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Abstract

Minimizing the time needed to travel a prescribed distance is the main development goal in
motorsports. In racing car development, simulations are used to predict the effect of design
parameter changes on vehicle performance. If approached as an optimal trajectory planning
problem, a maneuver simulation can be used to determine not only the maneuver time, but
also to identify the performance limitations on the system. This thesis describes the devel-
opment and implementation of an optimal trajectory planning method using optimal control
for short maneuvers. The requirements and modeling decisions are based on the application
of the method to example problems related to Traction Control (TC) design.

The model for the method is based on a study of steady-state acceleration limits and stabil-
ity. The rigid two-track model resulting from this study includes lateral and longitudinal load
transfer, a nonlinear tire model, a limited-slip differential and aerodynamic downforce. An
important contribution is the omission of wheel rotational velocities from the model, reduc-
ing the number of states by four and relaxing the requirements on the discretization interval.
Possible misuse of this formulation is prevented by a constraint representing wheel rotational
stability limitations. The formulation is validated by comparison to a reference model which
includes wheel rotational velocities.

The optimal trajectory planning method is formulated as an optimal control problem. The
cost function is the maneuver time, and the constraints consist of the system dynamics and
maneuver boundaries. The time-based dynamics are transformed into spatial dynamics, and
a curvilinear coordinate system is used.

The optimal control problem is discretized using a full collocation method, and the state
and input trajectories are parametrized in terms of B-spline coefficients. The resulting prob-
lem is solved using a Non-Linear Programming (NLP) solver. Interior-point solver IPOPT
and Sequential Quadratic Programming (SQP) solver SNOPT are compared on various small
problems. For this application IPOPT appears to be superior over SNOPT. The first order
derivative information of the constraints required for IPOPT is approximated using sparse-
finite differences, and the cost function gradient is calculated analytically. The precision of
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the method is assessed in a study of maneuver time dependency on mass. It appears that
precision is mainly affected by convergence of the solver to various local minima. As such, the
use of distance-dependent constraints and warm-start are employed for improving precision.

The optimal trajectory for a hairpin with various radii is studied in detail. Special attention is
paid to tire friction potential utilization and vehicle stability according the Lyapunov’s First
Method. For the given parameters it is shown that the optimal solution involves instances of
overdriving either the front or rear axle. It is also shown that the vehicle is open-loop locally
unstable on intervals along the optimal trajectory.

In another simulation study, the reaction of the control inputs to temporary reductions in
tire-road friction and perturbations to the yaw rate and body slip angle on turn-exit are eval-
uated. The most important result of this study is that the longitudinal control was found to
be the primary means for rejecting such disturbances. The study also showed that steering
angle changes are used as additional means for disturbance rejection if the perturbation is
large enough to saturate the reduction of longitudinal control.

The sensitivity of maneuver time and optimal trajectory to vehicle mass is studied by the use
of so-called sensitivity differentials. This is done using a well-developed theoretical framework
for parametric sensitivity for barrier methods, implemented in the software package sIPOPT.
The sensitivity study can be seen as a proof of concept of the sensitivity differential approach
for the race car MTM application.
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Chapter 1

Introduction

The aim in motorsport is to win races. One of the main development goals for achieving this,
is traveling a prescribed distance in minimal time. This distance is usually a lap around a
given circuit. The problem is constrained by the physical boundaries of the race track, and by
the restrictions on car layout as defined by a rule book. Within the limits of these rules, teams
and constructors develop cars to minimize lap time. During this process, simulations are used
to predict the effect of vehicle setup and design parameter changes on vehicle performance.

1-1 Background and goals

Historically, race car requirements have been expressed in terms of accelerations. An impor-
tant statement concerning time optimal driving is made by Peter G. Wright, former technical
director of Formula 1 team Lotus, and quoted in [1]:
"Driving a car as fast as possible (in a race) is all about maintaining the highest possible
acceleration level in the appropriate direction"

This quote is illustrated in Figure 1-1. It shows a simple 90◦ turn, a vehicle, and its accel-
eration vector at several instances. As can be seen, the initial acceleration vector is pointing
rearwards, as the vehicle is decelerating. In the middle of the turn, the car is driving in a
curved path, requiring a centripetal acceleration. On the last point, the car is accelerating
forward. Between these points the car is subject to a combination of longitudinal and lateral
acceleration.
Indeed, the shortest time is achieved for maximal average corner speed, requiring high lateral
acceleration. The time to this point is minimized by braking as late as possible using the
vehicle’s maximum deceleration potential. Finally, at the end of the corner maximum forward
acceleration is desired.

One of the main limitations on vehicle accelerations is the force that the tires can exert to
the road. It appears that for tires delivering a combined longitudinal and lateral force, the
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2 Introduction

Figure 1-1: Illustration of the vehicle acceleration vector in a typical 90 degree turn. Figure
adopted from [2].

magnitude of the vector sum of the two forces is nearly constant [1]. This has led to the
concept of the "g-g" diagram. The "g-g" diagram represents the bounds of the vehicle on the
Ax−Ay plane, where Ax and Ay denote the longitudinal and lateral acceleration respectively.
Milliken & Milliken state the following about the requirements of a car with the goal of min-
imizing lap time:

• It should provide the largest "g-g" maneuvering areas throughout the range of operating
conditions

• It should provide vehicle stability and control characteristics that enable a skilled driver
to operate at or near these acceleration limits.

Development in race car design is most often based on the improvement of either of these two
points. Area’s of development include generation of aerodynamic down-force, improvement
of tire friction and improvement of suspension characteristics. In decision making, engineers
make use of simulations to quantify the influence of such parameter variations on lap time.
In one class of methods, the vehicle is approximated by a point mass, which has accelerations
limits represented in a "g-g" diagram, possibly dependent on velocity. The method calculates
the optimal velocity profile on a curvature defined by the user. Essentially, the assumption
is made that all states are constant for short discrete periods of time. The driving line is di-
vided in short segments of constant radius and on each segment a constant yaw rate, constant
velocity and constant longitudinal and lateral acceleration are assumed. This assumption is
justified by the fact that circuit driving is known to be smooth, resulting in low yaw acceler-
ations [3]. In literature, these methods are referred to as Quasi-Steady State (QSS) methods
[3]. A more detailed explanation can be found in [3] and [4].

The disadvantages of QSS methods are the assumption of a fixed driving line (although in [5] a
method of line optimization using "g-g" diagrams is presented), and the omission of transients.
The latter is illustrated in Figure 1-2. The figure shows a left-right combination of turns. As
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1-1 Background and goals 3

Figure 1-2: Illustration of a typical lane-change maneuver, including a lateral tire force represen-
tation. Figure adopted from [2]

can be seen the yaw rate of the car is in clockwise direction in the middle of the first turn.
In the second turn, the yaw rate is in counter-clockwise direction. The transition between
the two requires a yawing moment, and thus requires unbalanced forces (situation III in the
Figure 1-2). As a result, the car cannot achieve an acceleration as given by steady-state "g-g"
diagram at this point in time. In general, neglecting the dynamics will make the theoretical
optimum found from a QSS method unobtainable in reality [3].

This leads to the problem of finding the so-called control inputs which make use of the
transient dynamics in an optimal fashion. The control inputs are typically the front wheel
steering angle and accelerating and braking torque on the wheels. The problem of finding
the optimal inputs can be seen as an optimal trajectory planning problem. The question we
are aiming to answer is: What is the sequence of control inputs and vehicle states leading to
the shortest possible maneuver time? In literature describing optimal control methods this
problem is referred to as the Minimal Time Maneuvering (MTM) problem. We will adopt
this terminology from this point on.

1-1-1 Motivation for optimal trajectory generation for short maneuvers

First, a relevant topic in motorsport engineering is the performance of the drivers themselves.
Many books have been written on expert race driver techniques. Yet, drivers at the top level
of motorsport exhibit different styles of driving, as the experience of Audi Sport in the Le
Mans Prototype 1 (LMP1) racing class has shown. A large difference in lateral tire slip during
the first part of turns is observed, accompanied by minor differences in driving path. In order
to follow their own preference in trajectory, the drivers demand a different vehicle set-up,
making an optimal strategy for all drivers difficult to identify. Better understanding of the
theoretically optimal trajectory can lead to the right driver instructions, and corresponding
vehicle adjustments.
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4 Introduction

A second motivation of optimal trajectory planning lies in the technology allowed in certain
race classes. In the LMP1 class, drivers are allowed to be assisted by so-called Traction
Control (TC) systems. These systems receive the driver’s throttle pedal input, and adjust
the torque delivered to the driven wheels. As a result, part of the control inputs influencing the
maneuver time are decided by a semi-automated system. Brayshaw [3] states two functions
of TC:

• Ensure lateral/directional stability

• Provide effective force transmission of the tractive forces to the road surface

These two represent a trade-off, since tire longitudinal force may be sacrificed to maintain
lateral vehicle stability. The criterion for stability is however not completely defined by the
vehicle-traction control combination; the control of the lateral dynamics of the car is shared
with the driver, using front wheel steering as a control input. It remains a question if a traction
controller that renders the car stable for open loop steering inputs, will in fact increase the
minimal maneuver time compared to a traction controller which requires steering control in
the stabilization of the lateral dynamics of the car. For that reason, it is believed that knowing
the optimal trajectory leads to useful understanding for the development of TC systems.

1-1-2 Main goal

The objective of this thesis is to develop a method using optimal control for minimum time
maneuvering of a racing car. The method and model are tailored for investigating the optimal
cooperation between the human race driver and the semi-automated traction control system.
This goal poses a set of requirements to the method. First of all, the model should include
all effects that are relevant to the qualitative control of vehicle dynamics. Furthermore,
the method should be precise. Specifically, small variations in parameters should lead to a
correspondingly small change in trajectory and maneuver time. Finally, as a rapid prototyping
method, it should be flexible to allow variations to the vehicle model and to the problem
formulation.

1-2 Previous work and contributions

Several authors have applied optimal control to the race car MTM before. Casanova [2]
used a direct multiple shooting approach for transcribing the problem defined over an entire
lap into a nonlinear program. The model proposed [2] uses a two-track vehicle model with
nonlinear tires and aerodynamic downforce. The method was successfully used to describe
the influence of vehicle center-of-gravity location and yaw inertia [6] on minimum maneuver
time. The CPU-time for a full lap was said to be on the order of magnitude of hours. Kelly
[7] used a single shooting approach for short maneuvers. The method does not require full
access to the state vector, and as such is suitable for application to black-box models. The
single shooting approach was applied successfully to the nonlinear, possibly unstable system
by the usage of stability constraints on regular intervals of the maneuver. The method was
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extended to longer maneuvers using a receding horizon approach and it was shown to be able
to handle a model including suspension dynamics. The author reports a CPU-time of eight
hours for solving an entire lap on the Circuit of Jerez.

Perantoni et al. have recently produced a series of publications on optimal control for Formula
1 cars [8], [9], [10]. In [8] a full collocation approach was applied to the simultaneous opti-
mization of trajectory and vehicle parameters. The CPU-time for one lap on the race track
of Barcelona with a discretization interval of 2m was said to be around 15 minutes. In [9]
a direct orthogonal collocation method implemented in the software package GPOPS-II [11]
was implemented for the conjunction of the race car MTM problem and the energy strategy
in the presence of hybrid and fuel energy consumption limitations. Finally, in [10] the method
was extended to solve optimal control problems for maneuvers defined on a three-dimensional
surface, taking into account race track elevations and banking.

Rucco et al. produced a series of papers [12], [13], [14], in the development of a method using
optimal control for a rigid two-track model with load-transfer [15]. A projection operator non-
linear optimal control technique [16] was used in this work, which was shown to be suitable for
both long maneuvers and a fine mesh grid. The computation time for a test lap with a 10cm
discretization interval, leading to problem size of 251000 variables was said to be solved with
a CPU time of less than 35 minutes. An interesting feature of the method is that it produces
feasible iterates at every optimization step. All intermediate steps therefore satisfy the system
dynamics, giving an interesting impression of how the virtual driver converges to an optimum.

Closely related to the race car MTM problem is the work published on real-time Nonlinear
Model Predictive Control (NMPC) for autonomous driving. Diehl et al. [17] apply an NMPC
method to an advanced vehicle model, using Bock’s multiple shooting method based on [18],
and [19] for obstacle avoidance. Verschueren et al. [20] address the real-time control of au-
tonomous vehicles by a minimal-time formulation of the problem. In order to be able to
make use of efficient algorithms which rely on least-squares formulations and the general-
ized Gauss-Newton method, the objective function was reformulated into a least-square form.
The method was applied to a miniature race-car setup, and real-world experiments were con-
ducted. For this work, a single-track model without tire slip was used. The author reports
that for future work a higher-fidelity vehicle model including slip is needed.

Contributions In this thesis a method is developed that is suitable for the qualitative analysis
of control for short maneuvers. A direct collocation method is used to transcribe the optimal
control problem into a nonlinear program. The state and input trajectories are represented
by B-splines, of which the control points are the decision variables for the nonlinear program.
The contributions of this thesis are listed below:

• Different modeling alternatives are compared based on their influence on steady-state
acceleration potential and linearized planar dynamics. The study has led to the in-
corporation of lateral and longitudinal load transfer, aerodynamic downforce and a
limited-slip differential in the two-track model.
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• Contrary to definitions found in other MTM literature, the wheel rotational velocities
are omitted from the model. To incorporate the limitations that wheel dynamic stability
places on tire force, additional constraints are defined which exclude unstable wheel
dynamics from the solution space. This approach is validated in a numerical study, by
a comparison with a reference model which uses wheel rotational velocities.

• For solving the Non-Linear Programming (NLP) a Sequential Quadratic Programming
(SQP) method and an interior-point method are compared in a simulation study with
different maneuvers.

• The nominal solution of a hairpin maneuver at three different velocities is studied in
detail. Some properties of optimal driving relevant for TC at a hairpin with three
different turn radii are highlighted. Tire friction utilization and normalized tire slip for
the different wheels during the maneuver are studied. In relation to this, the stability
of the vehicle along the optimal trajectory is assessed by the application of Lyapunov’s
First Method to a reduced system. The time-minimal trajectory of the steering angle
is related to the zeros of the this linearized reduced system along the trajectory.

• A perturbation analysis is presented, in which the state and available tire-road friction
coefficient is disturbed and the relative magnitude of the steering angle and longitudinal
control in the time-minimal rejection of the disturbance are compared.

• The precision of the method in predicting the maneuver time as a function of vehicle
mass is assessed.

• A proof of concept for performing parametric sensitivity studies by the calculation of
sensitivity differentials is presented.

1-3 Thesis structure

Chapter 2 describes different modeling alternatives, and compares them on steady-state ac-
celeration limits and linearized dynamics. From this, the model for the remainder of the thesis
is deducted. In addition, the maneuver model and related curvilinear coordinate system are
presented in this chapter.

Chapter 3 presents the formulation of the race car MTM problem in the optimal control
framework. The reformulation of the time-based dynamics to spatial dynamics is described.
Furthermore, this chapter handles the incorporation of some model properties via algebraic
constraints. In addition to the formulation of the system dynamics without wheel rotational
velocities, a reference model including them is presented as well. Non-smooth model char-
acteristics are approximated by smooth functions, to render the formulation suitable for the
application of NLP techniques.

Chapter 4 focuses on the transcription of the optimal control problem into an NLP using
a full collocation approach. This includes the approximation of the integration of the dif-
ferential equations, and the representation of state and input trajectories using B-splines.
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The computation of the derivative information needed by the NLP is described as well. A
simulation study is presented, in which the SQP solver SNOPT and the interior-point solver
IPOPT are compared based on their suitability for this application. Finally, the required
discretization interval is determined in another numerical study.

Chapter 5 contains three different simulation studies. First, the modeling choice to neglect
wheel rotational velocity is validated by the comparison with a reference model. In the second
study, the optimal control solution for a hairpin at three different radii is studied in detail.
Some questions related to the design of a time-optimal TC system are answered. Further-
more, the stability of the solution along the optimal trajectory is assessed using Lyapunov’s
First Method. In the third study, the optimal reaction of the control inputs to a disturbance
to the vehicle state and the tire-road friction coefficient is described.

Chapter 6 assesses the precision of the race car MTM method in describing the relation
of maneuver time, trajectory and vehicle mass. Two methods for improving the precision
are described and implemented. Furthermore a parametric sensitivity study using sensitivity
differentials is performed. A brief overview of the theoretic framework behind the method is
given, as well as some first results of the sensitivity of the solution with respect to vehicle mass.

Chapter 7 summarizes the conclusions and contributions and lists the recommendations for
future work.

Appendix A and B list the vehicle model equations and baseline model parameters.

Master of Science Thesis S. van Koutrik



8 Introduction

S. van Koutrik Master of Science Thesis



Chapter 2

Vehicle and maneuver modeling

Models for simulation of high performance racing vehicles have been described in [3], [7], [21].
In many race car simulations, as many details as possible are incorporated, with the limit
decided by simulation robustness and computation time [21]. However, our purpose is not
give a very precise representation of the vehicle, since the target is not to do give an accurate
prediction of the maneuver time for a specified vehicle. Instead, it is important to incorporate
the dynamics and non-linear aspects of the vehicle that qualitatively influence vehicle control
and stability. For this reason, different modeling alternatives are considered and compared in
two different studies. As a measure of performance, modeling alternatives are compared on
their acceleration potential for combined longitudinal and lateral acceleration. This is done
in Section 2-3. Section 2-4 describes a second second study, where the modeling alternatives
are compared on vehicle stability characteristics.

The vehicle model for the study of this thesis is roughly based on a Le Mans Prototype
1 (LMP1) vehicle. The baseline parameters used for the examples are shown in Table B-1.
Based on the study and the requirements of the Minimal Time Maneuvering (MTM) method,
a vehicle model is composed. The modeling of the maneuver and coordinate system are
described in Section 2-6.

2-1 Main vehicle model

Vehicle modeling is subdivided into the following aspects:

• Planar vehicle dynamics

• Tire model

• Differential

• Wheel loads
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10 Vehicle and maneuver modeling

In MTM and general vehicle dynamics simulation literature, different models for the elements
are described. This section describes the most common model from other MTM work, and
some alternatives from literature for some of its elements. Afterwards, the effect of these
alternatives on steady-state acceleration limits and stability are studied for the parameters
in Table B-1.

2-1-1 Planar vehicle dynamics

One of the most simple, if not the simplest model of the planar vehicle dynamics is a point
mass in the Cartesian two-dimensional space. The point mass has acceleration limits in x
and y direction, representing the friction limits of the tires. The point mass model is used in
e.g. [5] for optimal driving path generation. The largest disadvantage however is its inability
to represent the yaw dynamics of the vehicle.

An alternative which does allow this, is the single-track (or bicycle) model [1], [22]. It has
obtained its name from the fact that it has only one track, resulting in one tire per axle. The
vehicle has two translational and one rotational degree of freedom. The forces accelerating
the vehicle in x, y and rotational direction are supplied by the tires and imposed by tire
slip. Several variants of the bicycle model are published in literature. Milliken [1] assumes
that the tire forces are linearly dependent on slip. This proves to be useful in the analysis
of vehicle yaw dynamics and stability, but is not suitable for investigating vehicle behavior
on its acceleration limits. On the other hand, [22] and [23] include a non-linear tire model,
including force saturation at higher tire slips. The equations of motion for the bicycle model
were derived in e.g. [24], and are presented in Appendix A-2.

An alternative representation of the vehicle with a higher fidelity is the two-track model
(Figure 2-1), used in [7], [3], [2], [8]. The model features a different slip condition for all four
tires, as well as the possibility to include wheel load distribution changes with acceleration.
Furthermore, it allows for the modeling of a mechanical differential providing a coupling
between rotation of different wheels. The equations of motion for the two-track model are
given in Appendix A-3.

2-1-2 Tire forces

The tire forces in the planar vehicle model are often modeled as a function of slip and vertical
force:

(Fx, Fy) = F (sy, sx, Fz) (2-1)

Where Fx and Fy denote the tractive and lateral force in the tire reference frame. sx and sy
represent longitudinal and lateral slip, given by:
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Figure 2-1: Two-track model
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12 Vehicle and maneuver modeling

Figure 2-2: Example of typical tire force characteristics. As can be seen, there is a clear
interaction between longitudinal and lateral tire force. Figure adopted from [25]

sy = vy
ωReff

(2-2)

sx = ωReff − vx
ωReff

(2-3)

Where Reff and ω are the effective rolling radius and wheel angular velocity respectively. For
describing relation (2-1), the TMeasy tire model is used [25]. The model is characterized by
three points, shown in Figure 2-2:

• Cornering stiffness dF 0, which defines the slope of the force-slip curve around the origin

• Maximum tire force FM and corresponding slip sM .

• Pure sliding force FS and corresponding slip sS .

These parameters are defined for two different vertical loads, making the tire characteristics
load dependent. Furthermore, longitudinal and lateral characteristics can be defined inde-
pendently. Although the model is simple, it captures the relevant characteristics of a racing
car tire and is therefore a good alternative for the models used in [8] and [2]. The equations
describing relation (2-1) are given in [25], p59.

2-2 Modeling alternatives

As mentioned before, this work is not about prediction of performance differences for small
parameter variations, but rather for a qualitative study of control for minimum time maneu-
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2-2 Modeling alternatives 13

vering. Therefore, only the model effects influencing system dynamics and control qualita-
tively are relevant. For computational efficiency, all other effects are simplified as much as
possible. In this section we consider some effects which have been modeled in various ways
in available literature.

2-2-1 Mechanical differential

If a two-track model is used, a differential model can be included. Race cars are often equipped
with a torque transferring rear differential, which provides a coupling between the rotation of
the two wheels and the engine [1]. This coupling influences both the yaw dynamics and the
capability of the rear axle to provide effective force transmission of tractive forces to the road
surface [3]. In handling simulation, roughly four differential configurations are used: open,
locked, viscous and limited slip.

An open differential can be modeled as follows:

Trl = Trr = TE
2 (2-4)

Where Trl and Trr represent the torque on the left and right wheel, and TE the torque from
the drivetrain.

Locked The locked differential is the other extreme, since it assumes the two wheels to be
on one single rigid body [7], [1]. Hence,

ωrl = ωrr (2-5)
Trr + Trl = TE (2-6)

As a result, the distribution between Trl and Trr is decided by the slip and vertical load
conditions on the two tires.

