with N agents share the common goal of modeling
complex dynamics resulting from interactions within a system. However, the GLV model
represents these interactions through continuous, deterministic differential equations that
describe the overall population dynamics in a more aggregated form, focusing on species-level
behaviors. In contrast, an ABM captures the individual actions and interactions of discrete
agents, often incorporating stochastic elements that reflect variability and randomness in
agent behaviors. The former provides a macroscopic view while the latter offers a microscopic
perspective. We know from [40] that the ABMs are very sensible to the choice of the initial
configuration, hence understanding how the choice of Initial Conditions (IC) influences the
equilibria of the GLV could be an insightful starting point for a better comprehension of
ABMs.

1.2 Generalized Lotka-Volterra

Before we state the problem and we delve into the results, we present the dynamic model
with a detailed analysis of the roles of the different terms.
The Generalized Lotka-Volterra model consists of a system of N Ordinary Differential Equa-
tion (ODE) expressed as:

ẋi(t) = xi(t)

(
1− xi(t) +

∑
j

Aijαijxj(t)

)
, i = 1, . . . , N. (1.1)

where each term has a different role,

• xi(t): represents the abundance (or wealth when we consider the economical implica-
tions of the study) of species i at time t.

• ẋi(t): denotes the rate of change of the abundance of species i with respect to time. It
tells us how the species size is evolving at any given moment.

• 1: represents the intrinsic growth rate of species i in the absence of any competition
or interaction.
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• −xi(t): represents the self-limitation effect due to intraspecific competition. As the
population xi(t) increases, this negative term becomes more significant, reflecting the
carrying capacity limitation and the ageing of a certain species. It models the logistic
growth of species i.

• Interaction strength parameter α: modulates the influence of the connections on the
population dynamics. A larger |α| indicates stronger interactions among species.

• Adjacency matrix A: Matrix A quantifies the connection of species. In particular,
Aij ∈ {0, 1} is 1 if the two nodes are connected. The matrix Aijαij is called Interaction
matrix instead.

For the rest of the study the terms species, individual, node will be interchanged but they
all refer to i. We take the adjacency matrix A to be that of a random network sampled from
a configuration model (see A), where the degree of each node, ki(A) =

∑
j Aij, is fixed to

value ki. The vector of degrees k = (k1, ..., kN) is sampled from a distribution p(k).
We consider A to be a non-directed symmetric matrix without self-loops, which means
Aii = 0 ∀i ∈ {1, ..., N}, while the number of ones on the row i is given by ki.

Then we call C the average degree given by C =
∑

k p(k)k.

The other source of randomness is given by the interaction strength, where the asymmetry
of interaction is introduced by taking the pairs (αij, αji) as i.i.d. random variables with

αij =
µ

C
+

σ√
C
zij.

where zij ∼ N (0, 1), and cov(zij, zji) = γ. In this way the correlation between the weights
is controlled by γ; this changes the proportion of the different type of interactions that can
occur between species (cooperation, competition) [1]. We will always consider that the model
starts from an initial condition x0 whose entries are random i.i.d. numbers sampled from a
distribution x0 ∼ U(0, 1).

In this research, we are interested in analyzing the effect of the network structure on the equi-
libria of the system, so we get rid of the randomness generated by the interaction strength.
This corresponds to setting σ = 0 and it means all interactions have the same value. Con-
sidering α = µ

C
, we analyze the homogeneous interaction version of Equation 1.2 that is,

ẋi(t) = xi(t)

(
1− xi(t) + α

∑
j

Aijxj(t)

)
, i = 1, . . . , N. (1.2)
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The only disorder to consider is that of the random matrix A. In this case if we have α > 0,
it corresponds to cooperation between all species and if we have α < 0 it corresponds to
pure competition between everyone.

Vectorially Equation 1.2 can be expressed as,

dx(t)

dt
= D(x(t))(1− x(t) + αAx(t)). (1.3)

Where D(x(t)) is the diagonal matrix with the vector of abundances in the diagonal. The
system converges to one of the 2N equilibria (or fixed points) that are obtained by putting

dx

dt
= 0. (1.4)

Since we are dealing with species abundances (or firms wealth), the equilibrium must have N
non-negative values. This condition is called feasibility of the equilibrium. We introduce also
the other condition of uninvadability which refers to the impossibility of species’ abundances
to increase after they get to zero. This means that there is no resurrection possibility. If
all species are surviving (meaning that they have positive final abundance) the second term
must be zero and the equilibrium is

x⋆ = (−I + αA)−11. (1.5)

Where we can operate the inversion only if the matrix is non-singular, so we need it to be full
rank. As we explain in 2.1, finding the stable equilibria is reduced to a problem of finding
the maximal eigenvalue of the Jacobian calculated in the fixed point. In the standard GLV
case it is

Jij =

{
1− 2xi + α

∑
k Aikxk if i = j

αxiAij if i ̸= j
(1.6)

Then it has to be evaluated in x⋆ = (x∗1, ..., x
∗
N) to find the maximal eigenvalue and check if

x⋆ is stable. With this analysis we can study which is the structure of the stable equilibrium
for each value of α. This is what G. Bunin et al. did in [30], and the results obtained in
that paper serve as the starting point for our investigation.
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Figure 1.1: A) Evolution of the surviving components. Surviving nodes are highlighted in
red. B) ϕ is the relative diversity. ϕ against α in the competitive case; differently from
ours, in that paper competition corresponds to α > 0. This curve is obtained by running
the dynamics on a regular random graph with N = 400 and C = 3 and checking how many
nodes survive at equilibrium. The transitions are of two genres: structural (above) and in
the number of surviving species (below).

Here the relative diversity is introduced, and it is the measure that we will use the most
during this research. It is the ratio of surviving species over the total amount of species.
Looking at Figure 1.1.B, we notice that the curve undergoes multiple transitions of different
genres. For the initial values of α the relative diversity is 1, meaning that all species survive
with the same abundances expressed by equation 1.5. We call it uniform (or mean field)
equilibrium. As α is increased and species start dying, multiple equilibria become stable and
their structure goes from trees to chains to end up with size one disconnected components

8



1. INTRODUCTION

(singlets). At α = 1 the final plateau starts, where almost 40% survive as singlets. Figure
1.1.A shows the structure of the surviving components (green sets of red nodes) in relation
with the initial network that includes also the grey dying nodes.

1.3 Statement of the problem

The first goal of this research is to characterize the final structures geometrically and to find
what are the analytical values of α (or µ) where the transitions occur. We will do that by
looking at the edges of the distribution of the eigenvalues of the Jacobian. We want to create
a universal theory for C-regular random graphs for α ∈ R, including also the cooperative
case with α > 0. The extension on the whole real set for the interaction strength will not be
perfectly symmetric with respect to the model used because in cooperation we will adopt a
modified version of the standard GLV. Therefore it is not a perfect universal theory but it
is a useful unified theory where the two cases can be critically compared. In the literature
the purely competitive and the negatively correlated predator-pray dynamics scenarios are
vastly studied [49][30], but the purely mutualistic case is not, because species diverge and
there is only one possible state with all infinities.

Using the homogeneous degree case, for a given interaction strength and a given average
degree we will be able to immediately predict to which stable equilibrium the system is
going to relax and which is the final abundances distribution. That enables us to quantify
the wealth inequality of the network and to see how that changes when we modify either the
number or the strength of the connections.

Keep in mind that until we do not totally understand how the initial conditions influence
the equilibria, telling us exactly which species are going to survive, we can make our eval-
uations only in terms of what final structure we can expect. Then the next work consists
on counting the number of those structures on a given random graph. If, for instance, we
know that our random graph allows only one tree and the stability analysis tells us that the
attractor should have exactly that geometry, then we are sure that such single tree is the
component that will survive. But from the theory we know that a C-regular graph is locally
tree like [9], so if we discover that the final surviving component is a height-L tree (L low
enough not to encounter a long cycle), then it is a matter of counting the number of trees in
such regular graph. In particular, if N is large, using the cofactor of the Laplacian matrix
[17], we know that the number of spanning trees scales with NC−1.
Within the competitive case, M. N. Mooij understood that, for a high enough interaction
strength, the GLV was converging to a Maximal Independent Set (MIS) and used this real-
ization to reverse engineer the process and build an algorithm that finds the MIS in a regular
graph just by running the proper GLV dynamics on it [38]. However, once again, the MIS
is not unique, so the algorithm gives you one of the many MIS.

9
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1.4 Research objectives and questions

As it was discussed in 1.1, this problem was largely investigated in the thermodynamic limit
with N → ∞ in the setting of the DMFT. But that requires the high connectivity limit with
C >> 1, C < N . The underlying mean field hypothesis is that each species experiences the
average effect of the interactions with all others and the single average behavior represents
the collective behavior of the entire system. In this study we want to relax that hypothesis,
taking the low connectivity limit where the interaction matrix is sparse and each species is
studied separately, increasing the complexity in the sense of rising behaviours. We can get
a first grasp of what this means by looking at the Chapter Beyond mean-field of the paper
by F. A. Lopez [1].

Figure 1.2: Figure from Chapter 7 of [1]. Random regular graph with no degree heterogeneity
with a population of 30000 species (50 shown) and average connectivity C = 50. There is a
value of µ = µu ≈ −3.57 such that for µ < µu there are deviations from the uniform solution.
On the left µ = µu + ϵ = −3.56, on the right µ = µu − ϵ = −3.58.

In the competitive case of Figure 1.2, if µ < µu the DMFT does not reflect the system
behavior anymore and a new case dependent theory like ours is necessary. But if µ = µu− ϵ,
for ϵ low enough, the DMFT is still useful to describe the transient regime as the unstable
directions have positive but small eigenvalues associated with them, making the instability
taking very long to develop (the transient time goes like 1

|λmax| , see 2.1). Moreover, in terms
of the wealth inequality, we see that beyond the mean field there are many extinctions also
when there is no degree heterogeneity and that is what our research is going to focus on.

In our context of the low connectivity case, we want to establish whether there is some kind
of mirroring around µ = α = 0 between the competitive and cooperative scenarios, compar-
ing our results on cooperation with the results of [30] (see Figure 1.1). Initially, we want to
answer the following questions:

Do we encounter the same steep transitions at the level of the relative diversity pitfalls also
in cooperation?
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What is the minimal structure of the surviving components in the last plateau? Do we
have singlets as in the competitive case?

To what extent are the two cases mirrored?

As anticipated, we will use a modified re-scaled model based on the replicator equations
to cope with the divergence of the species abundances in cooperation. This prevents an
eventual perfect mirroring but the results are still very interesting to compare. For example,
in the Section 4.2 we see that, even if we use the different model, the uniform critical value
of the interaction strength is the opposite of the one obtained in competition: αu = − 1

2
√
C−1

.
That stems an interest to check whether also the other critical values are preserved. We
will discover that they are not but the new re-scaled model introduces an effective com-
petition within cooperation that leads to interesting results on the final geometries of the
surviving components. After the study of the homogeneous case we will introduce the degree
heterogeneity with the introduction of the Erdos-Renyi random graph, which in ecological
literature was deeply studied in [3], [2].

Moreover, we can give an economical interpretation of our results in terms of the wealth
inequality of the final states, where we can consider the species i as individuals or firms. If
we consider the final abundances as wealth of individuals or firms for example, it is interesting
to study the wealth inequality in the whole population. An economical metric widely used
in literature is the Gini coefficient. It ranges from 0 to 1, where 0 represents perfect equality
(everyone has the same income or wealth) and 1 represents perfect inequality (one person
has all the income or wealth). This is a widely used tool for analyzing wealth distribution
in countries and regions [37], [6].
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Figure 1.3: Definition of Gini coefficient as the ratio of the two areas [24].

It is defined as the ratio between the area above the Lorenz curve and the total area under
the equality line where all individuals have the same wealth. The Lorenz curve L(F (x))
plots the cumulative share of income earned by the bottom x fraction of the population,
where F (x) is the Cumulative Distribution Function (CDF ). In Figure 1.3, for example,
the Lorenz curve shows that the poorest 20% of the population has 5% of the income, while
the poorest 80% detains half of the total income.
Let y be the abundances (or income) and F (y) be the CDF of the income distribution, the
Gini coefficient can be expressed as:

G = 1− 1

⟨y⟩

∫ ∞

0

(1− F (y))2 dy. (1.7)

Where ⟨y⟩ is the mean of the income distribution and F (y) is zero for all negative values.

