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A B S T R A C T

Reinforcement learning (RL) has grown tremendously over one and a half decades
and is increasingly emerging in many real-life applications. However, the applica-
tion of RL is still limited due to its low training efficiencies and surplus training
cost. The sampling and computation complexity normally depends on the size of
the state space and splitting the state space can distribute computation and accel-
erate learning. State abstraction as a form of data-centric method shrinks the state
space and reduces learning time, however, it is challenged by the fact that abstrac-
tion throws away information and might result in sub-optimal solutions. In this
thesis, we propose the hierarchical clustering-based state grouping (HCSG) method
to split the ground state space into clusters and train multiple agents for each clus-
ter without changing the dimension of the state space. This approach allows us
to distribute computation and improves training efficiency without losing the over-
all performance, and is also shown to outperform baseline and other state-of-art
data-centric methods.
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1 I N T R O D U C T I O N

According to the latest research study, the global demand for semi-autonomous
driving vehicles is predicted to reach a compound annual growth rate (CAGR) of
20.8%, during the period 2021 to 2028. Self-driving artificial intelligence(AI) tech-
nologies contribute largely to this growth, as they enhance the human driving ex-
perience and functionalities of the driver-assistant system.
The Society of Automotive Engineers (SAE) proposed 6 levels of vehicle automation
ranging from level 0 fully driver control to level 5 fully automation control. The
most advanced driver control system has reached level L3. It is arguable that more
automation is better, which may not always be the case. That depends, for example,
on driver preference and the complexity of road conditions. Thus, a smart level
switching policy offers promising growth opportunities for the semi-autonomous
cars industry.
Over the last decades, rule-based methods in autonomous driving have been deeply
investigated for decision-making algorithms. Montemerlo et al. designed a finite
state machine (FSM) Junior software under various scenarios to make the robot ro-
bust to unconsidered situations [19]. They indicated that the model is less reliable
in practice, involving a diverse set of traffic participants. In the field of automation
level switching, Van Wyk et al. solve the ”out of the loop” (OOTL) problem by
proposing a mathematical framework to determine the optimal automation level at
any point along a trip [37]. There are imitations to the rule-based methods. Firstly,
it relies heavily on driving data and is largely unstable. A small change in the data
may result in a structural change in the algorithm [21]. Secondly, rule-based meth-
ods are susceptible to human cognitive biases and limited by human experience
[35], and can result in sub-optimal policy in complicated scenarios.
Reinforcement learning (RL) is a self-learning algorithm based on a system of re-
wards and punishments. As the latest machine learning model besides supervised
learning and unsupervised learning, it learns through trial and error aimed at max-
imizing environmental rewards. RL agents outperform rule-based methods in com-
plex environments and learn without relying on labelled driving data [27, 6].
Despite its outstanding performance over well-designed baselines, RL agents suffer
from low training efficiencies [45]. That is one of the biggest challenges in imple-
menting machine learning models in the industry. Several reasons can result in this
issue.
Firstly, the state space can be very huge and with limited time and memory re-
sources, it can be extremely difficult to explore the entire state space extensively.
Normally a huge network is required to train on a large state space which requires
tremendous computation and memory budget. And the budget increase exponen-
tially with the size of state space (curse of dimensionality).
Secondly, the training in one environment may become biased because some states
occur more frequently than others, which tends to form a ’long-tail’ distribution.
This is due to the fact that an RL agent ultimately became fond of selecting actions
that lead the environment to reach specific optimal states [13]. Models trained on
these biased data tend to perform well on over-sampled subgroups while sacrificing
the performance of under-sampled subgroups [2]. The RL agent might need a huge
amount of time to accumulate enough learning experience for the minority data.
Another cause of the biased training data is the low diversity of the training envi-
ronment [44]. Training in a single environment may not cover all possible scenarios

1



1.1 mediator project 2

and agents tended to avoid certain states with low returns. The ground state space
may not be fully explored and the trained agents tend to perform badly in unseen
scenarios. For example, in robot control, the agent trained in manually designed
simulation environments generalizes poorly in realistic environments [28].
Current AI industries utilize big data plus huge computing power to explore the
bottleneck of deep neural networks. With convenient software open source repos-
itory and highly efficient hardware realizations. More AI industries start to work
on improving training data. The paradigm shift from model-centric to data-centric
AI means, that instead of building models and configuring training parameters, AI
developers endeavour to build balanced training experience to train well-performed
models. In this paper, we would solve the low training efficiency issues using data-
centric methods.

1.1 mediator project
The Mediator project develops a mediating system that manages to switch among
current available autonomous levels, based on driver distractions. Fig 1.1 illustrates
the interaction. The Mediator controller takes input the driver and vehicle-related
states including driver distraction level and automation level, and outputs available
actions for control of the environment. The purpose of the Mediator agent is to
maximize safety and comfort, based on available driver states.

Figure 1.1: Interaction of the mediator system with the environment.

1.2 research summary
In this thesis, we focus on improving RL training efficiency from two aspects:

• Decomposing the state space into smaller clusters with a low training budget

• Balancing the training dataset so that agents do not lose experience during
the learning
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1.2.1 Research questions

The purpose of the RL agent is to improve RL training efficiency while also main-
taining/improving the model’s overall performance. Based on this goal, we propose
the following research questions:
The first question is related to our methods:

• How to improve RL agents’ training efficiency while also ensuring that agents’
overall performances are not degraded?

The following questions are about evaluation:

• How to evaluate the advantage of the HCSG algorithm in improving agents’
training efficiencies and overall performance?

