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Abstract: For many parasitic diseases, the microscopic examination of clinical samples such as
urine and stool still serves as the diagnostic reference standard, primarily because microscopes
are accessible and cost-effective. However, conventional microscopy is laborious, requires highly
skilled personnel, and is highly subjective. Requirements for skilled operators, coupled with the cost
and maintenance needs of the microscopes, which is hardly done in endemic countries, presents
grossly limited access to the diagnosis of parasitic diseases in resource-limited settings. The urgent
requirement for the management of tropical diseases such as schistosomiasis, which is now focused
on elimination, has underscored the critical need for the creation of access to easy-to-use diagnosis for
case detection, community mapping, and surveillance. In this paper, we present a low-cost automated
digital microscope—the Schistoscope—which is capable of automatic focusing and scanning regions
of interest in prepared microscope slides, and automatic detection of Schistosoma haematobium eggs
in captured images. The device was developed using widely accessible distributed manufacturing
methods and off-the-shelf components to enable local manufacturability and ease of maintenance.
For proof of principle, we created a Schistosoma haematobium egg dataset of over 5000 images captured
from spiked and clinical urine samples from field settings and demonstrated the automatic detection
of Schistosoma haematobium eggs using a trained deep neural network model. The experiments and
results presented in this paper collectively illustrate the robustness, stability, and optical performance
of the device, making it suitable for use in the monitoring and evaluation of schistosomiasis control
programs in endemic settings.

Keywords: diagnosis; digital microscope; slide scanner; autofocus; artificial intelligence; distributed
manufacturing; low resources settings; Schistosoma; parasites

1. Introduction

Bright-field microscopy is still the dominant method for imaging in numerous engi-
neering and scientific domains as a result of its accessibility. Of particular interest to this
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work is the medical discipline of diagnostics, in which it is still the reference standard
procedure for diagnosis and load estimation for many infectious diseases, particularly
those caused by parasites [1].

Schistosomiasis is a neglected tropical disease (NTD) [2] caused by the parasitic flat-
worm called Schistosoma. Approximately 700 million people living in ~80 countries are at
risk of infection, of which around 90% live in Africa [2–4]. Several Schistosoma (S) species
can infect humans, with S. haematobium being one of the most prevalent species in Africa
and the cause of urogenital schistosomiasis [5]. The reference standard procedure for the
diagnosis of S. haematobium infection is the detection of eggs in urine via microscopic ex-
amination, while counting the number of eggs in a specified volume of urine (quantitative
analysis) is used for epidemiological surveillance [3–7]. One of the major limitations of
this procedure is that it is operator-dependent, meaning it is prone to discrepancies in
performance since expertise and skills can vary across individuals [8,9]. Furthermore, since
infections are predominantly found in rural settings in poor-resource regions, the availabil-
ity of functioning microscopes can be a challenge [10]. Additionally, the employment of
skilled microscope operators is costly and requires investment in ongoing training [8,9]. Fur-
thermore, the diagnostic performance of this procedure is inversely related to the number of
worms present, meaning that light infections with low egg excretion will be easily missed,
while these individuals can still contribute to the transmission of the disease [10]. Finally,
the current World Health Organization’s (WHO) agenda to eliminate neglected tropical
diseases (including schistosomiasis) [11], requires the precision mapping of communities
and conventional microscopy, which is mostly used in resource-constrained settings where
schistosomiasis is endemic, may not be able to accelerate this elimination agenda. The
critical need for periodic monitoring of interventions in communities at the ward level will
require devices with automation and self-diagnostic capacities that human operators alone
may not be able to readily provide.

For these reasons, there is a need for inexpensive and smart portable devices capable of
slide-scanning and performing digital microscopic examination. Such a device will ensure
better and consistent performance across diagnosis, speed up sample scanning, compensate
for the lack of trained microscope operators in some countries, and assist in diagnosis using
artificial intelligence algorithms where needed. When used with an onboard computer,
regional epidemiological data can potentially be uploaded to a database, therefore allowing
stakeholders involved in epidemiological surveillance to plan and authorize control and
elimination schemes. Moreover, such devices will ease the workload on microscopists in
epidemiological surveys or impact assessment programs, where there are a lot of samples
to be analyzed, thus minimizing errors in diagnosis.

In recent years, accessibility of manufacturing methods such as 3D printing and laser-
cutting has increased. Furthermore, the availability of smartphones, which have an in-built
camera, and miniature computers such as Raspberry Pi have also increased. This growth
has led to the development of computerized instruments.