This thesis will be then structured as follows. After a preparatory explanation of math-
ematical ecology in Chapter 2, in Chapter 3 we explain the methods we used to find our
results, including the environments we worked in and the functions that were used, as well
as their computational criticalities. In Chapter 4 we introduce the results, incorporating the
conclusions associated to the phenomena we observe. We begin by introducing the arise of
divergence in cooperation and how to deal with it with the new model in 4.1, then we study
the homogeneous degree case starting with the rings in Section 4.3, to then generalize to
any degree C in 4.4. We give an initial flare of how things would change taking an heteroge-
neous degree distribution in 4.5, focusing on the Erdos-Renyi random graph and finally we
sum up our considerations, indicate the limits of the study and propose further research in
Chapter 5. If the reader wants to get a grasp of the sequence of results or wants to orient
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him/her-self in the structure of this research, it is suggested to look at the List of Figures
which summarizes the results and the means to achieve them.
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2 Mathematical Background

2.1 Mathematical Ecology and Stability Analysis

For this section the reader can refer to the book by Boyce, Diprima and Meade [13]. The
Lotka-Volterra equations were originally formulated to model the interaction between two
species, often referred to as predator and prey. Introduced by A. Lotka in 1910 and indepen-
dently by V. Volterra in 1926, these equations were first applied to describe the dynamics of
fish populations in the Adriatic Sea. The classical system is defined as follows:

dx1
dt

= ax1 − βx1x2,

dx2
dt

= δx1x2 − γx2,

where x1 represents the population of prey and x2 the population of predators. The param-
eters a, β, δ, and γ are positive constants that describe the growth rates and interactions
between the two species: a is the natural growth rate of the prey, β describes the rate at
which predators consume prey, δ is the rate at which predators grow due to feeding, and γ
is the natural death rate of the predator population.
This system is an example of an autonomous system of non-linear differential equations.
An autonomous system is one where the independent variable, in this case, time t, does
not explicitly appear in the equations, meaning the system’s behavior only depends on the
current values of the populations x1 and x2. The non-linearity arises from the interaction
terms βx1x2 and δx1x2, which reflect the complex interdependencies between the predator
and prey populations.
A fixed point (or equilibrium point) of the system occurs when the populations are constant,
meaning both derivatives are zero. To find the fixed points, we solve dx1

dt
= 0 and dx2

dt
= 0.

For the Lotka-Volterra equations, this leads to the following four fixed points:

(x1, x2) = (0, 0) ; (x1, x2) =
(γ
δ
, 0
)

; (x1, x2) =

(
0,
a

β

)
; (x1, x2) =

(
γ

δ
,
a

β

)
.
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They correspond to the trivial fixed point, the prey-only fixed point, the predator-only fixed
point, the non-trivial coexistence fixed point.
The phase plane is a graphical representation in which each axis corresponds to one of the
state variables, typically x1 (prey) on the horizontal axis and x2 (predators) on the vertical
axis. A phase portrait consists of the trajectories that represent the evolution of the system
over time for different initial conditions. These trajectories show how the populations of both
species evolve, and their direction reflects the dynamics dictated by the system of equations.
The trajectories in the phase plane are curves that indicate the population levels at any given
time, starting from different initial conditions. For the Lotka-Volterra system, trajectories
typically exhibit cyclical patterns, reflecting the natural oscillations between predator and
prey populations. Nullclines are important geometric tools for analyzing the behavior of the
system in the phase plane. A nullcline is a curve where the derivative of one of the variables
is zero, meaning the population of that species remains constant along that curve. For x1
(prey), the nullcline is found by setting dx1

dt
= 0, which gives:

ax1 − βx1x2 = 0,

or equivalently:

x1 = 0 or x2 =
a

β
.

For x2 (predators), the nullcline is obtained by setting dx2
dt

= 0, which yields:

δx1x2 − γx2 = 0,

or equivalently:

x2 = 0 or x1 =
γ

δ
.

The intersections of the nullclines correspond to the equilibrium points of the system. These
intersections help to determine the system’s behavior near the fixed points and give insight
into the dynamics of the interacting populations.
Finally, bifurcation refers to a qualitative change in the system’s behavior as a parameter is
slightly varied. In the Lotka-Volterra model, bifurcations can occur when certain parame-
ters, such as β (predation rate) or δ (predator growth rate), are altered. As these parameters
increase or decrease, the system may transition between different types of behavior, such as
moving from a stable equilibrium to oscillatory dynamics. Two common types of bifurca-
tions relevant to this system are the saddle-node bifurcation and the Hopf bifurcation. A
saddle-node bifurcation occurs when two equilibrium points, one stable and one unstable,
collide and annihilate each other as a parameter is varied. This typically happens when one
real eigenvalue passes through zero, causing the system to lose or gain an equilibrium point.
On the other hand, a Hopf bifurcation occurs when a pair of complex conjugate eigenvalues
crosses the imaginary axis, moving from having negative real parts to positive real parts. In
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this case, the system transitions from a stable equilibrium to oscillatory behavior, potentially
leading to the formation of a limit cycle.

The stability analysis tells us how ecological systems respond to perturbations and whether
they return to equilibrium after disturbances. We have different kinds of stabilities.

Lyapunov stability refers to an equilibrium point x∗ where, for any small perturbation around
x∗, the system remains within a small neighborhood of x∗. Formally, for any neighborhood
U around x∗, there exists a smaller neighborhood W ⊂ U such that:

x(0) ∈ W =⇒ x(t) ∈ U ∀t ≥ 0.

This means that small disturbances do not cause the system to deviate significantly from
x∗, but it does not necessarily return to x∗.

Asymptotic stability is a stronger condition. The equilibrium x∗ is asymptotically stable if
it is Lyapunov stable and if small perturbations cause the system to eventually return to x∗

as t→ ∞. Mathematically, this implies that for small perturbations:

x(0) ∈ W =⇒ x(t) → x∗ as t→ ∞.

In this case, the system not only remains close to x∗ but also returns to it over time.

Global stability refers to an equilibrium that is stable for any initial condition in the entire
state space. In other words, no matter where the system starts, it will eventually converge
to the equilibrium x∗. This means that for any initial condition x(0) ∈ (0,∞)N , we have:

x(t) → x∗ as t→ ∞.

Global stability implies that x∗ is a global attractor for the entire state space.

Suppose that a feasible equilibrium x∗ exists. Then we can ask whether it is attractive, i.e.,
if trajectories started at initial condition x(0) will eventually reach x∗. This problem is in
general difficult to solve and as an alternative, we can test for local asymptotic stability,
i.e., ask whether the system will return to the equilibrium if perturbed infinitesimally away
from it. In general, whenever we describe an ecological community as a system of nonlinear,
autonomous ODEs:

dxi(t)

dt
= fi(x(t)),

we define an equilibrium x∗ as a vector of densities such that:

dxi
dt

∣∣∣∣
x=x∗

= 0 ∀i
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A given system might have a multitude of equilibria. When the system is resting at an
equilibrium point, it will remain there unless it is perturbed away from it.
Suppose that the system is resting at an equilibrium x∗, and that it is slightly perturbed
away from it. δx(t) = x(t)−x∗ is the state of the system immediately after the perturbation.
We Taylor-expand the first derivative around x∗:

f(x(t)) = f(x∗) + Jxδx(t) + · · ·

Where J is the Jacobian matrix of the system, whose elements are defined as:

Jij =
∂fi(x)

∂xj

Each element of this matrix is therefore a function, whose value depends on x. When we eval-
uate the Jacobian matrix at an equilibrium point x∗, we obtain the community matrix J |x=x∗ .

Note that, although each system has a unique Jacobian matrix, there are as many community
matrices as there are equilibria. The community matrix details the effect of increasing the
density of one species on any other species around the equilibrium point.
We can therefore write the differential equation:

dδx(t)

dt
≈ J |x=x∗δx(t)

with solution:

δx(t) = δx(0)e−tJ |x=x∗ = δx(0)V e−ΛtV −1

Where V is the matrix containing the (unit) eigenvectors of J |x=x∗ , and Λ is a diagonal
matrix containing the eigenvalues of J |x=x∗ . We can rewrite it as

δx(t) =
N∑
k=1

ckvke
λkt

Where vk are the eigenvectors of J |x=x∗ and ck = δxk(0) are constants determined by the
initial conditions.

Calling mode the direction given by an eigenvector, each eigenvalue λk corresponds to the
growth or decay rate of a particular mode vk . So if λk is positive, the corresponding mode
grows exponentially over time. As time progresses, the mode associated with the largest
eigenvalue λmax (in terms of real part) will dominate the system’s behavior because it grows
or decays faster than all other modes. When there is a transient regime where the species
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seems to relax to a uniform equilibrium, the system exits the transient regime when the most
dominant mode associated with λmax begins to clearly dictate the behavior of the system.
The time to exit the transient regime is roughly given by ttrans ≈ 1

|λmax| . This is because

exponential functions eλt have characteristic time scales given by 1
|λ| .

The eigenvalues of J |x=x∗ determine the stability of the equilibrium x∗: if all the eigenvalues
have negative real part, then the system will eventually return to the equilibrium after
sufficiently small perturbations; conversely, if any of the eigenvalues have positive real part,
the system will move away from the equilibrium whenever perturbed. Therefore, depending
on the sign of the real part of the “rightmost” eigenvalue of J |x=x∗ , λ1, we can determine
the stability of x∗:

Re(λ1)


< 0 → x∗ is asymptotically stable
= 0 → x∗ is Lyapunov stable
> 0 → x∗ is unstable

While local stability analysis considers behavior near an equilibrium point, we may also be
interested in global stability. Global stability implies that the equilibrium x∗ is stable for
any initial condition, meaning that no matter where the system starts, it will eventually
return to x∗. After understanding the stability of equilibrium points through eigenvalues
and their real parts, another important concept in the analysis of dynamical systems is the
basin of attraction. The basin of attraction of an equilibrium point x∗ refers to the set of
initial conditions from which the system will eventually converge to that equilibrium point
as t→ ∞.
Mathematically, the basin of attraction B(x∗) for an equilibrium x∗ can be defined as:

B(x∗) = {x(0) ∈ Rn | lim
t→∞

x(t) = x∗}.

This means that if the system starts at any point x(0) ∈ B(x∗), the trajectory x(t) will
approach the equilibrium x∗ as time tends to infinity. In other words, the basin of attraction
encompasses all initial conditions that lead to convergence to a particular stable equilibrium
point. For systems with multiple stable equilibria, each equilibrium will have its own distinct
basin of attraction. The boundary separating these basins is often where the system can
exhibit different behavior, depending on small perturbations.

To study the basin of attraction and understand the influence of the initial conditions on the
stable equilibria, we analyzed the competitive case on simple cyclic structures: the triangle
and the square.

The triangle is characterized by the following adjacency matrix:
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A =

0 1 1
1 0 1
1 1 0


Figure 2.1: Triangle adjacency matrix, N = 3

and the following system of ODEs, with initial conditions x(0) = x0, y(0) = y0, z(0) = z0:

ẋ(t) = x(t)(1− x(t)− αy(t)− αz(t))

ẏ(t) = y(t)(1− y(t)− αx(t)− αz(t))

ż(t) = z(t)(1− z(t)− αx(t)− αy(t))

We can study the stability of the system by starting from the stability of the locally linear
system around the 8 fixed points of the triangle. The general procedure is to compute the
Jacobian matrix, evaluate it in the fixed point i, compute its eigenvalues λij and eigenvectors
ξij to get the following dynamics around the fixed point:

xi(t) =
N∑
j=1

cijξ
i
je
λijt. (2.1)

where the constants are found via the initial conditions. Then we say that a fixed point is
an asymptotically stable attractor if all its eigenvalues are negative. If they are all positive
it is an unstable node or spiral point (that repels away), while if some are positive and some
are negative it is a saddle point.

For the triangle, the Jacobian is,

J = J(x, y, z) =

1− 2x− αy − αz −αx −αx
−αy 1− 2y − αx− αz −αy
−αz −αz 1− 2z − αx− αy


Now we can group the fixed points based on the number of surviving species (#SS) and find
the eigenvalues associated to them.

From Table 2.1 we can study the α intervals for when the maximal eigenvalue of each group
is negative. We obtain that:

• for α < 1 only the uniform fixed point with 3 species surviving (3SS) is stable.

• for α > 1 only the fixed points with 1 species surviving (1SS) are stable.
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(#SS) Fixed point Eigenvalues
0SS (0, 0, 0) (1, 1, 1)
1SS (1, 0, 0), (0, 1, 0), (0, 0, 1) (1− α, 1− α,−1)
2SS ( 1

α+1
, 1
α+1

, 0), ( 1
α+1

, 0, 1
α+1

), (0, 1
α+1

, 1
α+1

)
(
−α−1
α+1

,−1, α−1
α+1

)
3SS

(
1

2α+1
, 1
2α+1

, 1
2α+1

) (
−1, α−1

2α+1
, α−1
2α+1

)
Table 2.1: Fixed points and eigenvalues for different numbers of surviving species.
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Figure 2.2: First Row) 3D trajectory and dynamics of the system for x, y, z starting from
the same initial conditions with α = 1.5. Bottom-Left) 3-D trajectories to show that among
the 3 possible fixed points in group #1SS the chosen one is always the one associated to
the biggest IC component. In {2, 4} the biggest IC component is y, in {1} is x, in {3} is z.
Bottom-Right) Stable manifold example. The initial condition are given by a perturbation
of the uniform fixed point in the direction of the stable eigenvector (1, 1, 1). The result is
that the trajectory follows the stable manifold and converges to the uniform fixed point even
if α > 1. ’ASS’ stands for ’all surviving species’ and in this case is equivalent to 3SS.
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2. MATHEMATICAL BACKGROUND

In the first row of Figure 2.2 we notice how the dynamics initially approach the saddle point
associated to a fixed point in #2SS and then, since we are in the α-range where the stable
equilibrium belongs to #1SS, the z-component changes direction and converges to zero. The
smaller the positive eigenvalue of the associated fixed point in #2SS, the longer it takes to
change derivative sign and descend towards zero. In the third image we observe that when
we are in the regime α > 1 and it is always one species surviving, the choice of which of the
three survives is given by a simple criterion: the species with highest IC survives. There can
be exceptions from the rules indicated by the α regimes. In the last image of 2.2 we notice
that the system converges to the uniform equilibrium even if α > 1. That is because the
initial conditions are set on the stable manifold of the uniform fixed point

(
1

2α+1
, 1
2α+1

, 1
2α+1

)
.