• How well does the method outperform other competitive methods?

1.2.2 Methods and objectives

Two of the most important components required for a well-trained RL agents are: a
well-defined reward model that is concise, specific and effective, and an exploration
mechanism that ensures various states are covered. The reward function basically
guides the learning of agents during RL training. Designing a reward function in
a complex environment is normally a challenging task and easily exposed to de-
veloper’s bias. In this thesis, we focus on state exploration and use data-centric
methods to generate balanced and easy-to-train dataset.
The main research questions are solved in two ways: decomposing the ground state
space and distributing the training with less training budget, so as to accelerate
training, and using hierarchical tree-based state decomposition to produce a bal-
anced training experience so as to improve RL agents’ overall performance. The
training efficiencies are measured by evaluating agents’ performance with limited
training budget. The data imbalance is one of the main causes of the low training
efficiencies. It is defined as the skewed distribution of data where some of the data
lies in the majority while the rest lies in minority. The problem was challenged
by using multiple environments to fully explore the whole state space. Training
in multiple environments requires the agent to transfer learned experience across
environments.
Training RL agents in multiple environments/MDPs propose big challenges. Mutti
et al. proposed a transfer learning method for unsupervised learning in multiple
environments [20]. The algorithm first pre-trains the model on the whole environ-
ment and fine-tuned on sub-environments. However, in case of surplus scenarios,
the model tends to lose historical experience and training becomes increasingly dif-
ficult as more environments are involved.
In this thesis, instead of training the RL agent on the whole state space, we split the
whole environment into smaller ones, each consists of specific distribution of states
and train an agent for each subset. For smaller state space, we can save computation
cost by using smaller policy networks and less training episodes, so as to accelerate
learning.
Fig 1.2 illustrates the overall structure of our proposed method. It consists of three
parts: Hierarchical clustering based state grouping, reinforcement learning and pol-
icy network. We adopted hierarchical clustering method for state space splitting
and combination to minimize the number of agents. The resultant model is a hier-
archical structure consisting of one master policy and multiple sub-policies.
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Figure 1.2: Overall structure of the HCSG algorithm

1.2.3 Contributions

Our main contributions are as follows:

• We proposed using hierarchical clustering method for state abstraction to ac-
celerate RL training. To the best of our knowledge, there is no method at the
moment to adopt hierarchical clustering for state abstraction in reinforcement
learning.

• Our proposed method accelerates learning and achieve better performance
compared with baseline methods.

1.3 outline
The thesis is structured as follows, Chapter 2 introduces some research studies and
some knowledge background are explained in Chapter 3. Chapter 4 depicts the
Mediator simulation environment and describes the long-tail problem for RL train-
ing in the environment. Chapter 5 presents the main algorithms. The experiment
details and results are shown in Chapter 6. Chapter 7 concludes the work and pro-
vides future research directions.



2 R E L AT E D W O R K

Solutions for the low training efficiencies rely on environment and algorithm re-
spectively. An environment that can systematically explores various scenarios helps
learn a generalized agent. An example of this environment is called CoinRun, in-
troduced by OpenAI to investigate insights for improving an agent’s overall perfor-
mance and training efficiencies [5]. This environment can produce various distribu-
tions of CoinRun levels and train agents for each of the levels.
There are plenty of research works trying to solve low training efficiency issues.
most of which focus on the data level, including data-based methods like re-sampling/
re-weighting and state abstraction, and policy-based such as transfer learning.

2.1 re-sampling and re-weighting
Data-based methods focus on solving the data imbalance issues, including re-sampling
and re-weighting. Re-weighting alleviates performance bias by adjusting the weights
of dataset classes by means of class frequency [33], loss values [22] or prediction
probabilities [16]. Existing sample re-weighting methods require integrated opti-
mizations of models and weighting parameters, which requires expensive second-
order computation [47]. Our algorithm is separated from the RL training and does
not add computation during training.
The re-sampling method focuses on the data itself and solves the data imbalance
problem by altering the data distribution. It can be divided into two types: over-
sampling (ROS) which enlarges the population for the minority distribution [40,
3] or under-sampling (RUS) which discards data from the majority group [24, 41].
Some use a hybrid of the two methods [25, 15].
As for re-sampling, when the class is extremely skewed, over-sampling tends to
overfit to tail scenarios while under-sampling tends to degrade performance on
head scenarios [46]. To cope with this issue, class-balanced re-sampling and scheme-
oriented sampling follow. SimCal [31] proposed a bi-level sampling strategy to
handle long-tailed instance segmentation. Dynamic curriculum learning (DCL) [34]
developed a curriculum strategy in which each class is assigned a sampling proba-
bility that is inversely proportional to instances of the class. Following that, Feature
Augmentation and Sampling Adaption (FASA) [42] proposed to use training loss to
adjust the feature sampling rate so that tail distribution can be sampled more often.
Re-weighting techniques improved model performance on the tail distribution by
adjusting loss weights based on label frequencies [23, 8], prediction hardness [17]
and etc. Class re-balancing methods are proven to achieve comparable or even bet-
ter performance than other long-tail learning paradigms.
The HCSG method is similar to re-sampling which balances training data to im-
prove the model’s training efficiency and overall performance. Re-sampling tech-
niques are playing on a performance seesaw, they improve the performance of the
tail-class at the cost of degraded head-class performance [46]. The HCSG algorithm,
instead, benefits overall performance by splitting the training on head and tail data
distribution.