Studies on smartphone-based microscopes have been reported [12–16] with optical
setup with numerical aperture (NA) and magnification equivalent to or higher than some
microscope objectives. However, these microscopes do not have mechanical stages, making
it challenging to maintain focus while manually changing the field of view (FoV). On the
other hand, the scientific literature also includes studies that has developed open-source
microscope designs, automated movement of the XYZ sample stages and microscope objec-
tives [17–20]. One notable design is the open-source OpenFlexure device by Collins et al.,
which uses a 100× microscope objective and was applied to clearly resolve malaria parasites
in thin blood smears [21]. Li et al. developed a highly configurable instrument at a vari-
able cost of USD 250–500 (depending on the configuration) that is capable of quantifying
malaria parasites by scanning 1.5 million red blood cells per minute [22]. There have also
been studies on automatic S. haematobium egg detection which focus mainly on identifying
eggs in images pre-captured by professional clinical operators mostly with isolated and
non-overlapping eggs in an FoV [23–25]. Essentially, captured images of urine samples



Micromachines 2022, 13, 643 3 of 15

prepared in field settings often contain a lot of artifacts such as crystals, glass debris, air
bubbles, fabric fibers and human hair. Thus, an automatic S. haematobium egg detection
system applicable in field settings remains unexplored.

In this work we demonstrate the potential for a low-cost yet high-quality instrument,
called the Schistoscope, that can function as a reliable digital microscope, slide scanner
and an automatic diagnostic tool for use in point-of-need diagnostics. We build on our
earlier efforts [26–28] with a focus on the detection of S. haematobium eggs in urine. The
Schistoscope performs autofocusing, automated filter membrane scanning (creating an
image grid of the sample) and automatic S. haematobium egg detection and count estimation.
The four main drivers in the design of the Schistoscope are focused on: (i) the robustness
of the device in its ability to withstand the harsh tropical working environment in sub-
Saharan Africa, such as humidity, dust and heat; (ii) potential for local production mainly
using standard off-the-shelf components in combination with locally available distributed
production methods to bring the cost of the device to approximately USD 700 and enable
local maintenance and repair; (iii) operational considerations such as the intuitiveness and
ease of use; (iv) hygiene considerations in the handling of the device to ensure that the
product could be easily cleaned to prevent possible cross-contamination between samples.

With these factors in mind, our design of the Schistoscope has undergone five design
iterations [27,28] with implementation research conducted in the field, involving key
stakeholders in the research and development process, where the device will potentially be
used. For further proof of principle, we also demonstrate the detection of S. mansoni and
hookworm eggs in fecal samples prepared using Kato–Katz technique.

2. Materials and Methods
2.1. Optical System

We designed the Schistoscope optical system using the working principle of a con-
ventional light microscope (Figure 1a,b). The illumination system is positioned below the
sample stage. Light rays that have passed through the sample are transmitted through the
microscope objective lens, which sits just above the specimen, and the image is recorded
on the image sensor which is further away from the sample. We employed two convex
lenses in the illumination system: the collector lens and the condenser lens. It is designed
to provide bright and even illumination on the sample plane and the image plane where
the image produced from the objective is recorded by the sensor. This is important because
it eliminates glare in the captured image since backlight illumination floods the object with
light from behind.