A stable manifold is the curve, passing through the fixed point, that is tangent to the eigen-
vector associated to the eigenvalue connected to that fixed point. During our research we
will often give these one-to-one relations α-to-equilibrium, and when they are not verified in
the simulations it is probably because the IC where chosen on the stable manifold of another
equilibrium.

However, it is not always that easy to establish which fixed point is chosen within those of
the same group #SS. In the case of the triangle it is simply a matter of taking the component
with highest IC. In the square, on the other hand, we have that for α > 0.5, the system
converges to a fixed point where the surviving species are the two non adjacent nodes that
lay on the diagonal of the square. The question we tried to answer is: what is the criterion
on the initial conditions that tells us which of the two pairs is going to survive?

From the example (x(0), y(0), z(0), w(0)) = (0.6, 0.8, 0.3, 0.17) and α = 2 we can see that
y(0)+w(0) > x(0)+ z(0) but y and w die. On the other hand, we see that if we take α = 6,
y and w are the ones that survive.

(a) α = 6 (b) α = 2 (c) α = 0.51

Figure 2.3: Dynamics of the species x, y, z, w with a square-shaped network with the same
initial conditions but different values of the interaction strength α = (6, 2, 0.5). According
to the chosen value of α a different non-adjacent pair survives.
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2. MATHEMATICAL BACKGROUND

(a) α = 20 (b) α = 2 (c) α = 0.51

Figure 2.4: We set x(0) = 0.6 and z(0) = 0.3. The purple dotted line is such that y(0) +
w(0) = 0.9 The color spectrum is x that takes the value 1 when it survives and −1 when
it dies. As α decreases the boundary takes a more parabolic shape that always seems to be
passing via (y(0), w(0)) = (0.3, 0.3) and (y(0), w(0)) = (0.6, 0.6). The red dot is the point
(y(0), w(0)) = (0.8, 0.17) that we know is associated with the death of y and w for α = 2.
Indeed, in the middle figure the red dot is just outside the boundary.

We tried to find a rule that guarantees the possibility to predict the surviving pair from the
information given by the initial conditions, but the non linearity of the system makes this
task very complicated. From Figure 2.4, we see that for high values of α (here α = 20) the
pair that survives is the one with highest sum of initial conditions. But as we can see, as
α decreases towards the uniform fixed point regime, the boundary of the mesh assumes a
parabolic shape that is difficult to quantify analytically. This example shows how, even for
a simple structure like the square, predicting the exact species that are going to survive just
by looking at the initial conditions and the value of α is a very complicated problem. In this
research we will limit our scope to the quest of the group of equilibria that should survive,
relying only on the information given by the value of α and the structure of the network. In
this case, that consists in understanding that for α > 0.5 we expect the equilibrium to be a
pair of disconnected nodes.
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3 Methodology

The goal of the research is to find the structure and the final state distribution of the system
of N species which all obey the ordinary differential equation of the Generalized Lotka-
Volterra model. This research starts from numerical observations that hint the emergence of
specific phenomena and then focuses on finding their analytical proof. The process was often
to verify an intuition numerically, observe the phenomena and then prove them analytically
using the ansatz extracted from the simulations; then finally verify, again numerically, the
theoretical results. For instance, in the case of the result in Equation 4.11, first we observed
the phenomenon in Figure 4.6 and understood that the surviving species where distributed
as a symmetric chain, then we used that assumption to find the theoretical value that drives
us from a length-(L− 1) chain to a length-L chain.

Figure 3.1: Simulations process: build the underlying random graph, then run the dynamics,
then check how the final abundances reflect on the nodes of the graph. The x-axis is just
time in a logarithmic rescaling.

The underlying process to run the simulations is the same for all the steps of the research.
Initially, generate the initial conditions uniformly at random in (0, 1) and the random graph
with the Networkx library of Python. According to the number of iterations that have to
be done with the same parameter, one or more seeds are used. For instance, in Figure 4.20
only one seed is used, while in Figure 4.31 twenty seeds are used. When the network is set,
the dynamics are run with integrating functions from Scipy.integrate. In particular in the
competitive case we use:
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3. METHODOLOGY

scipy.integrate.odeint(LV ODEs, initial conditions, t, args=(A adjacency, alpha))

Where LV ODEs is the function that we define to respect the equations in 1.2. This function
is too slow for large values of N so, in particular in the cooperative case where we want to
find the fractal exponent, we replace it with:

scipy.integrate.solve ivp(Cooperative LV ODEs, [0, tmax], initial conditions, args=(A adjacency,
alpha, C), method = ’DOP853’, t eval=t, rtol = 1e-8, atol = 1e-10)

Where Cooperative LV ODEs is the function we define to respect the equations in 4.3.

solve ivp() allows us to arrive to N up to 50000, but it requires a very accurate choice of
the last integrating time tmax. As we increase µ, we have to decrease tmax, but we need to
find a very accurate upper bound of the real converging time because otherwise the server
crushes. Moreover, to obtain the locally tree-like structure of C-regular graphs, when we
increase C we have to super-linearly increase N . If we consider the limitations on the size we
can use, this entails that the results for higher C are less accurate. This can be observed in
Subsection 4.4.1, where for C = 3 the theoretical results are very accurate, while for C = 5
they are not as much. That has a theoretical explanation, that has to be carefully paired
with this computational one.

Once we have run the dynamics, we can get the final state vector and establish that the
surviving species are those with abundance greater than a certain tolerance (that we set to
1e − 6). Then we can observe what nodes in the original graph they correspond to. That
allows us to find the structure of the final component(s) and to compute metrics like the
Gini index or the Shannon entropy.
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4 Results

In the Introduction we introduced our will to extend to the cooperative case the analysis of
the evolution of the equilibria with the interaction strength. This chapter will be dedicated
to that.

4.1 Divergence

If we look at the phase portrait of a two species GLV (x and y) under cooperation, we notice
that the species benefit from the others’ presence reaching an equilibrium where either they
both survive with the same abundance or they diverge.
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x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

> 0, < c

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

> 0, > c

Figure 4.1: GLV with N = 2. Phase portrait with vector field and 2N fixed points. According
to whether the interaction strength is before or after the critical αc (we will call it αd to
indicate divergence), the species converge or diverge.

From Equation 1.2, we can find the uniform equilibrium where all species survive with the
same abundance x⋆. This corresponds to setting the second factor to zero for all species.

1− x⋆ + αCx⋆ = 0 ⇔ x⋆ =
1

1− αC
.
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4. RESULTS

If we call αd the critical value of interaction strength after which abundances start diverging,
then we can obtain αd = 1

C
by setting the uniform solution to infinity. Those abundances

diverge to different orders of infinity, so even if the lowest are not exactly extinct, relatively
to the most wealthy species they are. It is of great interest to study this hierarchy because in
many settings it is not important how much you have, but how much you have compared to
the other agents in the environment. Talking about firms or national economies, even if two
of them have positive liquidity but very uneven in terms of inequality, then the poorest one
cannot benefit from its positive liquidity simply for the limited nature of goods or resources.

To cope with the divergence we introduced a re-scaled model that resembles the replicator
equations in [25].

Let us start by recalling Equation 1.2,

ẋi(t) = xi(t)(1− xi(t) + α
∑
j

Ai,jxj(t)).

given that the degree of vertex i is ki =
∑

j Ai,j, we introduce the normalizing factor

M(t) =
1

N

∑
i,j

Ai,jxj(t) =
1

N

∑
j

kjxj(t).

whose time derivative is

Ṁ(t) =
1

N

∑
j

kjxj(t)(1− xj(t) + α
∑
l

Aj,lxl(t)).

Now we re-scale the abundances with that normalizing factor

yi(t) =
xi(t)

M(t)
. (4.1)

and derive with respect to t,

ẏi(t) =
ẋi(t)

M(t)
− xi(t)Ṁ(t)

M2(t)

= xi

(
1

M
− xi
M

+ α
∑
j

Ai,j
xj
M

−
∑
j

kj
N

xj
M

(
1

M
− xj
M

+ α
∑
l

Aj,l
xl
M

))

=Myi

(
1

M
− yi + α

∑
j

Ai,jyj −
1

N

∑
j

kjyj

(
1

M
− yj + α

∑
l

Aj,lyl

))
.
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where we stopped expliciting that x, y,M depend on t.
Now we define tc as the time when the abundances start diverging, or limt→tc M(t) = ∞.
Since we want to have the dynamics defined from zero to infinity, we re-scale time as

τ =

∫ t

0

M(s) ds. (4.2)

In this way time slows down as tc is approached. Moreover, if we integrate 4.2 from zero to
tc we get that τ = ∞.
Finally, we can neglect the 1

M
because when the system stabilizes to an equilibrium where

the abundances tend to infinity it is infinitesimal. Keeping implicit the dependence of yi on
τ , we get

∂yi
∂τ

= yi(−yi + α
∑
j

Ai,jyj −
1

N

∑
j

kjyj(−yj + α
∑
l

Aj,lyl)). (4.3)

And when we are in the C-regular case (ki = C ∀i), it becomes

∂yi
∂τ

= yi(−yi + α
∑
j

Ai,jyj −
C

N

∑
j

yj(−yj + α
∑
l

Aj,lyl)). (4.4)

Here we use a degree weighted normalizing factor, which is different than theM = 1
N

∑
j xj(t)

used in [25]. The reason why we include the degree is that the extension of this work would
entail using an heterogeneous degree random graph and our normalization allows to give
more importance to the highly connected nodes in terms of the influence they have on others
[1]. Using M = 1

N

∑
j xj(t) in our regular case would practically mean getting rid of the

dependence on C in Equation 4.4. Normalizing byM(t) has the same logic of using Lagrange
multipliers to impose a global constraint on the system. In the case of M(t), the normaliza-
tion ensures that the total influence of the system (or total ”mass”) is accounted for, similarly
to how Lagrange multipliers enforce a constraint on the solution space of an optimization
problem. Another relevant observation about the new model is that the third term in the
parenthesis is global as it does not depend on i. In particular − 1

N

∑
j kjyjα

∑
lAj,lyl induces

an effective cooperation that will be crucial to explain the difference with the competitive
model.

Now we propose an example of the dynamics stopped at tc with the original model and with
the replicator model.
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Figure 4.2: For µ = 1.3 the cooperative original Lotka-Volterra model diverges at time tc
(Left). The replicator model is well defined on τ ∈ [0,∞) and the hierarchy between species
is more evident with many of them going extinct relatively to the others (Right).

4.2 Different regimes for C-regular graphs

To analyze the stability of an equilibrium and see how the regimes change with α, we need
to write the analytical expression for the Jacobian. Let us start from the vectorial version
of Equation 4.4.

ẏ = F (y) = D(y)

(
−y + αAy − C

N
(yT (−y + αAy))1

)
= D(y)H(y).

H(y) = −y + αAy − C

N
(yT (−y + αAy))1.

where y is a column vector y = (y1, . . . , yN), D(y) is a N × N diagonal matrix with the
elements of y on the diagonal, and 1 is a column vector of ones. Here we consider the
C-regular graph case. To find the Jacobian matrix J(y) of the function F (y), we need to
compute the partial derivative of each component Fi(y) with respect to each yj.
Using the product rule,

∂Fi(y)

∂yj
=

∂

∂yj
(D(y)H(y))i =

∂

∂yj
(Di(y)Hi(y)) = δijHi(y) + yi

∂Hi(y)

∂yj
.

where δij is the Kronecker delta.
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Hi(y) = −yi + α(Ay)i −
C

N

(
N∑
k=1

yk(−yk + α(Ay)k)

)
.

∂Hi(y)

∂yj
= −δij + αAij −

C

N
(−2yj + 2α(Ay)j) .

Where the third term comes from:

∂

∂yj

(
N∑
k=1

yk(−yk + α(Ay)k)

)
= −2yj + α(Ay)j + α(y′A)j.

but since A is symmetric, (Ay)j = (y′A)j.

Finally combine the results,

Jij(y) = δijHi(y) + yi

(
−δij + αAij −

C

N
(−2yj + 2α(Ay)j)

)
. (4.5)

Then we have to plug in the equilibrium we are interested to investigate. Let us start with
the uniform fixed point where all the species survive with the same abundances y⋆. Similarly
to the original model, we have to impose that the second factor in Equation 4.4 is zero.

