
Te
ch

ni
sc

he
 U

ni
ve

rs
ite

it 
D

el
ft

Weather Codes and
Travel Behavior

J. Delfos



Weather Codes and Travel Behavior
Analysis of the Impacts ofWeather Codes on Travel

Behavior of Road Users in the Netherlands

by

JeroenDelfos 4144147

at the Delft University of Technology,

Project duration: April 2018 – September 2018

Supervisors: Prof.dr.ir. C. G. Chorus

Dr.ir. A. J. Pel

Dr.ir. S. van Cranenburgh

T. M. van der Weijden

This report is part of the studies at the Faculty of Civil Engineering and Geosciences and has been prepared

with great care under the guidance of staff of Delft University of Technology. However, the reader should

acknowledge that this report has been prepared for educational purposes and will be primarily judged on

educational criteria. Delft University of Technology cannot accept liability for all contents of this report. All

photographs and figures without external referencing have been created by the author of this document.

The photographs and figures may be used, however proper referencing is expected.

In collaboration with:





Contents

1 Preface 1
2 Acknowledgements 3
3 Introduction 5

3.1 Research Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.4 Report Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Theoretical Background 9
4.1 Introduction to Weather Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1.1 Different Codes and their Meaning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1.2 Goal of Weather Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1.3 Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1.4 Overview of Weather Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Introduction to Existing Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.1 Impacts of Weather . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.2 Impacts of Weather Forecast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.3 Impacts of Travel Advices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.4 Impacts of Weather Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.5 Synthesis of Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 Introduction to Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3.1 Factors Influencing Travel Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3.2 Traveler Compliance to Travel Advices . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.4 Introduction to the Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Data Preparation 21
5.1 Measurement Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Aggregation level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3 Visual Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4 Deseasonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Influences ofWeather Codes on Travel Demand 25
6.1 Least Squares Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2 Regression with Autoregressive Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Influences ofWeather Codes onDeparture Time Choice 37
7.1 Case Study Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 Travelers Perception and Compliance 41
8.1 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8.2 Sentiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

iii



iv Contents

9 Conclusion 47
9.1 Impacts on Travel Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9.2 Impacts on Departure Time Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9.3 Perception and Compliance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

10 Discussion and Further Research 49
10.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

10.2 Recommendations for Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

10.3 Recommendations for Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A Weather CodesOverview 53
B SpeedDiagrams 55
C Manual Inspection 59
D Deseasonalization 63
E Weather Characteristics 67
F Model Results - Linear Regression 69
G Model Results - Regressionwith Autoregressive Errors 73
H Case Studies 87
I Reliability 93
J Scientific Paper 97
Bibliography 107



1 Preface

This report is the summary of six months of graduation research. The research marks the final stage of the

MSc. Transport, Infrastructure and Logistics at the faculty of Civil Engineering and Geosciences at the TU

Delft. As the master itself, the research presented in this report is multidisciplinary, as it is supported by

knowledge from both the faculty of Civil Engineering and Geosciences and the faculty of Technology, Policy

and Management. Therefore, the research contains a mixture of analysis that touches upon the field of trans-

port modeling as well as the field of travel behavior.

The theme of this research has been subject of societal discussions. Several news articles have been, and

probably will be, dedicated to the theme of weather codes every time a weather code is issued. It is exactly

this debate, in which the reliability and the effectiveness of weather codes are discussed, that triggered my in-

terests for the matter. Furthermore, this theme was enabling me to do a research project with large amounts

of data, as previous master projects had drawn my interests into the methods of doing so.

Societal debates on the matter of weather codes will certainly not end with this research. However, I hope that

the insights provided in this report can contribute to the understanding on how travelers cope with weather

codes, and more generally with weather related travel advices.
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3 Introduction

This chapter will describe the outline of this research, without going into detail. First, the goal of the research

will be described. After the goal of the research is defined, the relevance of this research for various stakehold-

ers and science will be explained. Lastly, the research questions will be defined and the methods to answer

these questions will be briefly explained.

3.1. Research Goal
In the case of adverse weather conditions, the KNMI can decide to activate a weather code. Weather codes

are accompanied with advices, aimed at impacting travelers choice to make a trip during the duration of

this weather code. For example, when a code red for wind gusts is activated, the advice ’Do not travel if not

strictly necessary’ will be communicated (KNMI & Ministry of I&E, 2015). However, no literature has been

found where these impacts are assessed through analyzing revealed preference data (see Chapter 4 for more

information). The first goal of this research is to reveal the impacts of weather codes on travel behavior. It is

hypothesized that weather codes have a negative impact on travel demand. Furthermore, it is hypothesized

that codes red have a higher impact than codes orange, as advices for codes red are more explicitly advising

people not to travel. For the departure time choice, it is expected that travelers are planning their trip outside

the period for which a weather code is active, which will lead to a change in demand patterns over the days

for which a weather code was present.

Furthermore, this research aims to assess the impacts of a travelers’ perception of a weather code on
travel behavior. In this research, it is hypothesized that perceived unreliability of a weather code will reduce

the impact of the next weather code. By analyzing the sentiment of travelers during it is aimed to explain why

people do tend to travel, while the KNMI advises not to do so.

3.2. Relevance
If the first reserach goal is reached, the impacts of weather codes on travel behavior will be known. Outcomes

of such an analysis could provide insights for the KNMI on the impacts of their weather codes. As the KNMI

hopes that their advices will be taken seriously (see Chapter 4), which would result in visible impacts in travel

behavior, this research is relevant for the KNMI. Insights into the perception of weather codes will also be

relevant for the KNMI. These insights might be useful when reconsidering the phrasing of advices which are

communicated together with the activation of weather codes.

If impacts of weather codes are observed, this means that there are changes observed in traffic volumes

on different road segments in the Netherlands. A vast amount of literature can be tied to the domain of traffic

forecasting, which is stated to be interesting for multiple stakeholders. Short-term traffic forecasting 1 has

its applications in Intelligent Transportation Systems, which, in the Netherlands, are of interest for the Road

Authority, Rijkswaterstaat (RWS). When impacts of weather codes are found to be having a significant impact

on traffic volumes, weather code information will be a valuable input variable for short-term traffic forecast-

ing models. RWS indicates that the organization indeed is interested in outcomes of the research, as they

would like to know how travelers react in adverse weather conditions (H. Taale, personal communication,

23-07-2018).

The methods used to assess the impacts of weather codes on travel behavior, will yield insights into the

ability of a certain method to cope with the included variables. As a time-series will be modeled, this research

will more specifically contribute to insights into time-series modeling applications. Recommendations on

the use of time-series models in traffic volume analysis will be useful for future research in the field of similar

themes.

To assess the impacts of weather codes, the data should be corrected for the weather conditions. Although

this research does not aim to assess the impacts of weather on travel behavior, as the aim is to determine

1For an overview of existing literature related to short-term traffic forecasting, see Vlahogianni et al. (2014)
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6 3. Introduction

the effects of weather codes, this analysis will be a byproduct of the total research. Results of this analysis

might provide insight on the impacts of different weather characteristics on travel behavior from a revealed

preference point of view. This knowledge can verify hypotheses in this field that follow from stated preference

work and will add knowledge to the revealed preference domain.

Besides its relevance for earlier mentioned parties and science, this research is relevant in societal dis-

cussions. The use and effectivity of weather codes are regularly debated. In news and opinion articles the

reliability of weather codes are questioned (Kersten, 2018), people are said to be ’warning-tired’ (Pel, 2016),

the messages of the KNMI are ridiculed as being exorbitant (Bouma, 2017) and the suitability of one advice

for every traveler is questioned (Chorus, 2010). The latter states that the government (KNMI) is deciding for

citizens what is best for them, by advising on how to travel with a weather code, while the responsibility for

traveling or not lies with the traveler himself. As the government takes away this responsibility, complaints

of travelers can be expected if the weather situation turns out to have other effects than expected. The re-

search of this report provides quantitative analyses on how travelers responded during weather codes, which

contributes to the factual basis of societal discussions that surround the theme of weather codes and weather

related travel advices.

3.3. Research Questions
The goal of this research will be reached by systematically answering a set of research questions. The main

question, which will be answered in the conclusion of this report, is:

What are the Impacts of Weather Codes and Travelers’ Perception of Weather Codes on Travel Behavior?

Answers on this question can be found by following a set of steps that will provide more insights into the

theme of weather codes and travel behavior.

In this research, detection loop data will be used as the source for measuring travel behavior in a revealed

preference approach. Travel behavior will be influenced both by the weather codes and by the weather itself

(see Chapter 4). Two indicators for travel behavior can be researched with revealed preference data. The first

indicator is the total travel demand, which says something about the travel choice to make a trip, or not. This

frequency choice is researched with the following research question:

1. What are the effects of weather and weather codes on frequency choice?

The second indicator for travel behavior is the spread of demand throughout the day. This indicator says

something about the departure time choice that travelers make. Throughout the day, a demand pattern can

be observed, in which for example the morning and afternoon peak can be observed. This departure time

choice is researched with the following research question:

2. What are the effects of weather codes on departure time choice?

The last part of the research tries to explain a part of the variation in the impacts of weather codes on

travel behavior. From the theoretical framework as presented in Chapter 4, it is expected that this variation

is produced by the compliance of travelers towards advices. Firstly, the reliability of previous weather codes

is assessed, by comparing the forecast in the weather code with the corresponding weather measurements.

Secondly, the sentiment of travelers during weather codes is measured with the use of web scraping tech-

niques. These two factors are assumed to be a proxy for the ’unreliability of information’, which is further

explained in Section 4.2.5. Both the sentiment of travelers, as well as the impact of (the reliability of) previous

weather codes on the next weather code are part of, what we call in this research, the perception of infor-

mation. Insights in how this perception works on compliance towards advices are answering the following

research question:

3. How does traveler perception of weather codes influence the compliance towards weather code advices?
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3.4. Report Outline
The report will start with background information on the themes related to the research as presented in this

Chapter, in Chapter 4. This Chapter will introduce the reader to weather codes and their meaning, goal,

related decision process and historical occurrences. After this, related existing literature will be summarized.

Literature on the impacts of weather on travel behavior, the impacts of weather forecasts, the impacts of travel

advices and the impacts of weather codes is explained and used to sketch the knowns and the unknowns

related to the theme of this research. After this, a theoretical framework will be introduced which will be

used to derive hypotheses and to structure the research. Lastly, the research approach that follows from the

theoretical framework will be introduced. In this Section, both the data as well as the methods that will be

worked with in the rest of the report are explained.

Chapter 5 will explain the steps that are undertaken to go from raw data towards interpretable data for the

analyses in the next Chapters. In this Chapter, the measurement locations for both traffic as well as weather

observations are chosen, as well as the aggregation level of the data. Furthermore, traffic data is inspected

to identify any anomalies, after which the traffic data will be deseasonalized. The work in this Chapter is

supported by Appendix B, Appendix C and Appendix D.

Chapter 6 will find an answer to the first research question. In this chapter, linear regression models as

well as regression models with autoregressive errors are used to assess the significance and coefficients of dif-

ferent weather and weather code variables that affect traffic volumes. The work in this Chapter is supported

by Appendix E, Appendix F and Appendix G.

Chapter 7 will answer the second research question, related to the effects of weather codes on trip schedul-

ing. Six case studies are undertaken for all chosen road segments, for which demand patterns are assessed.

The work in this Chapter is supported by Appendix H.

Chapter 8 will answer the third and last research question, by assessing the relation between the percep-

tion of weather codes, and traveler compliance towards advices. Firstly, the reliability of the previous weather

code is introduced as a variable that might be influencing the impact on travel behavior of the next weather

code. After this, Twitter data will be analyzed to see whether sentiment can explain compliance with weather

code related advices. The work in this Chapter is supported by Appendix I.

In Chapter 9, the answers on the three subquestions are combined to give an answer on the main research

question. Finally, Chapter 10 will critically discuss the process that led to the results and the results them-

selves. At the end of this Chapter, recommendations are presented for further research on related themes.





4 Theoretical Background

4.1. Introduction to Weather Codes
Since 1998 the KNMI gives out warnings in case of expected adverse weather conditions (Koek & Kok, 2016).

Several iterations led to the currently used systematics, which have been in place since 2015. Weather codes

in the Netherlands are coherent with international standards, but weather types and thresholds for codes can

differ per country. This Section will introduce the different weather codes, their goal and the decision process

leading to a weather code.

4.1.1. Different Codes and their Meaning
Weather codes come in four levels, or colors. Per province (plus the Wadden Islands and the Ijsselmeer area)

a code is issued, indicating the weather status. Each code has its own meaning. Code Green is active when

no anomalies are occurring. Code Yellow indicates a chance on dangerous weather conditions. Citizens are

asked to be alert, especially when in traffic. Code Orange is issued when chances are high that dangerous or

extreme weather conditions will occur. In this case, citizens are asked to be prepared. Code Red is also called

a Weather Alarm, indicating that citizens should take action. Weather conditions under code red can cause

damage and injury such that it can be disruptive for the society.

Codes can be issued for different types of weather. In the Netherlands these weather types are wind,

snow/ice, thunderstorms, fog, extreme high temperature, extreme low temperature, coastal events, rain and

flood. For some other countries, this list is completed with the types forest fire, avalanches and rain-flood, as

depicted in Figure 4.1. Avalanches are not prevailing in the Netherlands, due to the absence of mountains.

Events of rain-flood are captured with the type rain. Codes due to forest fires are issued by the fire department

in the Netherlands.

Figure 4.1: Weather types for which codes can be issued (Meteoalarm, 2018)

4.1.2. Goal of Weather Codes
Official documents of the KNMI state that the KNMI warns to contribute to the safety and accessibility of

the Netherlands. Warned people can prepare for the weather, which will limit the chances on damage and

injury (KNMI, 2015). How people should prepare depends on the weather type. Per weather type, different

advices will be issued. Appendix 3 of KNMI & Ministry of I&E (2015) gives general advices per weather type

and per warning level. For most of the advices it stays unclear what the exact action should be, or to what

extent a certain advice should be followed. The more concrete advices, proposing a direct action for citizens,

are listed in Table 4.1. Although these advices are quite concrete, there are no documents stating that the

KNMI has the goal that these advices are followed up. In contacts with the KNMI, it is stated that the KNMI

has the legal task to warn publicly for dangerous weather. Generic statements on how to act are put together

by a taskforce of (communication-) experts. However, in this contact, the KNMI also emphasizes that the

choice to act according to the statements is up to the user, although the KNMI hopes that the user takes the

statements seriously (R. Sluijter, personal communication, 12-06-2018). The road authority, RWS, does state

that they hope that warnings for adverse weather influences travel behavior, and that less people choose to

make a trip during such warnings (H. Taale, personal communication, 23-07-2018).

4.1.3. Decision Process
Although KNMI is the organization publishing the weather codes, the decision leading to this code is not

made solely by the KNMI. Figure 4.2 depicts a flowchart with the steps that are undertaken to come to a deci-
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10 4. Theoretical Background

Table 4.1: Advices per weather type (KNMI & Ministry of I&E, 2015)

Weather type Code Action

Wind gusts Red
Don’t go onto the water

Don’t travel if not strictly necessary

Snow and slipperiness Red Don’t travel if not strictly necessary

Thunderstorms Orange
Avoid open water

Do not take shelter under trees

Thunderstorms Red

Avoid open water

Do not take shelter under trees

Stay inside if possible

sion on which code should be activated. If there is a chance higher than 60% on extreme weather events, the

weather events will be evaluated to see whether the conditions will surpass the thresholds for code orange. If

this is not the case, code yellow will be activated. If this is the case, a team of experts (Departementale Coör-

dinatiecentra, National Crisis Centre, Verkeerscentrum Nederland, police and fire department and Prorail)

will get together to assess the risks of the weather. This weather impact team will give an advice, which will

be used by the KNMI to issue either code orange or code red. Code red is only issued when the impacts of

the weather can be disruptive for society. This can also mean that there is a low chance on an event with very

high risks. If there is a relatively high density of citizens in an area that has a chance of being hit by extreme

weather, chances are relatively high that a code red will be issued, in comparison to low density areas.

The threshold values, listed in Table 4.2 are the guidelines for the different decisions. These guidelines

have been developed in collaborations with parties that understand the impacts of certain weather condi-

tions (KNMI, 2018a)

Figure 4.2: Decision tree for the activation of weather codes (Koek & Kok, 2016; KNMI, 2018a)
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Table 4.2: Weather characteristic threshold values for weather codes (KNMI & Ministry of I&E, 2015)

Weather type Code yellow Code orange Code red

Heavy rain Traffic disruption due to aqua-

planing, or >50mm in 24h

>75mm in 24h >100mm in 24h

Snow and

slipperiness

Local slipperiness due to frozen

road surfaces, hail, snow rests or

black ice

or:

up till 5cm of snow in 6h

and/or:

up till 3cm of snow in 1h

Slipperiness on an extensive scale

due to black ice or freezing

or:

5-15cm of snow in 6h

and/or:

3-5cm of snow in 1h

and/or:

snowfall and/or ground blizzard

(>40km/h), leading to snow dunes

Slipperiness on a large scale due

to black ice or freezing

or:

>15cm of snow in 6h

or:

>5cm of snow in 1h

and/or:

snowfall and/or ground blizzard

(>50km/h), leading to snow dunes

Thunder-

storms

Local thunderstorms with locally

one or more of the following phe-

nomena:

- wind gusts >60km/h

- heavy rain >30mm/h

- hail up to 2cm diameter

Organized thunderstorms with lo-

cally one or more of the following

phenomena:

- heavy wind gusts >75km/h

- heavy rain >50mm/h

- large hail 2-4cm diameter

Very well organized thunder-

storms with locally one or more of

the following phenomena:

- heavy wind gusts >100km/h

- heavy rain >75mm/h

- large hail >4cm diameter

Wind gusts >75km/h

Coast, winter: 90km/h

>100km/h

Coast, winter: 120km/h

>110km/h

Coast, winter: 130km/h

Temperature

(high)

4 days with day temperature >27°C

Or temperature >35°C

3 days in a row with a day temper-

ature >30°C and a night tempera-

ture >18°C

3 days in a row with a day temper-

ature >32°C and a night tempera-

ture >20°C

Temperature

(low)

Wind chill <-15°C Wind chill <-20°C Wind chill <-25°C

Sight <200m <10m no sight (due to firework)

Spouts At observation

4.1.4. Overview of Weather Codes
Appendix A shows a list of weather codes issued between the beginning of 2015 to 2018. During 28 days there

was a code orange active, of which 7 days involved a code red for some provinces as well. Amongst these 28

codes, 12 were issued due to slipperiness, 9 due to wind gusts and 7 due to thunderstorms. It should be noted

that only days were logged which had a code orange or red. Days on which only a code yellow was issued are

not logged in the KNMI archive, as found on KNMI (2018b). Codes red and orange were not issued for sight,

high or low temperatures, heavy rain or spouts in the period between 2015 and 2018.
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4.2. Introduction to Existing Literature
Although some of the advices of Table 4.1 clearly state that it is better to avoid traveling, no literature can

be found on the connection between weather codes and travel behavior. Related connections are assessed,

including the impacts of weather conditions, weather forecast and travel advices on travel behavior or traffic

volumes. This Section will describe the available literature and their findings.

4.2.1. Impacts of Weather

The effects of weather conditions on travel behavior have been researched by Cools et al. (2010). Here it was

surveyed whether travelers are likely to change their behavior under certain weather conditions. Relations

between weather conditions and travel behavior were found to be significant, indicating that weather indeed

alters travel behavior. Madre et al. (2007), a study less specifically aimed at the link between weather and

travel behavior, finds that bad weather is seldom a reason for canceling trips. Only snow and rain have an

impact on trip cancellation. This is the case for 1% of the stated preference respondents. The impact of snow

and cold in Alberta, Canada, were analyzed from a revealed preference perspective by Datla & Sharma (2008).

Here, the impacts of certain weather conditions was found to be impacting traffic volumes to a greater ex-

tend than expected from earlier mentioned stated preference research, with snow resulting in a -7% to -17%

change in traffic volume per cm of snow. Cools & Moons (2010) assessed the impacts of weather on traffic

intensity in Belgium. The major conclusions of this assessment were that weather effects are heterogeneous

between different traffic count locations. Furthermore, precipitation, cloudiness and wind speed reduces,

while high temperatures and hail increases traffic intensity. Other revealed preference research into adapta-

tion of travel behavior in case of adverse weather conditions is performed by Sabir et al. (2008). This research

focuses on the choice between traveling by bicycle, public transport or car. Results are yielding higher mode

shares for road traffic in the case of adverse weather conditions. Empirically measured effects of weather

conditions on other travel choices (i.e. trip frequency choice, departure time choice, destination choice and

route choice) were stated to be key for further research by Cools et al. (2010).

4.2.2. Impacts of Weather Forecast

Cools & Creemers (2013) researched the influence of weather predictions. This research concluded that

changes in travel behavior are significantly related to the weather type as forecast. A second conclusion

is that the kind of method for retrieving weather forecast information does not influence the likelihood of

changes in travel behavior. This research distinguishes utilitarian and recreational trips. The results show

that trips for recreational purposes are more often canceled than utilitarian trips. Travelers are also more

likely to reschedule their trip outside morning peak hours when traveling for recreational purposes. For util-

itarian trips, weather alarms were found to be significantly influencing the choice to travel by motorway in

peak hours (negatively), to avoid the motorway (positively in case of rain, negatively in case of snow) and to

travel by bike (negatively). These effects are the same for recreational trips, except for avoiding the motorway,

which is not significantly influenced by a weather alarm for rain.

4.2.3. Impacts of Travel Advices

In several papers, the impacts of travel advices on travel behavior are assessed. Some papers are aiming to

assess policies intended to change travel habits (Gärling & Fujii, 2009; Fujii & Taniguchi, 2005), where others

are aiming to assess adaptation effects towards advices on shorter terms. Within the latter researches, several

papers assess impacts of travel advices on which Chorus et al. (2006) gives an overview. An observation in this

paper is that information about delays caused by bad weather conditions are impacting travel behavior, or

more specific route choice, to a lesser extend than delays due to incident congestion. Nonetheless, providing

travel advice is considered to be a powerful tool for travel demand management. It must be noted that the

advices and information meant here are related to network performance (i.e. disruptions and congestion),

while information and advices from weather codes concern information purely about the weather and it’s

consequences.
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4.2.4. Impacts of Weather Codes
Van Stralen et al. (2015) researches the influences of weather and weather alarms (i.e. codes red) by means

of a stated choice experiment. Respondents are asked to make a travel choice under a described scenario.

These scenarios include information on the current temperature, the current weather described in words

and with an image, the weather forecast and the weather alarm status. The respondent can choose to travel

by car on the motorway in the morning peek, to reschedule his trip outside the morning peak, to change

route by avoiding the motorway, to change mode towards bicycle or public transport, or to cancel his trip.

The results show that current weather conditions impact choices to a larger extend than a weather forecast or

alarm does. However, the weather alarm does influence travelers to opt more often for the option to cancel a

trip. The weather alarm led to a reduction in traffic demand during the morning peak of 20.3% in case of an

alarm due to heavy rain, 27.9% in case of an heavy snow alarm and 30.7% in case of an alarm due to icy roads.

4.2.5. Synthesis of Literature
When the advice of the KNMI is seen as one of the methods of acquiring weather information as described

in Cools & Creemers (2013), one could doubt about the influence of this advice. In this case a weather code

acts as a weather forecast. If a weather code is assumed to be a travel advice, the poor performance (caused

by adverse weather) of the currently chosen travel alternative can lead to a relatively high change to other

alternatives (Chorus et al., 2006). Additionally, Chorus et al. (2009) derives that higher compliance towards

an advice is to be expected if the reliability of a travel advice increases. The reliability of a weather code can

therefore assumed to be influencing its own impact.

The subject of the research in this report differs from related research on a couple of points. Firstly,

weather codes are issued in the case of extreme weather. Other research focuses more on the full range of

weather conditions. Focusing on extreme weather could provide specific insights, as extreme weather char-

acteristics might not be linearly related with travel demand characteristics, where non-extreme weather con-

ditions might do. The difference in impacts between light rain and heavy rain in van Stralen et al. (2015)

are supporting this claim. Secondly, if we see weather codes as a travel advice, this travel advice might be

different in its impacts in comparison to non-weather related travel advices. Thirdly, travel behavior in the

case of weather codes might be influenced by weather, as well as the code itself. These interrelated variables

might present unique characteristics in comparison to cases where the impacts of only weather or only travel

advises are assessed. The stated preference experiment in van Stralen et al. (2015) support this, by showing

that weather alarms are in some cases significantly influencing choice behavior among respondents.