The Schistoscope optical train is similar to that of a standard microscope, except
in our design the eyepiece is replaced by a camera sensor, focus adjustment knobs are
replaced by an automated Z-axis movement system and software-based autofocus, while
the mechanical stage is replaced by automated XY-axis movement systems. With the open-
source philosophy in mind, we use an easily accessible and community supported camera
module for the Schistoscope—Raspberry Pi High-Quality Camera Module V2.1, equipped
with a Sony IMX477R stacked, back-illuminated sensor, 12.3 megapixel resolution, 7.9 mm
sensor diagonal and 1.55 µm × 1.55 µm sensor pixel size. We aligned the camera module
with a basic achromatic microscope objective using the Thorlabs Extra-Long 6 inches
(152.4 mm) extension tube. To visualize Schistosoma eggs, we used a 4× magnification
objective (with 0.10 numerical aperture, corresponding to a focal length of ~40 mm);
however, the device is designed such that the objective is easily interchangeable with a
microscope objective up to 20× magnification. Higher magnifications cannot be used due
to limited resolution of the Z-axis slider in our design. The illumination system consists
of high-power white LED chips welded on a printed circuit board (PCB) and a 25 mm
diameter, 20.1 mm focal length Thorlabs aspheric condenser with diffuser. The tube lens
is connected to a motorized slider mechanism for effective movement of the optical train
along the Z-axis to obtain accurate focus on the sample. In the design of the sample stage,
it is important to ensure consistency when moving from one FoV to another in the sample
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plane to prevent errors during the automatic slide-scanning procedure. Hence, we designed
the sample stage as a simplified cantilever beam system, in which the sample holder is
mounted on top of an XY stage consisting of two motorized slider mechanisms (similar to
the one on the Z-axis) with their individual stepper motors. The Y-axis slider mechanism is
fixed, and it translates the X-axis slider mechanism on which the sample holder is directly
mounted as shown in Figure 1c.
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Figure 1. (a) Schematic diagram of the Schistoscope optical train (b) Region of interest show-
ing the Z-axis consisting of a mechanical slider and optical setup (c) Region of interest showing
the sample stage mounted on the X and Y slider mechanism (d) Exterior of the Schistoscope
device (embodiment).

2.2. Electronics System

The Schistoscope makes use of the Raspberry Pi 4 computer board, which provides a
high-bandwidth interface to connect the Raspberry Pi camera module. The Raspberry Pi
board is also connected to an Arduino Nano board with sufficient general-purpose input–
output (GPIO) pins to communicate with other electronic components such as six limit
switches positioned at both ends of the X-, Y- and Z-axis, 3 NEMA 11 stepper motors along
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with their respective controllers for movement along each axis. A custom-made PCB that
acts as a shield connects the Arduino board to the various components. We adopted a
60W AC–DC double output switching power supply to power the onboard computer and
various device’s electrical components.

2.3. Supporting Structures and Enclosure

We adopted aluminum profiles for designing the supporting system to ensure robust-
ness and stability of the device [29]. This will prevent the need for frequent optical system
re-calibration and highly trained personnel for system maintenance which is generally
unavailable in low-resource settings. Aluminum profiles are widely used for 3D printers,
CNC machinery, and research test set-ups. These profiles allow for easy attachment of
other systems, and the corner joint allows for quick adaptations in design. The frame
is constructed by attaching the profiles with metal corner joints, thus creating rectangle
constructions. The frame uses several multiple profiles to allow for change and attachment
of an enclosure. The setup creates multiple rectangles to increase rigidness. The bottom
profiles prevent the device from tilting forwards, the upper profiles prevent the vertical
profiles from leaning, and the middle profiles allow for the mounting of an electronics
panel. To prevent the internal system from adverse exposure to external factors such as dust,
dampness, or accidental interference by humans, we designed an enclosure system using a
material called ‘Alubond’, a lightweight, maintenance-free material. A very low expansion
coefficient makes it suitable for temperatures in sub-Saharan Africa. The material allows
for production with laser-cutting, CNC-milling, sawing and drilling. The enclosure system
is robust and attaches easily to the supporting system. The surface is easy to clean, and the
white color resembles a medical device.

2.4. Sample Preparation

For this study, S. haematobium eggs were obtained from gut tissue of hamsters infected
with S. haematobium at the Leiden University Medical Center (LUMC) following a standard-
ized protocol approved by the Dutch Central Authority for Scientific Procedures on Animal
(CCD) as described previously [30]. Briefly, five weeks after infection with S. haematobium,
hamsters were sacrificed, and eggs were obtained following gut tissue digestion with colla-
genase B and extensive tissue washing. Eggs were concentrated in normal saline (5000 eggs
per mL) to prevent hatching and stored appropriately for future use. The gut tissue derived
eggs are morphologically identical to that seen in human-infected samples. Ten milliliters
of urine samples provided by voluntary donors after oral consent were spiked with 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 mL of the concentrated stock (5000 eggs per mL) to
make 10 dilutions.

In addition to the artificially spiked samples, clinical urine and stool samples were
obtained during a field study in Federal Capital Territory (FCT), Abuja, Nigeria, in collabo-
ration with the University of Lagos, Nigeria. Ethical approval for this study was obtained
from the Federal Capital Territory Health Research Ethics Committee (FCT-HREC) Nigeria
(reference No., FHREC/2019/01/73/18-07-19). After receiving informed consent, a total
of 33 urine samples were collected in 20 mL sterile universal containers from school-age
children who had observed the presence of blood in their urine or had been to the infected
community river in the past six weeks. This screening increased the chances of having posi-
tive samples for our dataset. The spiked and clinical urine samples were processed using
the standard urine filtration procedure [31]. With a syringe, 10 mL of urine was passed
through a 13 mm diameter filter membrane with a pore size of 0.2 µm. After filtration, the
membrane was placed on a microscopy glass slide, and covered with a coverslip to increase
the flatness of the membrane for image capture using the Schistoscope.

