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Abstract 
 

The possible increase of organic micropollutants in source water, including traces of 
medicines, pesticides, and industrial by-products, poses several challenges. It is expected 
that the conventional treatment of drinking water will not ensure a reliable enough quality 
in the future. Because of this, Oasen has started to research a new treatment concept in the 
past few years. Based on 100% reverse osmosis (RO) membrane filtration, it aims to provide 
an excellent barrier for organic micropollutants. However, the water produced by the RO 
membranes, called permeate, is corrosive, bitter in taste, and does not comply with the 
drinking water regulation standards in the Netherlands. To solve these problems and to 
improve the water quality, a certain degree of remineralization is crucial. A commonly used 
remineralization process is to filter the desalinated water through a calcite contactor, which 
adds the right amount of bicarbonate and calcium to the water. In order to properly design 
and operate the calcite filters as well as to predict the final water quality, it is essential to 
understand the processes that occur within the filter.  

The aim of this study was to find the best kinetic calcite dissolution model to 
understand the behavior of the calcite grain dissolution inside the filter and subsequently to 
adequately design and operate a calcite filter. Therefore, an extensive pilot study was 
conducted to investigate the effects of various parameters on calcite dissolution, such as the 
calcite grain size, velocity, and carbon dioxide concentration. On top of that, the dissolution 
was modeled based on a successful empirical expression by Yamauchi et al. (1987). 
However, it was found that the effect of the flow rate on the diffusion boundary layer 
encompassing the calcite grains had not been taken into account in the study by Yamauchi 
et al. (1987). Therefore, the effect of velocity on the calcite dissolution coefficient was 
investigated at five different velocities: 5, 10, 15, 20, and 30 m/h. A function was then 
developed to describe the correlation between the flow rate and the dissolution rate 
coefficient. In order to calculate the equilibrium concentration, the chemical reactions were 
simulated using PhreeqPython (Phreeqc built in Python). 

The main difference of this study compared to previous studies is the lower 
temperature of the water (12 oC vs. 22-40 oC) and the smaller sizes of the calcite grains (0.5-
1.2 mm and 1-2 vs. 2-3 mm) that were tested. Besides this, a broad range of CO2 dosing 
(1.45-9.5 mmol/l) was tested. As relevant theories gave reason to expect, the dissolution 
rates were strongly affected by the various parameters. A conclusion can be drawn: the 
smaller grain size of 0.5-1.2 mm reduces the required empty bed contact time (EBCT) to 15 
minutes, whereas operating the filter with the larger grain size of 1-2 mm requires a 
minimum EBCT of 25 minutes to reach calcite equilibrium. The CO2 dosing is recommended 
to be less than 3 mmol/l, since the CO2 efficiency will drop below the desired 60% at higher 
concentrations of CO2. 
 Eventually, the optimal design will be introduced for the remineralization process at 
Oasen treatment plant “De Hooge Boom” located in Kamerik. For this purpose, various 
operational scenarios were compared on their capital and operational costs. The overall 
cost, including both Capital Expenditure (CAPEX) and Operational Expenditure (OPEX), was 
estimated to be between €0.048 and €0.064/m3 for different scenarios. 71% of this amount 
consists of investment costs. The total treatment cost of this design is €0.057/m3 while the 
investment cost was found to be €1,351,000 or 32% less than the price estimated by a 
previous study done by Oasen.  
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1 Introduction  

 General background  
Oasen is a drinking water company located in the province of South Holland in the 
Netherlands. It provides reliable and fresh drinking water for 750,000 people and 7,200 
companies in this region, using riverbank infiltration as its main water source. As the wells 
are recharged by bank filtration from the Lek River, the water quality is susceptible to 
pollution. Pollutants include, but are not limited to, organic micropollutants (OMP) such as 
trace amounts of pharmaceuticals and pesticides, which could pose a serious threat to the 
successful treatment of drinking water in the future. Furthermore, it is expected that source 
water will increase in salinity in the long term due to the effects of climate change. The 
current conventional treatment method consists of tower aeration, rapid sand filtration, 
pellet softening, and adsorption by granular activated carbon, followed by UV disinfection. 
This method has its limitations with regards to removing OMP and chloride and is therefore 
not seen as a robust and durable solution (Van Der Laan et al., 2016). Consequently, Oasen 
has started to research a new treatment concept based on 100% reverse osmosis (RO) 
membrane filtration in recent years. With this technique, they aim to be prepared for 
possible increases in the concentrations of OMP and chloride in the source water in the 
future.  

The product water derived by RO, called permeate, is aggressive, has a low pH, is 
bitter in taste, and does not comply with the drinking water regulation standards in the 
Netherlands. Moreover, transporting such corrosive water through water supply systems 
lacking the appropriate treatment could cause a deterioration of the piping system 
(Yamauchi et al., 1987; Letterman et al., 1987). In order to prevent corrosion in the transport 
system and to provide healthy water to consumers, it is essential to take the step of 
remineralization.  

For this purpose, various types of remineralization techniques have been proposed. 
Table 1 gives an overview of the results from the pilot study done by Oasen during 2014-
2016. The aim was to find the optimal remineralization technology to use as post-treatment 
of RO permeate water at the treatment plant “De Hooge Boom” in Kamerik. Based on 
several studies, calcite filtration was found to be the best remineralization technique, since it 
is inexpensive, easy and safe to operate and maintain, and does not require the continuous 
feed of chemicals that other techniques do (Benjamin et.al 1992; Letterman, 1995; Shemer 
et al., 2015; Van Der Laan et al., 2016). 
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Table 1. Results of the pilot study conducted by Oasen Water Company on remineralization techniques (Van Der Laan et al., 
2016) 

 
 
Figure 1 gives an overview of the complete treatment plant: the permeate water created by 
RO first goes through an ion exchanger to remove the remaining ammonium from the 
permeate water. This process is followed by remineralization using the calcite filter. As a last 
step, the remaining CO2 and CH4 are removed and O2 is added to the water by 
aeration/degasification.  
 

 
Figure 1. Schematics of the new treatment concept (Van Der Laan et al., 2016) 

In the stage of calcite filtration, the desalinated water, additionally acidified with CO2  if 
required, is channeled through a filter containing calcite particles. This results in an increase 
in the concentration of calcium and bicarbonate in the water due to the following reaction 
(Yamauchi et al., 1987): 
 

CaCO3 + CO2 + H2O  Ca2+ + 2 HCO3
- 1. 1 

 
The effectiveness and costs of this process are strongly dependent on parameters such as 
bed height, temperature, contact time, and inlet CO2 concentration, which all affect the 
dissolution of calcium carbonate (Shemer et al., 2012). In order to understand and predict 
the calcite dissolution rate as a function of these design parameters, knowledge of the 
kinetics and equilibrium of these processes is required. For this purpose, Oasen aims to 

Raw water
Membrane 

filtration 
(RO)

Ion Exchange 
(IEX)

Calcite-
filtration (CF)

Aeration product 
water
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develop a model for the design and optimization of calcite filtration, to incorporate it as one 
of the main steps in its treatment processes.   

Several theoretical and practical models (e.g. Erga & Terjesen 1956; Plummer et al., 
1979; Yamauchi et al., 1987; and Letterman et al., 1991) have been developed to describe 
the kinetics of calcite dissolution. Hasson et al. (2006) evaluated various kinetics expressions 
published in scientific literature to determine the most reliable dissolution kinetics model. 
He concluded that the model provided by Yamauchi et al. (1987) was the most accurate 
model to describe the kinetics of calcite dissolution, which was further confirmed by 
extensive experimental data obtained from a study conducted by Shemer et al. (2012) on 
this subject. Besides these published models, there are also more complex computer models 
based on multilayer concepts, such as the one proposed in the MSc study conducted by 
Bang (2012) and a more recent one by Zweere (2016).  
 

 Problem definition  
Although an extensive amount of literature has been published on the subject of calcite 
dissolution kinetics, the study conducted by Hasson & Bendrihem (2006) has shown that 
theoretical models, such as the one by Plummer et al. (1978, 1979), are not suitable for 
simulating the calcite dissolution rate in practice as they overestimate the dissolution rate. 
This is because Plummer et al. (1979) determined the calcite dissolution rate under 
turbulent flow conditions. Using a large specific surface area affects the dissolution rate and 
limits the effects that both mass transport and surface reactions have on the rate of calcite 
dissolution (Bang, 2012).  

On the other hand, current available empirical models were generally tested with 
high-temperature water and larger calcite grain sizes. The higher temperature is due to the 
fact that previous studies were mainly carried out in Middle Eastern countries, where the 
temperature is higher than in the Netherlands. It could also be accounted for by the use of 
heat-generating techniques such as a multi-stage flash evaporator (MSFE) to desalinate the 
water, which further increases the water temperature. As Oasen works with a relatively low 
groundwater temperature of 12 to 14 oC, the empirical models that are currently available 
are not applicable.  

In addition, it is questionable whether the accuracy of complex multilayer models, 
such as the ones provided by Bang (2012) or Zweere (2016), is significantly higher than the 
accuracy of simpler one-layer models in describing the kinetics of the dissolution of calcium 
carbonate. Furthermore, calcite dissolution kinetics play a key role in the efficient design, 
operation, and maintenance of a calcite filter. The lack of a reliable kinetics model may not 
only result in incorrectly designed calcite filters, but also in the improper maintenance of the 
filter.   

In conclusion, despite all previous work done by various authors on the kinetics and 
equilibrium of calcite dissolution, the accuracy of the available models still leaves room for 
improvement. To apply the technique at Oasen, the low temperature of the present water 
needs to be accounted for specifically. To do this, a simpler model would be preferred over a 
complex multilayer model, as it is possible that an increase in complexity results in a higher 
degree of uncertainty. A proper model is crucial, as the effectiveness and costs of the 
process are dependent on the design parameters of the calcite filter, such as flow rate, acid 
type and concentration, bed height, bed porosity, temperature, and grain size.   
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 Research questions  
The objective of this research is to develop a kinetics model as a function of the design 
parameters to simulate the dissolution kinetics of calcite in practice. The model could be 
used to optimize the design and operating conditions of a calcite filter, as well as to predict 
the quality of the product water with regards to the concentration of calcium and 
bicarbonate.  
 
For this purpose, two main research questions are defined: 
 

1. What is the most reliable calcite dissolution kinetics model among the available 
models? 

 
To answer this question, the following sub-questions should be answered first: 
 

 What are the design parameters that have an influence on this model? 

 How might the calcium and bicarbonate concentration be affected by these 
parameters? 

 How can the model be validated and calibrated using pilot studies? 

 Is the one-layer model accurate enough compared to the multilayer model in which 
filters are divided into several layers and the effluent water quality of each layer is 
used as the influent water quality of the subsiding layer? 
 

2. How can the design and operational conditions be optimized using the dissolution 
model? 
 

To answer this question, the following sub-questions should be answered first: 
 

 What is the effect of the calcite dissolution rate on the bed height? 

 What are the optimal design parameters, such as empty bed contact time (EBCT), 
filtrate velocity, and required bed height? 

 What is the refilling frequency of the filter to keep the design EBCT and consequently 
the effluent water quality of the filter constant?  
 

 Boundary conditions  
Table 2 illustrates the targets for the quality of the water that should be achieved based on 
the Dutch drinking water regulations and internal standards of Oasen. It should be noted 
that there are several other parameters that determine the final water quality that are 
beyond the scope of this research. These include the saturation index (SI) and pH values, 
which are further adjusted by the final step of aeration/degasification. The turbidity and the 
presence of particles in the effluent water that could be affected by the filtration velocity 
and backwash regimes are not taken into account here either, because a model to predict 
the occurrence of particles in the final water quality is beyond the scope of this research. 
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 Research approach  
To answer the above research questions, various experiments have been carried out 

in the period from May to August 2017. The pilot study aimed to examine calcite dissolution 
at low temperatures using two different calcite grain sizes and to research several variants in 
the operational conditions, such as filtration velocity and inlet CO2 concentration. Based on 
the data measured by the pilot study, the empirical model by Yamauchi (1987) has been 
modified in order to better capture the calcite dissolution kinetics at low temperatures for 
various calcite grain sizes.  
 Subsequently, the developed kinetics model could be applied to translate the results 
of the pilot study into a full-scale application based on a kinetics model and cost-efficiency 
analyses. Finally, the model will be used to optimize the design of the calcite filter at “De 
Hooge Boom” and to analyze the various operational scenarios.  
 

2 Literature review 
 Introduction   

Since the permeate water from the RO process is free from minerals and has a low buffering 
capacity and a low pH, a certain degree of remineralization is essential to prevent corrosion 
in the transport system. Remineralization is also necessary to mitigate corrosion by-
products, such as copper, and consequently to provide consumers with healthy drinking 
water (Shemer, Hasson, Semiat, et al., 2013). There are several possible remineralization 
processes, but calcite filtration is the most cost-efficient and most widespread method for 
remineralization (Hasson & Bendrihem, 2006; Ruggieri et al., 2008; Shemer et al., 2013; Van 
Der Laan et al., 2016). 
 

 Theory of calcite filtration  
In the remineralization process, the permeate water, additionally acidified by carbon dioxide 
if necessary, flows through a packed bed of calcite when the system is closed to the 
atmosphere. The chemical reactions that occur when the permeate passes through the 
column are described below (Lehmann et al., 2013). 

 

Table 2. Drinking water quality targets 

Parameter Oasen standard Dutch legal standard 

Total Hardness 1 mmol/L > 1 mmol/L 

HCO3
- 2 mmol/L > 0.99 mmol/L 

pH 7.8 < pH < 8.3 7.5 < pH < 9.5 

SI (Calcite) -0.2 < SI < 0.4 SI > -0.2 

Turbidity  ≤ 0.15 NTU ≤ 1 NTU 

Calcium 0.625 mmol/l ? 

Magnesium 0.375 mmol/l ? 

O2 > 2 mg/L > 2 mg/L 
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Calcium carbonate acid equilibrium at 10 oC: 

CaCO3 ⟷ Ca2+ + CO3
2-                             Ks = [𝐶𝑎2+][𝐶𝑂3

2−]       =   4.4*10-9       pks = -8.36         (2.1) 

CO2 + H2O  ⟷ HCO3
- + H3O+                  K1 = [

[𝐻𝐶𝑂3
− ]   [𝐻3𝑂+]+] 

[𝐶𝑂2]
   =   3.44*10-7,  pk1 = -6.46         (2.2) 

HCO3
- + H2O⟷ CO3

2- + H3O+                  K2 = [
[𝐶𝑂32−]  [𝐻3𝑂+]+] 

[𝐶𝑂2]
    =   3.25*10-11, pk2 = -10.49     (2.3) 

CaCO3 + CO2 + H2O⟷ Ca2+ + 2HCO3
-    Ka = [[𝐻𝐶𝑂3−]2

 [𝐶𝑎2+] ] 

[𝐶𝑂2]
     =   4.6*10-5       , pka= -4.33        (2.4) 

[Ca2+] = ½ [HCO3
-]                                                         (2.5) 

 
Where:  

K  = reaction constant, with given temperature and ionic strength (mole/m2/s) 
Pk  = - log(k)  
[]  = stoichiometric molar concentration (mol/l). 

 

 Reaction rate of calcite dissolution  
In general, the dissolution of solids in water can be expressed based either on the mass 
balance or on the kinetics of dissolution. Based on the mass balance, the mass change in the 
solid phase is equal to the mass change in the liquid phase (Bang, 2012): 
 
 dM =  dC ∗  V    (2.6)           

    
Where:     

dM  = mass change (mol)  
dC  = mole change per volume of the same substance (mole/m3)  
V = volume (m3) 

 
On the other hand, the kinetics of dissolution can be calculated as follows:  
 
 Dm

dt
=  K ∗  A      (2.7) 

      
Where:                

dt  = retention time (s) 
K = calcite dissolution rate constant (mole/m2/s)  
A = surface area of calcite grains (m2) 

 
Therefore, the general dissolution rate of CaCO3 as a solid is: 
 
 dM =  K ∗  A ∗  dt =  dC ∗  V 

dC

dt
   =  K ∗ (

A

V
)  

(2.8) 
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K is the calcite dissolution rate constant, which involves complex mechanisms controlled by 
mass transport at a low pH, by surface reactions at a high pH, and by a combination of the 
two at intermediate pH levels (Shemer et al., 2013). Furthermore, as can be seen in equation 
(2.8, the surface-to-volume ratio (A/V) of the calcite particles also plays an important role in 
the calcite dissolution rate. This parameter can be calculated for spherical or irregular grains 
by equation 2.9. The porosity also influences the surface area of the calcite grains in the 
filter bed, which should be taken into account when calculating A/V.  
 

 
𝐴sphere =  πd2  en     Vsphere =

πd3

6
 →  

Asphere

Vsphere
=

6

d
 

For irregular particles: φ =
 
Asphere

V
 

AIrrigular

V

 →    
𝐴

V
=

6

d∗φ
  ,         

A

V
=

6.(1−ε)

d
                            

                                
(2.9) 

 
Where: 

d = particle diameter (m) 
Ɛ  = porosity of the filter bed (-) 
Ҩ = form factor  
 

 Calcite dissolution model 
In general, there are two perspectives when describing the calcite dissolution. One assumes 
that the dissolution process is controlled by surface reactions and neglects the diffusional 
mass transport processes (Erga & Terjesen, 1956; Plummer et al., 1979; and Yamauchi et al., 
1987). The other perspective defines the calcite dissolution rate by assuming a mass transfer 
as the main controlling process (Letterman et al., 1987). The purpose of this paragraph is to 
discuss previous studies on calcite dissolution rates and to summarize the central features of 
three main studies on dissolution kinetics in water where metal impurities were absent. 
 

2.4.1 Plummer-Wigley-Parkhurst model  

The most extensive studies describing the dissolution of calcite are by Plummer et al. (1979) 
and Plummer (1978). Nowadays, the model from these studies is used as the standard 
model in modeling environments such as a PHREEQC (Parkhurst & Appelo, 1999).  
 
Experimental setup: Dissolution of calcite in a stirred system with the following 
characteristics:   
  0.3-0.6 mm CaCO3 powder 

Temperatures of 5-60 °C  
Open-to-atmospheric-carbon-dioxide, in contact with constant pressure CO2 

 
Method to determine the dissolution rate: pH-stat far from equilibrium and drift-free near  
equilibrium  
 
Assumptions: (1) The diffusional mass transfer is neglected due to the turbulent flow; (2) 
The dissolution rate on the heterogeneous surface is described as a function of the surface 
activities of the species Ca2+, H+, HCO3

-, and H2CO3, where the A/V ratio is too large; (3) The 
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dissolution is governed by the three following chemical reactions as the main processes 
behind dissolution and the precipitation of calcite: 
 

CaCO3 + H+      Ca2+ + HCO3
- (I) 

CaCO3 +H2CO3  Ca2+ + 2HCO3
- (II) 

CaCO3 +H2O     Ca2+ + CO3
2- +H2O  Ca2+ + HCO3

- +OH- (III) 
 
In this model, the dissolution rate is defined as follows:  
 
 Rpwp = rⅠ + rⅡ + rⅢ 

Rpwp = қ1𝛼𝐻+  + қ2𝛼𝐻2𝐶𝑂3− + қ3𝛼𝐻2𝑂 – қ4𝛼𝐶𝑎+ - 𝛼𝐻𝐶𝑂3
−                             

(2.10) 

 
Where:  

R = overall dissolution rate (moles/cm2.s) 

rⅠ , rⅡ , rⅢ  are the reaction rates of equations Ⅰ, Ⅱ, and Ⅲ 
қ1, қ2, қ3 are the forward reaction constants and are equal to (mmol/cm2/s) 
қ1 = 10(0.198 – 444/T)   
қ2 = 10(2.84 – 2177/T)  
қ3 = 10(-5.86 – 317/T) (T ≤ 298 kelvin)  
қ3 = 10(-1.1– 1737/T) (T > 298 kelvin) 

қ4 describes the rate of the backward reaction of Ⅰ (precipitation) and is a function 
of both temperature and PCO2 
𝛼’’s = the ion activities (-) 

 

 

2.4.2 Yamauchi et al. (1987) 
According to the Yamauchi et al. (1987), the calcite dissolution rate is controlled by the 
excess concentration of CO2, i.e., the concentration of CO2 above equilibrium. This is also 
called aggressive CO2. 
 
Experimental setup: Dissolution by flow of CO2 acidified distilled water at 40 °C in a column 
with a diameter of 100 mm packed with CaCO3 particles with the following characteristics:   

Packing length = 0.5-2.4 m 
Particle sizes = 1.4-10 mm 
[CO2]o = 2.4-5 mM 
Superficial velocity = 2.5-9 mm/s 
Retention time = 55-270 s 
Closed-to-atmospheric-carbon-dioxide 
 

Method to determine dissolution rate: Describe the dissolution rate of CaCO3 using 
Tillman’s curve (Figure 2). 
 