Table 4.3 gives an overview of scientific work per theme and method. Summarizing, scientific gaps related

to the effects of travel advises in adverse weather conditions and empirical research on changes in travel be-

havior during adverse weather conditions are generating uncertainty about the impacts of the advices given

by the KNMI.

Table 4.3: Overview of scientific material per theme and method

Method

Theme Effects weather on

driving behavior

Effects weather on

travel behavior

Effects weather

forecast on travel

behavior

Effects travel advice

on travel behavior

Effects weather

related travel advice

on travel behavior

Stated Preference
Hassan & Abdel-Aty

(2011)

Cools et al. (2010);

Madre et al. (2007)

Cools & Creemers

(2013)

Wardman et al.

(1997); Khattak et al.

(1996)

(van Stralen et al.,

2015)

Revealed Preference
Hoogendoorn

(2012)

Sabir et al. (2008);

Cools & Moons

(2010)

Khattak et al. (1996);

Bogers et al. (2005)

Research as
proposed in this

document
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4.3. Introduction to Theoretical Framework
When effects of weather codes on travel behavior are assessed, all other factors that effect travel behavior

should be corrected for. To do this, it is necessary to get a full understanding of all relevant factors. Besides

correcting for other factors, the way that people cope with an advice is also influencing the impact of weather

codes. A third part necessary to assess the impact of weather codes on travel behavior is a variable with which

travel behavior is measured. This Section introduces a theoretical framework, based on available literature

related to travel behavior. The theoretical framework will provide insight in which factors should be corrected

for and how travelers will cope with advices, when interpreting revealed preference data.

Since the research in this report tries to unravel impacts of weather codes on travel behavior with revealed

preference data, the theoretical framework must be able to cope with this. This means that the measured

variables, needed to estimate latent variables, must be measured on the basis of revealed preference data.

4.3.1. Factors Influencing Travel Behavior
In Section 4.2 impacts of weather, weather forecast, travel advices and weather codes were explained. Weather

significantly influences travel behavior in both stated- as revealed preference researches. Historical data of

weather circumstances are available, which enables incorporation of this data in a revealed preference ap-

proach. Examples of weather characteristics that can be taken into account are rain, wind, thunderstorms,

snow, sight, temperature and ice formation.

Weather forecast was also found to be influencing travel behavior, when this was tested with a stated pref-

erence approach. However, two problems arrive when weather forecast is taken into account in a revealed

preference research. Firstly, no historical data of weather forecast is found. Secondly, it is hard to determine

which forecast is influencing travel behavior. Some travelers will consult the weather forecast just before

making a trip, while others might do this several hours earlier. Therefore, weather forecast cannot be taken

into account as a measured variable. In this research the weather and weather forecast will be taken into

account as one variable. This can be done as it is assumed that weather and its forecast are strongly corre-

lated. An error term must be introduced to take into account any discrepancies between the weather and the

weather forecast.

The third influence is the presence of a weather code and its complementary travel advice. Weather codes

(orange and red) are logged by the KNMI, which enables incorporation of this factor in a revealed preference

research. Codes yellow are not logged, except for instances where there was a code yellow in a province, while

a code orange or red occurred in another province.

4.3.2. Traveler Compliance to Travel Advices
In Section 4.2.3 two types of advices were presented: advices to change travel habits and advices that aim to

change travel behavior on shorter terms. A weather code and its cohesive advices are of the second type, as

these are advises are aimed at travel behavior during the period of extreme weather events only.

Literature covering the influences of weather related travel advises is absent. To set up a theoretical frame-

work for the working of these weather related travel advises, knowledge on travel advises related to network

performance are used. Although parallels can be drawn between the two advises, it cannot be stated that all

aspects of the compliance to weather related travel advises will be covered. In this report, the hypothesis that

compliance towards weather related travel advises is similar to compliance towards network performance

related travel advises, will be tested.

Chorus et al. (2009) presents a formal model to describe traveler compliance towards travel advice. In this

work, a measure of unreliability is used as one of the factors that explains the propensity to comply with an

advice. Furthermore, preferences for travel alternatives, relative importance for travel times and travel time

uncertainty are included in this model, as shown in Figure 4.3. Advises in Chorus et al. (2009) are related to

route choice, which explains the relevance of travel time attributes.

However, when looking at advises from weather codes, the main choice involved is the choice to make a

trip. The factors mentioned in Chorus et al. (2009) cannot all be used directly for this choice. The unreliability

of information might be influencing compliance towards weather codes as well. Logically, when a weather
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Figure 4.3: Factors influencing compliance with advice (Chorus et al., 2009)

code is perceived as being unreliable, travelers are less inclined to follow its accessory advices. The travel

alternative provided by a weather code is to not travel during the activation of the weather code. This results in

the choice to either cancel a trip, or to change the departure time towards a time frame outside the activation

time of the weather code. How open travelers are towards these alternatives will depend on their flexibility to

avoid traveling, or reschedule a trip. The relative importance for travel times might be affecting compliance

towards weather related advices as well. If travelers use a weather code to conclude that travel times will rise,

in accordance to the advice for wind gusts and slipperiness at code orange (KNMI & Ministry of I&E, 2015,

p.32-33), travelers might opt for the choice to cancel or reschedule their trip. The same accounts for travel

time uncertainty, as risks for road users prevail (KNMI & Ministry of I&E, 2015, p.33), inducing the risks on

disruptions.

The focus of this research lies in travelers’ perception of weather codes. Sentiment of travelers and the

effect of the reliability of the previous code on the subsequent measurement are assessed. This perception

can be seen as a proxy for the unreliability of information. When travelers perceive a weather code in such a

way that they think that the weather will indeed be causing disruptions that may lead to injury and damage,

they will be more likely to comply with the advice. To focus on this perception, only the ’unreliability of

information’ factor will be taken into account. The other factors, seen in Figure 4.3 will be taken into account

as unobserved variability, or as error term.

Traveler compliance is included in the framework as a measured variable. One could say that, in the case

of a code red, no trips will be made if all travelers would comply with the given advice. Here, we can measure

the difference between the expected counts during a day without codes, and the measured counts. If 25%

of the expected counts are measured, we can say that the compliance rate is 75%. Note that compliance

cannot be measured in cases of weather codes where the advice is not to avoid to travel. In these cases the

compliance rate will be a latent variable.

All factors are combined in the diagram depicted in Figure 4.4. This theoretical framework will be used

when explaining the impacts that will be measured in Chapter 6, Chapter 7 and Chapter 8. Hypotheses that

will be tested in this research can be derived from this framework. The ’E’ going to ’traveler compliance with

advice’ represents the variables of Figure 4.3 other than ’unreliability of information’, which are included as

an error term.

Figure 4.4: Theoretical Framework
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4.4. Introduction to the Research Approach
Now the theoretical framework has been explained, we can search for data and methods which allow for

working towards the goal of this research. This Section will sketch the data and methods that will be used.

More specific information on the methods can be found in the Chapters in which the subquestions of this

research will be answered.

4.4.1. Data
In order to choose methods, it is first necessary to know which data can be used for the analyses that will give

answers to the research questions. The following Subsections will give insight into the format of different data

sources that will be used in this research.

Travel Behavior Data
When assessing travel behavior changes in a revealed preference research, a couple of data sources can be

consulted. Some researches use GPS data, which can give information on for example route choice (Vacca

et al., 2017), while others use traffic counts in order to recognize demand patterns (Cools et al., 2009). Whereas

weather codes occur with exception, there is a need for a dataset which gives as much samples as possible.

Traffic counts are providing large sets of data, as detection loop data is widely available on Dutch primary

roads. This makes this data source applicable for recognizing demand patterns for the purpose of this re-

search as well.

As the advices during weather codes are related to the choice to travel during a weather code, we are

most interested in travel behavior related to this choice. When modeling travelers choices, generally five

choices are taken into account: frequency choice, destination choice, mode choice, departure time choice

and route choice (de Dios Ortúzar & Willumsen, 2011). The choices related to the advices of weather codes

are frequency and departure time choice. Travelers can either choose to cancel a trip, reschedule their trip

to a time frame outside the activation period of a weather code, or to not let a weather code influence their

trip. Other choices can be influenced by the weather itself, but are not expected to change purely due to the

weather codes. For example, travelers who are able to choose between traveling by bicycle or by car might

opt for a car (i.e. mode choice) during rainy conditions (Sabir et al., 2008), or might travel via other roads (i.e.

route choice), or to an alternative destination (i.e. destination choice) during snowfall (Cools et al., 2010).

Changes in frequency choice and departure time choice can be observed within traffic count data, as total

counts are decreasing in the case of trip cancellations, and daily count patterns will change in the case of trip

rescheduling. It must be stated that choices are analyzed on a macroscopic level. Individual changes will not

be seen in this analysis, but changes in average behavior will be visible.

Weather Data
As seen in this Chapter, multiple researches have been conducted to look at the impacts of weather on travel

behavior (Cools & Moons, 2010; Datla & Sharma, 2008; Keay & Simmonds, 2005; Sabir et al., 2008). From

these researches a list of important weather characteristics can be identified, for which the data should be

corrected in order to assess the impacts of weather codes. The weather characteristics that were found to be

relevant in literature are listed in Table 4.4. Except for hail and cloudiness, all these weather characteristics

are available in the KNMI archive (KNMI).

Weather Code Data
The KNMI provides an overview of weather codes per year, with factsheets. These factsheets contain more

detailed information on the weather conditions and the activation period of the weather code. The activation

period is of importance for this research, since it is the goal to assess whether travel behavior altered during

these activation periods.

A table can be derived from manually going through these factsheets. The result is attached in Appendix A.

It should be noted that the activation time is not always accurately archived. Sometimes the factsheet denotes

the time of communication about a weather code. In other factsheets the KNMI specifically denotes the time
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Table 4.4: Weather characteristics in literature and their measurement unit as logged by the KNMI (KNMI)

Weather Characteristic Measurement Unit

Hail N.A.

Snow Dummy to indicate whether snow occurred

Rain Hour sum (mm/h)

Cloudiness N.A.

Temperature 0.1 °C

Wind speed Hourly average (m/s) and highest wind gust (m/s)

Sunshine Duration of sunshine in 0.1 hours

Fog/sight conditions Horizontal sight, binned in km’s

Slipperiness Dummy to indicate whether slipperiness occurred

of activation. This will limit the accuracy with which the impacts of weather codes can be analyzed.

Sentiment Data
Multiple online platforms provide room for people to discuss on weather related topics. The archive of Twitter

provides a lot of data which might include insights into sentiment, prevailing during a weather code. This data

is accompanied by a location and a time stamp, which makes it possible to link the sentiment to a specific

weather code. Forums, more specifically aimed at discussing about weather topics, are available as well. The

Association for Meteorology and Climatology hosts such a forum. However, no specific forums are found on

which weather codes were discussed. Therefore, the data source for sentiment data will be Twitter.

Twitter allows to search a certain query, for a certain time period. The chosen time period corresponds

with the days for which a weather code was issued. For the query, it is important that all tweets in the dataset

are about the weather code. Since ’code red’ or ’code orange’ is not only used for indicating the weather

situation, but also for other situations that people are trying to get attention for, ’KNMI’ is added. With this,

chances are high that the resulting tweets are actually saying something about the weather code issued by the

KNMI. When this query and time period are specified, a list of tweets is shown. When we then sort the tweets

to ’most recent’, a list of all tweets in the specified time period, that confirm to the set query, can be called.

However, the Twitter website loads only the first 40 tweets. When scrolling down, the Twitter ’feed’ extends,

and shows more tweets. When accessing tweets through a web scrape script, using the URL to access Twitter

including a query, no more then the first 40 tweets can be loaded. The same accounts for using the Twitter

API. No method has been found to automatically acquire all tweets for a certain query. To overcome this

problem, tweets are acquired manually. By scrolling down the Twitter feed until there are no more tweets to

be shown, a full list of tweets can be acquired. Subsequently, the resulting web page can be saved as a .txt file,

which can be made ready to interpret.

When analyzing sentiment, we can look at the occurrence of certain words, which are often found for a

certain sentiment. Combinations of words, part of speech, punctuation or lengths or locations of words are

also found to be features that can say something about the sentiment of a text (Bollegala, 2017). When we

want to take into account combinations of words, there is a need for analyzing tweets individually. As the

Twitter data is acquired in a .txt file, tweets can not be interpreted individually. Therefore, the structure of the

text file is analyzed in order to be able to split the data into tweets.

Although we now have separate tweets which can be analyzed, a lot of text is present that does not con-

tribute to the textual content of the tweet. Examples of this are URL’s, or the word ’retweet’, indicating that the

tweet is a forwarded tweet, or a reaction on a forwarded tweet. If these parts of the text are removed from the

tweets, a relatively clean and interpretable piece of text is left.

4.4.2. Methods
Now the research questions and the data which will be used are known, methods can be chosen that best

lead to the conclusions that this research is aiming to draw. The following Subsections will explain the used
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methods per research question.

Method for Assessing Impacts on Traffic Volumes
When looking at traffic counts, it can be seen that the time of day and the day of the week are the largest

influences of the amount of counts. Logically, relatively many people travel during peak hours on weekdays.

Furthermore, holidays are resulting in different travel demand patterns than non-holidays Cools et al. (2009).

In order to assess the effects of weather characteristics, these cyclic patterns should firstly be corrected for.

This step will be undertaken before analyzing weather and weather code impact, in Chapter 5.

The deseasonalized counts can be analyzed with regression analyses. Linear regression is used, which

results in significant coefficients for a large share of the weather and weather code variables. However, the

Durbin-Watson statistic yields an indication for autocorrelation amongst observations, which tells us that

there is a significant chance on overestimation of the significance of the regression outcomes. Therefore, re-

gression with autoregressive errors is applied, which yields non-autocorrelated results and interpretable co-

efficients. Since multicollinearity between weather codes and weather characteristics might be problematic

for the regression model, a sequential modeling approach will be conducted as well. Here, first the weather

characteristics serve as an input for the regression model with autoregressive errors. Subsequently, weather

code variables are regressed on the residuals of the autoregressive model. This will yield the minimum impact

of weather codes on travel demand.

Regression techniques are well suited for this research, since these models allows to assess the impact

(coefficients) and significance of different weather and weather code characteristics. The model allows to

quickly remove any insignificant parameters and allows for all the measurement units (categorical, ordinal

and continuous data), as listed in Table 4.4. Therefore this method is suitable for testing hypotheses.

Method for Assessing Impacts on Departure Time Choice
When assessing the departure time choice, the demand pattern throughout a day is of interest. When a

weather code is issued during the day, people might choose to make their trip outside this period. If trav-

elers indeed reschedule their trip, this will be visible in the demand pattern during a day. Above average

counts will be visible for hours for which no weather code was active, while counts during the weather code

are below average.

A set of case studies will be selected, for which the observed counts are plotted and compared to the

expected counts based on the average counts throughout all weeks (i.e. the seasonal trend). The begin and

end of the weather code period will be plotted as well. Any deviations from the expected counts will be

analyzed.

Method for Analyzing the Impacts of the Perception of Weather Codes
As seen in the theoretical framework in Figure 4.4, two variables are stated to contribute to the perception of

weather codes, being the reliability of information and sentiment.

Reliability

By comparing the thresholds of a certain weather code with the actual measured weather conditions, a relia-

bility score can be assigned to each weather code. Subsequently, it can be assessed whether a low reliability

of a weather code negatively influences the impact of the next weather code. If the reliability of the previous

weather code correlates with the impact of the weather code on traffic counts, chances are high that the relia-

bility of the previous weather code indeed changes the compliance rate of travelers towards the travel advice

of a weather code.

Sentiment

Sentiment can be seen as a proxy for the unreliability of information (see Section 4.3). By performing web

scrapes on Twitter, and relating tweets to a certain sentiment, a general picture can be sketched on the pre-

vailing sentiment during a certain time frame.
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Several methods will be used to analyze this sentiment. Firstly, counts of words that are often paired with

negative sentiment are counted. The occurrence of these ’negative words’ can indicate the amount of tweets

with a negative sentiment during a day with a weather code. Secondly, a sample set of tweets will be manually

assessed on their sentiment. Subsequently, the prevailing words in the tweets of both neutral and negative

sentiment can be compared. These words can then be used as input to determine the sentiment of tweets

outside the sample set. Thirdly, a manual inspection of all the tweets can be done if the first two methods

do not provide any outcomes. In this method all tweets will be reviewed and labeled with a sentiment by the

author of this report.

For the analysis, three classes are distinguished. A tweet is either positive, negative, or neutral towards

the weather code as issued by the KNMI. A positive tweet might for example state that it was a good choice

that the KNMI issued a weather code. A negative tweet might for example state that the weather code was

not necessary. A neutral tweet does not hold an opinion towards the weather code. An example of this is the

statement that the KNMI issued or a code, or a description of the weather circumstances for the day.

Since this sentiment analysis of Twitter data on this theme is the first of its kind, it is not guaranteed that it

results in usable findings. This is also the reason why three methods are tested. When a method does provide

results, the analysis can give insight into the perception of weather codes, which might explain observed

variabilities.
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To be able to process data in such a way that conclusions can be drawn with respect to the research questions,

data must be acquired and prepared. This Chapter explains which data is acquired and how, followed by how

the data is prepared. First the measurement locations are determined, after which the aggregation level of

the traffic data is determined. Subsequently, the weather and weather code data is aggregated on the same

level as the traffic data. Furthermore, any anomalies in the counts are manually checked. Lastly, the data is

corrected for seasonality, which will be an important step in order to be able to find the effects of weather and

weather codes on traffic volumes and traffic demand patterns.

5.1. Measurement Locations
For this research, a set of locations are selected on which analyses are performed. Before selecting these

locations, the requirements for these locations must be defined:

• The measurement locations must have measurement data in the period between 2015 and now. This

period is aligned with the period for which detailed weather code data is available.

• The measurement locations must be in different provinces. This will make sure that the variety of

weather codes is as big as possible, since weather codes are issued per province.

• The traffic flow on the measurement locations have to be as least as possible influenced by factors other

than weather. Roads were congestion and disruptions occur regularly are to a lesser extent suitable for

analyzing weather effects on traffic volumes.

• The measurement location of the traffic flow and the weather characteristics must be in the same re-

gion, such that it can be assumed that the weather at a measurement location was similar to the weather

at the measurement location for measuring traffic volumes.

As a starting point, the NDW was consulted on road segments that are to a low degree subject to con-

gestion. The points that were stated to be relatively calm were the A30, the A67 near Eersel, the A37 near

intersection Hoogeveen, the A7 near Winschoten, the A31 near Franeker, the A58 in Zeeland, the A6 near Em-

meloord and the A79. Speed diagrams for these road segments can be found in Appendix B. Only the segment

on the A67 towards Eindhoven seems to be suffering from congestion, which is the reason for not including

this road segment in the dataset. All other segments yield relatively high speeds, with minimum speeds mea-

sured to be around 70 km/h. Note that the segment on the A37 towards Hoogeveen misses a substantial

amount of measurement data, which needs to be taken into account in further analysis.

No segments were included in South-Holland, although this is an interesting case due to the fact that

three codes red were issued in this province. Therefore some extra segments, the A20 and A29, were analyzed

in order to find a segment in South-Holland that meets the criteria. Appendix B shows that the A20 at exit 7

yields congestion in only four occasions in the time span of a month. The A29 at exit 22 yields more frequent

occurrences of congestion, making this segment less fit for the proposed analysis.

No codes red were issued in the period from 2015 untill 2018 for the province of Limburg. This makes the

segment on the A79 not useful for the next steps of the research in this report. For this reason, this segment

will not be assessed.

A list of seven road segments that fit the requirements is deducted. Table 5.1 and Figure 5.1 specify these

points that will be used for the analysis of this research. In Figure 5.1 the red dots indicate the locations of the

nearest weather stations. The measurement locations for weather and traffic are furthest away in the case of

the A30, where the distance is 20km.

21
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Figure 5.1: Traffic (brown) and weather (red)
measurement locations

Road Province Location

A20 Zuid-Holland Exit 7

A6 Flevoland Exit 14

A37 Drenthe Exit 1

A58 Zeeland Exit 37

A30 Gelderland Exit 3

A31 Friesland Exit 20

A7 Groningen Exit 46

Table 5.1: Traffic measurement locations

5.2. Aggregation level
The loop detector data from the NDW can be obtained per minute. However, it can be doubted whether

data on this aggregation level is needed for the research of this report. When plotting traffic counts at a 15

minute aggregation level, as done in the top row of Figure 5.2, shocks can be observed. As travelers do not

evenly distribute along a road stretch, and might even clump since the desired speed varies over travelers

and overtaking is not always possible, these shocks do not tell us something about the travel behavior, i.e.

frequency choice or departure time choice. When aggregating the data on a 30 minute or 1 hour interval, we

see that these shocks disappear, and a more stable demand pattern can be observed. Figure 5.2 still shows

some shocks at a 30 minute aggregation level. This is why the dataset will be aggregated to 1 hour. With this, it

becomes more likely that changes in observed patterns are due to the exogenous variables taken into account

in this report.

Figure 5.2: Traffic demand plots for different aggregation levels, on weekdays and weekend days for the A20 Westbound

When aggregating the traffic data, the weather data should be aggregated as well. Table 5.2 gives the

aggregated weather characteristics. Note that average wind is available (see Table 4.4) but is not taken into

account since it is highly correlated with the maximum wind. Additionally, the snow height is calculated. This

is done by multiplying the precipitation with a factor, dependent on the temperature. This factor is estimated

per temperature bin. The temperatures bins run from -20 to -7°C, -7 to -3°C, -3 to -1.11°C and 1.11 to 40°C,

and the corresponding factors are 20, 15, 10 and 0 (Richard Graham, 2018). For example, when it is -6°C, it

has been snowing, and the precipitation was 3mm, the corresponding snow height is 15∗3 = 45mm.
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Table 5.2: Hourly aggregated weather characteristics

Weather Characteristic Measurement Unit per hour

Snow Dummy to indicate whether snow occurred

Rain Hour sum (mm/h)

Temperature Average temperature in °C

Wind speed Average of the maximum wind speed (m/s)

Sunshine Duration of sunshine in 0.1 hours

Fog/sight conditions Horizontal sight, binned in km’s

Slipperiness Dummy to indicate whether slipperiness occurred

Snow height Snow height in mm

5.3. Visual Inspection
The next step in preparing the data is a visual inspection of the data. With this we can spot any irregularities

in the dataset that might not be explained by either the weekly or yearly cycle, weather influences, or weather

code influences. If irregularities are significant, but cannot be explained, the dataset is unfit to analyze for

the purpose of this research. All graphs that are inspected can be found in Appendix C.

For the A20, measurements for 2015 result in higher counts in comparison to the next years, as can be

seen in Figure 5.3. This can be explained by the completion of the A4 in December 2015, which serves as an

alternative route to the A20. A correction factor has been applied to correct for this alternative route. For

the westbound direction of the A37, a lot of variation can be seen, compared to the eastbound direction. As

no corresponding events can be identified with which a correction can be done, this segment will not be

analyzed further. For the westbound direction of the A31, a dip in traffic can be observed between November

2015 and June 2016. A correction factor has been applied to correct for this dip. Furthermore, the A31 yields

a significantly more (positive) outliers than other segments. This might cause problems when analyzing the

data. All other segments yield a relatively stable demand.

Furthermore it can be seen that counts are heavily influenced by holidays. This observations supports

the findings of Cools et al. (2007), in which this ’holiday effect’ is researched through autoregressive methods.

As counts during holidays are harder to predict, since the sample set is much lower than for ’normal’ days,

holidays are left out of the scope of this research.

Figure 5.3: Weekly counts on the A20 with trend lines before and after the opening of the A4
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5.4. Deseasonalization
When looking at data on a 1 hour aggregation level, some difficulties arise when weather characteristics are

regressed. For example, temperatures are relatively low during the night, and there is no sun during night

hours. At the same time, traffic volumes during night time are significantly lower than during the day. A

regression model will interpret that these low temperatures and low sunshine are causing low counts, while

actually people are not traveling because of the time of day.

For each road segment, an ’average week’ was composed. This was done by taking the average of counts

over every hour of each day of the week. When the resulting ’average week’ is subtracted from the observed

counts, the variability of counts, not explained by the weekly trend, is observed. Figure 5.4 shows a graph

with the observed and expected count, and the difference between the observed and expected counts. The

empirical 95% confidence interval is also plotted, indicating the variability of counts between weeks.