The fecal samples were processed using the standard Kato–Katz procedure with a
41.7 milligram template [32]. The prepared microscopic slides were imaged using the
Schistoscope device.
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2.5. Autofocus and Auto-Scanning System

Microscopic imaging of filter membranes for the detection of S. haematobium eggs
usually encounters challenges such as uneven filter membranes, presence of artifacts, and
deviations of slide angle and stage position. All these factors can result in loss of focus
when capturing images across different FoVs, thus reducing the readability of the image by
both humans and automatic object detection algorithms. Therefore, there is a need for an
autofocusing system to ensure that the images captured are always in focus. We designed
the autofocusing algorithm using the following steps [21,22]: first, the microscope objective
is moved sequentially through a set of positions along the Z-axis, and at each position an
image is captured and converted to greyscale. Next, a sharpness metric is calculated from
the edge image derived by applying a 2D Laplacian filter to the grayscale image. The image
with the maximum sharpness metric is selected as the image with the best focus. Due to
the high resolution of the system, only a limited FoV (1078 µm × 1470 µm) can be imaged
at one time point. Therefore, a 13 × 9 grid of images is required to image an entire 13 mm
filter membrane for accurate diagnosis.

We reduced the risk of focusing on the slides by defining the top curvature of the mem-
brane as a starting position for the auto-scanning procedure. The Schistoscope performs
auto-scanning in a row-wise traversal order beginning from the upper-left position of the
grid using the X and Y slider mechanism. An example grid of a filter membrane captured
using the Schistoscope is shown in Figure 2.
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Figure 2. Automated image grid acquisition of Schistosoma eggs from a urine filter membrane. Blue
region of interest shows individual sub-images, red and green regions of interest are S. mansoni and
S. haematobium eggs, respectively, present in the urine sample. Enlarged areas show the eggs at 300%
digital zoom.

2.6. Automatic S. haematobium Egg Detection

To automatically detect S. haematobium eggs, we first created a large-scale image dataset
(SH dataset) of Schistoscope-captured microscopic images of filter membranes prepared
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from spiked and clinical samples. The corresponding ground-truth images were created by
manually annotating S. haematobium eggs in the captured images. Expert parasitologists
carried out this task using the coco annotator tool [33]. For the creation of the ground-truth
images, we applied the following principles:

1. Annotation of the exact boundary pixels of the S. haematobium eggs was not strictly
enforced due to the limitation posed by the size of the eggs;

2. The pixel values of the background and artifacts in the ground-truth image were
labelled as ‘0’ and the eggs as ‘1’;

3. There were few S. mansoni eggs found in the images of the clinical urine samples and
their pixel values were labelled as ‘1’;

4. Pixels of partially cut eggs at the edges of the images were labelled as ‘1’;
5. The region of the eggs covered by artifacts was labelled as ‘0’.

A deep neural network (DNN) based on a UNET architecture [34] was trained for
the segmentation of S. haematobium egg pixels using the SH dataset. The SH dataset was
split into 70%, 15% and 15% to train, validate and test the automated system, respectively,
and the deep neural network was trained for 16 epochs using Google Colaboratory’s Tesla
P100-based servers. During the training stage, the image was resized to 512 × 512 pixels
and the Adam solver was applied with a learning rate of 1 × 10−5 The momentum and the
decay coefficient were set to 0.9 and 1 × 10−8, respectively. All the weights were initialized
from a Gaussian distribution with a mean of 0 and a standard deviation of 0.02. The batch
size was initialized to 8. After training, the test set was applied to the trained model and
the segmentation performance was compared to the ground truth using the dice similarity
coefficient [35] as metric.

We developed a linear regression model for egg count estimation using the pixel
area of each connected component and its corresponding actual egg count in the ground-
truth image. The derived model was applied estimating the egg counts per image in
the segmented mask images of the test set. We compared the results with the actual egg
count per image using mean absolute error (MAE) and root mean squared error (RMSE)
as metrics.