Assumptions: (1) The surface chemical reaction controls the dissolution reaction; (2) 
Diffusional mass transfer can be neglected as the processes are fast; (3) Steady state 
condition; (4) The concentration of aggressive CO2 is used as the driving force; (5) The calcite 
dissolution has no effect on the size of the calcite particles as they are replaced by fresh 
calcite frequently.   
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Figure 2. Diagram of the remineralization process in a limestone dissolution (Yamauchi et al., 1987) 

C0 is the initial CO2 concentration at the filter inlet, C is the final CO2 concentration at the 
filter outlet, and Ce is the equilibrium CO2 concentration. The equilibrium line can be 
calculated using the constant values derived from equations 2.1, 2.2, and 2.3:   

 [CO2] = (K2/K1* Ks ) [Ca2+][HCO3
-]2 = Ce (2.10) 

 
Furthermore, the operation path in the calcite filter starts from the inlet to the outlet as it 
moves further towards the point of equilibrium. It can be represented as follows: 
 

  (C0-[CO2])/[HCO3
-] = ½                        (2.11) 

Yamauchi et al. (1987) reported that in reality equilibrium cannot be reached in a finite time, 
as was also shown in Figure 2. This means that the calcite dissolution stops before the 
equilibrium is reached (c>cs). The difference between the initial CO2 (Cs) and the final CO2 
concentration was defined by an aggressive CO2 as the driving force behind the dissolution 
rate. As a result, the relation between the reaction rate and the concentration of aggressive 
CO2 can be defined as follows:  
 
 

−
𝑑𝑐

𝑑𝑡
=  k (C − Ce)                                    

(2.12) 

By integrating equation (2.12 from t0 to t=t, equation (2.13 can be derived:  

 Ln(C − Ce)

(C0 − Ce)
 = −kt  

(2.13) 

Subsequently, the reaction can be expressed with equation (2.14: 

  
C−Cs

(C0−Ce)
=  e−kt                        (2.14) 

Moreover, the conversion ratio of carbon dioxide can be calculated as follows: 
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 η =
(C0−C)

(C0−Ce)
                           (2.15) 

From equations (2.14 and (2.15, it can be concluded that: 

 
1 −  η =

C − Cs

(C0 − Cs)
= e−kt                

(2.16) 

The EBCT is represented by t and can be calculated. It represents the ratio of the empty 
column volume to the volumetric water flow rate and can be defined as follows:  

 t =
zL

UL
    (2.17) 

Where: 
ZL = height of the calcite filter (m) 
UL = superficial liquid velocity (m/s)       
 t = residence time of the water inside the filter (s) 

The reaction rate also depends on the specific surface area A/V, which can be derived from 
equation 2.9.  

 R ∝
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 

𝑏𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒
=

𝐴𝑝

𝑉𝑝
=  

(1−ε)

𝐷
  =  

6.(1−ε)

d∗φ
                            (2.18) 

 
By replacing equations (2.17 and (2.18 in equation (2.13 and multiplying it with the calcite 
dissolution rate constant, the final Yamauchi reaction can be rewritten as: 
 

 ln
C−Cs

C0−Cs
= −

6k(1−ε)

Dp φ
∗

zL

UL
  (2.19) 

 

From now on, the  
6k

φ
  equation will be referred to as the Ya coefficient, which is the calcite 

dissolution rate including the form factor and can be found experimentally.  
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2.4.3 Letterman et al. (1987, 1991, and 1995)  
Letterman et al. (1987) developed a model of the CaCO3 dissolution rate sensitive to 
variables such as particle size, bed depth, flow velocity, and pressure drop. These 
parameters affect the dissolution rate and refilling frequency.  
 
Experimental setup: Dissolution by flow of HCI acidified soft water between 9 °C and 22 °C 
in four 150-380 mm diameter columns packed with CaCO3 particles with the following 
characteristics:   

Packing length = 2.1-3.5 m 
Particle sizes = 9.6-32 mm 
[CO2]o  and HCl acidity= 0.002-0.4 mM 
Superficial velocity = 0.15-12 mm/s 
Retention time = 230-3800 s 
Closed-to-atmospheric-carbon-dioxide 
 

Method to determine dissolution rate: Describe the dissolution rate of CaCO3 using mass 
balance and model the process based on studies done by Sjöberg & Rickard (1983) and 
Sjoberg & Rickard (1984), in which the kinetics of the reaction are modeled by the use of 
three resistances in series: (1) Liquid film transfer; (2) Surface reaction; and (3) Residual layer 
mass transfer.  
 
Assumptions: (1) The mass transfer and the first order surface reaction control the 
dissolution reaction; (2) Steady state condition; (3) The calcium difference is used as the 
driving force; (4) The calcite dissolution has no effect on calcite particle size. 
 
Letterman et al. (1987) described the calcite dissolution model based on a calcium ions 
transport rate from the calcite surface to bulk solution, where the dissolution rate is a 
function of the calcium concentration at equilibrium. This is based on a charge-balance 
relationship under closed-to-atmospheric-carbon-dioxide conditions: 
 

 
2(Co + C) + Cc + [H+] = (DIC0 + S)(α1 + 2 α2)] + Ca +

kw

[H+]
   

(2.20) 

 
Where:  

S          = the concentration of dissolved calcium carbonate 
Kw        = the activity-coefficient-corrected ion product for water 
DIC0     = the initial dissolved inorganic-carbon concentration (molar) 
Cc         = the influent concentrations of cations excluding calcium and hydrogen 
Ca         = the influent concentrations of anions excluding DIC species and hydroxide 
ά, & ά2 = the ionization fractions for the deprotonation of carbonic acid, calculated 
using the pH, activity-coefficient-corrected ionization constants, and standard 
relationships used in aquatic chemistry (Colombani, 2008) 

 
Subsequently, the solubility product (ksp) can be calculated as follows: 
 
 (C0 + S`)(α2)(DIC0 + S`)] = ksp  (2.21) 
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Where:  
S` = the concentration of dissolved calcium carbonate at equilibrium  

 
The calcium concentration at any point of the calcite filtration (CL) can be calculated by: 
  

𝐶𝐿 = 𝐶0 + 𝑆   ; (S≤ S′) (2.22) 

The calcium concentration at equilibrium conditions can be calculated by: 
 

𝐶𝑒 = 𝐶0 + S′   ; (S≥ S′) (2.23) 

Where the S’ can be calculated by solving the equation (2.20 and (2.21.  
 
Based on a dispersion model for packed beds by Levenspiel et al. (1972) and the reaction 
rate expression by Letterman et al. (1987), the provided calcite dissolution rate model is 
presented in equation (2.22.  
 
Levenspiel et al. (1972) developed the dispersed plug flow model with the rate equation 
shown in (2.24. In this model, it is assumed that there are no stagnant pockets and that there 
is no gross bypassing or short-circuiting of fluid in the vessel. However, the dispersion 
number includes back mixing to some extent.  
 
 

Nd

d2Ca

dZ2
− ε

dCa

dZ
+ rt = 0                                          

(2.24) 

 
Where: 

Nd  = axial dispersion number, dimensionless (𝑁𝑑 =
𝐹∗𝜀

(𝑈𝐿∗𝐿)
 ) and  

F = dispersion coefficient  
Z = dimensionless axial distance (z=z/L)  
r = reaction rate expression  

 
The calcium carbonate dissolution rate is defined as follows: 
 
 R= k a (Ceq – C) (2.25) 

Where: 

a  = 
6(1−𝜀𝐿)

𝐷𝑝 𝜑
  and is an area of CaCO3 per unit volume of fluid, cm-1  

 
Based on Letterman, Hadad, & Driscoll (1991), the overall dissolution rate coefficient 
depends on the following three constants: (1) Liquid film mass transfer (kL); (2) Surface 
reaction (kc); and (3) Residual layer mass transfer (kf). It can be expressed as: 
 

 
k = (

1

kf
+

1

kc
+

1

kL
)

−1

 
(2.26) 
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Liquid film mass transfer (kL):  
A set of expressions by Chu et al. (1953) can be used to calculate the liquid film mass 
transfer (kL) in these equations: 
 

 kl = 5.7 Us (MR)−0.87 (Sc)2/3           1 ≤ MR ≤ 30 
kl = 1.8 Us (MR)−0.44 (Sc)2/3          30 ≤ MR ≤ 10000 

(2.27) 

 
MR and SC are the modified Reynolds and Schmidt numbers respectively and are defined as 
follows: 
 

 MR =
dUs

[ϑ(1−ε)]
      ,    𝑆𝑐 =

𝜗

𝐷
              (2.28) 

  
Where: 

υ = kinematic viscosity 
D = calcium ion diffusivity 

 
The surface reaction (kc): 
The surface reaction controlled by the surface protonation and the equation derived 
empirically using experiments conducted by Sjoberg & Rickard (1984) are: 
 

 log 𝑘𝑐 = 14.2 − 1.7 𝑝𝐻𝑒𝑞 (2.29) 

Residual layer mass transfer (kf):  
As the calcite used in this study has high purity, more than 99%, and the filter is frequently 
refilled with fresh calcite, it is assumed that the layer of impurities does not exist. 
Consequently, kf can be neglected. 
 
Replacing equation (2.25 in equation (2.24 and solving it, the following equation is 
represented by Letterman et al. (1987):  
 
 [𝐶𝑎]𝑒−[𝐶𝑎]𝑙

[𝐶𝑎]𝑒−[𝐶𝑎]𝑜
=  exp [−

6𝑘(1−𝜀𝐿)

𝐷𝑝 𝜑
∗

𝑧𝐿

𝑈𝐿
+ (

6𝑘(1−𝜀𝐿)

𝐷𝑝 𝜑
∗

𝑧𝐿

𝑈𝐿
)

2

𝑁𝑑]      
(2.30) 

 
Where Nd is calculated using the expression by Levenspiel et al. (1972) for ND < 0.01:  
 

 Nd = 2(
d

L
)      (2.31) 

 
However, since the dispersion term ND is so small that it can be considered negligible (<0.01), 
equation (2.30 can be simplified to the Yamauchi equation in (2.19. This is because in 

equation (2.30, the term 
6𝑘(1−𝜀𝐿)

𝐷𝑝 𝜑
∗

𝑧𝐿

𝑈𝐿
  is often around 10 to 20, meaning that the second term 

is about 1 to 4 and can be neglected. This makes the Letterman equation identical to 
Yamauchi equation, which also neglects dispersion (Shemer et al., 2015). 
 

2.4.4 Conclusion  
As demonstrated above, there are disparities in the experimental setups, the methods 
utilized to measure the dissolution rate, and the models applied to correlate the dissolution 
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rate data. A critical study carried out by Hasson & Bendrihem (2006) showed that the calcite 
kinetics expression by Plummer et al. (1979) and Plummer (1978) overestimates the 
dissolution rate by a factor of 3 to 4 at high CO2 concentrations and a factor of 1.5 to 2 at 
low CO2 levels. This was further confirmed by a recent study done by Bang (2012). Yamauchi 
et al. (1987) and Letterman et al. (1991) are both empirical models suitable for improvement 
in this study, since both of them investigate the kinetics of calcite dissolution throughout the 
packed bed of calcite. 

The main difference between the Letterman model and the Yamauchi model is the 
driving force that controls the dissolution process. Letterman (1991) defines mass transfer as 
the process controller, while Yamauchi (1987) considers surface chemical reactions as the 
process controller and uses CO2 as the driving force in deriving the same equation. However, 
Letterman (1991) considers the dispersion effect on calcite dissolution, while Yamauchi 
(1987) assumes an ideal plug flow inside the filter. 

Later on, Shemer (2015) shows that the magnitude of the dispersion coefficient is 
insignificant and rewrites the Yamauchi equation based on a material balance as shown in 
equation (2.32. This makes the Yamauchi expression identical to the Letterman (1987) 
equation without the dispersion modification.  
 
 

Ln
[Ca]e − [Ca]l

[Ca]e − [Ca]o
=  ln

[HCO3]e − [HCO3]l

[HCO3]e − [HCO3]o
= ln

[CO2]l − [CO2]e

[CO2]0 − [CO2]e
=  −k

6(1 − ε)

d. φ
∗

zL

UL
     

(2.32) 

 
Because of this, Yamauchi’s equation was chosen to be used as a starting point to 
consolidate the reliability of the Yamauchi model. Subsequently, it is used to further 
investigate the effects of operational characteristics such as velocity, CO2 concentrations, 
and specific calcite grain sizes on the calcite dissolution rate. 
 

 Parameters affecting the calcite dissolution rate 
Several studies have investigated the effects of various chemical and physical parameters on 
calcite dissolution. In the following paragraph, the effects of each parameter on the kinetics 
of calcite dissolution are investigated by a review of available literature.  
 

2.5.1 Water composition  
Several studies have confirmed the influence of substances such as magnesium, organic 
matter (Morse 1974a, 1974b; Berner and Morse, 1974), and copper (Erga & Terjesen, 1956) 
on the calcite dissolution rate in influent water. However, the focus of this study is on the 
remineralization of high quality water from a RO membrane. Therefore, the influence of 
inhibitors, such as metallic impurities, on the dissolution of calcium carbonate, is beyond the 
scope of this study.  

The initial water carbon dioxide concentration is an important parameter to  
determine calcite dissolution. The degree of additional CO2 dosage is associated with the 
initial pH value. However, as shown in the Tillman curve in Figure 2, increasing the buffer 
capacity decreases the amount of aggressive CO2, resulting in a decrease in the calcite 
dissolution rate. 
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2.5.2 Calcite characteristics  
A study conducted by Ruggieri et al. (2008) showed that the calcite dissolution rate is 
influenced by the reaction surface area of calcite grains as well as by the impurities that they 
contain. This can be explained by the general rate formula for CaCO3 dissolution in equation 
(2.8. As can be seen from this equation, a higher specific surface area (A/V) accelerates the 
calcite dissolution rate. In general, A/V is affected both by the size and the sphericity of a 
calcite particle. Several articles have shown that larger calcite particles have a slower 
dissolution rate due to their smaller specific surface area (Yamauchi et al., 1987; Letterman 
et al., 1991; Shemer et al., 2013). Moreover, the sphericity of a particle is equal to the 
specific surface area of a sphere divided by the surface area of the particle as long as their 
respective volumes are kept the same. The shape factor can be estimated using the known 
factors for various shapes as shown in Table 3. As can be seen, an irregularly shaped grain 
provides a larger surface area than the spherically shaped ones.  
 
Table 3. Shape factor for various shapes and their ratio compared to the standard spherical shape (calculated using the 
volume and surface formula of each shape where volume was the same in all shapes) 

Unites Form V(mm3) a(mm) A(mm2) A/V(mm) Compare to 
spherical 
(A/V /Ap/Vp ) 

a Spherical 0,52 1,0 3,14 6 1,00 

a, b = a/3  h =2a Rectangle 0,52 0,9 5,11 10 0,62 

a Square 0,52 0,8 3,90 7 0,81 

a Tetrahedron 0,52 1,6 4,68 9 0,67 

a, h = 2a  Cylinder 0,52 0,7 3,78 7 0,83 

a, a=h  Cone 0,52 1,3 5,17 10 0,61      
Average 0,76 

 
Calcite impurities also have an effect on the kinetics of calcite dissolution, as impurities in 
the calcite provide a coating of thin residue that leaches from the surface matrix of calcite 
(Letterman et al., 1991). Dutch drinking water regulations define that calcium carbonate 
should comply with NEN-EN 1018:2006. Based on this regulation, the purity of calcite used 
for calcite filters should be higher than 98%. At such high purities, the effects of the porous 
layer, formed by insoluble impurities in the calcite matrix on mass transfer to and from the 
calcite surface, are considered to be negligible. 
 

2.5.3 Empty Bed Contact Time (EBCT) 
 
The empty bed contact time (EBCT) represents the ratio of the filter volume to the flow rate. 
It can be calculated by equation (2.33:  
 

EBCT =
(Volume of the filter)

(Flow rate) 
=

πD2

4 × ZL

πD2

4 × UL

=
ZL

U𝐿
 

(2.33) 

 

The EBCT can be adjusted by either augmenting the flow over the filter or by taking a sample 
from the calcite height. From a process control point of view, it is advantageous that the 
reaction approaches the equilibrium before water leaves the filter. This is due to the fact 
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that, should production variation or maintenance slightly shift the EBCT, the effect on the 

effluent quality would remain minimal (Van Der Laan et al., 2016). In general, according to 
Voutchkov (2013), the EBCT should range from anywhere between 10 to 30 minutes. This 
assessment was also confirmed by a recent study by the drinking water company Evides 
(Van Opijnen et al, 2017).   

 

2.5.4 Velocity 
The hydrodynamic condition is another variable that affects the calcite dissolution process. 
Increasing the flow rate tends to minimize the thickness of the boundary layer encompassing 
the grain. This influences film diffusion due to elevating Reynolds numbers, which in turn 
enhance the flux of mass between the solid surface and bulk solution, i.e., an increasing 
reaction rate (Lehmann et al., 2013). Figure 3 shows that elevating the flow velocity from 

10m/h to 20 m/h increases the dissolution rate, as is illustrated by the slope of the line in 
the figure (Lehmann et al., 2013). 

 

Figure 3. Average [Ca2+] in the calcite reactor as a function of retention time for the six case studies: 10, 20, and 30 m/h 
flow rates (□, Δ, and X, respectively) and gray and black signs for the 2 different acid dosages of 490 and 721 mgH2SO4/L. 
(Lehmann et al., 2013) 

The modified Reynolds number is inversely proportional to the kinematic viscosity and 
porosity of the filter bed and proportional to the filtration rate and grain diameter 
(Letterman et al., 1991): 
 

Mre =
d ∗ UL

ϑ(1 − ε)
 

(2.34) 

 

Where:  
Re  = Reynolds number [-] 

 
Calculating the Reynolds number for both grain sizes shows that the velocity effect is more 
pronounced for grain sized between 1-2 mm as it has a larger diameter.  
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Figure 4. The relation between the velocity and the Reynolds number with a porosity of 49% and mean diameters of 0.81 

and 1.5 mm, with kinematic viscosity at 12 oC.  

 
However, it should be noted that the design EBCT, which is the EBCT that is required to 
reach equilibrium, is inversely related to the filtration rate. Therefore, a higher filtration 
velocity requires a higher calcite bed height in order to maintain the design EBCT constant. 
 
In conclusion, the reaction rate will be increased by:  

 Decreasing the influent pH by increasing the CO2 concentration  

 Decreasing the particle size 

 Decreasing the particle sphericity 

 Increasing the velocity 

 Increasing the EBCT  
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3 Materials and methods  

 Introduction  
A pilot study was conducted to investigate the kinetics of calcite dissolution. In general, the 
research period of this study can be divided into the following three periods: 
 

 In the period from 8 May to 25 June, both columns were filled with grain size 0.5-1.2 
mm. This period will from now on be referred to as run 1.  

 In the period from 29 June to 24 July, both columns were filled with grain size 1-2 
mm. This period will from now on be referred to as run 2.  

 In the period from 24 July to 20 August, one column was filled with grain size 0.5-1.2 
mm while the other column was refilled with fresh calcite grain size 1-2 mm. This 
period will from now on be referred to as run 3. 

 
Table 4 lists an overview of the experiments that were conducted as well as their respective 
objectives. The details of each experiment will be explained in Part 3.4.  
 
Table 4. List of experiments and aims of experiments  

Experiments  Aim of experiment 

Grain size test Investigate the effect of the calcite grain size on the dissolution rate and the 
subsequently required EBCT 

Velocity test  Investigate the effect of velocity on the calcite dissolution rate   

CO2 test Investigate the effect of extra CO2 on the calcite dissolution rate, the required 
EBCT, and the ratio of the bypass 

EBCT test Find the required EBCT to reach equilibrium 

Runtime test 
Investigate the effect of filter runtime on calcite dissolution rate and the 

required EBCT 

 
The pilot installation was used to investigate the influence of various parameters on the 
calcite dissolution rate, as well as to verify the reliability of the Yamauchi model (Yamauchi 
et al., 1987) and possibly to improve the model. Finally, the model was used as a tool to 
answer research questions regarding water quality and calcite filter operation. In order to 
limit manual calculations and to increase the accuracy of the calculations, the modeling 
environment PhreeqPython1 was used to simulate the chemical reactions and to calculate 
the equilibrium values. PhreeqPython made it possible to perform all necessary steps in one 
and the same simulating environment.   
 

                                                 
1 PhreeqPython is an extension of the Phreeqc chemical calculation engine (Parkhurst & Appelo, 
1999) written in Python and is partly derived from the PhreeqPy extension for IPhreeqc (Mike 
Müller).  

 

https://github.com/Vitens/phreeqpython
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 Pilot installation  
To answer the research questions, a pilot study was carried out in which the results in terms 
of water quality could be extrapolated to a practical scale. This pilot installation was placed 
at the production site “De Hooge Boom” in Kamerik and used groundwater extracted by an 
existing water treatment plant. The calcite filter was preceded by the RO filters and an ion 
exchanger.  
 

