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Abstract

To make open door policies easier in nursing homes, it is important to have a smart system that can check
whether access is allowed for the person trying to enter some place or not. This thesis documents how an
access control system has been built, for Momo Medical, to be used at a nursing home. It sheds light on
hardware considerations made and the software written for the final product. All the knowledge gathered
and the time spent has led to a final product that with minor tweaks can be used in the existing infrastructure
of Momo Medical but also without the presence of it. There are however still improvements left to be made
for the final product to be commercially appealing.
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Preface

This bachelor graduation project has been an interesting and challenging experience. As a team, we wanted
to work on a project that would have tangible results and not only did we find such a project, we also became
part of a team that was really welcoming and open.

We have learned a few important things in this project. One of them is that when it comes to finding the right
hardware, experience is really important. It is crucial to have access to different kinds of hardware and have
some process of trial and error for finding the best hardware. Another lesson, which comes from seeing the
Momo Medical team, is how important team dynamic can be and that we do not need to always follow con-
ventional hierarchies in a company. The team also taught us about sprint meetings according to the SCRUM
method, retrospective meetings to reflect on the way of working, and the legendary VrijMiBo, to name but a
very few!

We hope that this thesis will help future students to have a feeling of how the bachelor graduation project can
go at TUDelft. For readers only interested in getting a overview of the project and the results, the abstract,
introduction, conclusions in different chapters in the body of the thesis and the discussion and conclusion
can be the most useful. For readers interested in the hardware possibilities for comparable systems, chapter 3
can be most useful.

We would like to first hand show our gratitude for the support and coaching we got from the Momo Medical
team, especially Danny Eldering and Joey van Rijn for being always available for questions and taking part in
our meetings. We would also like to thank Dr. Paddy French for his time supervising us and Dr. Ioan Lager
and Menno Gravemaker for giving us this opportunity. And last (but not least), we want to thank subgroup
two (Marijn Boringa, Job van Erp, Corné Ploumen) for their passion and all the joyful moments we have gone
through together.

Delft, The Netherlands
December 26, 2022

Arthur Bennebroek and Shayan Ramezani
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1
Introduction

Momo Medical1, a startup company, is developing new technologies so that care givers can work more effi-
ciently in the nursing homes and therefore are able to give more specific and better care to their residents. At
the moment, their main product is a sensorplate, the BedSense, which is placed underneath the mattress of
a bed and together with the corresponding app gives a better insight into the behavior and the needs of the
resident while he/she is sleeping. It notifies the care giver when a resident is about to get out of bed and gives
insight in the state of a residents wellbeing. Also they designed a smart incontinence pad which lets the care
giver know if the incontinence pad is full and needs to be changes. They are always looking for more ways to
help the care givers work more efficiently.

1.1. Problem Definition
Currently most nursing homes are leaving the concept of closed departments behind. In this old system,
residents were locked up in their own department and were not allowed to move freely through the nursing
home. In this case, locked up literally means locking the door between the different departments so that the
residents were not able to leave their own department. As this is ethically questionable, more and more nurs-
ing homes are switching to a system with open departments in which the residents are allowed to move more
freely between different departments. However, this introduces new challenges, such as residents being able
to wander to places they are not allowed to go and that whenever a resident needs help, they are much more
difficult to find.

One problem, regarding the change to open departments, is that some but not all residents are allowed to
go to other departments. Psychogeriatric residents are not allowed to leave their department while the other
residents are allowed to leave. To solve this, a system needs to be designed that is able to recognize which res-
ident is trying to pass through a door to another department. Depending on whether or not they are allowed
to go there, the system locks or unlocks the door. This system can also notify care givers when someone is
trying to pass a door, while they are not allowed to.

In most of these nursing homes, residents wear a panic button, which they can press if they need help. Press-
ing this button will send a signal to the care giver that the resident needs attention. However, as the resident is
no longer confined to a single department, it can be very challenging to find the resident in need. This search
can take up a lot of the care givers’ valuable time. To prevent this loss of time and also decrease the workload
of the care givers, the panic button needs to be localized as this often is the only trackable device the residents
always have with them. By localizing the panic button, care givers will now be able to find the resident faster
when they are in need of help.

1https://momomedical.com/

1
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2 1. Introduction

1.2. Project Overview
For this project, two systems will be designed for Momo Medical. The first system, which this thesis will dive
into, is an access control system which will allow or not allow a resident access to other parts of a nursing
home. In addition, the system setup can be used for other goals, e.g. notifying a care giver when a resident is
trying to exit his/her room at night.

The second system is a real-time localization system which will determine the location of a resident inside a
nursing home. The care givers can either request the location of the resident or, whenever the panic button
is pressed, get a message indicating that a resident needs help. In addition, this system could be set up in a
way that it can also localize utilities such as lifting aids and keys. Furthermore, the system can also be used
by care givers whenever they are in need of help themselves.

A schematic overview of the complete project is shown in Figure 1.1. In this figure, a clear division can be seen
between the two different systems of the project, which will work together on the localization of a resident.
These two parts, which are different systems, will not communicate directly but only via the Momo Medical
database. For both systems, data is obtained from the database. For the localization system, this data will also
contain the output of the access control system. The messages for the care givers will come from the server
and will be visible in the Momo Medical app.

Figure 1.1: Schematic project overview.

1.3. Scoping and Bounding
The aim of this report is to clarify how the team of students from TU Delft solved the problem at hand. It
will give a thorough description of the steps set in the project and in addition to that, give the result of the
project with additional next steps. The main goal to clarify what steps have been taken to decide in which
direction to go for different hardware components. The device in short will consist of two parts, one that will
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the elderly will carry with themselves, and one that will be installed on the doorknob or somewhere close to
it. What happens after the hardware has made an observation is not important at all and can be configured
in any way in then future based on what Momo Medical and their clients wish to achieve.

1.4. State of the Art
The Internet of Things (IoT) is meant to connect anything and everything via sensors over the internet. One
of the fundamental characteristics of the IoT is that objects are uniquely identifiable and are communicating
with one and other all the time [1]. IoT is the concept fully embracing the product that is to be designed in this
project, as the system designed with addition of other systems can form a whole infrastructure of commu-
nicating "things" that with the use of "internet" can communicate without limits when it comes to distance
and in that way help companies offer service to clients wherever they are. The access control system (ACS) is
simply said following the basic concepts of IoT.

There are only a few companies, e.g. Axess TMC2 and identiv3 who offer an ACS comparable to the system
to be designed in this project. The technologies used by these companies include radio-frequency Identifi-
cation (RFID), Bluetooth Low Energy (BLE), biometric readers, thermoscanners, infrared sensors, and many
more. It is useful to look at the application of some of these technologies in general before moving on.

RFID is one of the technologies that is used often in the IoT. It has been used extensively in health care,
and more specifically for tracking, identification & verification, sensing, interventions, and alerts & triggers
[2]. Also on enterprise level, RFID is used often, namely for supply chain management, security, movement
tracking, and object tracking [3].

BLE is also an commonly used technology in the IoT world. It can be used for indoor navigation, customer
communication, ticket management, queue management, large-scale local notification [4].

1.5. Thesis Synopsis
Before starting with a technical design, it is important to know in technical detail what needs to be achieved,
which is reason to start with the program of requirements in chapter 2. Afterwards, in chapter 3, compar-
isons are made between different options for each part concerning the hardware. After that, the necessary
software components are discussed in chapter 4. Chapter 5 discusses the design of the prototype and the test
methods. Finally, chapter 6 will contain the discussion and chapter 7 will elaborate on the final result and
recommendations for future research.

2https://www.axesstmc.com/readers-access-control/
3https://www.identiv.com/industries/access-control-for-assisted-living-and-nursing-homes

https://www.axesstmc.com/readers-access-control/
https://www.identiv.com/industries/access-control-for-assisted-living-and-nursing-homes


2
Programme of Requirements

In order to properly assess the successfulness of the final product, it is imperative to determine a clear set of
requirements regarding this final product. The final product is seen in two ways in this thesis, either the two
systems designed for Momo Medical ("the whole system", in other words the combination of the access con-
trol system and the localisation system) or the access control system (ACS) which is thoroughly discussed in
this thesis. For this reason, the first section in this chapter discusses the requirements that involves both sys-
tems designed and the section afterwards discusses the requirements that only involve the ACS. In addition,
the scope limitations are discussed.

2.1. Requirement for the Whole System
For the two systems to work well together and with the existing Momo Medical system, conversations with
Momo Medical have led to the following requirements which have to be satisfied by the whole system. These
system requirements are shown in Table 2.1.

Table 2.1: Whole System Requirements

Requirement symbol Requirement
SR1 The possible RF interference between the two systems must not

affect the working of each system.
SR2 The system must output the location of the present panic buttons

at least once a minute.
SR3 The system must be a plug and play system.
SR4 The system must not need any adjustments whilst in use.
SR5 The system must work in indoor environments.

2.2. Requirements for the Access Control System
For the ACS to work as Momo Medical has in mind, it is necessary to pin down the specific requirements for
the ACS. The requirements can be divided into functional and non-functional requirements.

4



2.2. Requirements for the Access Control System 5

2.2.1. Functional Requirements
An overview of the functional requirements is given in Table 2.2.

Table 2.2: Functional Requirements of the ACS

Requirement symbol Requirement
FR1 The access control system must detect all panic buttons when they are within 1 meter

to the system.
FR2 The access control system must recognize a panic button within 100 milliseconds.
FR3 The access control system must connect to WiFi.
FR4 The access control system must have access to the current UNIX time in milliseconds

and must send the timestamp 64 bits to the database.
FR5 The access control system must update its data by requesting data from the database

every 15 minutes. This data contains the access rights that the access control system
will check for.

FR6 The access control system must have a binary output that indicates whether a rule has
been abiding or not, e.g. whether someone is allowed to enter or not.

FR7 The access control system must send updates to the database at least once every 3 sec-
onds. These updates must at least contain the unique ID of the panic buttons which
were observed by a system, which system has observed these panic buttons and at what
time.

FR8 The access control system indicates by using LED(s) whether the system is working cor-
rectly or if errors occur.

FR9 The access control system must make sure that the battery life of the existing panic
buttons will not be deteriorated.

The reasons for these requirements are as follows. For the ACS to be able to act on time, it needs to at least
detect all panic buttons within one meter and scan for these panic buttons often so they are not missed. The
reason is that residents who are walking will not wait for the system to act and will be able to continue their
normal activities. So, the system needs to find the right balance between responding too soon and too late.
Too soon and someone may not be exiting at all, e.g. when someone is just walking in his room and has a
distance of 2 meters from the sensor. Too late and someone will enter a place they are not allowed to or the
caregiver will be notified too late to help someone.

The WiFi connection is necessary for the system to directly communicate with the database and the updated
internal time is to have the database accept the data. The local data should be updated with possible changes
in the access rights as set by the caregivers so that the system can act in the desired way which can change
throughout the day. The 15 minutes is a heuristic value. Updating the database on the other hand needs
to happen as soon as possible so the localization system of the whole system can access the most updated
available data and use that as its history.

For the moment, it is chosen for the ACS to have a binary output indicating whether a rule is followed or not,
in view of the use case that Momo Medical has in mind.

2.2.2. Non-Functional Requirements
In addition to the functional requirements, there are non-functional requirements set that help to design a
system operating as desired. These requirements can be seen in Table 2.3.

Table 2.3: Non-functional requirements

Requirement symbol Requirement
NFR1 It must be possible to mount the access control system on or next to the door.
NFR2 The software for this system must be written in C/C++.
NFR3 The hardware must run from a 230V mains outlet.

Also the non-functional requirements need a short explanation. Requirement NFR1 is important considering
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the aesthetics of the systems and the fact that it will be placed in a building where elderly people live. It should
mainly not interfere with the daily activities of the residents. The software language is chosen in such a way
as to make the system easy to integrate into the existing Momo Medical system.

2.3. Scope Limitations
Although the solution to be designed has a lot of freedom and can be based on different technologies, there
are some limitations. One of the limitations is the cost of the system. The final system should have an accept-
able price tag connected to it. What acceptable means here is not exactly indicated, but a cost of maximum
500 euros per ACS has been kept in mind throughout the project. It is also important for the system to use the
existing infrastructure already available at Momo Medical for the database communication, which includes
the software classes and functions written in C/C++ for this. A schematic overview of the existing infrastruc-
ture at which the ACS has to be added can be found in Figure 2.1.

Figure 2.1: Existing Momo Medical infrastructure



3
Hardware Design

The goal of this chapter is to go through the process of the hardware design on which a software will run, so
all requirements as stated in chapter 2 are satisfied. It is important to know which wireless communication
method should be used to satisfy these requirements. After deciding on the communication method, which
section 3.1 will dive into, a deep dive will be made into the hardware in section 3.2 and 3.3. The chapter will
then finish with a theoretical discussion of the link budget in section 3.4.