5
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2.2 transfer learning
Transfer learning seeks to transfer knowledge among datasets to improve agent
learning during RL training. In deep long-tail learning, prominent methods include
experience transfer, pre-training-based methods and policy distillation. Experience
transfer mainly tries to transfer the experience learned from the majority group to
the minority group, so as to improve the overall performance. Successful imple-
mentation is a major-to-minor translation (M2m) [12] transferring the experience
via perturbation-based optimization, and MetaModelNet [32] trains head and tail
samples separately and use a meta-network to map few-shot model parameters to
many-shot parameters. In model pre-training, the agent can be initially pre-trained
with tail samples for representation and then fine-tuned with a balanced dataset
(DSTL [7]). Self-supervised pre-training (SSP) [39] proposed to pre-train the model
on the whole dataset followed by standard training on long-tail data. Learning from
multiple experts (LFME) [38] divides the whole long-tail dataset into subsets with
smaller degrees of imbalance and trains multiple experts for each subset, it finally
trained a unified agent using adaptive knowledge distillation.
Transfer learning is worth exploring for improving performance on both head and
tail data. However, transfer learning only worked well if the current and target pol-
icy is similar. In the case of RL training, the agent might need to perform distinctly
in head and tail scenarios. If the training data might be too far from the old training
experience, the trained model might perform worse than expected (negative trans-
fer [43]). To better conduct transfer learning for long-tail learning remains an open
question.

2.3 state abstraction in reinforcement learning
In reinforcement learning, the agent learns from various state combinations. A well-
trained model normally ought to perform well in possibly all-state scenarios. State
abstraction is a technique that compresses the feature size of states and binds sim-
ilar states together. Kim et al. proposed a state-grouping algorithm that utilizes
a genetic optimizer to learn the optimal action for each sub-group. He combines
states by calculating distances based on action distribution. The method helps avoid
excessive exploration and contributes to a significant reduction in initial learning
time [14]. Following that, Feiyun et al. defined a group-driven RL algorithm in the
mHealth and proved it gains obvious advantages over the state-of-the-art RL meth-
ods [48]. These two types of research use k-means methods for clustering the states.
It effectively eliminates unnecessary explorations so as to improve overall perfor-
mance with less memory and less time. However, most state abstraction methods
condense state space which might result in the loss of important information and
result in sub-optimal solutions. The HCSG algorithm separate state space to smaller
ones and would not cause information loss.



3 P R E L I M I N A R I E S

3.1 markov decision process
The RL environments are modeled as an Markov decision process (MDP), specified
by a five-tuple < S, A, Pt, R, γ >, where

• S is the space of states from the environment that begins with an initial state
S0.

• A is a set of actions.

• P(s′|s, a) ∈ (0, 1) is the transition probability from state s to state s′ by taking
action a

• R(s′, s, a) is the reward function by taking action a that transits state s to s′.

• γ is the discount factor for future rewards.

In reinforcement learning, the agent learns policies by interacting with an environ-
ment through MDP. It explores policies that return actions to maximize long-term
rewards. Through the MDP, the environment was able to update its states by exe-
cuting actions predicted by the RL agent.
The agent interacts with the environment at discrete time steps. At each time step
during RL training, the agent observes states from the environment and explores
the best action for these states. The environment then executes the action and enters
a new state. The MDP generates a reward according to R(s′, s, a) on this process
that is fed to the agent for policy updates. Upon reaching a terminal state, a new
episode is started with a new initial state of the environment.

3.2 reinforcement learning
Reinforcement learning is a machine learning method, it enforces learning by re-
warding desired behaviour outcomes and punishing undesired ones. It is akin to
human learning which learns by trial and error. The appeal of RL is that it can
be used in very complicated scenarios that humans may find hard to solve. The
RL agent learns by interacting with the MDP environment which produces rewards
or penalties for the RL agent. In each training episode, the RL agent stores train-
ing experience into the reply buffers and update its policy network regularly. The
episode repeats until the behaviour of the RL agent is stabilized. Reinforcement
learning can be categorized into two kinds:

• Model-based learning: the learning is based on a model of the environment
by taking actions and observing the outcomes that include the next state and
the immediate reward

• Model-free learning: the learning does not use the transition probability dis-
tribution (and the reward function) associated with the MDP

Model-based learning is sample-efficient, it does not require further sampling once
the model and cost function are known. Besides, model-based methods are trans-
ferable to similar tasks and simulations as they already have a base model to work

7
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with. However, the performance of the agent from model-based learning is lim-
ited by the historical experience they have learned, which limits the accuracy of the
model. While model-free agents do not have this problem, as they learn directly
from the observed data. But because of this, they normally required a large amount
of data to learn enough experience.

Exploration vs. exploitation
Exploration and exploitation are two ways agents select action to feed the environ-
ment. In exploration, the agent selects actions by searching from the action space,
while in exploitation, the agent section action is based on the agent policy itself.
Exploration-exploitation trade-off plays an important role in reinforcement learn-
ing [10]. Surplus exploitation might cause the agent to stuck into local maxima
while excessive exploration wastes time on solutions that are less likely to be opti-
mal and lose information that has been gathered. A popular method to address this
issue is the ϵ-greedy policy [18]

π(s|a) =
{

max Qt(a) withprobability1 − ϵ
random action(a) withprobabilityϵ

(3.1)

where ϵ is a hyper-parameter tuned during RL training. High ϵ values indicate a
large exploration since there is a high possibility that the agent explores random ac-
tions. Likewise, when ϵ is small, we focus more on exploitation as the agent is more
likely to use the existing policy network to make predictions. During reinforcement
learning, ϵ normally starts off large and decays after each episode to help reach
convergence and realize an exploration-exploitation trade-off.