3.2.1 Pilot setup 
Figure 5 shows the process scheme of the pilot setup. A storage tank was used as an 
intermediate buffer in front of the calcite filters. Subsequently, the feed water was pumped 
into the top of the column, from where it found its way through each set of filters. The pilot 
line consisted of closed columns filled with granular calcium carbonate (CaCO3) in two 
different sizes, followed by a degasification tower with an integrated backwash buffer for 
the contactors. Furthermore, the column itself was supplied with a CO2 injection line 
controlled by a mass flow controller (MFC). The water quality was continuously measured at 
various places. Figure 6 shows the pilot plant. 
 

 
Figure 5. The main water flow scheme of the pilot installation located at the production site “De Hooge Boom” in Kamerik 
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Figure 6. Photo of pilot calcite filter at Kamerik, both from the front and the back  

The two pilot lines shared an influent pump, but the flow rate could be adjusted individually 
for each contactor and was controlled by automatic control valves. Because of this, the 
contact time was adjustable in each contactor regardless of the calcite bed height. The air 
supply for the degasification tower and the CO2 dosing were both also adjustable by the use 
of a so-called Automatic Settings Program (ASP), in which up to 20 different settings could 
be programmed.   
 
Other relevant aspects of the contactors were:  

 To inspect the contents of the contactors, the columns were fitted with sight glasses 
distributed along the height of the contactor. 

 The bed height was monitored continuously during the second run using an 
ultrasonic interface sensor, while it was measured with measuring tape through the 
sight glasses during the first run.  

 Both columns were filled through the sight glass on top. 

 To prevent CO2 accumulation, a sensor and a vent valve were mounted on top of the 
contractors. When a certain amount of CO2 had accumulated, the vent valve opened 
automatically.  

 20 sampling points were embedded in the column: one was placed right behind the 
CO2 dosage unit in the influent line and the other 19 were distributed along the 
height of the column.  

 There were six sampling points from where the calcite along the filter could be 
removed. 
 

Table 5 lists some of the design and operational characteristics of the pilot installation. 

Further details about the pilot installation can be found in Appendix Ⅴ. 
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Table 5. Design and operational characteristics of the pilot calcite filter at Kamerik 

Inner diameter 318 mm 

Filtration rate 2.6-28.7 m/h* 

Flow 
orientation 

Downward 

Sampling point Started from 250 cm above the filter with distance of 12.5 cm between each sampling 
point 

*The maximum velocity can only be reached when one column is used. 

 

3.2.2 Sensors  
As depicted in Figure 5, different kinds of sensors were installed to continuously measure 
the water quality parameters both before and after the remineralization as well as after the 
degasification. There were two sets of analyzers, consisting of similar sensors for each 
column, that measured turbidity, electrical conductivity, and pH levels. There were also two 
online CO2 sensors: the first one was placed just behind filter 1, while the second one 
measured the CO2 concentration in the permeate flow at the beginning of the experiments. 
Afterwards, filter 2 was removed and attached to the flow of filter 1. Furthermore, the 
process was monitored and controlled by several online sensors that measured operational 
parameters such as flow, pressure, and temperature. The details of these sensors, such as 

their accuracy and detection limits, are provided in appendix Ⅴ-A. 
 
In addition, the following details are provided:  

 The reliability of the data from the water quality sensors were verified a number of 
times by handheld meters and laboratory measurements; 

 Starting with the second run of the experiment, an automatic bed height meter was 
installed to record the bed height each minute. During the first run, the bed height 
was estimated by optical observations through the sight glasses. 

 Online pH and turbidity meters were calibrated prior to each experiment; 

 Data from the various online sensors was collected every second and recorded in an 
online PI database; 

 The calcite dissolution path along the packed bed was tracked by testing the 
composition of water extracted from 20 sampling points located along the length of 
the two columns. Each sample was analyzed to determine its pH, carbon dioxide, 
bicarbonate, and calcium contents.  

 
 

3.2.3 Calcite product  
Two different sizes of calcium carbonate were used to investigate the effects of the grain 
size on calcite dissolution. In our experiments, Aqua-TECHNIEK’s Juraperle calcium carbonate 
grains with a purity of 99.1% were used. Two different grain size classes were studies: 0.5-

1.2 mm and 1-2 mm. The characteristics of these kinds of grains are shown in appendix Ⅴ-B. 
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Figure 7. Filter bed material: Juraperle 0.5-1.2 mm and Juraperle 1.0-2.0 mm 

Figure 8 depicts the irregular shape of calcite grain, as well as the size variation between two 
tested grains. 
 

 
Figure 8. The microscope photo of Juraperle 0.5-1.2 mm on the right and Juraperle 1-2 mm on the left, with a magnification 
of 4 

 

3.2.4 Sieving analyses  
In order to determine the particle size distribution and subsequently the representative 
calcite diameter size, calcite samples of both grain size classes were analyzed using sieve 
analyses executed by the Vitens laboratory. Subsequently, the median diameter (D50) was 
chosen as the representative diameter for future calculations (Bear, 1988). 

Particle size affects the calcite dissolution rate. The results from the sieving analyses 
are depicted in Figure 9 as a cumulative distribution curve. Based on these results, median 
diameters (D50) of 0.81 mm and 1.5 mm were chosen as the representative diameters for 
particles ranging between 0.5-1.2 mm and 1-2 mm respectively.  
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Figure 9. The cumulative distribution curve for grain sizes ranging between 0.5-1.2 mm on the left and 1-2 mm on the right, 
derived from sieving analyses of 2 samples per grain size 

 

3.2.5 Bed porosity  
By definition, the bed porosity is equal to the ratio of the void space (vp) to the total 
enclosed volume of the bed (vt). The following steps were taken to calculate each volume 
and subsequently to obtain the porosity:  
 

 The calcite filters were filled with nine bags of calcite weighing 25 kg each. Given that 
the known calcite density as provided by the supplier was 2.7 g/cm3, the calcite 
volume was calculated with equation (3.1: 

 

𝑣𝑠 =
No. of bags to fill the filter * weight of each bag 

Calcite density
 

(3.1) 

 

 Using the calcite height in the column and the area of the column, the total volume 
of the beds was calculated:  
 

Vt = Hcalcite ∗ Acolumn (3.2) 

 

 Since vt is the sum of the pores and the solid volumes, knowing vt and vs, the pore 
volume (vp) was calculated.  

 Finally, by replacing vt and vp into the porosity equation, ε = vp / vt , the porosity was 
calculated separately for each grain size range.   

 
The measured porosity for the column that contained the calcite particles ranging between 
0.5-1.2 mm was 0.5, whereas the porosity of the calcite particles ranging between 1-2 mm 
was 0.49. Although several studies have illustrated that the porosity of a packed bed is 
higher closer to the wall (Vortmeyer & Schuster, 1983), this wall effect was negligible, as the  
column-to-particle diameter ratio was higher than 10 (Delgado, 2006; Letterman et al., 
1991). 
 

3.2.6 Feed water 
During the experimental period, the feed water was of the treatment plant “De Hooge 
Boom” was extracted from 15 different wells. This water was also used as feed water in the 
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pilot plant. However, due to changes in the water demand throughout the day, the number 
of wells in use was susceptible to changes. The various combinations of these wells formed 
four different well configurations. Table 6 shows these well configurations and the number 
of wells that were in operation for each day of experiments. It should be noted that an 
increase in the number of wells could either reduce or increase the CO2 concentration, since 
the extra wells could have either had lower or higher concentrations of CO2. To determine 
the water quality of each well configuration, the water quality was measured for 4 
consecutive days and analyzed by the Vitens laboratory. It was also continuously monitored 
by quality sensors at the pilot plant.  
 

Table 6. The well configuration corresponding to each experiment day and the number of wells in operation during each 
experiment  

Configuration Date NO. of in use wells 

1 10-5-2017 6-8  
15-5-2017 7-9  
23-5-2017 7-9  
29-5-2017 8-10 

2 3-7-2017 9-11  
4-7-2017 9-11  

10-7-2017 7-9 

3 12-7-2017 4-6  
17-7-2017 7-8  
18-7-2017 7-9 

4 19-7-2017 8-10  
20-7-2017 7-9 

 
As shown in Figure 5, the feed water of the pilot calcite filters is the permeate water 
produced by the RO membrane installation. This water has had a post-treatment of ion 
exchange to remove the remaining ammonium. Several water analyses were carried out to 
identify the quality of the permeate water. For this purpose, one water sample was taken for 
4 consecutive days from 17-20 July. The water composition was analyzed at the laboratory.  
Table 7 lists the average cation and anion composition of the water analyses that were 
carried out in this period. As expected, the permeate water contained only a low 
concentration of sodium and chloride. However, due to the low EC and alkalinity capacity as 
well as fluctuations in the CO2 concentration, it was challenging to measure the pH and 
carbon dioxide in the permeate water. Therefore, the reliability of the pH and carbon 
dioxide measurements were further investigated through various experiments as described 
in Chapter 4. 
 
Table 7. The average water quality characteristics from 4 samples taken between 17-20 July 

Feed water characteristic 

Parameter                  Unit                         Value 

Ammonium mg/L NH4 0.0  

Aluminium  Mg/l 0.0 

Calcium mg/L Ca 0.0 

Chloride mg/L Cl 1.3-2 

Iron mg/L Fe 0.0 
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A change in the concentration of ions will alter the conductivity value. As a result, confirming 
the stability of the permeate water quality with regards to the ion content required the 
electrical conductivity (EC) of permeate water to be continuously monitored for a longer 
period of time than the laboratory analyses. This was done using the EC sensor at the pilot 
plant. Figure 10 shows the constant value of EC, which confirmed the stability of the ion 
content of the permeate water. 
 

 
Figure 10. The EC of permeate water between 10-30 July 

 Sensor validation  

3.3.1 Reliability of CO2 and pH sensors at pilot plant 
 
As described in Chapter 0, the calcite dissolution rate is strongly affected by the CO2 

concentration in the feed water. Therefore, it is crucial to measure the CO2 concentration in 
the feed water with a high accuracy. However, as is illustrated in Figure 11, the permeate 
water contained a certain amount of carbon dioxide that fluctuated from day to day. It also 
fluctuated within each day due to the various well configurations. These fluctuations made it 
difficult to measure the exact concentration of carbon dioxide in the feed water of the filter.  
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Figure 11. CO2 consumption measured by a CO2 sensor in the pilot plant for 4 consecutive days from 17 to 20 July  

 
To measure the levels of carbon dioxide in a reliable way, CO2 was captured in the form of 
carbonate, as this makes it impossible for the CO2 to escape. Figure 12 shows the 
distribution of CO2 species at different pH levels. Based on this relation between pH and CO2, 
the pH of a solution should be increased to 12 or higher in order to convert all of the carbon 
dioxide to its carbonate form. For this purpose, sodium hydroxide was applied to the sample 
bottle before sampling. Subsequently, the CO2 concentration was calculated using p and m 
alkalinity measured by the laboratory. This concentration was used as a reference point for 
CO2 concentration to determine the accuracy percentages of other methods. A more 

detailed description of this method is provided in appendix Ⅰ. Moreover, the levels of CO2 
were either measured directly using a CO2 meter at the pilot plant or calculated based on 
the pH, alkalinity, EC, and temperature of each sample using the NPR 6538 and NEN 6533 
methods. 
 

 
Figure 12. Distribution of CO2 species at different pH levels simulated in PhreeqPython (Appendix Ⅷ-F)   

Figure 13 depicts the error percentage of each method based on the reference CO2 
concentration described above. This error was calculated based on equation (3.3:  
 

Error CO2 method  =  
CO2 measured or calculated  

CO2 measured based on p and m alkalinity 
− 1  

(3.3) 
 

 
The result confirmed the reliability of the CO2 meters at the pilot plant, while the CO2 
concentrations that were calculated based on the pH measured at the pilot plant showed a 
considerable overestimation of the concentration of CO2. Moreover, while the CO2 that was 
calculated based on the pH determined by the laboratory seemed to be more accurate at 
low pH values, it also overestimated the CO2 at lower concentrations. These overestimations 
can be explained by an error in the pH measurement.  
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There are several causes that can account for an error in pH measurement (McDermand, 
2017): 

 A low electrical conductivity and buffering capacity of the RO permeate, which makes 
the pH value unstable;  

 An inappropriate and/or irregular calibration of the pH meter;  

 The CO2 release during sampling or analyses; 

 The CO2 absorption from the air into the sample; 

 The temperature variation affecting the hydrogen mobility;  

 The CO2 absorption in the water, which creates carbonic acid and causes the pH to 
drop in the time between sampling and analysis; 

 The fluctuations in CO2 concentrations reduce the accuracy of the pH meter and 
increase the calibration interval. 

 
 

 
 

Figure 13.Comparing calculated CO2 concentrations based on p and m alkalinity (reference value) with CO2 measured or 
calculated from pH  

 

Having drawn these conclusions, the CO2 meter was used to estimate the CO2 concentration 
in further calculations, as it proved to have the lowest error percentage. The error 
percentage of this method was found to be 9% at high levels of CO2. This is slightly higher 

than the device accuracy provided by the sensor characteristics (appendix Ⅴ-A). However, 
as there were no CO2 measurements at the pilot plant during the first run, the CO2 
concentrations calculated by the laboratory based on the pH, bicarbonate, and EC from the 
laboratory were used as starting points in this run.  
 

3.3.2 The relation between electrical conductivity (EC) and 
calcium/bicarbonate concentrations  

As the permeate water has a constant EC value, increases in EC values can be explained by 
changes in the calcium and bicarbonate concentrations. To find the relation between EC and 
these two ions, the results from the EC measured at the pilot plant were plotted against the 
levels of calcium and bicarbonate that were measured at the laboratory. Figure 14  
illustrates a linear correlation between EC and calcium as well as EC and bicarbonate 
respectively. Fitting this data using Python resulted in the following equations:  
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Ca      (mmol/l) = 0.005506 * EC (µs/cm) – 0.1357 
HCO3 (mmol/l) = 0.01081  * EC (µs/cm) – 0.1127 

(3.4) 

 

 
Figure 14. Plotting EC vs. calcium on the left and plotting EC vs. bicarbonate on the right with R2 = 0.9991 

To check the reliability of the relation derived above, several samples from both filters, one 
with grain size 0.5-1.2 mm and one with grain size 1-2mm, were taken on a random day. 
Figure 15 and Figure 16 illustrate the data from both filters vs. the data that was predicted 
using the EC relation. As can be seen from these two graphs, the predicted data closely 
matches the measured data for both filters. Moreover, the error percentage calculated for 
both filters, except for the sample with a calcium concentration below 0.4 mmol/l, is around 
1%.  
 

 
Figure 15. Predicted calcium and bicarbonate based on EC are shown in red lines, while the blue points are the measured 
data in the filter with grain size 0.5-1.2 mm and a velocity of 5 m/h. The error bars mark a deviance of 5% from the actual 

data 
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Figure 16. Predicted calcium and bicarbonate based on pilot-EC meter and measured data in the filter with grain size 1-2 

mm and a velocity of 5 m/h. The error bars mark a deviance of 5% from the actual data  

As can be seen in Figure 15 and Figure 16, the predicted data fell between the acceptable 
deviations of 5% from the actual data, which confirms the reliability of these two relations. 
At low concentrations of calcium, however, the error percentage could cross that threshold 
of 5%. This is because the EC will be affected by low pH values. This relation was further 

investigated in detail using a PhreeqPython simulation, as can be seen in appendix Ⅲ. This 
relation will be used to calculate the calcium and bicarbonate concentrations in run 2 for 
extra CO2 dosage experiments.  

Another important factor that affects the EC is temperature. A higher temperature 
implies a lower viscosity, which results in an increase in the mobility of ions and 
consequently of the EC (Baron and Ashton, 2005). Furthermore, the temperature coefficient 
is dependent on the type of solution and is expressed as a percentage of EC increase when 
the temperature increases by 1 oC (Baron and Ashton, 2005). The RO permeate water 
composition is almost constant, while the water temperature changes between 12-14 oC. 
Therefore, to extract the effect of temperature variations on the EC, a temperature 
compensation of 2% was applied to the EC sensor, which converted the EC at any 
temperature to the EC at the reference temperature of 25 oC.  
 

3.3.3 Tracer test on the calcite filter 
The dispersion of a fluid in the filter may lead to less contact time and consequently a lower 
degree of calcium dissolution. However, the effect of axial dispersion is expected to be 
negligible, since several studies have shown that the dispersion is minor when the diameter 
to length ratio of the column is small (Klinkenberg et al., 1953; Miller et al., 2004; Delgado, 
2006).  In order to confirm the effects of longitudinal dispersion on calcite dissolution and to 
exclude these possible effects from the dissolution rate, a tracer test was conducted. The 
following steps were taken: 

 Filters 1 and 2 were filled with grain size 1-2 mm and 0.5-1.2 mm respectively. 

 Both filters were operated at same velocity of 5 m/h. 

 Two sample points were chosen where the EC in the filter was continuously 
measured. To exclude the possible effects of mix flow in the water above the filters, 
the sample points were chosen to be located just below the calcite layer (see Figure 
17). The  EC was compared with the EC of effluent water.  

 The sodium chloride brine was used as a tracer and was pumped through the filter 
from the sampling point behind the filter by impulse injection, i.e., the pump was 
active for 2 minutes.  
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 Since the EC is also influenced by the dissolution of calcium and bicarbonate, it is 
crucial to apply a high concentration of salt to provide a noticeable peak. 

 

 
Figure 17. The filter filled with calcite where the sample point EC was measured  

Figure 18 and Figure 19 depict the results from filter 1 and filter 2 respectively. Readjusting 
for the phase difference between the curves and removing the extra EC that was generated 
by the calcite dissolution in each figure, the two curves almost overlap, showing that the 
effect of dispersion was negligible in both filters. The slight differences between the EC 
values in the filter containing calcite grain size 1-2 mm could be explained by equation (2.31 
provided by Levenspiel et al. (1972), as ND < 0.01. Based on this relation, a larger diameter 
results in a greater dispersion.  
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Figure 18. The figure on the left shows the original values of EC measured for filter 1 with grain size 1-2 mm while the figure 

on the right shows the same but the extra EC from calcite dissolution is excluded and the time phase between the two 
samples is removed 

 

 
Figure 19. The figure on the left shows the original values of EC measured for filter 1 with grain size 0.5-1.2 mm while the 
figure on the right shows the same but the extra EC from calcite dissolution is excluded and the time phase between the two 
samples is removed 

 

3.3.4 Ca vs. HCO3  
To investigate the stoichiometric ratio between calcium and bicarbonate, which was 
assumed to be 1:2, the results of the measured bicarbonate were plotted against the 
bicarbonate concentration that was calculated based on the calcium concentration. As can 
be seen from the Figure 20, the experimental data confirm the 1:2 ratio between calcium 
and bicarbonate. These results could be used to calculate the bicarbonate based on the 
calcium concentration.  
 

 
Figure 20. The measured and calculated bicarbonate concentration at various heights over the filter with grain size 0.5-1.2 

mm. The error bars mark a deviance of 2% from the measured data  
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 Overview of experiments 
Several parameters affect the calcite dissolution rate. Various experiments were conducted 
to measure important physical characteristics of the packed-bed contactors and to 
investigate their effects on the calcite dissolution rate at a low temperature.  
 

3.4.1 Velocity  
In order to study the influence of the incoming flow rate, two sets of velocity tests were 
conducted. For this purpose, both reactors/columns were fully packed with calcite grains 
with a diameter of 0.5-1.2 mm for set 1 and 1-2 mm for set 2. Each set of experiments 
consisted of six different velocities: first 5, 10, 15, 16.5 m/h, and on a different day 20 and 30 
m/h. During each test, the two filters were run under equal conditions to create duplicate 
data. Samples were collected from 13 sampling ports positioned along the height of the 
column, starting from the top of the column and moving downwards to avoid interference in 
the flow rate during sampling. Each sample was analyzed to determine its bicarbonate and 
calcium concentrations.    
 

3.4.2 EBCT 
The aim of the EBCT experiment was to find the EBCT at which equilibrium was reached. This 
experience was repeated three weeks later to investigate the effects of different calcite filter 
runtimes. The EBCT is a function of bed height and flow rate. During the velocity test 
experiments, the velocity was kept constant while the EBCT was calculated by changing the 
bed height. In this experiment, the EBCT was adjusted by changing the flow rate and could 
be calculated using EBCT = V/Q. 

For this purpose, EBCT ranging between 10-40 minutes and corresponding to flow 
velocities between 3.0-12.0 m/h were tested. The experiment was conducted at a constant 
temperature of 12 °C and a bed height of 2 m, while the filters were operated for 3 hours for 
each specific flow condition.  
 

3.4.3 Carbon dioxide dosage  
The effects of the concentration of inlet CO2 on the dissolution rate were examined under 
the following conditions:  

 Both filters were filled with calcite grain size 0.5-1.2 mm and 1-2 mm in the first and 
second run respectively.  