−y⋆ + αCy⋆ − C

N
Ny⋆(−y⋆ + αCy⋆) = 0 ⇔ y⋆ =

1

C
.

Where we disregard the unfeasible solution y⋆ = 0

If y⋆ = (y⋆, . . . , y⋆)T ) then (Ay⋆)j = 1 and Hi(y
⋆) = 0 and the Jacobian evaluated in y⋆

becomes:

Jij(y
⋆) =

1

C

(
−δij + αAij +

2

N
− 2αC

N

)
.

Now for a C-regular random graph with adjacency matrix A, the maximal eigenvalue is
λAmax = 2

√
C − 1 [32]. It follows that,

λJmax =
1

C

(
−1 + α2

√
C − 1 +

2

N
− 2αC

N

)
.

which needs to be negative to have stability, leading to a critical value

αu =
1− 2

N

2
√
C − 1− 2C

N

≈ 1

2
√
C − 1

for N >> C.
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Which is in accordance with the value obtained in [30] for the competition but with opposite
sign. This means that for small values of |α| we have symmetry between the two scenarios.

The question now is how is this symmetry broken as we increase |α|. We start answering
this by showing how the choice of the interaction strength leads to different regimes in
cooperation.

10 1 100 101 102 103

t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

x(
t)

< d, original model with C = 4, N = 100

x = 1
1 C

10 3 10 2 10 1 100 101 102 103

t

0.0

0.2

0.4

0.6

0.8

1.0

y(
t)

d < < u, replicator model with C = 4, N = 100
y = 1

C

10 1 100 101 102 103

t

0

1

2

3

4

5

6

y(
t)

> c, replicator model with C = 4, N = 100

Figure 4.3: Left) α < αd =
1
C
: uniform solution with the original model. Middle) αd < α <

αu ≈ 1
2
√
C−1

: uniform solution with the replicator model. Right) α > αu: solution away from
the mean field where most of the species go extinct.

Keep in mind that if the dynamics are converging and we have α < αd we cannot use the
replicator model because that neglects the factor 1

M
, that for convergence would not be

infinitesimal. For this reason in the first image I run the dynamics in x and not in y. From
the third image we can already notice that the number of surviving species is very low,
much lower then the ϕ = 0.4 that we encounter in 1.1. Now we want to characterize those
equilibria for high α and we want to see how ϕ scales with N .
In the following section we study the stability of the final structures by analyzing how
the maximal eigenvalue changes with the interaction strength, and for which values of α
we encounter the transitions. To do that analytically, we need to do use an ansatz for the
structure of the final equilibrium, because we need to evaluate the Jacobian in the solution y.
Hence the strategy is to run numerical simulations to understand what are these structures,
then impose analytically that the solution is a chain (or star or tree or cyclic graph) and
finally study the spectrum of the eigenvalues of the Jacobian evaluated in that solution.

4.3 Rings

We start from the analysis of a population connected with a ring shaped network, that is
equivalent to setting C = 2. The handy property of this structure is that the adjacency
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matrix is fixed, up to a labels permutation:

A =


0 1 0 0 · · · 0 1
1 0 1 0 · · · 0 0
0 1 0 1 · · · 0 0
...

...
...

...
. . .

...
...

1 0 0 0 · · · 1 0


We run the dynamics of a system with such adjacency matrix, for a high value of the
interaction strength, to check what is the minimal solution (or minimal geometry).

N = 16, = 0.68

Cooperation

N = 50, = 0.68

Cooperation

N = 50, = 0.1.2

Competition

Figure 4.4: Graph visualization of the surviving species after running the dynamics in a ring.
A species is considered to be extinct if its abundance is below a certain tolerance (here tol
= 1e-3). Left) Cooperation with α = 0.68 and N = 16. Middle) Cooperation with α = 0.68
and N = 50. Right) Competition with α = −0.68 and N = 50.

The simulations suggest that the surviving species are grouped into length-L chains (in the
example, L = 7). In the competitive case, the dynamics produced the maximal independent
sets, which in the ring are non-connected alternating singlets. That is in accordance with
[30]. It is remarkable that the length of the chain in the cooperative case does not depend
on N , but only on α. Within competition, what is conserved is the surviving fraction ϕ,
meaning that if we increase N , ϕ will remain 50%. On the other hand, within cooperation
the conservation is on the number of survivors. This phenomenon leads to what is called
condensation (see 1.1), meaning that a significant portion of the total wealth is ”condensed”
or accumulated by a few agents in a way that is independent on N . We will see that this
will hold for all the C-regular cooperative analysis. It is initially counter intuitive to think
that a concentration of wealth can happen within cooperation, where all individuals should
benefit from the others’ presence, but it is not if you consider that it is relative to the wealth
of other species. What is interesting is that the number of species that detains almost all
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the wealth does not increase with the total population size.

In [12] J.P.Bouchaud and M. Mezard introduce the idea of condensation in wealth inequal-
ity starting from a model that is very similar to the GLV; the difference is that here such
phenomenon is produced by a self-generated noise, while there it is produced by the explicit
volatility σ of the spontaneous growth. So there the noise is imposed, here it is not.

Within the ring, it is interesting to find the analytical values of the critical interaction
strengths where we pass from having a chain of length L − 1 to a chain of length L. First
we need to find the analytical solution y⋆.

Since the ring is invariant to combinations of length L chains, we can arbitrarily take

y⋆ = (y⋆1, ..., y
⋆
L)
T . (4.6)

A = A1:L,1:L. (4.7)

That is because all the other N −L entrances of y⋆ and of A are zero and they do not affect
the sign of the maximal eigenvalue.

From 4.4 we have,

y⋆i = α
∑
j

Aijy
⋆
j − ρβ′(y⋆)

ρ =
C

N

β′(y⋆) =
∑
j

y⋆j (−y⋆j + α
∑
l

Ajly
⋆
l ) ∈ R.

Which in vectorial form is,
y⋆ = αAy⋆ − ρβ′(y⋆)1

β′(y⋆) = y⋆T (−I + αA)y⋆.

Which replacing y⋆ into β′(y⋆) leads to,

y⋆ =
β

ρ
(−I + αA)−11 (4.8)

β = (1T (−I + αA)−11)−1.

Where we used,

A = AT ⇒ (−I + αA)T = (−I + αA) ⇒ (−I + αA)−T = (−I + αA)−1.
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The analytical solution for the final abundances is in accordance with the simulations as we
can see from the following figure,
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Figure 4.5: Subset of the final state with only the surviving species that are grouped in
a length-5 chain. y⋆ = [4.78, 12.29, 15.84, 12.29, 4.78], the abundances are symmetric with
respect to the central node.

Now, if we take only the non-zero entrances for y⋆ and A as in Equation 4.6, then Hi(y
⋆) = 0

for all i, and we can write the Jacobian as

J(y∗) = D(y∗)(−I + αA− 2ρ((−I + αA)y∗1T )T )

= D(y∗)(−I + αA− 2ρ1y∗T ((−I + αA))T )

= D(y∗)(I − 2ρ1y∗T )(−I + αA)

= D(y∗)(−I + αA− 2β11T (−I + αA)−T (−I + αA))

= D(y∗)(−I + αA− 2β11T ) (4.9)

= D(y∗)M.

where in the fourth equation we substituted the solution found in 4.8, and in the following
equation we used the symmetry of (−I + αA). Remember that β = (1T (−I + αA)−11)−1.

Definition 4.3.1 (Inertia of a Matrix). The inertia of a symmetric matrix A is defined as
the triplet (n+, n−, n0), where:

• n+ is the number of positive eigenvalues of A,
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• n− is the number of negative eigenvalues of A, and

• n0 is the number of zero eigenvalues of A.

Definition 4.3.2 (Congruence of two Matrices). A and B are congruent if CTAC = B for
some non-regular matrix C.

Theorem 4.3.0.1 (Sylvester’s Law of Inertia). A and B are two real symmetric matrices,
then
A and B are congruent ⇔ A and B have the same inertia.

Corollary 4.3.0.1.1. If A is positive definite and symmetric and B is symmetric, then AB
and B have the same inertia.

Proof. Since A is positive definite and symmetric, A = QΛQT where where Q is an or-
thogonal matrix and Λ is a diagonal matrix with positive entries. Then the square root is
unique and positive definite as well, A1/2 = QΛ1/2QT . Consider the matrix C = A1/2BA1/2.
The matrix C is symmetric because A1/2 and B are symmetric. By Sylvester’s law of in-
ertia, B and C have the same inertia. Since AB and C are similar matrices (because
AB = A1/2CA−1/2), they have the same eigenvalues and hence the same inertia. Therefore,
AB and B have the same inertia [34].

Since for the stability we want to guarantee that there are not any positive eigenvalues of
the Jacobian, for the Corollary 4.3.0.1.1 we can limit our research to the eigenvalues of
M = (−I +αA− 2β11T ). And we can do that because A is symmetric and positive definite
and M is symmetric and the corollary hypothesis are respected.

If {µi}i∈(1,...,L) are the eigenvalues of −I + αA and {λi}i∈(1,...,L) the eigenvalues of M , then{
λ1 = µ1 − 2βL

λi = µi i = 2, . . . , L
(4.10)

Because 2β11T ensures that M is a rank-1 perturbation of −I + αA, which affects only the
first eigenvalue [19].

Now since A is a tridiagonal Toeplitz matrix [18], [48] its eigenvalues can be written as

γi = 2 cos (
iπ

L+ 1
) i = 1, . . . , L.

which leads to

µi = −1 + 2α cos (
iπ

L+ 1
) i = 1, . . . , L.

36



4. RESULTS

Given the rank-1 perturbation, the highest eigenvalue of M is

λ2 = −1 + 2α cos (
2π

L+ 1
).

Which finally leads to the critical value of the interaction strength that tells us when a chain
of length L becomes stable:

αL =
1

2 cos ( 2π
L+1

)
. (4.11)

We can use such result only for chains of L > 3 because otherwise the critical value diverges.
That is in accordance with the simulations that show that even if we impose α → ∞
we get a chain of length L = 3. We will observe in this thesis that in cooperation we
never have final singlets and that applies also to L = 2 because the symmetry of chains
makes sure that if there are two species surviving, they must have the same abundance. The
effective competition we discussed before reduces the final component to a minimal connected
geometry, but always requires some kind of abundances inequality when the interaction
strength is high, and that cuts off singlets and length-2 chains. We now show that the
analytical result in 4.11 matches the numerical simulations.
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Figure 4.6: Left) Interval of stability for a length-L chain, showing how its maximal eigen-
value changes with α. This is done for L ∈ {4, ..., 8}. The maximal eigenvalue is computed
numerically by plugging the fixed point of 4.8 in the Jacobian of 4.9 and finding the spec-
trum boundary. Only the range where λmax < 0 is shown. Then we take the analytical αL
of 4.11 and we see that it coincides with the right-most α of such range. Right) We run the
dynamics for many α and plot the length of the surviving chain L against α. The jumps
coincide with the associated theoretical αL.

We see from the second plot of Figure 4.6, that as the interaction strength approaches
αu = αd = 0.5, the succession {αL}L>3 gets denser and denser resembling a continuous
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regime. Another interesting phenomenon is that the first plot suggests that the intervals
where a chain of length L is stable are not disjoint for the different L. However, from the
simulations we see that it is always the longest stable chain that survives. For instance, for
α ∈ (0.8, 1), L = 5 and L = 4 are both stable but we observe that for different IC it is always
the chain of length 5 that survives.

Moreover, we can look at the differences between competition and cooperation in the ring
also from the economical perspective of the Gini index.
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Figure 4.7: Cooperation (left column) and competition (right column) for the same absolute
value of interaction strength |α| = 0.9. On the second row the Gini index is computed from
the Lorenz curve obtained with 100 species. This was done only to show that the CDF jump
are grouped in pairs by amplitude, except for the highest-one that is alone because the chain
has odd length.

From Figure 4.7 we can observe that in the cooperation case where only a length 5 chain
survives, the wealth is concentrated only on a few species and the associated Gini index is
proximate to 1. On the competitive case instead there are three possible values for the final
wealth but 54% of the species survive and this is reflected on a much smaller Gini index.
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Figure 4.8: Lorenz curve and Gini coefficient for α = 0.9 in the cooperative condensed case
with increasing N = (50, 100, 10000). In blue, the CDF jumps where the percentile on the
x-axis is not sorted (it is only equally spaced) to show the jumps in increasing order.

Figure 4.8 suggests that, since the number of surviving species is always the same, if we in-
crease N the Lorenz curve is pushed to the right and the Gini coefficients approaches 1. The
jumps in the CDF were included to show that the ratio yi∑

i yi
for the surviving species stays

the same and it is given by the fact that the jump amplitudes are constant for increasing N .
The location on the x-axis of those jumps is artificially made just to have them in increasing
order. For the ring the Gini index can also be computed analytically because we know that
the final component evolves as a chain that gets shorter as α is decreased. Moreover, the
abundances of y⋆ in Equation 4.8 are symmetric so the computation can be further simplified.

ŷ⋆ = (y⋆1, . . . , y
⋆

⌈L
2 ⌉)

T .