State-action value function
Given a reward model, the objective of RL is to maximize the long-term return J(π)
from the environment. The optimal policy π∗ should pick actions that result in the
maximum average episode reward

J(π) =
1
N

1
T

T−1

∑
t=0

rt (3.2)

π∗ = arg max J(π) (3.3)

where N is the number of episodes, and T represents the episode length.
Rewards are discounted with time to help RL agents learn actions that produce
long-term rewards. The discount gives higher weight to the latest rewards, the
reward at time step t can then be defined as

rt =
T

∑
k=t

γk−trk(sk, ak) (3.4)

RL agents choose actions based on value function. Such kinds of RL agents are
called value-based agents. They store the value function on which they make their
decisions. Value-based agents use V-function to measure the goodness of each state
according to the reward J(π) following a policy π. In a formal way, the value of
Vπ(s) is defined as:

Vπ(s) = Eπ [Rt|s = st] = Eπ [
T

∑
j=1

γjrt+j+1|s = st] (3.5)

where γ is the discount factor.
The equation describes the expected value of the episode reward at time t and
follows the policy π. The expectation was used since the environment transition
might be stochastic.
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3.3 double deep q-network
Q function measures the value of the action / state-action pairs which is the value
of taking action an at state s the following policy π:

Qπ(s, a) = Eπ [Rt|s = st, a = at] = Eπ [
T

∑
j=1

γjrt+j+1|s = st, a = at] (3.6)

The state-value function is equivalent to the sum of action-value functions multi-
plied by the policy probability for selecting the actions:

Vπ(s) = ∑
a

π(a|s) Qπ(s, a) (3.7)

When we solve MDP we are actually trying to find the optimal state-value function
as well as the action-value function:

V∗(s) = maxπ Vπ(s) Q∗(s, a) = maxπ Qπ(s, a) (3.8)

Bellman equation is one of the central elements required for calculating the value
functions. It decomposes the value function into immediate rewards plus dis-
counted future values. The equations for state-value function and action-value
function are defined as:

Vπ(s) = ∑
a

π(a|s)∑
s′

Pa
ss′(r(s, a) + γVπ(s′)) (3.9)

Qπ(s, a) = ∑
s′

Pa
ss′(r(s, a) + γ ∑

a′
π(a′|s′) Qπ(s′, a′)) (3.10)

In reinforcement learning, the RL agent improves its policies by updating its Q
values

Qt+1 = E′
s[r + γmax′aQi(s′, a′|s, a)] ∀s, s′ ∈ S and a, a′ ∈ A (3.11)

where S and A are state and action spaces. Since it is not possible to compute
values for all state-action pairs, these values can be approximated using deep neural
networks. A well-known approach to this policy function approximation method is
the Deep Q-network (DQN), in which the parameters of the network θ are updated
based on loss values calculated from the difference between the predicted and the
optimal actions

Li(θi)
DQN = E(s,a,r,s′)[(r + max Q(s′, a′; θ−i )− Q(s, a; θi))

2] (3.12)

where max Q(s′, a′; θ−i ) is the target Q value for the next state, which is calculated
by taking the maximum value of all possible actions. However, these values are
overestimated. Double Deep Q Network (DDQN) proposes to use a separate target
network to estimate the value of the chosen action by the target network instead.
And now the loss function of the DDQN becomes

Li(θi)
DDQN = E(s,a,r,s′)[(r + Qtarget(s′, arg max(s′, a′; θ−i ); θ−i )− Q(s, a; θi))

2]

The new target Q values reduce overestimation and can result in more stable and
reliable training performance [30].
With the loss values, the agents are able to update their policies. Various policy
gradient methods are used to find the optimal policies. Policy gradient methods
learn the policy network directly instead of value functions. It updates the policy
parameters using gradient descent by the loss values

θi+1 = θi + α∇Li(θi)
DDQN (3.13)
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As the loss values are calculated based on the predictions of the Q networks which
are related to the network parameters, the gradient updates of the loss values and
the updated parameters can then be expressed as follows

∇Li(θt)
DDQN ∝ Esi ,ai ∼ π[Ri

∇π(ai|si, θ)

π(ai|si, θ)
] (3.14)

θi+1 = θi + α
∇π(ai|si, θ)

π(ai|si, θ)
(3.15)

Reply buffer is a buffer that stores the following information for each step during
RL training:

< Si, Ai, S1
i , Ri, Di >

where i is the position of the information in the reply buffer, S is the old state, A is
the action, S

′
is the new state, R is the reward, D is the episode done information,

with true representing the environment reaches its terminal state.
RL agents learn from the information in the reply buffer which is also called a
learning experience. Every several episodes, the agent randomly selects a fixed
amount of state-action pairs from the reply buffer and uses this information to
update its policy parameters. Thus, a well-trained agent should have enough and
balanced learning experience in reply buffer for adequate and useful policy updates.
RL agents are trained in episodes. The initial state for each episode can affect the
follow-up actions and states, and thus influence the state distribution of this episode.
The episode termination prevents the agent from diverging too far from the target.

3.4 hierarchical clustering
Hierarchical clustering is an unsupervised learning algorithm that seeks to build a
hierarchy of clusters where each cluster is distinct from other clusters, and objects
in each cluster in broadly similar to each other. There are two ways to create a
cluster hierarchy:

• Agglomerative: a bottom-up approach

• Divisive: a top-down approach

The agglomerative approach starts by treating each end node as a cluster and com-
bining similar clusters for a new cluster. It repeats until all possible clusters are
merged. The metrics used to calculate the similarity among the clusters can be the
Manhattan or Euclidean distance.