 To confirm the reliability of the results, both filters were operated under the same 
conditions for an hour before samples were taken. 

 During both runs, the temperature was approximately constant at 12±2 oC.  

 During the first run, 9 samples were taken per carbon dioxide concentration test 
from sampling points along the height of each column, while in the second run 
samples were taken from all 16 sampling points along the filters.    

 The calcium, carbon dioxide, and bicarbonate contents were measured in the 
laboratory during the first run. However, since the reliability of the relation between 
EC and the concentrations of calcium and bicarbonate was proven by previous 
experiments, this relation was used to estimate the calcium and bicarbonate 
concentrations in the second run. 

 The EBCT was adjusted by changing the bed height at a constant filtration velocity of 
3.8 m/h.  
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 The bed heights were measured with measuring tape through the sight glasses in the 
first run and with bed height sensors during the second run.   

 The carbon dioxide efficiency is calculated as follows:  
 

CO2 efficiency % =
Cain − Caout

CO2 initial +  CO2 dosing
 

(3.5) 

 
Where Ca in, Ca out are the initial and effluent calcium concentrations respectively.  
 

 The initial CO2 concentration was measured by the CO2 sensor at the pilot plant, 
while a correction of 9% is used as the inlet CO2 concentration.  

 The CO2 concentrations of samples at other bed heights were calculated by the 
laboratory based on the bicarbonate, calcium, EC, and Ph levels, and the temperature 
of each sample using NPR 6538, NEN 6533. 

 During each run, additional CO2 concentrations of 2, 4, 6, and 8 mmol/l were injected 
into the inlet flow using a mass flow controller (MFC). 

 

 Software used 
To prevent the complicated and time-consuming chemical calculations to find the 
equilibriums, reactions were simulated in the chemical simulation environment of 
PhreeqPython (Heinsbroek, 2017). PhreeqPython is an object-oriented wrapper around the 
VIPhreeqc extension of the Phreeqc chemical modeling environment (Parkhurst & Appelo, 
1999) written in Python. PhreeqPython uses the STIMELA database and is partly derived 
from the PhreeqPy extension for Iphreeqc (Müller et al., 2011). Moreover, Phreeqc is a 
modeling environment for standardized mathematical models of drinking water treatment 
processes developed by Omnisys and the Delft University of Technology as part of the 
STIMELA modeling environment (Van der Helm & Rietveld, 2002). The modified Yamauchi 
model (Chapter 5) was also implemented in PhreeqPython to calculate the kinetics of 
dissolution reactions. The main advantage of PhreeqPython over Phreeqc (Parkhurst & 
Appelo, 1999) is that it combines Phreeqc and Python in one programme. This has made it 
possible to gather the chemical reaction results from Phreeqc and the dissolution rate from 
the modified Yamauchi model in one place and to simulate the final water quality in Python 
in the form of graphs or tables. In other words, the user only needs to add the initial water 
quality and the operational parameters of the calcite filter, such as the velocity, grain size, 
porosity, and bed height in the excel sheet. The user can then run the model in 
PhreeqPython, where all calculations will be done in the background and the output will 
consist of the final water quality with regards to its calcium and bicarbonate concentration.  
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4 Results of pilot plant experiments 
In this chapter, the results of the performed tests are presented. The influence of each 
parameter is further investigated through sensitivity analyses in Chapter 7.  

  Velocity tests  
The results of the velocity variation tests are depicted in Figure 21. In order to make the data 
comparable, it was crucial to keep the other operating parameters constant. However, due 
to the configuration of the wells, CO2 concentrations fluctuated during the experiments as 
well as in between the velocity tests. This also affected the calcite dissolution. To rule out 
the effect that this could have, the calcium concentration was divided by the corresponding 
calcium saturation concentration for each sample as calculated in PhreeqPython.  
 In all velocity tests, most of the calcite dissolution took place in the first 50 cm of the 
reactor, as a high concentration of carbon dioxide was present there. It was found that after 
five minutes of EBCT in the filter with small grain sizes, the concentration of dissolved calcite 
reached 62-72% of the maximum potential mass that could be dissolved, i.e., the calcium 
concentration equilibrium. For the larger grain sizes, this value was between 32-52% when 
the CO2 concentration was below 1.5mmol/l. 

As shown in Figure 21, the dissolution rate slows down considerably when water 
reaches the last third of the reactor volume. Furthermore, when comparing the calcium 
concentrations in the last section of reactors, it becomes evident that an increase in velocity 
causes a reduction in the calcium concentration, as it results in less EBCT.  

 

 
Figure 21. Measured [Ca2+] concentration divided by the equilibrium concentration of calcium calculated by PhreeqPython 
as a function of bed height for the five tested velocities of 5, 10, 15, 20, and 30 m/h flow rates and a CO2 concentration of 
less than 1.5mmol/l 

Figure 22 and Figure 23 show the results of the velocity tests corresponding to run 1, grain 
size 0.5-1.2 mm, and run 2, grain size 1-2mm, respectively. Here, the EBCT was calculated 
based on the position of each sample over the bed height.  

The calcite dissolution rate is represented by the slope (R= dCa/dt) in Figure 22 and 
Figure 23. To depict the variation between the slopes more clearly, the first 10 minutes of 
the reaction are magnified on the right. Comparing the experimental results from both 
ranges of grain sizes, it is evident that the bigger grain size was more sensitive to the velocity 
variation than the smaller one, indicating a diffusion limitation at lower velocities. The 
effects of the flow rate on calcite dissolution will be further investigated in the model. 
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Figure 22. Measured [Ca2+] concentration divided by the equilibrium concentration of calcium calculated by PhreeqPython 
as a function of retention time for the five tested velocities of 5, 10, 15, 20, and 30 m/h flow rates and a CO2 concentration 
of less than 1.5mmol/l 

 
 

 
Figure 23. Measured [Ca2+] concentration divided by the equilibrium concentration of calcium calculated by PhreeqPython 
as a function of retention time for the five tested velocities of 5, 10, 15, 20, and 30 m/h flow rates and a CO2 concentration 
of less than 1.5mmol/l 

What can be concluded from Figure 22 and Figure 23 is that the dissolution rate in the 
calcite filter with grain size 0.5-1.2 mm was clearly higher than in the other filter. This can be 
explained by equations (2.8 and                                 (2.9, since the smaller grain has a higher 
specific surface area (A/V), resulting in a higher dissolution rate. Moreover, as a result of the 
faster reaction velocity, the smaller calcite size reaches the equilibrium quicker than the 
bigger grain size, making it the more efficient size to use.  
 Furthermore, the EC of the effluent water was monitored for seven consecutive days 
while filters 1 and 2 were filled with the 1-2 mm and 0.5-1.2 mm grain sizes respectively. 
Both filters were operated under the same conditions. The results confirmed the effect of 
grain size on calcite dissolution rates, as a higher EC represents higher calcium 
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concentrations. However, from the experiment it appeared that the effect of grain size is 
more significant at higher inlet concentrations of CO2.  
 
 

 
Figure 24. Effluent EC converted to the reference temperature of 250 oC measured at the pilot plant for 7 consecutive days. 

Filter 1 and 2 contain grain size 1-2 mm and 0.5-1.2 mm respectively 
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  EBCT effect 
As mentioned in Chapter 3.4.2, the bed height was kept the same in this experiment and the 
EBCT was adjusted by changing the flow rate. Effluent water qualities were compared. 
Moreover, the experiments were repeated after approximately three weeks to investigate 
the effect of the filter runtime on calcite dissolution. These result are depicted in Figure 25. 
The main observations are: 
 

 The grain size of 1-2 mm approached the equilibrium after 25 minutes when the CO2 
concentration was low but saw a slight increase when the CO2 concentration rose. 
However, the grain size of 0.5-1.2 mm only required approximately 15 minutes to 
reach the equilibrium at high CO2 concentrations as is depicted by the yellow line. 

 The performance of filters does not change noticeably after three weeks of runtime.  

 Both ranges of grain size met the target calcium concentration of 0.625 mmol/l in all 
tested EBCT.  

 

 
Figure 25. The calcium concentration at various EBCT at the beginning of the running period with CO2 concentrations of 2 
and 1.45 mmol/l  and after 3 weeks with CO2 concentrations of 1.3 and 1.7 mmol/l  

 

 Carbon dioxide concentration effect 
Based on a reaction equation, the carbon dioxide concentration is expected to have a 
noticeable effect on calcite dissolution. This can be seen in Figure 25, where it is shown that 
the CO2 concentration fluctuated between 1.3-2 mmol/l. As mentioned in Chapter 3.4.3, to 
investigate the effects of the initial CO2 concentration, various CO2 concentrations were 
dosed to the water before it entered the calcite filter. The influent water thus contained 
various amounts of CO2. What is reported here, however, is the total CO2 content: both the 
influent and the dose content. The results of these experiments are shown below.  

An overview of the calcite dissolutions with grain sizes between 0.5-1.2 mm and 
between 1-2 mm are depicted in Figure 26. The main observations are:  

 There is a clear connection between the amount of CO2 dosing and the calcium 
production. However, the increase in calcium concentration slows down over time as 
the calcium concentration approaches the equilibrium concentration. This 
equilibrium value depends on the initial CO2 concentration that was applied before 
filtration.  

 When the CO2 concentration increases, the required EBCT also elevates.  
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The maximum efficiency for grain size 0.5-1.2 mm was around 81%, while grain size 1-2 mm 
cannot reach an efficiency higher than 74% within the given EBCT. 

 The slope of the graphs represents the calcite dissolution rate (R= dCa/dt). As can be 
seen from Figure 26, increasing the carbon dioxide concentration also elevates the 
calcite dissolution rate noticeably, especially during the first 10 minutes.  

 Additional CO2 dosage accelerates the calcite dissolution but results in a CO2 
efficiency drop, as shown in Figure 27. Subsequently, more effort is required to 
correct the pH value following filtration, due to a high concentration of unreacted 
CO2. 

 

  
Figure 26. The effect of the initial CO2 concentration on the calcite dissolution rate  

As depicted in Figure 27, increasing the CO2 dosage decreases the maximum CO2 efficiency. 
Furthermore, the CO2 efficiency for grain size 1-2 mm is less than for grain size 0.5-1.2 mm at 
the same operation conditions, among which EBCT. This is reasonable, as there is less 
reaction surface area available for this grain size.  
 

 
Figure 27. The CO2  efficiency for calcite grain sizes at various carbon dioxide concentrations at constant EBCT of  30-33 

minutes  

 
Figure 28 shows the CO2 efficiency at various EBCT for different inlet CO2 concentrations. As 
can be seen, the CO2 efficiency drops below 80% when reducing the EBCT to below 15 
minutes. This is because at a shorter EBCT, part of aggressive CO2 leaves the filter unreacted. 
If the EBCT is sufficient, however, it will be converted to calcium and will result in an increase 
of the CO2 efficiency.     
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Figure 28. The CO2 efficiency versus the EBCT where the EBCT changes by adjusting the bed height for grain size 0.5-1.2 mm 

and constant velocity  

 
A high CO2 efficiency is preferable to limit the use of chemicals, such as the NaOH that is 
required to correct the pH. However, efficiency could never reach 100% because: 
 
1. The chemical equilibrium is never achieved in practice when given a finite contact time 
(Yamauchi et al., 1987). As CO2 dissipates from the water, the kinetics of the process 
decrease. Consequently, a realistic contact time is insufficient to convert all the aggressive 
CO2 in practice. 
2. Based on the Tillman’s curve of Figure 2, part of the CO2 will not participate in the reaction 
because it is present as non-aggressive CO2. Water in chemical equilibrium always contains a 
certain amount of non-aggressive CO2 that is relative to the amount of HCO3 present in the 
water. Therefore, the process becomes inefficient as the bicarbonate content in the water 
increases (Letterman et al., 1991). 
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5 Mathematical model  
 

The kinetics of calcite dissolution play a fundamental role in the effectiveness of the 
remineralization process in practice. Therefore, it is crucial to develop a kinetics model that 
can predict calcite dissolution with a high accuracy. This model could be utilized to predict 
the calcite dissolution rate as a function of design parameters. Subsequently, it could be 
used to improve the design and operation conditions of the production process of high-
quality, cost-efficient product water. In general, the objectives of using the mathematical 
model are: 
 
1. To calculate the effluent water quality based on the initial water quality data after 
calibration of the model; 
2. To determine the optimal design aspects and operational variables of a calcite filter. 
 
In order to model the remineralization process from the beginning until the point of 
equilibrium, three steps were taken: 
 
1. Simulating the chemical reactions in calcite filters using PhreeqPython;  
2. Determining the reaction rate based on the model provided by Yamauchi, since the PWP 
model used by Phreeqc is not compatible with Oasen’s low-pH systems (Hasson & 
Bendrihem, 2006; Bang, 2012; Shemer et al., 2013); 
3. Fitting the model to pilot experimental data. 
 

 Simulation of chemical reactions 

The inlet water of the filters was permeate water with a low and constant ion content. In our 
simulation, the average water quality provided in Table 5 was used. The initial 
concentrations of calcium and bicarbonate were measured by the laboratory for each run. 
The CO2 concentrations were measured at the pilot plant using CO2 meters. This information 
was used to calculate the calcium concentrations at the equilibrium using the implemented 
Phreeqc in PhreeqPython.    
  

 Reaction rate based on Yamauchi model   
To calculate the kinetics of the calcite dissolution reaction, the Yamauchi model (Yamauchi 
et al., 1987), extensively described in Chapter 2.4.2, is used. According to Yamauchi et al. 
(1987), aggressive CO2 is the driving force behind the reaction. 

Based on Yamauchi’s equation (2.32), there is a linear relationship between 

𝑙𝑛
([𝑥]𝑒−[𝑥]𝑙)

([𝑥]𝑒−[𝑥]𝑜 )
  vs. the EBCT, where X represents either [HCO3] or [Ca] and the subscripts 0, L, 

and e stand for inlet, bed height, and equilibrium concentrations respectively. The slope of 

this line gives the  −𝑘
6(1−𝜀𝐿)

(𝐷𝑝∗ 𝜑)
  equation. By replacing the corresponding diameter and 

porosity, the Ya coefficient could be calculated experimentally. It should be noted that the 
Ya coefficient is a calcite dissolution rate coefficient which contains the form factor as well. 
Therefore, there is no need to measure or calculate the form factor separately. To calculate 
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the Ya coefficient, the results from the velocity tests for both grain sizes were used. The 
results are shown in Figure 29 and Figure 30. 

 
 

Figure 29. The linear plot of 𝑙𝑛 ([𝐶𝑎]𝑒−𝐶𝑎𝑙)

([𝐶𝑎]𝑒−[𝐶𝑎]𝑜 )
 vs. EBCT for grain size 0.5-1.2 mm on the left and 1-2 mm on the right, where R2> 

0.99 for grain size 0.5-1.2 mm and R2> 0.98 for grain size 1-2 mm. 

 

 
Figure 30. The linear plot of 𝑙𝑛 ([𝐶𝑎]𝑒−𝐶𝑎𝑙)

([𝐶𝑎]𝑒−[𝐶𝑎]𝑜 )
 vs. EBCT for various grain sizes at the velocity of 5 m/h and 13 °C 

The main observations from the figures above are: 

 The experimental data confirms the linear relation provided by Yamauchi et al. 
(1987), since the result follows the straight line with a correlation coefficient of R2 
>98 identically.  

 The filtration rate was found to have a converse effect on the calcite dissolution rate 
as increasing the velocity decreases the necessary contact time to reach equilibrium. 
This effect can be seen in Figure 29, but it is more obvious in the range of calcite 
grain sizes between 1-2 mm. This observation was also made by Yamauchi et al. 
(1987), but they did not take the effect of velocity on Reynolds number into account. 
The turbulence of the flow increases with an increasing filtration rate based on a 
Reynolds number equation. More turbulence accelerates the transfer of substances 
from solid surface to bulk solution (Lehmann et al., 2013).  

 Figure 30 depicts the effect of calcite grains on the dissolution rate constant, which 
reaffirms the model provided by Yamauchi et al. (1987). As can be seen, the smaller 
particle has a steeper slope, corresponding to a greater Ya coefficient. This can be 

R² = 0,9972

R² = 0,9901

-5

-4

-3

-2

-1

0

0 200 400 600 800 1000 1200 1400 1600

ln
 (

[C
a]

e-
[C

a]
L

)/
([

C
a]

e-
[C

a]
o
 )

EBCT(s)

0.5-1.2mm 1-2 mm

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0 500 1000 1500

ln
 (

[C
a]

e-
[C

a]
L

)/
([

C
a]

e-
[C

a]
o
 )

EBCT(s)
 5 m/h 10 m/h 15 m/h 20 m/h 28.7 m/h

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0 500 1000 1500

ln
 (

[C
a]

e-
[C

a]
L

)/
([

C
a]

e-
[C

a]
o
 )

EBCT(s)

5 m/h 10 m/h 15 m/h 20 m/h 28.7 m/h



56 

 

explained by the fact that the smaller particles have larger surface reaction which 
accelerate their dissolution.  

 The Ya coefficient, determined from the velocity test, ranged between 4.86×10-3 and 
7.78×10-3 for grain size 0.5-1.2 mm and between 4.12×10-3 and 8.24×10-3  for grain 
size 1-2 mm when the velocity ranges from 5 to 28.7 m/h. The differences between 
the Ya coefficients can be explained by diversity in the form factor of each grain size.  
 

Table 8 compares the calcite dissolution rate based on the Yamauchi model derived from 
previous studies, while the dissolution rate constant is derived from our experimental data. 
The results show that the dissolution constant is strongly affected by a change in 
temperature. As shown in Figure 31, the dissolution rate increases by a factor of 2 when 
elevating the temperature from 22 oC to 30 oC (Shemer et al., 2013).  However, the 
dissolution rate constant derived from the study by Shemer et al. (2013) at a temperature of 
22 oC is comparable to our experimental data. Since the temperature was approximately 
constant in our case, the temperature effect on calcite dissolution was neglected.  

 
Table 8. The calcite dissolution rates (Ya coefficient) from previous studies regarding their operational conditions and our 
experimental data 

 
 
 

 
Figure 31. Recap from previous studies on calcite dissolution rates using the Yamauchi model  
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 Calibration of Yamauchi model 
The effects of velocity on the dissolution rate constant were further investigated in order to 
find a unique relation that fit the velocity data. For this purpose, the least-squares method 
was used. The results from these fitting data are shown in Figure 32.  
 

 
Figure 32. Reaction rate constant plotted as a function of velocity. Points were obtained from a velocity test and the 
Yamauchi model, and the line was fitted to data by method of least squares 

The calcite dissolution rate coefficients 6k/Ø, obtained by analyzing the data from 10 
velocity runs, consisting of 5 different velocities for each grain size, were found to fit the 
following correlations: 
 

 6𝑘

𝛷
(
𝑚𝑚

𝑠
) =  2.96 × 10−3 √𝑈𝐿  (𝑚𝑚/𝑠)  

(4.1) 

 
This equation will be used to calculate the Ya coefficient in the Yamauchi model. However, 
as can be seen from Figure 32, this correlation underestimates the dissolution rate 
coefficient (6k/Ø) at the low velocity of 5 m/h, especially for the smaller grain size. When 
comparing the dissolution rates obtained from the 5 m/h and 10 m/h velocity tests depicted 
in Figure 29, it can be concluded that, at such low flow rates, the dissolution rate was not a 
function of the flow velocity, as the slopes of the dissolution rate curves of both velocities 
were almost identical. In other words, under the conditions tested, increasing the flow rate 
from 5 m/h to 10 m/h did not have a visible effect on the dissolution rate.  

By replacing the velocity correlation in the Yamauchi model shown in (4.1, the 
modified Yamauchi expression is as follows:  
 

 
𝑙𝑛

([𝐶𝑎]𝑒 − [𝐶𝑎]𝑙)

([𝐶𝑎]𝑒 − [𝐶𝑎]𝑜 )
 =   2.94 × 10−3 √𝑈𝐿  (𝑚𝑚/𝑠)

(1 − 𝜀𝐿)

𝐷𝑝
∗

𝑧𝐿

𝑈𝐿
 

(4.2) 

 
The input data of the model consists of two main parts: the initial water quality before 
filtration to calculate the calcium concentration at equilibrium using PhreeqPython, and the 
operational parameters such as the velocity, bed height, and calcite grain size. To make all 
calculations more organized and to gather them in one place, the model has been 
implemented in PhreeqPython.  
 

5.3.1 Result from modified model 
The results from the duplicated velocity test and CO2 test were used to validate the modified 
Yamauchi model. Figure 33 and Figure 34 show the results of the calcium concentrations 
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predicted by the modified Yamauchi model for grain size 0.5-1.2 mm and 1-2 mm 
respectively.  
 