As described in the previous Section, holidays are left out of the scope for the analysis, and are not taken

into account when deriving the deseasonalized pattern.

Mathematically we can write the deseasonalization process as follows:

Ct =
1

N

N∑
i=1

ci ,t , with i = 0,1...,168 (5.1)

D t = ct −Ct (5.2)

With Ct the average count at time t for each hour of the week, N the amount of observations, ci ,t the i th

observation of counts at time t and D t the deseasonalized counts at time t .

Figure 5.4: Two Weeks with the Expected Counts Based on the Weekly Trend
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This Chapter will present the steps that are undertaken to estimate the influences of weather and weather

codes on the total travel demand. The total travel demand is the first of two travel behavior components that

will be researched in this report. At the end of this Chapter, an answer will be given on the following research

question:

1. What are the effects of weather and weather codes on frequency choice?

Looking at the theoretical framework, this Chapter researches the hypotheses that bad weather leads to

less traffic counts and that weather codes have a similar effect. The place of the research of this Chapter is

depicted in the theoretical framework in Figure 6.1, with the unshaded boxes.

Figure 6.1: Theoretical framework for Chapter 6

6.1. Least Squares Regression
As explained in Chapter 4 it is hypothesized that both weather and weather codes have an effect on travel

demand. To test the significance of these variables, regression models are set up with all the weather charac-

teristics as found in Section 4.4 and all weather codes (unique combinations of color and type).

To see what is the best way to include weather characteristics in this regression model, the characteristics

are plotted against the deseasonalized counts. An example of these plots can be seen in Figure 6.2. For some

of the road segments, a positive trend between deseasonalized counts and temperature can be observed,

which implies that warmer weather coincides with relatively high traffic counts. Furthermore, on the A31 in

Friesland, a positive correlation can be observed between wind and counts, implying that more people travel

at higher wind speed. However, other weather characteristics do not provide such insights. Although it is

hypothesized that bad weather conditions coincide with low traffic volumes, this hypothesis cannot be drawn

from these plots. This being said, it is hard to determine whether there is a linear or any other non-linear trend

which should be included in the regression model. For this reason, the most simple model, a linear model,

is chosen for modeling weather characteristics. An alternative model, in which weather characteristics were

grouped, was set up as well, but did not yield significant results.

All plots of weather characteristics and deseasonalized counts can be found in Appendix E

The full results of the Least Squares Linear Regression models for all segments can be found in Appendix F.

Here it can be observed that most of the weather characteristics are significantly impacting traffic demand,

with a recurring exception for thunder. For the weather codes applies that the expected pattern can be ob-

served with respect to the code color, as codes red are most significant, followed by codes orange. Codes for

snow and slipperiness were the most significant, followed by wind. Codes for thunderstorms were least often

found to impact travel demand significantly.

Even though the endogenous variable in the regression model is the deseasonalized traffic count, the

dataset is still a time-series. Therefore, an underlying assumption of the regression model might not be satis-

fied. For the case of a regression model, it is assumed that observations are independent amongst themselves

25
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Figure 6.2: Deseasonalized counts and weather characteristics for the A20 - Westbound

Figure 6.3: Significance of weather codes and weather for the regression model

Code Occurence # Significant % Significant

Slipperiness Yellow 10 3 30

Slipperiness Orange 11 10 91

Slipperiness Red 5 5 100

Snow Yellow 13 5 38

Snow Orange 11 11 100

Snow Red 13 10 77

Thunderstorm Yellow 13 2 15

Thunderstorm Orange 9 4 44

Thunderstorm Red 0 0

Wind Yellow 13 3 23

Wind Orange 13 7 54

Wind Red 6 6 100
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and with this, the successive errors are independently distributed. This leads to pitfalls for a regression model,

as the confidence interval for coefficients can be overestimated. (Durbin & Watson, 1950).

In the regression results in Appendix F the Durbin-Watson statistic is printed. A value of approximately

2 implies that there is no autocorrelation between subsequent observations. A value between 0 and 2 im-

plies positive autocorrelation, and a value between 2 and 4 implies negative autocorrelation. The regression

models yield Durbin-Watson values between 0.3 and 0.8, which confirms the doubt about the independence

of successive observations. Savin & White (1977) gives the upper and lower bounds of the Durbin-Watson

statistic with which it can be determined if the assumption of independence amongst observations holds.

Although the tables of Savin & White (1977) do not reach the sample size as big as the one presented in this

research, it is clear that for the datasets of the seven road segments, serial observations are interdependent.

6.2. Regression with Autoregressive Errors
The conclusion that observations are interdependent leads to the need to correct for this. Box et al. (2015)

presents an approach to cope with time-series modeling. As it is the goal of this research to unravel effects

of weather and weather codes on travel behavior, and not to find the best modeling method for handling

these variables in a time-series environment, it is chosen to work with the most basic autoregressive model.

This model needs to overcome the assumption of a least squares regression model, in which the error term is

independent, and needs to take into account the previous lags that are significantly influencing the current

lag.

Model Specification
To see which lags are significantly autocorrelated, the autocorrelation function (ACF) or correlogram is plot-

ted in Figure 6.4. The blue shaded region is the 95% confidence interval for significance of the correlation.

Figure 6.4: ACF for random time interval on the A20 - Westbound

A significant correlation can be observed at time lag 1. This means that an observation at time t is signifi-

cantly autocorrelated with the observation at time t −1. To correct the error term for this, a regression model

with autoregressive errors is proposed:

yt =
n∑

i=1
βi xi t +ut (6.1)

ut =φ1ut−1 +εt , with εt ∼ N (0,σ2) (6.2)

With yt the observation at time t , βi the coefficient for exogenous variable i , xi t the value for the exoge-

nous variable i at time t , and ut the autoregressive error term at time t . This error term consists of the error at

the previous time lag ut−1, multiplied by coefficientφ1, and a error term εt which is normally distributed with

a zero mean (Penn State University, 2018). For the case presented in this report, this can be interpreted as fol-

lows: the observed deseasonalized counts are the sum of the weighed influence of all weather and weather
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code variables and an error term. The error term is influenced by the error term in the previous observa-

tion, meaning that the amount of unexplained variability at time t −1 will serve as part of the unexplained

variability at time t .

There is some multicollinearity between weather characteristics and weather codes, which can be ex-

pected as weather codes are activated on the base of expected weather characteristics. Although counterfac-

tuals (i.e. cases in which you would expect a weather code, but none was activated, or cases where a weather

code was activated, but weather characteristics did not pass weather code thresholds) can be found in the

data, chances are that weather effects are attributed to weather code variables, or the other way around. To

find the minimum effect of the weather codes, an additional modeling approach is proposed. Here, firstly the

weather variables are regressed following the model as mathematically described in Equation (6.1). Secondly,

the residuals of this models are regressed with a linear regression model to test the significance of the weather

code variables. This model will be referred to as the ’Sequential model’, where the first model will be referred

to as the ’Simultaneous model’.

Mathematically we can write this sequential model as follows:

ŷt =
N∑

w=1
βw xw t +ut (6.3)

yt − ŷt =
M∑

c=1
βc xct +εt , with εt ∼ N (0,σ2) (6.4)

Where for Equation (6.3) applies that ŷt is the estimated value for y at time t , based on the regression

model with AR(1) errors, βw the coefficients for the weather variables, xw t the weather variable values at

time t , and ut the AR(1) error term as described in Equation (6.2). Equation (6.4) accounts for the regression

over the residuals, with the difference between the obtained and the predicted value yt− ŷt being the residuals

of Equation (6.3), βc the coefficients for the weather code variables, xct the weather code values at time t and

εt the normally distributed error term with a zero mean.

Model Results
The full results of the specified model can be found in Appendix G. The Durbin-Watson is derived and yields

values close to 2, implying that the model handled the autoregressive character of the dataset well and the

significance of the estimated coefficients is not overestimated. Overall we can see a significant increase in

model fit, as the log-likelihood of the autoregressive model is closer to zero than the regression model. This

means that, while correcting for autocorrelated errors, we were also capable of creating a model with better

predictive capabilities.

The A58 segments show a Durbin-Watson for which it could be doubted whether problems with auto-

correlation are removed. ACF plots for this segment show some autocorrelation at and around 24 legs. This

means that the deseasonalization, as performed in Chapter 5 did not filter out weekly demand patterns, as

the counts are correlated with the counts from the previous day. Although models exist that are theoretically

capable of dealing with seasonal autoregression, the amount of regressors in combination with a relatively

high seasonal leg (i.e. 24), make this model impracticable. Therefore, the results for these segments cannot

be assigned the same value as the other results.

Impacts of Weather

Figure 6.5 shows the significance of the weather variables for both the simultaneous and the subsequent

model. Over all the segments we can see that, for the simultaneous model, temperature, followed by wind,

is in the most cases significantly influencing traffic volumes. Snow and sunshine are significant for 9 out

of 13 segments. Precipitation and sight are significant for 8 out of 13 segments. Thunder (6 out of 13) and

slipperiness (4 out of 13) are the weather characteristics that are significant on the least segments.

Comparing these results with the sequential model, it can be observed that wind and snow are yielding

significant results on more segments (13/13 and 12/13 respectively). Temperature, precipitation, slipperiness

and thunder become less often significant (11/13, 7/13, 2/13 and 2/13 respectively). Sight and sunshine stay
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significant for as much segments as for the simultaneous model. This last two characteristics are less related

to weather codes than the other variables, whereas the other characteristics are part of the characteristics that

are taken into account when weather codes are activated.

Figure 6.5: Significance of weather variables

From previous studies, some hypotheses can be derived (van Stralen et al., 2015; Datla & Sharma, 2008),

on the impacts of weather on traffic volumes. An overview of these hypotheses, and the results from the

models for the different road segments can be found in Table 6.1. From this table we can see that sunshine and

thunder show in the majority of the segments an unexpected sign, which gives reason to doubt the impact of

these variables. Furthermore we see that the A31 shows unexpected signs on variables that have the expected

signs on other segments. As described in Section 5.3, the A31 yields a lot of positive outliers when manually

inspecting the counts. This is possibly a reason for doubtful outcomes when interpreting the impacts of

weather conditions on traffic volumes for this segment. Wind, temperature, precipitation, sight, slipperiness

and snow all yield the expected signs on segments other than the A31. This leads to the conclusion that these

variables are significantly contributing to travel demand.

Table 6.1: Hypotheses and model results

Hypothesis Expected sign A20 A6 A37 A58 A30 A31 A7

Wind leads to less traffic - - - - - - + -

Lower temperature leads to less traffic + + + + + + - +

Sunshine leads to more traffic + + - - - + -

Precipitation leads to less traffic - - - - -

Less sight leads to less traffic + - - - - -

Thunder leads to less traffic - - + + + - +

Slipperiness leads to less traffic - - - - -

Snow leads to less traffic - - - - - - + -

As weather characteristics have different measure scales, it is hard to say that one characteristic has more

impact on traffic volumes than the other. To give an indication of the impacts, density plots are derived and

shown in Figure 6.6. The density of coefficients over all segments is described with a kernel density estimator

(KDE). Each plot represents a variable. For both the simultaneous and the sequential model a density plot is

shown.

From these density plots, we can see for example that the coefficient for snow for the majority of the

segments is around -3, which means that per centimeter of snow, approximately 3 cars per hour less are

registered than can be expected at similar day and time combinations with no snow. For example for tem-

perature, we see less of a peak at a certain value, meaning that there is more difference in the coefficients

between segments.
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Figure 6.6: KDE for weather variables
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Impacts of Weather Codes

With the approach as described in this Chapter, a ’best fit influence’, and a ’minimum influence’ is yielded for

weather codes. In Figure 6.7, bar plots are given to indicate how often a code yielded significant results. On

the first row of plots, the weather codes are split per code type. For the simultaneous model, we can see that a

code for weather type slipperiness yields significant results 16 out of the 26 occurrences. Snow is also resulting

significant coefficients for the majority of occurrences (21/37). Thunderstorm and wind codes are less often

significantly influencing traffic volumes, with 6/22 and 13/32 occurrences respectively. When grouping the

codes per code color, we can see that yellow codes are the least significant, followed by orange codes. Codes

red have an impact on traffic volumes most of the occurrences.

For the sequential model, weather codes are yielding less significant results, as can be expected from

the modeling approach. However, the same patterns can be observed, as slipperiness is still the most often

significant, followed by snow. Thunder is the least often significant again. For the colors, yellow is the least

often influencing traffic volumes, whereas codes red are most of the time influencing traffic volumes.

Figure 6.7: Significance of weather code variables

For weather codes, all the hypotheses are that a weather code will result in less travel demand. However,

when looking at Table 6.2 we can see that this is not always the case. Code yellow for snow, orange for thun-

derstorms, and code yellow, orange and red for wind are yielding unexpected signs. All codes for slipperiness

yield the expected sign. Furthermore, the codes orange and red for snow, and codes yellow for thunderstorms

yield the expected sign as well. For these codes we can conclude that they have a clearly measurable effect on

the traffic volumes.

When looking at the KDE plots as depicted in Figure 6.8, we can see that for the most weather types, the

impacts of codes red are higher than codes orange and yellow. A more surprising result can be observed

when looking at the differences in densities between the simultaneous and the sequential model. For all the
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Table 6.2: Signs for weather code results

Weather code A20 A6 A37 A58 A30 A31 A7

Slipperiness yellow -

Slipperiness orange - - - - -

Slipperiness red - -

Snow yellow - + - +/-

Snow orange - - - - -

Snow red - - - - -

Thunderstorm yellow - - -

Thunderstorm orange + +

Wind yellow + -

Wind orange - - +

Wind red - + - -

weather codes the sequential model has coefficients that are closer to zero than the coefficients of the simul-

taneous model, which is logical, since the model specification allows the assignment of measured impacts to

the weather variables first. In most of the plots, it can be observed that the sequential model has a more con-

centrated density, meaning that over the segments, there is more consensus on the impacts of the weather

codes.
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Figure 6.8: KDE for weather code variables
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6.3. Conclusion
This Chapter tries to answer the following research question:

1. What are the effects of weather and weather codes on frequency choice?

Several model setups were tried in order to reach significant and reliable results. Linear regression did not

yield reliable results, as observations were autocorrelated, which results in overestimation of the significance

of coefficients.

A regression model with autoregressive errors, in which weather and weather code variables were in-

cluded simultaneously, yields significant and interpretable results. This model yields that wind, temperature,

precipitation, sight and snow are on the majority of the segments significantly influencing traffic counts.

Weather code variables of the types slipperiness and snow are significant for most of the segments as well,

whereas weather codes for thunderstorms and wind are significant on a relatively low amount of road seg-

ments. Furthermore, it is observed that weather codes are more often significant when the code color inten-

sifies towards red.

A regression model with autoregressive errors, in which weather and weather code variables respectively

were included sequentially, yields significant and interpretable results as well. This model describes the sta-

tistical minimum effect for weather codes on traffic volumes, and the statistical maximum effect for weather

variables. This model yields a higher significance for wind and snow, in comparison to the simultaneous

model specification. Thunder, precipitation and slipperiness are less significant than in the simultaneous

model. For weather code variables, it can be observed that codes for snow still has the most occurrences

of significant coefficients, but that only codes for slipperiness are significant on the majority of road seg-

ments. When codes are grouped per color, codes red are significant most of the occurrences. Orange codes

are slightly less significant, and yellow codes only 2 out of the 49 occurrences.

These results are in line with expectations when looking at the advices that are accompanying the weather

codes. For codes red for slipperiness, snow and wind, the advice is to avoid traveling (KNMI & Ministry of I&E,

2015)

With the result we can simulate the traffic counts with and without a weather code. An example of this

can be seen in Figure 6.9. Here, 24-01-2015 is plotted. Between 4AM and 10AM, snow occurred. However, the

KNMI did not issued a code orange or code red. The plot in Figure 6.9 shows

Figure 6.9: Example of the predicted counts with and without a code red for snow

A comprehensive overview of the model results is shown in Table 6.3. The full results of the linear regres-

sion models are found in Appendix F. The full results of the regression models with autoregressive errors are
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found in Appendix G. These weather codes are found to be significant on the large share of road segments.

The relatively high impacts for slipperiness and snow, code orange, are less expected when looking at the ad-

vices, since there is no advice to avoid traveling. This might imply that people acknowledge the risks that the

KNMI informs on, and do not value their trip over the safety of not making a trip. Another explanation may

be that not all people are aware of the meaning of a code orange, and that some travelers might see this code

as an advice to not make a trip.

Table 6.3: Overview of model results, with the average, minimum and maximum coefficient value

Code Model Significance [%] Average Minimum Maximum

Slipperiness_1.0
Simultaneous 30 -291,1 -209,3 -334,8

Sequential 0

Slipperiness_2.0
Simultaneous 100 -331,1 0 -572,4

Sequential 72,7 -124,5 -74,3 -199,7

Slipperiness_3.0
Simultaneous 100 -575,4 -440,9 -808,4

Sequential 100 -139,3 -60,2 -206,5

Snow_1.0
Simultaneous 30,8 141,4 368,8 -236,1

Sequential 7,7 102,1 102,1 102,1

Snow_2.0
Simultaneous 72,7 -286,5 -96,2 -469,1

Sequential 63,6 -99,2 -44,3 -173,8

Snow_3.0
Simultaneous 76,9 -701,5 -303,8 -1109,9

Sequential 53,8 -301,4 -144,1 -438,8

Thunderstorm_1.0
Simultaneous 23,1 -173,7 -137,9 -234,8

Sequential 7,7 -123 -123 -123

Thunderstorm_2.0
Simultaneous 33,3 246 480,2 -144,2

Sequential 0

Wind_1.0
Simultaneous 15,4 -236,2 -136,3 -336,1

Sequential 0

Wind_2.0
Simultaneous 30,8 621,5 1585,6 -328,4

Sequential 23,1 134,5 348 -150,9

Wind_3.0
Simultaneous 83,3 -499,7 -271,5 -603

Sequential 66,7 -295,8 -224,8 -466





7 Influences of Weather Codes on Departure Time
Choice

This Chapter will present the steps that are undertaken to estimate the influences of weather codes on the

daily demand pattern. The daily demand pattern is the second of two travel behavior components that will

be researched in this report. At the end of this Chapter, an answer will be given on the following research

question:

2. What are the effects of weather codes on departure time choice?

Looking at the theoretical framework, this Chapter researches the hypotheses that weather codes lead to

less traffic counts within the period of the activation of this code. The place of the research of this Chapter is

depicted in the theoretical framework in Figure 7.1, with the unshaded boxes.

Figure 7.1: Theoretical framework for Chapter 7

From Chapter 6 follows that both weather and weather codes have impacts on traffic volumes. However,

we do not know if travelers have rescheduled their trip towards a time outside the activation time of a weather

code. With this, we do not know whether people actually canceled their trips due to the weather code. To

assess this, this Chapter will study the daily demand pattern of some cases in which a weather code was

issued.

7.1. Case Study Selection
From the results of Chapter 6 we can observe that codes orange for slipperiness and snow, and code red for

wind have significant effects on traffic volumes during an hour in which these codes are active. Therefore,

these codes are most usable for the case studies in this Chapter. Since not all segments yielded significant

results, or had observations for these codes, a list can be derived for combinations of weather codes and road

segments which are interesting case studies. This list can be found in Table 7.1

Table 7.1: Case study selection

Weather Code Date A20 A6 A37 A58 A30 A31 A7

Slipperiness Orange 04-01-2016 x x x x

Slipperiness Orange/Red 05-01-2016 x x x x

Slipperiness Orange/Red 07-01-2016 x x x x x

Snow Orange 10-12-2016 x x x x x x

Snow Orange/Red 11-12-2016 x x x x x x x

Wind Orange/Red 18-01-2016 x x x x x x x

37
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7.2. Hypotheses
Before the case studies are plotted and assessed, hypotheses are determined. With these hypotheses assess

all 60 cases over 7 segments with a more dedicated focus.

The hypotheses for Chapter 6 were confirmed, from which we know that some weather codes are sig-

nificantly influencing travel demand. Furthermore, the selected cases look specifically at days that have a

code which yields significant coefficients from the statistical tests in Chapter 6. Therefore the first hypothesis

is that we can visibly observe less than average traffic volumes on periods for which a weather code, when

looking at travel demand patterns for the corresponding days.

The second hypothesis is that travelers reschedule their trip outside the period in which a weather code

is active. This will result in above average counts on the edges of the period in which the weather code is

active. Figure 7.2 reflects this hypothesis, as peaks are seen before and after the period in which a code red

was issued.

Figure 7.2: Graphical representation of the second hypothesis

7.3. Results
The full overview of the plots can be found in Appendix H.

For most of the plots, the first hypothesis can be verified, as the majority of the counts during codes orange

and red for slipperiness and snow, and codes red for wind are under the expected counts. Exceptions for this

are the cases for code red for snow on 11-12-2017 on the eastbound direction of the A6 and the eastbound

direction of the A37. Furthermore, for both directions on the A31 on 7-1-2017, and the westbound direction

on the A31 on 11-12-2017 accounts that counts are above average in the evening hours.

The second hypothesis is not verified by the majority of the plots in Appendix H. A few cases can be

found in which peaks are slightly moved towards hours in which no code was active. For the A20 in the

eastbound direction and the A30 in southbound direction on 11-12-2017, a small peak can be observed at

around midday, just before the code red is active. A similar effect can be seen for the same date on the A6 in

the eastbound direction. However, here the peak is located just inside the period of the code red. It seems that

here, travelers decided to travel before the usual evening peak to avoid traffic, instead of avoiding traveling

during code red. The A37 yields a similar pattern for 11-12-2017. Here, some travelers chose to travel before

the afternoon peak, during code orange. Hereby, these travelers avoided the evening peak as well as traveling

in code red. For the code red for wind on 18-01-2018, it can be observed for the A6 in eastbound direction

that travelers postponed their trip towards the hours after the weather code was terminated. This effect is to

a lesser extend visible for the A30 in northbound direction.

Generally we can see that rescheduling only can be observed in cases of codes red. this is also the case

when a code orange is preceding or succeeding the code red. Codes orange themselves do not lead to reschedul-

ing behavior amongst travelers.
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7.4. Conclusion
This Chapter assessed the influence of weather codes on departure time choice. This was done by inspecting

demand patterns on days with a weather code, and comparing these patterns with the pattern that is expected

under normal weather conditions.

The analysis of this Chapter is done to find an answer on the following research question:

2. What are the effects of weather codes on departure time choice?

First of all, it can be observed that less people than usual are making their trip during weather codes. The

majority of these people are canceling their trips, as no peaks outside the code periods are making up for the

dip during the codes.

For some segments, small peaks can be observed just before or after the period in which a weather code

is active. This might indicate that some people are rescheduling their trip from a time for which the KNMI

advises people not to travel, towards a time for which no weather code has been issued.
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This Chapter will present the steps that are undertaken to estimate the influences of perception of weather

codes, on the impacts of weather codes on travel demand. As seen in Chapter 4, it is expected that perception

of information influences traveler compliance towards certain advices. In the case of this research, this leads

to the hypothesis that the perception of travelers on weather codes impacts the compliance towards the ad-

vices that are given along with the activation of a weather code. At the end of this Chapter, an answer will be

given on the following research question:

3. How does traveler perception of weather codes influence the compliance towards weather code advices?

The place of the research of this Chapter is depicted in the theoretical framework in Figure 8.1, with the

unshaded boxes.

Figure 8.1: Theoretical framework for Chapter 8

From Figure 8.1 follows the hypothesis that sentiment and the reliability of a previous weather code are a

proxy for the unreliability of information. This subsequently influences the traveler compliance with advices,

which has a negative effect on the impacts of weather codes on travel behavior.

8.1. Reliability
The first part of the research on the impacts on perception on the working of the weather codes looks at

the reliability of codes. It is hypothesized that when a weather code at time t is unreliable, the impacts of a

weather code at time t +1 is relatively low. On the other side, it is expected that a reliable code will lead to

more impact the next time a weather code is issued. Note that the reliability of a code at time t has already

been found to be significantly influencing travel behavior at time t , as the influences for several weather

characteristics were found to be significant in Chapter 6

Measuring Reliability
If we want to find the relationship between the reliability of a weather code, and the impact, we first must

define reliability.

(KNMI & Ministry of I&E, 2015, Appendix 1) gives an overview of the threshold values for weather codes,

which are explained in Section 4.1. Although for some codes multiple weather characteristics can determine

the code color, the thresholds for the weather characteristics are very clearly defined. This means that, for

historical data, we can accurately determine whether a weather code met the threshold values. Note however,

that a weather code is issued for a province, while weather data is measured at one geographical location in

this province. Therefore, a code might be justified by the weather in other parts in the province. As the

chosen traffic measurement locations and weather measurement locations are chosen as close together as

possible, we assume that the perceived reliability of the code by travelers on the measured segment can be
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approximated by the comparison of the weather at this location and the threshold values for the weather code

issued.