Limited slip differential A limited slip differential is designed to incorporate the advantages
of the open and the locked configuration [1]. On the one hand it allows for different wheel
speeds when the engine torque is small, to not cause the inside wheel to drag along the track
during sharp turns. On the other hand the coupling between the wheels is increased with
engine torque, allowing for torque transfer from a spinning wheel to a wheel with superior
traction. In [7], a clutch model with a combination of Coulomb and viscous friction is used to
represent a limited slip differential. In [8] the differential is modeled as a viscous clutch, hence
the torque transfer between the two wheels is proportional to the speed difference between
them. In [2] and [3] the limited slip differential is modeled as pure Coulomb friction, with the
value of the Coulomb friction dependent on the engine output torque. Although not reported
in MTM literature, this configuration can be expected to cause difficulties in gradient-based
optimization, due to the sharp transition in torque transfer around the origin. This problem
is handled in Section 3-6. A graphical representation of the viscous, Coulomb and combined
differential friction models is shown in Figure 2-3.
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Figure 2-3: Graphical representation of various differential configurations. Note that the actual
values on the vertical axis are not fixed, and in case of the non-viscous differentials dependent on
the maximum locking torque

Approach Summarizing, it can be said that the open differential and the locked differential
form two ends of the spectrum, and that the limited slip differential is used to combine the
advantages of both. In Section 2-3 and 2-4 the open differential and locked differential are
compared in various cases, leading to the eventual choice of differential model.

2-2-2 Wheel load distribution

The planar tire forces Fx and Fy are a function of the wheel loads Fz. In reality, many effects
influence the distribution of wheel loads on the vehicle, and therefore the planar vehicle
dynamics. In race car MTM literature, the effects of aerodynamic forces and wheel load
changes due to planar acceleration is included. In the following, we will describe briefly how
this is modeled.

Aerodynamic loads Racing cars make use of aerodynamic effects on its body to improve
the performance. Besides a drag force, which is often modeled as a longitudinal force in the
center of gravity [4], [2], [26] an aerodynamic force in downwards direction is generated. This
improves the performance of the car by allowing the tires to generate higher forces, increasing
vehicle acceleration limits. In [26],[2],[7],[8] this so-called downforce is modeled as follows:

Fd = 0.5ρCdAV 2 (2-7)
Fl = 0.5ρClA(V cosβ)2 (2-8)

(2-9)
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Where ρ is the air density, and CdA and ClA the frag and lift coefficient times the frontal
area respectively. The downforce Fl is distributed over the front and rear axle in a constant
ratio. Note that the drag force is assumed to be in the exact opposite direction of the velocity
vector V . More sophisticated full vehicle simulation methods map the down-force, drag and
distribution as function of ride height, vehicle attitude, steering angle, and yaw rate [4]. Most
current MTM methods in literature ignore these effects for the sake of simplicity. However,
[10] includes the influence by mapping the aerodynamic downforce and its distribution over
the two axles as a function of vehicle velocity.

Since the addition of aerodynamic wheel loads introduces additional complexity, it is worth
to investigate its influence on steady-state acceleration limits and stability properties to judge
its added value. This is described in Section 2-3 and 2-4.

Wheel load distribution changes due to acceleration Horizontal tire forces accelerating
the vehicle are reacted in the vehicle’s center of gravity. This reaction is not in the same
line as the forces on the tires. As a result, a moment acts on the vehicle, which is reacted
by angular accelerations of the vehicle body in roll and pitch direction and by a change in
distribution of wheel loads transmitted through the suspension, referred to as load transfer [1].

In [7],[2] and [8] the body is assumed to be rigid, without the presence of an elastic suspension.
As a result, the rolling and pitching moment are directly reacted by changes in wheel load
distribution. The assumption of a rigid body is often justified (e.g. in [7]) by the fact that
circuit driving is known to be smooth. Hence, the frequency content of the driver’s control
inputs is assumed low enough to not excite the suspension dynamics. This assumption is
strengthened by the fact that the suspension stiffness of high downforce racing cars is designed
mainly to keep the variations in ride height and pitch angle small under the entire range of
downforce levels and vehicle accelerations. As a result, the natural frequencies of the sprung
body in roll in pitch direction are rather high. A second consequence of the rigid model is
that road irregularities cannot be taken into account in a realistic way.
To avoid the need to include extra model states related to suspension movement, and based
on the statements above, it is chosen to follow the approach from [7], [2] and [8]. This results
in the following equations for wheel loads:

0 = Fz,fl + Fz,fr + Fz,rl + Fz,rr +mg + Fl (2-10)
0 = ν(Fz,fl − Fz,fr + Fz,rl − Fz,rr) + Fyhcg (2-11)
0 = l(Fz,fl + Fz,fr − Fz,rl − Fz,rr) + Fxhcg +mgl(dm − 0.5) + Fll(dl − 0.5) (2-12)

Where ν, l and hcg denote the track width, wheel base and center of gravity height. dm
and dl denote the weight and downforce distribution over the axles. Note that the vehicle
is assumed symmetric in the x − z plane, such that the center of gravity is in the middle
between the left and right tires. As can be seen, this model is statically undetermined. In
steady-state, some elastic and kinematic properties of the vehicle suspension define how the
vertical force difference is distributed between the front and rear axle. Due to the assumption
of x − z symmetry, this ratio exists only in case of a lateral force, and is determined by the
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term often referred to as roll moment distribution. An explanation of the terms influencing
the roll moment distribution can be found in [1]. The resulting expression is:

Fz,fl − Fz,fr = dLT(Fz,fl − Fz,fr + Fz,rl − Fz,rr) (2-13)

With dLT ∈ [0, 1]. In Section 2-3 the influence of lateral and longitudinal load transfer
on steady-state acceleration potential is shown. Furthermore, in Section 2-4 we show the
influence of longitudinal load transfer on yaw dynamics.

2-2-3 Wheel dynamics

In [7], [8] and [2] four degrees of freedom are included to represent wheel rotations. The
longitudinal control inputs are driving or braking torques on the wheels, with the distribution
over the wheels following from the brake balance and the mechanical differential model. A
free body diagram of the wheel rotational dynamics shown in Figure 2-4. The force Fx is
the tire-road longitudinal force, where the torque Tw is the torque applied to the wheel, from
either the brake system or the powertrain. The rotational acceleration of a single wheel is
given by the following equation:

ω̇Iw = Tw − FxRL (2-14)

Where RL denotes the so-called loaded radius of the tire. Iw is the polar moment of inertia
of the wheel. This first order system is stable if the inequality ∂ω̇

∂ω
< 0 holds. The relation

between Fx and ω is given by combining (2-1) and (2-3):

Fx = f(sy, sx, Fz)

sx = ωReff − Vx
ωReff

When assuming V is constant the partial derivative ∂ω̇
∂ω

can be calculated as follows:

∂ω̇

∂ω
= ∂ω̇

∂Fx

∂Fx
∂ω

(2-15)

= −RL
∂Fx
∂ω

(2-16)

= −RL
∂Fx
∂sx

∂sx
∂ω

(2-17)

= − RL
Reff

V

ω2
∂Fx
∂sx

(2-18)

Since under all relevant driving conditions the first term RL
Reff

V
ω2 is always positive, the stability

depends solely on the sign of the partial derivative ∂Fx
∂sx

. That is, if the longitudinal slip of
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Figure 2-4: Free body diagram of wheel rotational dynamics

the tire has exceeded its slip sx,M for peak longitudinal force, the wheel dynamics become
unstable. If this happens under negative longitudinal force, this effect is referred to as wheel
lock [1]. To prevent this, modern passenger cars are equipped with ABS (Anti-lock braking
system). However, in most racing categories the use of such systems is not allowed, leaving
the control of longitudinal slip to the race driver. The need for avoiding wheel lock places
constraints on maximum longitudinal deceleration, especially under combined lateral and
negative longitudinal acceleration. The hydraulic brake system applies an equal brake torque
to both wheels on an axle. Hence, if the potential for transferring longitudinal force for the
two tires on an axle is unequal, the full force potential of one of the tires will not be used. The
disadvantage when neglecting the wheel dynamics may be that the algorithm converges to an
unrealistic solution, due to the absence of the additional bound on longitudinal deceleration.

Including the wheel rotational degree of freedom in the model has two major disadvantages.
First of all, the number of states increases by four, which is a disadvantage for computa-
tional efficiency. Second, the fast wheel dynamics make that a short discretization interval is
required, to limit the error in integrating the system dynamics. This again decreases compu-
tational efficiency, and possibly places bounds on the maximum problem size.

Concluding, it can be said that it is unfavorable to include the wheel rotational dynamics. To
still incorporate the effect of stability, we limit the longitudinal slip of the tires to the stable
region. This approach is explained in Section 3-3-3. In Section 5-2, this approach is validated
by a comparison between a formulation with and without wheel dynamics.

2-2-4 Overview of modeling alternatives

In this chapter some modeling alternatives have been presented. Both the single-track and
the two-track model have been shown and explained. The main difference between the two
versions is that the two-track model includes the possibility of including lateral load trans-
fer and it allows for the modeling of a mechanical differential providing a coupling between
rotation of different wheels. Load transfer is assumed to have a static relation to vehicle
acceleration. Furthermore, three different models of representing the mechanical differential
have been shown.
In the coming sections the influence of incorporating lateral load transfer and different me-
chanical configurations on steady-state acceleration limits and stability is investigated. The
choice between the single-track and two-track model is made based on these results. In ad-
dition, we show the influence of aerodynamic downforce and longitudinal load transfer as
well.
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2-3 Steady-state acceleration limits of modeling alternatives

As was stated in the introduction, minimum time maneuvering involves maximizing accelera-
tion in the appropriate direction. Since race car driving in general is smooth, it is popular to
analyze the vehicle’s maximal steady-state lateral acceleration Ay,ssmax [1]. In [1] and [3], the
steady state analysis is extended to a nonzero longitudinal acceleration. Since this means that
the longitudinal velocity is changing, this state cannot exist for an infinite time. However,
when assuming that the longitudinal dynamics are slow compared to the other dynamics the
metric provides a useful snapshot of the potential of the car on a certain instant in time.

The maximization of the lateral force provided by the two axles does not necessarily lead to
a yaw moment equilibrium. Hence, for achieving a net yaw moment of zero, one of the two
axles in general has to deliver a lateral force lower than the maximum possible force. We
define the potential yaw moment Mzp as the moment around the vertical axis, that would be
generated if both axles would be on their maximal lateral force. The magnitude and direction
of this term can be related to control and stability of the vehicle. IfMzp is such that the front
tires can deliver more force, the driver can still increase the path curvature off the vehicle
by increasing the front wheel steering angle. If only the rear axle has unused force potential,
the ability of the driver to increase yaw moment and lateral force has disappeared. On the
other hand, the potential yaw moment from the rear tires has a stabilizing effect in case of
disturbances, for example caused by imperfections in the road [1].

This section describes the assumptions and method for steady-state analysis. Finding Ay,ssmax
for momentary steady-state conditions involves solving a Non-Linear Programming (NLP)
problem, which is described as well. Finally, the results and conclusions on desired model
fidelity is presented.

2-3-1 Method and assumptions

The goal is to find the maximum steady-state lateral acceleration Ay,ssmax for a given longi-
tudinal acceleration. The other metric that is looked at is the potential yawing moment Mzp
at maximum state state lateral acceleration.

The method to calculate Ay,ssmax and Mzp is based on the method for generating ’g-g-speed’
diagrams in [3]. The two-track model from Appendix A-3 is used. For a momentary steady-
state condition, the following equations have to be satisfied:

V̇ = Fx cosβ + Fy sin β − Fd
m

(2-19)

β̇ = ψ̈ = ω̇fl = ω̇fr = ω̇rl = ω̇rr = 0 (2-20)

Modeling details As can be seen from the equations in Appendix A-3, the two-track model
contains two algebraic loops. The tire forces Fx and Fy are calculated using (2-1). Due to
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the way the load transfer is modeled, the wheel loads Fz in this equation are a function of Fx
and Fy. Hence, the tire forces cannot be calculated explicitly from the states.
This issue is addressed by adding an additional algebraic variable Γy, denoting lateral load
transfer. In (A-74) - (A-77) the term Fyhcg

T is then substituted by Γy. Finally, the relation is
satisfied via an additional equality constraint:

Γy = Fyhcg
T

(2-21)

The total longitudinal force is already fixed by (2-19). Hence, the longitudinal load transfer
is known and no additional variable needs to be included.

The distribution of drive torque Tr over the rear axle is decided by the mechanical differential.
When an open differential is considered, (2-4) is used. In case of using the locked differential,
(2-5) and (2-6) are used.

Optimization problem To find the maximal steady-state acceleration, the following opti-
mization problem is solved:

max
z

Fy (2-22)

s.t. (2-19)
(2-20)
(2-21)

With Ay,ssmax = Fy

m . The vector of optimization variables z is given by:

z = (x u Γy)> (2-23)

The potential yaw moment Mzp is found by solving the same optimization problem, without
the yaw moment equilibrium constraint ψ̈ = 0. The potential yaw moment is then calculated
from this solution as:

Mzp = ψ̈Izz (2-24)

Where Izz denotes the yaw moment of inertia of the vehicle. Both optimization problems
are solved using the Sequential Quadratic Programming (SQP) algorithm from the function
fmincon, which is part of the MATLAB Optimization Toolbox.

2-3-2 Results steady state analysis

The parameters of the baseline vehicle are shown in Table B-1. The baseline model for
all models includes lateral and longitudinal load transfer, has a locked rear differential and
no aerodynamic downforce. Four comparisons are done, with the following changes to the
baseline configuration:
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1. Open instead of locked differential

2. Lateral load transfer is neglected

3. Longitudinal load transfer is neglected

4. Aerodynamic downforce is included

The second comparison is done both with an open and a locked differential, to map the
crossplay between the two effects. For all four comparisons the influence on Mzp and Ay,ssmax
is shown graphically. A positive value for Mzp indicates that the front axle is limiting for
Ay,ssmax, while the rear axle has some potential left. A negative value on the other hand
means that the front axle has so-called unused cornering potential.

Locked versus open rear differential Figure 2-5 Shows the difference between a locked and
open rear differential at three different velocities. As can be seen, the influence of torque
transfer by the differential is stronger at low speeds. This has two causes. First of all, for an
equal lateral acceleration, the yaw rate ψ̇ is higher for a lower velocity, following from (A-38).
This increases the speed difference on the left and right side of the car, following from (A-52)
and (A-53). Second, the influence of a speed difference on the two sides of the vehicle has
a larger influence on longitudinal slip for a low velocity, following from the same equations.
Informally speaking, the radius of a turn for equal lateral acceleration is smaller for a lower
speed, resulting in a relatively high speed difference between the wheels on an axle. The
following can be observed from the figure:

• For Ax > 2 m/s2 the open differential decreases Ay,ssmax. From Mzp it can be seen that
this is caused by a decrease in rear axle potential.

• For Ax < 0 the open differential increases Ay,ssmax and decreases Mzp, indicating that
the rear axle is closer to its friction limit.

Lateral load transfer Figure 2-6 shows the influence of neglecting lateral load transfer. The
result is shown a locked as well as an open differential. The velocity is 20 m/s. The following
can be observed:

• For Ax = 0 and an open differential, Ay,ssmax is higher without lateral load transfer.
This is caused by the vertical load sensitivity of the tire [1]. Although this effect is
important for detailed parametric studies, it is of less relevance to the quality of the
optimal control solution.

• For |Ax| > 0 and an open differential Ay,ssmax is increased up to about 45% when
neglecting lateral load transfer.

• For |Ax| > 0 and a locked differential, Ay,ssmax is increased up to about 30% when
neglecting lateral load transfer. Furthermore, the influence on Mzp is large as well,
leading to a sign change for a large portion of the Ax range.
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Figure 2-5: Influence of rear differential configuration on steady state characteristics
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Figure 2-7: Influence of longitudinal load transfer on steady state characteristics

Longitudinal load transfer Figure 2-7 shows the influence of neglecting longitudinal load
transfer. The velocity is 50 m/s. The following differences are observed:

• For Ax < 0 neglecting longitudinal load transfer increases Mzp, and for Ax > 0 neglect-
ing it decreases Mzp. The effect is close to proportional to Ax, and in this case causes
a difference of approximately 30%.

• For all |Ax| > 0, neglecting longitudinal load transfer leads to a reduction in Ay,ssmax.
For Ax > 0, this can be explained by the fact that only the rear wheels are driven.
Hence, the rear axle is limiting Ay,ssmax, indicated by a negative Mzp. For Ax < 0,
the combination of brake torque distribution, weight distribution and the negative yaw
moment imposed by the locked differential make the front axle limiting. Transferring
load to this axle under negative Ax thus increases Ay,ssmax.

Aerodynamic downforce Figure 2-8 shows the difference in Ay,ssmax and Mzp for a lift
coefficient ClA of 0, 2 and 4. The velocity is again 50 m/s. The following can be observed:

• Ay,ssmax increases substantially if aerodynamic downforce is included, which corresponds
to what is known (e.g. [1]).

• Mzp Decreases for higher ClA. This can be explained by the fact that an equal lon-
gitudinal load transfer is a smaller part of the total wheel load, due to the additional
downforce. However, it should be noted that the longitudinal acceleration potential
increases as well as a result of an increase in ClA. A more relevant graph would have
the normalized longitudinal acceleration Ax/Am,max as independent variable.
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Figure 2-8: Influence of aerodynamic downforce on steady state characteristics, for a distribution
over the axles of dL = 0.50

2-3-3 Conclusions steady-state acceleration limit study

From the influence of the four modeling alternatives on Ay,ssmax and Mzp, the following can
be concluded:

• A locked rear differential influences both Ay,ssmax and Mzp for positive Ax up to 40%.
This indicates that it is important to model differential locking for positive accelerations.
Furthermore, for low velocities the decrease in maximum Ay,ssmax as a result of the
yawing moment of the locked differential is up to 5%. This indicates that modeling an
open differential for lower |Ax| is required. Hence, it can be concluded that a limited
slip differential is required to achieve a realistic vehicle behavior for the entire Ax range.

• Lateral load transfer has a substantial influence on the relation between Ax and Ay,ssmax.
In case of a locked differential, for both negative and positive longitudinal accelerations
it influences the potential yaw moment by up to 50%. Therefor, it can be expected that
it has a significant qualitative influence on the optimal control solution.

• Longitudinal load transfer influencesMzp by approximately 30%. Furthermore, it is has
a significant influence on the combined longitudinal and lateral acceleration potential
for Ax > 0, and should therefore have a qualitative influence on the optimal input
trajectory. It makes sense to include it in the model.

• Aerodynamic downforce has a large influence on the quantitative acceleration potential
of the vehicle. However, the outcome of this analysis does not show a qualitative
difference in the ratio of longitudinal and lateral potential of the vehicle, or the potential
yaw moment. It should be noted that this outcome may change if the power limit of
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the engine is included in the analysis, especially for high velocities which show a large
influence of downforce on maximum Ay and aerodynamic drag on Ax.

2-4 Linearized open-loop dynamics of modeling alternatives

In addition to the analysis of steady-state acceleration potential, the influence of modeling
alternatives on the vehicle dynamics is studied. This is done by comparing the eigenvalues
of the linearized lateral dynamics of the vehicle at several longitudinal accelerations. The
linearized lateral dynamics in state-space form are given by [1]:

[
ψ̈

β̇

]
=

 a1 a2

a3 a4

[ ψ̇
β

]
(2-25)

a1 = 1
Izz

(
l2fcy,f

V
+ l2rcy,r

V

)
− cdiff,r (2-26)

a2 = 1
Izz

(lfcy,f − lrcy,r) (2-27)

a3 = −1 + 1
mV

(
lfcy,f
V
− lrcy,r

V

)
(2-28)

a4 = 1
mV

(cy,f + cy,r) (2-29)

Where the state vector consists of yaw rate ψ̇ and body slip angle β. lf and lr represent the
distance from the center of gravity to the front and rear axle respectively, calculated from the
weight distribution as follows:

[
lf
lr

]
= l

[
(1− dw)
dw

]
(2-30)

Based on the assumption that the longitudinal dynamics of the vehicle are much slower than
the lateral dynamics, the velocity is assumed a constant paramater [1]. Note the additional
terms in a1, representing the yaw damping as a result of a locked differential:

cdiff,r = ν2cx,r
2V Izz

(2-31)

Where ν represents the track width. This effect is caused by the longitudinal velocity com-
ponent of the yaw rate at wheel level, and the resulting difference on longitudinal slip. The
cornering stiffness cf and longitudinal slip stiffness cx per axle are determined by linearization
of the TMeasy tire model:
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cy = ∂Fy
∂sy

= F (Fz, sx, sy) (2-32)

cx = ∂Fx
∂sx

= F (Fz, sx, sy) (2-33)

Note that we linearize around sy = 0, since we consider straight line stability. The vertical
force Fz and longitudinal force Fx are calculated using the vehicle model equations and the
fixed longitudinal acceleration. The longitudinal slips sx,f and sx,r are then determined by
solving the following equations:

(Fx,f, Fy,f) = F (sy,f, sx,f, Fz,f) (2-34)
(Fx,r, Fy,r) = F (sy,r, sx,r, Fz,r) (2-35)

sy,f = 0 (2-36)
sy,r = 0 (2-37)

Where F denotes the TMeasy tire model. Note that in general these equations may have two
solutions for sx,f and sx,r. However, we restrict the analysis to the stable range of the wheel
dynamics, hence the lowest absolute solution for sx is used.

The parameters for the study used are the same as in the previous Section. The effect of
three different modeling alternatives on stability is judged:

• Locked versus open rear differential

• With versus without longitudinal load transfer

• With versus without aerodynamic downforce

Note that lateral load transfer is not included in the study, since we consider straight-line
stability only.

Influence of locked versus open rear differential The eigenvalues for both a locked and
open differential for two different velocities are shown in Figure 2-9. It shows the longitudinal
acceleration Ax on the x-axis, and the real and imaginary part of the two eigenvalues on the
y-axis. The following is observed:

• For high positive and negative Ax the dominant eigenvalue moves closer to the imaginary
axis. This is caused by a decrease in cornering stiffness of the tires in the presence of
longitudinal force [1]. For a velocity of 60 m/s the real part even exceeds 0 at 13 m/s2

braking, indicating unstable lateral dynamics.