3.1. Communication Methods
There are many options available which give the possibility to determine how close someone or something
is to a certain point. Because of the need of using the setup indoors, as stated by requirement SR5, the use of
some technologies is just not possible, e.g. GPS [5]. However, there are still many systems and technologies
possible to use for the problem at hand, including but not limited to infrared (IR) detection [6], ultrasound
[7], NFC [8], RFID [9], BLE [10], and ZigBee [11]. Each of these have their own advantages and disadvantages
and the first step would be to look at those.

Infrared and Ultrasound
IR, although one of the most common technologies for localization, faces challenges due to interference from
fluorescent light and cannot be used for identification of a person [5]. The advantage of IR technology, as well
as ultrasound, in the system to be designed could be that the signal from one room in the residency will
not trigger a reader in a different room. An additional advantage of ultrasound is that it is accurate within
centimetres [12]. The disadvantage of ultrasound is that interference from reflected signals can take place
and cause problems [5] and it needs expensive hardware.

Near Field Communication
Near Field Communication, or NFC is a very short range technology, having a range of approximately 20cm.
It is based on similar technology principles as in RFID but is used not only for identification but also two-way
communication [13, 14].

Different RF technologies, namely RFID, BLE, and ZigBee have the advantage of needing less hardware and
being able to have a larger coverage area when needed. This can be a disadvantage at the same time, as RF
signals can penetrate through walls and easily cause interference, both with similar systems in other locations
within a building and with completely other types of systems, which happen to work at a similar frequency
band [5]. There are also differences between the different RF technologies which are used a lot in the IoT
field. For the application in the design at hand, it is important to have a technology meant for short range
communication.

RFID
Radio Frequency Identification, or RFID, can be categorised in active RFID, semi-active RFID and passive
RFID technologies. All three technologies use a reader and unique tags. These tags contain the information
which can be used for identification. The active kind, although being able to store much more data and having

7
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the greatest range, uses a battery-dependent tag and has a higher price and maintenance costs; semi-active
RFID systems have the same disadvantages but have the advantage of not adding radio noise - a battery is
used for processing data, but the received energy will be used for backscattering the signal to a reader-; and
passive RFID are the smallest, cheapest and are not reliant on an internal power source for the tags. The
drawbacks can be that they cannot store much data and the data is static. In addition, the readers for passive
RFID tags are somewhat expensive [15]. The range of these systems are the highest for active RFID systems
and the lowest for passive RFID systems, with the semi-active RFID in between those technologies [16, 13].

Bluetooth Low Energy

Bluetooth Low Energy, or BLE is designed for short-range, low bandwidth, and low latency applications with
a low power consumption and setup time [13].

Zigbee

ZigBee is created to be a standard to suite high level, low cost communication protocols creating personal
area networks. Specifically, it is used in applications that require a low data rate and longer battery life [13,
17, 18]. It typically operates in a range of 10 meters [17].

3.1.1. Conclusions
First of all, since the design must work at indoor environments as stated by requirement SR5, GPS shall not be
used. Furthermore, it is clear that IR will not be the desired solution due to no being personally identifiable.
The same reason makes ultrasound also not the ideal solution with the additional problem of interference
that will easily take place in small rooms at residencies and high costs. Also, NFC is not the ideal solution as
its range is so small as to not satisfy requirement FR1. Solutions that can be used are RFID, ZigBee and BLE.
In order for requirement FR9 to be met, the passive RFID technology seems the ideal solution, as the tags do
not have the need for an internal power source and thus, besides having a low maintenance cost, does not
deteriorate the battery life of the panic button. The only drawback can be the high cost for the readers, which
may be possible to be produced at a lower cost. For the same reason and because of the fact of being much
simpler to apply in practice, RFID seems to be a better option than ZigBee and BLE, which need a network
to be setup while RFID is peer-to-peer [13]. Once RFID has been chosen to be used, an extra requirement
should be added to the functional requirements which is that the access control system must satisfy all the
GEN2 standards [19].

The schematic toplevel overview in Figure 3.1 already gives an impression of the different parts of the final
system.

Figure 3.1: Toplevel overview, which includes a to be determined RFID system and the Localisation system.
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3.2. Iterations of Designing the Hardware
Since concluded is that the Access Control System shall be based around a passive RFID solution, several
RFID modules were tested. Since RFID is a technology that is present at multiple frequency ranges, devel-
opment boards based around the high frequency HF) range (3-30 MHz) and the ultra high frequency (UHF)
range (300-3000 MHz) were tested.

3.2.1. HF RFID: ST25R3911B

Figure 3.2: ST25R911B development board

The hardware design started with a simple ready to use develop-
ment board, namely ST25R3911B-Disco, based around a ST25R3911BB
RFID reader IC and a STM32 microcontroller IC. The operat-
ing frequency is centered around the 13.56 MHz and 27.12 MHz
band, which is in the HF band. The maximum output power
is 31.5 dBm and supports multiple protocols, containing but not
limited to ISO14443A, FeliCa and MIFARE classic, which in fact
is a NFC protocol 1. A few different corresponding tags were
tested, the 20-064, 20-044 and 20-015 tags. They were all three
based around the ST25TV02K IC. This setup was meant to help
decide what frequency band to use. The ST25R3911B-Disco
came with supporting software, which was able to automatically
tune the antenna and show the amplitude of the received sig-
nal power (RSSI). The RSSI, however, was shown without units.
Only the relative relationship based on the distance versus RSSI
could be measured. A simple distance test was executed as fol-
lows:

The ST23R3911B reader was placed vertically and three differ-
ent tags were placed vertically as well. The distance between
the tags and the reader were varied at a constant rate and
at multiples of 5.0 mm, the received signal strength indicator
(RSSI) was measured. The results are shown in Figure 3.3,
where a low measured RSSI value correspond to a high ab-
solute RSSI value in Watts, and vice versa. It is clear that
the absolute RSSI is logarithmically decaying as the distance be-
tween the reader and the tag increases. As can be seen, the
HF tags were not able to be detected at a distance of 10
centimeters, with some not even detectable above 7 centime-
ters.

In conclusion: this HF RFID system would not suffice requirement FR1 and will not be used in the ACS.

Figure 3.3: RSSI vs distance, using the ST23R3911B module and three tags. Horizontal axis is distance in meters and vertical axis is RSSI
in an arbitrary linear unit.

1https://www.st.com/en/evaluation-tools/st25r3911b-disco.html

https://www.st.com/en/evaluation-tools/st25r3911b-disco.html
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3.2.2. UHF RFID: ThingMagic Nano M6E

Figure 3.4: SparkFun
Simultaneous Reader

development board, with the
Nano M6E mounted on it

Based on the observation above, the next iteration of the hardware design
moved on to using a RFID system functioning in the UHF band, which
in The Netherlands means using the frequency band of 865-868 MHz [20,
21]. For this, a development board (SparkFun Simultaneous RFID Tag
Reader2) was found to be an ideal solution as it had a lot of documenta-
tion.
This module consists out of the ThingMagic Nano M6E module mounted on a
pcb. The basic specifications can be found in Table 3.1.
The Nano M6E module is an integrated module which contains at least
an unknown microcontroller and a RF circuit. Unfortunately, ThingMagic
does not provide the specific parts embedded in the Nano M6E mod-
ule.

For the hardware design, an external microcontroller is used connected to the
Nano M6E using a UART connection. Examples on how to connect this were
found 3. These examples use a C++ based library which ended up as the basis
for the software design, which can be found in chapter 4.

Table 3.1: SparkFun Simultaneous Reader specifications [22]

Function SparkFun Simultaneous Reader
Microcontroller Nano M6E - STM32
Flash memory 4MB
SRAM 520 kB
GPIO 4
Operating Voltage 5V
Maximum RF power 27 dBm
Maximum RF input
sensitivity

-65 dBm

Microcontroller Choice

Two microcontrollers were selected to be tested. The ATMega328p, placed on an Arduino Uno development
board and an ESP32-WROVER-B, placed on a TTGO T8 V1.8 development board were selected, because they
were easy to obtain and the members of the subgroup already had some experience with them. In Table 3.2, a
comparison of their specifications are given. After a few tests, the ESP32 was chosen for further development,
because it was the fact that it has an onboard RF module which supports a WiFi connection, necessary to
connect the ACS to the Momo Medical Database as required by requirements FR3 and FR7. Furthermore, it
also has increased flash memory, more SRAM and more GPIOs than the Arduino Uno, and it has a signifi-
cant higher possible clock speed. Finally, the current Momo BedSense contains three integrated ESP32s, and
software to communicate to the Momo Medical Database is already in use by the Momo Medical employees.
These software files could be reused later on, and after finishing this project, the Momo Medical employees
need less time to familiarize themselves with the ACS for further development.

Antenna Choice

The Nano M6E does include an on-board patch antenna. It also has an U.FL RF connector mounted, at
which an external 50 Ω antenna can be mounted. The on-board antenna should be disabled by changing a
solder joint, if chosen is to use an external antenna. Chosen is to use the vertical polarized GSM-34-900 patch
antenna [23], for the fact that is was available to buy.

2https://www.sparkfun.com/products/14066
3https://github.com/sparkfun/SparkFun_Simultaneous_RFID_Tag_Reader_Library

https://www.sparkfun.com/products/14066
https://github.com/sparkfun/SparkFun_Simultaneous_RFID_Tag_Reader_Library
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Table 3.2: Comparison between the Arduino Nano and the ESP32-WROVER-B, based on the information by Arduino [24] and Espressif
[25]

Function ESP32-WROVER-B Arduino Uno
Microcontroller Xtensa 32-bit LX6 ATMega328P
Flash memory 4MB 32kB
SRAM 520 kB 2kB
Max clock speed 240 MHz 16MHz
Operating Voltage 3.3V DC 5V DC
Digital GPIO pins 36 14

Onboard
Communication
protocols

UART
SPI
I2C
CANbus
WiFi
Bluetooth

UART
SPI
I2C

Range Test
For this RFID module, a range test was executed, using three different tags: the AD-172u7, AD-321r9 and AD-
665u8. These tags consists out of an IC with a dipole antenna printed around it. The tests were executed by
placing the antenna attached to the Nano M6E at one meter above the floor in a typical office environment.
The tag was vertically placed to have a polarization match with the vertical polarized antenna. It was placed
parallel to the transmitting antenna and one meter above the ground. It was then moved by distances of
multiples of the wavelength of the RF wave. This in order to measure the incoming signal at the same phase
to dismiss the effect of destructive or constructive interference. The received RSSI was measured for a period
of 5 seconds and the mean of those measurements was taken to the next step. The results for the range test
for the AD-321r9 tag are shown in Figure 3.5a and for tag AD-665u8 in Figure 3.5b. Tag AD-172u7 had a RSSI
of -62 dBm at a distance of 40 centimeters and was not read at a distance of more than 50 centimeters, so no
plot was made of its RSSI vs distance relationship.

(a) Relationship between RSSI and distance for the AD-321r9 tag. On the
horizontal axis is the distance in [m] between the tag and the RX/TX

antenna and on the vertical axis is the RSSI in [µW]. The fit corresponds to
the formula RSSI = 22.5 · r−2.39nW

(b) Relationship between RSSI and distance for the AD-665u8 tag. On the
horizontal axis is the distance in [m] between the tag and the RX/TX

antenna and on the vertical axis is the RSSI in [µW]. The fit corresponds to
the formula RSSI = 2.36 · r−2.27 nW.

Figure 3.5: RSSI versus distance measurements, for two UHF RFID Tags

Based on these results, chosen is to continue the design using the AD-665u8 tag, since it has an ever higher
range when the Nano M6E was reading at full power than required by FR1. When a lower range is needed,
decreasing the read power would be a solution.

Orientation of the Antenna and Tag
A small test has been executed to determine the influence of a difference in orientation of the tag with respect
to the antenna.. The GSM-34-900 antenna was placed at the center of a room. Then the AD-665u8 tag was
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placed vertically to align with the GSM-34-900 antenna at 8 equally spaced locations on a circle with a radius
of 50 cm with the GSM-34-900 antenna at the center.
The AD-665u8 tag was always positioned such that it was perpendicular to the GSM-34-900 antenna. The
RSSI was measured for 5 seconds and the mean was taken. This was repeated for a circle with a radius of
100 cm and 150 cm. The results are shown in Figure 3.6, where 0 degrees correspond to the position where
the antenna was faced frontal. A visualisation of the test setup is shown in Figure B.1. At all measurement
locations, the tag was found within the first 100 milliseconds, leading to a dataset of at least 50 datapoints for
each measurement location.

Figure 3.6: Angle of placement of tag with respect to GSM-34-900 antenna vs RSSI. 0◦ correspond to a frontal view with respect of the
GSM-34-900 antenna. A visualisation of this setup can be found in Figure B.1.