As the data used in this research is aggregated per hour, the reliability of the weather code can be assessed

per hour. If the conditions for the issued weather code are met at hour h, the reliability at hour h is 1. If the

threshold values for weather characteristics related to the weather code are not exceeded, the reliability is

0. Subsequently, the reliability for the code on day d is determined as the mean of the reliability over all the

hours in which the weather code was active.

Mathematically we can write this down as:

R = 1

H

H∑
h

Rh , with h ∈ H (8.1)

Where R is the reliability, Rh the reliability at hour h, and H being the collection of hours at day d for

which a code was active.

Results
The correlation between the reliability of the previous code and the impact on counts for the next code are

checked by plotting the measurements with the reliability and the deviation from the expected counts 1 on

the x-axis and y-axis respectively. A full overview of these plots can be found in Appendix I, and an example

is shown in Figure 8.2.

Figure 8.2: Reliability of previous code in relation to deviation from expected counts for the A6

It can easily observed that, for the plots per segment, the two variables are not correlated. However, this

can be due to the lack of observations. Therefore, all datasets are combined to plot all observations for all

segments in one figure. The result is depicted in Figure 8.3. Here we can see a relatively high amount of

positive deviations at for reliability values between 0 and 0.2. The trend line fits the data better than the

individual segments. When we statistically test this trend line, this better fit is confirmed with a p-value of

0.034.

To confirm the findings, reliability was added in the autoregressive regression model as presented in

Chapter 6. Reliability of the previous weather code affected the counts significantly for the A20, A37 and

A31 in eastbound direction, and the A6 and A58 in both directions. However, both increases and decreases of

counts are observed, from which we can conclude that the effect of reliability of the previous weather code

on travel behavior is dubious.

8.2. Sentiment
The second part of this Chapter looks into the prevailing sentiment during weather codes. As mentioned in

Section 4.4.1, the data used for this analysis is data from Twitter. With this sentiment analysis, it is tried to

1Counts as expected based on the weekly pattern as described in Section 5.4
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Figure 8.3: Reliability of previous code in relation to deviation from expected counts for all road segments

reveal what people think about the weather code as issued by the KNMI. The outcomes might give insight

into the reasons why people do or do not travel during a weather code.

Hypotheses
A theory driven approach is used to research the sentiment, prevailing during a weather code. This is done

at the hand of hypotheses. For this Section, it is hypothesized that a negative sentiment is correlated with a

lower impact of a weather code on travel behavior. This follows from the hypothesis that people are less likely

to follow up advices which they don’t believe, or perceive as unreliable. Furthermore, it is hypothesized that

the reliability of previous weather codes plays a part in the sentiment of people. When a previous weather

code was unreliable, people will question the next weather code. It is hypothesized that this pattern can be

observed in Twitter data as well.

Note that the focus lies on negative sentiment. Experience with the analysis of Twitter data at CGI re-

sulted in the conclusion that Twitter is hardly used to express positive sentiment on subject matters. It is not

expected that the case presented in this research yields different results.

Results of Used Methods
As explained in Section 4.4.2, three methods were used for the sentiment analysis. The suitability of the three

methods was tested on a small dataset, to see which methods can provide information on the sentiment of a

list of tweets.

The first method first uses a list of words and combinations of words which are related to a certain senti-

ment, and then searches the tweets for these words. The python package of pattern-nl is used, which uses a

lexicon of adjectives to determine sentiment. The package has been tested to analyze book reviews. For this

case, the package was able to predict the correct sentiment for 82%. However, the package was not able to

cope with the case of this research. This can be explained by the fact that not all negative tweets are negative

with respect to the weather code itself. Examples of codes which were considered to be negative are:

"vandaag is draaien in de torenkraan echt onmogelijk wind boven 100 km per uur.", translated as "Today,

working in the tower crane really is impossible, winds above 100 km/h."

"het is weer code rood! en dat betekent in nederland dat treinen niet rijden en dat thuis komen dus erg lastig is.

heb jij een plekje over in de auto voor iemand die graag naar huis wil? tweet ons met hashtag

#carpoolcoderood", translated as "It’s code red again! This means for the Netherlands that trains are not

running and that traveling home is very hard. Do you have a spot left in the car for someone who wants to go

home? Tweet us with the hashtag #carpoolcoderood"

As the pattern-nl package was not usable in this case, a list of words that would indicate a negative senti-

ment with respect to weather codes was put together. In order to be able to confirm or deny our hypothesis,

these words were specifically targeting opinions with regard to the reliability of a weather code. However,
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searching the list of tweets for the words in this list did not result in a useful dataset as well. Tweets with a

negative sentiment were not filtered with this approach.

With the second method, a subset of the total set of tweets is assessed. For the tweets in this subset, it

is per tweet manually determined what sentiment is prevailing. Based on the sentiment classification of this

subset, we determine characteristics of each sentiment class. Subsequently, the full list of tweets can be tested

for these characteristics, and a class can be assigned. However, the large share of words in both sentiment

groups were overlapping, which made it not feasible to recognize features of a sentiment class.

The last method is a manual inspection of all tweets, to filter out the negative tweets. While being a very

labor-intensive method, this is the only method found by the author to accurately compile a list of tweets that

expressed a negative sentiment.

Data Selection
Since only the third method was usable for the sentiment analysis, it was not feasible for this research to

assess all the days for which a weather code was issued, since this method is very labor intensive. Therefore,

a selection of the days with a weather code was made. The results of the analysis on reliability of the weather

codes in Section 8.1 are used to make this selection. The selection of days is presented in Table 8.1. They were

chosen in such a way that the characteristics of the codes, reliability and impact varied over the selection.

With this, it is hoped that the sentiment is varying over the selection as well, which could provide insights on

the link between code characteristics and the prevailing sentiment.

Table 8.1: Selected days for the sentiment analysis

Date
Reliability

previous code

Reliability

code
Impact Weather code

09-12-2017 low medium medium Snow/slipperiness orange

11-12-2017 medium high high Snow/slipperiness orange/red

18-01-2017 low low low Wind orange/red

Results
For the days as presented in Table 8.1, respectively 206, 725 and 507 tweets were available. The tweets that

were assessed to be negative with regards to the weather code are presented in Table 8.2. for 09-12-2017

only two negative tweets were found that had both the words ’code’ and ’knmi’ in them. For 11-12-2017 this

number was 10, while 18-01-2018 yields 6 negative tweets. Some tweets are about the unreliability of weather

codes. In other tweets, people express that they don’t agree with the danger that the KNMI warns for. Besides

this, several tweets express their dissatisfaction on the timing of the code red.

With a dataset as small as Table 8.2 it is difficult to confirm or deny the hypotheses. It can be seen that for

18-01-2018 half of the negative tweets were complaints about the timing of the code. For this day, we see a

low reliability, although there was in fact a very heavy storm. This can be explained by the used method for

measuring reliability, which takes into the average reliability over all hours that the code was active. If a code

is active longer than necessary, reliability is going down.

The most negative tweets are found for 11-12-2017. This contradicts the hypothesis that more negative

tweets will be observed at weather codes with a low reliability, since the reliability for the code on 11-12-2017

was high. Since the total amount of tweets were highest for this day, the amount of negative sentiment might

be more related to the total attention that is given to the weather code.

8.3. Conclusion
This Chapter tried to explain the relation between the perception of travelers towards weather codes, and

the compliance rate of travelers towards travel advices that were given along with the activation of a weather

code. With this, it was tried to answer the following research question:

3. How does traveler perception of weather codes influence the compliance towards weather code advices?
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Table 8.2: List of negative tweets during the selected dates with the words ’code’ and ’knmi’

Date Negative Tweet

09-12-2017
code oranje. dan weet je dus dat niets maar dan ook niets gebeurd meestal.

geen paniek. het komt geregeld voor dat een code oranje voorbarig is gebleken en dat het

toch nog een prachtige, zonnige dag werd.

11-12-2017

anno 2017. zoek "winter 1963". we zijn volgens mij de weg kwijt. code rood = zoveel

overlast dat de maatschappij ontwrichtend kan zijn.

overal is er chaos met sneeuw en hier ligt het alweer te smelten. gisteren code oranje en

gladde wegen, maar ik heb helemaal niks gemerkt.

code rood afgegeven door knmi... nou hier in fryslan ligt niets hoor...

code rood. code rood! code rood!!! code roooooooood!!!!!! serieuze vraag aan het knmi: is

er ook nog een code zwart, voor "nu zijn jullie allemaal serieus fucked"? want code rood

voor een paar sneeuwvlokken maak je je wereldwijd toch een piepklein beetje belachelijk

mee...

okay. code rood knmi. klinkt alsof nederland vergaat. wat nu? wat betekent code rood in

landen waar dagelijks zo’n dik pak sneeuw ligt? zoveel vragen!

komt het knmi even aanzetten met code rood. hele dag nog heen sneeuwvlok gevallen

typisch nederlands: mensen afraden de weg op te gaan, aanraden thuis te werken. maar

dan niet de code rood afkondigen die dit rechtvaardigt, knmi

het knmi maakt de mensen weer is gek met hun code oranje! de meeste wegen zijn heel

goed begaanbaar! maar natuurlijk zullen collega’s die ver af wonen er weer zijn en

diegene die relatief dichtbij wonen zeggen dat ze er niet doorkomen...

ohh.. ahhh...men waar blijft de voorspelde code rood?!?!?!?

knmi geeft opnieuw code oranje af wegens verwachte sneeuwval. een instantie die

opgedoekt kan worden. steeds weer code oranje of rood en gebeurt er niets. dus

opdoeken met de instantie die verkeerde info verstrekt en mensen op het verkeerde been

zet

18-01-2018

de volgende keer moet er bij deze extreme weersomstandigheden eerder code rood

worden afgegeven. daarnaast moet de overheid de scholen verplicht gesloten houden, en

een verbod van vrachtwagens om te rijden! alleen waarschuwen werkt niet!

het is hier nu bijna windstil. gaan we die code ook nog even publiekelijk intrekken a.u.b.?

knmi, zijn jullie vergeten code rood in te trekken?

trekt maar in weer in die code rood voor vleuten/de meern/utrecht het valt hier nu reuze

mee

hee, knmi, eerst code oranje afkondigen, waarmee velen naar school/werk moeten, en

dan code rood waardoor iedereen thuis moet blijven? beetje moeilijk als je al op

werk/school bent!

knmi met die weeralarmen geloof ik niet meer. paniekzaaierij. wat vroeger winter was

met een dagje sneeuw is vandaag de dag ineens een code rood waard...
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Two themes were researched, which were hypothesized to be a proxy for this compliance. First, the reli-

ability of weather codes is assessed to see whether a correlation exist between the reliability of the previous

weather code with impacts on travel behavior during the next weather code. When assessing road segments

for this correlation separately, no correlation can be found. However, when combining the data sets, a cor-

relation was found, indicating that a low reliability of a previous code will lead to less impact for the next

weather code. However, this conclusion was not confirmed when reliability of the previous weather code

was added to the variables of the autoregressive regression model of Chapter 6, which casts doubts on the

certainty with which conclusions can be drawn with respect to this variable.

The second theme that was researched was sentiment. Efforts have been made to compute the charac-

teristics of tweets with a negative sentiment, and to classify tweets based on a predefined list of words which

would be correlated with a negative sentiment. However, only a manual inspection of all tweets proved suf-

ficient to filter out tweets with a negative sentiment. The resulting list of tweets was 18 tweets long, which

makes it hard to confirm any hypotheses. Although the findings have their limitations, the hypothesis that

more negative sentiment will prevail amongst tweets if the reliability of a weather code is low, could not be

verified. On the other hand, the used method for measuring reliability of a code gave the insight that a low

reliability can coincide with complaints about the timing of a weather code.



9 Conclusion

In this chapter, the answer on the main research question will be provided. In the previous Chapters, the

influence of all components in the theoretical framework of Figure 4.4 is estimated. Three subquestions

are answered, which have given insights into the effects of weather codes on travel behavior from different

perspectives. Answers to the three subquestions therefore give an answer to the main question:

What are the Impacts of Weather Codes and Travelers’ Perception of Weather Codes on Travel Behavior?

9.1. Impacts on Travel Demand
The first part of travel behavior that is analyzed is the travel demand per hour. Both weather and weather

code variables were taken into account.

First, a linear regression model was used to unravel the effects of these variables. However, a low Durbin-

Watson statistic pointed out that there was a high chance of correlation between observations, which is a

common risk when dealing with time-series. As regression models assume independence between observa-

tions, normal regression models are not fit for this dataset, as significance of variables will be overestimated.

Therefore, a regression model with autoregressive errors is used to assess the impacts of weather character-

istics and weather codes. This model, which takes into account the previous observation in the error term of

the current observation, was able to model the variables while dealing with autocorrelation.

A regression model with autoregressive errors was run with both weather and weather code variables.

This simultaneous model resulted in significant parameters for the weather variables wind, temperature, sun-

shine, precipitation, sight and snow height for the majority of the road segments that were analyzed. These

parameters yielded the expected sign, except for sunshine, which yielded a negative coefficient, implying that

more sunshine leads to less traffic. Thunder also yielded unexpected coefficients, for four cases, implying that

thunderstorms increase the travel demand. The findings are confirming part of the results of Cools & Moons

(2010), except for the results on the sunshine variable, which yields positive coefficients for the work of Cools.

Weather codes for slipperiness and snow yield significant results for most of the road segments. Codes for

thunderstorms and wind are less often of influence on travel demand. Furthermore, the expected pattern

is confirmed with respect to the color of a code. Codes red are most often significant, followed by orange.

Codes yellow are the least often significant. The vast majority of the weather codes yields the expected sign,

implying that travel demand reduces when a weather code is active. The highest impact is measured for snow

code red, which in some cases resulted in 1000 counts less than expected in an hour.

Besides the simultaneous model, a subsequent model is run that first includes the weather variables in a

regression model with autoregressive errors, and subsequently runs a linear regression model on the residuals

of the autoregressive model. This is done to determine the minimum of the impacts of weather codes. This

follows from the hypothesis that travelers are primarily influenced by weather. The subsequent model is able

to provide significant result as well. The results differ from the simultaneous model on a couple of points.

Wind, temperature and snow height were more often significantly influencing traffic volumes in comparison

to the subsequent model. Precipitation, thunder and slipperiness were less often yielding significant results.

Furthermore, as expected, weather codes are less often significant. The same patterns as for the simultaneous

model can be observed, as codes for snow and slipperiness are the types with the most significant impact.

Codes red, followed by codes orange, are most often influencing travel demand when looking at code color.

Code yellow for slipperiness, code orange for thunderstorms and code yellow for wind yield no significant

results.

9.2. Impacts on Departure Time Choice
Besides the effect of weather codes on travel demand, this research also looked at effects on departure time

choice. The hypothesis that the travel demand outside the period of a weather code will be above average is

tested. If this can be observed, this means that some travelers have rescheduled their trip in order to avoid
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traveling during a weather code. The codes for 04-01-2016, 05-01-2016, 07-01-2016, 10-12-2016, 11-12-2016

and 18-01-2016 are studied, covering all weather codes for which Chapter 6 proved that they have a significant

influence on travel demand. The demand pattern for these days was plotted for all road segments. In the

same plots the expected counts, and the period in which a weather code was active was shown. The demand

pattern was compared to the expected counts, and deviations were interpreted. For most of the studies, it

was clearly visible that the demand during hours for which a code was active was lower than we would expect

on a day without a weather code. However, peaks just before or after the code period were less clearly visible.

For some segments, small peaks can be observed just outside the weather code period, indicating a shift

in demand and rescheduling of trips by travelers. However, far more travelers tend not to travel, instead of

rescheduling a trip.

9.3. Perception and Compliance
From the theoretical framework follows that the impact of weather codes on travel behavior is influenced by

the compliance of travelers towards advice. More specifically in this case, the advice refers to the advice that

accompanies a weather code. It is hypothesized that reliability of weather codes and the prevailing senti-

ment during the activation period of a weather code are a proxy for the unreliability of information, which

influences the compliance of travelers towards advice.

First, it is analyzed whether the reliability of the previous weather code correlates with the impact of

the next weather code. Per hour for which a weather code was active it is checked whether the weather

characteristics exceed the threshold values that are determined for the activated weather code. If so, the

reliability is 1, while it is 0 if the threshold values are not met. The reliability of a code is then determined

per day by taking the mean of all hourly reliability scores for the hours for which a code was active. When we

plot these reliability scores against the deviations from the expected counts of the next code day, we can see

that they are significantly correlated on a 95% confidence interval. It is observed that a low reliability for the

previous weather code is often paired with a lower impact for the next weather code.

Secondly, Tweets are analyzed during three days for which a code was active, to see whether reliability of

a weather code, or previous weather codes are affecting the sentiment with respect to weather codes. 1438

tweets were manually assessed on their sentiment. 18 of these tweets were defined to be negative regarding

the weather code. With this small dataset left, drawing conclusions is hard. It could however be observed that

a low reliability does not always lead to more negative sentiment.
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This last Chapter will end the research with a discussion on the methods that are used to come to results, and

the results themselves. Furthermore, recommendations are done for further research

10.1. Discussion
This research adds new insights into the field responses of travelers towards weather and, more specifically,

towards weather codes. Besides this work, the author of this report found one other work on this theme, found

in van Stralen et al. (2015). However, as this concerned a stated choice research, this report is the first revealed

preference research on the effects of weather codes and weather related travel advices on travel behavior.

The results for the influences of weather codes can only be compared to the work of van Stralen et al.

(2015). This paper includes not only trip frequency choice and departure time choice, but route choice and

mode choice as well. However, departure time choice was included here as the choice to not travel during

the morning peak. The stated choice results for trip frequency choice were confirmed by the research in

this report, as travel demand decreased for hours with a weather code. The work of van Stralen et al. (2015)

includes only code red (weather alarm), whereas this report also included codes yellow and codes orange.

The inclusion of codes orange resulted in interesting results, whereas codes orange for slipperiness and snow

were significant on multiple road segments.

Thunderstorms and slipperiness were included in the weather variables as dummies. Historical data from

the KNMI did not allow us to differentiate between ’some thunder’ and ’heavy thunder’. First of all, this might

have reduced the significance of the results for these weather variables. Secondly, this has implications for

the way we can measure the reliability of weather codes for these weather types.

Information on weather codes has been retrieved from fact sheets that are published by the KNMI. These

fact sheets do not always provide information on the exact timing of a weather code. Furthermore, no in-

formation is known on the timing of the communication of these weather codes towards the public. When

a weather code is communicated far before the activation, this might lead to different travel behavior than

when a weather code is activated on relatively short notice.

Although the manual corrections and deseasonalization process in Chapter 5 and, to a lesser extend,

the weather and weather code regression in Chapter 6 take a way a lot of variability, there are still some

unexplained trends and peaks in travel demand. Although road segments are analyzed that are relatively low

on congestion, this variability can probably be explained to some extend by the traffic intensity. Furthermore,

incidents can have big impacts on traffic volumes, as road capacity can be severely decreased in case of closed

lanes.

The results in Chapter 6 yield information on the coefficients and significance of weather variables. How-

ever, the research methods as proposed were not aimed at optimally modeling the effects of weather on

travel behavior. Interaction effects between time and weather, or collinearity between weather character-

istics themselves are not taken into account. Therefore, improvements are possible for measuring the effect

of weather on travel demand.

Societal Relevance
As mentioned in Chapter 3, the theme of weather codes is often part of the societal debate. As the use and

effectiveness of weather codes are criticized in opinion articles, this report shows what the empirically mea-

surable effects were of the weather codes in the last three and a half year. As weather codes do clearly affect

travel demand, we can state that some citizens take the advices of the KNMI into account. Note that this is

an additional effect, besides weather effects themselves. So even though travelers are able to assess safety

risks while traveling themselves, as stated in Chorus (2010), people are influenced by the risk assessment of

the government, or the KNMI. Although the meaning of different codes is not always clear for travelers, the

regression results show that codes red are more often taken seriously than codes orange. Codes orange are

in turn more often taken seriously than codes yellow. From this we might conclude that, although unclarities
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might exist, the average traveler is more likely to adjust his travel behavior during a more serious warning.

For the road authority (RWS), who is guarding the safety of roads, this change in travel behavior is positive.

Safety is decreasing if cars are closer to each other, which happens more in the case of high traffic intensity.

The decrease in travel demand during weather codes might provide safer infrastructure in comparison to a

situation without weather codes.

During the analysis of Twitter data, and while assessing the reliability of weather codes, it was observed

that the timing of weather codes is often not accurate. As the reliability of weather codes was slightly cor-

related with the impact on travel demand for the next weather code, it is a risk to issue a weather code un-

necessarily. A surplus of weather codes might lead to less travelers changing behavior, which might have

consequences for instances where extreme weather does indeed disrupt the society.

Although changes in travel behavior can be observed during weather codes, we can also observe that the

large share of travelers is making a trip even during codes red. It is the belief of the author of this report that

this is the consequence of the attitude of travelers towards weather related warnings from the KNMI. This

is consistent with the statements in Chorus (2010), saying that one advice or weather code is to generic for

individual travelers.

The conclusion that weather codes in the current state have impacts on travel behavior, do not imply that

abolishment of weather codes would lead to more travel demand. As the KNMI takes some of the responsi-

bility of travelers away to determine weather it is safe to travel, travelers might be less regardful towards the

weather itself. As predictions on weather are likely to become more accurate and information is becoming

more accessible for travelers with an increase in internet connectivity, travelers might be more capable of

assessing risks for themselves than in the past.

10.2. Recommendations for Further Research
The approach taken in this research provided new insights, but also had its limitations. The wish to include

data for different provinces, which allowed us to assess more weather codes, led to the choice to only include

highway segments. As demand patterns can be different for secondary roads, it would be interesting to do

similar analyses for these secondary roads. This statement is supported by van Stralen et al. (2015), who

found that a weather alarm was of significant influence for the choice of avoiding the motorway.

Autoregression played a part in the models with which the impacts of weather codes on travel demand

were calculated. However, it is likely that the variable time plays a bigger role in the composition of travel

demand. For example, the combination of weather characteristics with time might have a specific effect on

travel demand. Besides this, combinations of different weather characteristics might alter travel demand. We

could for example hypothesize that the combination of warm weather and sunshine leads to more people

traveling towards for example beaches. Future research can be conducted, including such interaction effects.

The research in this report does not differentiate on travel purpose. Stated preference work points out

that differences can be measured between changes in travel behavior for utilitarian and recreational trips,

when varying the weather circumstances (van Stralen et al., 2015). We can imagine that people who feel less

obligated to make a trip are more likely to be influenced by weather codes as well. The research in this report

does not touch upon such hypotheses. Future research could model the share of travelers with a certain travel

purpose, for example by looking at the functions of the urban areas in the origin and destination location. For

example, more recreational trips are expected to and from shopping malls, while more utilitarian trips are

expected to and from business districts. Differences in changes in travel demand between these two types of

locations can be a proxy for the compliance rate of travelers of different travel purposes.

The research in this report assumes that travelers are primarily influenced by weather, and subsequently

can be additionally influenced by weather codes. However, no research has been found that confirms this

assumption by means of a stated choice experiment. It’s recommended for future research to look into the

causal relationships into the field of weather, weather codes and their impacts on travel behavior. This can be

done by means of a stated choice experiment in which travelers prioritize the variables that influence their

travel behavior.

Although substantial efforts were made, the research in this report yielded summary conclusions with
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respect to the relation between sentiment and compliances rates. It proved to be hard to use Twitter data

for this purpose. However, the insights that the research aimed to give might be valuable for insights into

the best way of communicating about the weather codes. Furthermore, insights into the motivations for

the choice of travelers to (not) make a trip during the active period of a weather code might be revealed

if the sentiment amongst travelers can be analyzed. Future research might be conducted with the help of

surveys, that collect data during, or just after the occurrence of a weather code. This survey should be aimed

at revealing travelers opinions with regards to the KNMI issuing the code. Besides this, questions should

be asked on the motivations of travelers to stay home, or to make a trip and disregarding the travel advices.