3. Results and Discussion
3.1. Sample Stage XY Position Repeatability

We performed a sample stage XY position repeatability test [19,20] to quantitatively
measure the positioning repeatability of the sample stage in the X- and Y-axis. We imaged
S. haematobium eggs spread out across three adjacent FoVs and measured the accuracy
with which we could repeatedly center the microscope objective over these different FoVs.
We selected eggs located approximately 2000 µm to 3000 µm apart and programmed the
auto-scanning system to repeatedly cycle between them 50 times and capture a single
1520 × 2028 pixels image upon arriving at each FoV. We then estimated the positioning
error across the 50 cycles by calculating the number of pixels (and hence microns) by
which subsequent frames are displaced from the first frame. A displacement of zero would
indicate that the stage returned exactly to the starting position. The path taken by the
sample stage is shown in Figure 3a, where the three vertices are the locations of the eggs in
each FoV. Figure 3b–d show XY positioning errors for each egg. The color scale corresponds
to the motion cycle number, indicating the order in which the data were acquired. The first
data point is yellow and the last is brown. The colors are not distributed randomly, which
indicates that there is a systematic drift. The estimated drift after 50 motion cycles of the
three eggs from their initial positions were 11.17 µm, 13.68 µm and 11.75 µm, respectively,
which is small relative to the size of the FoV.
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3.2. Imaging Performance

We evaluated the quantitative imaging performance of the Schistoscope by obtain-
ing the resolution limit of the optical setup. Additionally, a qualitative comparison was
performed between images taken by our device and images of the same FoV taken by a
conventional microscope (BRESSER Science Infinity Microscope) equipped with a plan-
achromatic objective (10× magnification and 0.25 numerical aperture).

We adopted the ISO 12233 slanted-edge technique [36], which provides a fast and
efficient way of estimation and Modulation transfer function (MTF). First, we registered
a slanted-edge image (derived from a standard USAF 1951 resolution target) using the
Schistoscope. Next, we selected a rectangular region of interest (ROI) in the image with
a step edge (Figure 4a). The device’s edge spread function (ESF) was then calculated by
taking the response of the line perpendicular to the edge. Then we obtained the derivative
of the ESF which is the line spread function (LSF). The MTF was derived by performing a
one-dimensional Fourier transform of the LSF. The ESF, LSF and MTF curves are shown in
Figure 4b–d. It was observed from the MTF curve that the limiting resolution (MTF10) of
the device is 307 lp/mm (3.26 microns), which is in reasonable agreement with the Rayleigh
theoretical value of 3.35 microns (assuming NA 0.1 and center wavelength 550 nm). Thus,
the optical setup is more than sufficient to image the Schistosoma eggs with sizes within the
bounds of 110 − 170 × 40 − 70 µm.
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In the qualitative comparison between the Schistoscope and a conventional micro-
scope, we captured the same FoV on a sample slide containing S. haematobium eggs using
both systems (Figure 5a,b). Despite the markedly superior optical characteristics of the
conventional microscope, the overall FoV, field flatness, and visual perception of the two
systems are not so different. A magnified region of interest is also presented for detailed
comparison. Although the conventional microscope has an improved depth of focus and
higher contrast, the quality of the Schistoscope image is acceptable as the terminal spine of
the S. haematobium eggs and the lateral spine of the S. mansoni eggs (Figure 2) could be easily
identified by a human reader. To further demonstrate the ability of the Schistoscope to aid
in the diagnosis of intestinal parasites effectively, we used the device to image fecal smear
containing eggs of S. mansoni and hookworm eggs. As can be clearly seen in Figure 6a,b,
the Schistoscope device also can optically resolve the eggs of these intestinal parasites.
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3.3. Performance Evaluation of S. haematobium Egg Detection Algorithm