• A higher velocity has a destabilizing effect on the yaw dynamics, indicated by the
’upwards shift’ of the real part for 60 m/s. Furthermore, for modest positive longitudinal
acceleration the system is oscillatory, indicated by the complex eigenvalues.

• The locked rear differential increases stability, reducing the dominant eigenvalues by
about 10%.
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Figure 2-9: Eigenvalues of the linearized lateral dynamics for different velocities and rear dif-
ferential configurations. The upper and lower graph show the real and imaginary part of the
eigenvalues as a function of longitudinal acceleration respectively.
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Influence of longitudinal load transfer The influence on stability of including longitudinal
load transfer is shown in Figure 2-10. The following conclusions can be drawn:

• For Ax < 0, including longitudinal load transfer decreases the stability, caused by the
reduced cornering stiffness at the rear axle compared to the front axle [1].

• For the same reason, including longitudinal load transfer increases the stability for
Ax > 0 significantly.

Influence of aerodynamic downforce The influence on stability of aerodynamic downforce
is shown in Figure 2-11. The main observation is that aerodynamic downforce increases
the lateral stability significantly, indicated by a reduction of the real part of the dominant
eigenvalue.

2-5 Final vehicle model for simulation studies

In the previous section the different modeling alternatives have been compared on their influ-
ence on steady-state acceleration limits and lateral dynamics. The analysis has shown that
incorporating a two-track model is necessary, because of the large influence of load trans-
fer and a mechanical differential on combined acceleration performance and potential yaw
moment. Aerodynamic downforce is shown to have a large quantitative influence on acceler-
ation potential, as well as on stability. Especially for comparing vehicle stability at different
velocities, it is therefore important to incorporate aerodynamic downforce in the model. Lon-
gitudinal load transfer greatly influences acceleration limits as well as stability and control
for combined longitudinal and lateral acceleration. The effect of lateral load transfer is less
pronounced than longitudinal, but still has a significant influence on steady-state accelera-
tion potential, especially when modeled in combination with a torque transferring mechanical
differential. A locked differential appears to be a good and simple representation in case of
combined longitudinal and lateral acceleration. However, it has a significant and incorrect
influence on potential yaw moment for situations with low speed and low longitudinal accel-
eration, in practice occurring in the middle of ’low-speed’ turns. As a result, it is required to
incorporate a limited-slip differential to have a realistic representation throughout the longi-
tudinal acceleration range.

The eventual vehicle model is the one described in Appendix A-3. The relation between rear
axle torque Tr and rear wheel torques Trl and Trr is described using Coulomb friction, where
the maximum torque transfer depends on engine torque, locking ratio and preload. The equa-
tions are given in Appendix A-4.

2-6 Maneuver modeling and coordinate system

The main constraints defining the maneuver are the edges of the race track. As regulations
prescribe, the car should remain between the white lines marking the race track. All cur-
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Figure 2-10: Eigenvalues of the linearized lateral dynamics with and without longitudinal load
transfer. The upper and lower graph show the real and imaginary part of the eigenvalues as a
function of longitudinal acceleration respectively.
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Figure 2-11: Eigenvalues of the linearized lateral dynamics for different values of lift coefficient
CLA. The Imaginary part is always zero

vatures of the maneuvers used in the examples of this thesis are not obtained from existing
maneuvers, but are generated manually.

2-6-1 Coordinate system

Our track is defined by its start and end-line and two lines marking its edges. In [8], [2]
and [17] the track is described using the center-line arc length as abscissa. The track is now
defined by its curvature as a function of the center-line distance. The lines marking the
edge of the track are parameterized by their distance perpendicular to the track center-line.
This representation of the track is shown in Figure 2-12. The relation of curvature and ra-
dius is given by C = 1�R. The distance from the center-line to the track edges is given by N .

In addition, Figure 2-12 shows the transformation of the vehicle to the track coordinate
system. Instead of the Cartesian coordinates and Euler angle, the position and orientation of
the vehicle are expressed as distance along center-line s, distance perpendicular to center-line
n, and angle relative to center-line angle ξ. A derivation of the coordinate transformation can
be found in i.e. [8], [17] or [2]. The resulting relation between local vehicle frame and global
curvilinear coordinates is given by:
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Figure 2-12: Representation of a track segment and the curvilinear coordinate transformation.
Figure adopted from [8]

ṡ = vx cos ξ − vy sin ξ
1− nC

= V cos(β + ξ)
1− nC (2-38)

ṅ = vx sin ξ − vy cos ξ
= V sin(ξ − β) (2-39)

ξ̇ = ψ̇ − Cṡ (2-40)

Where vx and vy denote the longitudinal and lateral velocity in local vehicle coordinates. The
yaw rate is represented by ψ̇. V and β denote the absolute vehicle velocity and body slip
angle.
Two advantages of this system in comparison to a Cartesian coordinate system are simplicity
in defining the track edges as constraints on n, as well as the possibility to define distance
dependent parameters as a function of s.

2-7 Conclusion

In this chapter, the vehicle and maneuver model have been described. Different modeling
alternatives have been compared on their influence on steady-state acceleration potential and
lateral dynamics. Based on this it was concluded that load transfer, aerodynamic forces and
a limited slip differential must be included in the vehicle model for adequate model fidelity.
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It is preferable to exclude wheel dynamics from the model, because of the requirements this
poses on the discretization interval. The disadvantage is the loss of information about wheel
stability. This problem is addressed in Section 3-3-3. In Section 5-2 this approach is validated
in a simulation study.

The maneuvers are described by a curvature-distance profile. The edge of the track is de-
scribed in by its perpendicular distance to the center-line. The global coordinate system for
the system dynamics is related to the maneuver description. The coordinates for describing
the position and orientation in the 2D-plane are distance along center-line s, distance per-
pendicular to center-line n and angle relative to center-line angle ξ.

In the upcoming chapter the described model will be used for the formulation of the race car
MTM problem as an optimal control problem. The system dynamics will be shaped in the
form of constraints. Furthermore, all non-smooth aspects of the model will be approximated
by a smooth alternative, which is required for applying a numerical optimization method for
solving the optimal control problem.
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Chapter 3

Formulation of the optimal control
problem

The main function of a race car driver is to deliver the control inputs which drive the race
car around the track. The driver is aiming to minimize his maneuver time, and in doing so
approaches the bounds of the race tracks and the limitations the vehicle’s dynamics. The
three main control inputs for the driver are the steering wheel, accelerator and brake pedal.
Strictly speaking, the set of control inputs also includes the gear selection, the clutch pedal
and even settings in the engine and vehicle control systems. Aside from this the driver may
be assisted by control systems, such as traction control which directly influences the engine
torque delivered to the driven wheels. In this thesis we assume only two control inputs, which
are a steering wheel angle and a longitudinal control input. The longitudinal control input
can be either torque applied to the driven wheels, or a braking torque applied to all wheels.
Note that this assumes that the throttle and brake pedal are never actuated at the same time.
Practical experience with high-downforce racing cars shows that this is indeed the case.

In this chapter a formal formulation for the race car Minimal Time Maneuvering (MTM) prob-
lem as an Optimal Control Problem (OCP) is presented. In Section 3-2 the transformation
of independent variable from time to distance along track center-line is given. Afterwards,
the performance index is formulated, and the system dynamics and maneuver limitations are
transformed into equality and inequality constraints. Two different versions of the system
dynamics are described, of which the solution is compared in Chapter 5. The first does not
incorporate wheel rotational dynamics, and takes the longitudinal tire slips as control inputs.
In the second formulation the wheel rotational velocities are included as states, and control
input is linked to the wheel torque. Finally, in Section 3-7 the definitions are summarized
and formed into the optimal control problem formulation.
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3-1 Generic optimal control problem formulation

The objective in race car MTM is to find the control inputs minimizing the time needed to
travel from one point to another. In doing this, the driver aims to operate on the boundaries
of the dynamics of the vehicle. This includes actuator limits, such as the maximum power that
can be delivered by the powertrain or a maximum steering angle of the front wheels, as well
as physical limitations incorporated in the vehicle model, such as the maximum transmittable
tire force. In addition, the vehicle has to stay within the edges of the track.
What is phrased above in words, can be formulated as a generic optimal control problem:

min
u

Tm =
∫ tF

t0
dt (3-1)

s.t. dx

dt
= f(x(t), u(t)) (3-2)

g(x(t), u(t)) ≤ 0 (3-3)
q(x(t), u(t)) = 0 (3-4)
uL ≤ u(t) ≤ uU (3-5)

(3-6)

The problem is defined for t0 ≤ t ≤ tF , where maneuver time Tm is the only variable in
the performance index. The nonlinear inequality and equality constraints g(x(t), u(t)) ≤ 0
and q(x(t), u(t)) = 0 include the track boundaries and system limitations. The independent
variable transformation, the system dynamics and g and q are specified in the coming sections.

3-2 Performance index and transformation to spatial dynamics

The conventional independent variable for simulating dynamics is time. The race car MTM
problem however is parameterized mainly in terms of position. That is, maneuver start and
end, lane curvature, lane width and other effects can be expressed directly in terms of center-
line distance. Furthermore, we assume that no parameters are directly influenced by time.
This motivates using distance along track center-line s as independent variable. By doing
this, s can be removed from the state vector, reducing the problem size. Note that this
transformation is allowed if a unique relation between s and t can be found, which is the case
if the vehicle only travels in positive s direction. The transformation was applied in [17], [20],
[8] and [7] as well. The conversion factor for the transformation is the inverse speed along
the center-line from (2-38):

Sf =
(
ds

dt

)−1
= 1− nC
V cos(β + ξ) (3-7)

The spatial dependent dynamics are now simply obtained by dividing the dynamic equations
by ṡ, hence:

dx

ds
= Sf

dx

dt
= f(x(s), u(s), C(s)) (3-8)
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The performance index can then be calculated as follows:

J =
∫ tF

t0
dt =

∫ sF

s0

dt

ds
ds =

∫ sF

s0
Sfds (3-9)

Where s0 = s(t0) and sF = s(tF ) are the distance at the start and end of the maneuver
respectively.

3-3 System dynamics

The vehicle model was described in Chapter 2. An overview of the modeled states and control
inputs is given in Table 3-1. The time derivatives for x3, x4 and x5 are described in Appendix
A-3. These are transformed to distance derivatives dx

ds using (3-8). The distance derivatives
for x1 and x2 are derived from (2-39) and (2-40):

dn

ds
= Sf ṅ

= SfV sin(ξ − β) (3-10)
dξ

ds
= Sf ξ̇

= Sf (ψ̇ − Cṡ)
= Sf ψ̇ − C (3-11)

Where C is the curvature of the center-line and Sf the time-to-distance scaling factor given
by (3-7).

As described in Chapter 2 the wheel dynamics are not included in the formulation. The
variables representing longitudinal control are the longitudinal slip sx at each wheel. As
stated in the introduction we assume only one degree of freedom defining the longitudinal
control input. In accordance with this assumption, in Section 3-3-2 we define three additional
independent equality constraints on the longitudinal force distribution. These constraints
represent the hydraulic brake system and mechanical differential. Furthermore, it can be
seen that longitudinal and lateral load transfer Γx and Γy are incorporated as control inputs.
In Section 3-3-1 this will be explained.

3-3-1 Wheel load distribution

As was already mentioned in Section 2-3-1, the model includes two algebraic loops. That
is, the wheel load distribution cannot be calculated directly from the states, but has to be
solved instead. Substituting the control inputs for load transfer in Equations (A-74) to (A-77)
results in the following equations for the wheel loads:
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Table 3-1: Overview of the states and control inputs

Type Name Physical symbol unit

u1 control input steering angle δ rad
u2 control input longitudinal slip front left sx,fl -
u3 control input longitudinal slip front right sx,fr -
u4 control input longitudinal slip rear left sx,rl -
u5 control input longitudinal slip rear right sx,rr -
u6 control input normalized longitudinal load transfer Γx -
u7 control input normalized lateral load transfer Γy -
x1 state Distance perpendicular to center line n m
x2 state Angle relative to center line angle ξ rad
x3 state Velocity V m/s
x4 state Body slip angle β rad
x5 state Yaw rate ψ̇ rad/s

Fz,fl = 1
2mgdm − Γx

1
2 + ΓydLT + 1

2Fldl (3-12)

Fz,fr = 1
2mgdm − Γx

1
2 − ΓydLT + 1

2Fldl (3-13)

Fz,rl = 1
2mg(1− dm) + Γx

1
2 + Γy(1− dLT) + 1

2Fl(1− dl) (3-14)

Fz,rr = 1
2mg(1− dm) + Γx

1
2 − Γy(1− dLT) + 1

2Fl(1− dl) (3-15)

Where m denotes vehicle mass. The weight, aerodynamic downforce and lateral load transfer
are distributed over the axles by dm, dl and dLT. Note that the longitudinal and lateral load
transfer Γx and Γy are normalized by the vehicle weight mg, which has been done for scaling
purposes. Relations (3-12) to (3-15) are satisfied by the following equality constraints, applied
to the entire maneuver:

q1 = Fxhcg
lmg

− Γx = 0 (3-16)

q2 = Fyhcg
νmg

− Γy = 0 (3-17)

Where l, ν and hcg denote the wheel base, track width and center of gravity height respectively.

3-3-2 Wheel torque distribution

The distribution of torque over the four wheels has to satisfy the following conditions:

• Positive torque is only exerted by the rear axle.
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• Negative torque exerted by the brake system is distributed over the two axles by a
constant brake balance dT .

• The engine exerts a drag power to the rear axle, which should be excluded from the
brake balance calculation.

• The torque at the front left tire and front right tire is equal, as dictated by the hydraulic
brake system

• The distribution of torque between the rear left and rear right tire is dictated by the
model of the mechanical differential, of which the friction characteristics depend on the
engine torque.

With the introduction of longitudinal slips sx as inputs, these conditions are not automatically
applied through the equations of motion. Instead, we satisfy them through the following
equality constraints:

q3 = Tfl − Tfr = 0 (3-18)
q4 = ∆Td − (Trl − Trr) = 0 (3-19)

q5 =
{
Tf − (Tf + Tr − TE,drg)dT = 0 if Tf > 0
Tf = 0 otherwise (3-20)

Note that the brake balance and rear wheel drive constraint are combined in (3-20). Further-
more, the engine drag torque is excluded from the brake balance calculation. The relevant
torques can be calculated easily when neglecting the wheel dynamics in (2-14):

Ti = Fx,iRL (3-21)

For i = fl, fr, rl, rr. The maximum possible torque that can be transferred by the differential
Td is given by (A-83) and (A-83). As the wheel rotational velocities are not part of the state
vector any more, they are calculated from the longitudinal slips sx using (2-3). The engine
torque acting on the mechanical differential is calculated using relation (A-85).

Powertrain limitations The maximum torque provided to the rear axle is limited by the
power of the powertrain. We neglect the effects of changing gears, hence the powertrain is
assumed to have an equal power for the entire velocity range. The corresponding constraint
is formulated as:

g1 = TE
ωrl + ωrr

2 ≤ PE (3-22)

Where PE denotes the constant maximum engine power.
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38 Formulation of the optimal control problem

3-3-3 Constraints on wheel dynamics representing stability boundaries

As described in Section 2-2-3, stability of the wheel dynamics is decided by the factor ∂Fx
∂sx

.
Although wheel rotational velocity is not included in the problem formulation, we still want
to prevent the driver from exploiting the control inputs in a way that would lead to unstable
wheel dynamics (lock) in a realistic situation. Therefore, the following inequality constraints
are included to the problem formulation:

g2 = −∂Fx,fl
∂sx,fl

≤ 0 (3-23)

g3 = −∂Fx,fr
∂sx,fr

≤ 0 (3-24)

As can be seen the constraints are only applied to the front wheels. On the rear axle, the
expression for stability is more complex, due to the coupling between the two wheels by the
mechanical differential. However, due to this coupling the tendency of the optimal control
solution to misuse this effect is smaller. Therefore, we focus solely on the front axle in this
thesis.

3-4 Alternative formulation of system dynamics including wheel
rotational velocity

As a reference for validation of the choice to neglect wheel dynamics (5-2), a representation
of the system dynamics including wheel dynamics is given here. The constraints are:

q1 = Fxh

lmg
− Γx = 0 (3-25)

q2 = Fyh

νmg
− Γy = 0 (3-26)

g1 = TE
ωrl + ωrr

2 ≤ PE (3-27)

Constraints q3, q4 and q5 from the original formulation have been dropped, since they are
satisfied implicitly by the equations of motion. The wheel stability constraints g2 and g3 are
superfluous for this model, because the actual dynamics are included.

3-5 Maneuver boundaries and initial conditions

In addition to the constraints defining the limitations of the vehicle, the path is limited by
the edges of the race track. In reality, the position of the vehicle might be bounded at a
certain instant by the position of its one of its tires, or by contact between its bodywork
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Table 3-2: Overview of the states and control inputs for formulation including wheel speeds

Type Name Physical symbol unit

u1 control input steering angle δ rad
u2 control input total wheel torque T Nm
u3 control input longitudinal load transfer Γx -
u4 control input lateral load transfer Γy -
x1 state Distance perpendicular to center line n m
x2 state Angle relative to center line angle ξ rad
x3 state Velocity V m/s
x4 state Body slip angle β rad
x5 state Yaw rate ψ̇ rad/s
x6 state relative wheel speed front left V w, rel,fl -
x7 state relative wheel speed front right V w, rel, fr -
x8 state relative wheel speed rear left V w, rel, rl -
x9 state relative wheel speed rear right V w, rel, rr -

and walls marking the track edge. For the sake of simplicity, we apply the bound to the
center of gravity of the vehicle, rather than incorporating complex geometrical relations.
With the introduction of the curvilinear coordinate system, these bounds reduce to the linear
constraints on the distance perpendicular to the center-line n:

Nl(s) < n(s) < Nr(s) (3-28)

Where Nl(s) and Nr(s) denote the distance dependent maximum offset from the center-line.
Finally, the initial condition of the vehicle is defined as:

x(s0) = x0 (3-29)

3-6 Smoothing functions

(3-20), (A-83), and (A-85) have a discontinuous character. We solve the race car MTM
problem using a Non-Linear Programming (NLP) method, which assumes continuous and
differentiable objective functions. When presenting discontinuities, the linear and quadratic
models used by NLP methods are no longer appropriate [27]. Moreover, if a discontinuity is
present close to the solution, the Karush-Kuhn-Tucker (KKT) necessary conditions for opti-
mality do not apply. To address this issue, we approximate non-smooth model characteristics
by at least twice differentiable functions. (A-83), describing the torque transfer from the left
to right wheel by the mechanical differential is approximated by the following function:

∆Td = 2
π

arctan(η1(ωrl − ωrr))Td,max (3-30)

Where η1 is the parameter deciding the smoothness of the approximation. Note that with
this approximation the model of the differential becomes equivalent to the one used in [7],

Master of Science Thesis S. van Koutrik



40 Formulation of the optimal control problem

T
E
 [Nm]

-400 -200 0 200 400 600

T
d,

m
ax

 [N
m

]

250

300

350

400

450

500

ω
rl
 - ω

rr
 [rad/s]

-20 -10 0 10 20
T

d
 / 

T
d,

m
ax

-1

-0.5

0

0.5

1
original function
smoothed function

Figure 3-1: Graphical representation of smoothed mechanical differential characteristics.
η1 = 10, η4 = 0.1, T0 = 250, Gdrv = 0.8, Gbrk = 0.7

featuring a viscous part. A graphical representation is shown in Figure 3-1. (3-20) and (A-85)
are approximated by an arctan function as well:

q5 = Tf − (Tf + Tr − TE,drg)dT (arctan(−η2Tf)
π

+ 1) (3-31)

TE =
∑

T (arctan(η3(
∑
T − TE,drg))
π

+ 1)− TE,drg (3-32)

The max function in (A-84) is replaced by a smooth alternative, resulting in:

Td,max = ln(eη4GdrvTE + eη4T0 + e−η4GbrkTE )
η4

(3-33)

The graphical representation of this is shown in Figure 3-1 as well.

3-7 Final optimal control problem formulation

The description of the performance index and the constraints representing the system dy-
namics and maneuver boundaries can be combined in the following optimal control problem:
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min
u

J =
∫ sF

s0

1− n(s)C(s)
V (s) cos(β + ξ)ds (3-34)

s.t. dx

ds
= f(x(s), u(s)) (3-35)

x(s0) = x0
q1(s) = 0
q2(s) = 0
q3(s) = 0
q4(s) = 0
q5(s) = 0
g1(s) ≤ 0
g2(s) ≤ 0
g3(s) ≤ 0

uL ≤ u(s) ≤ uU
Nl(s) < n(s) < Nr(s)

(3-36)

Where f : Rn × Rm −→ Rn. The state vector x and input vector u are given by:

x = (n ξ V β ψ̇)> (3-37)
u = (δ sx,fl sx,fr sx,rl sx,rr Γx Γy)> (3-38)

The alternative formulation including wheel rotational velocities can be composed in the same
manner, using the description of Section 3-4.

3-8 Conclusion

In this Section the race car MTM was formulated as an OCP. The transformation of time
to distance along the track’s center-line as independent variable is described. The system
dynamics are incorporated as equality constraints for the problem. The control inputs cor-
responding to the brake and throttle pedal are longitudinal tire slips. Algebraic constraints
representing wheel torque distribution properties are included, resulting in only one degree
of freedom for the longitudinal control input. Wheel load distribution changes due to vehicle
planar accelerations are incorporated as well, by including two additional states and algebraic
equality constraints. We have included inequality constraints that bound the derivative of
longitudinal force to longitudinal slip on the front tires individually. This constraint is used
to incorporate the effect that wheel dynamics have on the admissible longitudinal control
input. The track limitations are incorporated as simple bounds on the lateral position. As a
reference for the validation in Chapter 5, an additional formulation including wheel rotational
velocities was given.
In the next chapter the optimal control problem will be transcribed into an NLP problem,
using direct collocation. Furthermore, two different solvers are compared on their suitability
for this OCP.
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Chapter 4

Direct collocation and solution using
NLP

In the previous chapter the race car Minimal Time Maneuvering (MTM) problem was for-
mulated as an optimal control problem. For solving such problems, a large body of literature
is available [27], [28]. The two main strategies available are the so-called direct and indirect
method. The indirect method makes use of Pontryagin’s minimum principle, which states
that optimal control corresponds to the admissible control inputs that minimize the Hamil-
tonian. Subsequently, these conditions are solved directly by minimizing the Hamiltonian.