∆⋆ =
(
ŷ⋆1, ŷ⋆2 − ŷ⋆1, . . . , ŷ⋆⌈L

2 ⌉ − ŷ⋆⌈L
2 ⌉−1

)T
.

G(α) = 1− 1

⟨y⟩

∫ ∞

0

(1− F (y))2 dy = 1− N

⟨y⋆,1⟩

⌈L
2 ⌉−1∑
i=0

(
L− 2i

N

)2

∆⋆
i+1. (4.12)

Where G is the Gini index and ⟨y⋆,1⟩ is the dot product between the L-dimensional vector
y⋆ and the vector of ones with same length. Inside the sum I use only the first

⌈
L
2

⌉
elements

of y⋆ (via ∆⋆) because of the symmetry of the abundances in y⋆. The dependence on α of
the Gini index is given by y⋆ = y⋆(α). Now let us compare this analytical result with the
simulations.
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Figure 4.9: Gini coefficient for the critical values of α found in 4.11. In blue numerical
results, in yellow analytical results from 4.12.

Equation 4.11 requires to know what is the length of the chain for any given α. Theoretically
we do know it because we can partition the α support into the intervals dictated by Equation
4.11, but the Equation 4.12 does not assume that embedded information so it is more correct
to define it as G(α) = G(α,L). Other than a good matching between theoretical and
numerical values, the figure confirms that as the interaction strength increases the wealth is
localized on fewer and fewer species and the Gini coefficient approaches 1 when we take a
fixed population size.

4.4 General degree C

In this section we extend the case of the ring to a C-regular random graph. As it was done for
the competitive scenario, we start the investigation on the transitions by plotting the relative
diversity against the interaction strength. Here we use µ = αC instead of α to be able to
compare in the same figure the curves for different values of C. Indeed in this way they
all begin from µ = 1, because, before it, species do not diverge. µ should not be carelessly
interchanged with the interaction strength because it takes into account also the number of
connections of each node. Hence it is better to refer to it as social strength. Between two
graphs with the same interaction strengths but different average degrees C and C ′ > C, the
social strength will be larger in the network with C ′. Except for a few paragraphs where we
consider different connectivities, in this chapter we will mostly consider a single C, and in

40



4. RESULTS

that case the two terms can be interchanged. The differences can be spotted from the figure
below.
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Figure 4.10: a) Relative diversity against α for average degree C = 3,4,5 and N = 10000 in
a plot where the y-axis was re-scaled with the logarithm to highlight the jumps. b) Relative
diversity against µ, with the same choice of parameters without re-scaling of the y-axis. We
do not re-scale here because we are interested to show the transition from 1 to almost 0.

Even if the comparison was made on two different scales of the y-axis, we can see that using
the social strength is more intuitive in terms of the starting point and the overlapping of the
curves. In Figure 4.10a the three relative diversity curves end in different x-points because
we equally spaced the inputs in µ and not in α. We observe from Figure 4.10b that the
single relative diversity curve presents three regimes:

• mean field regime: for α < αu (or µ < µu) the species all survive with the same
abundance.

• intermediate regime: where the dimension of the surviving component decays. In this
regime that size is dependent on the total size of the system N .

• localization regime: where the surviving species are localized in a connected component
predictable via µ whose size is independent of N .

The first difference with the competitive case is that the last plateau is almost at ϕ = 0.
In particular, from the simulations with high values of social strength, we see that the
final structures are stars with symmetric abundances around the central node. This follows
the same property of chains, where the abundances where gradually symmetric around the
central (or centrals, because in case of even length chains there are two) nodes.
The survival of a single minimal component is explained by the effective competition we
introduced before. In the competitive case we have many disconnected components surviving
because every node affects only the ones it is connected to. In particular, there we observed
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Figure 4.11: Star structures with abundances obtained by running the dynamics for µ = 3.
Increasing N the structure stays the same but the abundances are scaled.

a final plateau that suggested that 40% of the species were surviving. Here, that final global
term from Equation 4.3 makes sure that every node influences all the other nodes, regardless
of their connection. This global influence leads to another interesting phenomenon: even
when we decrease the social strength and more species survive, the number of connected
components for the survivors is always one. Also dynamically the extinction works by removal
(subtraction); indeed for a fixed µ at every time from 0 to the teq, the surviving species are
always connected. We will later investigate what are the properties of the network of the
extinct species.
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Figure 4.12: (a) For all µ, also the small ones with a lot of surviving species, the number of
connected components among the surviving species is always one. (b) Fixing µ = 1.417, dy-
namically the number of surviving species decreases with time, but they are always grouped
into a single connected component

Now that we know what the final structure is, we want to see how that evolves as we decrease
the social strength.

Figure 4.13: A) from left to right µ decreases and the star grows as a tree with C=4. B) In
purple, relative diversity associated to µ = 1.55 for N = 2000

From Figure 4.13.B we can observe that the tree associated with µ = 1.55 corresponds to
a level of relative diversity proximate to zero (it is 53/2000). Hence, we do not really know
if this tree behaviour is maintained also for µ in the part of the intermediate regime that is
closer to µu.
Let us start by characterizing these trees.
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Definition 4.4.1 (C-regular tree). A C-regular tree is an acyclic graph where all nodes have
degree C. It is defined by the adjacency matrix Areg and it has height L, where the root
node corresponds to L = 0.

Figure 4.14: 4-regular tree with L = 3

If l is the index of the layer, SC(l) is the size of the tree until a total completion of layer
l, therefore SC(L) is the total size of the tree when the last layer is complete. This implies
that the size of the layer l is SC(l)− SC(l− 1). SC(µ) is the size of the tree associated with
social strength µ which can be SC(L− 1) < SC(µ) < SC(L) if the layer is incomplete.

The formula to compute the size of a tree with complete final layer L is:

SC(L) = 1 + C
L−1∑
i=0

(C − 1)i = 1 + C
(C − 1)L − 1

C − 2
. (4.13)

In the previous chapter we saw that as we decrease µ, the length of the stable chain increases
and we could analytically find some critical αL to identify this transition. Similarly we can
find αL for trees to understand when we switch from a tree with height L − 1 to one with
height L. To do that we need another graph theory definition.

Definition 4.4.2 (Q-ary tree). A Q-ary tree is a tree where all nodes have Q children. It
is characterized by uniform first degree progeny. It is defined by the adjacency matrix Aary
and it has height L′, where the root node corresponds to L′ = 0.

44



4. RESULTS

Figure 4.15: 3-ary (ternary) tree with L′ = 2

Definition 4.4.3 (Second type Chebyshev Polynomials). The second type Chebyshev poly-
nomials Un(x) are defined by the recurrence relation:

U0(x) = 1,

U1(x) = 2x,

Un(x) = 2xUn−1(x)− Un−2(x) for n ≥ 2.

The roots of the Chebyshev polynomial Un(x) are given by:

xk = cos

(
kπ

n+ 1

)
for k = 1, 2, . . . , n.

The non-zero eigenvalues of the adjacency matrix Aary of aQ-ary tree can be determined from
the roots of the second type Chebyshev Polynomials UL′+1(x) [50], [21]. Those eigenvalues
are {γk}k∈(1,...,L′+1) and are obtained as

UL′+1

(
γ

2
√
Q

)
= 0.

Then we have
γk

2
√
Q

= cos

(
kπ

L′ + 2

)
for k = 1, 2, . . . , L′ + 1.

γk = 2
√
Q cos

(
kπ

L′ + 2

)
for k = 1, 2, . . . , L′ + 1.

We can observe from Figure 4.14 that a C-regular tree is composed of a number C of (C−1)-
ary identical trees attached to a root node. We then analyze the case where Q = C − 1 and
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L = L′ + 1. Also here we start counting from zero, so there are L + 1 layers in total. This
means that its adjacency matrix takes the form

Areg =


0 uT

u


Aary 0 0 0
0 Aary 0 0
0 0 Aary 0
0 0 0 Aary


 =

(
0 uT

u Bary

)
(4.14)

Where we took the example of Figures 4.14, 4.15 with C = 4. Then u is a vector defined
as u = (1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0)T , with ones only at the level of the first
row of each C-ary matrix (here at positions 1, L′+2, 2L′+2, 3L′+2); everything else is zero.
For the sake of the theory, the following results are not restricted to those specific positions
of the 1-entries of u, what counts is only the number and that is always C. It is entailed
that the matrix Areg is formed by adding a rank-1 perturbation to Bary.

The spectrum of Bary is given by {γk}k∈(1,...,L′+1) with multiplicity C (the other eigenvalue
is zero with multiplicity C(SC(L

′) − L′ + 1)). Then the rank-1 perturbation adds an extra
eigenvalue.

To find the new eigenvalue, we analyze the characteristic equation of Areg. Its characteristic
polynomial for Areg is given by:

det(Areg − θI) = det

(
−θ uT

u Bary − θI

)
Using the formula for the determinant of a block matrix, we get:

det(Areg − θI) = −θ · det(Bary − θI)− uTB−1
aryu · det(Bary − θI).

Theorem 4.4.0.1 (Block Matrix Determinant Formula). Let M be a block matrix of the
form:

M =

(
A B
C D

)
where A and D are square matrices. If A is invertible, then the determinant of M is given
by:

det(M) = det(A) · det(D − CA−1B).
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If D is invertible, the determinant can also be expressed as:

det(M) = det(D) · det(A−BD−1C).

Where we used the second form, assuming that Bary−θI is invertible (only Bary is singular).
Simplifying the characteristic equation, we obtain:

det(Areg − θI) = det(Bary − θI)
(
−θ − uT (Bary − θI)−1 u

)
.

The eigenvalues are solutions to det(Areg − θI) = 0. Thus, either:

• det(Bary − θI) = 0 (which gives the original eigenvalues γk with multiplicity C), or

• −θ − uT (Bary − θI)−1 u = 0, which gives the new eigenvalue θnew.

The new eigenvalue θnew satisfies:

θnew = −uT (Bary − θnewI)
−1 u

Since u has only C (in the example C = 4) non-zero entries, this reduces to:

θnew = −
C∑
i=1

1

γ1 − θnew
= − C

γ1 − θnew
.

Therefore, we solve:

θnew(γ1 − θnew) = −C

The quadratic equation for θnew is:

θnew =
γ1 ±

√
γ21 + 4C

2

The perturbation introduced by the rank-1 update typically adds a new eigenvalue that lies
outside the original spectrum of Bary, hence we choose the positive sign. Therefore, the new
eigenvalue is:

θnew =
γ1 +

√
γ21 + 4C

2
> γ1.

Finally, remembering L = L′ + 1, the eigenvalues of Areg are:{
θ0 =

γ1+
√
γ21+4C

2
=

θ1+
√
θ21+4C

2

θk = γk = 2
√
C − 1 cos

(
kπ
L+1

)
for k = 1, . . . , L with multiplicity C
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From which we can observe that θ0 > θ1 > ... > θL.
And the eigenvalues of −I + αAreg are:{

λ0 = −1 + α
λ1+

√
λ21+4C

2

λk = −1 + 2α
√
C − 1 cos

(
kπ
L+1

)
for k = 1, . . . , L with multiplicity C

(4.15)

Once again λ0 > λ1 > ... > λL.

Moreover, the Equations 4.8 and 4.9 are true for every C-regular graph and in M =
−I + αA − 2β11T the perturbation affects only the first eigenvalue ensuring that λ1 > λ0
where {λl}l∈(0,...,L) are the eigenvalues of M .

Studying the stability of a height-L tree with complete last layer is then reduced to studying
the sign of the maximal eigenvalue

λ1(L) = −1 + 2α
√
C − 1 cos

(
π

L+ 1

)
. (4.16)

which finally leads to the critical social strength

αtree(L) =
1

2
√
C − 1 cos

(
π

L+1

) .
µtree(L) =

C

2
√
C − 1 cos

(
π

L+1

) . (4.17)

Before checking the simulations we can make some observations that confirm this result. In
particular, in the case of the ring condensing into a chain we have,

αchain(L) =
1

2 cos
(

2π
Lchain+1

) =
1

2 cos
(

2π
(2Ltree+1)+1

) =
1

2
√
2− 1 cos

(
π

Ltree+1

)
because C = 2 and Lchain = 2Ltree + 1.

(a) Chain with Lchain = 5 (b) 2-regular tree with Ltree = 2
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Moreover,

αtree(L)
L→∞−−−→ 1

2
√
C − 1

= αu

That is hinting that the only way to continuously arrive to the mean field regime, where
everyone survives, only via trees growth, is having N → ∞ (L < N). It is already suggesting
that, if we consider the finite size case, this tree growth must be broken for a certain µ. For
the moment let us focus on high values of the social strength where we have trees.
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Figure 4.17: Tree structure for µ = µc(L) − ϵ with increasing L. Below we include the
abundances distribution. Until L = 4 it follows the analytical prediction, then from L = 5
loops are generated and the tree structure with symmetric abundances is abandoned.

We observe that if we take µ = µtree(L)− ϵ, the tree with height L is stable. Then as soon
as we surpass µtree(L), it becomes unstable and a smaller tree appears for L < 5. Now
we introduce another graph theory metric that is useful to characterize the length or the
extension of a graph.