Furthermore, artificial intelligence (AI) is increasingly powerful in analyzing text. New tools might be able

to decide whether a Tweet or a news article is about a weather code. With this, larger amounts of tweets

might be harvested than was done with the query in this research. From this larger data set, AI might also be

capable of determining some form of average sentiment. One of the limitations of the sentiment analysis in

this research was that the tweets were in Dutch. As new developments in natural language processing (NLP)

are mainly done in the English language, research on sentiment with regards to weather codes might prove

to be easier for an English speaking country. Another limitation of this research was that a large share of

the tweets were (re-)tweets of news articles that were neutrally stating the conditions of the weather or the

weather code. If researchers are able to filter out this type of tweets, the resulting list of tweets contains a

higher share of tweets with opinions on the weather code.

10.3. Recommendations for Stakeholders
As discussed in Section 3.2, the results of this research might be interesting for the KNMI and RWS. From the

results, some recommendations can be drawn up.

The KNMI states that it hopes that advices that are given with weather codes are taken seriously by trav-

elers. As seen in the analyses of this report, low reliability of the previous weather code is often paired with a

low compliance rate towards travel advices. As the compliance rate is seen as a proxy for how serious travel-

ers take the advice of the KNMI, this means that it is important for the KNMI that weather codes are reliable.

Making the weather code more location specific and more time specific might be helpful for this reliability.

Nowadays, weather codes are issued per province, while extreme weather can occur very local. Furthermore,

the timing of a weather code is often unclear. Even the official documentation of the KNMI does not always

provide an answer on the precise activation time of a weather code. This makes it harder for travelers to

reschedule their trip towards a time outside the activation period. Furthermore, when a code red is issued

while the extreme weather is not occurring yet, travelers might think that the weather code is unnecessary.

For the RWS, we can conclude that, as some weather codes influence travel behavior, weather codes are

a valuable variable to include in traffic forecasting models. The RWS can expect less traffic in the case of

weather codes red for slipperiness, snow and wind, and for codes orange for slipperiness and snow. If this

updated traffic forecasting model is combined with models that can predict congestion or chances on acci-

dents, the chances on congestion and accidents during weather codes can be more accurately predicted.

As the RWS is aiming to reduce the amount of trips during the active period of weather codes, it might be

useful to search for other ways to reduce the amount of trips during extreme weather. The weather code and

its advices are reducing the amount of trips, but still the larger share of trips is undertaken. Apparently, the

majority of travelers is not willing to change travel behavior due to advises from the KNMI.





A Weather Codes Overview

This Appendix gives an overview of all the days on which there was a code orange or code red issued. Although

codes yellow are included for the days that yielded a code orange or red as well, days that yield only code

yellow are not logged. The columns represent the provinces and regions for which the KNMI separately issues

weather codes: Drenthe (Dr), Flevoland (Fl), Friesland (Fr), Gelderland (GD), Gronignen (Gr), Limburg (LB),

Noord-Brabant (NB), Noord-Holland (NH), Overijssel (Ov), Utrecht (Ut), Wadden Islands (Wa), Zeeland (ZL)

and Zuid-Holland (ZH).

Table A.1: Weather codes per day per province between 2015 and 2018 (KNMI, 2018b)

Reason Date Dr Fl Fr GD Gr LB NB NH Ov Ut Wa ZL ZH

Wind gusts 25-07-15

Thunderstorm 31-08-15

Wind gusts 17-11-15

Wind gusts 29-11-15

Slipperiness 3-01-16

Slipperiness 4-01-16

Slipperiness 5-01-16

Slipperiness 6-01-16

Slipperiness 8-01-16

Thunderstorm 30-05-16

Thunderstorm 7-06-16

Thunderstorm 20-07-16

Slipperiness 1-01-17

Slipperiness 6-01-17

Slipperiness 12-01-17

Wind gusts 23-02-17

Thunderstorm 19-07-17

Wind gusts 13-09-17

Wind gusts 5-10-17

Slipperiness 9-12-17

Slipperiness 10-12-17

Slipperiness 11-12-17

Slipperiness 17-12-17

Wind gusts 3-01-18

Wind gusts 17-01-18

Wind gusts 18-01-18

Thunderstorm 27-05-18

Thunderstorm 29-05-18

Count code orange 9 9 13 12 14 11 12 9 13 11 10 7 10

Count code red 4 2 4 2 4 0 2 3 2 2 0 2 3
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B Speed Diagrams

The following diagrams show the average speeds on road segments, driven between the 4th and 31st of March

2018, between 6AM and 8PM. All data is gathered from the NDW database. All counts are aggregated on 15

minute intervals.
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C Manual Inspection

A20 Zuid-Holland

For the A20 segment, a drop in counts can be seen in December 2015. This drop can be explained by the

opening of the A4, which serves as an alternative route for routes that use the A20.

Figure C.1: Daily counts on the A20

A6 Flevoland

For the eastbound direction, a drop in counts can be observed in May 2017. Furthermore, the dataset for the

westbound direction misses records from May 2018 onwards. The eastbound direction dataset misses data

from April 2018 onwards.

Figure C.2: Daily counts on the A6

A37 Drenthe

The counts for the westbound direction of the A37 follow a relatively unstable trend in comparison to other

trends. As the variability that cannot be explained by weather circumstances is relatively high, estimation of

the impacts of these weather circumstances will be tough. For this reason, the westbound direction of the

A37 will be left out of the scope of this research.

The data for the eastbound direction runs until March 2018.
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60 C. Manual Inspection

Figure C.3: Daily counts on the A37

A58 Zeeland

For the A58, no break in the trend is observed. Both directions have records until March 2018.

Figure C.4: Daily counts on the A58

A30 Gelderland

For the A30, no break in the trend is observed.

Figure C.5: Daily counts on the A30
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A31 Friesland
For the westbound direction of the A31, a dip in traffic can be observed between November 2015 and June

2016. The rest of the year, and the full dataset for the eastbound direction yield a steady trend. However,

relatively many peaks can be observed in comparison to other trends.

Figure C.6: Daily counts on the A31

A7 Groningen
No breaks in the trend can be observed for the A7. The eastbound direction has records from May 2015

onwards.

Figure C.7: Daily counts on the A7





D Deseasonalization

A20 Zuid-Holland

Figure D.1: Random week with the Expected Counts Based on the Weekly Trend

A6 Flevoland

Figure D.2: Random week with the Expected Counts Based on the Weekly Trend

A37 Drenthe

Figure D.3: Random week with the Expected Counts Based on the Weekly Trend
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64 D. Deseasonalization

A58 Zeeland

Figure D.4: Random week with the Expected Counts Based on the Weekly Trend

A30 Gelderland

Figure D.5: Random week with the Expected Counts Based on the Weekly Trend

A31 Friesland

Figure D.6: Random week with the Expected Counts Based on the Weekly Trend
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A7 Groningen

Figure D.7: Random week with the Expected Counts Based on the Weekly Trend





E Weather Characteristics

A20 Zuid-Holland

Figure E.1: Deseasonalized counts and weather characteristics for the A20

A6 Flevoland

Figure E.2: Deseasonalized counts and weather characteristics for the A6

A37 Drenthe

Figure E.3: Deseasonalized counts and weather characteristics for the A37
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68 E. Weather Characteristics

A58 Zeeland

Figure E.4: Deseasonalized counts and weather characteristics for the A58

A30 Gelderland

Figure E.5: Deseasonalized counts and weather characteristics for the A30

A31 Friesland

Figure E.6: Deseasonalized counts and weather characteristics for the A31

A7 Groningen

Figure E.7: Deseasonalized counts and weather characteristics for the A7



F Model Results - Linear Regression

In this Appendix, the linear regression results can be found for all seven road segments.

A20 Zuid-Holland

Model: A20 Westbound Model: A20 Eastbound

No. Observations 22874 No. Observations 22786

Deg. of

freedom
17 Deg. of freedom 17

Log-Likelihood -175394 Log-Likelihood -175106

R-squared 0,081 R-squared 0,067

Durbin-Watson 0,843 Durbin-Watson 0,809

Coeff Std error p-value Coeff Std error p-value

maxWind -3,905 0,250 0,000 maxWind -4,227 0,255 0,000

Temperature 16,185 0,622 0,000 Temperature 16,348 0,633 0,000

Sunshine 9,589 1,055 0,000 Sunshine 2,704 1,075 0,012

Precipitation -45,854 6,958 0,000 Precipitation -48,677 7,079 0,000

Sight -2,052 0,148 0,000 Sight -1,249 0,151 0,000

Thunder -64,939 40,325 0,107 Thunder -13,803 41,015 0,736

SlipperinessDummy -112,246 42,058 0,008 SlipperinessDummy -17,521 42,777 0,682

SnowHeight -10,717 1,228 0,000 SnowHeight -10,512 1,249 0,000

Slipperiness_1.0 -207,837 231,696 0,370 Slipperiness_1.0 256,330 235,659 0,277

Snow_1.0 216,844 164,934 0,189 Snow_1.0 250,189 167,754 0,136

Snow_2.0 -249,424 107,658 0,021 Snow_2.0 -280,537 109,500 0,010

Snow_3.0 -947,853 157,446 0,000 Snow_3.0 -1124,320 160,139 0,000

Thunderstorm_1.0 -18,238 134,654 0,892 Thunderstorm_1.0 83,080 136,957 0,544

Thunderstorm_2.0 -94,300 127,815 0,461 Thunderstorm_2.0 494,528 130,001 0,000

Wind_1.0 -251,478 134,220 0,061 Wind_1.0 -254,284 136,517 0,063

Wind_2.0 -186,276 85,682 0,030 Wind_2.0 -331,740 87,149 0,000

Wind_3.0 -780,811 211,827 0,000 Wind_3.0 -571,339 235,824 0,015

A6 Flevoland

Model: A6 Westbound Model: A6 Eastbound

No. Observations 22204 No. Observations 21632

Deg. of

freedom
17 Deg. of freedom 17

Log-Likelihood -149206 Log-Likelihood -150841

R-squared 0,157 R-squared 0,306

Durbin-Watson 0,692 Durbin-Watson 0,838

Coeff Std error p-value Coeff Std error p-value

maxWind -1,978 0,107 0,000 maxWind -0,477 0,140 0,001

Temperature 10,341 0,261 0,000 Temperature 12,248 0,347 0,000

Sunshine 0,713 0,426 0,094 Sunshine 7,849 0,559 0,000

Precipitation -7,320 3,159 0,020 Precipitation -8,048 4,092 0,049

Sight -0,637 0,061 0,000 Sight 0,313 0,079 0,000

Thunder 15,114 16,795 0,368 Thunder 43,230 22,139 0,051

SlipperinessDummy -27,388 14,198 0,054 SlipperinessDummy 27,045 18,291 0,139

SnowHeight -2,080 0,460 0,000 SnowHeight -2,717 0,593 0,000

Slipperiness_1.0 -49,638 17,238 0,004 Slipperiness_1.0 5,280 22,206 0,812

Slipperiness_2.0 -258,818 15,039 0,000 Slipperiness_2.0 -209,979 19,378 0,000

Snow_1.0 -57,657 7,233 0,000 Snow_1.0 -2,558 9,329 0,784

Snow_2.0 -385,348 38,534 0,000 Snow_2.0 -408,803 49,644 0,000

Snow_3.0 -1,045 17,237 0,952 Snow_3.0 -64,722 22,211 0,004

Thunderstorm_1.0 -31,541 3,584 0,000 Thunderstorm_1.0 -7,602 4,625 0,100

Wind_1.0 52,602 3,436 0,000 Wind_1.0 32,528 4,433 0,000

Wind_2.0 -25,861 12,411 0,037 Wind_2.0 -65,101 15,996 0,000

Wind_3.0 51,283 4,817 0,000 Wind_3.0 -3,533 7,197 0,624
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70 F. Model Results - Linear Regression

A37 Drenthe

Model: A37 Eastbound

No. Observations 21872

Deg. of

freedom
17

Log-Likelihood -140940

R-squared 0,13

Durbin-Watson 0,745

Coeff Std error p-value

maxWind -0,480 0,085 0,000

Temperature 5,736 0,179 0,000

Sunshine -0,888 0,330 0,007

Precipitation -14,544 2,273 0,000

Sight -0,348 0,044 0,000

Thunder 11,959 13,546 0,377

SlipperinessDummy -67,994 8,827 0,000

SnowHeight -2,142 0,290 0,000

Slipperiness_2.0 -354,476 21,450 0,000

Slipperiness_3.0 -573,236 19,911 0,000

Snow_1.0 161,774 59,128 0,006

Snow_2.0 -162,108 27,111 0,000

Snow_3.0 -481,553 55,418 0,000

Thunderstorm_1.0 -139,501 40,797 0,001

Thunderstorm_2.0 -41,723 68,635 0,543

Wind_1.0 9,084 21,337 0,670

Wind_2.0 -62,992 62,419 0,313

A58 Zeeland

Model: A58 Westbound Model: A58 Eastbound

No. Observations 21841 No. Observations 21842

Deg. of

freedom
15 Deg. of freedom 15

Log-Likelihood -156433 Log-Likelihood -156362

R-squared 0,083 R-squared 0,065

Durbin-Watson 0,357 Durbin-Watson 0,326

Coeff Std error p-value Coeff Std error p-value

maxWind -2,221 0,132 0,000 maxWind -1,748 0,132 0,000

Temperature 11,962 0,408 0,000 Temperature 12,197 0,407 0,000

Sunshine 8,849 0,621 0,000 Sunshine 2,832 0,618 0,000

Precipitation -6,679 4,582 0,145 Precipitation 1,544 4,564 0,735

Sight -0,763 0,097 0,000 Sight -0,920 0,097 0,000

Thunder 3,085 27,017 0,909 Thunder 69,593 26,920 0,010

SlipperinessDummy -69,043 42,957 0,108 SlipperinessDummy -41,506 42,804 0,332

SnowHeight -2,376 1,135 0,036 SnowHeight -2,450 1,131 0,030

Slipperiness_1.0 -334,033 139,696 0,017 Slipperiness_1.0 -83,936 139,197 0,547

Slipperiness_2.0 0,000 0,000 0,003 Slipperiness_2.0 0,000 0,000 0,136

Snow_1.0 -129,810 52,401 0,013 Snow_1.0 -208,926 52,214 0,000

Snow_3.0 -403,046 103,961 0,000 Snow_3.0 -449,809 103,589 0,000

Thunderstorm_1.0 -23,626 86,746 0,785 Thunderstorm_1.0 -112,390 86,436 0,194

Thunderstorm_2.0 -184,234 127,579 0,149 Thunderstorm_2.0 412,544 127,123 0,001

Wind_1.0 28,249 64,361 0,661 Wind_1.0 -91,113 64,131 0,155

Wind_2.0 14,453 53,899 0,789 Wind_2.0 40,260 53,707 0,453
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A30 Gelderland

Model: A30 Westbound Model: A30 Eastbound

No. Observations 22459 No. Observations 22460

Deg. of

freedom
17 Deg. of freedom 17

Log-Likelihood -158667 Log-Likelihood -155986

R-squared 0,049 R-squared 0,05

Durbin-Watson 0,703 Durbin-Watson 0,733

Coeff Std error p-value Coeff Std error p-value

maxWind -1,748 0,157 0,000 maxWind -0,900 0,139 0,000

Temperature 6,036 0,332 0,000 Temperature 5,372 0,294 0,000

Sunshine -5,490 0,618 0,000 Sunshine -3,116 0,549 0,000

Precipitation -6,884 3,787 0,069 Precipitation -13,782 3,359 0,000

Sight 0,389 0,078 0,000 Sight 0,111 0,069 0,106

Thunder 22,667 23,343 0,332 Thunder 9,353 20,709 0,652

SlipperinessDummy 7,986 16,604 0,631 SlipperinessDummy -6,272 14,756 0,671

SnowHeight -2,234 0,436 0,000 SnowHeight -3,466 0,387 0,000

Slipperiness_1.0 0,000 0,000 0,000 Slipperiness_1.0 0,000 0,000 0,330

Slipperiness_2.0 -236,247 37,611 0,000 Slipperiness_2.0 -217,098 33,367 0,000

Snow_1.0 -216,831 200,330 0,279 Snow_1.0 -222,277 177,726 0,211

Snow_2.0 -215,653 52,832 0,000 Snow_2.0 -110,640 46,871 0,018

Snow_3.0 -1101,713 83,752 0,000 Snow_3.0 -940,184 74,302 0,000

Thunderstorm_1.0 -106,889 94,531 0,258 Thunderstorm_1.0 -139,054 83,865 0,097

Thunderstorm_2.0 -152,653 67,899 0,025 Thunderstorm_2.0 2,192 60,238 0,971

Wind_1.0 48,058 49,779 0,334 Wind_1.0 20,565 44,162 0,641

Wind_2.0 25,841 65,125 0,692 Wind_2.0 0,418 57,777 0,994

Wind_3.0 -492,127 115,993 0,000 Wind_3.0 -266,367 102,905 0,010

A31 Friesland

Model: A31 Westbound Model: A31 Eastbound

No. Observations 21856 No. Observations 21831

Deg. of

freedom
16 Deg. of freedom 16

Log-Likelihood -166268 Log-Likelihood -157852

R-squared 0,37 R-squared 0,228

Durbin-Watson 0,342 Durbin-Watson 0,403

Coeff Std error p-value Coeff Std error p-value

maxWind 22,208 0,238 0,000 maxWind 10,892 0,163 0,000

Temperature -1,940 0,605 0,001 Temperature -0,971 0,415 0,019

Sunshine 4,448 1,023 0,000 Sunshine 5,026 0,702 0,000

Precipitation -33,812 7,387 0,000 Precipitation -45,440 5,084 0,000

Sight -6,610 0,140 0,000 Sight -4,476 0,096 0,000

Thunder -99,088 53,626 0,065 Thunder -3,096 37,200 0,934

SlipperinessDummy -329,465 33,839 0,000 SlipperinessDummy -262,063 23,220 0,000

SnowHeight -14,973 1,478 0,000 SnowHeight -12,080 1,019 0,000

Slipperiness_2.0 -587,073 73,443 0,000 Slipperiness_2.0 -455,826 50,387 0,000

Slipperiness_3.0 -822,166 64,422 0,000 Slipperiness_3.0 -441,832 44,198 0,000

Snow_1.0 269,464 164,370 0,101 Snow_1.0 354,526 112,832 0,002

Snow_2.0 -481,218 86,719 0,000 Snow_2.0 -293,777 59,506 0,000

Snow_3.0 -109,453 188,900 0,562 Snow_3.0 -222,096 129,627 0,087

Thunderstorm_1.0 1,523 113,641 0,989 Thunderstorm_1.0 36,301 77,985 0,642

Wind_1.0 -349,620 112,033 0,002 Wind_1.0 -137,370 76,862 0,074

Wind_2.0 1402,670 78,976 0,000 Wind_2.0 1584,901 54,183 0,000



72 F. Model Results - Linear Regression

A7 Groningen

Model: A7 Westbound Model: A7 Eastbound

No. Observations 22739 No. Observations 19069

Deg. of

freedom
17 Deg. of freedom 17

Log-Likelihood -149734 Log-Likelihood -125359

R-squared 0,062 R-squared 0,066

Durbin-Watson 0,72 Durbin-Watson 0,738

Coeff Std error p-value Coeff Std error p-value

maxWind -0,516 0,092 0,000 maxWind -0,314 0,102 0,002

Temperature 3,269 0,204 0,000 Temperature 2,268 0,218 0,000

Sunshine -1,788 0,370 0,000 Sunshine -1,149 0,406 0,005

Precipitation -1,250 2,785 0,653 Precipitation -2,374 2,936 0,419

Sight 0,001 0,049 0,981 Sight 0,046 0,053 0,384

Thunder -18,894 16,630 0,256 Thunder -24,490 17,616 0,164

SlipperinessDummy -15,072 9,396 0,109 SlipperinessDummy -16,035 10,430 0,124

SnowHeight -3,383 0,426 0,000 SnowHeight -2,579 0,485 0,000

Slipperiness_2.0 -356,898 23,800 0,000 Slipperiness_2.0 -390,404 23,653 0,000

Slipperiness_3.0 -523,636 21,841 0,000 Slipperiness_3.0 -518,095 21,634 0,000

Snow_1.0 97,335 65,149 0,135 Snow_1.0 78,539 65,418 0,230

Snow_2.0 -98,847 29,890 0,001 Snow_2.0 -203,222 29,646 0,000

Snow_3.0 -90,816 71,912 0,207 Snow_3.0 -295,905 72,855 0,000

Thunderstorm_1.0 -82,604 47,104 0,080 Thunderstorm_1.0 -86,779 46,633 0,063

Thunderstorm_2.0 -27,294 49,818 0,584 Thunderstorm_2.0 -27,909 77,839 0,720

Wind_1.0 -59,004 40,313 0,143 Wind_1.0 -37,242 39,902 0,351

Wind_2.0 6,936 28,447 0,807 Wind_2.0 26,901 28,242 0,341



G Model Results - Regression with Autoregressive
Errors

In this Appendix, the results of all models that are used to determine the significance of weather and weather

code influences are shown. The Sections of this appendix represent each of the measurement locations.

Within these Sections, first the results of the full AR(1) model is presented, that includes both weather and

code variables. The second table represents the outcomes same model, but rerun with parameters that are

significant on a 95% confidence interval. The third table represents the model results for the AR(1) model

with only weather variables included, after which the fourth table shows the same model with parameters

that are significant on a 95% confidence interval. The last table shows the least squares regression model

with weather codes only, with the residuals of the AR(1) model with only weather variables as the dependent

variable. Note that per model there are two tables, for each road direction, with an exception for the A37.