Dm = ∑
i
|ai − bi| (3.16)

De =

√
∑

i
(ai − bi)2 (3.17)

where ai and bi are position of node i, Dm is the Manhattan distance and De is the
Euclidean distance
Divisive clustering is basically the opposite of agglomerative and was initially pub-
lished as the DIANA (Divisive ANAlysis Clustering) algorithm [11]. It begins with
one cluster that includes all the records and is split into unsimilar clusters. The
process repeats until all possible clusters are split.
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3.5 state abstraction
The purpose of state abstraction is to condense the state space of an environment by
grouping together similar states in the sense that it does not change the underlying
problem [1]. The state abstraction maps each environment to a finite abstract state.
An obvious benefit of using state abstraction is it increases effective sample size so
as to lower estimation error. For example, when we collect N samples each (s, a)
pairs the abstraction maps s1 and s2 to the same abstract state. When we apply state
abstraction, for the one state pairs (x, a), we got 2n samples, That means we double
the sample size for estimating the transition and reward functions which results in
lower estimation errors.
The advantage of state abstraction comes with a drawback. When state abstraction
aggregates distinct states, it may cause a loss of important information and lead to
sub-optimal solutions. In other words, it causes high approximation errors. Thus
how to combine states remains a theme for the trade-off between approximation
error and estimation error. The exact state abstraction aggregates states that are
strictly similar. It is defined as:

Definition 3.5.1 (Abstraction abstractions). Given MDP M = (S, A, P, R, γ) and state
abstraction θ that operates on S, define the following types of abstractions:

• θ is an π∗-irrelevant if there exists an optimal policy π∗, such that ∀s1, s2 ∈ S
where θ(s1) = θ(s2), π∗

M(s1) = π∗
M(s2).

• θ is Q∗-irrelevant if ∀s1, s2 where θ(s1) = θ(s2), ∀a ∈ A, Q∗
M(s1, a) = Q∗

M(s2, a).

• θ is model-irrelevant if ∀s1, s2 where θ(s1) = θ(s2), ∀a ∈ A, x′ ∈ θ(S), The
transition over S is transformed to the transition over θ(S).

R(s1, a) = R(s2, a), ∑
s′∈θ−1(x′)

P(s′|s1, a) = ∑
s′∈θ−1(x′)

P(s′|s2, a) (3.18)

Exact abstraction is hard to realize and detect. Approximate state grouping can
still preserve near-optimal behaviour at a high level under ϵ:

Definition 3.5.2 (Approximate abstractions). Given MDP M = (S, A, P, R, γ) and
state abstraction θ that operates on S, define the following types of abstractions:

• θ is an ϵπ∗ -approximate π∗-irrelevant abstraction, if there exists an abstract
policy π : θ(S) → A, such that |V∗

M − V[πM]
M |inf≤ϵ∗Q

• θ is ϵ∗Q-approximate Q∗ - irrelevant abstraction if there exists an abstraction
Q-value function f : θ(S)xA → R, such that |[ f ]M − Q∗

M|inf≤ϵ∗Q

• θ is (ϵR, ϵP)-approximate model-irrelevant abstraction if for any s1 and s2

where θ(s1) = θ(s2), ∀a ∈ A,

|R(s1, a)− R(s2, a)| ≤ ϵR, |ϵ(P(s1, a)− ϵ(P(s2, a)))| ≤ ϵP (3.19)



4 S I M U L AT I O N E N V I R O N M E N T S

Developing and testing policy strategies in real-world driving scenarios is usually
challenging and even not feasible. Creating a simulation environment is an alter-
native solution. In this paper, we train and test our algorithm in the Mediator
simulation environment designed by one of our expert engineers. This environ-
ment simulates various real-world driving scenarios. It considers various cases and
events that can be triggered during driving, which can change the fitness level of the
drivers and cars. With this simulated environment, we can experiment our HCSG
algorithm and evaluate its performance in the context of improving driver safety
and comfort.

4.1 mediator environment
Environment parameters
There are more than one hundred configuration parameters in the Mediator envi-
ronment. These parameters define the initial states and properties of events, driver,
car and road, which would eventually influence the state and action space, state
distribution, transitions and rewards. Table 4.1details some of these parameters
and uncertainties in the environment which are used to change environment state
distributions.
The initial state distribution of the environment can be adjusted by some of the
parameters in Table4.1. The road length and timestep are important parameters as
they determine the simulation speed which influences the state distributions. For
example, TTDU decreases with time and for agents to learn from experience in crit-
ical scenarios where TTDU reaches low, we should set high values for road length or
timestep.

Table 4.1: Configuration parameters for the Mediator environment

Parameter Value
timestep Adjustable

initial level probabilities Adjustable
max level probabilities Adjustable
allowed driver events [”DISTRACTION”, ”NDRT”]

max occurrences of driver event [300, 5]
init distraction probabilities Adjustable

driver event probability [0.99, 0]
distraction increase prob 0.005

distractions ends prob 0.1
ndrt ends prob 0.001

road length Adjustable
available actions [’DN’,’SSL4’, ’ESL4’, ’CD’, ’ES’]

suggested shift response probability 1

suggested shift acceptance probability 0.5
cd success probability 0.8

12
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4.2 markov decision process models
In this section, the MDP model for the Mediator environment is introduced. The
model is formalized as a tuple list < S, A, P, R, D > as below:

• S = Automation level (L), distraction level (D), time to driver unfit (TTDU),
maximum automation level (M) (see table 4.2)

• A = Do nothing (DN), Correct distraction (CD), suggest shift L4 (SSL4), en-
forcement shift L4 (ESL4), emergency stop (ES) (see table 4.3)

• P = P(s′|s, a), a set of conditional transitions with probabilities mentioned in
table 4.1.