The method is known to have a superior accuracy [28] but literature also reports some impor-
tant drawbacks. First of all, deriving the necessary conditions for optimality may be difficult
and impractical. Second, solving using the indirect method requires a relatively close ini-
tial guess of the trajectory of the controls, adjoint variables and active set at the optimum.
This requires sufficient knowledge of the problem to be optimized and hurts flexibility in the
problem setup. Furthermore, giving an estimate of the active set along the trajectory may
be difficult in the presence of many differential and algebraic inequality constraints. For the
race car MTM, using the indirect method would imply that an estimate is needed for which
sections are constrained by track boundaries. A similar estimate will be needed to identify the
arcs on which the power and wheel stability constraints are active. This would be difficult,
and furthermore the complexity of the problem formulation in Section 3-7 does not encourage
the derivation of the necessary conditions for optimality.

Alternatively, the direct method is based on a discretization of the problem, resulting in a
finite number of optimization variables. The cost function is minimized directly by a suitable
Non-Linear Programming (NLP) method. A large body of literature exists for discretizing
the problem into an NLP, and the availability of many NLP solvers makes the direct method
often preferred over the indirect method [27],[28].
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In this work, we solve the Optimal Control Problem (OCP) using the direct method. For
transcribing the problem into an NLP, the direct collocation approach is employed. This
approach is described in Section 4-1. Section 4-3 describes the parameterization of the state
and control input trajectories in terms of B-splines, of which the coefficients are presented
to the NLP solver as decision variables. The scaling of optimization variables, cost function
and constraint functions is important for the convergence of the problem, and is described in
Section 4-7.

For solving the resulting large-scale NLP, two solvers are considered. The first one is the
open-source interior-point solver IPOPT. The second one is the Sequential Quadratic Pro-
gramming (SQP)-based solver SNOPT. The two solvers are compared in a simulation study.
Furthermore, Section 4-8-2 presents an accuracy study, used to determine a suitable dis-
cretization interval.

4-1 Discretization and direct collocation

For transcribing the optimal control problem into an NLP problem several transcription meth-
ods exist. Two main directions are direct shooting and full collocation. In direct shooting, the
control history u(s) is discretized into a finite number of variables (u1, u2, ..., un). The perfor-
mance index and constraints are calculated by propagating through the differential equations.
Since only the control inputs are considered as optimization variables, this approach results
in relatively small-scale problems. The disadvantage however is the chance of numerical diffi-
culties for the applied solver, as a result of the large difference in sensitivity to early and late
controls. This effect is even stronger for nonlinear and unstable systems. Multiple shooting
methods address this problem by dividing the problem in multiple shooting segments. Each
segment is treated as a direct shooting segment, and the segments are connected by defect
constraints. As such, the problem is partially decoupled, leading to better conditioning of
Jacobian.
In the full collocation approach, the shooting segment has exactly the length of one discretiza-
tion interval. Since the states at each segment are connected, this means that not only the
control inputs, but also the discretized state trajectory (x1, x2, ..., xn) is included in the set of
decision variables. The dynamics of the system are satisfied by residual constraints, connect-
ing the discretization intervals by a certain integration rule. The full collocation approach
leads to maximal decoupling. Although the resulting problems are large, the Jacobian is
therefore very sparse as well. This allows for making use of existing NLP Solvers with the
ability to handle large-sparse problems very efficiently. Furthermore, gradient information
required for the NLP can be calculated efficiently if sparsity information is used [27].
Although there is no ever-working flow-chart for choosing one or the other method, some
general rules are described in [28],[19]. Problems with a moderate number of states in the
dynamics but a high number of discretization intervals and very nonlinear dynamics are often
transcribed using full collocation. Typically, shooting methods are used for problems with a
high amount of states, since applying full collocation simply would lead to a too large prob-
lem. Since the race car MTM has strong nonlinear and possibly unstable characteristics (2-4),
in this work the full collocation approach is used.
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4-2 Quadrature method and residual constraints 45

As described in the previous section, the independent variable is distance along the track
center-line. The distance interval [s0 sF ] is divided into N parts: s0 = s[1] < ... < s[N ] =
sF . The discretization interval h[i] for i = 1 ... N − 1 is given by:

h[i] = s[i+ 1]− s[i] (4-1)

Where h[i] is not necessarily equal for all i. The path constraints are satisfied on each of
discretization points:

q̃ = (q[1] · · · q[N ]) = 0 (4-2)
g̃ = (g[1] · · · g[N ]) ≤ 0 (4-3)

Where q̃ ∈ Rw and g̃ ∈ Rv denote the augmented constraint vectors, with w and v the number
of equality and inequality constraints respectively, as defined in Equation (3-35). The initial
condition constraint (3-29) is transformed into an NLP constraint as follows:

Υ = x[1]− x0 = 0 xo ∈ Rn (4-4)

The inequality constraints representing the maneuver boundaries (3-28) are represented as
follows:

b̃l < ñ < b̃r (4-5)

Where the distance-dependent maximum center-line offset to the left and right side b̃l and
b̃r, and the center-line distance ñ along the maneuver are defined as:

ñ = (n[1] · · · n[N ])>

b̃l = (bl[1] · · · bl[N ])>

b̃r = (br[1] · · · br[N ])>

4-2 Quadrature method and residual constraints

When using the full collocation method, the system dynamics from Equation (3-35) are
represented by a set of collocation defects, brought to below a certain tolerance by the NLP
method. The exact formulation of the constraint depends on the quadrature rule used. The
general form (adopted from [29]) is:

∫ sF

s0
g(s)ds =

N∑
i=0

µig(s[i]) (4-6)
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Where the weights µi and these collocation points are determined in advance. In this thesis
we will implement the trapezoidal method. The collocation defects for the trapezoidal method
are given by:

Φ[i] = x[i+ 1]− x[i]− h[i]
2 (x′[i] + x′[i+ 1]) (4-7)

For i = 1 ... N − 1. The required discretization interval is found in Section 4-8-2 by looking
at the influence of sampling rate on maneuver time and state and input trajectory.

4-3 Representation of optimization variables in terms of B-spline
coefficients

In order to be able to impose certain smoothness criteria to the state and input trajectory, we
represent them by B-splines. Furthermore, it is known that the application of B-splines can
prevent oscillatory solutions on constraint arcs [30]. For the implementation the methodology
described in [29] was followed. We start with a short introduction to B-splines, after which
the implementation in the optimal control context is described.

The interpolated curve for a single output z(t) is given by:

z =
n∑
i=1

Bi,k(t)Ci (4-8)

n = l(k −m) +m (4-9)

Bi,0 =
{

1 if ti ≤ t < ti+1
0 otherwise (4-10)

Bi,k(t) = t− ti
ti+k+1 − ti

Bi,k−1(t) + ti+k − t
ti+k − ti+ 1Bi+1,k−1(t) (4-11)

The splines are constructed by joining Bezier curves together. A characteristic for these curves
is that they have a user defined order k. The curves are glued together on breakpoints, of
which the smoothness is defined by the difference between the order k and the multiplicity
m of breakpoints per coefficient Ci. The functions Bi,k(t) are connected by the recursion
formula (4-11). Finally, the variables defining the curve with given order and multiplicity
are the coefficients Ci, called control points. In case of representing optimal input and state
trajectories using B-splines, these control points are the decision variables for the optimization.

An important property is that the smoothness of the curves can be defined by parameters
m and k, making the spline Cki−mi−1 times continuously differentiable. Furthermore, it can
be seen that outside the interval [ti, ti+k] the basis function Bi,k is zero, which is referred to
as the local support property. In case of application to optimal control problem with direct
collocation this preserves Jacobian sparsity.
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4-3-1 Implementation of B-splines

As described in Section 4-1, the discretization points are defined by s0 = s[1] < ... < s[N ] =
sF . The path constraints and residuals related to integration errors are evaluated on these
collocation points for x[i] and u[i]. These points form the collocation points for the B-spline
curves. The value of x[i] and u[i] at these points depend linearly on the spline coefficients as
follows:

xj = Lxcx,j (4-12)
uw = Lucu,w (4-13)

For j = 1, ..., n and w = 1, ..., o, with n and o the number of states and inputs of the sys-
tem respectively. Lx and Lu represent the collocation matrices, such that the B-splines with
coefficients cx,j ∈ RN+kx−mx and cu,w ∈ RN+ku−mu have collocation points xj ∈ RN and
uw ∈ RN . The splines have knot multiplicity mx and mu and order kx and ku. The choice
for B-spline order and knot multiplicity is described in Sections 4-3-2 and 4-3-3.

In case of the trapezoidal method, we define augmented state and control vectors x̃,ũ and
augmented spline coefficient vectors c̃x and c̃u as follows:

x̃ = (x[1] · · · x[N ])> x ∈Rn (4-14)
ũ = (u[1] · · · u[N ])> u ∈Rm (4-15)
c̃x = (cx[1] · · · cx(N + kx −mx))> cx ∈Rn (4-16)
c̃u = (cu[1] · · · cu(N + kx −mx))> cu ∈Rm (4-17)

The vector of NLP decision variables c̃ is then composed of c̃x and c̃u:

c̃ =
[
c̃x
c̃u

]
(4-18)

We define Λx and Λu as follows:

Λx = Lx ⊗ In (4-19)
Λu = Lu ⊗ Io (4-20)

Where In ∈ Rn×n and Io ∈ Ro×o denote the Identity matrix and ⊗ is the Kronecker product.
The augmented state and input vector x̃ and ũ can be calculated from c̃ as follows:

x̃ = Λxc̃x (4-21)
ũ = Λuc̃u (4-22)
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4-3-2 Knot multiplicity

A knot multiplicity m > 1 could be used to reduce the freedom of the optimization problem.
This can be attractive if high-frequent control activity is undesirable, but if at the same time a
small discretization interval is required for maintaining a small integration error. However, in
this thesis, a knot multiplicity of m = 1 was selected for all splines. For the state trajectories
x a higher multiplicity leads to an unfeasible problem, since the number of defect constraints
then exceeds the number of optimization variables describing the state trajectory. A higher
multiplicity for the input trajectory results in the same issue with equality constraints q ∈ R5.
However, this can be avoided by satisfying q[i] = 0 only for i =

[
m 2m · · · N

]
. For the

application in this work, this approach is unnecessary, since enough control over the continuity
of the control input trajectory is obtained through the smoothness conditions implied by the
B-spline order.

4-3-3 B-spline order

The B-spline order ku for the input trajectory should be based on the expected optimal
input trajectory, and on required smoothness. A too high order may reduce the integration
accuracy, and furthermore slows down the optimization process [30]. Furthermore, a too high
order may put unrealistic restrictions on the solution. An example is a problem in which the
control input appears linearly in the cost function [31]. In such a case, bang-bang control is
optimal, which cannot be represented by a B-spline order higher than zero.
In general, it can be expected that a higher B-spline order is suitable for approximating the
state trajectory than for the control input trajectory, due to the integration steps in between.
However, a too high spline order may imply additional conditions on the input trajectory,
which is unwanted too. Therefor it is assumed that kx − ku should be not higher than one.
Combining the statements above, it was chosen to use an as low as possible spline order for
the control inputs, while maintaining robust convergence. Furthermore, the spline order for
the state trajectory was chosen one order higher. This has lead to a quadratic B-spline for the
control input trajectory, and a cubic B-spline for the state trajectory, hence ku = 3, kx = 4.

4-4 NLP problem formulation

Based on the information from the previous sections, we can compose the NLP formulation for
solving the race car MTM problem. For the trapezoidal integration method, the formulation
is as follows:
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min
c̃

J =
N−1∑
i=1

h[i]
2 (Sf [i] + Sf [i+ 1])

s.t. Φ̃ = 0
Υ = 0
q̃ = 0
g̃ ≤ 0

uL ≤ ũ ≤ uU
b̃l < ñ < b̃r

(4-23)

Where the augmented state and control input vector are calculated from the vector of decision
variables as follows:

[
x̃
ũ

]
=
[
Λx Λu

]
c̃ (4-24)

4-5 Choice of NLP solver

For solving problem (4-23), several NLP methods exist [32]. The methods can be distinguished
based on ao. the way of inequality constraint handling, globalization techniques and software
interfaces. In [33] an overview of several solvers and their corresponding principles is given.
There is no single superior method, outperforming every other method on each NLP. Instead,
the suitability for a method to problem depends on the problem size, the number of constraints
and its nonlinearity [32]. Our problem has the following characteristics:

• Number of decision variables up to 12.000, corresponding to roughly 1000 discretization
points.

• Relative small number of free variables, i.e for 12 decision variables we have 10 equality
constraints per discretization point.

• Highly nonlinear equality and inequality constraints resulting from the system dynamics.

The problem size suggests a need for large-scale sparse NLP methods. In the inventory of
NLP solvers, two main available classes of methods are SQP and interior-point methods. In
[32] it is stated that SQP methods are very effective for solving NLP problems, especially in
the presence of nonlinear constraints. They are most efficient if the number of free variables
is small, and are relatively robust for poorly scaled problems. On the other hand, it is stated
that interior-point algorithms for NLP are very suitable for large-scale applications, in which
they often outperform SQP methods.
As it is difficult to find a clear consensus in literature to which method is most suitable,
it is decided to implement both an SQP method, and an interior-point method to problem
(4-23) and compare their performance. In the following sections we will briefly describe the
main differences between the methods and the solvers that we apply for both methods. In
Section 4-8-1 the performance of two methods on the race car MTM problem is compared.
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4-5-1 SQP methods

As the name suggests, in SQP a sequence of quadratic subproblems is solved to find the
optimum. At each iterate, the NLP is approximated by a quadratic problem. Assume the
following NLP:

min
x

f(x) (4-25)

s.t. c(x) = 0
g(x) ≤ 0

With nonlinear cost function f(x), and nonlinear equality and inequality constraint functions
c(x) and g(x). The quadratic subproblem is given by a quadratic approximation of the cost
function, and a linear approximation of the constraint functions.

min
p

fk +∇F>k p+ 1
2∇

2
xxLkp (4-26)

s.t. ∇c>k p+ ck = 0
∇g>k p+ gk ≤ 0

Here, fk, ck, gk Lk denote the value of the cost and constraint functions and the Lagrangian
at the current point. Where the minimizer p and corresponding lagrange multipliers λk+1 of
the quadratic subproblem are the basis for the NLP step. In addition, global convergence
strategies such as line search and thrust region methods may be used to alter the direction or
magnitude of the step that is taken. More elaborate descriptions of SQP and its details can
be found in e.g. [32] or [34].

For the comparison in Section 4-8-1 we use SNOPT (Sparse Nonlinear OPTimizer) [34].
SNOPT is an implementation of an SQP algorithm exploiting sparsity in the constraint
Jacobian. It uses line-search as globalization method, and has the ability to approximate the
Hessian of the Lagrangian by a limited-memory BFGS update [32]. SNOPT is implemented
in FORTRAN77, but has a MATLAB interface as well. For more details the reader is referred
to [34].

4-5-2 Interior-point methods for NLP

Interior-point methods for NLP approximate inequality constrained problem (4-25) by a bar-
rier problem, and use that as the subproblem for determining the NLP step:

min
x,s

f(x)− µ
m∑
i=1

ln s (4-27)

s.t. c(x) = 0
g(x)− s = 0
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With positive barrier parameter µ and positive slack variable s. The interior-point method
for NLP involves solving this subproblem several times, driving the barrier parameter µ to
zero, such that the resulting solution coincides with the solution of the original problem [32].
As with SQP methods, different mechanisms are used for accepting and adjusting the step,
including line-search, thrust region and filter methods. A more detailed description can be
found in [32].

For the comparison in Section 4-8-1 we use the open-source solver IPOPT (Interior-Point
OPTimizer) [35]. IPOPT solves the NLP by successive solution of a barrier problem, in
which the barrier parameter is driven to 0. The subproblems are solved by an SQP method
which uses a line search-filter method. As SNOPT, it includes the possibility to approximate
the Hessian of the Lagrangian by a limited-memory BFGS update. IPOPT is written in
C++ and is available in a MATLAB interface as well. For the mathematical details of the
algorithm, the reader is referred to [36], [37], [38],[39], [35].

4-6 Calculation of derivative information

All NLP solvers require first- and second order derivative information for solving the problem.
This means that the Jacobian and Hessian have to be calculated. Both IPOPT and SNOPT
include the option to apply a limited-memory Broyden-Fletcher-Goldfarb-Shannon (BFGS)
Hessian update. In this operation, the inverse Hessian is approximated by a few vectors that
contain the information for the approximation. As such, this section only describes the cal-
culation of the cost and constraint Jacobian.

Several methods exist for calculating derivative information. The most precise information
is obtained if an analytical expression for the derivative of the cost and constraint function
is used. However, for complex systems such an analytical expression might be difficult to
obtain. An efficient alternative to this is the use of automatic differentiation, where the
gradients are calculated by repeated application of the chain rule to the underlying model
equations used by the differential equation solver [2]. The most simple way is to approximate
the derivatives by using finite-differences. In the following, we will describe the calculation of
the constraint Jacobian by sparse finite-differences, and the analytic expression for the cost
function gradient.

4-6-1 Constraint Jacobian

For calculating the constraint Jacobian, the approach from [27] for making use of Jacobian
sparsity was followed. The constraint function is composed of four components:

Π =


Υ
Φ̃
q̃
g̃

 (4-28)
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Where Υ is the initial boundary condition, q̃ and g̃ contain the path constraints, and Φ̃ the
augmented vector of residuals:

Φ̃ = (Φ[1] Φ[2] · · · Φ[N − 1])> Φ[i] ∈ Rn (4-29)

First we define the vector z̃:

z̃ =
[
x̃
ũ

]
(4-30)

Remember that x̃ and ũ are calculated from the NLP decision variables by Equations (4-21)
and (4-22). The derivative of Π to z̃ is then:

∂Π
∂z̃

=



∂Υ
∂x̃

∂Υ
∂ũ

∂Φ̃
∂x̃

∂Φ̃
∂ũ

∂q̃

∂x̃

∂q̃

∂ũ
∂g̃

∂x̃

∂g̃

∂ũ


(4-31)

The different partial derivatives in this equation will be described in the remainder of the
section. Φ̃ can be divided into a linear and nonlinear part.

Φ̃ = Ax̃+Bϕ(x̃, ũ) (4-32)

Where all nonlinear relations are isolated in the vector ϕ(x̃, ũ), given by:

ϕ(X,U) = (f(x[1], u[1]) f(x[2], u[2]) · · · f(x[N − 1], u[N − 1])> (4-33)

The constant matrices A ∈ R(n×N−1)×(n×N−1) and B ∈ R(n×N−1)×(n×N−1) are dependent on
the quadrature rule. For the trapezoidal method, A and B are defined as follows:

A =


−In In

−In In
. . .

−In In

 (4-34)

B = −1
2


h[1]In h[1]In

h[2]In h[2]In
. . .

h[N − 1]In h[N − 1]In

 (4-35)
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Where In ∈ Rn denotes the identity matrix. The derivative of the residuals Φ̃ to x̃ and ũ is
then given by:

∂Φ̃
∂x̃

= A+B
∂ϕ

∂x̃
(4-36)

∂Φ̃
∂ũ

= B
∂ϕ

∂ũ
(4-37)

Since ∂f(x[i], u[i])
∂x(j) = 0 and ∂f(x[i], u[i])

∂u(j) = 0 for all i 6= j, the matrices ∂ϕ
∂x̃

and ∂ϕ

∂ũ
turn out

to be block-diagonal:

∂ϕ

∂x̃
=



∂f(x[1], u[1])
∂x[1]

∂f(x[2], u[2])
∂x[2]

. . .
∂f(x[N ], u[N ])

∂x[N ]


(4-38)

∂ϕ

∂ũ
=



∂f(x[1], u[1])
∂u[1]

∂f(x[2], u[2])
∂u[2]

. . .
∂f(x[N ], u[N ])

∂u[N ]


(4-39)

For the path constraints g̃ and q̃ the same applies:

∂g(x[i], u[i])
∂x(j) = 0 (4-40)

∂g(x[i], u[i])
∂u(j) = 0 (4-41)

∂q(x[i], u[i])
∂x(j) = 0 (4-42)

∂q(x[i], u[i])
∂u(j) = 0 (4-43)

For all i 6= j. This leads to the following equations for the partial derivatives of g̃ and q̃:
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∂g̃

∂x̃
=



∂g(x[1], u[1])
∂x[1]

∂g(x[2], u[2])
∂x[2]

. . .
∂g(x[N ], u[N ])

∂x[N ]


(4-44)

∂g̃

∂ũ
=



∂g(x[1], u[1])
∂u[1]

∂g(x[2], u[2])
∂u[2]

. . .
∂g(x[N ], u[N ])

∂u[N ]


(4-45)

∂q̃

∂x̃
=



∂q(x[1], u[1])
∂x[1]

∂q(x[2], u[2])
∂x[2]

. . .
∂q(x[N ], u[N ])

∂x[N ]


(4-46)

∂q̃

∂ũ
=



∂q(x[1], u[1])
∂u[1]

∂q(x[2], u[2])
∂u[2]

. . .
∂q(x[N ], u[N ])

∂u[N ]


(4-47)

The elements on the diagonals of ∂Φ̃
∂z̃

, ∂tlg
∂z̃

and ∂tlq

∂z̃
can be calculated either analytically

or by using finite-differences. As described in Chapter 2, the equations of motion consist of
analytic functions only. Hence, an analytic expression for the constraints could be obtained.
This however means that a change in vehicle model requires new analytic expressions for the
derivative. It is expected that the used vehicle model is depending on the problem to be
analyzed. The need for finding new analytical derivatives thereby reduces the flexibility of
the method, which is undesired. Therefore it was chosen to approximate the derivatives by
finite-differences. Note that due to the use of the sparse Jacobian structure, one evaluation

of ∂Φ̃
∂z̃

only requires (n + o) ×N equations-of-motion evaluations. For the calculation of ∂g̃
∂z̃

and ∂q̃

∂z̃
a small amount of additional calculations is needed ((3-16)-(3-16), (3-22)-(3-24)).