Remarkably, the RSSI seems to be the highest around 315 ◦. 90◦ to the left, at 45◦, the RSSI seems to be high
as well. Another remarkable observation is that the RSSI around 135◦ seems to be smaller at a distance 50 cm
than it is at a distance of 150 cm. Many factors do play a role in this experiment, and the reflections of the
RF signal at the floor, walls and furniture do impact the overall performance. The most important result of
this experiment is that the system finds a higher RSSI when the tag is present in semicircle in the XY plane
in front of the GSM-34-900 antenna. Still, at the 1 meter line, the tag was found at each of the 8 points along
the circle, indicating that requirement FR1 could be achieved. It can be concluded that, when a tag will be
placed vertically, the receiver antenna is able to detect a tag at a larger distance when it is located in the front
in comparison with a situation when a tag is located at the rear side of the GSM-34-900 antenna.

Actuator and Error LEDs
As stated by requirement FR6, the ACS must have a binary output indicating whether or not a tag that is
observed by the ACS is allowed access. For this, a black box model was made. It has been decided that the
ACS should be able to set one of the GPIO pins on the ESP32 high or low, according to the access rights. This
has been indicated in Figure 3.7. In this same black box, two output LEDs were placed, which can be turned
on or off indicating a critical software or hardware error, such as a loss of connection to the Nano M6E, no
WiFi connection or some error state.

3.2.3. Conclusion on Hardware Design Choices
In conclusion, chosen is to design an access control system based on a Nano M6E UHF RFID module with the
ESP32-WROVER-B as the microcontroller. The Nano M6E is attached to a GSM-34-900 antenna. The tag used
at the moment is an AD-665u8. The ESP32 is responsible for a WiFi communication to the Momo Medical
database. A black box model containing error LEDs and an actuator was added to complete the hardware
design.The updated system overview is shown in Figure 3.7.
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Figure 3.7: Access control system (ACS) as part of the Momo infrastructure system. The access control system (ACS) to be designed is
shown in the yellow part of the figure, including the RFID tag, which is placed on the panic button of a resident. The connections

between several parts of the Momo systems are shown as well. The place of the Localisation System [26] is shown as well.

3.3. Parts of the System
To gain a better understanding of the system, it is helpful to discuss the different parts of the system. The
designed hardware system consists, as we can see in Figure 3.7, out of the tag, the transceiver antenna, the
transceiver and the microcontroller. With the addition of the panic button, the database and the localisation
system the whole system is formed. Let’s take a look at each of these parts.

3.3.1. Transceiver
The transceiver consists of two parts, the transmitter and the receiver. The transmitter is meant to send out
signals and this way charge the tags and send them data, and the receiver is meant to observe incoming data.

The transmitter part of the RFID has two phases, namely the uplink and the downlink phase. In the downlink
phase, the transmitter provides enough power to start up the passive tag and sends the data it wants to the tag
after modulation. In the uplink phase, it transmits an unmodulated signal that the tag can use to modulate its
data and send back to the receiver [27]. This process is known as backscattering. When reading, the transmit-
ter continuously transmits energy to its surroundings. In order for the receiver to be able to detect the weak
signal backscattered by the tag at the same antenna used by the transmitter, a special component known as
a circulator is used. This circulator only allows reflected signals to be presented at the receiver, which might
otherwise be saturated by the transmitted signal [27]. When different antennae are used for the receiving and
transmitting tasks, this circulator is not needed.

The transmitter of the RFID tag needs to satisfy different requirements for it to be able to be used in practice.
One important thing to prevent is interference of the transmitted signal of different transceiver in a nursing
home. To prevent this, it is important to minimize the width of the radiated signal. This can be achieved
among other things by imposing a spectral mask or choosing a suitable modulation technique.

As indicated before, the Nano M6E is the transceiver used for the final design. This module makes it possi-
ble to read around 150 tags/second [22]. The module communicates to a host processor via a TTL logic level
UART serial port[28]. Only three pins are required for serial communication: RX, TX and GND. The transceiver
is to be controlled with a microcontroller and the provided API, which is explained in more detail in chapter 4.
The Nano M6E is by default configured to the Gen2 protocol, in which is stated how the data from a transceiver
to a tag should be modulated in order for the tag to harvest enough RF energy to process the data and send it
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back to the transceiver. The Nano M6E uses phase-reversal amplitude shift keying (PR-ASK) as the modula-
tion scheme [22], of which an example can be seen in Figure 3.8a. It offers an improved modulation efficiency
compare to on-off keying (OOK) and other simple modulation techniques while still allowing simple demod-
ulation by the tags, which is important due to limited energy received at the tag [27]. The downside of using a
pure PR-ASK modulation scheme, is that no energy is sent when a string of zeros is sent to a tag. In that case,
the tag might receive too little energy to operate correctly. For that reason, the Gen2 protocol allows PR-ASK
only if it is using it in a pulse-interval encoding (PIE) variant, of which an example is shown in Figure 3.8b
[19]. It makes sure that when a ’0’ has to be sent, the tag still receives power. The downside of this method is
that the symbols ’0’ and ’1’ have a different length in time. It is unknown whether or not the Nano M6E uses
a PR-ASK with or without PIE, but since the usage of PIE is required by the Gen2 protocol, it is assumed that
the Nano M6E uses PR-ASK with PIE.

(a) Phase Reversal - Amplitude Shift Keying (PR-ASK).
Image from [27]

(b) A Pulse-Interval Encoding (PIE) envelope used on a On-Off Keying (OOK) modulated
signal. Image from [27]

Figure 3.8: Examples of PR-ASK and PIE. Note the absence of energy in the ’0’ state at the pure PR-ASK envelope. In the PIE case, there is
energy transmitted when a ’0’ symbol is transmitted.

Other allowed modulation schemes by the Gen2 protocols are, besides the PR-ASK protocol, the double-
sideband amplitude shift keying (DSB-ASK) and single sideband-amplitude shift keying (SSB-ASK) modula-
tion schemes. Another way of decreasing interference by multiple Nano M6E transceivers is by using a higher
Miller value for encoding that still achieves the tag read rates required for the application[22], which is ad-
justable via the API of the Nano M6E. The Gen2 Miller setting influences how data is encoded when sent from
the tag to the reader. Higher Miller values send data at lower rates and are more noise resistant, increasing the
module’s sensitivity. Lower Miller values send data at higher rates, decreasing the sensitivity somewhat[22].

At the receiver part of the transceiver, an important factor is the receive sensitivity for the backscattered signal
from the tags. Receive sensitivity is strongly influenced by the amount of interference caused by the reader’s
own transmit signal which can be reduced by reducing the transmit level, by the Gen2 Miller setting as in
the previous paragraph, and by the region of operation, with the range of 865 to 868 MHz providing better
sensitivity for the Nano M6E[22].

Figure 3.9: AD-321r6 tag with its
meandering dipole antenna and data

processing IC in the center. Image from
[29]

3.3.2. Tag
A UHF RFID tag consists out of an IC to which a dipole antenna is at-
tached. Since dipole antennae mostly have a length of λ/n, where λ is the
wavelength (approximately 34 centimeters in the case of a 868 MHz sig-
nal) and n is an even integer in the order of 1−12 [27]. In the case of a λ/2
dipole, the length of the dipole is approximately 17 centimeters. For most
UHF RFID tags, this is too large. A technique called meandering is used
to fit the length of the used dipole on a smaller surface. How this exactly
works is outside the scope of the project. An example of this meandering
dipole is seen in Figure 3.9
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3.3.3. Transceiver Antenna and Tag Antenna
For an antenna to be useful in an application, there are different metrics one needs to take into account. The
three most important are the operating frequencies, radiation pattern and the polarization of the antenna.
The radiation pattern indicating the the strength of the energy in the sent signal in different directions, the
directivity indicating the orientation of the electric field of the radiated signal. In addition to these, the effec-
tive aperture, impedance, size, and cost are also important key figures [27].

There are many forms of antennae but a few simple ones are popular. For omnidirectional antennas, the
dipole and its variants are chosen often, and when directional antennae are needed, the patch antenna is
chosen [27]. Which one of these antennas is used, depends on how the antennae are placed in residencies. If
for each door, only one transceiver antenna is used, an omnidirectional antenna is the right choice, as tags at
both sides of the door can be read. If, on the other hand, two transceiver antennae will be used on each door,
one on each side, the patch antenna is a wise choice. It should be mentioned that the latter one is a better
choice for the use case at hand for the simple reason that, when a transceiver antenna is placed both at the
inside and the outside of a room, the distinction can be made from whether someone is entering a place or
exiting.

Tag antennas in the application at hand face different practical challenges. When it comes to the cost and
size of these antennas, they should be as small as possible, while foremost offering the required range of 1
meter as set by requirement FR1. For the UHF RFID technology, the common choice of antenna type is a
meandering dipole, as explained in subsection 3.3.2.

The choice for the polarization of the transceiver antenna should be dependent on the polarization of the
tag antenna. When the tags have a single-dipole antenna, it can only be read when co-polarized with the
transceiver antenna [27]. In this case, to make it possible to read the tag no matter the direction of it, a cir-
cularly polarized transceiver antenna is useful, as it has electric fields oriented in all directions. On the other
hand, if dual-dipole tags are used, the transceiver antenna can have any polarization. In a dual dipole con-
figuration, two dipole antennae are placed at a right angle to each other, such to have nonlinear horizontal
and vertical polarization components. It should be mentioned that there is a trade-off between the use of cir-
cularly polarized antennas and large range [27, 30], especially for the tag antennas. Also important, linearly
polarized tag antennas are cheaper [27].

For the other factors, the choice is simpler. The antenna bandwidth should contain the 868 MHz band. The
size and cost of the antenna define also the bandwidth and the gain of the antenna, with larger and more
expensive ones offering higher values for these two factors [27]. And of course, the tag antenna should be as
small as possible in order to fit on the existing panic buttons.

3.3.4. Breakdown of the Nano M6E
The Nano M6E is a standalone module, of which few specifications are available. To gain insight into the
specifications, the module was physically opened and different subcircuits were analyzed. A full color image,
as well as an image in which the different subcircuits discussed below are presented in Figure 3.10a and Fig-
ure 3.10b respectively. A high resolution image is presented in Figure B.2.

RFID Processing
The largest IC on the Nano M6E is the Impinj IPJ-R500 Reader Chip. This IC is responsible for creating the
to be transmitted TX signal and processing the incoming RX signal, both according to the ISO18000c/Gen2
standard. The operation frequency range equals 860-960 MHz. It can be configured to be used with only
one antenna used for both TX and RX or by using multiple antennae for both TX and RX. The maximum
transmitting power equals +20 dBm and the RX sensitivity equals -68 dBm with a Miller value of 4. Both
the input and the output are matched to a 50 Ω load [31]. the IPJ-R500 act as both the bare receiver and
transmitter of the This subcircuit is shown as 3 in Figure 3.10b.

Microcontroller
A microcontroller subcircuit was present. This subcircuit was based on the Atmel ATSAM21-E17A ARM-0
cortex microcontroller. This microcontroller converts the requests sent by the ESP32 over UART to a request
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(a) Inner components of the Nano M6E in full color (b) Nano M6E decomposed in parts. 1: microcontroller, 2:
Power supply, 3: RFID processing, 4: Power amplifier, 5:

Filtering and matching circuit. The RX and TX antenna is
connected at the blue arrow down left.

Figure 3.10: Inner components of the Nano 6ME, both in full-color (a) and decomposed in the different subcircuits (b).

supported by the IPJ-R500 IC. To communicate between the ATSAM21-E17A and IPJ-R500 a SPI communica-
tion bus is used. The microcontroller has a maximum input voltage of 3.63V [32]. This subcircuit is shown as
1 in Figure 3.10b.

Power Amplifier
The TX signal as generated by the IPJ-R500 IC is lead to a SKY77768 power amplifier. This IC has matched
input and output impedances of 50Ω each. It has a maximum input power of 10 dBm and a maximum output
power of 28.5 dBm. Remarkable, this power amplifier is designed to be used in the 880-915 MHz band. The
Nano M6E is rated to be used below the bandwidth of the power amplifier, as can be seen in Table 3.1[28].
In the Netherlands, the allowed UHF band of 868 MHz [20] lies outside of the specifications of the power
amplifier as well. Since the frequency characteristics of the output power are unknown, the effect of this
mismatch in design can not certain be determined. The SKY77768 has a maximum input voltage of 4.2V [33].
This subcircuit is shown as 4 in Figure 3.10b.

RF Filter Circuit
Between the power amplifier and the antenna output a filter and matching circuit is present, as well as a
circulator as discussed in subsection 3.3.1. This makes sense, since the Nano M6E only has one RF output,
used by both the RX as the TX signals. The specific used components are unknown since no part numbers
were present on ICs and the passive components were not measured.
This subcircuit is shown as 5 in Figure 3.10b.