• R = S X A, the reward function

• D = True/False, indicate if the episode is terminated

Table 4.2: A description of the state space and the state variable domains

Variable name Meaning Domain
Automation Level This state variable stores the cur-

rent level of automation that the ve-
hicle is in. (N.B. value L1 is left
out from the domain because it is
considered ’standard’ in every car
nowadays and thus equivalent to
L0)

L0 (no automation),
L2 (partial automa-
tion), L3 (conditional
automation) and L4

(full automation).

Distraction Level This state variable represents the
belief state on the driver’s level of
fatigue. It is encoded as a list of
probabilities over the domain.

F0, F1, F2 and F3,
where F0 = ‘alert’ and
F3 means ‘sleepy’.

Max The maximum available L0, L2, L3 and L4.
automation level automation level.
TTDU Time to driver unfitness. This de-

scribes the time until the driver be-
comes unavailable.

Continuous

Driver Response A variable that saves the driver’s
latest response to a request. This
variable becomes applicable after
an action Shift Request was exe-
cuted.

-1 (Not initialized), 0

(Pending), 1 (Accept),
and 2 (Decline).

Table 4.3: A description of the available actions.

Action name Meaning
Do Nothing (DN) Default action.
Suggest Shift L4 (SSL4) Ask the user whether they want to shift to a different

automation level L4.
Enforce shift L4 (SSL4) Take over the control of the vehicle through an auto-

matic shift to Level L4.
Correct Distraction (CD) Warn the driver to be more alert when they are show-

ing signs of fatigue.
Emergency Stop (ES) Execute an emergency stop. This action is to be used

(only) in critical situations w.r.t. safety.
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Transitions in a MDP model are generally defined as T(s′|s, a) for a transition
from state s to s′. Transitions with uncertainties are introduced by actions CD and
SSL4. Action CD succeeds with probabilities since the action might not take ef-
fect in reality. SSL4 changes automation levels based on the driver response which
is also probabilistic since driver preference differs. Fig 4.1 illustrates various tran-
sitions from the Mediator environment. For each training step, given action, the
environment update states based on these transitions.

Figure 4.1: The transition of the Mediator environment.

Figure 4.2: Reward model of the Mediator environment.

The reward in MDP reflects the rules that are expected for the agent to learn. It
basically guides the RL agent learning and can be decisive in the performance of the
RL models. As discussed in the section1.2.2, reward design in various complicated
environments is normally very challenging and thus we focus on exploration in
this paper. The reward design is rather simple, Fig 4.2illustrates the reward model
designed for the Mediator environment. We added a gradient to the reward model
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to accelerate the training convergence of the RL algorithm. The basic algorithm
behind the reward model is that, under safe situations, the MDP model awards
the action that can improve the current state. The environment is improved when a
driver becomes less tired (higher TTDU) or the automation level is increased at high
distraction levels. Car emergency stop is discouraged in this situation. In critical
scenarios mostly caused by low TTDU values, emergency actions including SSL4 or
ES are awarded based on the car and driver states.

4.3 data imbalance in reinforcement learning
Data imbalance is one of the main reasons for low training efficiency issues. Data
imbalance happens when the training dataset follows a skewed distribution. To
illustrate this phenomenon, we trained an RL agent in the Mediator environment
in which the initial states are evenly distributed so that all possible initial states
are covered. The experiment setup is included in Appendix.I.1. Fig.4.3 shows the
count of occurrences for each of the state combinations in the reply buffer during
reinforcement learning for 1000 training episodes. It is obvious that the learning
experience follows a ’long-tail’ distribution where the training experience in the
reply buffer is dominated by some state scenarios, while some other states are much
less frequently explored. Besides, plenty of state scenarios are unexplored.

Figure 4.3: Left: Count of each environment state for training 100k steps. Right: Distribution
of state space for an experiment in Appendix.I.1.

As mentioned in the section1, as the RL agent learns during RL training, it
tends to select actions that lead the environment to reach specific optimal states.
The exploration-exploitation trade-off together with the transition functions are the
main reason for the imbalanced data distribution in Fig .4.3. Initially, during RL
training, the RL agent does more explorations which leads to more variety of state
space. However, as the RL training proceeds, it relies more on the trained model
for action selection which leads to specific states that accumulate in the reply buffer.
The result of this is that certain state combinations take increasing proportion in the
reply buffer and finally form a long-tail distribution as in Fig .4.3. The policy net-
work is updated periodically by randomly selecting experiences from the updated
reply buffer and tends to be trained more on the majority and less on the minority
in the reply buffer. The result of this is a biased model performance in which the
agent performs well in the majority state combinations while badly in the minority
state combinations.
Early stop seems a solution to the aforementioned issue. However, it is hard to
determine the time point to stop training depending on the problem’s complexity.
Also, the training may not converge before it generates a ’long-tail’ training experi-
ence in the reply buffer.
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The imbalanced data distribution also contains a large proportion of unexplored
state space which have zero occurrences in the figure. This occurs, for example,
when the initial state contains high distraction with its configured TTDU values,
before the TTDU reaches too low values in the main exploration phase, the agent
tends to guide the environment to decrease distraction levels with high TTDU val-
ues, prohibiting the environment from reaching high distraction with low TTDU
values.
A biased training dataset could result in a biased model performance. The long-tail
problem may lead to the model’s poor performance on the tail distribution. Fig.4.4
indicates the model’s test performance on the head, tail and unexplored scenarios
from Fig.4.3. It is obtained by setting various head-tail split thresholds, and for each
threshold, calculate the per cent of scenarios with the maximum reward. The fig-
ures indicate that the model’s performance on one scenario is positively related to
the fraction of the scenario in the experience buffer. And the model achieves better
results on the head distribution than the tail and unexplored scenarios.