Definition 4.4.4 (Graph Diameter). The diameter of a graph G(V,E), denoted as diam(G),
is defined as the longest distance between any two vertices in G. It can be expressed as:

diam(G) = max{d(u, v) | u, v ∈ V (G)},
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where d(u, v) represents the distance (i.e., the minimal number of edges) between vertices u
and v in the graph G. If u and v are not connected then d(u, v) = ∞.

In case G is a regular tree with height L, then diam(G) = 2L or diam(G) = 2L − 1 if all
the last layer nodes belong to the progeny of the same child of the root node. To prove the
truthfulness of the analytical result we also compared it to the even jumps in the diameter
of the surviving tree.
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Figure 4.18: Diameter of the surviving component over different values of the social strength
µ, for C = 4 and N = 10000. The dotted lines are the analytical values of µtree(L) found in
4.17.

From Figure 4.18 we see that the analytical jumps are correctly avoiding the odd diameter
values because in a tree a diameter is odd only when the last layer is not complete. Moreover,
this check was conducted only on small values of L because for larger heights the distance
between µc(L) and µc(L+1) gets smaller and smaller and the noise in the simulations cannot
completely capture it. However, like in the case L = 5 from Figure 4.17, there is a value of µ
where we must stop considering the surviving component as a tree; we will soon delve into
it. The intuition tells us that if the tree continuously grows it arrives to a perfect C-regular
tree with SC(µu) = N and this cannot be the case because we initially generate a generic
C-regular graph, which is locally tree like (finite number of short cycles even when N → ∞
[9]) but is very likely to present long cycles.
With the critical µc = µtree(L) found in Equation 4.17 and from the Equation 4.13 that tells
us the size of the tree for a given height L, the theoretical relative diversity for these µc
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Figure 4.19: Relative diversity against social strength. The numerical simulations are run
for 30 values of µ. The theoretical values of ϕ(L) are for L ∈ (2, 3, 4, 5, 6, 7, 8) because
afterwards larger L would produce ϕ(L) > 1. We see that from L = 5 the tree does not
reflect the nature of the surviving component.

can be calculated for L ≥ 2. From Figure 4.19 we can notice that the tree evolution stops
mirroring the dynamics of the system for L ≥ 5 where the two curves stop overlapping. The
theoretical relative diversity grows to infinity as the size of the tree becomes larger than N
(4.13 does not depend on N). Indeed, for L ≥ 9, the theoretical value of Φ is also larger than
one and that is because S4(9) > N = 10000. In particular, the localization regime continues
until long cycles appear and we start having this non-ergodic expanded states. To prove the
occurrence of these long cycles we can look at the diameter as well.
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Figure 4.20: Diameter of the surviving component against µ after running the dynamics
with C = 4, N = 10000. We want to show that, from right to left, the diameter does not
monotonously increase, therefore the tree structure must be broken at a certain point. Note
that the point where it changes direction does not tell us when that happens. It is just a
proof that it must happen.

We can observe that the diameter is not monotonously decreasing with µ, and this is ex-
plained by the appearance of nodes which are connected to the tree at a certain level, such
that the new diameter is lower than 2L. Keep in mind that this inflection point does not
occur exactly at the µ where the tree evolution stops. And the reason is that even if long
cycles appear, the number of surviving species significantly increases and hence the longest
distance between two nodes too. After observing these results we can re-name the interme-
diate regime in a way that stresses what breaks this tree growth: long cycles regime.

Until now we have run the simulations with finite N , now we want to investigate how this
regimes characterization changes if we take N → ∞. In particular we want to see if by
increasing N the intermediate regime disappears and the relative diversity resembles an
Heaviside step function. Since for computational limitations we cannot run the dynamics
for extremely high N , we plot ϕ against 1/N and we regress the line until 1/N = 0.

It is enough to take two values of µ in the transitory regime, one closer to the localization
regime (µ = 1.3) and one closer to the mean field regime (µ = 1.21). In both cases we expect
long cycles to arise breaking the tree property.
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Figure 4.21: (a) Linear regression for ϕ against 1/N for µ = 1.3 and µ = 1.21 with N equally
spaced from 1000 to 50000. (b) ϕ for µ = 1.3 and µ = 1.21 for fixed N = 10000 to show
where the values are located in the long cycles regime.

We observe that the projection at zero is positive for both values of µ, excluding the possi-
bility of a step relative diversity function. Moreover, we also observe that as µ approaches
the mean-field, ϕ 1

N
=0(µ) is higher because we get closer to the scenario where they all survive.

We then question whether there is an exponent ξ(µ) such that,

Φ(N,µ) = A
1

N ξ(µ)
+ Φ∞(µ) (4.18)

We introduced the extra term Φ∞ to make a generalization and comment the asymptotic
fitted value. We then conduct a non-linear regression to find the ξ(µ) such that 4.18 is
verified. The goal is to make a full characterization of ξ = ξ(µ).
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Figure 4.22: Non-linear regression on the relative diversity for different values of µ. From
that the coefficient ξ(µ) is extracted and plotted against µ.

From the Figure we can observe that ξ → 0 as µ gets smaller and approaches the mean field
regime , hence for small µ, 1

Nξ drops to zero very steeply, while for µ closer to the localization
regime ξ → 1. Moreover, for the regime we are interested in, ϕ∞(µ) ≈ 0, which suggests
that, for N → ∞, ϕ completely depends on N . We could have then used ϕ(N,µ) = AN−ξ(µ).

Now let us introduce a measure of concentration and quantify the condensation of the states.
Remember that a condensed state does not depend on N so if we take the abundances nor-
malized by the system size and we take the large N limit, they do not collapse to zero.

Definition 4.4.5 (Herfindahl–Hirschman index). It is defined as,

HHI =
N∑
i=1

MS2
i =

N∑
i=1

(
yi
Y
)2

Y =
N∑
i=1

yi

The HHI tends to zero when wealth is distributed between many species and to one when
all the wealth belongs to a single species. It is an economical index that takes into account
the market share MSi of species i. If all the MSi are of order 1/N then HHI ∼ 1/N
and tends to zero for large N . On the other hand, if at least one MSi remains finite when
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N → ∞, then HHI will also be finite and we have condensation. It can be associated to
the inverse participation ratio used to measure condensation in [36], [12]. In an extended
state, the MSi are roughly of the order 1

N
, so the HHI becomes small, of the order 1

N
. In

a localized state, where the wealth is concentrated on a small number of sites, the HHI
becomes larger. If the state is entirely localized on a single site, the HHI equals 1. We can
observe these properties in Figure 4.23.

We then want to measure how HHI scales with N , in particular we want to see what is the
ψ = ψ(µ) such that,

HHI(N,µ) = A
1

Nψ(µ)

log(HHI(N,µ)) = log(A)− ψ(µ) log(N) (4.19)

As for the relative diversity, also here we run the non-linear regression and observe that the
term HHI∞ ≈ 0, hence we directly provide the linear regression on log − log as in 4.19.
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Figure 4.23: Linear regression on the log-transformation of the Herfindahl–Hirschman index.
From that the coefficient ψ(µ) is extracted and plotted against µ.

Looking at Figure 4.23, we notice how ψ → 0 as µ increases, suggesting that the HHI
index does not depend on N in the localization regime and all the wealth (or abundances)
is concentrated in just a few species. This entails that in such regime there is an oligarchy
where only a few species detain most of the wealth. On the other hand, as µ approaches the
mean field regime, ψ → 1 and the wealth is heterogeneously distributed among many species
because HHI → 0.
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All these results suggest the occurrence of the last phenomenon that we want to investigate
for the homogeneous degree cooperative case: the Anderson Localization. It describes the
regime where the abundances distribution does not scale linearly with N and it is localized
in just a few elements (see 1.1). To do that we have to introduce some measures.

Definition 4.4.6 (Shannon Entropy). It is defined as,

H(N) = E[log(
1

MS
)] = −

N∑
i=1

MSi log(MSi)

where MSi stands for market share of species i.

In particular, calling state the vector of final abundances (y1, ..., yN), the Shannon Entropy
gives information on the states distribution. If H is high, it indicates that the wealth is more
evenly distributed among the nodes (mean field). Each node has a relatively similar share
of the total wealth. On the contrary if H is low, it suggests that the wealth distribution is
more uneven, with some nodes holding significantly more wealth than others. This is the
case as we move towards the high values of µ.

Definition 4.4.7 (Fractal Exponent). For a fixed µ the fractal exponent D is defined via
the asymptotic Shannon entropy as,

H(N) ∼ D log(N), for N → ∞

In presence of this localization as logN increases, you would expect D to decrease, indicating
that wealth is becoming increasingly localized.

If we are in the mean field regime where the abundances are uniform then we have H(N) =
logN and D = 1. In general, high D suggests that the state is distributed over a large num-
ber of sites, characteristic of an extended state. The distribution has a fractal-like structure
that spans the entire system.

But also in the competitive case where we have that the number of surviving states is a
fraction of N , D = 1. For example, take a system like the ring where 50% of the species are
surviving. There we have H(N) = O(log(N

2
)) = O(logN − log2)) = O(log(N)) when N is

big. So also here D = 1. Every time the fraction and not the number of surviving states is
conserved, then D = 1.
Now let us relate it to the behaviour showed in 4.20 where there are long cycles and the
diameter decreases (before entering the tree regime). It is a known result that the aver-
age length of a long cycle in a C-regular graph is of O(logN) [33], then in the part of the
transitory regime where we do not have trees we have D = 1 or at least D > 0. On the

56



4. RESULTS

other hand, when trees appear for larger values of µ the number of states is of O(S(L))
and H = O(log(S(L))) where S(L) is the size of the tree. That does not depend on N and
hence D = 0 there. Localization indeed means that the states distribution {MSi}i=1,...,N

is concentrated only on a few number of states, mainly S(L). So if I find the µ such that
D = 0, then we can say when we transition from a cyclic surviving graph to a surviving tree.

This is what was done by Kravstov et al. in [28] to prove the presence of the Anderson
localization on the Bethe-lattice, where their disorder strength W , corresponds to our social
strength. A Bethe lattice is an infinite, loopless, connected graph where each node is con-
nected to exactly C neighbors, and the number of nodes increases exponentially with the
distance from any given node.

Figure 4.24: On the x-axis W/Wc is taken to have it between zero and one, as Wc is the
maximal disorder strength. The red area represents a one-step replica symmetry breaking
that predicts a continuous ergodic transition, but it is not in the scope of our research

What is important for us about Figure 4.24 is the monotonous decay of the fractal exponent
from one to zero. Our goal now is to replicate that D(µ) against µ plot to check if we
have monotonous decay as well and finally prove that we have Anderson Localization for the
critical µAL : D(µ) = 0 ∀µ > µAL
Therefore, for each µ we found the fractal exponent as the coefficient of the regression of
H(N) against log(N) with H0 that is the additional term.

H(N,µ) = Dreg(µ) log(N) +H0.

Where Dreg(µ) is the coefficient obtained from the regression. Then plot Dreg(µ) against µ
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Figure 4.25: Linear regression on the Shannon Entropy against log(N). From that the
coefficientD(µ) is extracted and plotted against µ. It appears to be monotonously decreasing
and between 1 and 0.

Figure 4.25 confirms the Anderson localization and suggests that 1.3 < µAL < 1.35 that is in
accordance also with the previous results that showed that the last tree is the one associated
to height L = 4.

So far, via the observations obtained with one simulation, we have shown that as µ increases
ψ(µ) and D(µ) tend to zero while ξ tends to one. Another property of interest is the mono-
tonicity of the curves. To validate our results we conducted a statistical analysis over the
regressions made on many simulations. In this study we are not dealing with a real dataset
where the observations are subject to endogenous or exogenous noise, like the evolution of
two stocks on the financial exchange for example. We are studying a synthetic environment
over which we have total control and the noise is only self-generated. Hence we avoided
statistical tests like the Spearman’s Test to validate the monotonicity hypothesis. Here we
are dealing with linear and non-linear regressions with limited observations, hence the most
useful metric is the Root Mean Squared Error (RMSE).

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (4.20)

where n represents the number of observations, yi denotes the actual value of the i-th ob-
servation, while ŷi represents the predicted value obtained by fitting the regression. The
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difference yi− ŷi is the error or residual for the i-th observation. We take the square root of
the standard MSE to have the same units as the target variable y. The best characteristic
of this measure is its interpretability; indeed we can see it as the average magnitude of the
prediction errors.
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Figure 4.26: a) Linear regression of the Shannon Entropy with a single seed. 10 observations
for each of the 9 values of µ. b) Mean and standard deviation of the fractal exponent.
Simulations on 10 different seeds were run, obtaining 10 different values of D(µ) for each µ.
From them, the mean is shown and the standard deviation is used to obtain red error bars.
c) Distribution of the 90 RMSE points, with 25th and 75th quantiles highlighted in green

N was equally log-spaced from 16000 to 50000 to obtain 10 observations every time. We then
used 10 seeds and 9 values of µ because of the computational costs of running the dynamics
for such a big size of the system. Instead of doing the regression on the means of the
observations over the seeds, we take each regression separately, take the 9 fractal exponents
and then average them. Moreover, we did not show the mean of the RMSE distribution but
we showed the 25th and 75th quantiles to give more information. The mean would have
been misleading for a bimodal distribution for example. In order to have a larger dataset we
conducted a non parametric bootstrapping with 100 samples taken from resampling our data
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and that led us to the following fractal exponent curve that resembles 4.24 in its monotonous
direction from 1 to 0.
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Figure 4.27: Mean and standard deviation of the fractal exponent for each of the 100 samples
obtained via non-parametric bootstrapping.