Power Supply
An integrated power supply is present. The Nano M6E is rated for an input voltage of 3.7-5.5 V [28], but sev-
eral of the ICs present in the other subcircuits need a maximum voltage lower than the maximum voltage the
Nano M6E is rated for. The power supply subcircuit is based around a TPS63036 buck-boost converter IC, has
a input range of 1.8V to 5.5V and can output a current of 1000 mA [34]. Based on the maximum input voltages
of the other components, the TPS63036 is set to a maximum output voltage of 3.63 V. This subcircuit is shown
as 2 in Figure 3.10b.

3.3.5. Conclusion and Recommendations
To conclude, all subcircuits discussed above are schematically shown in Figure 3.11. The maximum input



3.4. Link Budget 17

Figure 3.11: Block diagram of Nano M6E internal subcircuits

Table 3.3: Maximum input and output power of different ICs present in the Nano M6E and the Nano M6E module

Max input power Max output power
IMP-R500 [31] +20 dBm
SKY77768 [33] +10 dBm +28.5 dBm
Nano M6E[28] +27 dBm

and output power for the different ICs present in the Nano M6E are shown in Table 3.3. Remarkable is that
the RFID processing IC can output a signal with a power higher than the maximum input power of the power
amplifier IC. The RFID processing IC cannot be used to its full potential. However, since the power amplifier
can output a signal with a power higher than the maximum output power of the RFID processing IC, this is
not that much of a problem. The choice for the RFID module is remarkable as well, since the Nano M6E is
still being produced, but the IMP-R500 is made End of Life by its manufacturer and will be phased out by the
end of 2024 [35]. A redesign of the Nano M6E should be done in the near future, which include a new RFID
processing IC.

3.4. Link Budget
In order to determine the minimum output power of the Nano M6E in order to detect tags at a distance of at
least 1 meter as set by requirement FR1, it is important to define the link budget. The link budget is defined as
a sum of all power gains and power losses. The link budget is split in the forward link budget (from the Nano
M6E to the RFID tag) and the reverse link budget (from the tag to the Nano M6E). The used transmit antenna,
the GSM-34-900, has a gain of 6 dBi [23].

3.4.1. Forward Link Budget
The forward link budget is split in three categories [27]:

• The power transmitted by the Nano M6E
• The power received by the tag
• The power needed to process the received signal at the tag.

TX Power
The power the Nano M6E can transmit is defined as the TX power PT X . As found in the subcircuits of the
Nano M6E in subsection 3.3.4, different subcircuits have different maximum input and output power limits,
as summarized in Table 3.3 The maximum output power at the final stage of the Nano M6E is theoretically
limited as the maximum output power of the power amplifier IC, which is, according to [33] equal to +28.5
dBm. The Nano M6E, however, is rated at a maximum output power of +27 dBm. According to local regu-
lations [20], the maximum effective radiated power (ERP) in the UHF RFID band in The Netherlands is +27
dBm. This maximum can be achieved by the power amplifier.

Path Loss
The maximum received power at the tag is defined as the RX power Pt ag and is dependant upon the transmit-
ter antenna gain GT X , the tag antenna gain Gt ag , TX power and the path loss, as stated by the Friis equation
and is defined as

Pt ag =GT X Gt ag PT X
Ae

4πr 2
(3.1)
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where Ae is the effective aperture of the tag antenna and r the distance between the tag and the Nano M6E.
The effective aperture then can be defined as

Ae = λ2

4π
(3.2)

where λ= c/ f is the wavelength of the transmitted signal, f the frequency of the transmitted signal and c the
speed of light. In the case of a TX frequency of 868 MHz, this effective aperture leads to ≈ 95cm2.
When combining Equation 3.1 and Equation 3.2, we find a theoretical RX power at distance r as

Pt ag = PT X GT X Gt ag
λ2

(4πr )2 . (3.3)

This RX power still is limited to a free-space model, where no reflections and backscatter components are
present. The last term,

λ2

(4πr )2 (3.4)

is defined as the free space path loss.

Tag Power
Three different tags were tested, and their input power sensitivities are shown in Table 3.4. All three tags are
designed around dipole antennae connected to a specific IC as stated in Table 3.4.

Table 3.4: Tags used for testing and their minimum input power and maximum antenna gain

Tag IC Minimum input power
Maximum antenna
gain at f=865 MHz

AD-172u7 NXP UCODE 7 -21 dBm 1.5 dBi
AD-321r6 Impinj Monza R6 -22.1 dBm 3.5 dBi
AD-665u8 NXP UCODE 8 -22.9 dBm 16.5 dBi

Using Equation 3.3, the tag antenna gains and the minimum input power from Table 3.4, the maximum for-
ward link distance with a TX power of 0.5W can be calculated as

R f ,max =
(
λ

4π

)√
PT X GT X Gt ag

Pt ag ,mi n
(3.5)

and the results for the three tested tags can be found in Table 3.5. Remarkable is that the AD-665u8 tag has a
much larger maximum forward link distance than the AD-172u7 tag.

Table 3.5: Theoretical maximum forward link distance of three tags in free space

Tag Theoretical maximum forward link distance (m)
AD-172u7 16.35
AD-321r6 23.37
AD-665u8 114.45

The maximum allowed power loss at that distance follows from the maximum power loss

LT X ,max [dB] = PT X [dB]+Pt ag [dB] (3.6)

and is calculated for the three tested tags. The results are shown in Table 3.6.

Table 3.6: Maximum power loss in the forward link

Tag Maximum power loss [dB]
AD-172u7 53
AD-321r9 54.1
AD-665u8 54.9
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3.4.2. Return Link Budget
The return link budget can be split in similar categories as the forward link budget:

• The power backscattered by the tag.
• The power received by the Nano M6E.
• Minimum power to be received by the Nano M6E to still progress the signal.

Tag Power
As discussed in subsection 3.4.1, the minimum power needed to process the signal sent from the Nano M6E
to the different tags are shown in Table 3.4. A good estimate for the amount of power needed to process the
data in the tag is around 33% of the received power, a loss of approximately -5 dB [27]. This backscatter power
Pt ag ,b then is defined as

Pt ag ,b = 0.33Pt ag . (3.7)

The signal received at the Nano M6E as backscattered by the tag is defined as PR X , follows a similar Friis
equation as used in the forward link budget and equals

PR X =GR X Gt ag Pt ag ,b
λ2

(4πr )2 (3.8)

for distances in the far field. Combining Equation 3.8 with Equation 3.7 and Equation 3.3, the received power
at the Nano M6E as function of distance is found to be

PR X = 0.33 ·G2
R X G2

t ag PT X
λ4

(4πr )4 . (3.9)

From Equation 3.9, it is clear that the relationship between the received power by the Nano M6E and the
distance between the tag and the Nano M6e in free space is given as

PR X ∝ r−4. (3.10)

Since the antenna attached to the Nano M6E has one antenna used for both transmitting and receiving, the RX
and TX antenna gain are equal. The sensitivity PR X ,mi n of the Nano M6E is -65 dBm [28], and the theoretical
maximum distance at which a tag still can be read then is defined as

PR X ,mi n = λ

4π

4

√√√√0.33
G2

T X G2
t ag PT X

PR X ,mi n
. (3.11)

In the free-space case and TX power of 0.5W, the theoretical maximum distances are calculated using Equa-
tion 3.11 and Table 3.4 and the results are shown in Table 3.7.

Table 3.7: Theoretical maximum return link distance of three tags in free space

Tag Theoretical maximum return link distance (m)
AD-172u7 9.88
AD-321r9 12.43
AD-665u8 55.54

The maximum return link distances are smaller than the maximum forward link distances. When the tags are
placed at the maximum distances as shown in Table 3.5, the return power equals

PR X ,rmax [dB] = 2 ·Lr etur n,max [dB]+Pt ag ,b[dB] (3.12)

where

Lr etur n,max = LT X ,max (3.13)

is the maximum path loss. The results are shown in Table 3.8.
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Table 3.8: Power received at the receiver when a tag is placed at the maximum forward link distance for three tags

Tag
Power received at the receiver when a tag is placed
at the maximum forward link distance [dBm]

AD-172u7 -79
AD-321r9 -80.1
AD-665u8 -80.9

The lower maximum return link distances as seen in Table 3.7 can be maximized by using a receiver with an
input sensitivity of at least the power received at the receiver when a tag is placed at the maximum forward
link distance as seen in Table 3.8. The RFID processing IC present on the Nano M6E, the IMP-R500 IC, with
a minimum input sensitivity of -65 dBm, cannot achieve this. The manufacturer of this IC, however, does
produce similar RFID processing ICs, such as the E510, E710 and the E910 ICs, which, respectively, have an
input sensitivity of -82 dBm, -88 dB, and -94 dBm [36]. They will all achieve the task of reading the tag at
maximum forward link distance.

3.4.3. Link Budget in Indoor Situations
In indoor situations, however, the RSSI will behave as it does in Equation 3.10. The received attenuation of
the forward link RSSI follows an indoor propagation model, such as Egli’s model where the propagation loss
L is given as

L = 20log10( f )+40log10(r )−20log10(ht )−10log10(hr )−43.7 (3.14)

where f is the frequency of the transmitted signal in Hertz, r the distance between the transceiver and the
tag in meter, ht the height of the transceiver antenna in meter, hr the height of the tag in meter and 43.7 a
propagation loss constant [37]. This model is valid in indoor situations and can be simplified to a far-field
model of the RSSI at the tag, given as follows, where all units units are in their corresponding decibel version:

L ≈ PLr0 −10n · log10

(
r

r0

)
+χσ (3.15)

where PLr0 is the path loss in dB at a reference location r0 in the far-field and χσ is Gaussian distributed
with a mean M in dBm and variance σ2 dBm2 [38]. This random variable will be nonzero when no fading
is present. Fading is the phenomenon where the attenuation of the signal is not only a function of distance,
but also when other parameters are involved, such as reflections and multipath propagation.When measured
in absolute units, χσ is log-normal distributed. The factor n is defined as the propagation loss factor, which
is dependant on the physical conditions. For forward link, this factor equals 2 for free space. For indoor
environment, this value differs and has to be empirically defined, since it is dependant on all objects in its
neighbourhood which can reflect signals between the transceiver and the tag.

For a return link budget, expected is that the path loss exponent n is twice the value of a forward link path loss
exponent. Typical return link path loss exponents for office environments can be in the order of 1.8-2.2 for
vertical polarized transceiver antennae and vertical oriented tags, depending on the height of the transceiver
antenna [39].

The Influence of Reflections on the Link Budget
The added random variable χσ is the result of shadow fading, or the shadowing effect. This phenomenon
plays an important role in indoor signal propagation and is a function of reflections, as given by equation
Equation 3.16, where the forward link path loss is defined as

L =
(
λ

4πr

)n∣∣∣∣1+ N∑
i=1
Γi

r

ri
e− j k(ri−r )

∣∣∣∣n

(3.16)

where ri is the distance of the reflected ray in meters, Γi the reflection coefficient, k the wavenumber and
N the number of reflected rays [38]. The amount of reflected rays will in practice be infinite, and this equa-
tion is only useful for modelling. In Figure 3.12, this equation is modelled, and 5 reflections with distances
ri ∈ {1.1,1.2.1.3,1.4,1.5} meter are added, all with perfect reflection (Γi = 1). More assumptions taken into
account here were the frequency (868 MHz) and an antenna and tag height of 1 meter. As can be seen, the
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Figure 3.12: Model of a UHF RFID path loss model, with 5 reflections and the free space model as defined in Equation 3.4

path loss is not decreasing at a constant rate. At different distances, the path loss might be equal. This phe-
nomenon can also explain the fact that during the orientation experiment where the results are shown in
Figure 3.6, the signal at 135◦ had a higher RSSI at a distance of 150 cm than at 50 cm. From this, it can be con-
cluded that it is not possible to derive the distance at which the tag sent a signal and thus trying to minimize
the read distance to 1 meters is a challenge.

It should be stressed that the results in Figure 3.12 is only based on a model, in real indoor environments, this
path loss is even more unexpected. Also, this model is based on the assumption that the tag is worn vertically,
facing the transceiver antenna. When the orientation of the tag changes, the path loss changes as well. For
now, it will be assumed that the ACS will only detect presence of tags. This information still is quite useful for
the localization system.

3.4.4. Validation of the Link Budget Theory
In subsection 3.2.2, a range test was executed. The theoretical relationship of the RSSI and distance as de-
fined in Equation 3.11 was added to the results of this test and shown in Figure 3.13a and Figure 3.13b for
tags AD-321r9 and AD-665u8 respectively. For tag AD-665u8, the theoretical maximum falls within the 95%
confidence range of the fit over the measurements at a distance of 1.4 meter and more. At a distance lower
than 1.4 meter, the measured RSSI is much lower than the theoretical maximum. This can be explained by the
fact that the theoretical model is only valid in the far-field. In the near-field, the RSSI has strange behaviour,
due to the fact that in the near field the reactive field is stronger than the electromagnetic field.