  

 

Figure 33. Modeling data using the modified Yamauchi model for grain size 0.5-1.2 mm. The error bars mark a deviance of 
5% from the measured data  

 

 
Figure 34. Modeling data using the modified Yamauchi model for grain size 1-2 mm. The error bars mark a deviance of 5% 
from the measured data  

As shown in Figure 33 and Figure 34, the model can predict the calcium concentration at 
each EBCT with an error percentage of less than 5% except for the velocity of 5 m/h, which 
sometimes shows an error of around 8%. This is because, as mentioned before, the velocity 
correlation underestimates the dissolution rate as shown in Figure 32. Figure 35 depicts the 
small grain size CO2 experiment simulation using the modified Yamauchi model in 

PhreeqPython. The PhreeqPython codes of these simulations are shown in appendix Ⅷ. 

 
Figure 35. Modeling data using PhreeqPython, grain size 0.5-1.2mm, CO2 test, and filter 1 at constant flow of 3.8 m/h 
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In conclusion, the results of the pilot study confirmed the validity of the modified Yamauchi 
model for desalinated water from RO with changing operational variables such as the calcite 
grain size, velocity, EBCT, and the initial carbon dioxide and calcium concentrations at low 
temperatures. The results show an approximate error of only 5%. This error can be 
explained by several reasons, listed below:    

 As shown before, one of the important parameters affecting the calcite dissolution is 
the initial CO2 concentration. Therefore, accurate measurements of initial CO2 

concentrations are crucial to predicting the calcium concentrations when using the 
model. However, the permeate water contains a variable amount of CO2, which was 
measured with a CO2 meter at the pilot plant with an accuracy of ±5%. This error in 
measurement could cause a deviation between measured and predicted data.  

 The other reason behind a possible error in the simulation values is the calcite grain 
size. The model used the average grain size found by sieving analyses, while there is a 
range of grain sizes inside the filter that could cause small deviations between  
predicted and measured data.  

 As mentioned in Chapter 3.2.1, the bed heights during the first run with grain size 
0.5-1.2 mm were measured using measuring tape on the outside of the filters, which 
may result in inaccuracies in height measurement and consequently in the model.  

 

5.3.2 Testing the Yamauchi assumptions 
As previously mentioned, the calcite dissolution rate is proportional to the specific surface 
area. Yamauchi et al. (1987) assumed the calcite filter as a one-layer plug flow model, in 
which the effects of calcite dissolution on grain size and subsequently on specific surface 
area were neglected. In the following part, the validity of these two assumptions will be 
tested.  

As can be seen from Figure 36, most of the dissolution took place in first 50 cm of the 
calcite filter, and it diminishes over the bed height. This part will be refilled frequently with 
fresh calcite grains to keep the design EBCT constant. The frequency of refilling can be 
calculated using model based on calcite reduction. This will be explained in Chapter 6. It is 
recommended to reload the filter when the initial calcite level is reduced by 10% or more to 
maintain the design EBCT (Ludwig & Hetschel, 1986). 
 

 
Figure 36. Calcite dissolution simulation at constant water quality and grain size using the modified Yamauchi model 

Before refilling the filter, it is necessary to estimate the diameter reduction. To do this, it is 
assumed that the number of calcite grains in a specific volume does not change during the 
calcite dissolution. To simplify the calculations, it is also assumed that the calcite grains are 
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spherical. Using these assumptions, the number of calcite grains in the filter can be 
calculated with median diameters of 0.81 mm and 1.5 mm for the two respective ranges of 
grain sizes as follows:  
 

𝑉𝑐𝑎𝑙𝑐𝑖𝑡𝑒 𝑝𝑎𝑐𝑘𝑒𝑑 =
𝑁𝑜. 𝑐𝑎𝑙𝑐𝑖𝑡𝑒 𝑏𝑎𝑔 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑏𝑎𝑔 ∗ 𝑃𝑢𝑟𝑖𝑡𝑦 𝑜𝑓 𝑐𝑎𝑙𝑐𝑖𝑡𝑒

𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑐𝑎𝑙𝑐𝑖𝑡𝑒
  

(4.3) 

  

𝑁𝑜. 𝑐𝑎𝑙𝑐𝑖𝑡𝑒 𝑔𝑟𝑎𝑖𝑛𝑠 =
𝑉𝑐𝑎𝑙𝑐𝑖𝑡𝑒 𝑝𝑎𝑐𝑘𝑒𝑑

2
3  𝜋 (

𝑑𝑝

2 )
3   

(4.4) 

 
Subsequently, the reduction volume can be calculated by equation 4.6. This equation is 
based on a bed height drop of 10%, since the filter will be reloaded after this point. 
  

𝐻𝐴𝑓𝑡𝑒𝑟 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
𝑉𝑐𝑎𝑙𝑐𝑖𝑡𝑒 𝑝𝑎𝑐𝑘𝑒𝑑  

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟
∗ 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 ∗ 0.9 

(4.5) 

 
If the number of calcite grains stays constant, the new diameter can be calculated with 
equation (4.4 by replacing the volume of calcite packed after the reduction. The diameter of 
calcite following a 10% reduction in the bed height is equal to 0.76 mm from the initial 
diameter of 0.81 mm. Subsequently, the calcite concentration over the bed height was 
simulated using the modified Yamauchi model to see the effects of the calculated diameter 
reduction on calcite dissolution.  
 

 
Figure 37. Calcite dissolution simulation at constant water quality and grain size reduction using PhreeqPython 

As can be seen in Figure 36, the effect of a diameter reduction on the calcite dissolution rate 
is not large. This reaffirms the assumption made by Yamauchi et al. (1987) regarding the 
negligible effect of calcite dissolution on calcite grain size during the operation period.  

In order to further examine the necessity of a more complex model based on a 
multilayer concept, an existing multilayer model is used (G. Zweere, 2016). The model was 
built in PhreeqPython under the assumption that stratification of grain sizes over the bed 
height will occur after each backwash. In this model, as in the Yamauchi model (Yamauchi et 
al., 1987), the aggressive CO2 is defined as the driving force behind calcite dissolution in 
water. As a starting point, first-order reaction kinetics are used to described the dissolution 
process: 
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−
𝑑𝑐

𝑑𝑡
=  𝑘 (𝐶 − 𝐶𝑠) 

(4.6) 

 
Since the half-life of a first-order reaction is a constant, the equation can be recalculated by 
calculating the half concentration of aggressive CO2 using the rate constant (k) below:  
 

 
[CO2] =

1

2
[CO2]0  →  

[CO2]

[CO2]0
=

1

2
=  e−kt  →  t =

ln2

k
=

0.693

k
V 

(4.7) 

 

Subsequently, the half concentration of aggressive CO2 can be calculated using equation (4.8:  
 

 ½ = 𝐾𝑠𝑜𝑙𝑣𝑖𝑛𝑔 ∗ 𝑣𝑓
0.65 ∗ 𝜑 ∗ p ∗ d1.1/rho (4.8) 

 
Where: 

rho  = density of calcite grains (2,500-2,700 kg/m3) 
    p  = porosity of the bed (0.32-0.5) 
    d  = grain size 

𝜑  = granular shape factor = (0.9 to 0.665)  
    V  = filtration velocity (contact time) 

Ksolving  = correction factor 
 
Subsequently, the particle size distribution over the bed height is assumed to be in the order 
of the smallest to the largest diameter in a downward direction. Finally, the bed height is 
divided into approximately 100 layers of 0.025 m per layer in this particular case. This is 
assumed in such a way that the water quality calculated for a layer becomes the inlet water 
quality for the layer located directly below. This information is used to build the model in 
PhreeqPython. However, a further in-detail description of the model is beyond the scope of 
this research.  

To compare the results from both models, the velocity experiment of 16.5 m/h for 
grain size 0.5-1.2 mm was chosen. The calcite dissolution rate over the bed height was 
simulated with both the modified Yamauchi model as well as the multilayer model. The 
simulation data is shown in Figure 38. As can be seen, there is no considerable variation in 
the accuracy of the results simulated by the modified Yamauchi model. As it can simulate 
the calcite dissolution with an accuracy of 95% or more, there is no need for a multilayer 
model. This confirms the single layer model provided by Yamauchi, which is also the base 
model used in this study. 
 



62 

 

 
Figure 38. The simulation result from the multilayer model by G. Zweere (2017) on the left and the modified Yamauchi model 
from this study on the right where the velocity, water quality, and grain size are the same 

 

5.3.3 Model application regarding operational variable  
Finally, the model was used to predict the final calcite concentration. Figure 39 shows the 
simulation of the modified Yamauchi model with an average initial water quality, a bed 
height of 2 m, and grain sizes ranging between 0.5-1.2 mm. This simulation illustrates the 
influence of operational parameters on the calcium concentration after filtration. The 
colored bar shows the calcium concentration in mg/l. Elevating the velocity, diameter, and 
porosity causes a reduction in the calcium concentration. Furthermore, when replacing the 
diameter of 0.81 mm and porosity of 50%, it can be seen that, with this carbon dioxide 
concentration and water quality, the required calcium concentration of 25 mg/l can be 
reached as long as the velocity is higher than 10 m/h. This holds true when there is no 
bypassing and 100% of the water goes through the filter. If 53% bypassing is wanted, for 
example, the treatment water should contain a calcium concentration of 51.2 mg/l, which is 
only possible at a velocity below 10 m/h.  

 
Figure 39. Sensitivity analyses based on the Yamauchi model (Yamauchi et al., 1987) with various levels of  porosity, 
diameter, and velocity created using Python and Plot.ly (https://plot.ly/create/?fid=sara.ghanbari) 

 

file:///C:/Users/Wesley/Downloads/=sara.ghanbari)
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6 Application and optimal design   

 Introduction  
The design of a calcite filter should ensure that the product water complies with predefined 
water quality standards. Table 9 lists the current guidelines that Oasen sets for the quality of 
remineralized water. The required magnesium concentration will be reached by adding 
magnesium chloride, MgCL2*6H2O, to the filtered water. The parameters affecting the 
design and operational costs of calcite filters consist of the EBCT, the inlet CO2 
concentration, and the bypass ratio. In this chapter, various design scenarios will be 
discussed to determine the most cost-efficient design. The cost calculation will only include 
the calcite filtration step, not the cost for dosing magnesium chloride to the water.  
 
 
 
 
 
 
 

 General process scheme 
Oasen plans to build its first full-scale RO plant at drinking water treatment plant (DWTP) 
“De Hooge Boom” in Kamerik. For this purpose, the capital expenditures (CAPEX) and 
operating expenses (OPEX) of each design scenario will be estimated based on this DWTP. 
This is done with the purpose of finding the optimal process parameters that bring the costs 
down to a minimum. Figure 40 depicts the main water flow scheme based on a reference 
scenario consisting of four parallel units to guarantee the required water treatment capacity 
and redundancy of the system. Table 10 lists the water quality and water demand data of 
DWTP “De Hooge Boom” in Kamerik. 
 

 
Figure 40. General treatment process scheme for the new to build DWTP “De Hooge Boom” 

Table 9. Oasen water quality regulations 

Parameter Oasen standard 

Total Hardness 1  mmol/L 

HCO3
- 1.25 -1.45mmol/L 

Calcium 0.625  mmol/L 

Magnesium 0.375  mmol/L 
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Table 10. Design parameters for the full-scale treatment plant “De Hooge Boom” in Kamerik  

Design parameter  value Unit 

Annual production  2,628 million m3/year 

Average production 300 m3/hour 

Peak factor 1.4 - 

Maximum capacity 420 m3/hour 

Redundancy N+1 At average production 

Number of units 4  

Average capacity per unit 105 m3/hour 

Hydraulic capacity per unit 140 m3/hour 

CO2 in RO permeate (max) 1.8 mmol/l 

CO2 in RO permeate (min) 1.25 mmol/l 

CO2 in RO permeate (average) 1.5 mmol/l 

CO2 dose2 0 mmol/l 

CO2 efficiency 80% - 

Contact time 15 minutes 

 
The total cost of an installation depends on the costs of the mechanical components of an 
installation. In these calculations, the costs for mechanical components are based on 
reference values from projects that have already been implemented. Besides the 
construction expenses, CAPEX include 35% of the additional costs for the project 
management, design, construction supervision, and interest during construction. The costs 
for interest and depreciation (I&D) and for operation and maintenance (O&M) were 
determined as a ratio of the construction costs. These factors are listed in Table 11. The 
costs used for chemicals, energy, and operational parameters are shown in  
Table 12. The actual calculations can be found in the Excel workbook “20180105–
Businesscase-Oasen.xlsx” 
 
Table 11. Factors used for interest and depreciation, operation, and maintenance (Van Der Laan et al., 2016) 

Costs     

Interest & Depreciation     

Building 6,6% (40 years, 6% annuity) 

Mechanical + Piping 8,7% (20 years, 6% annuity) 

Electrical 10,3% (15 years, 6% annuity) 

Operation & Maintenance     

Building 0,5%   

Mechanical + Piping 2,0%   

Electrical 4,0%   

Additional costs 35% of construction costs 

 

                                                 
2 There is at average 1.5 mmol/L CO2 in the RO effluent, which is more than sufficient to dissolve 0.625 mmol/L 
of CaCO3. 
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Table 12. Cost for chemicals, energy, and other operational parameters (Van Der Laan et al., 2016) 

Calcite granular per ton €74 

CO2 per ton €102 

Energy per kWh €0.11 

 

 Assumptions and boundary conditions 
In this part, the technical starting points of the design are discussed.  
 
Design capacity  
The design capacity should be able to achieve the maximum capacity with 4 units in 
operation and the average capacity with 3 units in operation. This will guarantee an 
adequate redundancy in case one unit fails or needs to be shut down for maintenance. In 
this design, determining the filter dimensions is done by calculating the capacity per unit 
using equation (5.1. This equation will prevent oversizing the filters. It is possible that one 
unit fails at the maximum capacity. Should this happen, it should still be able to achieve the 
capacity by operating at a shorter contact time. 
 

 
Qper unit  = Max(

Q𝑀𝑎𝑥  ×  treatment %

(Number of units)
;
QAverage × treatment %

Number of units − 1
 ) (5.1) 

 
 
Filter dimensions 
The calcite bed height should be range between 1.5-3 m (Voutchkov, 2013). Due to practical 
difficulties regarding the transport of the filters to the production location, the diameter of 
the filters should not be above 3.5 m. This maximum diameter will avoid exorbitant 
transportation costs. Besides that, a decrease in the ratio of column diameter to length will 
minimize the possible dispersion effect (Delgado, 2006). 
 
Calcite grain size 
From the experimental results, it was concluded that the calcite grain size range of 0.5-1.2 
mm accelerates the calcite dissolution kinetics due to its larger specific surface area (A/V). 
Therefore, this range of calcite grain sizes will be used in the design.  
 
CO2 concentration in the RO permeate  
As discussed before, the carbon dioxide concentration at “De Hooge Boom” production 
facility fluctuates from day to day due to the various well configurations. However, in this 
design the average CO2 concentration of 1.5 mmol/L will be used as the CO2 concentration in 
the permeate water. This average concentration can be achieved by changing the 
combination of the wells in such a way that the amount of carbon dioxide is kept as constant 
as possible in all configurations. 

Furthermore, the modified Yamauchi model developed in this study will be used to 
determine the minimal CO2 concentration necessary to achieve the target calcium 
concentration, as well as to comment on various scenarios with different bypass ratio.  
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The CO2 efficiency is another important factor to determine the optimal CO2 
concentration. The results from the pilot study show that the CO2 efficiency decreases by 
increasing the CO2 concentration and reducing the EBCT. It should also be noted that higher 
CO2 dosages require a higher pH correction after filtration. Here, it is assumed that the 
aeration step will provide a sufficient capacity to remove the residual CO2. In order to 
determine the optimal CO2 dosage, the subsequent aeration step will therefore not be taken 
into consideration.  

 
EBCT  
From a process control point of view, there are several advantages to having effluent water 
that has closely approached the chemical equilibrium. From the experimental results, it was 
observed that after 15 minutes of EBCT, there will be no further significant change to the 
calcium concentration. This means that equilibrium is practically reached after 15 minutes. 
There are three main advantages to achieving a complete reaction: 
  

1. The contact time is not critical: a slight decrease in the height of the filter bed does 
not affect the calcium and bicarbonate concentrations of the effluent water from 
the filter. Therefore, refilling the filter bed does not require a very high accuracy or 
frequency.  

2. Short production interruptions or changes in the production flow rate do not have a 
noticeable influence on the calcium and bicarbonate concentrations in the effluent 
water from the filter.  

3. The calcium and bicarbonate concentrations can be controlled with just the CO2 
dosage instead of both the CO2 dosage and the EBCT, because the EBCT can always 
be considered to be sufficiently large. This makes process management simpler and 
more robust. 

 
Moreover, an EBCT of less than 15 minutes is not desirable, as this will cause the CO2 
efficiency to decrease, especially at higher CO2 concentrations. The design is therefore based 
on an EBCT of 17 minutes, to ensure that the minimum EBCT of 15 minutes necessary for the 
most efficient design capacity is still reached when the bed height has dropped.  
 
Velocity  
In order to maintain the minimum EBCT of 15 minutes at design capacity for a fixed bed 
height of 2.7 m, i.e., the bed height of 3.0 m minus a 10% reduction, the velocity should not 
be more than 10.8 m/h. This can be calculated as follows: 
 

 𝐸𝐵𝐶𝑇 =
𝑉𝑜𝑙𝑢𝑚𝑒

𝑄
=

𝐴𝑟𝑒𝑎×𝐻

𝐴𝑟𝑒𝑎×𝑣𝑙𝑜𝑐𝑖𝑡𝑦
=

𝐻

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
   => 𝑉𝑀𝑎𝑥 =  

2.7 
15

60

= 10.8 𝑚/ℎ (5.2) 

 
 
Dispersion effect  
To investigate the effects of non-plug flow on a practical level, results from a tracer test 
performed at the Kolff production location of Vitens are used (Zweere & Teunissen, 2015). 
To determine how the water flows through the filter, a tracer test has been carried out on a 
filter with a packed bed height of 2.85 m, a flow rate of 220 m3/h, a surface of 23.7 m2 and a 
porosity of 0.47. During the experiment, the EC was measured every 90 seconds from 8 
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sample points along the filter bed. The results from a sample point located at 2.6 m from the 
ground were then taken as a starting point and the flow was modeled with the assumption 
of plug flow. Subsequently, the calculated results from the model were compared with the 
measured data. The results from two sample points at heights of 2.1 m and 0.6 m 
respectively are shown in Figure 41 and Figure 42. The results of this experiment confirmed 
the almost ideal plug flow through the filter. As a result, the effect of dispersion will be also 
neglected in translating the pilot model to full-scale application. 
 

 
Figure 41. Predicted and actual EC values at 2.1 m (tracer test Zweere & Teunissen, 2015) 

 
Figure 42. Predicted and actual EC values at 0.6 m (tracer test Zweere & Teunissen, 2015) 

 

 Model application 
 
The calculations that were done were based on the modified Yamauchi model to determine 
the calcium concentration and subsequently to determine the percentage of bypass. 
Furthermore, a cost-effectiveness analysis was carried out. The calcium concentration at the 
design operation was used to calculate the bed refilling frequency.  
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In short, the key parameters of this design are: 

 A design capacity of 420 m3/h 

 An average capacity of 300 m3/h 

 An EBCT of 15-17 minutes 

 A maximum velocity of 10.8 m/h 

 An average water quality, shown in Table 7 
 An average carbon dioxide concentration of 1.5 mmol/l 
 A maximum filter diameter of 3.5 m 

 
Based on these design parameters, the calcium concentration was calculated using the 
modified Yamauchi model. The minimum level of carbon dioxide required to reach the 
calcium target was also determined. As illustrated in Figure 43, the calcium concentration 
almost reached the equilibrium at an EBCT of 15 minutes. A minimum CO2 concentration of 
0.65 mmol/l is required to reach the calcium target. Since there is always a higher 

concentration of CO2, namely 1.5 mmol/l, present in the permeate water, a treatment with 
100% calcite filtration would result in a calcium concentration of 1.3 mmol/l. In the following 
cost-calculation scenarios, the design is therefore based on a constant bypass flow.   
 

 
Figure 43. The result from the Yamauchi model at the minimum required concentration and average concentration of CO2  

 
The treatment percentage was calculated as follows: 
 

 x. 1.28+ (1-x) 0.04 = 0.625 (5.3) 

Where:  
0.04 mmol/l = the initial calcium concentration of water   
1.28 = the predicted calcium concentration, using the model, when the inlet CO2 
concentration is 1.5 mmol/l  
x = the treatment percentage of 47% 

 
This was used as the treatment percentage in scenarios 1-4, where no extra CO2 was dosed 
in the system.  
 
