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Abstract—Quantum error correction allows for quantum in-
formation to be preserved using logical qubits, which are subject
to lower error rates than their constituent physical qubits.
The degree of error suppression depends on the choice of
error correcting code and distance, the underlying physical
error rate, and the accuracy of the decoder. While traditional
decoders utilise a binary (hard) syndrome, recent work shows
that additional (soft) information captured during qubit read-
out can be effectively utilised to improve decoding accuracy.
In this work, we present experimental results from a distance-
three surface code implemented on transmon qubits, where we
perform Z-stabiliser measurements to protect the state of the
logical qubit against bit-flip errors. We initialise the logical
qubit in one of 16 possible computational states representing the
logical zero state, and perform repeated stabiliser checks over
a variable number of rounds to preserve the state over time.
We compare the decoding performance for a hard minimum-
weight perfect matching decoder against a soft variant where
rich measurement information is incorporated, and demonstrate
an improved logical fidelity. Additionally, we employ a recurrent
neural network decoder with both soft and hard variants and
observe improved performance when soft information is used.
The general nature of soft information makes it widely applicable
to different physical qubit platforms, where it can be leveraged
to shorten measurement times and improve the logical fidelity
in quantum error correction experiments. Pre-print available at
arXiv:2403.00706.

Index Terms—Quantum error correction, soft information,
superconducting qubits, decoding.

I. INTRODUCTION

Quantum error correction (QEC) experiments have shown
significant progress over recent years, notably the demonstra-
tion of logical error suppression by increasing the distance
of a surface code [1]. The rate of error suppression achieved
in these experiments is a function of the error correcting
code and distance chosen, the error rates of the constituent
physical qubits and the accuracy of the classical decoder used
to process the measurement data. While common error decod-
ing algorithms rely on measurement data in a binary form,
additional (soft) measurement information can be captured
during qubit read-out and used to improve the accuracy of
the decoding process [2], here referred to as soft information
decoding. The technique has been showcased in simulations of
superconducting circuits [3], and demonstrated experimentally

for a spin-qubit system [4] and a superconducting system [5]
that was decoded using a uniform error model.

In this work, available as a pre-print in Ref. [6], we utilise
soft information to decode experimental data from a bit-flip
correcting distance-three code embedded in a 17-qubit device
using fixed-coupling flux-tunable transmons. The state of the
logical qubit, |0L⟩ is encoded in one of 16 initial configurations
of the computational state, and stabilized by repeated Z-basis
measurements. The measurement information is passed to two
types of decoders to obtain a logical fidelity: a minimum-
weight perfect matching (MWPM) decoder [7] and a recurrent
neural network (NN) decoder [8]. For each decoder, we use
two representations of the measurement information: a hard
representation where the measurement outcomes are binarized,
and a soft variant where we give the decoder a measurement
probability instead of a binary outcome. We find the soft
variants to outperform their hard counterparts by 6.8% and
5% for the MWPM and the NN decoders respectively.

II. DECODING WITH SOFT INFORMATION

The raw measurement signal from the superconducting
device is in the form of IQ voltages, which are obtained using
a dispersive readout scheme [9]. These values, denoted here
as z = (I,Q), form distinct clusters based on the qubit state
|j⟩ , j ∈ {0, 1} as seen in fig. 1(a). By repeatedly preparing and
measuring each state |j⟩, we fit Gaussian probability density
functions (PDFs) to the resulting clusters. To obtain the mea-
surement probabilities required for the decoders, we evaluate
the |0⟩-state and the |1⟩-state PDFs for each soft measurement
z. For the MWPM decoder, we use these probabilities to
modify the edge weights according to the likelihood of a
classification error – see fig. 1 (b). For the NN decoder, we use
the measurement probabilities to compute defect probabilities
and leakage flags, and pass these as input to the decoder.

III. NUMERICAL RESULTS

We plot the logical fidelity as a function of the number of
rounds R for the MWPM decoder in fig. 2 and for the NN
decoder in fig. 3. The lowest error rate achieved is 4.73%
for the NN decoder, and 4.94% for the MWPM decoder.
A consistent improvement in logical performance is seen
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Fig. 1: (a) The measurement response of the |0⟩ and |1⟩
states in IQ space, showing a projection line that connects
the means of the two Gaussian peaks (black dotted line). (b)
Edge weight as a function of projected voltage z̃ for soft and
hard measurements. Measurement errors are most likely in
the region z̃ ≈ 0 where the edge weight is minimized. (c)
Histogram and fitted probability density function P (z̃ | j) for
state preparations j ∈ {0, 1}.

for both decoders, present for each of the 16 different state
preparations. Computing the logical error rate ϵL from an
exponential fit to the logical fidelity, we find the soft variants
of the MWPM and NN decoders have 6.8% and 5% lower
logical error rates than their respective hard counterparts.
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Fig. 2: (a) Logical fidelity of the MWPM decoder as a function
of the number of rounds R. (b) Logical fidelity for R = 8 for
each state preparation that makes up |0L⟩.

We expect further improvements in logical performance to
be achievable with a larger distance code. Additionally, shorter
measurement times used with soft information decoding may
lead to superior logical performance.
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Fig. 3: (a) Logical fidelity of the NN decoder as a function
of the number of rounds R. (b) Logical fidelity for R = 8 for
each state preparation that makes up |0L⟩.
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