(a) Relationship between RSSI and distance for the AD-321r9 tag. On the
horizontal axis is the distance in [m] between the tag and the RX/TX

antenna and on the vertical axis is the RSSI in [µW]. The fit corresponds to
the formula RSSI = 2.36 · r−2.27µW. Also added is the free-space RSSI as
calculated by Equation 3.7 and the maximum antenna gain in Table 3.4

(b) Relationship between RSSI and distance for the AD-665u8 tag. On the
horizontal axis is the distance in [m] between the tag and the RX/TX

antenna and on the vertical axis is the RSSI in [µW]. The fit corresponds to
the formula RSSI = 22.5 · r−2.39µW. Also added is the free-space RSSI as
calculated by Equation 3.7 and the maximum antenna gain in Table 3.4

Figure 3.13: RSSI versus distance measurements, for two UHF RFID Tags
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Also remarkable are the resulting fits
RSSI = 22.5 · r−2.39µW (3.17)

for the AD-665u8 tag and
RSSI = 2.36 · r−2.27µW, (3.18)

for the AD-321r9 tag, which are in the form of

RSSI = a · r−b , (3.19)

and have an exponent which differs quite a lot from the free-space model where the exponent equals -4
(Equation 3.10). The main explanation is that the fits were calculated on the data which included measure-
ments present in the near field, where Equation 3.11 does not hold. The fact that in indoor situations reflec-
tions from floors, walls, furniture and people do influence the signal travelling to and from the tag quite a
lot has to be taken into account as well. The difference in path loss coefficient is just a bit higher than the
expected exponent in the range of 1.8-2.2, as explained in subsection 3.4.3.
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Software Design

4.1. Hardware Overview
The main microcontroller of the ACS is, as explained in subsection 3.2.2, an ESP32-WROVER2-B. This module
is responsible for communicating between the RSSI reader, where tag information will be read, and the Momo
Medical database (referred to as "the database"), where the tag information will be stored for use of localizing
the tag by the Localization subgroup. In addition, it is the decision maker for the ACS, deciding whether some
specific rule is fulfilled or not. In this chapter, the how of these things will be discussed. So, how will the ESP32
carry out these tasks? The simple answer is by running the software written for it. Let’s dive into the technical
discussion of the software.

4.2. Programming Language and the ESP_IDF Framework
The programming language used for programming the ESP32 is C/C++. The software program has been de-
veloped in Visual Studio Code and makes use of the ESP_IDF framework. This framework contains functions
used to access the internal functionalities of the ESP32. These build-in functions are written in C, as are the
functions that are responsible for the UART connection to the Nano M6E and extracting data from it. The
functions used for processing the data and setting up the communication to the database are written in C++.
This choice is motivated by the fact that it was easier to store data in objects that are supported in C++ and
not available in C.

4.3. Toplevel Overview
The software package for the ACS exists out of several files where the ACS algorithms are described. In Fig-
ure 4.1, a top-level overview of the C/C++ files is shown. The following subsections explain the main func-
tionality of these files.

Main.cpp
In this C++ file, the main algorithm is running. It does not include function definitions, but calls functions
from other C/C++ files. The main loop starts by configuring the system setting and afterwards start the read-
ing process that will run until a critical error occurs, if the ESP32 was reset or if its power was shut off.

NanoM6EHelperFunctions.c
This C file is responsible for creating requests for and read responses from the Nano M6E. It contains func-
tions to initialize its settings and can ask it to return at which value settings are set. It can request for tag
data and decompose it to several metadata parameters. The request and response structures are explained
in subsection 4.4.1 and 4.4.2 respectively. All high-level functions that are defined in this file are shown in
appendix A.2.

WifiBap.c
This file contains the function that can be called to setup the WiFi on the ESP32 and also offers event handlers
for using the WiFi.

23
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Figure 4.1: Toplevel overview of the C/C++ files. Excluding standard library files

DoorSensor.cpp
This is the main file that has been developed for this project. It contains one class that represents the door
sensor as seen from the ESP32’s point of view. It will create an object instance of this class, which setup the
ESP32’s communication methods for WiFi, UART, the GPIOs that needed for LEDs, and the time. Then, it will
get the most up to date data from the databases. The how is explained in section 4.8.

This file, in addition, defines what happens in a read cycle, which it divides in a read part and a process part.
The read part, specifically, looks whether any data has been received from tags and in that case gets the data.
Afterwards, the process part goes through the tag data received and make decisions based on the tag data
that comes in. For this, the file has defined functions for processing tag data and also updating the database.

4.4. The UART Connection
The ESP32 and the Nano M6E communicate to each other using an UART connection. How the UART connec-
tion is established will be explained in subsection 4.8.1. The ESP32 constructs instruction Messages and the
Nano M6E constructs response messages which both will be send over the UART connection. In the following
subsections, those messages are broken down into pieces to see how they are constructed. Every instruction
and response have at least a basic structure, as can be seen in Table 4.1. The maximum length of a message is
limited to 256 bytes.

Table 4.1: Basic message structure[40]

Name Header Length Opcode Data CRC
Size (bytes) 1 1 1 0-250 2

A message contains at least the following components:

Header
The header always equals 0xFF and this byte implies the beginning of a message.

Length
The length tells an user out of how many bytes the data bytes exist. This is the length of the entire message -
5 bytes (1 byte for the header, 1 byte for the length, 1 byte for the opcode and 2 bytes for the CRC).

Opcode
The opcode tells what defines the function of the request or response. A list of all possible opcodes is given
in serial_reader_imp.h[41]. A selection of these opcodes are implemented in C functions which can be
called from the C/C++ files above. These functions are declared in NanoM6EHelperFunctions.c and the
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high-level functions can be found in section A.2. When the ESP32 sends an request with opcode x, the Nano
M6E responds with a response using the same opcode. The Nano M6E also can send one-way messages on
its own to the ESP32. If that is the case, the opcode always will be 0x22 and these messages can have three
different structures, as will be explained in subsection 4.4.2.

CRC
At the end of each message, a Cyclic Redundancy Check (CRC) is executed and two bytes are inserted at the
end of the message. The CRC is executed on the entire message, excluding the header byte. These CRC bytes
will be checked by the receiver and if the CRC locally calculated with the received message do not correspond
to the CRC bytes received, it is assumed that the received data is corrupted and the receiver will discard the
corrupted instruction. For now, no error correction will be applied.

The CRC bytes are generated by a simple algorithm that can be found in subsection A.2.27. It deviates from
the well-known CRC-16 algorithm (serial_reader_imp.h, [41]).

4.4.1. Request Syntax Introduction
To send a request from the ESP32 to the Nano M6E, the request should be in the basic structure as can be
seen in Table 4.1. As an example, a request is shown in Table 4.2, which is sent to the Nano M6E by calling
the getReadpower() function. Its functionality is explained in subsection A.2.3. The opcode used in this
example, 0x62, is extracted from serial_reader_imp.h [41].

Table 4.2: Example of a getReadpower() command

Name Header Length Opcode Data CRC
Data 0xFF 0x01 0x62 0x00 0xBEBD

Depending on the instruction, the data element can consist out 0 to 250 bytes.

4.4.2. Response or One-Way Message Syntax
When the Nano M6E sends data to the ESP32, this message can either be (a) a response to a request or (b) one
out the following three one-way messages:

• The Nano M6E sends a keep-alive message (once every 1 sec).
• The Nano M6E sends a temperature log message (once every 0.25 sec).
• The Nano M6E sends a Tag Found response.

Such a response or one-way message can be broken down in more than the four basic elements as shown in
Table 4.1. In this section, the possible response or one-way message structures and their specific elements
are explained. The structure of a response or one-way message is shown in Table 4.3.

Table 4.3: Response or One-Way Message Structure[40]

Name Header Length Opcode Status Data CRC
Size (bytes) 1 1 1 2 0-248 2

As can be seen, the data part is split: two bytes are taken and form the status bytes, as will explained later.
The possible length of the new data part shrinks with 2 to a maximum of 248 bytes, to still accommodate the
maximum message length of 256 bytes.

First, the opcode, status, data and length byte contents will be explained. Afterwards, the four different mes-
sage structures will be explained.

Opcode
In the case of a response to an request, the opcode of the request is used in this response. In the case of one
of the other messages, this opcode always will equal 0x22.
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Status
When the Nano M6E has successfully executed the instruction sent by the ESP32, the status bytes will equal
0x0000. It an error occurred, these bytes will not be equal to 0x0000. A simple check on this is implemented
and explained in section 4.5.

Data
In the case of a ’set’ request - a request where the Nano M6E is requested to change a setting - the data bytes
will be empty. As consequence, the length byte will equal 0x00.
When a ’get’ request has been sent, the data bytes will equal the specific data that was requested. The length
byte will indicate how many data bytes were returned.

Length
The length byte still indicates the number of bytes the data part consists of. In a response or

4.4.3. Keep-alive Message Syntax
This message is automatically sent from the Nano M6E to tell the ESP32 that it still works. It is sent approxi-
mately once every second. The response is decomposed in Table 4.4

Table 4.4: Keep-alive Message (KaM) Decomposition[40]

Size
(bytes

Name Description

1 Header Header, always 0xFF.

1 Length
Length of message, excluding Header, Length, opcode and CRC length.
Since a KaR does not contain any data, this byte equals 0x00.

1 Opcode 0x22
2 Status 0x0400
2 CRC CRC executed on entire message, excluding header.

4.4.4. Temperature Log Message Syntax
Once every 0.25s a Temperature Log Message (TLM) is sent to the ESP32. It tells at what temperature the
Nano M6E was at time it was sent and has a resolution of 1◦C. The response is decomposed in Table 4.5

Table 4.5: Temperature Log Message (TLM) decomposition[40]

Size
(bytes)

Name Description

1 Header Header, always 0xFF.
1 Length Length of message excluding Header, Length, opcode and CRC, always 0x0A.
1 Opcode 0x22
2 Status 0x0000
9 RFU Reserved for future use: 0x00031B028200820001
1 Temperature Temperature in ◦C
2 CRC CRC executed on entire message, excluding header.

RFU
The reserved for future use (RFU) bytes are set by the manufacturer of the Nano M6E and cannot be altered.
They have to be ignored in the temperature processing algorithm.

4.4.5. Tag Found Message Syntax
When the Nano M6E is requested to read for nearby RSSI tags, it will send a Tag Found Message (TFM) with
some metadata when a tag is detected. A description on the parts of which the response exist is shown in
Table 4.6. For some parts however, a more extensive description is given in following subsections.
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Table 4.6: Tag Found Message (TFM) Decomposition [40]

Size
(bytes)

Name Description

1 Header Header, always 0xFF.
1 Length Length of message excluding Header, Length, MSG CRC.
1 Opcode 0x22 for one-way message from Nano M6E.
7 RFU_1 Reserved for future use.
1 RSSI RSSI in dBm, 2’s complement.
1 Antenna ID First nibble is TX. antenna, second nibble is RX antenna.
3 Frequency Frequency in kHz.
4 Timestamp Time in ms since last keep-alive message.
2 Phase Phase at which the tag signal was read (0-180 deg).
1 Protocol ID Protocol ID as set in the readerSetup() function.
2 #data bytes Length of data stored on tag in bits, saved in M
8M. Data Data stored on tag.
1 RFU_2 Reserved for future. use. Will always be 0x0F.
2 #EPC bits Length of EPC. ID , PC and EPC CRC in bits. Saved in N.
2 PC Tag Protocol Control.
8N. EPC EPC ID.
2 EPC CRC CRC executed on EPC only.
2 MSG CRC CRC executed on entire message, excluding header.

RFU
Before moving on, it is good to mention that in a Tag Found Response, there are two parts that are reserved
for future use (RFU) and those bytes are independent of the message. RFU_1 corresponds to the message
0x10001B01FF0101 and RFU_2 corresponds to 0x01. These bytes are set in the Nano M6E by design and
cannot be altered.

EPC ID
The EPC ID is the ID of the tag. This ID is used to identify the specific tag. It can be changed with the function
writeEPC(EPC) and be read with the function readEPC(). The maximum length is 496 bits/62 bytes [19].
UHF RSSI tags come with an worldwide unique 96 bit/12 byte EPC ID when bought.

PC
The Protocol Control (PC) is another checksum that is executed on the EPC. The PC bytes will be equal to

0xZZ30, where 0xZZ equals
[

4 · size(EPC ID)
]

. The PC bytes are automatically generated by the Nano M6E

and ignored in the software design.