Refilling frequency 
To calculate the refilling frequency, the following steps should be taken. First, the produced 
calcium will be calculated using the model, which is 1.28 mmol/l in our case. Using this 
value, the calcite consumption can be calculated using equation (5.4: 
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CaCO3 consumption with 100% purity (
mg

l
) = 1.28mmolCa  × 1

mmolCaCO3

1mmolCa

×
100 mgCaCO3

1mmolCaCO3 
 

 

(5.4) 

 
This shows calcite consumption in cases where the calcite is 100% pure. In our case, we have 
a purity of 99.1%: 
  

CaCO3 consumption with 99.1% purity(mg/l) = 
CaCO3 consumption with 100% purity (

mg

l
)

purity percentage 
 

(5.5) 

 
Using the average capacity, the calcite consumption per hour can be calculated as follows:  
 

 
CaCO3 consumption (

kg

h
) =  𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 5.5 × 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 % × 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

(5.6) 

 
To calculate the reduction bed per filter, equation (5.7 can be used:  
 

 
Bed reduction (

m

h
) =

CaCO3 consumption (
kg

h
)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟𝑠(4)×𝑠𝑝𝑒𝑐𝑖𝑓𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑎𝑙𝑐𝑖𝑡𝑒 (1350
𝑘𝑔

𝑚3)×𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟 
  

 

(5.7) 

 
Finally, assuming an allowed reduction of 10%, the refiling frequency can be calculated: 
  
 

Rifiling frequency(day)  =
Allowed bed reduction (10% of initial bed) 𝑚

𝐵𝑒𝑑 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (
𝑚

ℎ
)×24ℎ

  

 

(5.8) 

 

 Design scenarios  
To find out the most cost-effective design at the key design parameters, the following 
scenarios are compared: 
 
Table 13. Various operational scenarios  

Scenarios Parameters Hypotheses 

Scenario 0 
(reference) 

4 parallel units with a treatment percentage of 
47%  
H = 3 m, D = 2.4 m, CO2 = 1.5 mmol/l  

High redundancy   

Scenario 1 3 parallel units with a treatment percentage of 
47%  
H = 3 m, D = 2.9 m, CO2 =  1.5 mmol/l 

Cheaper/less redundancy   

Scenario 2 4 parallel units with a treatment percentage of 
47%  
H = 1.7 m, D = 3.2 m, CO2 = 1.5 mmol/l 

Lower refilling frequency due to the larger 
surface area of the filters. Higher 
production capacity, the maximum 
capacity can be reached with 3 filters   

Scenario 3 4 parallel units with a treatment percentage of 
47%  

Smaller filters and lower investment cost 
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H = 3.5 m, D = 2.3 m, CO2 = 1.5 mmol/l 

Scenario 4 4 parallel units with a treatment percentage of 
47%  
H = 3 m, D = 2.4m, CO2 = 1.5 mmol/l – with CO2 
standby system 

Lower treatment percentage if necessary 
=> High redundancy where the maximum 
capacity is obtained using 3 filters  

 

Table 14, Figure 44, and Figure 45 present the outcomes of the cost comparisons of the 
various cost scenarios. As can be seen, the scenario with fewer filters results in a lower 
investment cost. However, this option may be less preferable due to its low redundancy. In 
other words, in case that one filter fails or is shut down for maintenance, the design capacity 
has to be reached with just two filters. Scenario 4 illustrates the cost of the process with a 
CO2 dosing installation that serves to increase the redundancy of system. This will increase 
the investment cost by 12%, yet it may only be useful if one filter fails at the maximum 
capacity, or if multiple filters fail simultaneously.  

In a previous study done by Oasen on remineralization techniques (Van Der Laan et 
al., 2016), the cost of treatment per m3 was found to be €0.076 for calcite filtration, which is 
higher than all the scenarios discussed here. The difference is found in the assumption of a 
treatment percentage of 100% with a calcium concentration of 1 mmol/l compared to the 
0.625 mmol/l of this study. Moreover, there is less than 1% difference between the 
reference scenario and scenario 3, which has a longer bed height and a smaller filter, 
showing that the effect that filter dimensions have on the final cost is minor. However, when 
one filter is eliminated, the general cost of process is reduced by 16%. 
 
Table 14. Comparison of various calcite filter scenarios 

Tested scenarios 
Reference 
scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Van der Laan 
(2016) 

Treatment 
percentage 47% 47% 47% 47% 47% 100% 

Investment €1,351,000 €1,112,000  €1,446,000  €1,332,000 €1,522,000 €1,693,000 

       
Annual costs       
Interest and 
Depreciation €113,000 €92,000 €119,000 €112,000 €128,000 €139,000 

Operation and 
Maintenance €18,000 €14,000 €18,000 €18,000 €20,000 €21,000 

Energy €8,000 €8,000 €8,000 €8,000 €8,000 €17,000 

Chemicals €12,000 €12,000 €12,000 €12,000 €14,000 €23,000 

       
Total €151,000 €127,000 €157,000 €149,000 €169,000 €200,000 

       
Costs per m3 €0.057 €0.048 €0.060 €0.057 €0.064 €0.076 

Deviation from 
reference scenario 0% -16% 4% -1% 12% 32% 
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Figure 44. Cost comparison in € per year for different scenarios  

 

 
 Figure 45. Cost difference in percentage related to the reference scenario where gray error bars indicate the general 

uncertainty in the cost model of +/- 20% 

 
It should be noted that all of the above scenarios ensure the sufficient calcium concentration 
of 0.625 mmol/l. Since Ca:HCO3 is always 1:2 based on Chapter 3.3.4, the bicarbonate 
concentration of 1.25 mmol/l will also be achieved. 

The calcium concentration at the average capacity was used to calculate the bed 
refilling frequency using the provided calcium concentration. For this purpose, it is assumed 
that the beds are refilled when the bed height decreases by 10%. This is because a reduction 
of more than 10% will result in an EBCT of less than 15 minutes, which is not desirable as it 
eliminates the equilibrium and reduces the CO2 efficiency. The results from these 
calculations show that each calcite filter should be refilled every 17 days, which means that 
one filter should be refilled and backwashed every week in order to prevent the refilling of 
multiple filters at the same time. In total, 160 tons of calcite are needed per year, which can 
partially be stored in two silos at the treatment plant.  
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As a conclusion of these cost analyses, scenario 3 is the recommended scenario. It is 
the optimal scenario with regards to its high redundancy and low costs compared to the 
scenarios with 4 parallel units. However, as shown above, the effect of a taller bed height on 
the investment costs is not big, as shown above. Therefore, the reference scenario can also 
be considered a good option. These two options will give the operator flexibility in choosing 
to either adjust the bed height or the diameter of the filters. The major components of this 
scenario are listed in Table 15.   

 
Table 15. Major components of calcite filtration 

Design parameter Value unit 

number of contactors 4 - 

calcite bed volume 14 m3 

diameter 2.3-2.4 m 

bed height 3-3.5 m 

calcite silos 2 - 

calcite use 160 ton/year 

number of silos 2 - 

volume per silo 30 m3 

backwash pumps 2 - 

capacity each 48.3 m3/h  

 

6.5.1 CO2 dosing for DWTP with higher capacity 
In general, additional CO2 dosing is beneficial when the treatment capacity is high and a high 
number of filters is needed. By increasing the inlet CO2, the calcium dissolution also 
increases, which results in a higher bypass ratio and consequently in a lower number of 
filters. However, the treatment capacity of DWTP “De Hooge Boom” in Kamerik is relatively 
low, and it is not possible to reduce the number of filters to less than 4, as this would have a 
negative effect on the redundancy of the system. To investigate the effects of extra CO2 
dosing, therefore, the high design capacity of 5000 m3/h was chosen. The results are 
compared below at situations of 53% bypass vs. 75% bypass. Table 16 and Figure 46 show 
the outcome of a cost comparison between the two scenarios. As can be seen, dosing 1.7 
mmol/l extra CO2 will decrease the investment cost of the process by half. This is because 
the required number of filters will decrease by increasing the CO2 concentration, which will 
result in an increase of the bypass ratio of the filter. Another interesting find from this 
comparison is the low cost of treatment per m3 in comparison with our case study. This 
shows that a higher treatment capacity reduces the treatment price per m3 of treated water.  
 
Table 16. Comparison of the system with and without the CO2 dosing system at a treatment capacity of 5000 m3/h  

Tested scenario's Reference scenario Extra CO2 dosage 

Treatment percentage 53% bypass 75% bypass 

Investment €10,133,096 €5,810,021    

Annual costs 
  

Interest and Depreciation €827,000 €476,000 

Operation and Maintenance €121,000 €71,000 

Energy €136,000 €74,000 



73 

 

Chemicals €277,000 €391,000  
                   

Total €1,361,000 €1,012,000  
            

Costs per m3 €0.031 €0.023 

Deviation from reference 0% -26% 

 
 

 
Figure 46. Cost comparison in € per year determined for both with and without additional CO2 dosage at a high design 

capacity of 5000 m3/h  

 

7 Conclusions and recommendations  

 Conclusions  
 

7.1.1 Pilot study and modeling 
As is known from available scientific literature, the calcite dissolution rate depends on the 
chemical driving force and the specific surface area of the calcite grains. Among several 
studies investigating the calcite dissolution kinetics, the empirical model provided by 
Yamauchi et al. (1987) was found to offer the most convenient expression describing the 
calcite dissolution based on aggressive CO2 as the driving force. Although the reliability of 
this model was confirmed by several authors (Hasson & Bendrihem, 2006; Shemer et al., 
2013; Hasson et al., 2013; Shemer et al., 2015), none of these previous studies investigated 
the calcite dissolution rate at a low temperature (<22 oC) and with calcite grain sizes smaller 
than 2 mm. Between the period of May to August 2017, various experiments were therefore 
conducted to test the effects of various operational parameters on the calcite dissolution 
rate at a water temperature of 12 oC. 

The experimental data gathered from this study confirmed the reliability of the 
Yamauchi et al. (1987) model to express the kinetics of calcite dissolution at a low 
temperature of 12 oC. However, it was found that the effect of the flow rate on the diffusion 
boundary layer encompassing the calcite grains had not been taken into account in the study 
carried out by Yamauchi et al. (1987). Therefore, the effect of velocity on the calcite 
dissolution coefficient was investigated at five different velocities: 5, 10, 15, 20, and 30 m/h. 
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At this point, a function was developed to describe the correlation between the flow rate 
and the dissolution rate coefficient, which demonstrates the influence of the filtrate velocity 
on the diffusion layer and subsequently on the calcite kinetics coefficient. Finally, by 
incorporating this correlation into the main Yamauchi expression, the modified Yamauchi 
model was defined.  

The experimental data from this study shows that CO2 efficiency is significantly 
reduced, to below 60%, when the CO2 concentration becomes higher than 3 mmol/l. This is 
because the amount of aggressive CO2 is reduced by an increase of the concentration of 
bicarbonate in the water. Moreover, a high CO2 concentration requires a pH adjustment 
afterwards, which may increase the consumption of energy or chemicals. 

It is shown that the calcite grains ranging between 0.5-1.2 mm in size required a 
shorter EBCT than the grain size ranging between 1-2 mm in order to reach equilibrium. In 
general, it was found that the necessary EBCT to reach equilibrium is 15 minutes for grains 
sized between 0.5-1.2 mm, and 25 minutes for grains sized between 1-2 mm. This can be 
explained by the fact that the smaller grain size has a larger specific surface area and 
consequently a faster dissolution reaction. Furthermore, it was found that a reduction in the 
diameter of the calcite due to the effects of calcite dissolution only resulted in a small effect 
on the dissolution kinetics over the course of three weeks. Its effects within a filter can thus 
be neglected. 

Comparing the modified Yamauchi model based on a single layer model with a 
multilayer model that simulates a stratified bed, developed by Zweere (2016), showed no 
considerable variations in the accuracy of the results. Both models can be used to simulate 
the calcite dissolution with an accuracy of 95% or more. Therefore, it is concluded that there 
is no need for a complex multilayer model.  

It is important to have reliable sensors to continuously measure the CO2 
concentration. The results from sensor validations verified the reliability of the CO2 sensor, 
while the pH sensor was found to be inaccurate in measuring the pH of the permeate water 
due to its low ion content.  

Lastly, the pilot study found a linear relationship between EC and the concentration 
of calcium, as well as between EC and the concentration of bicarbonate. Therefore, EC 
sensors can be used to continuously measure the Ca/HCO3 concentration. This relation has 
two main advantages over any other model: firstly, the EC is easy to measure and has a high 
accuracy, and secondly, the EC relation requires no extra data to predict the calcium and 
bicarbonate, making it an easy and straightforward method.   
 

7.1.2 Practical application 
The model was used to design and optimize the calcite filtration stage for a future treatment 
plant of Oasen located in Kamerik. The “De Hooge Boom” treatment plant has an average 
capacity of 300 m3/h and is planned to operate at full-scale RO. In this study, the focus was 
restricted to the step of calcite filtration, which aims to add the target concentration 
amounts of calcium and bicarbonate at 0.625 mmol/l and 1.25 mmol/l respectively.  
The required time to reach the equilibrium for grain size 0.5-1.2 mm was found to be 15 
minutes, which should also be maintained after a bed reduction at the design capacity. By 
assuming a bed reduction of 10%, an EBCT of 17 minutes was chosen as the design EBCT. 
Another key feature of this design is the available CO2 concentration in permeate water. The 
average CO2 concentration of 1.5 mmol/l present at "De Hooge Boom” was used in the 
design calculations.   
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To find the optimal calcite design, various operating scenarios were analyzed. The 
only common feature that all of them shared was a bypass percentage of 53%, which was 
based on the simulation from the modified Yamauchi model. The calcium concentration in 
the product water was determined based on an average CO2 concentration in the permeate 
water, using the model at the design parameters. From the results, it was found that the 
initial CO2 concentration of 1.5 mmol/l provides 1.28 mmol/l of calcium. Therefore, the 
design had to be based on partial design flow. This resulted in a bypass ratio of 53% to 
provide the target calcium concentration. Subsequently, several scenarios were tested to 
find the most cost-efficient option. It was concluded that the design with three parallel units 
was the cheapest alternative. However, to increase the redundancy of the process for the 
given design parameters, the scenario with four parallel filters with a diameter of 2.3-2.4 m 
and an average bed height of 3-3.5 m was found to be optimal. The total treatment cost of 
this design is €0.057/m3 and the investment cost was found to be €1,351,000.  

Furthermore, the refilling frequency was calculated based on calcite consumption as 
a function of calcium dissolution. It was found that based on a reduction of the filter bed of 
10% and an average capacity of 300 m3/h, the filters should be refilled after approximately 
17 days to keep the EBCT above the 15 minutes at all times. In order to prevent the refilling 
of multiple filters at the same time, one of the filters should be refilled and backwashed 
every week.   

 Recommendations  
This research focused on parameters that have an effect on the calcite dissolution rate. 
Based on the results found in this report, the following aspects are recommended: 

 The turbidity of the effluent water could limit the maximum velocity, as a high 
velocity may raise the turbidity above the threshold level. Therefore, it is 
recommended to test the water turbidity based on various velocities;  

 The experiments are sensitive to backwash regimes since the high rate of backwash 
may result in breaking the particles as a consequence of increasing turbidity, which 
negatively affects the water quality. Therefore, further investigation should be done 
to find the optimal backwash flow rate and duration;  

 To keep the CO2 concentration constant, it is recommended that the combination of 
the wells is changed in such a way that the variation of water quality between 
configurations is minimized. Otherwise, it is recommended that a sensor is developed 
using a model to calculate the calcium concentration based on the initial CO2 
concentrations and subsequently to determine the required bypass over time; 

 In order to determine the effect of runtime, it is recommended to test the process 
for a period of at least six months; 

 From previous studies, it was concluded that temperature has a strong effect on the 
calcite dissolution. Therefore, it is recommended that the temperature dependency 
of the kinetic coefficient is further investigated throughout the pilot study in case the 
model is used in other locations with different water temperatures.  

 The calcite purity is another factor that may affect the kinetic coefficient. Based on 
literature, the calcite used for remineralization should have a purity higher than 99%; 
Therefore, it is crucial to study the effect of calcite impurities on the calcite 
dissolution rate if the calcite source is changed to calcite source of less than 99% 
purity; 
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 The next step for Oasen is to make an automatic sensor that uses the data from the 
CO2 sensor, the bed height meter, and the flow rate, and calculates the calcium and 
bicarbonate concentrations using the model to provide continuous control on the 
water quality. The EC-Calcium and EC-Bicarbonate relation can be used as a reliable, 
cheaper option to calculate the calcium and bicarbonate concentrations 
continuously, and to develop a sensor to regulate the bypass ratio based on the EC 
value.  
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Appendices   

Appendix Ⅰ: CO2 Calculations methods 
 
In order to find the most reliable way to measure the carbon dioxide concentration in the 
water. during 17 till 20 July 2017. eight samples from permeate water were taken and the 
carbon dioxide concentration of each sample was measured or calculated in several ways. 
 
The calculation steps of CO2 concentration based on p and m alkalinity:  
 
Assuming the maximum CO2 concentration of 3 mmol / l. and having a sample bottle with 
capacity of 550 ml. the required sodium hydroxide solution of 25% with a specific weight of 
1300 mg/ml can be calculated as follow: 
 
Add: 3 mmol / l * 0.55 l = 1.65 mmol Required NaOH 

1.65 * 40 (NaOH molarity) = 66 mg NaOH    
NaOH25% (mg) = 66*44= 264 mgNaOH25%  
NaOH25% (ml) = 264(mg) /1300 mg/ml = 0.2ml (important: volume base is negligible 

relative to sample size) 
 
Performance: 
Take the water sample in a bottle with sodium hydroxide solution. As a result. all the CO2 is 
converted into CO3

2-.Then by measuring p-alkalinity and m-alkalinity. the original CO2 
concentration can be calculated based on Table 17 . However. because the permeate water 
contains a small amount of HCO3

-. which will also convert to CO3
2- . bicarbonate was 

measured in a sample (without NaOH) to correct the result from CO2 calculation based on p- 
and m-alkalinity.  
 
 

Table 17. Calculation of carbonate, bicarbonate, and hydroxyl based on p and m alkalinity 

P- and M-
Alkalinity 

Hydroxyl 
(OH) 

Carbonate 
(CO3) 

Bicarbonate 
(HCO3 ) 

P = O 0 0 M 

P < ½ M 0 2P M – 2P 

P = ½ M 0 M 0 

P > ½ M 2P – M 2(M – P) 0 

P = M M 0 0 

*Based on (“Dow Answer Center.” 2017) 
 
CO2 concentration based on pH and alkalinity: 
 
The CO2 concentration could also be calculated using pH. alkalinity and electrical 
conductivity. For this purpose samples were analyzed for their alkalinity and pH and using 
the average water composition provided in Table 7. the CO2 concentration was calculated 
using PhreeqPython. However. it should be noted that an inaccurate measurement of pH 
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results in an error in CO2 calculation. These calculations were also repeated using pH value 
measured at the pilot plant by pH meter at corresponding time of each sample.  

Appendix Ⅱ: EC vs. TDS relation 
 
A relationship between electrical conductivity (EC) and total dissolved solids (TDS) was 
investigated by several authors (Dahaan et al.. 2016; Hubert & Wolkersdorfer. 2015; Iyasele 
& Idiata. 2015). who showed a positive linear relationship between TDS and EC whereby 
increasing TDS. raises the EC value. TDS can be estimated using the equation below: 
 

 TDS (mg/l) = k* EC (µs/cm)  A. 1 

 
Where k is a conversion factor with a range between 0.54-1.1 at 25 oC.  
The conversion factor was found by plotting EC against TDS that was calculated using the 
sum of ions concentration in the RO permeate. For this purpose. the data from 168 samples 
in a large range of EC from 19 to 761 µs/cm were taken. and the calcium and bicarbonate 
concentrations corresponding to each sample were measured in the laboratory. The 
concentration of other ions was measured over 4 different days. The laboratory analyses 
showed only a small concentration of sodium. chloride and bicarbonate in the water 
contributing to TDS.  
 

 
Figure 47. Measured data of EC against TDS fitted in Python. The linear equation is equal to: TDS = 0.8801 EC + 5.227 

 
Figure 47 shows the k factor to be 0.88 which supports data provided by Hubert & 
Wolkersdorfer (2015) for an EC-range of 70-16 000 μS/cm and TDS of 50-14 000 mg/ℓ.  
 
By subtracting the initial sodium. chloride and bicarbonate concentration in from total TDS 
in the water. the sum of calcium and bicarbonate concentration added during 
remineralization is calculated.  However. it should be noted. that various ions had a different 
mobility affecting the EC (Iyasele & Idiata. 2015). This means that calcium and bicarbonate 
concentration contributed to the EC and. subsequently. to TDS concentration to a different 
extent. Fitting data using Excel result in the following equations for calcium and bicarbonate.   
 
Ca concentration (mg/l) = 0.245 * (TDS- Na - chloride – initial bicarbonate) (mg/l)  
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HCO3 concentration (mg/l) = 0.775 * (TDS- Na - chloride – initial bicarbonate) (mg/l) 
 
It should be noted that 1:2 ratio of calcium and bicarbonate concentration could also be 
used to predict the final bicarbonate concentration. however. this concentration should be 
added by initial bicarbonate concentration which in average is an approximately 0.14 
mmol/l. 
 