Finally, the gradient of Υ is given by:
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∂Υ
∂x̃

= (In 0 · · · 0)> (4-48)

∂Υ
∂ũ

= (0 · · · 0)> (4-49)

(4-50)

Formulate Jacobian based on B-spline coefficients As described in Section 4-3 the NLP
decision variables are the B-spline coefficients c̃x and c̃u. Using (4-21), (4-22), (4-31) and the
chain rule, we obtain the following relation for the Jacobian:

∂Π
∂c̃

= ∂Π
∂z̃

∂z̃

∂c̃

=



∂Υ
∂x̃

∂Υ
∂ũ

∂Φ̃
∂x̃

∂Φ̃
∂ũ

∂q̃

∂x̃

∂q̃

∂ũ
∂g̃

∂x̃

∂g̃

∂ũ



[
Λx
Λu

] (4-51)

4-6-2 Cost function gradient

As can be seen from (4-23), the cost function only depends on Sf and h. It turns out that
the relation is relatively simple, therefor the cost function gradient is calculated analytically.
First of all, it can be seen that Sf does not depend on u at all, hence ∂J

∂c̃u
= 0. Using the

chain rule, the cost gradient can be written as:

∂J

∂c̃x
= ∂J

∂S̃f

∂S̃f
∂x̃

∂x̃

∂c̃x
(4-52)

= ∂J

∂S̃f

∂S̃f
∂x̃

Λx (4-53)

Where S̃f is the augmented time to distance scaling factor, given by:

S̃f = (Sf [1] Sf [2] · · · Sf [N ])> (4-54)

The first term in (4-52) can be obtained by deriving the cost term in (4-23). For the trape-
zoidal rule this results in:
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∂J

∂S̃f
= (0.5h[1] 1h[2] 1h[2] ... 1 1 0.5h[N − 1]) (4-55)

The partial derivative of Sf to the state vector x is given by deriving Equation (3-7) analyt-
ically, resulting in the following expressions:

∂Sf
∂n

= C

V cos(β + ξ) (4-56)

∂Sf
∂ξ

= −V sin(β − ξ)(Cn− 1)
(V cos(β + ξ))2 (4-57)

∂Sf
∂V

= cos(β + ξ)(Cn− 1)
(V cos(β + ξ))2 (4-58)

∂Sf
∂β

= −V sin(β − ξ)(Cn− 1
(V cos(β + ξ))2 (4-59)

∂Sf

∂ψ̇
= 0 (4-60)

4-7 Problem scaling

As stated in [27] and [32], scaling is important for robust and rapid convergence of an NLP.
For scaling of the NLP decision variables and constraints, the procedure described in [27], p.
166 was followed. Briefly summarized, the following rules were applied:

• The scaling for each state and input is kept constant over all discretization points

• The states and inputs are normalized by their expected extreme values, either based on
their upper and lower bounds or knowledge about the physical system

• The constraints related to integration defects are scaled such that the defect gradients
are normalized

• The path constraints are scaled such that their elements in the Jacobian are normalized

The scaling of the cost function remains as a tuning parameter for the user. To maintain
robust and rapid convergence for different discretization intervals, the following rule was
applied for cost function scaling:

%J = a

h̄
(4-61)

Where %J denotes the cost function scaling, a the user tuning parameter, and h̄ the mean
discretization interval, given by:

h̄ = 1
N − 1

N−1∑
i=1

s[i+ 1]− s[i] (4-62)

In this way, the magnitude of the elements in the scaled cost gradient is roughly independent
from the chosen discretization interval.
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Table 4-1: Maneuvers for NLP solver comparison

Name Distance [m] Description of turn sequence

Single hairpin 196 50m straight - 180deg turn - 50m straight
Double hairpin 391 Maneuver 1, twice
Triple hairpin 587 Maneuver 1, three times
Simple turn 116 50m straight - 180deg turn - 20m straight

4-8 Comparison of NLP formulation choices through simulation

Although there is a large amount of literature available with NLP applications of optimal
control, the exact performance is still hard to predict. This section therefore contains some
short simulation studies about choices made during the process. First of all, a comparison of
applicability of the SNOPT and IPOPT to the race car MTM problem is done. Then, the
influence of the sampling interval on accuracy for a simple problem is investigated.

4-8-1 Comparison between SNOPT and IPOPT

For solving NLP problem (4-23), two different solvers are compared. The first one is the
SQP-based solver SNOPT, and the second one is the interior-point based solver IPOPT. For
the comparison, four different maneuvers are considered. The methods are compared on the
following criteria:

• Convergence (yes/no)

• Cost J at optimal solution, to see whether the methods have the tendency to converge
to the same local optimum.

• Number of iterations Iter.

• Total computation time Tcomp.

For making the results comparable, the same constraint and cost tolerance is used for both
methods. The maneuvers for comparison are described in Table 4-1. Figure 4-1 shows a graph-
ical representation of the coordinates of the track boundaries in the 2D Cartesian frame. The
first basic maneuver is the so-called hairpin, which we define as a turn where the center-line
makes a rotation of 180 degrees. The solvers are compared on this maneuver for various
discretization intervals h. For comparing the solvers on longer maneuvers, the maneuver is
simply augmented by itself, hence the hairpin is executed multiple times. The second ma-
neuver is a 90-degree right-hand turn, followed by a very short straight line section. This
maneuver was included to compare the performance of the two solvers in case of a relatively
simple, but highly dynamic maneuver.
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Table 4-2: Results of NLP solver comparison. All blue numbers correspond to IPOPT, all red
numbers to SNOPT.

Maneuver h [m] Size Tcomp [Min] Iter J [s]

Triple hairpin 1 8850 2.68 / - 1507/- 20.081 / -
Double hairpin 1 5910 0.87 / 25.67 741 /298 13.388 / 13.389
Single hairpin 1 2970 0.38 / 2.66 632 /165 6.679 / 6.679
Single hairpin 2 1500 0.23 / 0.80 637 /172 6.659 / 6.673
Single hairpin 4 765 0.14 / 0.19 540 /145 6.605 / 6.606
Simple turn 2 915 0.17 / 0.17 625 /80 3.685 / 3.685

Results The results of the comparison are shown in Table 4-2. All IPOPT and SNOPT
results are shown in blue and red respectively. The column named Size lists the total number
of decision variables for each problem. Looking at the quality of the solution, it can be seen
that in most cases the two methods converged to the same solution. Only in case of the
single hairpin discretized with a 2m interval, the two methods converged to a different local
minimum. In this case, the solution found by SNOPT corresponds has a slightly higher cost.
The second observation is that SNOPT requires less iterations to converge to the solution.
This difference becomes apparent especially for the simplest maneuver, where SNOPT requires
only 80 iterations, in contrast to IPOPT which needs 625.
In terms of computation time, IPOPT and SNOPT are very similar for the two smallest
problems. However, for the larger problems the computation time for SNOPT is multiple
times longer than for IPOPT. For the largest problem of the study, SNOPT does not converge
at all. The largest problem that we were able to solve with SNOPT had about 6000 variables,
but with small changes in parameters often SNOPT already fails to converge for problem
sizes larger than 2000. In these situations, it is observed that the number of minor iterations
needed for solving the Quadratic Programming (QP) subproblem explodes. Hence, the solver
appears to have difficulties in solving the QP subproblem for larger problem sizes.

Discussion Summarizing the results, it can be said that SNOPT and IPOPT perform similar
in terms of computation time for very small problems. In these cases, SNOPT requires con-
siderably less iterations. For larger problems IPOPT performs considerably better. SNOPT
does not meet the requirement stated in Section 4-5.

The outcome corresponds to the statement in [32] that interior-point methods often out-
perform SQP methods for large problems. An alternative SQP method that could be tried
however is WORHP (We Optimize Really Huge Problems). This is another SQP-based NLP
solver, which is said to be succesfully applied for very large problems [40]. Unfortunately,
time did not allow for trying this solver in this work. Instead, IPOPT was selected as solver
for the problems described in the remaining sections.

4-8-2 Influence of sampling interval on accuracy

In discretizing the problem, a trade-off has to be made between problem size and accuracy.
On the one hand, a reduction in discretization interval leads to a smaller error in approximat-
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Figure 4-1: Maneuvers for NLP solver comparison. The red dashed lines mark the track edges.
The blue asterisk marks the start point of the maneuver.

ing the solution of the differential equations. On the other hand, this increases the problem
size, leading to longer computation times and an increase in required memory.
To determine the required sampling interval, a small accuracy study is done. A simple prob-
lem is optimized for various sampling intervals. In this case, the single 90 degree turn was
used. As a measure for the accuracy, we look at the difference in maneuver time compared
to the solution with the smallest discretization interval. It is expected that the benefits of
an increase in mesh density will reduce for finer grids. Furthermore, the state and control
input trajectory of the solutions with different sampling intervals are compared, to judge the
differences qualitatively.

Results The results are shown in Figure 4-2. Displayed is the maneuver time difference,
compared to the benchmark which has a discretization interval of 0.25m. In the right figure
the relative maneuver time difference is shown. As can be seen, the difference stays close
to 0 for h ≤ 1. For larger discretization intervals the difference increases. The qualitative
difference in control input and state trajectory for h = 0.25m, 1m, 4m is shown in Figure 4-3
and 4-4. As can be seen, the 4m grid clearly introduces some loss in details. The qualitative
difference between the solution with h = 0.25m and h = 1m however is very small.

Discussion Although the maneuver time sensitivity to discretization interval is small, the
qualitative differences for the solution are evident. In future work, it is recommended to asses
the accuracy in a different way. Furthermore, it is expected that the required interval depends
on the maneuver and model parameters. As such, for future application it would be practical
to assess the required interval automatically. In [27] a way for estimating the local integration
error is given. The same estimate is used in an automatic grid refinement step. In e.g.[41]
and [42] other mesh refinement algorithms are given.
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Figure 4-2: Relative maneuver time difference for difference mesh sizes.

4-9 Conclusion

This chapter described the transformation of the race car MTM problem into an NLP prob-
lem. The maneuver is discretized on a non-uniform grid s0 = s[1] < ... < s[N ] = sF . The
full collocation method is used for the transcription of the OCP into an NLP. As a result,
the differential equations are solved by bringing the residuals related to the integration of the
dynamics to zero. For this thesis, the trapezoidal rule is used for integrating the dynamics.
To find the required discretization interval, a small study of the accuracy as a function of the
discretization interval was performed. In this study, the mesh density is varied from 0.25m
to 8m in 10 steps, where the accuracy is evaluated by the influence on maneuver time and
the differences in state trajectory. For that particular maneuver, an increase of mesh density
beyond 1m shows very little change in maneuver time. Furthermore, no visible qualitative
differences in state trajectories are seen beyond this distance, leading to the conclusion that
a finer grid than this is not needed.

For robust convergence and the ability to control the smoothness of the solution, the state
and input trajectories are parameterized as B-spline coefficients. Hence, the variables that
the NLP algorithm sees are the coefficients of the B-splines forming the state and input tra-
jectories. With quadratic splines representing the input trajectory, and cubic splines for the
state trajectory, robust convergence to a smooth solution is achieved.

To preserve flexibility in vehicle modeling, the constraint Jacobian is approximated using
finite-differences. The knowledge of the sparsity of the Jacobian is used to construct the
Jacobian with a minimal number of equation of motion evaluations. The cost gradient is
calculated using analytic expressions, which were derived in Section 4-6-2.
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Figure 4-3: Qualitative difference between solutions with different mesh sizes. x1 to x5 and u1.
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Two main classes of solvers for NLP problems are SQP and Interior-point methods. In
Section 4-8-1, the SQP solver SNOPT is compared to the interior-point solver IPOPT by its
performance on the race car MTM. For various problems, the two solvers are compared on
their convergence, total computation time and the value of the cost function at the solution.
The solution quality for both methods appears to be equal for these problems; the same
solution was reached in all but one case. Where for problems with less than 1000 variables
the two methods perform similarly, for larger problems IPOPT is clearly superior for this
application. For a problem with 5910 variables, corresponding to a maneuver with length
391m on a 1m grid, the computation time of SNOPT is about 30 times longer than that
of IPOPT. For even larger problems, SNOPT fails to converge. This finding is in line with
NLP literature, where it is stated that for large-scale problems interior-point methods often
outperform SQP. Though not included in this thesis, future studies using the large-scale
WORHP solver would be of interest for exploiting the benefits that SQP methods offer.
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Chapter 5

Simulation studies

Part of the motivation for a trajectory planning method for race car simulation is the possibil-
ity to simulate highly dynamic maneuvers where the control inputs are highly dependent on
the vehicle parameters. Furthermore, the method can be used to detect active performance
limitations in different stages of maneuvers. In Section 5-1 some notions for race car driving
are defined to facilitate description and comparison of results. In the first simulation study
in Section 5-2, the choice to neglect wheel rotational dynamics in the model is validated by a
comparison with a reference model through simulation. Additionally the method is applied
for two studies closely related to the design of Traction Control (TC) systems.

First, the optimal control solution for a hairpin maneuver at three different radii is studied
in Section 5-3. The tire utilization and normalized tire slips on the optimal solution are eval-
uated, and the stability and control properties of the vehicle along the optimal trajectory are
assessed using a linearized reduced system at each discretization point.

Second, a perturbation analysis is performed. In the real-life control task some uncertainty
in both the driving path and parameters exists. The driver might cause small deviations
in trajectory, the tire-road friction could be reduced locally as a result of moisture, sand or
unevenness and other disturbances such as wind may act on the car. In Section 5-4, the
optimal reaction of control inputs to a local variation in tire-road friction and perturbations
to the state vector is studied. We evaluate to what extent the longitudinal control reaction is
based on preview of road-friction and knowledge about the lateral position and orientation of
the vehicle. The reaction of the control inputs to disturbances in the state vector is studied
qualitatively and related to the dynamics along the trajectory of the nominal solution.

5-1 Definitions

In this section some notions related to race car driving are defined, for convenience in de-
scribing the results in the following sections.
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Braking point The braking point is defined as the instant in distance on which the front
longitudinal tire force Fx,f changes from 0 into a negative value:

{
min
i
s[i] | Fx,f < 0

}
(5-1)

Usually one single turn includes one single braking point.

Braking zone The braking zone is defined as the distance interval:

{∀s | Fx,f < 0} (5-2)

Usually, the braking zone consists of one closed interval for each turn.

Throttle point The throttle point is defined as the following instant in distance:

{
min
i
s[i] | TE > TE,drg

}
(5-3)

Hence, the instant at which a positive longitudinal control input is added to the engine drag
torque.

Turn entry For defining turn entry, the definition of path curvature is needed:

κ = Fy
mV 2 (5-4)

Turn entry is defined as the following distance interval:

{
∀s | 0.1 < ‖κ‖

‖κM‖
< 0.9, Fx,f ≤ 0

}
(5-5)

Where ‖κM‖ is the maximum path curvature experienced during the maneuver. Hence, it is
the distance interval on which the path curvature is increased, which is usually a sub-interval
of the braking zone.

Turn exit We define turn exit as the following interval:

{∀s | TE,drg < TE , g1 < 0} (5-6)

Hence, it is the interval in which positive longitudinal control is applied and on which the
power constraint is strictly satisfied.

Overdriving We define that a tire is overdriven under the following condition s > 1. An
axle is overdriven if this conditions applies to both tires on the axle.
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Normalized root-mean-square deviation (NRMSD) The NRMSD of two signals can be
seen as the normalized standard deviation of the difference, and is given by:

NRMSD =

√√√√√ N∑
i=1

(x1−x2)2

N

xmax−xmin
(5-7)

Where x1 and x2 are the signals to be compared and N the number of variables and xmax
and xmin the maximum and minimum value of the states respectively.

5-2 Simulation study 1: Influence of neglecting wheel dynamics

In this Section the choice for neglecting wheel rotational dynamics is validated. This is done
via a comparison with the reference model defined in Section 3-4, which does include the
wheel rotational velocities in the state vector. The following two questions are answered:

1. What is the difference in state trajectory and maneuver time for the two formulations?

2. Is incorporating the wheel stability constraint described in Section 3-3-3 necessary?

For answering the first question three different maneuvers are used. A graphical representation
of the track boundaries for all three maneuvers is shown in Figure 5-1. Maneuver 1 is a hairpin
with a center-line radius of 30m. The initial conditions are set such that the maneuver both
incorporates braking in a straight line, and combined braking and turning. Maneuver 2
has a right-hand turn with a center-line radius of 30m as well, but only rotates 90 degrees.
Maneuver 3 includes a faster right-left combination, and a 30m radius right-hand hairpin. It
is included because it is highly dynamic, with the braking point in the left-hand turn and
a change in curvature direction during the braking zone. For all maneuvers a discretization
interval of 1m is used.

Maneuver time and trajectory The results of the study are shown in Table 5-1. As can be
seen, the maneuver times are within 0.06% for all maneuvers. The largest relative difference
is seen for maneuver 1. The state trajectory for both formulations is shown in Figure 5-2,
together with the NRMSD. Visually the trajectories are close, and the maximum NRMSD
for the states is equal to 1.5%. The maximum NRMSD is equal to 2.8%, but is should be
noted that this is mainly caused by the phase difference around s = 150. For the studies in
this thesis, the difference is accepted.

Wheel stability constraint Remarkably enough, the wheel stability constraints are inactive
throughout all maneuvers in Table 5-1. This induces the question whether the wheel stability
constraints are really needed or not. Figure 5-3 shows a solution without wheel stability
constraints. As can be seen, the stability constraint for the front-right tire would be violated
at several instances (where it is negative). At these points the longitudinal slip jumps to
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Figure 5-1: Maneuvers for simulation study 1

high negative values. The higher slip corresponds to the same longitudinal force, which is
possible because the slip-force characteristic (2-1) is non-monotonically increasing. As such,
constraint (3-18) saying that the left and right braking force should be equal is still satisfied.
The maneuver time for this solution is 10.787s, which is higher than the solution including
stability constraints. Apparently, the absence of the stability constraints does not lead to a
misuse of the formulation in a positive manner, but rather makes it converge to a worse local
minimum.

Table 5-1: Results of simulation study 1

Name Simplified J [s] Reference J [s] Relative difference %

Maneuver 1 10.718 10.724 0.056
Maneuver 2 8.024 8.027 0.037
Maneuver 3 13.388 13.394 0.045
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Figure 5-2: Comparison of state trajectory between the simplified model (blue) and the reference
model with wheel rotational velocities (green) for the hairpin maneuver.
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5-3 Simulation study 2: Study of optimal solution

In this section we study the optimal solution more closely. Specifically, three different ques-
tions closely related to TC design are answered, from which some conclusions and new ques-
tions are deducted. The questions that are answered are introduced and listed below:

1. In [1] it is cited that time-optimal driving is all about keeping a maximum acceleration
in the right direction. The forces accelerating the vehicle are transmitted through the
tires. It is known that the transmittable tire force is limited, defined by a saturation
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in force-slip characteristics. Does the optimal trajectory use the maximum tire friction
force at all times?

2. Since the majority of the control inputs driving the vehicle come from the human driver,
we are interested in the stability and control properties at the optimal trajectory. Al-
though the system nonlinearity does not allow for a simple expression for global stability,
information about local stability can be derived from the linearized system, following
the first method of Lyapunov (as explained in e.g. [43]). The question that is answered
reads: is the open-loop vehicle locally stable on the optimal trajectory?

3. As will appear, some zeros exist in the single input, single output (SISO) transfer
functions from steering angle to linearized bicycle model outputs. We pose the question
how these zeros evolve over the turn, and how they are dependent on maneuver speed.

Approach, setting and assumptions To keep the descriptions concise and clear, the study is
limited to hairpin maneuvers. Since it is known that car dynamics change much over velocity
[24], we perform the nominal study for three different turn radii which typically exist on a
race track. The properties of the maneuvers are displayed in Table 5-2. The radii lead to
velocity minima of roughly 70, 120 and 160 km/h respectively.

Table 5-2: Maneuvers for simulation study 2

Name Turn radius [m] Width [m] Description of turn sequence

Low speed 35 10 150m straight - 180deg turn - 100m straight
Medium speed 70 10 150m straight - 180deg turn - 100m straight
High speed 105 10 150m straight - 180deg turn - 100m straight

5-3-1 Overview of considered quantities

In the following, some quantities are introduced that help to answer the posed questions.
These quantities are displayed in the figures with results and will be used in the descriptions.

Normalized longitudinal control input The longitudinal control inputs as applied by the
driver are the throttle and brake pedal. In this thesis these are defined as follows:

Throttle = TE(ωrl + ωrr)
2PE

(5-8)

Brake =
{

Fx,f
minFx,f

if Fx,f ≤ 0
0 otherwise

(5-9)

Note that Throttle with this definition represents normalized power, and Brake a normalized
force. Although the actual longitudinal control inputs are the longitudinal slips at each tire,
throttle and brake are more convenient for analyzing the solution.
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Tire utilization The tire utilization F ∈ [0, 1] is defined as:

Fi = ‖Fi‖
FM,i

(5-10)

For i = fl, fr, rl, rr. ‖F‖ denotes the euclidean norm of the longitudinal and lateral tire force,
and FM the maximum tire force as defined in the tire model. We look at F for each individual
tire, as a measure for the utilization of the tire’s friction potential.

Normalized tire slip Closely related to the tire utilization are the lateral slip (A-65) to
(A-68) and the normalized absolute slip s ∈ [0,+∞):

si = ‖si‖
sM,i

(5-11)

For i = fl, fr, rl, rr. ‖s‖ denotes the euclidean norm of the longitudinal and lateral tire slip,
and sM the slip corresponding to maximum tire force as defined in the tire model. Our tire
model given in Chapter 2 is parameterized such that FM > FS . Then, by definition for F = 1,
s = 1. In addition we are interested to see whether sM is exceeded in the solution or not.

Eigenvalues and zeros The nonlinear character of the vehicle model does not allow for a
simple expression for global stability. As a measure for local stability of the full nonlinear sys-
tem, the eigenvalues of the linearized system at each discretization interval are used, referred
to as the first method of Lyapunov [43]. Furthermore, we are interested in the stability of the
planar dynamics, without the effect of the (slow) longitudinal dynamics incorporated. There-
fore, the state vector of the linearized system is reduced to x = (ψ̇ β)>, as in e.g. [1], [22].
Note that the resulting system has the same form as described in (2-25). The eigenvalues are
calculated using the local partial derivatives at each discretization interval, which can be ex-
traced from the ∂ϕ

∂x̃
and ∂ϕ

∂ũ
vectors in the NLP Jacobian calculation described in Section 4-6.