Figure 4.4: Model’s accuracies on head and tail scenarios for various head-tail split ratios.



5 M E T H O D S

This chapter describes the hierarchical clustering state decomposition method and
its implementation in reinforcement learning. The partition of state space produces
two benefits, firstly, it distributes the training cost of the whole state space so as
to accelerate RL learning. Secondly, it improves the agents’ overall performance by
alleviating the ’long-tail’ problem in the learning dataset as it exaggerates the ’tail’
data distribution by exploring in smaller state space.

Before proceeding with a description of the algorithm structure, some concepts
are explained in table 5.1.

Table 5.1: Some concepts of the HCSG algorithm

Name Meaning Example
State dimension d The attribute of

state equals the
number of entities
in the state.

state < L = L0, D = L1, M = L4 > is
one state with state dimension of 3.

state cluster /
group

A group of states
with specific state
dimensions.

State cluster < L = L0, D = L1 > with
state dimension of two contains all
states whose automation levels equal
L0 and distraction levels equal L1.

state cluster/group
environments

an environment
with a manual
configuration that
maximizes the
state distribution
of the state cluster.

State cluster environment < L =
L0, D = L1 > generates states with
automation level of L0 and distraction
level of L1.

Group decomposer
Sd

A state entity used
to decompose par-
ent state clusters
into child state
clusters.

State cluster < L = L0 > with group
decomposer Sd = D split < L = L0 >
into four state clusters (depending on
the possible values of group decom-
poser) < L = L0, D = L0 >,< L =
L0, D = L1 >,< L = L0, D = L2 >,<
L = L0, D = L3 >.

Fig 5.1 illustrates the overall structure of our proposed HCSD algorithm in rein-
forcement learning (HCSD-RL). It basically comprises three parts: state decomposi-
tion, reinforcement learning and a policy network system.
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Figure 5.1: HCSD reinforcement learning algorithm diagram

Firstly, we introduce the HCSD method and its implementation in reinforcement
learning. Motivations for this method are explained in section 5.1.1. Hierarchical
clustering proceeds successively by either merging smaller clusters into larger ones
or by splitting larger clusters, to form a tree of clusters. The HCSD method par-
titions the state cluster environments at lower state dimensions into environments
each with smaller state space and sends them to RL to train multiple agents for
each of the environments, based on the agents’ performance on existing state clus-
ters, the HCSD method determines the state clusters that the agents perform badly
and need further to be decomposed in higher state dimension, and combines state
clusters in which the trained agents have similar performance. For each state di-
mension, the well-performed agents and corresponding state clusters are used to
update the policy network.
Regarding the selection of the training algorithm, compared with model-free al-
gorithms, the model-based algorithm is more sample efficient and is preferable
as they help minimize exploration cost and speed up learning. On-policy meth-
ods might suffer from the exploitation-exploration dilemma during implementation,
which might result in convergence to local minimal. The off-policy method solves
the problem by separating the policy into behaviour policy and target policy, and
learns the target policy from the behaviour data generated from the off-optimal be-
haviour policy that explores probability. Since new data might be generated each
iteration, off-policy methods are preferred as the probabilistic exploration ensures
a widespread coverage of behaviour data for agents to learn. As a result, double
DQN is adopted as our RL training algorithm.
Behaviour cloning is implemented to accelerate learning and improve agent perfor-
mance. The off-policy methods require experience reply which makes it convenient
to collect pre-trained experience for the Q-network. In circumstances where ex-
ploration fails to converge to the global optimal solution, behaviour cloning can
provide agents with the foundation to learn successfully.
The last part of our algorithm is the policy network. We adopted a hierarchy of poli-
cies in which the master policy selects which sub-policy to use based on the input
MDP state. Considering the difficulties in training master policy in the hierarchical
policy network and the fact that the agent selection can be traced during training
of the HCSG-RL, we can set a deterministic master policy that is updated during
RL training of the HCSG method. The sub-policies consist of agents trained from
the HCSG-RL method. For each successive state dimension, the master policy is
updated and new agents are added to the sub-policy network. Each agent in the
policy network is a feed-forward network with dense linear layers, each ends with
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a RELU function. Feed-forward networks are the most popular network for RL. As
for model-based algorithms, the tuning of network parameters might result in extra
computation costs. We, therefore, set the neural network as small as possible to
minimize the number of parameters so as to accelerate RL learning.
The following section will detail each method, first by state decomposition def-
initions and the HCSG method, then the RL algorithm and the resultant policy
network.

5.1 hierarchical clustering-based state group-
ing

The purpose of the HCSG method is to produce the minimum number of agents
and state clusters that meet the performance criteria in equation 5.1. As Fig 5.1
illustrates, given inputs on the existing state clusters and agents’ performance, the
HCSD method has the following tasks:

• state cluster partition for clusters that agents perform badly at

• state cluster combination for clusters that agents perform well and follow the
Q-irrelevant clustering approximation

In this section, we would explain the motivations behind the method followed by
the methods and algorithm.