However. as increasing TDS and consequently EC in effluent water from the filter is only the 
result of the calcite dissolution. it can be concluded that there must be a direct relationship 
between EC and calcium and bicarbonate dissolved in the water. Therefore. the 
relationships between these three parameters are further investigated using empirical data.  
 

EC handheld vs. TDS-PhreeqPython code 
 
January 9. 2018 
In [1]: from openpyxl import load_workbook 
import numpy as np 
import matplotlib.pyplot as plt 
import pandas as pd 
from sklearn.linear_model import LinearRegression 
from sklearn import datasets. Linear_model 
%pylab inline 
wb = load_workbook(‘EC-TDS.xlsx’. data_only=True. Read_only=True) 
ws = wb[‘EC’] 
Populating the interactive namespace from numpy and matplotlib 
In [2]: EC = [] 
for column in ws[‘G2:G169’]: 
for cell in column: 
EC.append(cell.value) 
TDS = [] 
for column in ws[‘k2:k169’]: 
for cell in column: 
TDS.append(cell.value) 
plt.scatter(EC.TDS) 
plt.xlim(0.800) 
plt.ylim(0..800) 
plt.xlabel(‘EC(micro s/cm)’) 
plt.ylabel(‘TDS(mg/l)’) 
plt.title(‘EC vs TDS’)  
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Appendix Ⅲ: EC and Ph relation  
The electric conductivity is strongly pH dependent when the pH level is lower than six this is 
because of a high mobility of the hydrogen ion. Figure 48 shows the EC values at various pH 
levels simulated by PhreeqPython which depicts when the pH is low. It will be affected the 
electric conductivity measurement. However. When pH goes above the 6-6.5. it has no 
effect on electric conductivity. As the pH of effluent water from calcite filter is always higher 
than 6.5. therefore. The effect of pH on electric conductivity can be neglected. However. 
This relation is not applicable when samples has low calcium concentration and 
subsequently low pH.  
 

 

 
Figure 48. pH vs. EC relation where the water composition is kept constant and pH levels vary between 4 and 8  

   

pH-EC sensitivity-PhreeqPython-code 
January 9. 2018 
In [1]: import phreeqpython 
import numpy as np 
%pylab inline 
pp = phreeqpython.PhreeqPython() 
def getresults(ph=5.35): 
sol = pp.add_solution_raw({ 
'pH': ph. 
'temp': 13. 
'units': 'mg/l'. 
'Ca': 0. 
'Alkalinity': '7.5 as HCO3'. 
'Cl': 1.4. 
'Na': 3.35 
}) 
# saturate to SI 0 
sol.saturate('Calcite'.0) 
EC = sol.sc 
# cleanup 
sol.forget() 
return (EC) 
ph_range = np.linspace(4.8.100) 
results = [] 
for ph in ph_range: 
results.append(getresults(ph)) 
#deviation = ph_range/4.5 
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plt.plot(ph_range.results) 
plt.xlabel('pH') 
plt.ylabel('EC(uS/cm)')  
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Appendix Ⅳ: Phreeqc simulation of EC and Ca/HCO3 relationship 
 
The reliability of EC relation theoretically is investigated by simulating the reaction in the 
Phreeqc. The chemical reaction is simulated by applying the initial water quality before the 
calcite filter in the Phreeqc and forced the reaction to dissolve calcite till above saturation 
step by step. It should be noted that the temperature of water should be set at reference 
temperature of 25 oC which measurement data converted to reference temperature of 25 
oC. Figure 49 shows the result from this simulation. Figure 50 shows the data from Phreeqc 
simulation and data derived from pilot measurement in one figure to compare both results. 
As it can be seen data match exactly with each other. This confirmed the reliability of EC 
sensor to predict the calcium and bicarbonate concentration independent of the operating 
conditions such as flow rate and grain size.  
 
 

 
 

Figure 49. Calcium/alkalinity vs. various EC plotted using Phreeqc (Tony Appelo’s Phreeqc version with notepad++ done by 
Boris van Breukelen)  

 
 
 

 
Figure 50.  The relation between the calcium/bicarbonate concentration and EC from measured data as well  as from 

theoretical data from the Phreeqc simulation  
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Appendix Ⅴ:  Pilot Components  
 

Appendix Ⅴ-A : Measurement sensors information  
 
Table 18. pH sensor characteristics 

Company Best Instrument 
Analytical Solution  

Best Instrument 
Analytical Solution  

Online analyzer Swan Swan 

Type pH/Redox pH/Redox 

Product. No A.21.221.050 A.21.221.010 

Model AMI-2 AMI-2 

Range (1-13) (1-13) 

Resolution 0.01pH 0.01pH 

Flow range 4-15l/h 5-10l/h 

Flow pressure inlet 1bar Up to 2 bar 

Temperature range (-30-130 °C) (-30-130 °C) 

Temperature 
resolution 

0.01 °C 0.01 °C 

 
Table 19. Electric conductivity characteristics 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 20. Turbidity sensor characteristics 

Company Best Instrument Analytical 
Solution 

Online analyzer Swan 

Type Turbitrack 

Product. No A.25.4111.200 

Model AMI-2 

Range 0.000-100 NTU 

Resolution (+/- 1% Reading) 

Company Best Instrument Analytical 
Solution 

Online analyzer Swan 

Type Powercon Specific (EC) 

Product. No A.23.441.100 

Model AMI-2 

Range (0.055-1000 micro 𝜇/cm) 

Resolution -/+ 1% reading value 

Flow range 5-20l/h 

Flow pressure inlet 1bar 

Temperature range (-30-130 °C ) 

Temperature resolution 0.01 °C 
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Flow range 5-20l/h 

 
Table 21. CO2 meter characteristics 

Company DKK-DOA 

Type Turbitrack 

Product. No Handheld carbon dioxide meter 

Model CGP-31 

Range Liquid: 1.49-1490 mg/l / Gas: 0.1-
100% 

Resolution (+/- 5% FS) 

 
 

Appendix Ⅴ-B : Calcite characteristics  

 
Table 22. Calcite product characteristics 

Calcite product characteristics 

Size 0.5-1.2mm 

Purity Approximately 99.1% 

Density 2.7 g/cm3 

Bulk density 1500 kg/m3 

Porosity 0.50-0.56 

Other components 0.34% SiO2+AlO2 
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Appendix Ⅴ-C : Pilot Drawing  
 

 
Figure 51. Filter draw above and A-A section of bottom 

 
 

 
Figure 52. Filter draw with sampling points position 
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Appendix Ⅵ: The CO2 experiment simulations  
 

Appendix Ⅶ: PhreeqPython codes 

Appendix Ⅶ –A PhreeqPython code-velocity test- grain size 0.5-1.2 mm   

 
Modified Yamauchi-model-0.5-1.2mm 
January 9. 2018 
In [1]: import numpy as np 
from math import sqrt 
import matplotlib.pyplot as plt 
%pylab inline 
import phreeqpython 
pp = phreeqpython.PhreeqPython() 
from openpyxl import load_workbook 
In [2]: wb = load_workbook('Yamauchi-data.xlsx'. data_only=True. read_only=True) 
ws1 = wb['water-quality'] 
ws2 = wb['operation'] 
ws3 = wb['measurement-data'] 
In [3]: #10m/h-filter-1 
sol = pp.add_solution_raw({ 
'temp': ws1['D2'].value. 
'units': 'mg/l'. 
'pH': ws1['D3'].value. 
'Ca': ws1['D4'].value. 
'Alkalinity': '8.78 as HCO3'. 
'Cl': ws1['D6'].value. 
'Na': ws1['D7'].value. 
'Fe': ws1['D8'].value. 
'Mg': ws1['D9'].value. 
'K' : ws1['D10'].value. 
'Al': ws1['D11'].value. 
'S(6)': ws1['D12'].value 
}) 
CO2_0=sol.total('CO2')*1e3 
sol.saturate('Calcite'.0) 
Cae = sol.total_element('Ca')*1e3 
CO2e = sol.total('CO2')*1e3 
HCO3 = sol.total('HCO3')*1e3 
pH = sol.pH 
soln = pp.add_solution_raw({ 
'temp': ws1['D2'].value. 
'units': 'mg/l'. 
'pH': ws1['D3'].value. 
'Ca': ws1['D4'].value. 
'Alkalinity': '8.78 as HCO3'. 
'Cl': ws1['D6'].value. 
'Na': ws1['D7'].value. 
'Fe': ws1['D8'].value. 
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'Mg': ws1['D9'].value. 
'K' : ws1['D10'].value. 
'Al': ws1['D11'].value. 
'S(6)': ws1['D12'].value 
}) 
CO2_0n =soln.total('CO2')*1e3 
soln.saturate('Calcite'.0) 
Caen = soln.total_element('Ca')*1e3 
CO2en = soln.total('CO2')*1e3 
#15m/h-filter-1 
sol2 = pp.add_solution_raw({ 
'temp': ws1['I2'].value. 
'units': 'mg/l'. 
'pH': ws1['I3'].value. 
'Ca': ws1['I4'].value. 
'Alkalinity': '8.7 as HCO3'. 
'Cl': ws1['I6'].value. 
'Na': ws1['I7'].value. 
'Fe': ws1['I8'].value. 
'Mg': ws1['I9'].value. 
'K' : ws1['I10'].value. 
'Al': ws1['I11'].value. 
'S(6)': ws1['I12'].value 
}) 
CO2_2_0=sol2.total('CO2')*1e3 
sol2.saturate('Calcite'.0) 
2 
Cae_2 = sol2.total_element('Ca')*1e3 
CO2e_2 = sol2.total('CO2')*1e3 
#16.5m/h-filter-1 
sol3 = pp.add_solution_raw({ 
'temp':ws1['N2'].value. 
'units': 'mg/l'. 
'pH': ws1['N3'].value. 
'Ca': ws1['N4'].value. 
'Alkalinity': '8.5 as HCO3'. 
'Cl': ws1['N6'].value. 
'Na': ws1['N7'].value. 
'Fe': ws1['N8'].value. 
'Mg': ws1['N9'].value. 
'K' : ws1['N10'].value. 
'Al': ws1['N11'].value. 
'S(6)': ws1['N12'].value 
}) 
CO2_3_0=sol3.total('CO2')*1e3 
sol3.saturate('Calcite'.0) 
Cae_3 = sol3.total_element('Ca')*1e3 
CO2e_3 =sol3.total('CO2')*1e3 
temp= ws1['I2'].value 
 
In [4]: Ca_e = sol.total_element('Ca')*1e3 #saturation ca concentration in mmol/l 
Caen = soln.total_element('Ca')*1e3 
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Ca_0 = ws1['D4'].value #initial ca concentration in mmol/l 
e = ws2['D3'].value #prosity 
z= np.arange(0.2100.125) #height in mm 
v= ws2['D5'].value #velocity in mm/s 
D= ws2['D6'].value 
D_reduction= 0.7 
EBCT = z/v # EBCT in s 
k = 0.00296* math.sqrt(v) #reaction constant in mm/s using velocity model:  
Ca = Ca_e - (exp((-k/D)*(1-e)*EBCT)*(Ca_e - Ca_0)) #end ca concentration plt.subplot(2.3.1) 
plt.plot(EBCT. Ca. label= 'velocity model with pH correction') 
plt.xlabel('EBCT(s)'.fontsize=15) 
plt.ylabel('calcium concentration(mmol/l)'.fontsize=15) 
plt.xlim(0.1000) 
plt.ylim(0.1.6) 
EBCT = [] 
for column in ws3['B3:B13']: 
for cell in column: 
EBCT.append(cell.value) 
ca = [] 
for column in ws3['D3:D13']: 
for cell in column: 
ca.append(cell.value) 
plt.subplot(2.3.1) 
plt.scatter(EBCT.ca.marker='s'.label='Measured data') 
 
err = 0.05*ones(size(ca)) 
e = errorbar(EBCT.ca.err.ecolor='g'.capsize=6) 
plt.title('10 m/h'.fontsize=18) 
plt.legend(loc='best') 
 
 
 
########################################################################## 
 
 
 
Ca_e1 = sol2.total_element('Ca')*1e3 #saturation ca concentration in mmol/l 
Ca_01 = ws1['I4'].value #initial ca concentration in mmol/l 
e1 = ws2['I3'].value #prosity 
z1= np.arange(0.2200.125) #height in mm 
v1= ws2['I5'].value #velocity in mm/s 
D1= ws2['I6'].value 
D1_reduction=0.7 
EBCT1 = z1/v1 # EBCT in s 
k1 = 0.00296* math.sqrt(v1) #reaction constant in mm/s using velocity model:  
Ca1 = Ca_e1 - (exp((-k1/D1)*(1-e1)*EBCT1)*(Ca_e1 - Ca_01)) #end ca concentration  
Ca1_reduction = Ca_e1 - (exp((-k1/D1_reduction)*(1-e1)*EBCT1)*(Ca_e1 - Ca_01)) plt.subplot(2.3.2) 
plt.plot(EBCT1. Ca1. label= 'velocity model') 
plt.xlabel('EBCT(s)'.fontsize=15) 
plt.ylabel('calcium concentration(mmol/l)'.fontsize=15) 
plt.xlim(0.600) 
plt.ylim(0.1.6) 
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EBCT1 = [] 
for column in ws3['H3:H12']: 
for cell in column: 
EBCT1.append(cell.value) 
ca1 = [] 
for column in ws3['J3:J12']: 
for cell in column: 
ca1.append(cell.value) 
plt.subplot(2.3.2) 
plt.scatter(EBCT1.ca1.marker='s'.label='Measured data') 
err = 0.05*ones(size(ca1)) 
e = errorbar(EBCT1.ca1.err.ecolor='g'.capsize=6) 
plt.title('15 m/h'.fontsize=18) 
plt.legend(loc='best') 
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Appendix Ⅶ –B PhreeqPython code-velocity test- grain size 0.5-1.2 mm   

 
Modified Yamauchi-model-16.5 m/h 
January 9. 2018 
 
Ca_e2 = sol3.total_element('Ca')*1e3 #saturation ca concentration in mmol/l 
Ca_02 = ws1['N4'].value #initial ca concentration in mmol/l 
e2 = ws2['N3'].value #prosity 
z2= np.arange(0.2200.125) #height in mm 
v2= ws2['N5'].value #velocity in mm/s 
D2= ws2['N6'].value 
D2_reduction= 0.7 
EBCT2 = z2/v2 # EBCT in s 
k2 = 0.00296* math.sqrt(v2) #reaction constant in mm/s using velocity model:  
Ca2 = Ca_e2 - (exp((-k2/D2)*(1-e2)*EBCT2)*(Ca_e2 - Ca_02)) #end ca concentration Ca2_reduction = 
Ca_e2 - (exp((-k2/D2_reduction)*(1-e2)*EBCT2)*(Ca_e2 - Ca_02)) plt.subplot(2.3.3) 
plt.plot(EBCT2. Ca2. label= 'velocity model') 
plt.xlabel('EBCT(s)'.fontsize=15) 
plt.ylabel('calcium concentration(mmol/l)'.fontsize=15) 
plt.xlim(0.600) 
plt.ylim(0.1.6) 
EBCT2 = [] 
for column in ws3['M3:M12']: 
for cell in column: 
EBCT2.append(cell.value) 
ca2 = [] 
for column in ws3['O3:O12']: 
for cell in column: 
ca2.append(cell.value) 
plt.subplot(2.3.3) 
plt.scatter(EBCT2.ca2.marker='s'. label= 'Measured data') 
err = 0.05*ones(size(ca2)) 
e = errorbar(EBCT2.ca2.err.ecolor='g'.capsize=6) 
plt.title('16.5 m/h'.fontsize=18) 
plt.legend(loc='best') 
plt.subplots_adjust(top=2. left=0.007. right=4. 
hspace=0.5. wspace=0.5) 
/usr/lib/pymodules/python2.7/matplotlib/collections.py:446: FutureWarning: elementwise 6 
if self._edgecolors == 'face': 
In [5]: Ca_e = sol3.total_element('Ca')*1e3 #saturation ca concentration in mmol/l 
Ca_0 = ws1['N4'].value #initial ca concentration in mmol/l 
e = ws2['N3'].value #porosity 
z= np.arange(0.2500.125) #height in mm 
v= ws2['N5'].value #velocity in mm/s 
D= ws2['N6'].value 
D_reduction= 0.7 
EBCT = z/v # EBCT in s 
k = 0.00296* math.sqrt(v2) #reaction constant in mm/s using velocity model:  
Ca = Ca_e - (exp((-k/D)*(1-e)*EBCT)*(Ca_e - Ca_0)) #end ca concentration in  
Ca_g= Ca*40 
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plt.plot(Ca_g. z .'r'. label= 'velocity model') 
zm = [] 
for column in ws3['N3:N14']: 
for cell in column: 
zm.append(cell.value) 
cam = [] 
for column in ws3['O3:O14']: 
for cell in column: 
cam.append(cell.value) 
cam_g = 40*np.array(cam) 
plt.scatter(cam_g.zm.s=35. label= 'Measured data') 
plt.ylabel('Bed height(mm)'.fontsize=15) 
plt.xlabel('calcium concentration(mg/l)'.fontsize=15) 
plt.ylim(0.2200) 
plt.xlim(0.40) 
plt.title('16.5 m/h'.fontsize=18) 
plt.legend(loc='best') 
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Appendix Ⅶ –C PhreeqPython code-velocity test- grain size 1-2 mm   

 
Modified Yamauchi-model-1-2mm 
January 9. 2018 
In [1]: import numpy as np 
from math import sqrt 
import matplotlib.pyplot as plt 
%pylab inline 
import phreeqpython 
pp = phreeqpython.PhreeqPython() 
from openpyxl import load_workbook 
 
In [2]: wb = load_workbook('Yamauchi-data-big.xlsx'. data_only=True. read_only=True) 
ws1 = wb['water-quality'] 
ws2 = wb['operation'] 
ws3 = wb['measurement-data'] 
In [3]: #5m/h-filter-1 
sol = pp.add_solution_raw({ 
'temp': ws1['C2'].value. 
'units': 'mg/l'. 
'pH': ws1['C3'].value. 
'Ca': ws1['C4'].value. 
'Alkalinity': '10.19 as HCO3'. 
'Cl': ws1['C6'].value. 
'Na': ws1['C7'].value. 
'Fe': ws1['C8'].value. 
'Mg': ws1['C9'].value. 
'K' : ws1['C10'].value. 
'Al': ws1['C11'].value. 
'S(6)': ws1['C12'].value 
}) 
CO2_0=sol.total('CO2')*1e3 
sol.saturate('Calcite'.0) 
Cae = sol.total_element('Ca')*1e3 
CO2e = sol.total('CO2')*1e3 
#10m/h-filter-1 
sol2 = pp.add_solution_raw({ 
'temp': ws1['H2'].value. 
'units': 'mg/l'. 
'pH': ws1['H3'].value. 
'Ca': ws1['H4'].value. 
'Alkalinity': '10.31 as HCO3'. 
'Cl': ws1['H6'].value. 
'Na': ws1['H7'].value. 
'Fe': ws1['H8'].value. 
'Mg': ws1['H9'].value. 
'K' : ws1['H10'].value. 
'Al': ws1['H11'].value. 
'S(6)': ws1['H12'].value 
}) 
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CO2_2_0=sol2.total('CO2')*1e3 
sol2.saturate('Calcite'.0) 
Cae_2 = sol2.total_element('Ca')*1e3 
CO2e_2 = sol2.total('CO2')*1e3 
#15m/h-filter-1 
sol3 = pp.add_solution_raw({ 
'temp':ws1['M2'].value. 
'units': 'mg/l'. 
'pH': ws1['M3'].value. 
'Ca': ws1['M4'].value. 
'Alkalinity': '10.65 as HCO3'. 
'Cl': ws1['M6'].value. 
'Na': ws1['M7'].value. 
'Fe': ws1['M8'].value. 
'Mg': ws1['M9'].value. 
'K' : ws1['M10'].value. 
'Al': ws1['M11'].value. 
'S(6)': ws1['M12'].value 
}) 
CO2_3_0=sol3.total('CO2')*1e3 
sol3.saturate('Calcite'.0) 
Cae_3 = sol3.total_element('Ca')*1e3 
CO2e_3 =sol3.total('CO2')*1e3 
temp= ws1['I2'].value 
Ca_e = sol.total_element('Ca')*1e3 #saturation ca concentration in mmol/l 
Ca_0 = ws3['D3'].value #initial ca concentration in mmol/l 
e = ws2['C3'].value #prosity 
z= np.arange(0.2500.125) #height in mm 
v= ws2['C5'].value #velocity in mm/s 
D= ws2['C6'].value 
D_reduction= 1.4 
EBCT = z/v # EBCT in s 
k = 0.00296 * math.sqrt(v) #reaction constant in mm/s using velocity model:  
Ca= Ca_e - (exp((-k/D)*(1-e)*EBCT)*(Ca_e - Ca_0)) #end ca concentration in plt.subplot(2.3.1) 
plt.plot(EBCT. Ca. label= 'velocity model') 
plt.xlabel('EBCT(s)'.fontsize=15) 
plt.ylabel('calcium concentration(mmol/l)'.fontsize=15) 
plt.xlim(0.2000) 
plt.ylim(0.1.6) 
EBCT = [] 
for column in ws3['B3:B13']: 
for cell in column: 
EBCT.append(cell.value) 
ca = [] 
for column in ws3['D3:D13']: 
for cell in column: 
ca.append(cell.value) 
plt.subplot(2.3.1) 
plt.scatter(EBCT.ca.marker='s'.label='Measured data') 
err = 0.05*ones(size(ca)) 
e = errorbar(EBCT.ca.err.ecolor='g'.capsize=6) 
plt.title('5 m/h'.fontsize=18) 
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plt.legend(loc='best') 
############################################################################# 
Ca_e1 = sol2.total_element('Ca')*1e3 #saturation ca concentration in mmol/ 
Ca_01 = ws3['J3'].value #initial ca concentration in mmol/l 
e1 = ws2['H3'].value #prosity 
z1= np.arange(0.2500.125) #height in mm 
v1= ws2['H5'].value #velocity in mm/s 
D1= ws2['H6'].value 
D1_reduction=1.2 
EBCT1 = z1/v1 # EBCT in s 
k1 = 0.00296* math.sqrt(v1) #reaction constant in mm/s using velocity model:  
Ca1 = Ca_e1 - (exp((-k1/D1)*(1-e1)*EBCT1)*(Ca_e1 - Ca_01)) #end ca concentration Ca1_reduction = 
Ca_e1 - (exp((-k1/D1_reduction)*(1-e1)*EBCT1)*(Ca_e1 – Ca_01) 
plt.subplot(2.3.2) 
plt.plot(EBCT1. Ca1. label= 'velocity model') 
#plt.plot(EBCT1.Ca1_reduction. label='Diameter reduction') 
plt.xlabel('EBCT(s)'.fontsize=15) 
plt.ylabel('calcium concentration(mmol/l)'.fontsize=15) 
plt.xlim(0.1000) 
plt.ylim(0.1.6) 
EBCT1 = [] 
for column in ws3['H3:H13']: 
for cell in column: 
EBCT1.append(cell.value) 
4 
ca1 = [] 
for column in ws3['J3:J13']: 
for cell in column: 
ca1.append(cell.value) 
plt.subplot(2.3.2) 
plt.scatter(EBCT1.ca1.marker='s'.label='Measured data') 
err = 0.05*ones(size(ca1)) 
e = errorbar(EBCT1.ca1.err.ecolor='g'.capsize=6) 
plt.title('10 m/h'.fontsize=18) 
plt.legend(loc='best') 
 