Using the same information, the zeros of the following two SISO transfer functions are calcu-
lated:

H1(s) = ψ̇(s)
δ(s) (5-12)

H2(s) = β(s)
δ(s) (5-13)

(5-14)

The transfer functions of sx,i to β and ψ̇ are not considered, since these are not independent
control inputs. The zeros of the δ transfer function are displayed as an indication of input-
output controllability of the respective outputs with steering angle. For more information on
the interpretation of zeros and eigenvalues, the reader is referred to [43].
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Yaw rate for constant body slip angle The final quantity referred to in the results is the
yaw rate for constant body slip angle, defined as:

ψ̇β̇=0 = Ay
V

(5-15)

The quantity is displayed in the same graph as ψ̇. It should be noted that the difference
between the two is equal to the time derivative of β.

5-3-2 Results of nominal study at three different velocities

Figure 5-4 to Figure 5-9 show the results for the hairpin with center-line radius 35m, 70m
and 105m. The questions are answered on the basis the quantities described previously and
the plots.

1. Utilization of tire friction As can be seen the tire utilization F is not equal to one all
the time. All deviations from this can be divided in roughly three categories:

• All four tires are not fully utilized.

• Both tires on one of the axles are not fully utilized.

• On one axle, only one of the tires has full friction utilization.

The first deviation is observed in the first and last section of the maneuver, at which the
vehicle is driving in a straight line with the power limit g1 < 0 active.

The second deviation shows the following stages:

1. Ff < 1 and Fr ≈ 1 under initial braking, where the vehicle is braking in a straight
line. This deviation is caused by the constant brake torque distribution, which does not
allow to increase the front braking force without exceeding the slip for maximal rear
longitudinal force.

2. Ff < 1 and Fr ≈ 1 at initial turn-in while still braking

3. Ff ≈ 1 and Fr < 1 for a large portion of the turn, at which first braking is decreased to
zero, and afterwards throttle is increased.

4. Ff < 1 and Fr ≈ 1 under combined positive longitudinal acceleration and turning in
the final phase of the turn. For the high-speed maneuver, this stage is absent since the
power constraint becomes active before this point is reached.

It can be said that subsequently the front and rear axle are utilized fully, with a small overlap
on the transitions on which both axles are close to the condition F ≈ 1. Interestingly, from
the normalized slip s it is observed that in stage 2 and 3, covering a large portion of the turn,
the non-fully utilized axle has a higher than optimal slip, hence s > 1.

The third deviation is observed in the following occasions:
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• In the turn-in phase while braking, the right (outside) tires have lower friction utilization
than the inside tires. The inside tires have a lower wheel load, due to lateral load
transfer. The force on these tires is limited by wheel stability constraint g2. Shortly
after this, the situation is the opposite: the axles are overdriven mainly as a result of
lateral slip, and the wheel load difference causes the inside tires to be further away from
s = 1 than the outside tires.

• On turn-exit, Frl < Frr and srl > srr. The limited-slip differential places the two
tires on a single rotating body. The axle torque and slip are mainly determined by the
stability of the outside tire, which has more wheel load due to lateral load transfer. As
a result, the inside tire is overdriven. It should be noted that the difference is smaller
than for the first item.

In general it can be said that tire utilization differences on one axle are caused by different
slip and load conditions on the tires on this axle, and that they are therefore unavoidable.
The longitudinal force limit is then decided by the stability of one of the wheels, or by the
stability of the combined body in case of a locked differential.

2. Open-loop stability of linearized lateral dynamics For all three velocities, it can be
seen that there are two distance intervals in the maneuver where one of the eigenvalues is
positive. The first interval is always under straight-line braking. This corresponds to the
findings of Chapter 2. This unstable section is followed by a stable, underdamped arc, which
corresponds to the segment where Ff < 1 and sf > 1. Following on this is another unstable
segment, on which can also be seen that sr > 1. The effect of the slow unstable pole is seen
in the body slip angle trajectory. There is only a small change in the control inputs, yet the
body slip angle grows exponentially towards the middle of the turn. The trajectory of the
steering angle is such that it compensates for β and ψ̇, keeping the front lateral slip on a close
to constant value. As such, it does not act on the unstable dynamics.
For all three turn radii, the positive eigenvalue turns negative as soon as throttle is applied.
This corresponds to the findings in Chapter 2 regarding the influence of longitudinal load
transfer and a limited-slip differential. Furthermore, the eigenvalues turn into a complex pair
on the largest segment of the turn exit. No significant oscillations due to this are observed
though.

3. Input-output zeros of linearized lateral dynamics As can be seen, on the major part
of the maneuver at all three radii there is a right-half plane (RHP) zero in H1(s). Hence, in
controlling the body slip angle with steering angle, an inverse response is present. This effect
can be explained on the basis of (A-38):

β̇ = ψ̇ + Fy cosβ − Fx sin β
mV

As can be seen, β̇ is nonzero in case of a difference between ψ̇ and Ay

V . A change in steering
angle leads to an opposite change in Fy and Mz. Fy acts directly on β̇, but Mz only acts on
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the derivative of ψ̇, causing the opposite direction short- and long term response.

As can be seen, the RHP zero is closest to the imaginary axis for the small-radius turn. This
can be explained by the inverse speed term in (A-38). In addition, transfer function H2(s)
features one zero, which becomes slower towards the middle of the turn, and has a short
positive interval. The short positive interval coincides with the interval on which sf > 1.
Furthermore, around this interval the zeros in both transfer functions go to large positive and
negative values in an inverse relation. This is caused by the small discrepancy in the point

where ∂β
∂δ

and ∂ψ̇

∂δ
switch sign, as is shown in Figure 5-10 for the 30m radius turn.

The presence of the RHP zeros indicates that the vehicle may be difficult to control using
steering angle inputs, especially on the intervals where the RHP in H1(s) is small, and on the
interval where both zeros are positive. It is therefore not surprising that the majority of the
control action using front lateral slip variations occurs on turn entry, where the RHP zero in
H1(s) is still larger than 30.

Additional observations From the results, the following observations regarding optimal con-
trol inputs can be done as well.

• For the major part of the turn the front lateral slip sy,fl and sy,fr are constant and on
or slightly over the slip for maximal lateral force. Hence, the steering angle just follows
and compensates for the influence of other states on front lateral slip. This phenomenon
is clearest in the high-speed turn. Furthermore, the application of throttle has a clear
influence on the yaw rate and body slip angle trajectory. This behavior is remarkable,
since it means that stabilizing the dynamics and following the trajectory is done by a
combination of the longitudinal control input and timing of the initial steering angle
inputs.

• For all three turn radii, there is a step wise increase in positive longitudinal control
input on turn exit. In addition, in the low and medium speed turn there is an interval
with a small amount of positive longitudinal control before the step wise increase. As
can be seen from the change in ψ̇ and the difference between ψ̇ and Ay

V , the body slip
angle decreases rapidly in this interval. These observations leave the question to what
decides the timing and magnitude of both the initial low throttle interval and the step
wise increase.
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Figure 5-4: Nominal results of 35m radius hairpin, selection of states and inputs
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Figure 5-5: Nominal results of 35m radius hairpin. Tire slip s and sy, tire utilization F ,
eigenvalues and zeros of locally linearized system
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Figure 5-6: Nominal results of 70m radius hairpin, selection of states and inputs
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Figure 5-7: Nominal results of 70m radius hairpin. Tire slip s and sy, tire utilization F ,
eigenvalues and zeros of locally linearized system
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Figure 5-8: Nominal results of 105m radius hairpin, selection of states and inputs
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Figure 5-9: Nominal results of 105m radius hairpin. Tire slip s and sy, tire utilization F ,
eigenvalues and zeros of locally linearized system
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Figure 5-10: Control derivatives around s = 190m of the 30m radius hairpin

5-3-3 Conclusion and further questions

It can be concluded that full tire force potential is not always used for each tire. The de-
viations are caused by longitudinal force potential differences on the same axle, and by the
need for globally stable yaw dynamics. Although the solution includes intervals under which
close to full tire utilization for both axles is extended at the cost of yaw accelerations, it
appears inevitable that one of the axles is not on its full potential all the time. Under initial
turn-in, this is the front axle, and in a long interval in the middle of the turn the rear axle
is below its full potential. In both situations, the underused axle is overdriven, hence its
normalized slip is larger than one. It should be noted that this conclusion cannot be gener-
alized, but only applies for this particular set of vehicle parameters and the hairpin maneuver.

In a large portion of the turn, the vehicle has locally open-loop unstable yaw dynamics. At the
same time, controlling the dynamics with steering angle changes especially around the middle
of the turn may be difficult, due to the presence of RHP zeros in the transfer functions from
steering angle to body slip angle and yaw rate. Apart from the initial turn-in, the steering
angle control input is such that the front lateral slip corresponding to full tire utilization is
maintained, by compensating for vehicle state changes.
A final observation is the step wise increase in positive longitudinal control on turn exit,
following on a interval with low, close to constant throttle for the medium and low speed
turns.
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Further questions

• The front tires lateral slip sy,f has a long constant zone. Furthermore there appear two
RHP zeros in steering angle control. How does the reduced closed-loop bandwidth limit
imposed by the RHP zeros affect the rejection of state disturbances in this phase?

• It was observed that the throttle has a step wise increase on turn exit. Since the control
from the front tire lateral forces is minimal throughout the turn, it is suspected that the
size of this step is related to the influence of the longitudinal force on yaw dynamics.
What is the exact timing and magnitude of this step depending on?

• As was seen, most of the time one of the axles is overdriven. This includes turn exit,
which is a useful result for TC. However, practical experience in the field tells that real
drivers do not tend to overdrive the rear axle as much towards the middle of the turn.
If overdriving on turn entry is not present, is the rear axle then still overdriven on turn
exit?

The first question is treated in the perturbation study in Section 5-4, in which local per-
turbations are applied to the states. The last two questions are recommended for future
work.

5-4 Simulation study 3: perturbation analysis

In reality, the vehicle may be subject to disturbances, such as local variations in road friction,
wheel load variations through road unevenness and wind gusts. This, and the impreciseness
of the human driver causes the state at a certain distance in the maneuver to vary from rep-
etition to repetition. As mentioned before in some racing series TC is used, which makes the
longitudinal control inputs partly determined by a semi-automated system. At the same time,
the steering angle is determined entirely by the race driver. In this section it is studied what
the ratio is between the reactions of these two control inputs in the rejection of disturbances
to state and conditions under positive longitudinal acceleration.

The disturbances that are considered are:

• A local reduction of maximum tire force, to emulate a wet patch of tarmac or a dip in
the road.

• A perturbation to the state-vector, in particular yaw rate and body-slip angle.

Note that the latter may occur as a result of the former: a local reduction in track grip leads
to an increase of body slip angle, and depending on the state at the time of the disturbance,
also to a change in yaw rate. In some cases, a disturbance might be known to a driver, for
example in case of a crest in the road. In other cases, the disturbance might be unknown, e.g.
if conditions change rapidly, or in case of a rough vertical road profile and a slightly different
driving path.
We are interested in the adaption of the control input trajectory to both an expected and an
unexpected disturbance. More specifically, the questions that are answered are:
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1. Would TC need preview to reject grip disturbances in a time-optimal fashion?

2. Does a disturbance to the state in turn exit lead to a deviation from optimal front slip
(sf 6= 1), or to a change in longitudinal control?

5-4-1 Local reduction in maximum friction force

The maneuver for the study is a medium-speed hairpin, with equal radius as in the nominal
study. The parameter denoting maximum tire friction FM is reduced to 80% in the interval
175 ≤ s < 185m. Three different cases are considered:

• The entire maneuver is solved with the information FM described above.

• The problem is initialized at s = 175, at initial boundary condition x = xn[ks], where
xn[i] is the state trajectory of a nominal solution without any variations in FM , and ks
corresponding to s = 175.

• The problem is initialized at s = 175, at initial boundary condition x = xn[ks], where
xn[i] is the state trajectory of a nominal solution without any variations in FM , and ks
corresponding to s = 175. In addition, the control inputs are fixed to u = un[ks], where
un[i] is the control input trajectory of a nominal solution without any variations in FM .
This shows the natural response of the vehicle to the disturbance.

We will refer to these three cases as with preview, without preview and without preview and
action. The results for the former two and the nominal solution are displayed in Figure 5-11.
The maneuver times are shown in Table 5-3. The maneuver times from the problems initial-
ized at s = 175m are obtained by adding the time of the interval 0 ≤ s < 175 of the nominal
solution to the time of the interval 175 ≤ s < s[N ] of the perturbed solution. As can be seen,
the time increases about 0.7% with preview. Without preview, this becomes 1%, and without
reaction to the disturbance until s = 185 the increase in maneuver time is 1.1%.

Looking at the figures, first of all it can be seen that the reduction in throttle is multiple times
smaller with preview. Furthermore it can be seen that with preview the lateral position, body
slip angle and yaw rate are already corrected in the right direction before s = 175, by a com-
bination of a lower velocity and different timing of the longitudinal control inputs in the
initial part of the turn. It can be seen again that the front lateral slip barely reacts to the dis-
turbance: the steering angle simply compensates for the changes in β and ψ̇, such that sf ≈ 1.

The main conclusion is that with preview the trajectory is altered, such that the longitudinal
control does not need to be reduced as much on the disturbed interval. Furthermore, it can
be seen that without preview but with action the state trajectory deviates from the state
trajectory. Hence, on s = 185 the problem can be seen as that of a perturbation to the state
vector.
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Figure 5-12 shows the result for the nominal solution, and the the solution without preview
and action on the low-grip interval. For comparison, the solution without preview but with
control on the perturbed interval is plotted again as well. Since the control inputs are freezed,
the red lines show the natural response to the disturbance. As can be seen, both the body slip
angle and yaw rate rise rapidly. The interval is followed by a large reduction in longitudinal
force, and furthermore a decrease in front lateral slip. Again, these conditions are equivalent
to those of a perturbation to the state vector at s = 185 and more extreme than in case some
action is allowed. The perturbation to the state vector will as a condition for the next study,
to systematically investigate the influence of a wide variety of perturbations on the reaction
of the control input trajectories.

Table 5-3: Maneuver times of hairpin with local road friction reduction under various levels of
preview and control

Conditions J [s] Rel. time loss %

Nominal solution 8.607 0
FM = 80% for 175 ≤ s < 185, preview 8.667 0.7
FM = 80% for 175 ≤ s < 185, no preview 8.692 0.9
FM = 80% for 175 ≤ s < 185, no preview, no control 8.705 1.1
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Figure 5-11: Results of hairpin with 10m long reduction of FM to 80%. Nominal, with preview
and without preview
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Figure 5-12: Results of hairpin with 10m long reduction of FM to 80%. Nominal, with preview
and without preview and control action.
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5-4-2 Disturbance to state vector

In the previous study a special cause leading to a perturbation in the state vector was consid-
ered. In this study, a wider range of state perturbations is considered and no preview about
the disturbance is assumed. The problem is initialized at s = 175, and the initial condition
constraint (4-4) is defined as follows:

Υ = x[1]− (xn[ks] + p) = 0 xo, p ∈ Rn (5-16)

Where xn[ks] denotes the state of the solution to the nominal problem at s = 175m. p denotes
a perturbation vector. Two different cases for p are considered. In the first case, a disturbance
is applied to β, ψ̇ and ξ. The disturbance to the vehicle orientation is equal to the disturbance
to the body slip angle, hence:

p1 =
(
0 βp 0 βp ψ̇p

)>
(5-17)

This means that the direction in which the vehicle moves is unchanged, but just the orientation
of the vehicle relative to its direction of moving. Such a disturbance could result from e.g. a
variation in driving on turn entry, leading to a different body slip angle. In the second case,
only ψ̇ and β are perturbed, hence:

p2 =
(
0 0 0 βp ψ̇p

)>
(5-18)

This means that the orientation of the vehicle itself has not changed, but rather the direction
in which it is moving. Such a disturbance can be a result of a local reduction in tire-road
friction or a crest in the track.

For the two cases, all combinations of the following disturbances are simulated.

βp = −4, −2, 0, 2, 4, 6 (5-19)
β̇p = −4, −2, 0, 2, 4 (5-20)

It should be noted that β̇ is a state derivative instead of a state. To find ψ̇ corresponding
to a certain β̇ the nonlinear equation solver fsolve from MATLAB was employed. This
also included finding Γx and Γy such that the load transfer equations (3-16) and (3-17) are
satisfied at the initial condition (5-16).

Examples In Figure 5-14 the responses for βp = −4 and βp = +6 with β̇p = 0, for ξp = 0 is
shown. Figure 5-15 shows the responses for β̇p = −4 and β̇p = +4 with βp = 0, for ξp = 0 as
well. It can be observed that the perturbed trajectory of ψ̇ and β converge to the nominal
solution within about 20m, in case of a disturbance to β̇. Furthermore, negative perturba-
tions to β and β̇ lead to a briefly increased longitudinal control. A short reduction in front

S. van Koutrik Master of Science Thesis



5-4 Simulation study 3: perturbation analysis 89

lateral slip is observed in the first meter in case of a positive β̇. Although this indicates that
the front steering angle can be used for yaw-rate disturbances, it should be noted that this
response might be too fast to be executed by a human driver.

Results The control action for all combinations of disturbances is shown in Figure 5-13.
It displays the value of sy,f and throttle corresponding to the largest deviations from the
nominal trajectory in the first 20m after the disturbance. The reason for this approach
can be understood when observing Figure 5-14 and Figure 5-15: the point in distance s
corresponding to the extreme deviation may differ per case. Going back to Figure 5-13, each
point in the graphs of corresponds to the maximum deviation of sy,f or throttle at one single
combination of βp and β̇p. The two graphs on the left side correspond to a perturbation of
type p1, and the two graphs on the right side correspond to a perturbation of type p2.

• For negative βp and β̇p the longitudinal control action is increased by multiple times.
Inspecting the distance-based graphs in Figure 5-14 and Figure 5-15 learns that in these
cases the longitudinal velocity is increased while bringing β and ψ̇ back to the original
trajectory. Going back to Figure 5-13, it is seen that the magnitude of this effect is
similar for p1 and p2.

• For negative βp and β̇p the front lateral slip does not change, but is maintained at
s ≈ 1. For positive βp and β̇p, a combination of a reduction in longitudinal control and
reduction in front lateral force is used to restore the trajectory. A reduction in throttle
is employed as the first means to reject disturbances. However, as the throttle at the
disturbance approaches its minimal value, an adjustment in sy,f is used in conjuction.
This effect is most visible in case of a perturbation in β̇p. As can be seen in Figure 5-
15, the duration of the sy,f reaction is short: a large negative yaw moment results in
a rapidly decreasing yaw rate, where-after sf ≈ 1 is maintained again. The influence
of the inverse response of β to δ is not seen in this case, which may be caused by the
simultaneous reduction in longitudinal control. Although is seen that the longitudinal
control is the primary control input for rejecting disturbances, it can be said that the
RHP in H1(s) is not significantly restrictive for disturbance rejection.

• Finally, there is a significant difference in distribution between control actions for the
two perturbation types p1 and p2. For positive βp, β̇p and ξp, the front lateral slip is
reduced more than in the case that ξp is not corrected (p2). At the same time, the
opposite counts for the longitudinal control action. Hence, if the direction of movement
of the vehicle is perturbed the front lateral slip tends to stay longer at the optimum, and
more of the disturbance is rejected by a reduction in longitudinal force. This indicates
that the orientation of the vehicle is significantly influencing the distribution of control
actions.
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Figure 5-13: Overview of response magnitude of both control inputs to state disturbances. The
black asterisks mark the nominal solution

5-4-3 Conclusions of disturbance study

The optimal rejection of disturbances was studied. For this, a distance interval with reduced
maximal tire-road friction and a pure perturbation to the state vector were used, all for a
70m radius hairpin. The locally reduced maximal tire-road friction was used as an illustrative
cause for a perturbation to the state vector. The main conclusion drawn from this case is
that with preview of the local tire-road friction reduction, the state trajectory is corrected
already before before the disturbance, resulting in a slightly lower velocity prior to it, but a
reduced impact on the velocity after it. Not surprisingly, the overal maneuver time in case of
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preview is lower than without preview.
For a combined perturbation to the body slip angle and yaw rate, it was shown that the
throttle is the primary control input for rejection disturbances, but that the steering angle
reacts in conjunction as soon as the throttle has reached a certain minimum, especially in
case of large positive perturbations to body slip angle rate. In case of a simultaneous distur-
bance to the vehicle’s orientation ξ and body slip angle β, a larger reduction in front lateral
force is observed together with a smaller change in longitudinal control, even though the slip
state of the vehicle is exactly the same. Unless it can be shown that this information can
be derived from the steering angle δ, this leads to the conclusion that optimal longitudinal
control requires information about ξ and n. It is recommended for future work to validate
this hypothesis.

Future work The perturbation study has led to the following new questions:

1. It was seen that the optimal response of steering angle takes place in a short time, before
optimal front lateral slip is restored again. In reality this response may be impossible
due to the time delay, limited bandwidth and steering velocity of the human driver. In
a future study the human limitations could be included in the model, to see how the
requirements for optimal longitudinal control change.

2. It was shown that the vehicle orientation influences the ratio of the lateral and longitu-
dinal control response. As ξ and n are not available for TC, it is worth investigating if
the optimal longitudinal control can be correlated to the steering angle and the states
describing the motion of the vehicle instead.
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Figure 5-14: Response to disturbed β
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Figure 5-15: Response to disturbed β̇
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5-5 Conclusion

In this chapter three different simulation studies were described. In the first study, the mod-
eling choice to neglect wheel rotational velocities was validated, by a comparison with a
reference model which includes wheel rotational velocities. It was shown that both maneuver
time and trajectory differences are negligible for the current vehicle model. Furthermore, it
was shown that the artificial stability constraint on longitudinal slip prevents the solution to
misuse the absence of the wheel dynamics.