A20 Zuid-Holland

Table G.1: AR(1) model results with weather and weather code variables

Model: A20 Westbound Model: A20 Eastbound

No. Observations 29927 No. Observations 29927

Log-Likelihood -170497 Log-Likelihood -169848

Durbin-Watson 2,063 Durbin-Watson 2,095

Coeff Std error p-value Coeff Std error p-value

maxWind -3,450 0,356 0,000 maxWind -3,689 0,381 0,000

Temperature 13,861 1,069 0,000 Temperature 14,135 1,188 0,000

Sunshine 0,797 1,176 0,498 Sunshine -0,974 1,120 0,384

Precipitation -33,754 4,483 0,000 Precipitation -17,096 5,143 0,001

Sight -1,602 0,250 0,000 Sight -1,054 0,281 0,000

Thunder -64,263 22,753 0,005 Thunder -12,087 20,475 0,555

SlipperinessDummy -111,976 66,528 0,092 SlipperinessDummy -17,799 104,139 0,864

SnowHeight -9,255 2,134 0,000 SnowHeight -9,041 2,321 0,000

Slipperiness_1.0 -207,797 465,168 0,655 Slipperiness_1.0 256,225 317,290 0,419

Slipperiness_2.0 0,000 Slipperiness_2.0 0,000

Snow_1.0 216,769 296,902 0,465 Snow_1.0 250,037 296,736 0,399

Snow_2.0 -249,435 318,158 0,433 Snow_2.0 -280,489 340,277 0,410

Snow_3.0 -947,740 121,897 0,000 Snow_3.0 -1124,110 130,502 0,000

Thunderstorm_1.0 -18,197 205,452 0,929 Thunderstorm_1.0 83,201 278,547 0,765

Thunderstorm_2.0 -94,266 214,421 0,660 Thunderstorm_2.0 494,201 144,795 0,001

Wind_1.0 -251,338 185,415 0,175 Wind_1.0 -253,886 164,956 0,124

Wind_2.0 -185,877 48,179 0,000 Wind_2.0 -330,980 38,193 0,000

Wind_3.0 -780,813 449,963 0,083 Wind_3.0 -571,197 168,200 0,001

ar.L1 0,609 0,002 0,000 ar.L1 0,632 0,002 0,000
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Table G.2: AR(1) model results with significant weather and weather code variables

Model: A20 Westbound Model: A20 Eastbound

No. Observations 29927 No. Observations 29927

Log-Likelihood -170497 Log-Likelihood -169847

Durbin-Watson 2,062 Durbin-Watson 2,093

Coeff Std error p-value Coeff Std error p-value

maxWind -3,364 0,355 0,000 maxWind -3,468 0,382 0,000

Temperature 14,550 1,028 0,000 Temperature 13,814 1,159 0,000

Precipitation -20,894 4,608 0,000 Precipitation -17,448 4,806 0,000

Sight -1,748 0,251 0,000 Sight -1,196 0,280 0,000

Thunder -74,676 22,865 0,001 SnowHeight -10,502 2,074 0,000

SnowHeight -11,353 1,675 0,000 Snow_3.0 -1078,760 124,159 0,000

Snow_3.0 -908,951 111,194 0,000 Thunderstorm_2.0 480,157 146,082 0,001

Wind_2.0 -178,482 47,893 0,000 Wind_2.0 -328,364 38,289 0,000

ar.L1 0,610 0,002 0,000 Wind_3.0 -570,005 168,310 0,001

ar.L1 0,631 0,002 0,000

Table G.3: AR(1) model results with weather variables

Model: A20 Westbound Model: A20 Eastbound

No. Observations 29927 No. Observations 29927

Log-Likelihood -170494 Log-Likelihood -169846

Durbin-Watson 2,062 Durbin-Watson 2,093

Coeff Std error p-value Coeff Std error p-value

maxWind -3,411 0,355 0,000 maxWind -3,573 0,367 0,000

Temperature 14,611 1,082 0,000 Temperature 14,231 1,198 0,000

Sunshine 0,302 1,181 0,798 Sunshine -1,382 1,121 0,217

Precipitation -20,320 4,614 0,000 Precipitation -17,084 5,178 0,001

Sight -1,755 0,252 0,000 Sight -1,179 0,282 0,000

Thunder -69,482 22,879 0,002 Thunder 14,171 20,582 0,491

SlipperinessDummy -109,459 67,260 0,104 SlipperinessDummy -14,914 104,013 0,886

SnowHeight -12,454 1,352 0,000 SnowHeight -11,783 1,447 0,000

ar.L1 0,611 0,002 0,000 ar.L1 0,634 0,002 0,000

Table G.4: AR(1) model results with significant weather variables

Model: A20 Westbound Model: A20 Eastbound

No. Observations 29927 No. Observations 29927

Log-Likelihood -170495 Log-Likelihood -169847

Durbin-Watson 2,063 Durbin-Watson 2,093

Coeff Std error p-value Coeff Std error p-value

maxWind -3,419 0,352 0,000 maxWind -3,559 0,365 0,000

Temperature 14,688 1,029 0,000 Temperature 13,994 1,164 0,000

Precipitation -20,518 4,598 0,000 Precipitation -16,835 4,796 0,000

Sight -1,751 0,251 0,000 Sight -1,193 0,279 0,000

Thunder -73,938 22,808 0,001 SnowHeight -12,190 1,450 0,000

SnowHeight -12,795 1,349 0,000 ar.L1 0,633 0,002 0,000

ar.L1 0,611 0,002 0,000
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Table G.5: Least squares regression model results with weather code variables

Model: A20 Westbound Model: A20 Eastbound

No. Observations 22874 No. Observations 22786

R-squared 0,001 R-squared 0,001

Log-Likelihood -170707 Log-Likelihood -170100

Durbin-Watson 2,064 Durbin-Watson 2,095

Coeff Std error p-value Coeff Std error p-value

Slipperiness_1.0 -95,367 188,569 0,613 Slipperiness_1.0 90,273 188,981 0,633

Slipperiness_2.0 0,000 0,000 Slipperiness_2.0 0,000 0,000

Snow_1.0 96,651 133,338 0,469 Snow_1.0 137,892 133,630 0,302

Snow_2.0 -92,288 79,685 0,247 Snow_2.0 -95,987 79,859 0,229

Snow_3.0 -355,345 121,721 0,004 Snow_3.0 -438,236 121,987 0,000

Thunderstorm_1.0 53,179 108,870 0,625 Thunderstorm_1.0 57,155 109,108 0,600

Thunderstorm_2.0 -100,493 102,266 0,326 Thunderstorm_2.0 122,827 102,489 0,231

Wind_1.0 46,413 108,870 0,670 Wind_1.0 65,753 109,108 0,547

Wind_2.0 -21,359 69,319 0,758 Wind_2.0 -151,056 69,471 0,030

Wind_3.0 -465,973 172,139 0,007 Wind_3.0 81,836 188,981 0,665

A6 Flevoland

Table G.6: AR(1) model results with weather and weather code variables

Model: A6 Westbound Model: A6 Eastbound

No. Observations 29182 No. Observations 28462

Log-Likelihood -142979 Log-Likelihood -146340

Durbin-Watson 2,045 Durbin-Watson 2,137

Coeff Std error p-value Coeff Std error p-value

maxWind -1,405 0,141 0,000 maxWind -0,266 0,212 0,210

Temperature 9,188 0,480 0,000 Temperature 12,908 0,615 0,000

Sunshine -0,138 0,443 0,755 Sunshine 3,704 0,595 0,000

Precipitation 0,337 2,835 0,906 Precipitation -7,639 3,710 0,039

Sight -0,629 0,100 0,000 Sight 0,245 0,142 0,085

Thunder 15,452 9,169 0,092 Thunder 43,138 14,809 0,004

SlipperinessDummy -26,531 15,504 0,087 SlipperinessDummy 27,017 34,884 0,439

SnowHeight -1,094 0,636 0,085 SnowHeight -2,149 1,279 0,093

Slipperiness_1.0 -49,669 39,869 0,213 Slipperiness_1.0 5,277 50,338 0,917

Slipperiness_2.0 -258,650 23,637 0,000 Slipperiness_2.0 -209,960 33,050 0,000

Snow_1.0 -58,089 18,423 0,002 Snow_1.0 -2,571 29,549 0,931

Snow_2.0 -385,318 45,391 0,000 Snow_2.0 -408,799 96,151 0,000

Snow_3.0 -1,127 40,892 0,978 Snow_3.0 -64,717 35,773 0,070

Thunderstorm_1.0 -31,331 8,469 0,000 Thunderstorm_1.0 -7,628 10,024 0,447

Wind_1.0 52,153 7,567 0,000 Wind_1.0 32,547 8,541 0,000

Wind_2.0 -25,957 25,409 0,307 Wind_2.0 -65,101 32,724 0,047

Wind_3.0 50,651 8,951 0,000 Wind_3.0 -3,535 11,795 0,764

ar.L1 0,658 0,002 0,000 ar.L1 0,586 0,002 0,000
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Table G.7: AR(1) model results with significant weather and weather code variables

Model: A6 Westbound Model: A6 Eastbound

No. Observations 29182 No. Observations 28462

Log-Likelihood -142982 Log-Likelihood -146346

Durbin-Watson 2,046 Durbin-Watson 2,138

Coeff Std error p-value Coeff Std error p-value

maxWind -1,432 0,132 0,000 Temperature 13,226 0,361 0,000

Temperature 9,214 0,460 0,000 Sunshine 3,890 0,587 0,000

Sight -0,631 0,098 0,000 Precipitation -4,709 3,668 0,199

Slipperiness_2.0 -259,021 23,709 0,000 Thunder 45,599 14,638 0,002

Snow_1.0 -63,453 18,392 0,001 Slipperiness_2.0 -207,577 32,660 0,000

Snow_2.0 -413,990 42,027 0,000 Snow_2.0 -447,545 86,798 0,000

Thunderstorm_1.0 -32,216 8,404 0,000 Wind_1.0 36,814 7,435 0,000

Wind_1.0 52,114 7,521 0,000 Wind_2.0 -62,427 32,179 0,052

Wind_3.0 52,230 8,913 0,000 ar.L1 0,588 0,002 0,000

ar.L1 0,658 0,002 0,000

Table G.8: AR(1) model results with significant weather variables

Model: A6 Westbound Model: A6 Eastbound

No. Observations 29182 No. Observations 28462

Log-Likelihood -143086 Log-Likelihood -146375

Durbin-Watson 2,059 Durbin-Watson 2,142

Coeff Std error p-value Coeff Std error p-value

maxWind -1,384 0,143 0,000 maxWind -0,398 0,210 0,058

Temperature 9,596 0,458 0,000 Temperature 13,743 0,548 0,000

Sunshine -0,209 0,445 0,638 Sunshine 3,589 0,589 0,000

Precipitation 0,962 2,804 0,731 Precipitation -6,651 3,684 0,071

Sight -0,565 0,097 0,000 Sight 0,239 0,125 0,056

Thunder 9,354 8,926 0,295 Thunder 37,220 14,742 0,012

SlipperinessDummy -45,364 14,886 0,002 SlipperinessDummy 24,842 35,417 0,483

SnowHeight -1,888 0,581 0,001 SnowHeight -2,278 1,025 0,026

ar.L1 0,674 0,002 0,000 ar.L1 0,592 0,002 0,000

Table G.9: AR(1) model results with significant weather variables

Model: A6 Westbound Model: A6 Eastbound

No. Observations 29182 No. Observations 28462

Log-Likelihood -143087 Log-Likelihood -146376

Durbin-Watson 2,059 Durbin-Watson 2,142

Coeff Std error p-value Coeff Std error p-value

maxWind -1,377 0,135 0,000 Temperature 14,050 0,301 0,000

Temperature 9,578 0,441 0,000 Sunshine 3,700 0,586 0,000

Sight -0,570 0,095 0,000 Thunder 19,839 14,410 0,169

SlipperinessDummy -46,073 14,844 0,002 SnowHeight -2,585 0,997 0,010

SnowHeight -1,861 0,579 0,001 ar.L1 0,593 0,002 0,000

ar.L1 0,674 0,002 0,000
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Table G.10: Least squares regression model results with weather code variables

Model: A6 Westbound Model: A6 Eastbound

No. Observations 22204 No. Observations 21632

R-squared 0,009 R-squared 0,003

Log-Likelihood -142976 Log-Likelihood -146353

Durbin-Watson 2,078 Durbin-Watson 2,15

Coeff Std error p-value Coeff Std error p-value

Slipperiness_1.0 -18,785 12,990 0,148 Slipperiness_1.0 -0,771 18,003 0,966

Slipperiness_2.0 -89,980 11,198 0,000 Slipperiness_2.0 -84,289 15,520 0,000

Snow_1.0 -23,397 5,104 0,000 Snow_1.0 2,673 7,073 0,705

Snow_2.0 -141,309 28,628 0,000 Snow_2.0 -174,716 39,677 0,000

Snow_3.0 -5,798 12,849 0,652 Snow_3.0 -26,369 17,808 0,139

Thunderstorm_1.0 -12,844 2,234 0,000 Thunderstorm_1.0 -5,983 3,097 0,053

Wind_1.0 13,695 1,991 0,000 Wind_1.0 11,038 2,760 0,000

Wind_2.0 -15,566 9,185 0,090 Wind_2.0 -25,975 12,730 0,041

Wind_3.0 12,271 3,291 0,000 Wind_3.0 0,555 5,338 0,917

A37 Drenthe

Table G.11: AR(1) model results with weather and weather code vari-
ables

Model: A37 Eastbound

No. Observations 28462

Log-Likelihood -135482

Durbin-Watson 2,13

Coeff Std error p-value

maxWind -0,331 0,118 0,005

Temperature 5,091 0,325 0,000

Sunshine -1,265 0,332 0,000

Precipitation -4,983 1,385 0,000

Sight -0,294 0,071 0,000

Thunder 11,551 11,400 0,311

SlipperinessDummy -66,670 9,023 0,000

SnowHeight -2,014 0,272 0,000

Slipperiness_2.0 -354,232 16,723 0,000

Slipperiness_3.0 -573,060 15,319 0,000

Snow_1.0 161,813 46,255 0,000

Snow_2.0 -161,797 25,741 0,000

Snow_3.0 -481,546 25,723 0,000

Thunderstorm_1.0 -139,250 44,163 0,002

Thunderstorm_2.0 -41,586 86,796 0,632

Wind_1.0 9,188 38,590 0,812

Wind_2.0 -62,733 92,443 0,497

Table G.12: AR(1) model results with significant weather and
weather code variables

Model: A37 Eastbound

No. Observations 28462

Log-Likelihood -135481

Durbin-Watson 2,13

Coeff Std error p-value

maxWind -0,348 0,117 0,003

Temperature 5,102 0,324 0,000

Sunshine -1,291 0,331 0,000

Precipitation -4,980 1,371 0,000

Sight -0,292 0,071 0,000

SlipperinessDummy -66,722 9,015 0,000

SnowHeight -1,978 0,272 0,000

Slipperiness_2.0 -354,240 16,712 0,000

Slipperiness_3.0 -573,098 15,307 0,000

Snow_1.0 161,294 46,356 0,001

Snow_2.0 -161,828 25,733 0,000

Snow_3.0 -481,710 25,714 0,000

Thunderstorm_1.0 -137,920 44,348 0,002

ar.L1 0,629 0,002 0,000
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Table G.13: AR(1) model results with significant weather variables

Model: A37 Eastbound

No. Observations 28462

Log-Likelihood -135620

Durbin-Watson 2,145

Coeff Std error p-value

maxWind -0,461 0,119 0,000

Temperature 5,305 0,335 0,000

Sunshine -1,295 0,335 0,000

Precipitation -4,826 1,373 0,000

Sight -0,297 0,073 0,000

Thunder 10,353 11,448 0,366

SlipperinessDummy -102,300 7,114 0,000

SnowHeight -2,752 0,208 0,000

ar.L1 0,648 0,002 0,000

Table G.14: AR(1) model results with significant weather variables

Model: A37 Eastbound

No. Observations 28462

Log-Likelihood -135619

Durbin-Watson 2,145

Coeff Std error p-value

maxWind -0,449 0,119 0,000

Temperature 5,264 0,336 0,000

Sunshine -1,206 0,336 0,000

Precipitation -4,692 1,370 0,001

Sight -0,302 0,073 0,000

SlipperinessDummy -102,012 7,138 0,000

SnowHeight -2,731 0,208 0,000

ar.L1 0,648 0,002 0,000

Table G.15: Least squares regression model results with weather code variables

Model: A37 Eastbound

No. Observations 21877

R-squared 0,012

Log-Likelihood -135481

Durbin-Watson 2,17

Coeff Std error p-value

Slipperiness_2.0 -118,928 16,264 0,000

Slipperiness_3.0 -206,941 15,415 0,000

Snow_1.0 105,308 41,862 0,012

Snow_2.0 -43,844 20,612 0,033

Snow_3.0 -154,522 39,468 0,000

Thunderstorm_1.0 -60,701 31,645 0,055

Thunderstorm_2.0 -36,638 52,952 0,489

Wind_1.0 2,132 16,420 0,897

Wind_2.0 -25,880 48,338 0,592
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A58 Zeeland

Table G.16: AR(1) model results with weather and weather code variables

Model: A58 Westbound Model: A58 Eastbound

No. Observations 28462 No. Observations 28462

Log-Likelihood -143984 Log-Likelihood -143148

Durbin-Watson 1,739 Durbin-Watson 1,615

Coeff Std error p-value Coeff Std error p-value

maxWind -1,310 0,212 0,000 maxWind -0,558 0,189 0,003

Temperature 10,867 0,783 0,000 Temperature 8,935 0,876 0,000

Sunshine -1,601 0,500 0,001 Sunshine -0,261 0,447 0,559

Precipitation 3,932 3,547 0,268 Precipitation -2,195 2,318 0,344

Sight -0,535 0,183 0,003 Sight -0,679 0,173 0,000

Thunder 3,318 15,989 0,836 Thunder 41,090 11,993 0,001

SlipperinessDummy -68,327 34,239 0,046 SlipperinessDummy -34,322 27,345 0,209

SnowHeight -2,215 1,114 0,047 SnowHeight -2,285 1,283 0,075

Slipperiness_1.0 -333,906 87,550 0,000 Slipperiness_1.0 -83,376 193,461 0,666

Slipperiness_2.0 0,000 Slipperiness_2.0 0,000 0,000 0,014

Snow_1.0 -129,761 114,947 0,259 Snow_1.0 -207,292 86,107 0,016

Snow_3.0 -402,973 82,504 0,000 Snow_3.0 -448,703 83,544 0,000

Thunderstorm_1.0 -23,606 140,390 0,866 Thunderstorm_1.0 -111,344 116,651 0,340

Thunderstorm_2.0 -184,100 101,310 0,069 Thunderstorm_2.0 411,396 106,612 0,000

Wind_1.0 28,193 155,300 0,856 Wind_1.0 -90,081 66,000 0,172

Wind_2.0 14,489 106,529 0,892 Wind_2.0 38,557 100,438 0,701

Wind_3.0 0,000 0,000 Wind_3.0 0,000 0,000

ar.L1 0,828 0,001 0,000 ar.L1 0,840 0,001 0,000

Table G.17: AR(1) model results with significant weather and weather code variables

Model: A58 Westbound Model: A58 Eastbound

No. Observations 28462 No. Observations 28462

Log-Likelihood -143984 Log-Likelihood -143152

Durbin-Watson 1,739 Durbin-Watson 1,616

Coeff Std error p-value Coeff Std error p-value

maxWind -1,232 0,207 0,000 maxWind -0,548 0,182 0,003

Temperature 10,795 0,782 0,000 Temperature 6,927 0,851 0,000

Sunshine -1,528 0,499 0,002 Sight -0,416 0,169 0,014

Sight -0,572 0,181 0,002 Thunder 64,206 11,667 0,000

SlipperinessDummy -67,686 34,269 0,048 Slipperiness_2.0 0,000 0,000 0,000

SnowHeight -2,911 1,110 0,009 Snow_1.0 -236,134 89,060 0,008

Slipperiness_1.0 -334,826 87,695 0,000 Snow_3.0 -560,176 66,621 0,000

Snow_3.0 -369,743 85,192 0,000 Thunderstorm_2.0 401,997 107,140 0,000

ar.L1 0,828 0,001 0,000 ar.L1 0,840 0,001 0,000

Table G.18: AR(1) model results with weather variables

Model: A58 Westbound Model: A58 Eastbound

No. Observations 28462 No. Observations 28462

Log-Likelihood -143983 Log-Likelihood -143142

Durbin-Watson 1,739 Durbin-Watson 1,615

Coeff Std error p-value Coeff Std error p-value

maxWind -1,313 0,211 0,000 maxWind -0,539 0,188 0,004

Temperature 10,854 0,781 0,000 Temperature 7,168 0,874 0,000

Sunshine -1,551 0,500 0,002 Sunshine -0,674 0,445 0,130

Precipitation 4,242 3,539 0,231 Precipitation 1,605 2,418 0,507

Sight -0,537 0,182 0,003 Sight -0,427 0,172 0,013

Thunder 4,931 16,000 0,758 Thunder -5,140 12,229 0,674

SlipperinessDummy -66,186 34,405 0,054 SlipperinessDummy -20,102 27,958 0,472

SnowHeight -3,359 0,970 0,001 SnowHeight -3,140 1,126 0,005

ar.L1 0,829 0,001 0,000 ar.L1 0,841 0,001 0,000
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Table G.19: AR(1) model results with significant weather variables

Model: A58 Westbound Model: A58 Eastbound

No. Observations 28462 No. Observations 28462

Log-Likelihood -143981 Log-Likelihood -143142

Durbin-Watson 1,739 Durbin-Watson 1,615

Coeff Std error p-value Coeff Std error p-value

maxWind -1,257 0,206 0,000 maxWind -0,507 0,181 0,005

Temperature 10,943 0,780 0,000 Temperature 6,907 0,850 0,000

Sunshine -1,588 0,500 0,001 Sight -0,431 0,169 0,011

Sight -0,579 0,181 0,001 SnowHeight -3,142 1,125 0,005

SnowHeight -3,201 0,968 0,001 ar.L1 0,841 0,001 0,000

ar.L1 0,829 0,001 0,000

Table G.20: Least squares regression model results with weather code variables

Model: A58 Westbound Model: A58 Eastbound

No. Observations 21841 No. Observations 21842

R-squared 0 R-squared 0

Log-Likelihood -143965 Log-Likelihood -143129

Durbin-Watson 1,74 Durbin-Watson 1,615

Coeff Std error p-value Coeff Std error p-value

Slipperiness_1.0 -132,062 78,886 0,094 Slipperiness_1.0 -28,647 75,902 0,706

Slipperiness_2.0 0,000 0,000 Slipperiness_2.0 0,000 0,000

Snow_1.0 -39,263 28,615 0,170 Snow_1.0 -39,491 27,533 0,151

Snow_3.0 -69,684 50,921 0,171 Snow_3.0 -82,849 48,995 0,091

Thunderstorm_1.0 -29,091 48,923 0,552 Thunderstorm_1.0 -51,667 47,072 0,272

Thunderstorm_2.0 1,866 72,013 0,979 Thunderstorm_2.0 24,168 69,289 0,727

Wind_1.0 13,704 36,006 0,704 Wind_1.0 -36,375 34,644 0,294

Wind_2.0 4,441 30,251 0,883 Wind_2.0 -11,996 29,107 0,680

Wind_3.0 0,000 0,000 Wind_3.0 0,000 0,000

Wind_3.0 -465,973 172,139 0,007 Wind_3.0 81,836 188,981 0,665

A30 Gelderland

Table G.21: AR(1) model results with weather and weather code variables

Model: A30 Southbound Model: A30 Northbound

No. Observations 29927 No. Observations 29927

Log-Likelihood -152491 Log-Likelihood -150194

Durbin-Watson 2,002 Durbin-Watson 1,983

Coeff Std error p-value Coeff Std error p-value

maxWind -1,125 0,226 0,000 maxWind -0,832 0,206 0,000

Temperature 5,046 0,624 0,000 Temperature 4,979 0,533 0,000

Sunshine -3,775 0,600 0,000 Sunshine -3,593 0,536 0,000

Precipitation -6,392 2,205 0,004 Precipitation -7,914 1,620 0,000

Sight 0,226 0,131 0,084 Sight 0,157 0,114 0,169

Thunder 22,201 17,735 0,211 Thunder 9,628 14,923 0,519

SlipperinessDummy 7,876 25,332 0,756 SlipperinessDummy -5,743 18,570 0,757

SnowHeight -1,616 0,714 0,024 SnowHeight -2,695 0,550 0,000

Slipperiness_1.0 0,000 0,000 0,952 Slipperiness_1.0 0,000

Slipperiness_2.0 -236,698 70,425 0,001 Slipperiness_2.0 -216,810 74,899 0,004

Snow_1.0 -217,700 557,921 0,696 Snow_1.0 -221,894 306,121 0,469

Snow_2.0 -215,968 109,981 0,050 Snow_2.0 -110,495 75,645 0,144

Snow_3.0 -1102,246 31,353 0,000 Snow_3.0 -939,711 28,354 0,000

Thunderstorm_1.0 -106,614 104,702 0,309 Thunderstorm_1.0 -139,115 119,656 0,245

Thunderstorm_2.0 -152,985 67,794 0,024 Thunderstorm_2.0 2,475 61,151 0,968

Wind_1.0 46,283 65,515 0,480 Wind_1.0 20,842 33,151 0,530

Wind_2.0 25,030 132,032 0,850 Wind_2.0 0,673 112,670 0,995

Wind_3.0 -494,412 115,152 0,000 Wind_3.0 -265,446 83,498 0,001

ar.L1 0,665 0,002 0,000 ar.L1 0,648 0,002 0,000
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Table G.22: AR(1) model results with significant weather and weather code variables

Model: A30 Southbound Model: A30 Northbound

No. Observations 29927 No. Observations 29927

Log-Likelihood -152495 Log-Likelihood -150194

Durbin-Watson 2,002 Durbin-Watson 1,983

Coeff Std error p-value Coeff Std error p-value

maxWind -0,929 0,201 0,000 maxWind -0,692 0,182 0,000

Temperature 5,810 0,470 0,000 Temperature 5,495 0,412 0,000

Sunshine -3,966 0,596 0,000 Sunshine -3,899 0,535 0,000

Precipitation -6,222 2,130 0,003 Precipitation -8,244 1,350 0,000

SnowHeight -1,375 0,711 0,053 SnowHeight -2,967 0,503 0,000

Slipperiness_2.0 -237,155 69,931 0,001 Slipperiness_2.0 -217,194 74,942 0,004

Snow_2.0 -222,408 104,755 0,034 Snow_3.0 -924,729 27,851 0,000

Snow_3.0 -1109,876 31,191 0,000 Wind_3.0 -271,540 60,598 0,000

Thunderstorm_2.0 -144,242 64,397 0,025 ar.L1 0,648 0,002 0,000

Wind_3.0 -515,042 91,149 0,000

ar.L1 0,666 0,002 0,000

Table G.23: AR(1) model results with weather variables

Model: A30 Southbound Model: A30 Northbound

No. Observations 29927 No. Observations 29927

Log-Likelihood -152501 Log-Likelihood -150193

Durbin-Watson 2,006 Durbin-Watson 1,984

Coeff Std error p-value Coeff Std error p-value

maxWind -1,231 0,222 0,000 maxWind -0,896 0,203 0,000

Temperature 5,025 0,622 0,000 Temperature 5,133 0,534 0,000

Sunshine -3,628 0,598 0,000 Sunshine -3,906 0,536 0,000

Precipitation -4,905 1,749 0,005 Precipitation -7,610 1,399 0,000

Sight 0,244 0,131 0,061 Sight 0,157 0,114 0,169

Thunder 15,636 17,211 0,364 Thunder 9,369 14,775 0,526

SlipperinessDummy 7,936 25,366 0,754 SlipperinessDummy -5,830 18,651 0,755

SnowHeight -2,872 0,526 0,000 SnowHeight -3,647 0,438 0,000

ar.L1 0,670 0,002 0,000 ar.L1 0,652 0,002 0,000

Table G.24: AR(1) model results with significant weather variables

Model: A30 Southbound Model: A30 Northbound

No. Observations 29927 No. Observations 29927

Log-Likelihood -152504 Log-Likelihood -150194

Durbin-Watson 2,006 Durbin-Watson 1,983

Coeff Std error p-value Coeff Std error p-value

maxWind -0,998 0,199 0,000 maxWind -0,751 0,180 0,000

Temperature 5,778 0,471 0,000 Temperature 5,492 0,410 0,000

Sunshine -3,680 0,598 0,000 Sunshine -3,732 0,535 0,000

Precipitation -5,225 1,714 0,002 Precipitation -8,624 1,348 0,000

SnowHeight -2,821 0,527 0,000 SnowHeight -3,374 0,440 0,000

ar.L1 0,670 0,002 0,000 ar.L1 0,652 0,002 0,000
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Table G.25: Least squares regression model results with weather code variables