 
Ca_e2 = sol3.total_element('Ca')*1e3 #saturation ca concentration in mmol/ 
Ca_02 = ws3['P3'].value #initial ca concentration in mmol/l 
e2 = ws2['M3'].value #prosity 
z2= np.arange(0.2500.125) #height in mm 
v2= ws2['M5'].value #velocity in mm/s 
D2= ws2['M6'].value 
D2_reduction= 1.4 
EBCT2 = z2/v2 # EBCT in s 
k2 = 0.00296* math.sqrt(v2) #reaction constant in mm/s using velocity model:  
Ca2 = Ca_e2 - (exp((-k2/D2)*(1-e2)*EBCT2)*(Ca_e2 - Ca_02)) #end ca concentration Ca2_reduction = 
Ca_e2 - (exp((-k2/D2_reduction)*(1-e2)*EBCT2)*(Ca_ Ca_02) Ca_plt.subplot(2.3.3) 
plt.plot(EBCT2. Ca2. label= 'velocity model') 
plt.xlabel('EBCT(s)'.fontsize=15) 
plt.ylabel('calcium concentration(mmol/l)'.fontsize=15) 
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plt.xlim(0.1000) 
plt.ylim(0.1.6) 
EBCT2 = [] 
for column in ws3['N3:N13']: 
for cell in column: 
EBCT2.append(cell.value) 
ca2 = [] 
for column in ws3['P3:P13']: 
for cell in column: 
5 
ca2.append(cell.value) 
plt.subplot(2.3.3) 
plt.scatter(EBCT2.ca2.marker='s'. label= 'Measured data') 
err = 0.05*ones(size(ca2)) 
e = errorbar(EBCT2.ca2.err.ecolor='g'.capsize=6) 
plt.title('15 m/h'.fontsize=18) 
plt.legend(loc='best') 
plt.subplots_adjust(top=2. left=0.007. right=4. 
hspace=0.5. wspace=0.5) 

 
 

Appendix Ⅶ –D PhreeqPython code-CO2 test- grain size 0.5-1.2 mm  

 
Yamauchi-CO2-Small grain size 
January 9. 2018 
In [1]: import numpy as np 
from math import sqrt 
import matplotlib.pyplot as plt 
%pylab inline 
import phreeqpython 
pp = phreeqpython.PhreeqPython() 
from openpyxl import load_workbook 
Populating the interactive namespace from numpy and matplotlib 
WARNING: pylab import has clobbered these variables: ['sqrt'] 
`%matplotlib` prevents importing * from pylab and numpy 
In [2]: wb = load_workbook('Yamauchi-CO2.xlsx'. data_only=True. read_only=True) 
ws1 = wb['water-quality'] 
ws2 = wb['operation'] 
ws3 = wb['measurement-data'] 
In [3]: #2mole-filter-1 
sol = pp.add_solution_raw({ 
'temp': 13. 
'units': 'mg/l'. 
'pH': ws1['D3'].value. 
'Ca': ws1['D4'].value. 
'Alkalinity': '8.113 as HCO3'. 
'Cl': ws1['D6'].value. 
'Na': ws1['D7'].value. 
'Fe': ws1['D8'].value. 
'Mg': ws1['D9'].value. 
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'K' : ws1['D10'].value. 
'Al': ws1['D11'].value. 
'S(6)': ws1['D12'].value 
}) 
CO2_1_0=sol.total('CO2')*1e3 
sol.saturate('Calcite'.0) 
Cae_1 = sol.total_element('Ca')*1e3 
CO2e_1=sol.total('CO2')*1e3 
#4mole-filter-1 
sol2 = pp.add_solution_raw({ 
'temp': ws1['I2'].value. 
'units': 'mg/l'. 
'pH': ws1['I3'].value. 
'Ca': ws1['I4'].value. 
'Alkalinity':'7.69 as HCO3'. 
'Cl': ws1['I6'].value. 
'Na': ws1['I7'].value. 
'Fe': ws1['I8'].value. 
'Mg': ws1['I9'].value. 
'K' : ws1['I10'].value. 
'Al': ws1['I11'].value. 
'S(6)': ws1['I12'].value 
}) 
CO2_2_0=sol2.total('CO2')*1e3 
sol2.saturate('Calcite'.0) 
Cae_2 = sol2.total_element('Ca')*1e3 
CO2e_2 = sol2.total('CO2')*1e3 
#6mole-filter-1 
sol3 = pp.add_solution_raw({ 
'temp': 13. 
'units': 'mg/l'. 
'pH': ws1['N3'].value. 
'Ca': ws1['N4'].value. 
'Alkalinity': '6.71 as HCO3'. 
'Cl': ws1['N6'].value. 
'Na': ws1['N7'].value. 
'Fe': ws1['N8'].value. 
'Mg': ws1['N9'].value. 
'K' : ws1['N10'].value. 
'Al': ws1['N11'].value. 
'S(6)': ws1['N12'].value 
}) 
CO2_3_0=sol3.total('CO2')*1e3 
sol3.saturate('Calcite'.0) 
Cae_3=sol3.total_element('Ca')*1e3 
CO2e_3 =sol3.total('CO2')*1e3 
#8mole-filter-1 
sol4 = pp.add_solution_raw({ 
'temp': 13. 
'units': 'mg/l'. 
'pH': 4.55. #ws1['S3'].value. 
'Ca': ws1['S4'].value. 
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'Alkalinity':'5.85 as HCO3'. 
'Cl': ws1['S6'].value. 
'Na': ws1['S7'].value. 
'Fe': ws1['S8'].value. 
'Mg': ws1['S9'].value. 
'K' : ws1['S10'].value. 
'Al': ws1['S11'].value. 
'S(6)': ws1['S12'].value 
}) 
CO2_4_0=sol4.total('CO2')*1e3 
sol4.saturate('Calcite'.0) 
Cae_4 = sol4.total_element('Ca')*1e3 
CO2e_4 =sol4.total('CO2')*1e3 
 
In [4]: Ca_e = sol.total_element('Ca')*1e3 #saturation ca concentration in mmol/l 
Ca_0 = ws1['D4'].value #initial ca concentration in mmol/l 
e = ws2['D3'].value #porosity 
z= np.arange(0.2000.125) #height in mm 
v= ws2['D5'].value #velocity in mm/s 
D= 0.81 
D_reduction = 0.74 
EBCT = z/v # EBCT in s 
k = 0.00296* math.sqrt(v) #reaction constant in mm/s using velocity model:  
Ca = Ca_e - (exp((-k/D)*(1-e)*EBCT)*(Ca_e - Ca_0)) #end ca concentration in  
Ca_reduction = Ca_e - (exp((-k/D_reduction)*(1-e)*EBCT)*(Ca_e - Ca_0)) #end plt.subplot(2.2.1) 
plt.plot(EBCT. Ca. label= 'velocity model') 
plt.plot(EBCT. Ca_reduction. label= 'velocity model') 
plt.xlabel('EBCT(s)'.fontsize=15) 
plt.ylabel('calcium concentration(mmol/l)'.fontsize=15) 
plt.xlim(0.2000) 
plt.ylim(0.4) 
EBCT = [] 
for column in ws3['B3:B10']: 
for cell in column: 
EBCT.append(cell.value) 
ca = [] 
for column in ws3['D3:D10']: 
for cell in column: 
ca.append(cell.value) 
plt.subplot(2.2.1) 
plt.scatter(EBCT.ca. label= 'measured data') 
plt.title('2.9 mmol/l CO2'.fontsize=18) 
plt.legend(loc='best') 
############################################################################# 
Ca_e1 = sol2.total_element('Ca')*1e3 #saturation ca concentration in mmol/l 
Ca_01 = ws1['I4'].value #initial ca concentration in mmol/l 
e1 = ws2['I3'].value #prosity 
z1= np.arange(0.2000.125) #height in mm 
v1= ws2['I5'].value #velocity in mm/s 
D1= 0.81 
D1_reduction= 0.74 
EBCT1 = z1/v1 # EBCT in s 
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k1= 0.00296* math.sqrt(v1) #reaction constant in mm/s using velocity model  
Ca1 = Ca_e1 - (exp((-k1/D1)*(1-e1)*EBCT1)*(Ca_e1 - Ca_01)) #end ca concentration Ca1_reduction = 
Ca_e1 - (exp((-k1/D1_reduction)*(1-e1)*EBCT1)*(Ca_e1 - Ca_01)) plt.subplot(2.2.2) 
plt.plot(EBCT1. Ca1. label= 'velocity model') 
plt.plot(EBCT1. Ca1_reduction. label= 'Diameter reduction') 
plt.xlabel('EBCT(s)'.fontsize=15) 
plt.ylabel('calcium concentration(mmol/l)'.fontsize=15) 
plt.xlim(0.2000) 
plt.ylim(0.4) 
EBCT1 = [] 
for column in ws3['H3:H10']: 
for cell in column: 
EBCT1.append(cell.value) 
ca1 = [] 
for column in ws3['J3:J10']: 
for cell in column: 
ca1.append(cell.value) 
plt.subplot(2.2.2) 
plt.scatter(EBCT1.ca1. label='measured data') 
plt.title('4.5 mmol/l CO2'.fontsize=18) 
plt.legend(loc='best') 
##########################################################################Ca_e2 = 
sol3.total_element('Ca')*1e3 #saturation ca concentration in mmol/l 
Ca_02 = ws1['N4'].value #initial ca concentration in mmol/l 
e2 = ws2['N3'].value #prosity 
z2= np.arange(0.2000.125) #height in mm 
v2= ws2['N5'].value #velocity in mm/s 
D2= 0.81 
D2_reduct=0.74 
EBCT2 = z2/v2 # EBCT in s 
k2 = 0.00296* math.sqrt(v2) #reaction constant in mm/s using velocity model:  
Ca2 = Ca_e2 - (exp((-k2/D2)*(1-e2)*EBCT2)*(Ca_e2 - Ca_02)) #end ca concentration  
 
plt.subplot(2.2.3) 
plt.plot(EBCT2. Ca2. label='velocity model') 
plt.plot(EBCT2. Ca2_max. label='velocity model') 
plt.xlabel('EBCT(s)'.fontsize=15) 
plt.ylabel('calcium concentration(mmol/l)'.fontsize=15) 
plt.xlim(0.2000) 
plt.ylim(0.6) 
EBCT2 = [] 
for column in ws3['M3:M9']: 
for cell in column: 
EBCT2.append(cell.value) 
ca2 = [] 
for column in ws3['O3:O9']: 
for cell in column: 
ca2.append(cell.value) 
plt.subplot(2.2.3) 
plt.scatter(EBCT2.ca2. label= 'measured data') 
plt.title('7 mmol/l CO2'.fontsize=18) 
plt.legend(loc='best') 
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######################################################################### 
Ca_e3 = sol4.total_element('Ca')*1e3 #saturation ca concentration in mmol/l 
Ca_03 = ws1['S4'].value #initial ca concentration in mmol/l 
e3 = ws2['S3'].value #prosity 
z3= np.arange(0.2000.125) #height in mm 
v3= ws2['S5'].value #velocity in mm/s 
D3= 0.81 
D3_reduction = 0.72 
EBCT3 = z3/v3 # EBCT in s 
k3 = 0.00296* math.sqrt(v3) #reaction constant in mm/s using velocity model:  
Ca3 = Ca_e3 - (exp((-k3/D3)*(1-e3)*EBCT3)*(Ca_e3 - Ca_03)) #end ca concentration Ca3_reduction = 
Ca_e3 - (exp((-k3/D3_reduction)*(1-e3)*EBCT3)*(Ca_e3 - Ca_03)) plt.subplot(2.2.4) 
plt.plot(EBCT3. Ca3. label='velocity model') 
plt.plot(EBCT3. Ca3_reduction. label='Diameter reduction') 
plt.xlabel('EBCT(s)'.fontsize=15) 
plt.ylabel('calcium concentration(mmol/l)'.fontsize=15) 
plt.xlim(0.2000) 
plt.ylim(0.6) 
EBCT3 = [] 
for column in ws3['R3:R9']: 
for cell in column: 
EBCT3.append(cell.value) 
ca3 = [] 
for column in ws3['T3:T9']: 
for cell in column: 
ca3.append(cell.value) 
plt.subplot(2.2.4) 
plt.scatter(EBCT3.ca3. label='measured data') 
plt.title('9.5 mmol/l CO2'.fontsize=18) 
plt.legend(loc='best') 
plt.subplots_adjust(top=2. left=0.007. right=2. 
hspace=0.5. wspace=0.5)  
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Appendix Ⅶ –E PhreeqPython code-translate-full-scale   
 

translate-full-scale 
January 9. 2018 
In [2]: import numpy as np 
from math import sqrt 
import matplotlib.pyplot as plt 
%pylab inline 
import phreeqpython 
pp = phreeqpython.PhreeqPython() 
from openpyxl import load_workbook 
 
In [3]: wb = load_workbook('Yamauchi-CO2.xlsx'. data_only=True. read_only=True) 
ws1 = wb['water-quality'] 
ws2 = wb['operation'] 
ws3 = wb['measurement-data'] 
In [4]: sol = pp.add_solution_raw({ 
'temp': 12. 
'units': 'mg/l'. 
'pH': 5.77. 
'Ca': ws1['D4'].value. 
'Alkalinity': '8.5 as HCO3'. 
'Cl': ws1['D6'].value. 
'Na': ws1['D7'].value. 
'Fe': ws1['D8'].value. 
'Mg': ws1['D9'].value. 
'K' : ws1['D10'].value. 
'Al': ws1['D11'].value. 
'S(6)': ws1['D12'].value 
}) 
CO2_1_0=sol.total('CO2')*1e3 
sol.saturate('Calcite'.0) 
Cae_1 = sol.total_element('Ca')*1e3 
CO2e_1=sol.total('CO2')*1e3 
HCO3_1 = sol.total('HCO3')*1e3 
pH = sol.pH 
sol2 = pp.add_solution_raw({ 
'temp': 12. 
'units': 'mg/l'. 
'pH': 5.42. 
'Ca': ws1['D4'].value. 
'Alkalinity': '8.5 as HCO3'. 
'Cl': ws1['D6'].value. 
'Na': ws1['D7'].value. 
'Fe': ws1['D8'].value. 
'Mg': ws1['D9'].value. 
'K' : ws1['D10'].value. 
'Al': ws1['D11'].value. 
'S(6)': ws1['D12'].value 
}) 
CO2_2_0=sol2.total('CO2')*1e3 
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sol2.saturate('Calcite'.0) 
Cae_2 = sol2.total_element('Ca')*1e3 
CO2e_2 = sol2.total('CO2')*1e3 
HCO3_2 = sol2.total('HCO3')*1e3 
In [8]: Ca_e = sol.total_element('Ca')*1e3 #saturation ca concentration in mmol/l 
Ca_0 = ws1['D4'].value #initial ca concentration in mmol/l 
e = ws2['D3'].value #prosity 
z= np.arange(0.3300.125) #height in mm 
v= 10./3.6 #velocity in mm/s 
D= 0.81 
D_reduction = 0.74 
EBCT = z/v # EBCT in s 
k = 0.00296* math.sqrt(v) #reaction constant in mm/s using velocity model:  
Ca = Ca_e - (exp((-k/D)*(1-e)*EBCT)*(Ca_e - Ca_0)) #end ca concentration in  
Ca_reduction = Ca_e - (exp((-k/D_reduction)*(1-e)*EBCT)*(Ca_e - Ca_0)) #end plt.subplot(2.2.1) 
plt.plot(EBCT/60. Ca. label= 'velocity model') 
plt.xlabel('EBCT(s)'.fontsize=15) 
plt.ylabel('calcium concentration(mmol/l)'.fontsize=15) 
plt.xlim(0.30) 
plt.ylim(0.2) 
plt.title('0.65 mmol/l CO2'.fontsize=18) 
plt.legend(loc='best') 
 
############################################################################# 
Ca_e1 = sol2.total_element('Ca')*1e3 #saturation ca concentration in mmol/l 
Ca_01 = ws1['I4'].value #initial ca concentration in mmol/l 
e1 = ws2['I3'].value #prosity 
z1= np.arange(0.3300.125) #height in mm 
v1= 10./3.6 #velocity in mm/s 
D1= 0.81 
D1_reduction= 0.74 
EBCT1 = z1/v1 # EBCT in s 
k1= 0.00296* math.sqrt(v1) #reaction constant in mm/s using velocity model:  
Ca1 = Ca_e1 - (exp((-k1/D1)*(1-e1)*EBCT1)*(Ca_e1 - Ca_01)) #end ca concentration 
plt.subplot(2.2.2) 
plt.plot(EBCT1/60. Ca1. label= 'velocity model') 
plt.xlabel('EBCT(s)'.fontsize=15) 
plt.ylabel('calcium concentration(mmol/l)'.fontsize=15) 
plt.xlim(0.30) 
plt.ylim(0.2) 
plt.title('1.5 mmol/l CO2'.fontsize=18) 
plt.legend(loc='best') 
plt.subplots_adjust(top=2. left=0.007. right=4. 
hspace=0.5. wspace=0.5) 
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Appendix Ⅶ –F PhreeqPython code-CO2-species- distribution   
 
Distribution of CO2 species at different pH level simulated in PhreeqPython 
 
In [1]: %pylab inline 
from phreeqpython import PhreeqPython 
pp = PhreeqPython() 
solution = pp.add_solution({'NaHCO3':1.0}) 
In [2]: phs = [] 
co2 = [] 
hco3 = [] 
co3 = [] 
In [3]: for pH in arange(0.14.1.0.1): 
solution.change_ph(pH) 
phs.append(pH) 
co2.append(solution.total('CO2')*1000) 
co3.append(solution.total('CO3')*1000) 
hco3.append(solution.total('HCO3')*1000) 
fig = plt.figure(figsize=[14.6]) 
plt.plot(phs.co2.label='CO2') 
plt.plot(phs.hco3.label='HCO3-') 
plt.plot(phs.co3.label='CO3-2') 
plt.xlabel("pH") 
plt.ylabel("Concentration (mmol)") 
plt.title("Carbonic Acid. Bicarbonate. Carbonate distribution") 
lgnd = plt.legend() 
 