In the second study, the nominal optimal control solution for a hairpin maneuver was studied
on the basis of its relation to TC. It was shown that for the hairpin maneuver the friction for
all four wheels is not used at all times. In general one of the axles is close to full tire force
utilization, and the other is not. On a large interval of the solution, the axle with less than
full utilization is overdriven, hence a tire slip of larger than the slip for maximum tire force
is used. Furthermore, using Lyapunov’s First Method it was shown that the optimal trajec-
tory includes some intervals on which the yaw dynamics are locally unstable. An additional
observation is that steering angle control on the majority of the turn only compensates for
the influence of body slip angle and yaw rate changes on front lateral slip, to keep the front
lateral slip at the value corresponding to maximal lateral force. Hence, the majority of the
control of the dynamics is done by the longitudinal controls and timing of the control inputs
during turn entry.

In reality, the trajectory of the vehicle may include some variations from repetition to rep-
etition as a result of driver imprecision and disturbances to the vehicle. Therefore in the
third study, the optimal reaction of the control inputs to disturbances was studied. First of
all, the reaction to a local reduction in tire-road friction was compared for cases with and
without preview. It was shown that for this particular case the preview led to a slightly
lower velocity prior to the disturbance, combined with a reduction in yaw rate and body slip
angle. However, after the disturbance the velocity is higher than without preview, due to the
reduction in required reaction from throttle. In a more general study several combinations of
perturbation to yaw rate and body slip angle have been applied. For a combined disturbance
to these states, the longitudinal control is shown to be the primary control input for rejec-
tion disturbances, with the steering angle reacting in conjunction as soon as the longitudinal
control has reached a certain minimum, especially in case of large positive perturbations to
yaw rate. In case of a simultaneous disturbance to the vehicle’s orientation ξ and body slip
angle β, a larger reduction in front lateral force is observed together with a smaller change
in longitudinal control, even though the slip state of the vehicle is exactly the same. This
leads to the hypothesis that for optimal rejection of disturbances by TC, information about
the orientation and lateral position of the vehicle is required. To the best knowledge of the
author, a TC system using this information has not been implemented thus far, and as such
this hypothesis is relevant to investigate in future studies.

In this chapter some proposals for future work regarding TC research using optimal control
have been developed. First, it was shown that the rear axle is often overdriven during turn
exit. However, in all cases, the overdriving had been initiated on turn entry. Practical
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experience from the field has shown that human drivers do no often tend to overdrive the rear
axle as much on turn entry, therefore it remains an unanswered question whether it is still time
optimal to exceed sr = 1 on turn exit when overdriving did not occur on turn entry. Second,
the longitudinal control appears to include a step wise increase on turn exit. Since it was
shown that the dynamics during the majority of the turn are controlled by the longitudinal
input, it is suspected that the magnitude of this step wise increase depends on the influence
on yaw and lateral dynamics. Further research to the correlation of this step to variations
in certain quantities can give additional information for time-optimal TC. It was shown that
the longitudinal control is often the main means for rejecting disturbances. In case steering
angle is used for disturbance rejection the control inputs are rather high-frequent. In reality,
the human driver may not be able to supply this due to restrictions in bandwidth and delays.
By including a human limitations in the model, the additional requirements this poses on
TC could be studied. Finally, the ratio of longitudinal and lateral control in their reaction
to disturbance was shown to be dependent on vehicle orientation. Since this measurement is
not available for TC, it should be investigated whether the optimal amount of longitudinal
control can be correlated to other states and the steering angle instead.
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Chapter 6

Precision and Sensitivity

For simulation studies such as performed in Chapter 5 it is desirable to acquire a certain
precision. That is, small variations in parameters or starting solution should not lead to
disproportional differences in state trajectory. In Section 6-1 the precision is investigated by
mapping the relation between mass and maneuver time. It is shown that there exist two
classes of qualitatively different local minima, and that convergence to the one or the other
minimum is influenced by small variations in mass. Two ways for improving the precision of
the method are described. The first approach is the usage of inequality constraints reducing
the solution space and the second approach is the usage of a warm-start. The results of both
approaches is presented.

An important application of maneuver time simulation is to determine the maneuver time
dependency on some key vehicle parameters, such as mass, power, aerodynamic downforce
and drag. This information is used in determining vehicle set-up parameters, and is used
for the plausibilization of test results in case of (known) variations to such parameters. In
the framework of Minimal Time Maneuvering (MTM) methods, we are also interested in the
variation of the optimal solution with small perturbations to parameters. The investigation
of the change of the optimal solution with small perturbations to parameters is in this thesis
defined as sensitivity study. The changes can be predicted by so-called sensitivity differentials.
Methods for efficient calculation of sensitivity differentials are well developed. This thesis
makes use of an existing theoretical framework for interior-point methods. An overview of
the relevant literature and a brief introduction to the method are given in Section 6-2. As a
proof of concept for the applicability of use of sensitivity differentials for the race car MTM,
the method is applied in a small study of maneuver time sensitivity to vehicle mass. The
results of this study are presented in Section 6-3.

6-1 Precision

The optimal solution may be affected by random errors as result of a finite-precision arithmetic
operations. Furthermore, there is a certain tolerance on termination criteria, allowing all
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solutions that are within these tolerances. Finally, for general nonlinear objective functions
there could exist multiple local minima. Small variations in parameters or starting solution
may lead to a convergence to a different solution even when infinite-precision and infinitely
small tolerances would be used. In this section, an image of the combination of these three
errors is formed. The metric we associate to precision is the relative standard deviation of
the maneuver time, defined as:

σn =

√√√√√ L∑
k=1

J2[k]−E2
J [k]

L
L∑
k=1

J [k]

L

(6-1)

Where L is the number of optimization runs in the study. J [k] and EJ [k] denote the perfor-
mance index and expected value of the performance index respectively. The latter is formed
on the basis of all L solutions. Note that the general precision of the method cannot be
assessed in this manner, but rather the precision of a certain study. The relative standard de-
viation for the maneuver time is considered, since this is assumed to contain the information
of the most relevant states. We calculate σn for a variation in vehicle mass. This parameter
is chosen because from physical properties it is known that an increase in vehicle mass should
always increase maneuver time. The mass is varied in steps of 0.25 kg, in a range of 20 kg.
In this range, the mass and maneuver time are assumed to have a linear relation. This forms
the basis for the calculation of EJ [k]. The maneuver for the study is a 50 m radius hairpin,
enclosed by two 100 m straight line sections.

Results The result is shown in Figure 6-1. The first observation is the (expected) positive
relation between mass and maneuver time. Second, it can be seen that there are two main
solution classes, with a difference of approximately 0.01s between them. The nature of the
difference between the solution classes can be seen from Figure 6-3, which contains the velocity,
lateral position and rear lateral slip trajectories of all solutions. As can be seen there is a
significant difference in body slip angle, yaw rate and velocity trajectory for the two solution
classes. According to the definition given in Section 5-1 the rear axle is clearly overdriven for
the faster local minimum. This corresponds to the conclusions given in Chapter 5. For the
local minimum corresponding to the higher maneuver time, the rear axle is overdriven as well,
but not as much. The velocity signal shows that the point of lowest velocity occurs around
8 m later for latter local minimum. The resulting relative standard deviation in maneuver
time is equal to σn = 5.8 · 10−4.

6-1-1 Distance-dependent constraint

As was concluded in the previous paragraph the precision is decreased by the convergence of
the method to two different local minima. As can be seen from Figure 6-3, the rear lateral
slip sy,r trajectory for the two solution classes is significantly different around the middle of

S. van Koutrik Master of Science Thesis



6-1 Precision 99

Vehicle mass [kg]
950 955 960 965 970 975

M
an

eu
ve

r 
tim

e 
[s

]

9.18

9.185

9.19

9.195

9.2

9.205

9.21

9.215

Figure 6-1: Maneuver time for varying vehicle mass, hairpin maneuver

the maneuver, both qualitatively and quantitatively. In order to enforce solution class two,
the following distance dependent constraint is added to the problem formulation:

g4[i] = φ[i](sy,r[i] + 0.1) ≤ 0 (6-2)

φ[i] =
{

1 if 150 ≤ s[i] ≤ 170
0 otherwise (6-3)

For i = 1 ... N . Figure 6-3 shows a graphical representation of inequality constraint g4.
The result is shown in Figure 6-2. As can be seen, σn is decreased by around a factor ten
with this additional constraint.

6-1-2 Exploiting IPOPT warm-start

An alternative approach for reducing the solution spread may be to initialize the optimization
at a point closer to the solution. In the most extreme case, we may initialize problem (4-23)
at the previous solution. We define the previous solution as the solution of the problem with
a mass difference of 2.5 kg. Aside from the primal variables c̃, the full variable information of
an interior-point solution includes the dual variables λ and Lagrange multipliers of decision
variable upper and lower bounds, defined as zL and zU [39]. Initializing the optimization
with the full-variable information from a previous solution is referred to as warm-start [44].
For the results in this study, the warm-start feature of IPOPT was exploited. The problem
is now initialized as follows:
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c̃i = c̄k (6-4)
λi = λ̄k (6-5)
c̃Li = c̄Lk (6-6)
c̃Ui = c̄Uk (6-7)

Where c̃i, λi, c̃Li and c̃Ui denote the full-state information for the starting solution, and c̄k,
λ̄k, c̄Lk and c̄Uk the full-state information from the previous solution. The previous solution is
defined as the solution of (4-23) with vehicle mass mk = mi − 2.5.
The results are displayed in Figure 6-2 as well. As can be seen, using warm-start leads to a
further improvement in precision. The normalized standard deviation is in this case equal to
σn = 2.8 · 10−6.
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Figure 6-2: Maneuver time for varying vehicle mass, hairpin maneuver for three different ap-
proaches.

6-2 Parametric sensitivity for optimal control

In this work, sensitivity study is defined as the analysis of the influence of small parameter
perturbations on the optimal solution. We approach this study by calculating so-called sen-
sitivity differentials. The theory for the calculation of sensitivity differentials for parametric
optimal control problems is well-developed. In the field of parametric sensitivity for optimal
control the perturbations to the system are modeled by introducing parameters to the problem
formulation. The theory relies on the implicit function theorem and the differentiability of the
optimal solution with respect to the parameters. E.g. [45], [46] and [47] describe developments
in the theoretic framework based on indirect methods. As already mentioned in Section 4,
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indirect methods have the drawback that it implies the derivation of the necessary conditions
for optimality, and furthermore that an initial guess of the trajectory of the adjoint variables
and active set at the optimum are required. As an alternative, methods have been developed
for parametric sensitivity using Non-Linear Programming (NLP) methods, for example in
[48] and [49]. Essentially it is used that for a solution with suitable regularity conditions the
sensitivity can be obtained by a linearization of the Karush-Kuhn-Tucker (KKT) conditions.
The most recent implementation of parametric sensitivity to the barrier problem is described
in [50]. The work builds on the advantage of the large-sparse capabilities of IPOPT, and has
been implemented in the software package called sIPOPT. This software package is used for
the application in this thesis.

6-2-1 Theoretical background on parametric sensitivity for interior-point meth-
ods

A brief overview of the theoretical background of parametric sensitivity for interior-point
methods for NLP is presented here. This will be done on the hand of the description in [50].
For the full mathematical background the interested reader is referred to his work, and to the
other references given in the previous paragraph.

Following the notation from Chapter 4, the following parametric nonlinear program is con-
sidered:

min
x

f(x, p) (6-8)

s.t. c(x, p) = 0
x > 0

For this outline, no other inequality constraints than positive x have been assumed. The
derivations are however extendable to upper bounds and nonlinear inequality constraints.
IPOPT solves a sequence of the following barrier problems, with decreasing µ:

min
x

f(x, p)− µ
m∑
i=1

ln x (6-9)

s.t. c(x, p) = 0

We are interested in the sensitivity differentials at the solution p = p0, given by dx∗(p0)
dp and:

df(x∗; p0)>

dp = ∂f(x∗; p0)>

∂p
+ dx(p0)>

dp
∂f(x∗; p0)>

∂x
(6-10)

Where x∗ denotes the value of x at the solution p = p0. The KKT conditions for this problem
are given by:

S. van Koutrik Master of Science Thesis



6-2 Parametric sensitivity for optimal control 103

∇xL(x∗, λ∗, ν∗; p0) = ∇xf(x∗, p0) +∇xc(x∗, p0)λ∗ − ν∗ = 0
c(x∗; p0) = 0

XV e+ µe = 0

}
Q(s, p) = 0 (6-11)

Where X and V are diagonal matrices with the elements of x and ν on the diagonals, and
e ∈ Rnx a vector of ones. s denotes s =

[
x> λ> ν>

]
. Under certain conditions to the

constraints and problem, it can be proven that the KKT conditions Q(s, p) = 0 become strong
second order sufficient conditions for optimality. Furthermore, under the same assumptions
the barrier sensitivity properties can be proven, which state that for f(x; p) and c(x; p) k
times differentiable in p and k + 1 times differentiable in x:

• x(µ; p0) is an isolated minimizer and the associated barrier multipliers λ(µ; p0) and
ν(µ; p0) are unique.

• For some p in the neighborhood of p0 there exists a k times differentiable function:

s(µ; p) =
[
x(µ; p)> λ(µ; p)> ν(µ; p)>

]
(6-12)

Corresponding to a locally unique minimum for (6-9).

• limµ−→0,p−→p0 s(µ; p) = s(0, p0) = s∗

These properties form the basis for the remainder of the outline. For a proof and precise for-
mulations of the conditions, the reader is referred to [50]. An important result however, is that
all conditions can be checked for at the optimal solution from some information provided by
IPOPT. This includes the inertia of the KKT matrixM which will be defined in the following.

The sensitivity differentials are now obtained by differentiating the KKT conditions using the
Implicit Function Theorem:

∂Q(s∗(p0), p0)
∂s︸ ︷︷ ︸

M(s(µ;p0))

∂s

∂p

∣∣∣∣
p0

+ ∂Q(s∗(p0), p0)
∂p︸ ︷︷ ︸

Np(s(µ;p0))

= 0 (6-13)

The matrices M and N are given by:

M(s(µ; p0)) =

 W (s(µ; p0)) A(x(µ; p0)) −I
A(x(µ; p0)) 0 0
V (µ; p0) 0 X(µ; p0)

 (6-14)

Np(s(µ; p0)) =

 ∇xpL(s(µ; p0))
∇c(x(µ; p0))

0

 (6-15)

Where W (s(µ; p0)) and A(x(µ; p0)) denote the Hessian of the Lagrangian and constraint
Jacobian evaluated at s(µ, p0) and x(µ, p0). For the same a set of constraint qualifications that
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turn the KKT conditions into sufficient conditions for optimality, the KKT matrixM(s(µ; p0))
is nonsingular. Hence, the sensitivity differential can be calculated as follows:

ds(µ; p0)>

dp = −M(s(µ; p0))−1Np(s(µ; p0)) (6-16)

Note that this term already includes the required result dx∗(p0)
dp . The state trajectory of the

optimal solution of the perturbed problem can now be approximated using a Taylor expansion
for small values of ‖p− p0‖:

x(p) = x(p0) + dx∗(p0)
dp (p− p0) + o‖p− p0‖ (6-17)

Where o‖p − p0‖ denotes the unknown contribution of higher order terms in the expansion.
The matrix M and Np are directly available in IPOPT from the solution of (6-9). Hence, the
sensitivity of a solution can be calculated with a small amount of additional calculations.

6-2-2 Implementation through sIPOPT

The theory described in the previous paragraphs is implemented in the sIPOPT package [50].
Interface with sIPOPT is currently only possible with AMPL [51]. For this study, therefore
the problem (4-23) was reformulated in AMPL language. There are some differences compared
to the implementation described in the rest of the thesis:

• The cost function gradient and constrained Jacobian are calculated using the automatic
differentiation [52] feature implemented in AMPL, rather than by a finite-difference
approximation.

• The warm-start and distance-dependent constraint features in the rest of the work have
not been implemented in this version, due to the inexperience of the author with AMPL
and the limited available time.

• Instead of the MA57-linear solvers available in the MATLAB implementation, only the
MUMPS linear solver for internal IPOPT subproblems could be used. As stated in [44],
this solver is less suitable for large-scale problems. This disadvantage was experienced
during the implementation, and limited the problem size that could be handled with this
version. As such, the sensitivity analysis in Section 6-3 was performed with a relatively
large discretization interval of h = 2 m.

6-3 Results of sensitivity study

In this sensitivity analysis we consider the variation of maneuver time and state trajectory
for small perturbations to the vehicle mass. The questions that are answered are as follows:

1. Does the sensitivity differential provide accurate information regarding the dependency
of maneuver time on mass?
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2. Does the approximated solution using sensitivity differentials satisfy all inequality con-
straints?

For answering the first question, we perform a similar study as in Section 6-1. The vehicle
mass is varied over a range of 20 kg in steps of 0.25 kg. At each solution we calculate ∂J

∂m
using the theory described in Section 6-2. The result from the sensitivity differential is com-
pared to the trend obtained from the solutions at multiple values of m.
For answering the second question, we consider a rather large perturbation to vehicle mass
of ∆m = 50 kg. A variation in vehicle mass of such magnitude may occur during a race
because of variations in the amount of fuel on board. From the sensitivity differentials, we
calculate the approximated optimal state trajectories according to (6-17). Following on this,
the nonlinear inequality constraints g and decision variable bounds are evaluated.

6-3-1 Dependency of maneuver time on mass

Figure 6-4 shows the maneuver time as well as the value of the cost sensitivity differential ∂J
∂m

for a vehicle mass varying from 953 to 972 kg. As can be seen, the precision of this AMPL
implementation is somewhat lower than for the MATLAB implementation of Section 6-1 with
g4. The value of Ĵ indicated by the red dashed line is obtained by integration of ∂J

∂m
in the

following manner:

Ĵ [j] = J953 +
j∑
i=1

∂J

∂m
[i](m[j]−m[j − 1]) (6-18)

Where J953 denotes the maneuver time at m[0] = 953 kg. Note that the integration handles
variable mass step sizes. This is needed since some data points are missing from the results.
The convergence of problem (4-23) with the AMPL implementation of IPOPT is somewhat
less robust, due to the inexperience of the user with it and the limited available time. An
interesting result however, is that the integrated performance Ĵ , which is entirely based on
the sensitivity differentials, is matching the trend observed from the nominal solutions over
the mass range. Hence, even with paled precision due to the presence of several local minima,
the sensitivity result is accurate.

6-3-2 Inequality constrained evaluation and qualitative solution study.

The theory described in Section 6-2-1 assumes the active-set along the trajectory to be invari-
ant for a perturbation ∆p = p− p0. In the full parametric NLP however, a perturbation ∆p
may lead to an active set change, for which a positive variable becomes active at zero, or an
active variable becomes positive [50]. Informally speaking: the linear approximation to the
optimization problem may neglect bounds that are not active at p0, or may satisfy bounds
that are not active any more.
In this particular study, the feasibility is assessed for a perturbation to vehicle mass equal to
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Figure 6-4: Maneuver time and maneuver time sensitivity with varying vehicle mass for a hairpin
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∆m = 50 kg. The results are shown in Figure 6-5. It shows the nominal trajectory and the
approximation of the perturbed trajectory for a selection of states and inputs. The lower two
graphs display the violation of respectively the lower and upper bounds of lateral position n,
and the violation of the power constraint g1 < 0. All other bounds and constraints were not
violated at all in the approximated solution at ∆m = 50 kg.

As can be seen, the lateral position bounds are violated for short distance intervals around
s = 65 and s = 220. In both cases, the trajectory of n and n̄ are slightly different prior to
the point where n touches the bound. Since the interval on which the bound on n is active
is very short, it is not surprising that the slightly different trajectory causes a mismatch in
active set. The magnitude of the violation however stays below 1 cm, which is an acceptable
level for a mass variation of 50 kg.
The power constraint g1 is violated briefly around s = 270. Again, the violation occurs on
a change of the active set. As can be seen, for the approximated solution with ∆m = 50 kg
the power constraint becomes active at an earlier point in distance. The magnitude of 0.002,
corresponding to less than 1kW is accepted for this study.

Although the constraint violation due to active set changes was acceptable for this study, the
effect may be of higher relevance for other parameters. Especially parameters which have
a relatively high influence on the active set along the trajectory may be expected to cause
inaccuracies. [50] handles this problem via a fix-relax strategy, using results from [53]. This
is an efficient iterative strategy based on Schur complements. It is recommended for future
work to implement this method.

6-4 Conclusion

This chapter discussed the precision of the method in predicting the influence of mass on ma-
neuver time. Furthermore a sensitivity analysis using sensitivity differentials was performed.
It was shown that imprecision is introduced as a result of converging to different local min-
ima. Two qualitatively different local minima were found, with a maneuver time difference of
only 0.1%. It was shown that using distance-dependent inequality constraints on rear lateral
slip one of the cases can be excluded from the solution space, improving the precision of the
method. Furthermore, the IPOPT warm-start feature was exploited to improve the precision
by more than an order of magnitude. This confirms that the main contribution to method
imprecision is the presence of multiple local minima which the solver is likely to converge to.

A proof of concept-like sensitivity study was performed using existing theory for parametric
sensitivity for barrier methods. For this, the software package sIPOPT, interfaced with the
language AMPL was implemented. For the proof of concept, the vehicle mass was taken
as the variable parameter. The result of the sensitivity differential appeared to be in good
accordance with the sensitivity to mass from the precision experiment. It was shown that at
some active set changes the upper and lower bounds on lateral position and the upper bound
on power are violated. This behavior is inherent to the principle behind the calculation of
sensitivity differentials. For future work it is recommended to exploit the fix-relax strategy
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which is implemented in sIPOPT, especially in parametric sensitivity analysis for parameters
which have a relatively large influence on the intervals on which inequality constraints are
active.
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Chapter 7

Conclusion and recommendations for
future work

This thesis described the implementation and application of a time-minimal trajectory gener-
ation method using optimal control. A direct collocation method was applied, using B-splines
to represent control input and state trajectories. For solving the resulting nonlinear program,
the IPOPT and SNOPT solvers have been compared. The model was based on a study of the
influence of modeling alternatives on steady-state acceleration limits and dynamic properties.
Using the described method, some case studies related to Traction Control (TC) systems
have been performed. In addition, the precision of the method under certain conditions was
assessed. Finally, a sensitivity study using so-called sensitivity differentials was performed.

Summary of contributions

• Different modeling alternatives have been compared based on their completeness for a
qualitative study of the optimal control inputs. This was indicated by the influence of a
modeling method on steady-state acceleration potential and potential yaw moment, and
by the influence on the eigenvalues of the linearized dynamics under various longitudinal
accelerations.