Model: A30 Southbound Model: A30 Northbound

No. Observations 22481 No. Observations 22482

R-squared 0,003 R-squared 0,002

Log-Likelihood -152577 Log-Likelihood -150267

Durbin-Watson 2,011 Durbin-Watson 1,988

Coeff Std error p-value Coeff Std error p-value

Slipperiness_1.0 0,000 0,000 Slipperiness_1.0 0,000 0,000

Slipperiness_2.0 -77,014 28,408 0,007 Slipperiness_2.0 -74,267 25,626 0,004

Snow_1.0 -5,299 151,656 0,972 Snow_1.0 -34,101 136,804 0,803

Snow_2.0 -61,873 35,746 0,083 Snow_2.0 -41,791 32,245 0,195

Snow_3.0 -386,541 61,913 0,000 Snow_3.0 -333,814 55,850 0,000

Thunderstorm_1.0 -40,754 71,491 0,569 Thunderstorm_1.0 -38,584 64,490 0,550

Thunderstorm_2.0 -70,532 49,204 0,152 Thunderstorm_2.0 -18,077 44,385 0,684

Wind_1.0 40,133 37,335 0,282 Wind_1.0 -27,971 33,679 0,406

Wind_2.0 5,445 49,204 0,912 Wind_2.0 -2,329 44,385 0,958

Wind_3.0 -224,922 87,559 0,010 Wind_3.0 -65,843 78,984 0,405

A31 Friesland

Table G.26: AR(1) model results with weather and weather code variables

Model: A31 Westbound Model: A31 Eastbound

No. Observations 29927 No. Observations 29927

Log-Likelihood -153033 Log-Likelihood -146555

Durbin-Watson 1,918 Durbin-Watson 2,021

Coeff Std error p-value Coeff Std error p-value

maxWind 9,772 0,249 0,000 maxWind 4,785 0,174 0,000

Temperature -2,342 1,684 0,164 Temperature -4,986 1,054 0,000

Sunshine 2,188 0,972 0,024 Sunshine 1,498 0,690 0,030

Precipitation -6,472 2,087 0,002 Precipitation -13,666 2,320 0,000

Sight -0,953 0,207 0,000 Sight -0,837 0,148 0,000

Thunder -94,587 45,087 0,036 Thunder -2,391 34,158 0,944

SlipperinessDummy -310,501 19,331 0,000 SlipperinessDummy -252,864 11,766 0,000

SnowHeight -5,528 2,823 0,050 SnowHeight -3,854 1,410 0,006

Slipperiness_2.0 -584,975 65,137 0,000 Slipperiness_2.0 -455,060 53,756 0,000

Slipperiness_3.0 -818,058 94,886 0,000 Slipperiness_3.0 -440,889 52,372 0,000

Snow_1.0 268,449 82,486 0,001 Snow_1.0 353,904 50,032 0,000

Snow_2.0 -479,509 96,526 0,000 Snow_2.0 -293,381 67,528 0,000

Snow_3.0 -107,295 225,527 0,634 Snow_3.0 -221,443 277,232 0,424

Thunderstorm_1.0 2,914 191,972 0,988 Thunderstorm_1.0 36,469 137,446 0,791

Thunderstorm_2.0 0,000 0,000 0,001 Thunderstorm_2.0 0,000 0,000 0,913

Wind_1.0 -346,168 63,186 0,000 Wind_1.0 -136,340 53,953 0,012

Wind_2.0 1409,043 18,890 0,000 Wind_2.0 1585,084 12,037 0,000

ar.L1 0,864 0,001 0,000 ar.L1 0,829 0,001 0,000
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Table G.27: AR(1) model results with significant weather and weather code variables

Model: A31 Westbound Model: A31 Eastbound

No. Observations 29927 No. Observations 29927

Log-Likelihood -153012 Log-Likelihood -146555

Durbin-Watson 1,898 Durbin-Watson 2,016

Coeff Std error p-value Coeff Std error p-value

maxWind 7,632 0,259 0,000 maxWind 4,731 0,173 0,000

Sunshine 0,704 0,997 0,480 Temperature -4,437 1,046 0,000

Precipitation -8,171 2,112 0,000 Sunshine 1,379 0,690 0,046

Sight -0,713 0,196 0,000 Precipitation -17,047 2,218 0,000

Thunder -68,075 49,449 0,169 Sight -0,904 0,148 0,000

SlipperinessDummy -190,814 27,246 0,000 SlipperinessDummy -252,264 11,817 0,000

Slipperiness_2.0 -570,764 70,912 0,000 SnowHeight -5,028 1,385 0,000

Slipperiness_3.0 -795,297 99,052 0,000 Slipperiness_2.0 -454,811 53,502 0,000

Snow_1.0 -293,676 152,142 0,054 Slipperiness_3.0 -440,888 52,025 0,000

Snow_2.0 -633,438 74,386 0,000 Snow_1.0 368,838 49,226 0,000

Thunderstorm_2.0 0,000 0,000 0,171 Snow_2.0 -288,668 64,554 0,000

Wind_1.0 -327,185 62,534 0,000 Wind_1.0 -136,323 54,137 0,012

Wind_2.0 1382,047 19,604 0,000 Wind_2.0 1585,639 12,039 0,000

ar.L1 0,866 0,001 0,000 ar.L1 0,826 0,001 0,000

Table G.28: AR(1) model results with weather variables

Model: A31 Westbound Model: A31 Eastbound

No. Observations 29927 No. Observations 29927

Log-Likelihood -152924 Log-Likelihood -146435

Durbin-Watson 1,91 Durbin-Watson 2,021

Coeff Std error p-value Coeff Std error p-value

maxWind 9,839 0,240 0,000 maxWind 4,799 0,175 0,000

Temperature -1,650 1,677 0,325 Temperature -5,976 1,073 0,000

Sunshine 2,143 0,955 0,025 Sunshine 1,641 0,685 0,017

Precipitation -14,450 1,896 0,000 Precipitation -16,292 2,197 0,000

Sight -0,938 0,206 0,000 Sight -0,624 0,151 0,000

Thunder -43,233 45,708 0,344 Thunder -4,629 33,264 0,889

SlipperinessDummy -6,226 36,130 0,863 SlipperinessDummy -22,019 15,867 0,165

SnowHeight -4,967 3,137 0,113 SnowHeight -4,277 1,482 0,004

ar.L1 0,870 0,001 0,000 ar.L1 0,841 0,001 0,000

Table G.29: AR(1) model results with significant weather variables

Model: A31 Westbound Model: A31 Eastbound

No. Observations 29927 No. Observations 29927

Log-Likelihood -152927 Log-Likelihood -146440

Durbin-Watson 1,91 Durbin-Watson 2,02

Coeff Std error p-value Coeff Std error p-value

maxWind 9,697 0,238 0,000 maxWind 4,921 0,175 0,000

Sunshine 1,826 0,946 0,054 Temperature -5,332 1,073 0,000

Precipitation -15,833 1,859 0,000 Sunshine 1,877 0,686 0,006

Sight -1,038 0,187 0,000 Precipitation -17,575 2,153 0,000

ar.L1 0,871 0,001 0,000 Sight -0,778 0,150 0,000

SnowHeight 0,396 1,507 0,793

ar.L1 0,841 0,001 0,000
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Table G.30: Least squares regression model results with weather code variables

Model: A31 Westbound Model: A31 Eastbound

No. Observations 21907 No. Observations 21882

R-squared 0,002 R-squared 0,007

Log-Likelihood -152945 Log-Likelihood -146404

Durbin-Watson 1,912 Durbin-Watson 2,03

Coeff Std error p-value Coeff Std error p-value

Slipperiness_2.0 -73,367 38,417 0,056 Slipperiness_2.0 -87,361 28,718 0,002

Slipperiness_3.0 -67,823 34,213 0,047 Slipperiness_3.0 -60,180 25,575 0,019

Snow_1.0 -51,844 82,396 0,529 Snow_1.0 -25,972 61,593 0,673

Snow_2.0 -92,576 45,357 0,041 Snow_2.0 -103,421 33,906 0,002

Snow_3.0 38,352 98,482 0,697 Snow_3.0 21,269 73,617 0,773

Thunderstorm_1.0 30,456 59,776 0,610 Thunderstorm_1.0 1,643 44,684 0,971

Thunderstorm_2.0 0,000 0,000 Thunderstorm_2.0 0,000 0,000

Wind_1.0 6,317 59,776 0,916 Wind_1.0 10,549 44,684 0,813

Wind_2.0 206,506 41,723 0,000 Wind_2.0 348,048 31,189 0,000

A7 Groningen

Table G.31: AR(1) model results with weather and weather code variables

Model: A7 Westbound Model: A7 Eastbound

No. Observations 29927 No. Observations 28462

Log-Likelihood -143738 Log-Likelihood -120531

Durbin-Watson 1,952 Durbin-Watson 2,113

Coeff Std error p-value Coeff Std error p-value

maxWind -0,300 0,140 0,033 maxWind -0,217 0,164 0,185

Temperature 2,715 0,400 0,000 Temperature 1,988 0,463 0,000

Sunshine -0,874 0,404 0,030 Sunshine -1,410 0,463 0,002

Precipitation -1,044 2,346 0,656 Precipitation -2,300 2,770 0,406

Sight -0,027 0,084 0,752 Sight 0,051 0,095 0,592

Thunder -18,690 6,663 0,005 Thunder -24,439 17,663 0,166

SlipperinessDummy -14,932 9,670 0,123 SlipperinessDummy -15,950 12,158 0,190

SnowHeight -2,277 0,695 0,001 SnowHeight -1,880 0,779 0,016

Slipperiness_2.0 -356,828 16,664 0,000 Slipperiness_2.0 -390,356 15,678 0,000

Slipperiness_3.0 -523,635 13,384 0,000 Slipperiness_3.0 -518,096 15,034 0,000

Snow_1.0 97,334 141,894 0,493 Snow_1.0 78,544 306,279 0,798

Snow_2.0 -98,831 31,830 0,002 Snow_2.0 -203,220 31,019 0,000

Snow_3.0 -90,786 184,506 0,623 Snow_3.0 -295,893 97,339 0,002

Thunderstorm_1.0 -82,567 68,093 0,225 Thunderstorm_1.0 -86,765 54,099 0,109

Thunderstorm_2.0 -27,274 55,799 0,625 Thunderstorm_2.0 -27,904 196,845 0,887

Wind_1.0 -58,998 61,123 0,334 Wind_1.0 -37,237 70,013 0,595

Wind_2.0 7,016 34,965 0,841 Wind_2.0 26,861 41,408 0,517

ar.L1 0,642 0,001 0,000 ar.L1 0,638 0,001 0,000
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Table G.32: AR(1) model results with significant weather and weather code variables

Model: A7 Westbound Model: A7 Eastbound

No. Observations 29927 No. Observations 28462

Log-Likelihood -143732 Log-Likelihood -120532

Durbin-Watson 1,953 Durbin-Watson 2,113

Coeff Std error p-value Coeff Std error p-value

maxWind -0,358 0,116 0,002 Temperature 1,805 0,256 0,000

Temperature 2,655 0,315 0,000 Sunshine -1,441 0,460 0,002

Sunshine -0,810 0,399 0,042 SnowHeight -1,948 0,754 0,010

Thunder 21,273 6,620 0,001 Slipperiness_2.0 -404,956 14,916 0,000

SnowHeight -2,392 0,662 0,000 Slipperiness_3.0 -527,633 14,141 0,000

Slipperiness_2.0 -349,102 16,661 0,000 Snow_2.0 -211,377 30,547 0,000

Slipperiness_3.0 -527,236 12,936 0,000 Snow_3.0 -303,823 95,470 0,001

Snow_2.0 -96,138 31,656 0,002 ar.L1 0,639 0,001 0,000

ar.L1 0,642 0,001 0,000

Table G.33: AR(1) model results with significant weather variables

Model: A7 Westbound Model: A7 Eastbound

No. Observations 29927 No. Observations 28462

Log-Likelihood -143822 Log-Likelihood -120607

Durbin-Watson 1,96 Durbin-Watson 2,13

Coeff Std error p-value Coeff Std error p-value

maxWind -0,464 0,139 0,001 maxWind -0,414 0,163 0,011

Temperature 3,087 0,393 0,000 Temperature 2,426 0,465 0,000

Sunshine -0,833 0,408 0,041 Sunshine -1,441 0,469 0,002

Precipitation -1,201 2,360 0,611 Precipitation -2,011 2,701 0,457

Sight -0,045 0,085 0,592 Sight 0,029 0,097 0,763

Thunder 11,983 6,628 0,071 Thunder -14,689 17,893 0,412

SlipperinessDummy 2,668 9,631 0,782 SlipperinessDummy -4,890 13,365 0,714

SnowHeight -2,598 0,660 0,000 SnowHeight -2,754 0,694 0,000

ar.L1 0,655 0,001 0,000 ar.L1 0,656 0,001 0,000

Table G.34: AR(1) model results with significant weather variables

Model: A7 Westbound Model: A7 Eastbound

No. Observations 29927 No. Observations 28462

Log-Likelihood -143823 Log-Likelihood -120608

Durbin-Watson 1,96 Durbin-Watson 2,13

Coeff Std error p-value Coeff Std error p-value

maxWind -0,504 0,112 0,000 maxWind -0,413 0,131 0,002

Temperature 2,939 0,309 0,000 Temperature 2,545 0,363 0,000

Sunshine -0,840 0,404 0,037 Sunshine -1,411 0,465 0,002

SnowHeight -2,595 0,660 0,000 SnowHeight -2,799 0,694 0,000

ar.L1 0,655 0,001 0,000 ar.L1 0,656 0,001 0,000



86 G. Model Results - Regression with Autoregressive Errors

Table G.35: Least squares regression model results with weather code variables

Model: A7 Westbound Model: A7 Eastbound

No. Observations 22741 No. Observations 19071

R-squared 0,008 R-squared 0,01

Log-Likelihood -143742 Log-Likelihood -120556

Durbin-Watson 1,975 Durbin-Watson 2,151

Coeff Std error p-value Coeff Std error p-value

Slipperiness_2.0 -134,511 17,983 0,000 Slipperiness_2.0 -128,773 17,994 0,000

Slipperiness_3.0 -179,813 16,692 0,000 Slipperiness_3.0 -182,089 16,702 0,000

Snow_1.0 44,684 47,578 0,348 Snow_1.0 65,218 47,608 0,171

Snow_2.0 -54,473 22,747 0,017 Snow_2.0 -84,439 22,761 0,000

Snow_3.0 61,113 50,863 0,230 Snow_3.0 20,386 50,895 0,689

Thunderstorm_1.0 -27,508 35,966 0,444 Thunderstorm_1.0 -10,473 35,988 0,771

Thunderstorm_2.0 -8,701 37,323 0,816 Thunderstorm_2.0 -7,746 60,220 0,898

Wind_1.0 -36,345 30,873 0,239 Wind_1.0 -1,685 30,892 0,957

Wind_2.0 3,388 21,549 0,875 Wind_2.0 15,354 21,562 0,476



H Case Studies

In this Appendix, all plots that are used for the case studies in the research of Chapter 7. Per road segment,

a Section is included. Per Section, plots are found for the counts on the days 4-1-2016, 5-1-2016, 7-1-2016,

10-12-2017, 11-12-2017 and 18-01-2018.

The legend in Figure H.1 is applicable for the plots in all Sections. The 95% confidence interval is the

confidence interval for the average demand pattern, as described in Chapter 5.

A20 Zuid-Holland

Figure H.2: Case study for the A20

Figure H.1: Legend for case study plots
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A6 Flevoland

Figure H.3: Case study for the A6
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A37 Drenthe

Figure H.4: Case study for the A37

A58 Zeeland

Figure H.5: Case study for the A58
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A30 Gelderland

Figure H.6: Case study for the A30
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A31 Friesland

Figure H.7: Case study for the A31
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A7 Groningen

Figure H.8: Case study for the A7



I Reliability

In this Appendix, the plots are found that show the correlation between the reliability of a previous code and

the impact on the counts for the next code.

A20 Zuid-Holland

Figure I.1: Reliability of previous code in relation to deviation from expected counts for the A20

A6 Flevoland

Figure I.2: Reliability of previous code in relation to deviation from expected counts for the A6
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A37 Drenthe

Figure I.3: Reliability of previous code in relation to deviation from expected counts for the A37

A58 Zeeland

Figure I.4: Reliability of previous code in relation to deviation from expected counts for the A58

A30 Gelderland

Figure I.5: Reliability of previous code in relation to deviation from expected counts for the A30
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A31 Friesland

Figure I.6: Reliability of previous code in relation to deviation from expected counts for the A31

A7 Groningen

Figure I.7: Reliability of previous code in relation to deviation from expected counts for the A7
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Impacts of Weather Codes on Travel Behavior

Jeroen Delfos1

Abstract— In this paper an analysis is presented on the
impacts of weather codes on travel behavior. Loop detector
data of seven segments in different provinces in the Netherlands
are analyzed with regression models with autoregressive errors.
Weather codes were found to be significantly influencing travel
demand. Particularly codes orange for slipperiness and snow,
and codes red for slipperiness, snow and wind yield signifi-
cant results for most road segments. Furthermore, some trip
rescheduling behavior was observed. The unreliability of the
previous weather code was found to reduce the impacts for the
next weather codes. The analysis of Twitter data was not useful
to confirm hypotheses on the incentives for changing travel
behavior. As this study is the first revealed preference study
into the effects of weather codes, lots of research gaps remain.
Secondary roads were not included in the study, which might be
affected in other ways than highways. Furthermore, interaction
effects between time and weather effects might explain some of
the unexplained variability of the model results.

I. INTRODUCTION

Multiple researches have been studying the effects of
weather on travel behavior. Both stated preference [2], [8]
as well as revealed preference [3], [9] approaches were
used, which pointed out that travelers tend to plan less trips
during adverse weather conditions. A weather alarm was
found to have an additional impact on travel behavior, when
this variable was introduced in a stated choice experiment
[10]. However, this result has not been verified with a
revealed preference study. Insights into the impacts of a
weather alarm and weather codes in general provide relevant
information for road authorities (e.g. Rijkswaterstaat for the
Netherlands), when forecasting traffic volumes during ex-
treme weather conditions. Furthermore, results are interesting
for the institute that issues these weather codes (e.g. KNMI
for the Netherlands), as this institute hopes that advices that
are accompanying a weather code are taken seriously by
travelers.

In the Netherlands, weather codes are issued since 1998
in case of expected adverse weather conditions [7]. The
currently used systematics are in place since 2015, and follow
the decision tree as schematized in Figure 1. Four code colors
are available, with green being active when no anomalies
are occurring. Code yellow indicates a chance on dangerous
weather conditions. Citizens are asked to be alert, especially
when in traffic. Code orange is issued when chances are
high that dangerous or extreme weather conditions will occur.
In this case, citizens are asked to be prepared. Code red is
also called a weather alarm, indicating that citizens should

*This work was part of a master thesis, executed under the supervision
of the TU Delft and in cooperation with CGI

1J. Delfos is a MSc. student at the Faculty of Civil Engineering and Geo-
sciences, Delft University of Technology, 2600 AA Delft, The Netherlands

take action. Weather conditions under code red can cause
damage and injury such that it can be disruptive for the
society. Codes are issued when certain threshold values
for weather characteristics are exceeded (see KNMI and
Ministry of I&E [6, p.26-27]). Before a code red is issued,
an impact analysis is conducted by the KNMI in cooperation
with departmental coordination centers, the national crisis
center, the road authority, the police, fire department and rail
authority. Based on the threshold values and impact analysis
the KNMI decides on the choice to issue a weather alarm.

Fig. 1. Decision tree for the activation of weather codes [7]

II. THEORETICAL FRAMEWORK

A theoretical approach is adopted to analyze the impacts
of weather codes on travel behavior. Hypotheses are tested,
that follow from existing literature. Preceding research that
studied the impacts of weather conditions on road traffic
volumes found that traffic volumes decreased in the case of
adverse weather [2], [5]. Furthermore, Stralen, Calvert, and
Molin [10] found that travelers travel less when a weather
alarm is issued. When we assume that this decreased travel
demand is a result of the advice from the KNMI to avoid
to make a trip, we can interpret the impact of a weather
code as the compliance of a traveler towards the advice
that is given along with the weather code. Chorus, Arentze,
and Timmermans [1] mentions four factors that influence
compliance with a travel advice, being the unreliability of in-
formation, the preference for a travel alternative, the relative



importance for travel times and the relative importance for
travel time uncertainty. This study will take the unreliability
of information into account, as this factor can be directly
related to the interpretation of the advice as given by the
KNMI, while the other factors can be seen as effects of the
weather characteristics corresponding with the weather code,
rather than effects that are induced by the weather code itself.
Therefore, the latter factors are included as an error term in
the theoretical model.

Travelers’ perception of weather codes is seen as a proxy
for unreliability of information. We assume that this per-
ception is formed by the sentiment that is prevailing during
a certain weather code and the reliability of a previous
weather code. With the reliability we mean the degree to
which the measured weather characteristics indeed exceeded
the threshold values of a weather code. These two parts are
expected to be interrelated, as we expect that the sentiment
towards a weather code will be relatively negative when a
previous weather code was unreliable. When the previous
weather code was unreliable, we expect that people will
perceive the next weather code as less reliable.

In this study, we take the choice to make a trip (i.e.
frequency choice) and the departure time choice of road users
as the dependent variables, representing travel behavior, as
these two variables can be observed through traffic counts.

When we schematize the hypotheses that follow from
literature and from the stated assumptions, Figure 2 is
derived. This framework will be used for structuring the
study in this article.

III. DATA AND METHODS

This Chapter will elaborate on the used data and subse-
quently the methods with which the data is manipulated to
come to results with regards to the influences of weather
codes on travel behavior. Furthermore, this Chapter will
explain

Data

Since this research tries to unravel the effects of weather
codes on travel behavior from a revealed preference per-
spective, revealed preference data is needed. Historical data
for traffic counts, weather characteristics and issued weather
codes are used for the period of 2015 until April 2018.

Traffic data has been supplied by the Nationale Databank
Wegverkeersgegevens (NDW). Vehicle speeds and counts
are registered through loop detectors that are integrated in
the road surface. The data is aggregated per minute, and is
available for all major roads in the Netherlands, on multiple
segments.

It is chosen to analyze the main highways of the Nether-
lands. To choose the segments that will be analyzed, require-
ments are specified that will help to analyze only segments
that will provide insights in the effects of weather codes on
travel behavior:

1) The measurement locations must have measurement
data in the period between 2015 and now. This period

is aligned with the period for which detailed weather
code data is available.

2) The measurement locations must be in different
provinces. This will make sure that the variety of
weather codes is as big as possible, since weather
codes are issued per province.

3) The traffic flow on the measurement locations have to
be as least as possible influenced by factors other than
weather. Roads were congestion and disruptions occur
regularly are to a lesser extent suitable for analyzing
weather effects on traffic volumes.

4) The measurement location of the traffic flow and the
weather characteristics must be in the same region,
such that it can be assumed that the weather at a
measurement location was similar to the weather at the
measurement location for measuring traffic volumes.