4.5. Error Solving Algorithm
There are several causes for errors. The Nano M6E has the ability to send the possible error status to the
ESP32 using the two status bytes as discussed in subsection 4.4.2. An algorithm to solve the errors which
during development were seen regularly was designed. When an unknown error message was sent in the
status bytes, the ESP32 resets the Nano M6E and itself. The error codes for which error solving algorithms
were constructed are shown in Table 4.7. A complete overview of all possible error messages and their cause
can be found in [22].
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Table 4.7: Error codes for which an error solve algorithm has been designed

Status bytes Cause Solution
0x0000 No error Continue

0x0101 Opcode not supported
Reset the Nano M6E and rerun
the Nano M6E setup functions

0x0400
An operation, such as writing
or reading a tag failed

Reset the Nano M6E and restart
the Nano M6E setup functions

0x0401
A command involving reading or writing failed
because of missing protocol/region/power setup
parameters

Reset the Nano M6E and rerun
the Nano M6E setup functions

0x0504 Temperature above rated temperature
Stop the reading of tags at the
Nano M6E for at least 5 minutes

other n/a
Reset the Nano M6E and restart
the Nano M6E setup functions

4.6. Instruction Send Algorithm

Figure 4.2: Nassi-Schneidermann diagram for the software running
on the Nano M6E

Now the message structure is clear, the algorithm
to send and receive data can be explained. The
basis for the Nano M6E algorithm to send instruc-
tions was found1 and heavily modified. A Nassi-
Schneidermann diagram of this algorithm can be
seen in Figure 4.2. In the following sections, the in-
dividual components will be explained.

4.6.1. Request Message Construction
The requests will be build according to the structure
that was explained in Table 4.1. The data part of spe-
cific requests will be constructed as needed by spe-
cific requests and will be explained in section A.2.

4.6.2. Send Request
The built instruction will be placed in the out-
going buffer. When the buffer was not sent
within 100 milliseconds, the ESP32 will clear the
outgoing buffer and send the instruction again.
The ESP32 will do this for a maximum of 5
times. If it then still fails to send the in-
struction, the ESP32 and Nano M6E will re-
boot.

If the Nano M6E did receive the instruction, it re-
sponds with a response as shown in Table A.38. The
ESP32 will calculate the CRC based on the length,
opcode, status and data bytes. If that calculated CRC
does not correspond to the CRC that was placed in
the response, something has gone wrong and the
message was received wrongly. The ESP32 will send the instruction again. and will continue to this for a
maximum of 5 times. If it then still fails to receive a response with a correct CRC, the ESP32 and Nano M6E
will reboot.

If the received CRC was correct, the response was most likely not corrupted. The ESP32 then will look at the
status bytes. If the status bytes will be equal to 0x0000, the instruction was received correctly, the Nano M6E

1https://github.com/sparkfun/SparkFun_Simultaneous_RFID_Tag_Reader_Library

https://github.com/sparkfun/SparkFun_Simultaneous_RFID_Tag_Reader_Library
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executed the instruction correctly and did tell the ESP32 that it did so. The ESP32 now will continue with the
next instruction. If the status bytes are unequal to 0x0000, some error may be present. It will resolve the error
based on the information in the status bytes, as explained in section 4.5. If the error could not be solved, the
ESP32 will send the instruction again and will continue to do this for a maximum of 5 times. If it then still fails
to receive a response with status bytes 0x0000, the ESP32 and Nano M6E will reboot.

4.7. Interference with the Existing Momo Medical Hardware
The existing Momo Medical hardware exist out of several parts, as shown in Figure 2.1. The connection be-
tween a panic button and surrounding BedSenses uses an 868 MHz RF connection. Since the ACS operates
at that frequency band as well, some precautions had to be made in order for both systems to work simul-
taneously.Good to keep in mind is that When a resident presses their panic button, the panic button tries to
connect to the surrounding BedSenses and if that fails, it repeats that sequence several times.
Tests have proven that the panic button was unable to connect to a BedSense, even when the distance be-
tween a BedSense and a panic button was less than one meter and the distance between the panic button
and an ACS that was continuously reading was more than 5 meters. To compromise this problem, use can
be made of different algorithms, e.g. active panic listening algorithm or pulse mode operation. Let’s look at
these two.

4.7.1. Active Listening Algorithm
The ACS can be listening actively at all time to see whether the any other device is sending signals at its
operating frequency; then if no other device is, the ACS can start its search for tags, otherwise it can switch to
low power mode and try again later.

4.7.2. Pulse Mode Operation
An easier solution is called Pulse Mode Operation (PMO). In this operation mode, the reader is not reading
constantly but alternating between periods of reading and non-reading, in the latter phase it can instead
process what has been read and communicate with the database. The time for both reading and non-reading
phase can both be easily adjusted in the code. Due to small random variations, interference will be reduced.

4.7.3. Conclusions
The PMO algorithm was tested. Using a read cycle consisting out of a read time of 200 ms and a down time
of 100 ms, the communication from a panic button to a BedSense, which were both close to the ACS was not
influenced by the ACS. When the PMO was disabled; e.g. the ACS was continuously reading, there was no
communication possible from the panic button to the BedSense. Chosen is to implement this algorithm in
the software design.

4.8. Main Algorithm
In this section the main loop is described. A schematic overview is given in the Nassi-Schneiderman diagram
in Figure 4.3. In the following subsections, each part indicated in this diagram will be explained.

4.8.1. UART Setup
The connection between the ESP32 and the Nano M6E is made possible by using a Universal asynchronous
receiver-transmitter (UART) connection, where either (1) the ESP32 sends instructions in the form of instruc-
tion messages to the Nano M6E and it responds by confirming the reception of the instruction or (2) the Nano
M6E sends a response message.

The UART setup function uart_config() mainly initializes the UART connection to a baud rate of 115200
baud, sets the physical TX and RX pins on the ESP32 and sets the parity and stop bits to the 8N1 standard,
where there are 8 bits, no parity and one stop bit per data frame. This also is the standard configuration of
the Nano M6E[28]. Other baud rates are possible, and in this function, one can set the baud rate at which the
ESP32 should be listening to one of the standard baud rates in the range of 9600 - 921600 baud. The possible
baud rates are shown in subsection A.2.1 This setup function checks if the arguments used to initialize the
UART connection are valid and if not prints an error message.
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Figure 4.3: Main algorithm for the ACS

4.8.2. WiFi Setup
The ESP32 can serve both as an access point and as an
station for WiFi communication. For the purposes of the
hardware built, the ESP32 needs to access the WiFi as
a client and so should be a station. The setup of the
WiFi starts by connecting to a hard-coded WiFi network
with a given authentication mode, e.g. WPA2, WPA3,
WPA2/WPA3, etc., and afterwards instructs the ESP32 to
function as a station to be able to send data to the server
and database of Momo Medical. To be able to send data,
a HTTP client needs to also be setup, which is done after-
wards with certificates so the client can authenticate itself
to the database.

4.8.3. UNIX Time Setup
The UART setup also involves setting up the ESP32 time.
The ESP32 uses two hardware timers but both of these
timers indicate the time since system’s startup. To adjust
the time to UNIX time, use was made of a network time
protocol (NTP) server after connecting to WiFi by mak-
ing use of a simple network time protocol library. With
this the internal timer of the ESP32 is calibrated. This cal-
ibrated time is used to attach a timestamp in UNIX time
to the data sent to the database, when sending tag data.

4.8.4. Ready to Work
After the initialization steps, as described above, have
been executed, the ACS starts reading forever, if no exter-
nal problems occur. The read cycle, as indicated in sec-
tion 4.3 consists out of two parts, one in which the ACS
is reading tags and one in which it is processing what it
read. This is also where pulse mode operation comes at
play, explained in subsection 4.7.2. That algorithm will
decide when to switch between the reading and process-
ing data.

But not all messages received by the Nano M6E will be treated the same. Two reads are far less important at
this stage, namely the messages regarding temperature and keep-alive. The focus has been only on tag data
message for the moment.

For the system to be able to execute the actions necessary and update the data in the database, it reads the
tag data indicated in Table A.34. After processing the data, some data is sent to the database, namely the RSSI
of received signal, the id of the tag read, the id of the place the ACS belongs to, and the time of reading. In
addition, the processed data is checked to see whether the tag read is fulfilling some requirements from the
database or not and according to that outputs a binary 0 or 1.

4.9. Tag Metadata
During a readcycle, the struct tagInfos as indicated in Table A.34 will be updated when a new tag is found.
In this section, the algorithms for several parameters which will be placed in the struct tagInfos will be
explained.
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4.9.1. Count
The count parameter corresponds to the number of times a specific count has been read during one readcy-
cle. It will reset after each readcycle.

4.9.2. Timestamp
Two options are implemented for updating the struct tagInfos with a timestamp:

• The timestamp of the tag reading with the highest RSSI, or
• the timestamp of the last time this tag was read during the readcycle.

The second option will be used by default.

4.9.3. Dynamic Calculation of RSSI
The struct tagInfos contains three parameters concerning the RSSI of a specific tag found during one read-
cycle:

• The maximum RSSI,
• the mean RSSI, and
• the variance of the RSSI.

Which of the maximum RSSI or mean RSSI will be sent to the database can be configured. By default, the ACS
sends the mean RSSI to the database. As discussed in section 3.4, the linear RSSI xn is log-normal distributed
and the RSSI in decibels is Gaussian distributed with a mean RSSI of

M = 1

k

k∑
n=1

xn (4.1)

and an unbiased variance of

σ2
RSSI =

1

k

k∑
n=1

(xn −M)2 (4.2)

To calculate a variance of the RSSI of a tag during one read cycle, it would be memory efficient to not store all
RSSI values during the read cycle, but rather update the last stored variance with a new RSSI value. The algo-
rithm to calculate the variance as given in Equation 4.2 does, however, calculates the RSSI after completing
the read cycle, since it needs the mean µ which only can calculated after completing a read cycle.
Another algorithm [42] exists for calculating the variance, which is recursive and discards every last calcu-
lated variance S2

n−1 to update the new S2
n for 1 < n < k where k is the total amount of times a specific tag is

read per read cycle

S2
n = S2

n−1 +
(

n −1

n

)
(xn −Mn−1)2 (4.3)

This works in theory. In practice, however, when using floating point numbers, this algorithm suffers from
rounding errors.
Yet another algorithm, one that is implemented in the code for the ACS, is based on both algorithms discussed
above [42]. First, during the read cycle, the mean RSSI value is updated and then the squared error to the
updated mean is calculated and added to the last squared error as

En = En−1 + (xn −Mn−1)(xn −Mn) (4.4)

where

Mn = Mn−1 · (n −1)+xn

n
(4.5)

is the updated mean. One can easily see that Equation 4.4 resembles the sum of squared errors in Equa-
tion 4.1, and by dividing Equation 4.4 by the total number of samples k we find the recursively calculated
variance

S2
RSSI ≈

Ek

k
,k > 2. (4.6)

This algorithm is implemented in the function updateTagInfoWithRssiMeanAndSd(), whose structure is
explained in subsection A.3.3.
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Design and Results

In this chapter, a summary on the complete design of the access control system will be given, after which it
will be tested. The results of the tests will be given in section 5.2.

5.1. Final Design
Before looking at how well the system works, it is good to shortly go through the full final design. Let’s look at
the final hardware and software part, and the easy integration of them.

5.1.1. Hardware Design
Recall the conclusion on the hardware design: An ESP32 microcontroller, which will be connected using a
WiFi connection to the Momo Medical database, is connected to the Nano M6E UHF RFID reader module
using an UART connection. Attached to the Nano M6E is a vertical polarized patch antenna, the GSM-34-900.
It is used to observe UHF RFID tags, which are attached using an adhesive layer onto panic buttons vertically.
Attached to one of the GPIO pins on the ESP32 is a black box model of an actuator. The hardware design was
explained in chapter 4. In the final design, the ESP32 microcontroller runs a program that indicate to the
Nano M6E to either read or not, and the ESP32 also processes all the incoming data from the Nano M6E en
outputs a binary value. The Nano M6E, thus, functions only as a transceiver being able to interact with tags
and the microcontroller, with the antenna allowing it to send and receive signals.

5.1.2. Software Design
The Nano M6E has a internal microcontroller, on which a software is placed by the manufacturer of the Nano
M6E. For a program to control the Nano M6E, it must use the API written for this software. This is what the
program, discussed in chapter 4 running on the ESP32 is doing.

5.1.3. Bringing it all Together
Altogether, the final design consists out of a software system written which is ran on the ESP32 to use an
Nano M6E to read RFID tags and based on the data read output a binary value that can be used by some other
system. The access control system has been designed to be able to be able to do the following:

1. Observe UHF RFID tags up to a distance of at least 1 meter.
2. Change the ID of a given ACS unit.
3. Change the EPC of a tag.
4. Create a connection to the Momo Medical database.
5. Save data of observed tags, such as RSSI, EPC, custom data and a timestamp of observation.
6. When a tag was observed, send the found EPC, mean RSSI, timestamp of observation and ACS ID to the

database.

5.2. Results
In this section, the specifications from subsection 5.1.3 will be confirmed by testing the design.

32
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Distance
As can be seen in Figure 3.6, the AD-665u8 tag could be observed at a distance of 1.5 meter from the GSM-34-
900 antenna within 100 milliseconds. It is concluded that requirement FR1 was achieved, as well as require-
ment FR2.