The non-parametric bootstrapping is not as informative as 100 independent samples (which
would have been too computationally expensive) because multiple outcomes rely on par-
tially equal data, but nevertheless provides an additional guarantee of the goodness of the
regressions. Moreover, the repeated resampling process allows for a more thorough explo-
ration of possible outcomes, ensuring that the results are not overly dependent on a single
dataset configuration. By generating multiple resampled datasets, bootstrapping captures
the natural variability within the original data, making it possible to assess the stability and
consistency of the regression outcomes. This process adds robustness by reducing the risk
of overfitting to a particular dataset and providing more reliable estimates of uncertainty,
which strengthens confidence in the validity of the conclusions drawn from the analysis.

4.4.1 Effects of increasing C

The reason why all the simulations of this chapter were conducted with C = 4 is that last
time of the dynamics had to be manually selected for every value of social strength. The
cost of using a integrating function that does not scale exponentially with the population
size is that the last time has to be carefully chosen and it crashes if you choose an upper
bound that is distant from the true convergence time. We applied a non linear interpolation
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but the integrating function is so sensitive that also that has to be carefully tuned.

As we increase C, the critical µu shifts to the right, as well as the beginning of the localiza-
tion regime. Figure 4.21a suggests that the intermediate regime is expanded. It is left to see
whether that is because the localization regime is shrinked. In particular, we can replicate
Figure 4.19 with the new µc(L) = µc(C,L) and see if the last admissible height of the tree is
still L = 4. The intuition is that for higher C it is more difficult to reach the completion of
the same height tree without a defected node creating a loop. That is because, for the same
L, the corresponding SC(L) drastically increases if we increase C.
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Figure 4.28: Relative diversity against social strength with numerical simulations and with
the analytical values given by 4.13 for C = (3,4,5). As C increases also S(C) does and hence
for a good comparison N must be increased as well. For C = 5 we used N = 500000.

As C gets larger the long cycles regime gets larger too. The motivation is that fixing µ, I am
expecting a tree of height L, and a regular tree of height L with degree 5 has exponentially
many more nodes than a regular tree of height L with degree 3. Hence higher probability
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of forming a cycle. That is why in the three figures the maximal L such that the analytical
relative diversity matches the simulations are (6, 4, 3) for C = (3, 4, 5). There is also a
computational motivation behind this expansion of the long cycles regime as C is increased.
Indeed, to obtain a locally tree like graph we have to impose a very large N , the higher the
C the higher the N , so Figure 4.28 is very accurate for C = 3 but less accurate for C = 5.
If we want to assess which is the real boundary of the localization regime without being
excessively affected by the finite size curse, then we must study where the fractal exponent
approaches zero, as shown in Figure 4.25.

4.4.2 Wealth Inequality

We can look into this regimes difference also from a wealth inequality perspective, using the
Gini index. Looking at Figure 4.17 and the symmetric abundances of the trees we notice the
break of symmetry given by the rise of long loops. The Lorenz curve shows this phenomenon
too. However, to obtain the trees from the simulations, it is necessary to select a very large
population size and in the case of states localization that means having a Lorenz curve that
resembles a Kronecker delta δx=1. Hence, these infinitesimal orders of magnitude make it
difficult to distinguish a localized tree of L = 4 from one of L = 2 from the Gini coefficient.
However, the three regimes can be easily distinguished.
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Figure 4.29: From left to right: mean field regime, intermediate regime, localization regime,
with the Gini coefficient increasing with µ. For µ = 1.8 in the localization regime, the jumps
in CDF are included as for Figure 4.8.

In the mean field regime all species survive with the same abundance so the Lorenz curve
overlaps with the equality line. Here that is not exactly the case because even if they all
survive, the numerical noise produces some wealth inequality that generates a positive Gini
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coefficient. The jumps of the CDF in the third image for µ in the localization regime agree
with a height-2 surviving tree and that is in accordance with the theoretical values of Equa-
tion 4.17. Considering that before a certain µc the tree growth is broken, we cannot find
an analytical value for Gini(µ). The reason is that we know the abundances distribution
only for surviving trees but when the surviving component has long cycles we cannot say
anything about the CDF used to compute Gini(µ). In the chapter where we analyze the
heterogeneous degree with the Erdos-Renyi random graph, we show the numerical evolution
of the Gini index against the social strength in the two cases.

4.5 Erdos-Renyi

So far we have dealt with degree homogeneity, which was convenient because having∑
j Aij = C fixed guaranteed a non randomic structure of the final surviving component,

which could be exactly predicted knowing the social strength.
A natural extension of the work would be to consider degree heterogeneity in a way that
is relatable to the C-regular case. With this goal in mind, in this section we introduce an
Erdos-Renyi (ER) graph GN,p with N nodes, where the connection between node i and node
j is a i.i.d. random variable with the Bernoulli distribution B(p). If K indicates the random
variable that gives the degree of each node, we can write

K ∼ B(N − 1, p)
d−−−→

N→∞
p→0

P(λ), λ = (N − 1)p

E(K) = λ = C, Var(K) = λ = C for N → ∞. (4.21)

Where there are N−1 possible connections because a node cannot have a self-loop. p = C
N−1

is chosen such that E(K) = C.

In the paper by G. Bunin et al. [30], it is shown that, after a transitory regime, the jumps
happen for the same critical values αc in the C-regular graph and in the GN,p graph with
p = C

N−1
; The relative diversity curves are different but those values are conserved. As we

see from the asymptotic distribution in 4.21, the degree distribution does not converge to
that of a C-regular, which is a delta centered in C. For what concerns the spectrum, in the
regular case there is uniform interval with right edge of the eigenvalues distribution in C.
For the ER with average degree C, the maximal eigenvalue is C as well but that point is an
outlier from the semi-circle where almost all the eigenvalues are concentrated (see Appendix
A).
From Figure 4.30, we observe a first difference between the competitive ER and the cooper-
ative ER. In the former case, for a social strength larger than 0.5 there is a perfect matching
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Figure 4.30: Left) From the paper [30]. ER with average degree 3 in red and 3-regular graph
in blue; both taken from a system size N = 400. They present the same jumps for α > 0.5.
Right) Comparison of the relative diversity for the ER and the C-regular with C = 4 and N
= 500 in our case of cooperation. The y-axis is log-scaled to highlight the difference at the
last µ = 3 where the ER has a larger number of species surviving.

between the points where the jumps occur. On the other hand, in our replicator model
those jumps do not match. And it is not just a matter of averaging over many simulations;
in the ER the last plateau always starts much earlier. In the C-regular case for µ < 1,
there is convergence, making the replicator model inapplicable. While in both the ER cases
ϕ < 1 for µ = 1. That is in accordance with [1] where it is shown that µu = C2

⟨k2⟩ , that for
C = 4 corresponds to µu = 0.8. To verify this result we observe the relative diversity of 20
simulations and we notice that they all abandon the mean field regime in that specific value
of µ.
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Figure 4.31: 20 simulations to plot the relative diversity and show that it abandons the mean
field at µu =

C
⟨k2⟩ .

To show that there is no matching between the jumps in the C-regular and in the associated
ER, we can look at the µtree(L) values of Equation 4.17. We see, from the simulation shown
in Figure 4.32, that µtree(L = 2) and µtree(L = 3) are located where there is the last plateau
(while in the regular case they corresponded to the first two jumps).
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10 3

10 2

10 1

100

Relative diversity in the ER graph with average degree C = 4

C-Regular, C(L = 4)
C-Regular, C(L = 3)
C-Regular, C(L = 2)
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(Erdos-Renyi) Mean of the relative diversity over 100 simulations
C-Regular, C(L = 4)
C-Regular, C(L = 3)
C-Regular, C(L = 2)

Figure 4.32: Relative diversity over different values of social strength in the Erdos-Renyi
graph with average degree 4 and N = 10000. The results are compared to the jumps
µC(L) = µtree(L) in relative diversity of the associated regular graph to show that there is
no matching. Left) Relative diversity for the single simulation. Right) Mean of the relative
diversity over 100 simulations.
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4. RESULTS

Now we want to understand what are the final structures in the right-most jumps in the case
of heterogeneous degree and to do that we will analyze the final structures associated to the
social strength values of the jumps in Figure 4.32.

N = 10000, p(N-1) = 4,  = 2.50 N = 10000, p(N-1) = 4,  = 1.48 N = 10000, p(N-1) = 4,  = 1.35 N = 10000, p(N-1) = 4,  = 1.32
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Tree evolution in the Erdos-Renyi

Figure 4.33: Final structures of the ER graph with C = 4 for the values µ where we have
the last four jumps in the Figure 4.32. We have a tree evolution as µ decreases and from the
abundances distribution we can see that we have symmetry around the central node.

We notice that here as well the evolution follows a tree-like growth where the tree now is
not regular anymore. Indeed we notice, looking at the third height-2 tree, that in the first
layer there are a node with degree 7 and a node with degree 3. This phenomenon allows us
to find the the critical values where the transitions happen by taking the adjacency matrix
of a branching process with an underlying Poisson distribution for the number of children.
In particular the MPA, that we referred to in the introduction, can be used to implement
a factorization of the characteristic equations and find the exact eigenvalues. Therefore, we
would have the exact solution of the critical µL also in the case where the degree is hetero-
geneous. But that would be different every time because the branching process generates
different outcomes every time.
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Looking at Figure 4.33, the first question that comes up is whether the central node of the
star (that has degree 11) is the one with highest degree in the whole graph. We supposed
that the surviving component should have concentrated around that. But it is not; there
is indeed a node with degree 13 which unexpectedly dies. In particular, we run 20 different
simulations with 20 different seeds for the initial conditions on the same graph with max
degree 13. We want to shuffle various IC combinations to see if this was an exception and
the star that survives is usually the one with the highest degree central node. That would
be explained by the bias affecting the surviving component influenced by the second level of
randomness that we have in the heterogeneous degree case. But Figure 4.34 shows us that,
over 20 simulations, only 4 times the surviving component expands around the node with
maximum degree in the graph. The mode is 11 as in the example of Figure 4.33.
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Figure 4.34: Left) Before running the dynamics the node with max degree has 13 connections
and this is the component with first and second neighbours. Right) distributions of the final
degrees of central nodes
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Finally, we compare the homogeneous and the heterogeneous degree cases from the point of
view of the Gini index to assess what is the influence of a degree regularity on the wealth
inequality.
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Gini index against  for the 4-regular graph and the ER with < K > = 4
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u = 1.1554
u = 0.8

Figure 4.35: Gini index against the social strength in the 4-regular random graph and in the
Erdos-Renyi with average degree 4. It was computed over a population of size N = 10000. In
blue the observations for the regular case over a single simulation for the graph generation.
In red the mean of the Gini index over 100 simulations for the graph generation. The dotted
lines indicate when we abandon the regime where all species survive (the fist µ such that
ϕ(µ) < 1).