The NDW was consulted on requirement three, which
resulted in a list of segments that were relatively unaffected
by congestion. From this list, the A20, A6, A37, A58,
A30, A31 and the A7 were selected as the segments that
were the least affected by congestion, while situated in
different provinces. For these measurement points, data was
available for the years of 2015 to 2018. Furthermore, weather
measurement stations were found in no further away than
20km. The measurement locations are depicted in Figure 3

Fig. 3. Measurement Locations for weather (red) and traffic (yellow)

Before traffic data can be used for the proposed analyses
the data has to be prepared, in order to exclude factors that
are not related to weather, but do influence traffic counts.
Firstly, the demand patterns for all segments are visually
inspected to spot any anomalies. For example the opening of
the A4 in December 2015 led to a decrease in travel demand
for the A20. Correction factors are used to correct for this,
and other anomalies. This is done by calculating the average
counts for the same months as the period of the anomaly, in
other years. Subsequently, the factor is calculated by which
the period of the anomaly should be factorized in order to
have an average count that is the same as the average counts
of the periods without anomalies. All hours in the period
with anomalies are corrected with this factor. After this, the



Fig. 2. Theoretical Framework for the influences of weather and weather codes on travel behavior

data is deseasonalized, by correcting the data for daily and
weekly patterns. This is necessary in order to avoid that low
temperatures, or low amounts of sunshine are linked to low
counts, while they are actually linked to night times. Another
example is that fog is often occurring during the morning
peak. However, fog is not leading to a morning peak, while
the time of day is. The deseasonalization of the data follows
the following process:

Ct =
1

N

∑N
i=1 ci,t, with i = 0, 1..., 168

Dt = ct − Ct

(1)

With Ct the average count at time t for each hour of the
week, N the amount of observations, ci,t the ith observation
of counts at time t and Dt the deseasonalized counts at time
t.

Weather data was supplied by the KNMI, for the mea-
surement locations of all segments. Average and maximum
wind speeds, precipitation, temperature, sunshine duration,
horizontal sight, and dummies that indicate whether snow or
slipperiness was present were available. With the tempera-
ture, precipitation and the dummy for the presence of snow,
snow height was calculated and added to the variables as
well.

Sentiment data was found on Twitter, when searching
for the words ’code’ and ’knmi’ within the period for
which a weather code was active. The data was imported
by downloading the full feed of tweets as a text file, as
the Twitter API does not allow for accessing more than
the first 40 tweets for a certain query. After the text was
downloaded, the list of tweets was split into separate tweets
which allows for searching for combinations of words, after
which irrelevant text was deleted.

The reliability of a weather code was measured by compar-
ing the observed weather characteristics with the threshold
values of the issued weather code. When weather character-
istics exceeded the threshold values of the issued weather
code, the reliability variable was 1, while it was zero if
the threshold values were not exceeded. The reliability of
a weather code was expressed as the mean value of the

reliability over all hours for which a weather code was active,
during one day.

Methods

Different methods were used for different parts of the
study. Firstly, the influences of weather codes on traffic vol-
umes are statistically tested, in order to be able to assess the
impacts of weather codes on trip frequency choice. This is
done with linear regression (see Equation (2)), and regression
with autoregressive errors, as these methods provide both
insights into the significance and impacts of variables. As
follows from the theoretical framework, weather variables
need to be taken into account when analyzing the impacts
of weather codes. For the regression model with autore-
gressive errors, two model specifications are applied. The
first one handles both weather and weather code variables
simultaneously (see Equation (3)), yielding the ’best fit’
for all included variables. The second model first handles
weather variables, and subsequently regresses the weather
code variables on the residuals (see Equation (4)). This
model specification gives the minimal influences of the
weather code variables. This is done to assess the impacts
of a weather code under the assumption that travelers are
primarily and firstly influenced by the weather itself.

yt =

W∑

w=1

βwxwt +

Q∑

q=1

βqxqt + εt (2)

With yt being the estimated deseasonalized count, βw and
βq being the coefficients for weather variable w and weather
code variables q respectively, xwt and xqt being the observed
value for the weather and weather code variables respectively
at time t and εt being the error term at time t which is
normally distributed with a zero mean.

yt =
∑W

w=1 βwxwt +
∑Q

q=1 βqxqt + ut

ut = φ1ut−1 + εt

(3)

With all symbols having the same meaning as in Equa-
tion (2), but with the error term ut being the autoregressive
error term at time t, which is described by the coefficient φ1



times the error term of the previous observation ut−1 plus a
normally distributed error term εt.

ŷt =
∑W

w=1 βwxwt + ut

yt − ŷt =
∑Q

q=1 βqxqt + εt

ut = φ1ut−1 + εt

(4)

With all symbols having the same meaning as in Equa-
tions (2) and (3), but with ŷt being the estimate for the
regression model with autoregressive errors on weather vari-
ables only and yt − ŷt representing the residuals.

Secondly, the trip scheduling choice is analyzed by as-
sessing the demand patterns during a set of days for which
weather codes were issued and comparing these demand
patterns with the expected demand patterns for days with-
out a weather code. Thirdly, the influence of perception
of reliability on the impact of weather codes is analyzed,
by checking the correlation between the reliability of the
previous code with the influence of the next weather code,
and statistically testing this with linear regression. Lastly,
Twitter data is manually sorted on sentiment, and checked
to see whether people developed a certain sentiment towards
a weather code because of the perceived reliability.

Thirdly, the influence of reliability on the compliance
rate is assessed. By comparing the thresholds of a certain
weather code with the actual measured weather conditions,
a reliability score can be assigned to each weather code.
Subsequently, it can be assessed whether a low reliability
of a weather code negatively influences the impact of the
next weather code. If the reliability of the previous weather
code correlates with the impact of the weather code on traffic
counts, chances are high that the reliability of the previous
weather code indeed changes the compliance rate of travelers
towards the travel advice of a weather code.

Lastly, sentiment can be seen as a proxy for the unreliabil-
ity of information. Several methods will be used to analyze
this sentiment:

1) Counts of words that are often paired with negative
sentiment are counted. The occurrence of these ’neg-
ative words’ can indicate the amount of tweets with a
negative sentiment during a day with a weather code.

2) A sample set of tweets will be manually assessed on
their sentiment. Subsequently, the prevailing words in
the tweets of both neutral and negative sentiment can
be compared. These words can then be used as input to
determine the sentiment of tweets outside the sample
set.

3) A manual inspection of all the tweets can be done if
the first two methods do not provide any outcomes. All
tweets will be reviewed and labeled with a sentiment
by the author of this paper.

For the analysis, three classes are distinguished. A tweet
is either positive, negative, or neutral towards the weather
code as issued by the KNMI. A positive tweet might for
example state that it was a good choice that the KNMI issued

a weather code. A negative tweet might for example state that
the weather code was not necessary. A neutral tweet does not
hold an opinion towards the weather code. An example of
this is the statement that the KNMI issued or a code, or a
description of the weather circumstances for the day.

IV. RESULTS

This Section will present the results for the analyses on
the impacts of weather codes.

Weather Codes and Frequency Choice

The linear regression model yielded significant coefficients
for the majority of weather and weather code variables.
However, the significance of these results are likely to be
overestimated, as autocorrelation was found between the
residuals [4]. Durbin-Watson statistics between 0.3 and 0.8
were found, indicating this autocorrelation.

To cope with this autocorrelation, regression with autore-
gressive errors is performed. Both the simultaneous model of
Equation (3) as well as the sequential model of Equation (4)
yield significant results, with Durbin-Watson statistics close
to 2, indicating that chances are low that the residuals
are autocorrelated. Furthermore, the log-likelihood of the
simultaneous and the sequential models were closer to zero,
indicating a better model fit in comparison to the linear
regression model with normal errors.

All seven road segments were analyzed. The amount of
times that a weather code yields significant results (i.e.
was found to be statistically influencing travel demand),
is shown in Figure 4. From this, we can see that codes
for slipperiness and snow are most often significant. Codes
for thunderstorms and wind are less often impacting travel
demand significantly. Furthermore, the expected pattern can
be observed with respect to the code color, as codes red are
most significant, followed by codes orange. The sequential
model gives the lower bound of the influence of weather
codes, from which it can be observed that codes orange for
slipperiness and snow, and codes red for slipperiness, snow
and wind are significant for most road segments.

For weather codes, all the hypotheses are that a weather
code will result in less travel demand during the active period
of a weather code. However, this is not always the case. Code
yellow for snow, orange for thunderstorms, and code yellow,
orange and red for wind are yielding unexpected signs. All
codes for slipperiness yield the expected sign. Furthermore,
the codes orange and red for snow, and codes yellow for
thunderstorms yield the expected sign as well. For these
codes we can conclude that they have a clear and significant
effect on the traffic volumes.

When looking at the KDE plots as depicted in Figure 8,
we can see that for the most weather types, the impacts
of codes red are higher than codes orange and yellow.
A more surprising result can be observed when looking
at the differences in densities between the simultaneous
and the sequential model. For all the weather codes the
sequential model has coefficients that are closer to zero
than the coefficients of the simultaneous model, which is



logical, since the model specification allows the assignment
of measured impacts to the weather variables first. In most of
the plots, it can be observed that the sequential model has a
more concentrated density, meaning that over the segments,
there is more consensus on the impacts of the weather codes.

Weather Codes and Departure Time Choice

The demand pattern for six weather codes days were
analyzed. Table I gives a list of the six days, and their
corresponding codes. For these days, the hypothesis was
tested that travelers will reschedule trips towards a period
outside of the period in which a weather code is active.
This will result in above average counts for the periods just
outside the period in which a the weather code was active. A
graphical display of this assumption can be found in Figure 5.

TABLE I
CASE STUDY SELECTION

Weather Code Date
Slipperiness Orange 04-01-2016
Slipperiness Orange/Red 05-01-2016
Slipperiness Orange/Red 07-01-2016
Snow Orange 10-12-2016
Snow Orange/Red 11-12-2016
Wind Orange/Red 18-01-2016

Fig. 4. Significance of weather code variables

Fig. 5. Graphical representation of the second hypothesis

A few cases can be found in which peaks are slightly
moved towards hours in which no code was active, and
hereby confirm our hypothesis. For the A20 in the eastbound
direction and the A30 in southbound direction on 11-12-
2017, a small peak can be observed at around midday, just
before the code red is active. A similar effect can be seen
for the same date on the A6 in the eastbound direction.
However, here the peak is located just inside the period of
the code red. It seems that here, travelers decided to travel
before the usual evening peak to avoid traffic, instead of
avoiding traveling during code red. The A37 yields a similar
pattern for 11-12-2017. Here, some travelers chose to travel
before the afternoon peak, during code orange. Hereby, these
travelers avoided the evening peak as well as traveling in
code red. For the code red for wind on 18-01-2018, it can
be observed for the A6 in eastbound direction that travelers
postponed their trip towards the hours after the weather code
was terminated. This effect is to a lesser extend visible for
the A30 in northbound direction.

Generally we can see that rescheduling only can be ob-
served in cases of codes red. this is also the case when a code
orange is preceding or succeeding the code red. Codes orange
themselves do not lead to rescheduling behavior amongst
travelers.

The plots for the discussed cases are found in Figure 6.

Perception and Weather Codes

The correlation between the reliability of the previous code
and the impact on counts for the next code are checked
by plotting the measurements with the reliability and the
deviation from the expected counts on the x-axis and y-axis
respectively. When combining all the observations of all seg-
ments, Figure 7 is derived. Here we can see a relatively high
amount of positive deviations for reliability values between
0 and 0.2. When we statistically test the trend line, the trend
coefficient yields significance on a 95% confidence interval,
with a p-value of 0.034. This implies that low reliability
for the previous weather code impacts the compliance of
travelers towards the advices given during weather codes.

Three methods were used to analyze Twitter data. The first
two methods as mentioned in Section III were not able to
provide results. This was due to the fact that the query gave
a relatively low amount of tweets, from which most tweets
were neutral statements. Therefore, it was difficult to attribute
characteristics to the negative tweets, since there were only



Fig. 6. Travel demand patterns for case study days

Fig. 7. Reliability of previous code in relation to deviation from expected
counts for all road segments

a few negative tweets found. Therefore, the third, manual,
method was used to analyze the tweets.

Twitter data from three dates were, which differ in code
characteristics (see Table II), is analyzed. For these days,
respectively 206, 725 and 507 tweets were available. The
tweets that were assessed to be negative with regards to
the weather code are presented in Table III, at the end of
this paper. For 09-12-2017 only two negative tweets were
found that had both the words ’code’ and ’knmi’ in them.
For 11-12-2017 this number was 10, while 18-01-2018 yields
6 negative tweets. Some tweets are about the unreliability of
weather codes. In other tweets, people express that they don’t
agree with the danger that the KNMI warns for. Besides this,
several tweets express their dissatisfaction on the timing of
the code red.

TABLE II
SELECTED DAYS FOR THE SENTIMENT ANALYSIS

Date Reliability
previous code

Reliability
code Impact Weather code

09-12-2017 low medium medium Snow/slipperiness orange
11-12-2017 medium high high Snow/slipperiness orange/red
18-01-2017 low low low Wind orange/red

With a dataset as small as 18 observations it is difficult to
confirm or deny the hypotheses. It can be seen that for 18-
01-2018 half of the negative tweets were complaints about
the timing of the code. For this day, we see a low reliability,
although there was in fact a very heavy storm. This can
be explained by the used method for measuring reliability,
which takes into the average reliability over all hours that the
code was active. If a code is active longer than necessary,
reliability is going down.

The most negative tweets are found for 11-12-2017. This
contradicts the hypothesis that more negative tweets will be
observed at weather codes with a low reliability, since the
reliability for the code on 11-12-2017 was high. Since the
total amount of tweets were highest for this day, the amount
of negative sentiment might be more related to the total
attention that is given to the weather code.

V. CONCLUSION

This paper looks at the influences of weather codes on
travel behavior from three perspectives that follow from the
theoretical framework of Figure 2. First, the impacts of a
weather code on trip frequency choice was assessed. As
a linear regression model yields unreliable results, due to
autocorrelated errors, two regression models with autore-
gressive errors were used. The first model simultaneously
modeled weather and weather code variables, resulting in a
’best fit’ for the variable coefficients. From this model we
can conclude that weather codes have a significant influence
on travel demand during the hours for which a weather
code was active. Weather codes for slipperiness and snow
were most often significant. Codes red were most often
significant, followed by codes orange. The same patterns
hold for the model for which weather and weather code
variables were modeled sequentially, with a regression model



with autoregressive errors, and a linear regression model
respectively. From this model we obtained the minimal
influence of weather codes. The same patterns hold as for
the simultaneous model. However, a decreased influence can
be observed, leading to only codes orange for slipperiness
and snow and codes red for slipperiness, snow and wind to
be significant for most occurrences.

Although a decrease in travel demand can be observed
for hours with one of these weather codes, this does not
necessarily mean that travelers canceled trips. In theory, the
decrease in counts might be compensated by an increase in
trips outside the time period for which a weather code was
active. Therefore, the departure time choice was assessed
as the second perspective. From visual inspections of the
demand patterns on days with codes orange for slipperiness
and snow, and codes red for slipperiness, snow and wind, it
can be concluded that rescheduled trips do not compensate
the decrease in counts for hours with a weather code. This
means that travelers are actually canceling trips because of
weather codes. However, some rescheduling activity can be
observed, as cases were found in which counts were above
average for the hours just before or just after the active period
of a weather code. With this, we can conclude that both the
departure choice as well as frequency choice are affected by
weather codes.

The third perspective is that of the influence of perception
of reliability on the compliance towards advice, which in
turn is assumed to influence the impact of weather codes on
travel behavior. The reliability of the previous weather code
was found to be affecting the impact of the next weather
code. A low probability of the previous weather code is often
found to coincide with a low impact of the next weather code
on traffic counts. Furthermore, sentiment data is analyzed
from Twitter. A set of 18 tweets was found with a negative
sentiment regarding weather codes, out of a total of 1438
tweets for three days with a weather code. With this relatively
small dataset, drawing conclusions is hard. It could however
be observed that a low reliability does not always lead to
more negative sentiment.

For weather code orange and red for slipperiness, orange
and red for snow and red for wind, the majority of road seg-
ments yielded significant impacts on travel demand, with on
average respectively 331, 575, 287, 702 and 500 counts less
when modeling weather and weather codes simultaneously.
When modeling these variables sequentially, respectively
125, 139, 99, 301 and 296 less counts were observed.
Although rescheduling behavior is observed, this behavior
does not compensate for the trips that were not undertaken
during the active period of a weather code. This means
that part of the travelers takes the warnings of weather
codes seriously, and cancel trips. However, the majority of
travelers is not influenced by weather codes. The analysis
on reliability of weather codes shows that this incompliance
with advices of the KNMI could partly be due to perceived
unreliability. Although efforts were made, additional reasons
for incompliance were not found in tweets that had a negative
sentiment towards weather codes.

VI. DISCUSSION

This paper adds knowledge to the research field of the
impacts of weather related circumstances on travel behavior.
It does this by looking at revealed preference data, which
has not been done when analyzing effects of weather codes,
or more generally, weather related travel advices.

The analyses focus on travel behavior on highway roads
of the Netherlands. Travel behavior on secondary roads
might differ from the observed patterns. Travel behavior
changes under the effect of weather codes is expected to
yield different results for other modes as well. The research
in this paper does not provide insights in these differences.

While travel demand patterns can be influenced by a
number of factors, this research included only some factors.
This leads to limitations for the interpretation of the value
of the observed absolute changes in demand.

Thunderstorms and slipperiness were included in the
weather variables as dummies. Historical data from the
KNMI did not allow us to differentiate between ’some
thunder’ and ’heavy thunder’. First of all, this might have
reduced the significance of the results for these weather
variables. Secondly, this has implications for the way we can
measure the reliability of weather codes for these weather
types.

VII. RECOMMENDATIONS

The approach taken in this research provided new insights,
but also had its limitations. The wish to include data for
different provinces, which allowed us to assess more weather
codes, led to the choice to only include highway segments.
As demand patterns can be different for secondary roads,
it would be interesting to do similar analyses for these
secondary roads. This statement is supported by Stralen,
Calvert, and Molin [10], who found that a weather alarm
was of significant influence for the choice of avoiding the
motorway.

Autoregression played a part in the models with which the
impacts of weather codes on travel demand were calculated.
However, it is likely that there time plays a bigger role
in the composition of travel demand. For example, the
combination of weather characteristics with time might have
a specific effect on travel demand. Besides this, combinations
of different weather characteristics might alter travel demand.
We could for example hypothesize that the combination of
warm weather and sunshine leads to more people traveling
towards for example beaches.

The research in this report does not differentiate on travel
purpose. Stated preference work points out that differences
can be measured between changes in travel behavior for
utilitarian and recreational trips, when varying the weather
circumstances [10]. We can imagine that people who feel less
obligated to make a trip are more likely to be influenced by
weather codes as well. The research in this report does not
touch upon such hypotheses.

The research in this report assumes that travelers are
primarily influenced by weather, and subsequently can be



additionally influenced by weather codes. However, no re-
search has been found that confirms this assumption by
means of a stated choice experiment. It’s recommended for
future research to look into the causal relationships into the
field of weather, weather codes and their impacts on travel
behavior.

Although substantial efforts were made, the research in
this report yielded summary conclusions with respect to the
relation between sentiment and compliances rates. It proved
to be hard to use Twitter data for this purpose. However, the
insights that the research aimed to give might be valuable
for insights into the best way of communicating about the
weather codes. Furthermore, insights into the motivations
for the choice of travelers to (not) make a trip during the
active period of a weather code might be revealed if the
sentiment amongst travelers can be analyzed. Future research
might be conducted with the help of surveys, that collect data
during, or just after the occurrence of a weather code. This
survey should be aimed at revealing travelers opinions with
regards to the KNMI issuing the code and the motivations
for (not) making a trip during a weather code. On the other
hand, artificial intelligence (AI) is increasingly powerful in
analyzing text, which might make it possible to analyze
tweets more accurately in the future.

The KNMI states that it hopes that advices that are given
with weather codes are taken seriously by travelers. As seen
in the analyses of this report, low reliability of the previous
weather code is often paired with a low compliance rate
towards travel advices. As the compliance rate is seen as a
proxy for how serious travelers take the advice of the KNMI,
this means that it is important for the KNMI that weather
codes are reliable. Making the weather code more location
specific and more time specific might be helpful for this
reliability. Nowadays, weather codes are issued per province,
while extreme weather can occur very local. Furthermore, the
timing of a weather code is often unclear. Even the official
documentation of the KNMI does not always provide an
answer on the precise activation time of a weather code. This
makes it harder for travelers to reschedule their trip towards
a time outside the activation period.

For the RWS, we can conclude that, as some weather
codes influence travel behavior, weather codes are a valuable
variable to include in traffic forecasting models. The RWS
can expect less traffic in the case of weather codes red for
slipperiness, snow and wind, and for codes orange for slip-
periness and snow. If this updated traffic forecasting model is
combined with models that can predict congestion or chances
on accidents, the chances on congestion and accidents during
weather codes can be more accurately predicted.

As the RWS is aiming to reduce the amount of trips
during the active period of weather codes, it might be useful
to search for other ways to reduce the amount of trips
during extreme weather. The weather code and its advices
are reducing the amount of trips, but still the larger share
of trips is undertaken. Apparently, the majority of travelers
is not willing to change travel behavior due to advises from
the KNMI.
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Fig. 8. KDE for weather code variables

TABLE III
LIST OF NEGATIVE TWEETS DURING THE SELECTED DATES WITH THE WORDS ’CODE’ AND ’KNMI’

Date Negative Tweet

09-12-2017 code oranje. dan weet je dus dat niets maar dan ook niets gebeurd meestal.
geen paniek. het komt geregeld voor dat een code oranje voorbarig is gebleken en dat het toch nog een

prachtige, zonnige dag werd.

11-12-2017

anno 2017. zoek ”winter 1963”. we zijn volgens mij de weg kwijt. code rood = zoveel overlast dat de
maatschappij ontwrichtend kan zijn.

overal is er chaos met sneeuw en hier ligt het alweer te smelten. gisteren code oranje en gladde wegen, maar ik
heb helemaal niks gemerkt.

code rood afgegeven door knmi... nou hier in fryslan ligt niets hoor...
code rood. code rood! code rood!!! code roooooooood!!!!!! serieuze vraag aan het knmi: is er ook nog een code
zwart, voor ”nu zijn jullie allemaal serieus fucked”? want code rood voor een paar sneeuwvlokken maak je je

wereldwijd toch een piepklein beetje belachelijk mee...
okay. code rood knmi. klinkt alsof nederland vergaat. wat nu? wat betekent code rood in landen waar dagelijks

zo’n dik pak sneeuw ligt? zoveel vragen!
komt het knmi even aanzetten met code rood. hele dag nog heen sneeuwvlok gevallen

typisch nederlands: mensen afraden de weg op te gaan, aanraden thuis te werken. maar dan niet de code rood
afkondigen die dit rechtvaardigt, knmi

het knmi maakt de mensen weer is gek met hun code oranje! de meeste wegen zijn heel goed begaanbaar! maar
natuurlijk zullen collega’s die ver af wonen er weer zijn en diegene die relatief dichtbij wonen zeggen dat ze er

niet doorkomen...
ohh.. ahhh...men waar blijft de voorspelde code rood?!?!?!?

knmi geeft opnieuw code oranje af wegens verwachte sneeuwval. een instantie die opgedoekt kan worden.
steeds weer code oranje of rood en gebeurt er niets. dus opdoeken met de instantie die verkeerde info verstrekt

en mensen op het verkeerde been zet

18-01-2018

de volgende keer moet er bij deze extreme weersomstandigheden eerder code rood worden afgegeven. daarnaast
moet de overheid de scholen verplicht gesloten houden, en een verbod van vrachtwagens om te rijden! alleen

waarschuwen werkt niet!
het is hier nu bijna windstil. gaan we die code ook nog even publiekelijk intrekken a.u.b.?

knmi, zijn jullie vergeten code rood in te trekken?
trekt maar in weer in die code rood voor vleuten/de meern/utrecht het valt hier nu reuze mee

hee, knmi, eerst code oranje afkondigen, waarmee velen naar school/werk moeten, en dan code rood waardoor
iedereen thuis moet blijven? beetje moeilijk als je al op werk/school bent!

knmi met die weeralarmen geloof ik niet meer. paniekzaaierij. wat vroeger winter was met een dagje sneeuw is
vandaag de dag ineens een code rood waard...
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