5.2.1. Reading Data
During a read cycle of one second of reading and one second of processing, nearby tags were observed. By
printing some data in the program, the data as claimed in was printed at the end of the read cycle, which can
be seen in Figure 5.1. This figure shows that indeed the timestamp at which a specific tag was observed last is
stored in UNIX time, including milliseconds as required by FR4. The number of times a specific tag was seen
in last read cycle is stored, and the data regarding the tag id (EPC), mean RSSI, and what the ACS ID is. This
corresponds to which location (here door 1, which corresponds to ACS ID 00000001), the ACS is placed.

Figure 5.1: Observed tags in one read cycle, with their data

The timestamp of the last printed tag, when converted to a human-understandable date and time, corre-
sponds to Thu Dec 15 2022 12:17:08 GMT+0100. This is as expected, since it corresponds to the time of the
verification test. 8 tags were observed during this read cycle. Two of them were previously given another EPC:
tag 2 and 3. The remaining 6 tags have their pre-programmed EPC. All tags were seen many times which gives
a high certainty that they were in the neighbourhood of the GSM-34-900 antenna for some time. This can be
confirmed by the fact that the RSSI for some tags was quite high (-20 dBm for 33a39c1f). All tags were said
to be seen at door 1, which is correct. From this, it can be concluded that the data required to be sent to the
database could be saved for further processing.

5.2.2. Database Connection
Now the data can be saved locally, it is time to send this data to the Momo Medical database. The function
sendDataToDB(), which is called after each readcycle, is responsible for doing this. Using data visualisation
tool called Grafana, the data received by the database can be seen. The results can be seen in Figure 5.2,
where the data regarding ACS with ID 1 is printed.

Figure 5.2: Visualization of the tag data as observed by ACS with ID 0000001, sent to the Momo Medical database using Grafana. On the
horizontal axis is time (GMT+1) and on the vertical axis is the RSSI in dBm. The lines correspond to the 8 tags which were observed,

with their EPC as peripheral_id.

When comparing the data seen in Figure 5.1at timestamp 12:17:08 with the data printed in Figure 5.1, the
found tag EPCs and their corresponding RSSI values correspond to the data saved locally. From this, it can be
concluded that the connection between the ACS and the Momo Medical Database was correctly established,
satisfying requirements FR3, FR4 and FR7. The Localisation System subgroup now has access to this data,
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which can be used for their localisation algorithm. Since the ACS knows which panic buttons pass certain
doors or locations, e.g. elevators or staircases, the Localisation System can know if panic buttons travelled to
other floors inside nursery homes, which can be useful to gain a higher confidence of a three-dimensional
location inside a building.



6
Discussion

Due to its technical and practical nature, this project had most of its requirements set from the beginning
on, with minor additions/changes throughout the project. The time has come to put the final product side-
by-side with the requirements documented in section 2.2 and see whether all the requirements have been
satisfied.

Starting with the full system requirements that were set in the program of requirements, it can be seen that all
of the requirements have been achieved. It is good to mention that although he location is determined once
a minute (SR2), the ACS updates more often. For SR3, it is good to mention that for the system to work in a
nursing home, some installation has to be done. For example, the layout of the rooms needs to be translated
to the map format used by the system. Also, the ACS sensors need to be placed at every door room and other
passageways. However, no (extensive) calibration is needed. The localization system has been designed such
that it works after giving it general layout parameters, such as the distances to different type of neighbouring
rooms. The ACS does not need any calibration at all.
Looking at the functional requirements, it has already been indicated that FR1, FR2, FR3, and FR4 have been
satisfied. Now, not much has been discussed regarding FR5, specifically about getting updates from the
database. The reason is because the check for access rights at the moment is based on hard-coded data.
This does mean that the functionality of getting data from the database is already available and that by some
tweaking, Momo Medical can have that functionality fully ready. The second part of FR5 is thus satisfied but
not the first part of it. Further, FR6, FR7, FR8, and FR9 have also been satisfied.

Looking at the non-functional requirements, NFR2 and NFR3 have been fully satisfied, but NFR1 has been
a challenge. The search for the necessary hardware was the most challenging part before starting with the
actual hardware and software implementation. It not only took much more time than desired, it also did not
result in the team finding all the hardware modules that can be used in large scale application. And NFR1 is
not fully satisfied as the antenna of the system does not have a practical dimensions for the use Momo Med-
ical has in mind. But not all parts of the hardware is unhandy; the ESP32 microcontroller is a really useful
module that can be reused with any other RFID transceiver (and its antenna). This has the added benefit that
the software written for the microcontroller, which contains the WiFi communication, database connection,
and the tag data processing, can all be reused.
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7
Conclusion, Recommendation, and Future

Work

The challenge in this project was to design and build an access control system that could regulate access
to rooms and sections by different people in nursing homes. The time spent on the project has resulted in
a hardware system consisting out of the SparkFun Simultaneous RFID Reader, with the Nano M6E module
on its board, a GSM-34-900 patch antenna connected to it, and the ESP32-WROVER-B microcontroller. The
hardware system is dependant on the fact that the people should carry a UHF RFID tag with at all times
and based on those tags can recognize the different people. This tag should be placed on a panic button in
a vertical orientation. The microcontroller is in addition dependant on a software written for this project,
which enables it to process tag data it gets from the Nano M6E and communicate via WiFi to send data to
the database. The final system satisfies most requirements set in the beginning of the project but needs some
tweaking to be able to get updates from the database and to be useful for commercial implementations.

For improving the system, there is still some work to be done. As mentioned above, the first thing to do is to
get the updates necessary from the database, for example all new tag ids added to the system with the update
of which tag belongs to which room/section. Afterwards, focus should be set on reducing the hardware set in
size so it can be installed wherever desired. One more improvement to the system is to add more conditions
to what should happen when a specific tag is found and what the priorities are; for this questions like "when
one person is allowed to enter a room and one is not but they both try to enter, should the door open or not?"
should be answered. The implementations of these conditions are quite easy as the software for the "door
sensor" itself has been written with this in mind.
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A
C/C++ functions

In this appendix, the goal is to give an overview of all the functions used to create the software for the hard-
ware. Highlighted text, indicates default values. For each function, a table is shown with inputs and outputs
in addition to the explanation provided.

A.1. Main.c
No specific functions but the main function is defined in this file. The main function has been extensively
explained in section 4.8.

A.2. NanoHelperFunctions.c
This file contains C functions which are used to configure the Nano M6E, read and write data to tags etc.

A.2.1. setBaud()
Sets the baud rate of the Nano M6e. Possible values can be chosen from the range [9600 - 19200 - 38400 -
115200 - 230400 - 460800 - 921600] baud [28], where the bold value is the default baud rate.

Table A.1: Inputs and outputs of setBaud()

Inputs Outputs
baudRate uint32_t void

A.2.2. setReadPower()
Sets the power at which the Nano M6E reads. Range 0-27 dBm (0-500 mW). Range for input readPower =
0-2700 cdBm

Table A.2: Inputs and outputs of setReadPower()

Inputs Outputs
readPower uint16_t void

A.2.3. getReadPower()
Ask the Nano M6E at which power it is initialized to read. Returns this read power. Range 0-27 dBm (0-500
mW). Range for output readPower = 0-2700 cdBm

Table A.3: Inputs and outputs of getReadPower()

Inputs Outputs
void readPower uint16_t
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A.2.4. setWritePower()
Sets the power at which the Nano M6E can write data adn EPCs to its internal memory. Range 0-27 dBm
(0-500 mW). Range for input writePower = 0-2700 cdBm

Table A.4: Inputs and outputs of setWritePower()

Inputs Outputs
writePower uint16_t void

A.2.5. getWritePower()
Ask the Nano M6E at which power it is initialized to write data and EPCs. Returns this write power. Range
0-27 dBm (0-500 mW). Range for output writePower = 0-2700 cdBm

Table A.5: Inputs and outputs of getWritePower()

Inputs Outputs
void writePower uint16_t

A.2.6. setRegion()
Sets the region of the module to cover for the legal frequency bands. Possible regions are found in Table A.8.

Table A.6: UHF RFID regions and arguments, from tmr_regions.h [41]

Region Argument
Unspecified 0x00
North America 0x01
European Union 0x02
Korea 0x03
India 0x04
Japan 0x05
PR China 0x06
European Union 2 0x07
European Union 3 0x08
Korea 2 0x09
PR China (840 MHz) 0x0A
Australia 0x0B
New Zealand 0x0C
Reduced FCC region 0x0D
5 MHz band 0x0E
Israel 0x0F
Malaysia 0x10
Indonesia 0x11
Philippines 0x12
Taiwan 0x13
Macau 0x14
Russia 0x15
Singapore 0x16
Japan 2 0x17
Japan 3 0x18
Vietnam 0x19
Thailand 0x1A
Argentina 0x1B
Hong Kong 0x1C
Bangladesh 0x1D
European Union 4 0x1E
Open region 0xFF
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Table A.7: Inputs and outputs of setRegion()

Inputs Outputs
region uint8_t void

A.2.7. getRegion()
Returns the region the Nano M6E is initialized at. The returned byte corresponds to a region specified in
Table A.6.

Table A.8: Inputs and outputs of getRegion()

Inputs Outputs
void region uint8_t

A.2.8. setAntennaPort()
Sets the port at which the antenna can be found. The Nano M6E only supports an RX antenna on port 0x01
and a TX antenna on port 0x01. These are used in initializing the Nano M6E.

Table A.9: Inputs and outputs of setAntennaPort()

Inputs Outputs
void void

A.2.9. setTagProtocol()
Tells the Nano M6E which UHF RFID protocol to use. Sets the Nano 6ME to read tags with the Gen2/ISO18000-
c protocol, when protocol is set to 0x02. Other protocols are possible. In Table A.10, the supported protocols
and their corresponding arguments are listed. The arguments are extracted from
tmr_tag_protocol.h [41]. The default protocol used is the GEN2/ISO18000-C protocol.

Table A.10: Supported UHF RFID protocols

Protocol None ISO180006-B GEN2/ISO18000-C ISO180006-B_Ucode IPX64 IPX256 ATA
Argument 0x00 0x03 0x05 0x06 0x07 0x08 0x1D

Table A.11: Inputs and outputs of setProtocol()

Inputs Outputs
protocol uint8_t void

A.2.10. getTagDataBytes()
Returns the length in bytes of the data string embedded in a tagReadMessage as specified in Table 4.6.

Table A.12: Inputs and outputs of getTagDataBytes()

Inputs Outputs
void length uint8_t

A.2.11. getTagEPCBytes()
Returns the length in bytes of the EPC embedded in a tagReadMessage as specified in Table 4.6. Default EPC
length = 12 bytes.

Table A.13: Inputs and outputs of getTagEPCBytes()

Inputs Outputs
void length uint8_t
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A.2.12. getTagTimestamp()
Returns the timestamp in ms a tag was read since last keep-alive signal as specified in Table 4.6.

Table A.14: Inputs and outputs of getTagTimestamp()

Inputs Outputs
void timestamp uint16_t

A.2.13. getTagFreq()
Returns the frequency (in kHz) a tag was read at.

Table A.15: Inputs and outputs of getTagFreq()

Inputs Outputs
void frequency uint32_t

A.2.14. getTagRSSI()
Returns the RSSI a tag was read with in dBm. Encoded as two’s complement with a resolution of 1 dBm.

Table A.16: Inputs and outputs of getTagRSSI()

Inputs Outputs
void rssi int8_t

A.2.15. getTagSignalPhase()
Returns the signal phase a tag was read at. Range 0-180 degrees.

Table A.17: Inputs and outputs of getTagSignalPhase()

Inputs Outputs
void phase uint16_t

A.2.16. getTemperature()
Returns the internal temperature of the Nano M6E in degrees Celsius.

Table A.18: Inputs and outputs of getTemperature()

Inputs Outputs
void temperature uint8_t

A.2.17. getPowerMode()
Returns the power mode the Nano M6E is operating at.

Table A.19: Inputs and outputs of getPowerMode()

Inputs Outputs
void power mode uint8_t

A.2.18. getHopTable()
Returns the table in which all frequencies the Nano M6E reads the tags.

Table A.20: Inputs and outputs of getHopTable()

Inputs Outputs
void hop table uint32_t[]
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A.2.19. enablePowerSave()
Set the power save mode. When enabled, it has less power consumption. When disabled, it has better reading
sensitivity.

Table A.21: Inputs and outputs of enablePowerSave()

Inputs Outputs
power mode bool void

A.2.20. readTagEPC()
Saves the EPC of length epcLength at the address of epc. If no tag is found before a timeout of timeOut
ticks has been reached, this function returns a status code of 0x0C. When successfully stored an EPC, this
function returns a status code of 0x0B

Table A.22: Inputs and outputs of readTagEPC()

Inputs Outputs
*epc uint8_t status uint8_t
epcLength uint8_t
timeOut uint16_t

A.2.21. writeTagEPC()
Writes a new EPC newEPC of length newEPCLength to the first tag that will be detected before a timeout of
timeOut ticks has been reached. If successful, this function returns a status code of 0x0B. If not successful,
this function returns a status code of 0x0C.