• The minimal time trajectory planning problem is formulated as an optimal control
problem, which is discretized following the full collocation method where the state and
input trajectories are parameterized in terms of B-spline coefficients. The integration
of the equations of motion is approximated by the trapezoidal rule. The dynamics are
formulated with distance as independent variable, and a curvilinear coordinate system
is used.

• The SQP method SNOPT and interior-point method IPOPT have been compared based
on their suitability for the race car Optimal Control Problem (OCP) on various ma-
neuver lengths and discretization intervals. The precision of the resulting method in
predicting maneuver time dependency on vehicle mass was assessed.
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• The wheel rotational velocities are omitted from the state vector. Instead, tire longitu-
dinal slip is included in the state vector. The hydraulic brake system and mechanical
differential characteristics are satisfied by three independent algebraic equality con-
straints, resulting in one degree of freedom for the longitudinal control. The wheel
rotational velocity is restricted to the velocity corresponding to stable wheel dynamics
by additional inequality constraints. The presented formulation is validated using a
reference model which does include wheel rotational velocities.

• The hairpin maneuver was studied in depth for three different corner radii. Questions
regarding tire friction utilization, overdriving and vehicle stability which are relevant to
TC were answered.

• A perturbation study was done, in which the reaction to a local reduction in tire-road
friction with and without preview was compared. In addition, the time-optimal reaction
of steering angle and longitudinal control for perturbations to the yaw rate, body slip
angle and orientation compared to the nominal optimal trajectory is studied.

• A proof of concept of the applicability to the race car MTM of the use of sensitivity
differentials for performing parametric sensitivity studies.

7-1 Summary of conclusions

The thesis makes the following conclusions:

• Longitudinal load transfer, lateral load transfer, aerodynamic downforce and a limited-
slip differential have a significant influence on steady-state acceleration limits, potential
yaw moment, and on eigenvalues at various longitudinal accelerations for the parameters
used in this study. As such, these effects have to be included for a qualitative study of
the optimal control input.

• Omitting wheel rotational velocities from the state vector does not result in a significant
difference in trajectory of the other states if constraints are incorporated to represent
the wheel stability boundaries.

• With the OCP formulated as a Nonlinear Program as described in the previous para-
graph, using sparse-finite differencing for the constraint Jacobian calculation and using
the IPOPT solver results in a method which can be used as a fast and robust analysis
tool. That is, a maneuver with a length of 400m discretized on a 1m grid takes less
than one minute to solve. With the inclusion of distance-dependent inequality constraint
on rear lateral slip, a precision of 0.006% in predicting maneuver time dependency on
vehicle mass was achieved.

• For this application, the interior-point solver IPOPT is clearly superior over the SQP
solver SNOPT for problems with 1000 decision variables or more.

• For a hairpin maneuver the peak friction potential for all four wheels is not utilized
at all times. In general one of the axles utilizes the full tire friction, and the other
does not. On a large interval of the solution, the axle with less than full utilization
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is overdriven, hence a tire slip of larger than the slip for maximum tire force is used.
The optimal trajectory includes some intervals on which the yaw dynamics are locally
unstable. The control of the dynamics during the major part of the turn is done by the
longitudinal controls and timing of the control inputs during turn entry. The steering
angle trajectory mainly compensates for the influence of body slip angle and yaw rate on
front lateral slip, aiming to the front lateral slip at the value corresponding to maximal
lateral force.

• A temporary reduction in tire-road friction leads to a lower velocity prior to the distur-
bance, combined with a reduction in yaw rate and body slip in case preview is provided.
When preview is omitted, the reaction of longitudinal control to the reduction is mul-
tiple times larger, leading to lower velocity after the disturbance than in the case with
preview. For a combined disturbance on yaw rate and body slip angle, the longitudinal
control is the primary control input for rejecting disturbances, with the steering angle
reacting in conjunction as soon as the longitudinal control has reached a certain limit.
In case of a simultaneous disturbance on the vehicle’s orientation and body slip angle,
a larger reduction in front lateral force is observed together with a smaller change in
longitudinal control, even though the slip state of the vehicle is exactly the same. This
indicates that for time-minimal disturbance rejection, information about the vehicle’s
orientation relative to the road is needed for TC.

• The sensitivity of maneuver time to vehicle mass can accurately be estimated by the
calculation of sensitivity differentials using internal information from IPOPT, when the
mass is included as decision variable. This approach however leads to small bound
violations in situations where the active set changes.

7-2 Recommendations for future work

In the following, recommendations for future work are listed. These do not just include
suggested improvements to the method, but also new applications for it.

Roll and pitch dynamics One of the arguments for neglecting suspension dynamics was
the assumption that optimal circuit driving is smooth enough to not excite the roll
and pitch dynamics. The optimal solution however often shows a step wise increase in
longitudinal control on turn exit. Studying this non-smooth phenomenon more closely
may require the inclusion of a pitch degree of freedom. Furthermore, turn entry showed
some high-frequency yaw oscillations induced by the steering angle. This indicates
that it is worth investigating whether or not turn entry changes significantly with the
inclusion of a roll degree of freedom.

Restrictions on rear lateral slip It was shown that the rear axle is often overdriven dur-
ing turn exit. However, in all cases this was already initiated on turn entry. Practical
experience from the field has shown that human drivers do no often tend to overdrive the
rear axle as much on turn entry, therefore it remains an unanswered question whether
it is still time optimal to exceed sr = 1 on turn exit when overdriving did not occur on
turn entry. It was already found that inequality constraints on the rear lateral slip over
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a certain distance interval work well. This can be employed to induce a more realistic
driving behavior on turn entry.

Correlation of initial release to yaw moment The throttle appears to include a step-
wise increase on turn exit. Since it was shown that all control of dynamics throughout
the majority of a turn happens through the brake and throttle, it is suspected that
the magnitude of this step-wise increase depends on the influence on yaw and lateral
dynamics. Further research on the correlation of this step to variations in quantities
such as velocity can give additional information for time-optimal TC.

Incorporate human limitations It was shown that the longitudinal control is often the
main means for rejecting disturbances. However, in the case where steering angle is
used for disturbance rejection, the control input is rather high-bandwidth. In reality,
the human driver may not be able to supply this control input due to limited reaction
time and a limited rate of change of steering angle. By including human limitations in
the model, the additional requirements this poses on TC could be studied.

Correlation of optimal longitudinal reaction to steering angle In simulation study 3
it was shown that the ratio of longitudinal and lateral control in their reaction to
disturbance is dependent on vehicle orientation. Since vehicle orientation measurement
is not available for current TC systems, it is worth investigating whether the optimal
amount of longitudinal control can be correlated to the steering angle and other states
instead.

Adaptive grid refinement There exist reliable adaptive grid refinement algorithms which
find the required mesh size in an iterative fashion using a local error estimation [27],
[41], [42]. This type of method rules out the need to assess accuracy for each prob-
lem manually, and is more efficient if longer maneuvers with long straight-line sections
requiring a less fine grid are to be solved.

Alternative SQP solver The WORHP solver for Non-Linear Programming (NLP) could
be tried as an alternative SQP method. Although solver SNOPT was shown to be not
competitive with interior-point method IPOPT, WORHP is said to be suitable for very
large (or even huge) problems. This is worth trying, to see if the benefits of Sequential
Quadratic Programming (SQP) methods in the presence of nonlinear constraints and a
relatively small amount of free variables can be exploited.

Fix-relax strategy for bound violation in parametric sensitivity study As was shown,
the approximated solution by the sensitivity differentials leads to violation of variable
bounds and nonlinear inequality constraints. It is recommended to exploit the fix-relax
strategy which is implemented in sIPOPT, for robustness in parametric sensitivity anal-
ysis in case parameter variations have a large influence on the length of constrained arcs.
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Appendix A

Vehicle models

A-1 Subscripting system

The subscript f, r denote the front and rear axle respectively. The subscripts fl, fr, rl, rr
denote the front-left, front-right, rear-left and rear-right wheel respectively.
The subscript x, y and z indicate the value of the quantity (for example velocity or Force)
projected on the respective axis of the Cartesian system. Unless the superscript T is used for
the local tire frame, the frame is always the local vehicle coordinate system.
When subscripts are combined, they are separated by a comma. Fx,fl for example indicates
the force in x-direction on the front-left tire.

A-2 Single-track model

In this section, the single-track vehicle model used in Section 2 is described. The states and
control inputs are defined as:

x = (V β ψ̇ ωf ωr)> (A-1)
u = (δ T )> (A-2)

With T the total wheel torque excluding engine drag torque, ωf and ωr the front and rear wheel
rotational velocities and the other variables as shown in Figure 2-1. The state derivatives are
given by:
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V̇ = Fx cosβ + Fysinβ − Fd
m

(A-3)

β̇ = ψ̇ + Fy cosβ − Fx sin β
mV

(A-4)

ψ̈ = Mz

Izz
(A-5)

ω̇f = Tf −RlFx,f (A-6)
ω̇r = Tr −RlFx,r (A-7)

With vehicle mass m and yaw moment of inertia Iz, and tire loaded radius Rl. The forces
and moments acting on the vehicle body are composed as follows:

Fx = Fx,f cos δ − Fy,f sin δ + Fx,r (A-8)
Fy = Fx,f sin δ + Fy,f cos δ + Fy,r (A-9)
Mz = l(1− dm)(Fx,f sin δ + Fy,f cos δ)− ldmFy,r (A-10)

With wheel base l and weight distribution dm. The longitudinal and lateral velocity at the
wheel in vehicle coordinates are given by:

vx = V cosβ (A-11)
vy = V sin β (A-12)
vx,f = vx (A-13)
vy,f = vy + lfψ̇ (A-14)
vx,r = vx (A-15)
vy,r = vy − lfψ̇ (A-16)

Expressed in tire coordinates:

vTx,f = vx,f cos δ + vy,f sin δ (A-17)
vTy,f = vy,f cos δ − vx,f sin δ (A-18)
vTx,r = vx,r (A-19)
vTy,f = vy,r (A-20)

The lateral and longitudinal tire slip are calculated by:
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sx,f =
ωfReff − vTx,f

ωfReff
(A-21)

sy,f = −
vTy,f
vTx,f

(A-22)

sx,r =
ωrReff − vTx,r

ωrReff
(A-23)

sy,r = −
vTy,r
vTx,r

(A-24)

With tire effective rolling radius Reff. From the tire slip and vertical force the tire planar
forces can be calculated:

(Fx,f, Fy,f) = F (sy,f, sx,f, Fz,f) (A-25)
(Fx,r, Fy,r) = F (sy,r, sx,r, Fz,r) (A-26)

(A-27)

Where f denotes the TMeasy tire model, given by [25], p59. The vertical force on the tires
is given by:

Fz,f = mgdm −
Fxhcg
l

+ Fldl (A-28)

Fz,r = mg(1− dm) + mFxhcg
l

+ Fl(1− dl) (A-29)

(A-30)

With wheelbase l, vehicle mass m, center of gravity height hcg. The weight and aerodynamic
downforce are distributed over the axles by dl and dm. Note that in case of neglecting
longitudinal load transfer, hcg is assumed equal to zero.
The aerodynamic drag Fd and downforce Fl in N are given by:

Fd = 0.5ρCdAV 2 (A-31)
Fl = 0.5ρClA(V cosβ)2 (A-32)

Where CdA and ClA are the drag and downforce coefficient times the frontal area, and ρ the
air density. Finally, the wheel torques for the rear wheel drive model are defined as follows:

Tf =
{

0 if T > 0
dTT otherwise (A-33)

Tr =
{
T if T > 0
(1− dT )T otherwise (A-34)
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With dT the brake torque distribution.

A-3 Two-track model

In this section, the two-track vehicle model as used in this thesis is described. The states and
control inputs are defined as:

x = (V β ψ̇ ωfl ωfl ωrl ωrr)> (A-35)
u = (δ T )> (A-36)

With T the total wheel torque, ωfl, ωfr, ωrl and ωrr the wheel rotational velocities and the
other variables as shown in Figure 2-1. The state derivatives are given by:

V̇ = Fx cosβ + Fysinβ − Fd
m

(A-37)

β̇ = ψ̇ + Fy cosβ − Fx sin β
mV

(A-38)

ψ̈ = Mz

Izz
(A-39)

ω̇fl = Tfl −RlFx,fl (A-40)
ω̇fr = Tfr −RlFx,fr (A-41)
ω̇rl = Trl −RlFx,rl (A-42)
ω̇rr = Trr −RlFx,rr (A-43)

With vehicle mass m and yaw moment of inertia Iz, and tire loaded radius Rl. The forces
and moments acting on the vehicle body are composed as follows:

Fx = (Fx,fl + Fx,fr) cos δ − (Fy,fl + Fy,fr) sin δ + (Fx,rl + Fx,rr) (A-44)
Fy = (Fx,fl + Fx,fr) sin δ + (Fy,fl + Fy,fr) cos δ + (Fy,rl + Fy,rr) (A-45)
Mz = l(1− dm)((Fx,fl + Fx,fr) sin δ + (Fy,fl + Fy,fr) cos δ)− ldmFy,rl + Fy,rr)

+ ((Fx,fl − Fx,fr) cos δ − (Fy,fl − Fy,fr) sin δ + Fx,rl − Fx,rr)
ν

2 (A-46)

With wheel base l, track width ν and weight distribution dm. The longitudinal and lateral
velocity at the wheel in vehicle coordinates are given by:
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vx = V cosβ (A-47)
vy = V sin β (A-48)

vx,fl = vx + ν

2 ψ̇ (A-49)

vx,fr = vx −
ν

2 ψ̇ (A-50)

vy,f = vy + lfψ̇ (A-51)

vx,rl = vx + ν

2 ψ̇ (A-52)

vx,rr = vx −
ν

2 ψ̇ (A-53)

vy,r = vy − lfψ̇ (A-54)

Expressed in tire coordinates:

vTx,fl = vx,fl cos δ + vy,fl sin δ (A-55)
vTx,fr = vx,fr cos δ + vy,fr sin δ (A-56)
vTy,f = vy,f cos δ − vx,f sin δ (A-57)
vTx,rl = vx,rl (A-58)
vTx,rr = vx,rr (A-59)
vTy,f = vy,r (A-60)

The lateral and longitudinal tire slip are calculated by:

sx,fl =
ωflReff − vTx,fl

ωflReff
(A-61)

sx,fr =
ωfrReff − vTx,fr

ωfrReff
(A-62)

sx,rl =
ωrlReff − vTx,rl

ωrlReff
(A-63)

sx,rr =
ωrrReff − vTx,rr

ωrrReff
(A-64)

sy,fl = −
vTy,fl
vTx,fl

(A-65)

sy,fr = −
vTy,fr
vTx,fr

(A-66)

sy,rl = −
vTy,rl
vTx,rl

(A-67)

sy,rr = −
vTy,rr
vTx,rr

(A-68)

Master of Science Thesis S. van Koutrik



120 Vehicle models

With tire effective rolling radius Reff. From the tire slip and vertical force the tire planar
forces can be calculated:

(Fx,fl, Fy,fl) = F (sy,fl, sx,fl, Fz,fl) (A-69)
(Fx,fr, Fy,fr) = F (sy,fr, sx,fr, Fz,fr) (A-70)
(Fx,rl, Fy,rl) = F (sy,rl, sx,rl, Fz,rl) (A-71)
(Fx,rr, Fy,rr) = F (sy,rr, sx,rr, Fz,rr) (A-72)

(A-73)

Where F denotes the tire model, described in [25], p59. The vertical force on the tires is
given by:

Fz,fl = 1
2mgdm −

Fxhcg
l

+ Fyhcg
ν

dLT + 1
2Fldl (A-74)

Fz,fr = 1
2mgdm −

Fxhcg
l
− Fyhcg

ν
dLT + 1

2Fldl (A-75)

Fz,rl = 1
2mg(1− dm) + mFxhcg

l
+ Fyhcg

ν
(1− dLT) + 1

2Fl(1− dl) (A-76)

Fz,rr = 1
2mg(1− dm) + mFxhcg

l
− Fyhcg

ν
(1− dLT) + 1

2Fl(1− dl) (A-77)

With wheelbase l, vehicle mass m, center of gravity height hcg. The weight,aerodynamic
downforce and lateral load transfer are distributed over the axles by dm, dl and dLT. Note
that in case of neglecting longitudinal and lateral load transfer, hcg is assumed equal to zero.
The aerodynamic drag Fd and downforce Fl in N are given by:

Fd = 0.5ρCdAV 2 (A-78)
Fl = 0.5ρClA(V cosβ)2 (A-79)

Where CdA and ClA are the drag and downforce coefficient times the frontal area, and ρ the
air density. Finally, the wheel torques for the rear wheel drive model are defined as follows:

Tfl = Tfr =
{

0 if T > 0
dTT otherwise (A-80)

Tr =
{
T − TE,drg if T > 0
(1− dT )T − TE,drg otherwise (A-81)

With dT the brake torque distribution. Note that in the brake balance calculation the TE,drg
is not taken account. The magnitude of TE,drg follows from the wheel rotational velocities
and engine drag power PE,drg.
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TE,drg = 2PE,drg
ωrl + ωrr

(A-82)

The distribution of the rear axle torque Tr over the two rear wheels is determined by the
model of the mechanical differential.

A-4 Differential model

The mechanical differential model is obtained from [1]. It can be interpreted as a clutch with
coulomb friction characteristics, with the normal force acting on the clutch plates depending
on the torque applied by the powertrain. This dependence is parameterized using three
parameters, Gdrv, Gbrk and T0 following the relation:

∆Td = sign(ωrl − ωrr)Td,max (A-83)

Td,max =
{

max(GdrvTE , T0) if TE > 0
max(−GbrkTE , T0) if TE < 0 (A-84)

Where the case TE < 0 corresponds to a situation when the engine is in overrun. Gdrv, Gbrk
are referred to as locking ratio on the drive and overrun side respectively. T0 is the differential
preload, placing a lower bound on the transmittable friction torque by the clutch plates. The
torque from the powertrain TE is calculated from the total wheel torque T and engine drag
torque TE,drg as follows:

TE =
{
−TE,drg if

∑
T ≤ −TE,drg∑

T otherwise (A-85)
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Appendix B

Baseline model parameters

Table B-1: Baseline model parameters

Parameter Meaning Value Unit

m Vehicle mass 960 kg
Izz Yaw moment of inertia 1400 kgm2

l Wheel base 3 m
ν Track width 1.5 m
hcg Center of gravity height 0.3 m
Rl Tire loaded radius 0.35 m
Reff Tire effective rolling radius 0.35 m
dLT Front lateral load transfer distribution 0.50 -
dm Front weight distribution 0.47 -
dT Front braking torque distribution 0.60 -
T0 Differential pre-load 100 Nm
Gdrv Differential locking ratio on drive side 0.8 -
Gbrk Differential locking ratio on overrun side 0.8 -
PE Engine power 400 kW

PE,drg Engine drag power 20 kW

Table B-2: Constants

Parameter Meaning Value Unit

ρ Air density 960 kgm−3

g Gravitational acceleration 9.81 ms−2
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List of Acronyms

LMP1 Le Mans Prototype 1

TC Traction Control

MTM Minimal Time Maneuvering

NLP Non-Linear Programming

QP Quadratic Programming

SQP Sequential Quadratic Programming

KKT Karush-Kuhn-Tucker

BFGS Broyden-Fletcher-Goldfarb-Shannon

NMPC Nonlinear Model Predictive Control

NRMSD Normalized root-mean-square deviation

QSS Quasi-Steady State

OCP Optimal Control Problem

SISO single input, single output

RHP right-half plane

List of Symbols

Greek Symbols
β Body slip angle
ψ̇ Vehicle yaw angle
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130 Glossary

Γx Longitudinal load transfer
Γy Lateral load transfer
λ Lagrange multipliers of inequality constraints
Λu B-spline collocation matrix for augmented input vector
Λx B-spline collocation matrix for augmented state vector
ν Vehicle track width
ω Wheel rotational velocity
ρ Air density
σn Relative standard deviation of maneuver time
Φ̃ Augmented vector of integration defects
Υ Initial boundary condition
%J Cost function scaling
ξ Angle relative to center-line angle

Latin Symbols
F Tire friction potential utilization
Nl(s) Maximum offset from center-line to left side, marking the track edge
s Absolute tire slip normalized by slip sM for maximum tire force
c̃ Augmented vector of B-spline coefficients
g̃ Augmented vector of nonlinear equality constraints in x and u
q̃ Augmented vector of nonlinear inequality constraints in x and u
ũ Augmented control input vector
x̃ Augmented state vector
Ay,ssmax Maximal steady-state lateral acceleration
C Center-line curvature
CdA Aerodynamic drag coefficient multiplied by frontal area
ClA Aerodynamic lift coefficient multiplied by frontal area
dLT Fraction of lateral load transfer at front axle
dl Fraction of aerodynamic downforce on front axle
dm Fraction of vehicle weight on front axle
dT Fraction of total brake torque on front axle
Fd Aerodynamic drag force
Fl Aerodynamic downforce
Fx Longitudinal tire force
Fy Lateral tire force
g Nonlinear equality constraint functions in x and u
Gbrk Differential locking ratio, overrun side
Gdrv Differential locking ratio, drive side
h Distance discretization interval
hcg Vertical distance of center of gravity to ground
Iz Vehicle yaw moment of inertia
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ku B-spline order for input trajectory
kx B-spline order for state trajectory
l Wheel base
Lu B-spline collocation matrix for u
Lx B-spline collocation matrix for x
m Vehicle mass
Mzp Potential yaw moment at maximal steady-state lateral acceleration
N Number of discretization points
n Distance perpendicular to center-line
PE,drg Engine drag power
q Nonlinear inequality constraint functions in x and u
Rl Tire loaded radius
Reff Effective rolling radius
s Distance along center line
Sf Inverse velocity along center-line
sx Longitudinal tire slip
sy Lateral tire slip
T Sum of torque on all wheels
TE Drivetrain torque on rear axle
T0 Differential pre-load
TE,drg Engine drag torque
u Input vector in Rm

V Vehicle speed
x State vector in Rn

Subscripts
fl Front-left tire
fr Front-right tire
f Front axle
r Rear axle
rl Rear-left tire
rr Rear-right tire
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