From the last Figure 4.35 we can observe that in both cases we converge to a value very
proximate to one because we arrive to the final localized star shaped structure. After the
mean field critical value µu, we have a transition towards the extreme inequality, but it is
steeper in the regular case because the long cycles regime is shorter. Finally, we can observe
that in the regular graph case for µ < µu the Gini coefficient is around zero because all the
species have the same uniform abundance, while in the heterogeneous case, even if all species
survive, they do that with different levels of wealth, producing an un-evenly distributed state.
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5 Discussion

The main goal of this thesis is to investigate the equilibria of the cooperative Generalized
Lotka-Volterra model on a random network. To cope with the divergence of the abundances
of the species, we revisited the model using an alternative version of the replicator equations
and that allows us to find inequality within a setting where species mutualistically help each
other. In particular, effective competition arises and that has the consequence of an uneven
wealth distribution where a few species get much richer than others. We study the two cases
of homogeneous and heterogeneous degree distributions with the C-regular random graph
and the Erdos-Renyi random graph with average degree C. In both of them we observe a
localization of wealth that we traced to the phenomena of condensation and Anderson lo-
calization, typically found in statistical mechanics. To do that we have to use some notions
of information theory, mainly the fractal exponent and the Shannon entropy, which we use
to measure the inequality in the final states distributions. We observe that the stronger
the communication between species, the stronger the effect of the effective competition. We
quantify that from the relative diversity, a measure that indicates the fraction of surviving
species over all the population size, and the abundances final distribution. It is extremely
interesting to observe the geometrical evolution of the surviving components as the inter-
action strength decreases. In their minimal shape (high strength), the species are grouped
into stars that gradually expand as trees, until they enter a regime where long cycles appear
in the surviving component and the regularity is broken. From an economical point of view
our study can be reflected in a scenario where different agents have all positive wealth or
liquidity and they all benefit from each other’s presence. However, within a positive wealth
for everyone, hierarchies arise and a few agents get significantly richer than others, leading to
a relative oligarchy. This induces an inequality that may have impacting consequences when
for example there is a limited amount of available resources, which can be assigned only to
those who are willing to pay more for them. This is not the scope of the research, but we
could make a comparison with the national economies. In a setting of global cooperation,
there is still a marked discrepancy between the developed and undeveloped ones, that gets
higher with rising intra-economies communication. In this context, it would be interesting to
extend this work by investigating analytically the consequences of freezing the dynamics of
the Lotka-Volterra model to redistribute the wealth halfway through the process. Something
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5. DISCUSSION

similar was done in [45] in the context of a good-exchange market with the introduction of
helicopter money that were assigned at 0 < t < tfinal to specific agents according to their
rank. We limited our research on wealth inequality to the Gini coefficient, a metric widely
used in literature that is based on the Lorenz curve. The further research that arises from
this thesis spans over many field. From a random graph and random matrices point of view,
we could extend this by studying the effects of different degree distributions or a preferential
attachment model [51] where nodes are added also based on the current abundances. Finally,
we could find a computational application to this study. In the introduction we mention that
the competitive Generalized Lotka Volterra with high enough interaction strength is used as
an algorithm to find the maximal independent sets in a graph [38]. Similarly, we can use our
cooperative version of the model to find the long loops in the graph, without going through
every possible path, with the only foresight of choosing the right interaction strength in the
long cycles regime.
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A Random Graphs Theory

In this appendix we provide some basic notions of random graphs theory that can be useful
for a better comprehension of some concepts found in the results. Most of these definitions
and theoretical results are taken from [51], [3], [38].

A.0.1 Definitions

Let us start with some fundamental definitions.

Graph: A graph G = (V,E) consists of a set of vertices V = {vi : i ∈ {1, 2, . . . , n}} and a
set of edges E ⊆ V × V . With the size of the graph |G|, we denote the number of vertices
|V | in the graph.

Adjacency matrix: We define the adjacency matrix of a graph as

Aij =

{
1 if there is an edge between vertex vi and vertex vj,

0 otherwise.

Undirected: We call a graph undirected if Aij = Aji for every i, j ∈ {1, 2, . . . , n}. If not, we
call the graph directed.

Neighborhood: Let G = (V,E) be a graph. For any vertex vi ∈ V , we denote the neighbor-
hood of vi by N(vi) := {vj ∈ V \ {vi} : Aij = 1}.

Degree: The degree of a vertex vi ∈ V is the number of neighbors of vi. We denote the
degree by di = |N(vi)|.

Vertex Degree
v1 2
v2 3
v3 3
v4 2 v1

v2

v3

v4

A =


0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0


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A. RANDOM GRAPHS THEORY

Connectance: The connectance of a graph is defined as the ratio of the number of edges
|E| in the graph to the total number of possible edges between all pairs of vertices. For an
undirected graph, the connectance is given by:

C =
|E|

|V |(|V |−1)
2

,

where |V | is the number of vertices, and |E| is the number of edges in the graph.
Walk: A walk on a graph is a sequence of vertices, such that every pair of consecutive ver-
tices is connected by an edge.

Path: A path in a graph is a walk where every vertex occurs only once.

Cycle: A walk in which the first vertex is the same as the last vertex and every other vertex
occurs at most once, we call a cycle.

Connected: A graph is connected if there exists a path between any two distinct vertices in
the graph.

Diameter: The diameter of a graph is defined as the longest shortest path between its ver-
tices. Given the relevance of the definition in this study, it was explicited in 4.4.4 in the
Results.

Typical Distance: It is the expected value of the distance between two randomly chosen
vertices in the graph. It is computed as the average of the distances between all pairs
of vertices. Let XN = dG(uN , vN) represent the distance between two randomly chosen
vertices uN and vN in a graph G with N vertices. The order of XN provides insight into
the graph’s nature: if XN = O(log logN), the graph exhibits a small-small-world property,
characterized by extremely short paths between vertices. In networks that follow a power-law
degree distribution (also known as scale-free networks), the typical distance between nodes
grows as log−log(N). If XN = O(logN), the graph exhibits the small-world property, where
most pairs of vertices are connected by short paths. Conversely, if XN = O(N), the graph is
considered to exhibit a large-world property, where distances scale linearly with the number
of vertices, typical of sparse graphs with low connectivity.

A.0.2 Types of graphs

We call a graph simple if it is undirected and contains no self-loops or parallel edges. In this
thesis, we only consider simple graphs. Now we give some examples of simple graphs that
will recur.
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A. RANDOM GRAPHS THEORY

Figure A.1 Figure A.2 Figure A.3 Figure A.4

Tree graph: We call a graph a tree if every pair of vertices is connected by exactly one path.
A tree is a connected acyclic graph (A.1). Within the tree we have the following notions:

• The root node serves as the starting point from which all other nodes are explored.

• Each node in a tree, except the root, has exactly one parent, and the nodes directly
connected to a given node are called its children.

• The progeny of a node v is the set of all its descendants, meaning all nodes that can
be reached from v by following edges downward in the tree.

• The offspring of a node refers to the direct children of that node. If a node v has c
children, then it is said to have c offspring.

• Nodes with no children are called leaves. The root node and the leaves form important
parts of the structure of a tree, with the leaves representing the ”endpoints” of the
tree.

• The height of a tree is defined as the maximum distance from the root node to any
leaf. In other words, if the tree is rooted at a node r, the height is the length of the
longest path from r to any other node in the tree. The height gives a measure of the
”depth” of the tree, indicating how many levels of branching occur.

• The k-th degree neighborhood of a node v in a tree is the set of all nodes that are
exactly k edges away from v. This neighborhood encapsulates the nodes that can be
reached from v by traversing exactly k edges, and it provides a way to study the local
structure around any given node within the tree.
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A. RANDOM GRAPHS THEORY

Star graph: We call a graph G a star if it is a tree with one vertex having degree |V | − 1
and the other vertices having degree 1 (A.2).

Regular graph: We call a graph regular if the degree of all vertices is the same (A.3).

Complete graph: We call a graph complete if there is an edge between any two distinct
vertices in the graph(A.4).
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Figure A.5: Left) Maximal IS. Middle) Maximal IS. Right) Maximum IS.

Maximal Independent Set: An independent set (IS) in a graph is a set of vertices such that
no two vertices in the set are adjacent. A maximal independent set (MIS) is an independent
set that cannot be extended by including one more vertex from the graph, meaning adding
any other vertex to the set would violate its independence. Within this definition, we also
distinguish a maximum independent set, which is an independent set that contains the largest
possible number of vertices for a given graph.

A.0.3 Random Graph Generation Models

Erdős–Rényi graph

Let n ∈ N and p ∈ [0, 1]. An Erdős–Rényi graph is constructed in the following way:

1. Initialize n vertices {vi}ni=1.

2. Add each edge independently with probability p.

3. Return the obtained graph.

There exists a critical threshold for the connection probability p at which the graph undergoes
a phase transition from being almost surely disconnected to being almost surely connected.
This transition is characterized by the following critical values of p:

• If p < (1−ϵ) logn
n

, for any ϵ > 0, the graph is almost surely disconnected.
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• If p > (1+ϵ) logn
n

, for any ϵ > 0, the graph is almost surely connected.

For connection probabilities p below this threshold, the graph is highly likely to remain
disconnected, often consisting of small isolated components. However, as p increases and
surpasses the threshold, the graph rapidly becomes connected, meaning that a giant compo-
nent emerges and spans almost all vertices in the graph [38].

The Configuration Model

The Configuration Model is a random graph model that allows the creation of graphs with
a specified degree sequence. Unlike the Erdős–Rényi model, which generates random graphs
with a given edge probability, the Configuration Model constructs a graph where the degrees
of the vertices are pre-specified.

Given a degree sequence {d1, d2, . . . , dn} for a graph with n vertices, the Configuration Model
is obtained by following these steps:

1. For each vertex vi, create di ”half-edges”. The number of half-edges corresponds to
the degree of each vertex.

2. Pair the half-edges uniformly at random to create edges between the vertices. Each
pair of half-edges forms an edge.

3. If there are any leftover unpaired half-edges or self-loops (edges where both ends are
connected to the same vertex) and multiple edges (edges connecting the same pair of
vertices more than once), retry the pairing step.

4. The resulting graph has the degree sequence {d1, d2, . . . , dn}.

To build a C-regular random graph, where each vertex has degree C, one can apply the
Configuration Model with a degree sequence d = {C,C, . . . , C}.

The Branching Process

A branching process is a stochastic model used to describe the growth of populations across
generations. Let Xi,j represent the number of children of the j-th individual in generation
i. Each Xi,j is an independent and identically distributed (i.i.d.) random variable following
a Poisson (or Binomial) distribution with parameter λ, which governs the average number
of offspring. The process starts with a single individual at generation 0, denoted by Z0 = 1,
and evolves over generations as follows: for each individual in generation i, the number of
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children Xi,j ∼ Poisson(λ) is generated. The total number of individuals in generation i+ 1
is given by the sum of all offspring from generation i:

Zi+1 =

Zi∑
j=1

Xi,j.

The expected population size at generation i is E[Zi] = λi, meaning that the population
grows exponentially if λ > 1, remains constant if λ = 1, and faces extinction if λ < 1.
Additionally, the variance of the population size grows linearly with the current population,
as Var(Zi+1) = Zi · λ. An important feature of the branching process is the probability of
eventual extinction, denoted by q, which satisfies the equation

q = e−λ(1−q).

For λ ≤ 1, extinction is certain (q = 1), whereas for λ > 1, there is a positive probability
that the population survives indefinitely (0 < q < 1).
The total population size over all generations, denoted by T , is the sum of individuals in
each generation:

T = Z0 + Z1 + Z2 + . . . .

The total population size is finite if the process becomes extinct, but for λ > 1, there is a
positive chance that the population grows without bound, depending on whether the process
escapes extinction.

A.0.4 Random Graphs Spectrum

In graph theory, the spectrum of a graph is the set of eigenvalues of its corresponding
adjacency matrix. The spectrum of G is often referred to as λ1, λ2, . . . , λn, where n is the
number of vertices of the graph.
If the adjacency matrix A of a graph G is Hermitian (meaning that ĀT = A), then the
spectrum is real. The adjacency matrix of a non directed graph is symmetric and therefore
its eigenvalues are real numbers and can be ordered as λ1 ≥ λ2 ≥ · · · ≥ λn.
In the case of C-regular graphs it is a known result that the largest eigenvalue λ1 is C and it
corresponds to the eigenvector of ones. As we saw, random regular graphs can be generated
using the configuration model with δx=C degree distribution. B. McKay studied the spectral
density from the adjacency matrix in such random graphs in [33] and proved that the spectral
density for a regular graph X with C ≥ 2, where the size goes to infinity and the number of
short loops normalized by such size goes to zero is:

f(x) =

{
C
√

4(C−1)−x2
2π(C2−x2) for |x| ≤ 2

√
C − 1,

0 otherwise.
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This is the limiting density for n → ∞, therefore even if the largest eigenvalue of a regular
graph is C, the limiting portion of eigenvalues bigger than 2

√
C − 1 is zero. In particular,

given the randomness in the choice of vertices and edges, the eigenvalues of most vertices are
influenced by local fluctuations in the graph’s structure and that is captured by McKay ’s
distribution. [−2

√
C − 1, 2

√
C − 1] is then the bulk of the eigenvalues and as the size of the

graph goes to infinity the fraction of eigenvalues outside that bulk goes to zero. A clarifying
example about the difference of a regular random graph and a regular graph is the ring, a
deterministic regular graph where eigenvalues are structured and deterministic.

In the case or Erdos-Renyi random graph we know the geometric and spectral properties of
the adjacency matrix [10], [51]. In the low connectivity regime (C = O(1)), the ER adjacency
matrix is a rank one deformation of a matrix with centred i.i.d. entries, so that we observe
a circular law and one outlier.

Figure A.6: Case of the non-Hermitian adjacency matrix from [2]. We have complex eigen-
values because graph is directed and the matrix is not symmetric. Left) Predator-Prey case
with centered elliptic spectrum. Middle) Competitive case with elliptic spectrum and neg-
ative outlier. Right) Competitive case with elliptic spectrum and positive outlier equal to
C =< K >.

The spectral density of Poisson branching processes has been studied extensively in [26],
[5]. The process is governed by the generating function f(s) = e−λ(1−s). In the case of a
process stopped at height L, which creates a tree of depth L, the corresponding transition
matrix becomes finite-dimensional, even in the supercritical regime where λ > 1. This
truncation results in a discrete spectrum. For large L, the eigenvalue distribution begins
to approximate that of the infinite process, with smaller eigenvalues decaying exponentially,
such that λr ∼ e−λr. As discussed in [5], the spectral density ρ(λ) for large L can be
approximated by a continuous function that decreases exponentially with L: ρ(λ) ∼ 1

L
e−λL.
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