Table A.23: Inputs and outputs of writeTagEPC()

Inputs Outputs
*newEPC char status uint8_t
newEPCLength uint8_t
timeOut uint16_t

A.2.22. resetNano()
Resets the Nano M6E by pulling its enable pin low for 55 milliseconds.

Table A.24: Inputs and outputs of resetNano()

Inputs Outputs
void void

A.2.23. configReader()
This functions calls several other functions and is used to configure the Nano M6E. The functions called are

1. stopReading() to stop any ongoing readcycle.
2. setAntennaPort() to initialize the rx/tx antennae ports.
3. setRegion(region) to set the operating frequency/region.
4. setBaud(baudRate) to set the baudrate at which the Nano M6E should communicate.
5. setReadPower(readPower) to set the power at which the Nano M6E should read.
6. setWritePower(writePower) to set the power at which the Nano M6E should write.
7. setTagProtocol(protocol) to set the operating protocol.
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Table A.25: Inputs and outputs of configReader()

Inputs Outputs
region uint_8t void
baudRate uint16_t
readPower uint16_t
writePower uint16_t
protocol uint8_t

A.2.24. configReaderDefault()
This function calls the function configReader() with the default values for baudRate, readPower, Region
and protocol as shown in Table A.26.

Table A.26: Default parameters for configReader()

Parameter baudRate readPower writePower region protocol
Value 115200 2700 2700 0x08 0x05
Description baud cdBm cdBm EU3 Gen2/ISO18000-c

Table A.27: Inputs and outputs of configReaderDefault()

Inputs Outputs
void void

A.2.25. parseResponse()
Parses the automatic responses the Nano M6E sends to the ESP32. Returns what kind of signal is received,
which are described in Table A.28. Used in other functions to extract useful data from these messages.

Table A.28: Response

Status Description
2 CRC failed, response discarded
4 Opcode not equal to 0x22, not an automatic response
5 Temperature response, once every ∼1 second
6 Keep-alive response, once every ∼0.25 seconds
7 Max allowed temperature exceeded - reading stopped
8 A tag was found
9 Error message
10 Error

Table A.29: Inputs and outputs of parseResponse()

Inputs Outputs
length uint8_t status uint8_t

A.2.26. getTimeMs()
Returns UNIX time but in ms.

Table A.30: Inputs and outputs of getTimeMS()

Inputs Outputs
void time int8_t
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A.2.27. calculateCRC()
This function calculates a Cyclic Redundancy Check (CRC) and returns the two CRC bytes which will be added
to the message to be sent or compared to the CRC bytes of the received response.
It is calculated by using the following algorithm, extracted from serial_reader_l3.c[41].

uint16_t crc = 0xFFFF;

for (uint8_t i = 0; i < len; i++)
{

crc = ((crc << 4) | (u8Buf[i] >> 4)) ^ crctable[crc >> 12];
crc = ((crc << 4) | (u8Buf[i] & 0x0F)) ^ crctable[crc >> 12];

}

return crc;

The array crctable is defined as an array of 16 bytes, where crctable[i] = crctable[i-1] + 0x1021, with
crctable[0] = 0x0000 and crctable[1]= 0x1021.

Table A.31: Inputs and outputs of calculateCRC()

Inputs Outputs
message uint8_t crc uint16_t
length uint8_t

A.2.28. readData()
The function readData() is used to read incoming data with length dataLengthRead in bytes. It starts
reading at byte address, and stores the read data at the address of dataRead.
When nothing could be read before a timeout timeout in ticks was reached, this functions outputs a status
code 0x0C. When data was read successfully before a timeout was reached, this functions outputs code 0x0B.
The data that should be read is dependant on the chosen bank as depicted in Table A.32.

Table A.32: Bank description

Bank 0
bytes [0] [1] [2] [3-4] [5-8] [9-12]
description Success length in bytes opcode status Kill password Access password

Bank 1
bytes [0] [1] [2] [3-4] [5-6] [7-9] [8-8+N]
description Success length in bytes [N] opcode status CRC PC EPC

Bank 2
bytes [0] [1] [2] [3-4] [5] [6-8] [9-38]

description Success length in bytes opcode status CIsID
0xaaabbb
Vendor ID (a)
Model ID (b)

Unique ID

Bank 3
bytes [0] [1] [2] [3-4] [5-5+N]
description Success length in bytes [N] opcode status User data

The inputs and outputs are shown in Table A.33.
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Table A.33: Inputs and Outputs of readData()

Inputs Outputs
bank uint8_t status uint8_t
address uint32_t
*dataread uint8_t
dataLengthRead uint8_t
timeOut uint16_t

A.3. Doorsensor.cpp
This C++ file contains functions that are responsible for everything that happens before or after data is read
by the Nano M6E, like initializing the system and taking decisions based on tags seen. First, an important
struct will be declared. This struct will be used throughout this C++ file. After the struct declaration, the
functions declared in this C++ file will be explained.

A.3.1. struct TagInfo
The struct TagInfo will be used in several functions and stores the metadata of a tag read. It looks like the
following:

struct TagInfo
{

uint32_t id;
uint8_t idByteLength;
int8_t rssi;
float rssi_sd;
float rssi_mean;
uint32_t frequency;
uint64_t timeStamp;
uint16_t phase;
uint8_t count;

};

where the individual components are explained in Table A.34.

Table A.34: Description of components of struct TagInfo

Parameter Description Type Unit
id Tag EPC uint32_t n/a
idByteLength Length of tag EPC uint8_t n/a
rssi RSSI int8_t dBm
rssi_sd Variance of received RSSI of a specific tag read in an ongoing read cycle float dBm
rssi_mean Mean RSSI of a specific tag read in an ongoing read cycle float mW
frequency Frequency on which a tag was read uint32_t kHz
timestamp UNIX time at which this tag was read uint64_t ms
phase Phase this tag was read at uint16_t degrees
count How many times this tag has been read in ongoing read cycle uint8_t n/a

A.3.2. bytesToInt()
This function converts a array of tagEPCLenght bytes to an integer. Used to convert the standard EPC, which
is received as an array of bytes and stored in tagEPC[] to an integer, which can be sent to the database.

Table A.35: Inputs and outputs of bytesToInt()

Inputs Outputs
tagEPC[] uint8_t tagId int32_t
tagEPCLength uint8_t
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A.3.3. updateTagInfoWithRssiMeanAndSdAndCount()
During a read cycle, this function uses the new RSSI value and the stored RSSI mean and variance, due to
previous reads in the current readcycle, to update the RSSI mean and variance values, as discussed in subsec-
tion 4.9.3. It also updates the tagCount parameter, which is a measure for how many times this specific tag
has been read in the ongoing readcycle.

Table A.36: Inputs and outputs of updateTagInfoWithRssiMeanAndSdAndCount()

Inputs Outputs
tagInfo TagInfo void

A.3.4. getTagInfo()
This function will be called when a tag has been read. It then extracts the metadata from the tag to save this
in the struct TagInfo. It starts doing this by calling the functions

int8_t rssi = getTagRSSI();
uint8_t count = 0;
uint8_t idLength = getTagEPCBytes();
uint16_t phase = getTagSignalPhase();
uint32_t frequency = getTagFreq();
uint64_t readTimeStamp = getCurrentTimeMs();

uint8_t tagIdBytes[idLength];
getTagEPC(tagIdBytes, idLength);
uint32_t tagId = bytesToInt(tagIdBytes, idLength);

where the parameters for the read RSSI (rssi), length of the EPC (idLength), timestamp of reading (readTimeStamp),
phase (phase), frequency (frequency) and EPC (tagId) are set. It then calls the function
updateTagInfoWithRssiMeanAndSdAndCount(), where the updated RSSI mean and variance and the amount
the tag with this specific EPC is read in the ongoing read cycle are set. Then, it fills in the struct tagInfo of
type TagInfo

TagInfo tagInfo = {.id = tagId, .idByteLength = idLength, .rssi = rssi,
.rssi_sd = rssi_sd, .rssi_mean = rssi_mean, .frequency = freq,
.timeStamp = readTimeStamp, .phase = phase, .count = tagCount};

This function concludes by storing this metadata-filled struct for the whole read cycle.

Table A.37: Inputs and outputs of getTagInfo()

Inputs Outputs
void void

A.3.5. Read()
This function checks how many bytes there are in the incoming RX buffer on the ESP32. If there are any bytes
in this buffer, they will be read and stored in the global variable MSG[] by calling parseResponse(). This
function also returns a status, with the meaning of different statuses depicted in Table A.38:
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Table A.38: Response reactions

Status Meaning Action
2 CRC failed Discard response
4 Not opcode 0x22 Logs the incoming response
5 Temperature Logs the temperature

6 Keep-alive response
Calls the getTimeMS() function in order to connect
the correct UNIX timestamp to the tag .timeStamp
parameter

7 Overheating alarm Stops reading immediately, logs the timestamp
8 A tag was found Calls the getTagInfo() function to process this response
9 An other error occurred Logs the error code included in the response.

10
This cannot happen, but
is implemented to catch
exceptions

n/a

default
This cannot happen, but
is implemented to catch
exceptions

n/a

Table A.39: Inputs and outputs of Read()

Inputs Outputs
void void

A.3.6. checkTagsFound()
This function will be called after each stopReading() function. It will iterate over all the tags read during the
readcycle and will log how many different tags were found in the last read cycle, what their mean and max
RSSI values were. Also, based on the tags seen it will decide the output of the ACS.

Table A.40: Inputs and outputs of checkTagsFound()

Inputs Outputs
void void

A.3.7. setupTime()
This function is responsible for retreiving the UNIX time using the WiFi connection, as explained in subsec-
tion 4.8.3.

Table A.41: Inputs and outputs of setupTime()

Inputs Outputs
void void

A.3.8. getCurrentTimeMs()
This function returns the current UNIX time but in ms.

Table A.42: Inputs and outputs of getCurrentTimeMs()

Inputs Outputs
time_ms uint64_t void

A.3.9. uart_config()
This function will initialize the uart connection between the ESP32 and the Nano M6E as discussed in sub-
section 4.8.1.
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Table A.43: Inputs and outputs of uart_config()

Inputs Outputs
void void

A.3.10. startReadCycle()
This function is called from the main to indicate to the ESP32 to drive the Nano M6E is such a way so it
reads. After some time, the reading is stopped and the ESP32 starts up the processing part of the program. In
between, check is done to see whether everything is running or some error or unexpected event has occurred.

Table A.44: Inputs and outputs of startReadCycle()

Inputs Outputs
timeOn uint16_t void
timeOff uint16_t

A.3.11. turnOnGreenLed()
This function turns on a green LED located on GPIO GREEN_LED_GPIO_PIN

Table A.45: Inputs and outputs of turnOnGreenLed()

Inputs Outputs
void void

A.3.12. turnOnRedLed()
This function turns on a red LED located on GPIO RED_LED_GPIO_PIN

Table A.46: Inputs and outputs of turnOnRedLed()

Inputs Outputs
void void

A.3.13. turnOffLeds()
This function turns off all external LEDs

Table A.47: Inputs and outputs of turnOffLeds()

Inputs Outputs
void void

A.3.14. encodeMessageAndAddToBuffer()
This function encodes a message so that it can be sent using HTTP. It stores the encoded message in mes-
sagesToSendBuffer which it receives as input, see A.48.

Table A.48: Inputs and outputs of encodeMessageAndAddToBuffer()

Inputs Outputs
message MomoMessages_GeneralMessage * void
total_message_size_in_bytes int &
messagesToSendBuffer std::vector<std::string> &

A.3.15. createGeneralMessage

Table A.49: Inputs and outputs of createGeneralMessage()

Inputs Outputs
tagInfo TagInfo message MomoMessages_GeneralMessage
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A.3.16. sendDataToDB()
This function goes through all the tags found and stored in the DoorSensor object and with the help of other
functions creates a message containing the necessary data to be sent to the database and sends that data to
the database.

Table A.50: Inputs and outputs of sendDataToDB()

Inputs Outputs
void void



B
Figures

In this appendix, several figures are placed for clarification purposes.

B.1. Antenna test setup

Figure B.1: Two-way directivity measurement setup. The AD-665u8 tag was placed vertically and perpendicular to the GSM-34-900
antenna. The tag was placed at the same height as the GSM-34-900 antenna (1m above the floor) and at angles 45 degrees difference.

This was repeated for a distance of 50, 100 and 150 centimeter to the antenna.
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B.2. Breakdown of the Nano M6E

Figure B.2: Nano M6E inner components
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