We created an SH image dataset consisting of 5198 microscopic images of urine filter
membranes (986 and 4212 images from spiked and clinical urine samples, respectively),
along with their respective ground-truth images with 6437 annotated S. haematobium eggs
(4776 and 1661 eggs in spiked and clinical urine samples images, respectively). Although
images from the clinical samples had fewer or in some cases no eggs present compared to
images of the spiked samples, they still contained artifacts such as crystals, glass debris, air
bubbles, fabric fibers and human hair (selected images shown in Figure 7c,f), thus increasing
the robustness of the dataset and the difficulty of the automatic egg detection task.
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To address this challenge, we applied the trained UNET model for the semantic
segmentation of S. haematobium eggs present in images of the test dataset. In the qualitative
segmentation results of images in the test dataset (Figure 7), we observed that the deep-
learning model performed better in the segmentation of eggs in images from the spiked
urine samples (Figure 7a,b) than in clinical samples (Figure 7c–f). Probable reasons for
this difference may be that a higher percentage of eggs in the SH dataset were from the
spiked samples, and the high presence of artifacts in the images captured from the clinical
samples could have caused segmentation errors. An example of such an error can be seen
in Figure 7f, where many uric acid crystals are present in the image. The similarity between
morphological features of the crystals and the S. haematobium eggs causes the deep-learning
model to falsely identify the crystals as eggs.

In the quantitative results, we obtained a dice similarity coefficient of 0.44. The ob-
served low dice similarity coefficient in the test data could be due to the following assump-
tions: (i) the non-strict-enforcement of exact boundary conditions in the annotation of the
S. haematobium eggs in the ground-truth images; and (ii) poor segmentation performance
of the UNET in the difficult clinical images with egg-like artifacts (uric acid crystals). We
also estimated the egg count per captured FoV image using a linear prediction model with
the area of the segmented egg pixels as the independent variable. We obtained a MAE and
RMSE of 1.21 and 4.08, respectively. A box plot shows a visual summary of the estimated
egg counts in test images with 0–10 actual egg count (~98% of the test images) (Figure 8a).
An increased number of outliers above the maximum whisker of the box plot is observed
in the set of images with 0 or 1 actual egg count, which are predominantly images with
artifacts from clinical urine samples. From this result, we infer that the automated detection
model could satisfy to the 80% sensitivity diagnostic requirement specified in the WHO
Target Product requirement for the diagnosis of schistosomiasis [37].
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Figure 8. Quantitative result of the predicted egg counts per captured FoV image (a) visual summary
of the egg counts in test images with 0–10 actual egg count (~98% of the test images) (b) Scatter plot
of test images with actual egg counts greater than 10.

Furthermore, there is a small difference between the average predicted egg count
in each box and actual egg count, which is evident in the MAE value of the test dataset.
Figure 8b shows the scatter plot of test images with actual egg count greater than 10. It
is observed that the deviation from the line of perfect agreement (black line) increases
with higher number of actual egg count per image. This is a result of the increasing
occurrence of overlapping eggs with an increasing number of actual egg count per image.
Thus, we believe a logarithmic model or an egg counting algorithm that explores the
eggs’ morphological properties (e.g., egg size and shape) might be a suitable solution to
this problem.
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4. Conclusions

We developed an optical diagnostic device called the Schistoscope, which incorporates
an automated Z-axis movement for autofocusing a sample based on a Laplacian sharpness
metric, as well as an automated XY movement of the sample stage for automated grid
scanning. Our experiments showed that the optical system has comparable performance
with conventional microscopes. We demonstrated the automatic detection of S. haematobium
eggs by creating a robust S haematobium egg image dataset containing over 5000 FoV images
of filtered spiked and clinical urine samples from field settings. We trained a deep neural
network model for the semantic segmentation of the S. haematobium eggs prior to egg count
estimation using a linear model based on the area of the segmented pixels. Although urine
artifacts present in the images from the clinical sample posed a challenge, the algorithm
clearly identified the eggs in the image, demonstrating that the quality of the images is
suitable for automatic detection of Schistosoma eggs in line with the current diagnostic
reference standard. High-quality microscopy images of S. haematobium, S. mansoni and
hookworm eggs were captured using the device, and the eggs were clearly identified in
captured digital images by microscopists.

Therefore, it is evident that combining automated image acquisition with a suitable
artificial intelligence algorithm in the device for diagnosis will significantly increase its
potential as a diagnostic tool in resource-limited settings. Manuscripts describing the
outcome of a population-based survey, and validating the diagnostic performance of the
Schistoscope for the detection of S. haematobium eggs in urine samples in a low-resource
field setting, are currently in progress.

In conclusion, the Schistoscope was presented to the national technical working com-
mittee on the eradication of schistosomiasis in Nigeria. Possible potential benefits of
the Schistoscope discussed include point-of-need diagnosis and drug efficacy monitor-
ing, which could mitigate waste of human, material and financial resources. Ongoing
discussions with local private and public partners aim to explore ways to integrate the
Schistoscope into active schistosomiasis elimination and control programs in Nigeria.
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