5.1.1 Motivation

We proposed the state grouping algorithm based on the following observations dur-
ing training in the Mediator environment:

• Training became easier if state space is decomposed.

• Model trained on specific state groups tends to perform well in other similar
state groups.

• In different state sub-groups, the optimal agents may have distinct behaviour

Training in subgroups

Training tends to become easier if state space is reduced. A recent work [36] decom-
posed state space in reinforcement learning and trained agents for each state space.
These works prove using smaller neural nets to train subgroups to distribute com-
putation accelerated learning and dramatically reduced training time. We tested
this observation in the Mediator environment. To compare the model’s training
performance in the whole and decomposed state spaces, we trained agents for the
following environments:

• Base environment: with all automation and distraction levels

• L4 environment: with automation level L4 and all distraction levels

• L3 environment: with automation level L3 and all distraction levels

Each agent was trained for 500 episodes. The details of the experimental setup are
included in appendix E. Fig 5.2 shows the result of the average episode rewards
for training in the three environments, each environment was trained and recorded
three times. It is obvious that the agents trained in the decomposed state space
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Figure 5.2: Training average episode reward for the base, L3 and L2 environments

converge faster than agents trained on the base environment. This indicates split-
ting the whole state space by automation levels makes training easier than without
splitting.

Table 5.2 includes the test rewards for the agents trained in the three environ-
ments. To evaluate the training efficiencies, the agents were tested in the same
environment where they are trained on. Agents trained in L2 and L3 environments
achieve better performance than agents trained in the base environments. State
decomposing can also help achieve better performance in a Mediator environment.

Table 5.2: Test rewards for the agents trained in base, L3 and L2 environments.

Seed Baseline tree Base env L3 env L2 env

1 4.88 4.76 4.91 4.89

2 4.88 4.74 4.90 4.92

3 4.88 4.72 4.87 4.89

Testing in similar state groups

Models trained in one state subgroup can perform well in other similar sub-groups.
This is obvious in a continuous state where some works tried to discretize the states
and group similar states together [9]. Also due to the transition dynamics in the
environment, optimal models are expected to have similar behaviour. Fig 5.3 shows
the optimal action distribution in the state space in the Mediator environment. As
the driver becomes distracted, the optimal agent tends to do action CD when the
driver is fit and when TTDU drops too low values, the agent tends to do ESL4 or
ES. The trends are expected in most of the scenarios in automation levels L1 and L2.
The model that is well trained in one of the small sub-groups can also perform well
in other sub-groups in these scenarios.

Model’s behaviour in different state groups

From Fig 5.3, it is obvious that the optimal actions for automation levels L0 and
L3 are distinct from that of automation levels L2 and L3. Thus model networks
for the two scenarios are expected to have distinct structure and parameter values.
Visualization of the neural net in section 6.8.4 validates this observation. It indicates
the difficulty of training one model for various scenarios and also proves the discus-
sion in section 1.2.2that splitting training for head and tail distribution accelerates
learning and helps learn more generalized models.
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Figure 5.3: Optimal actions for various state combinations.

5.1.2 Methods

In the HCSD-RL algorithm, state cluster partition and combination take place after
agent tester in RL algorithm in Fig 5.1 depending on the agent’s performance. State
abstraction changes the MDP state space to abstracted state space and trains agents
from the abstracted states, which can lead to the loss of important information. Our
proposed state clustering does not condense the state space, instead, we partition
the ground state space and distribute the RL training, which makes the training
easier and faster.

State group partition

In state partition, we decompose without overlap the parent state cluster < S >
given group decomposer Sd at state dimension of d, into child sub-spaces < Sϕ >
at state dimension of d + 1, and the combination of the child state clusters form
the parent state space. The partition of state cluster at state dimension of d outputs
both state clusters and state cluster environment at state dimension of d + 1. For
example, the parent state cluster < L = L0 > with group decomposer Sd = D
decompose the state cluster into state clusters < L = L0, D = L0, M = L0 > ... <
L = L0, D = L3, M = L4 > and state cluster environments < L = L0, D = L0 >,<
L = L0, D = L1 >,< L = L0, D = L2 >,< L = L0, D = L3 >.
The partition is based on the RL agent performance on the state cluster. For the state
clusters the agents were not trained well, we split them into smaller state groups to
accelerate RL learning. To be exact, a state cluster can be partitioned if:

1
N

N

∑
n=0

Tn

∑
t=0

rd(t) ≤ ϵEenv or
1
E

E

∑
m=0

rd(m) ≤ ϵEcase (5.1)

where N is the number of test episodes, Tn is the number of steps in each episode, E
is the number of test cases, rd(t) is the test reward for each step of each episode and
rd(m) is the reward for each test case, at state dimension d, ϵEenv is the environment
reward threshold and ϵEcase is the case test reward threshold
As the equation indicates, the state cluster environments are used to train agents
and test the environment rewards and the state clusters are used to test case re-
wards.c The reason for using case tests (detail in section ) is that agents achieving
high rewards in a test environment may not necessarily predict the best actions in
various test cases (detail in section 5.2.1) which is important to measure the agent’s
overall performance.
When choosing ϵEenv and ϵEcase, we need to consider the performance-efficiency
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trade-off. High values of the thresholds produce well-performed agents but in-
crease the training cost and state cluster decomposition and re-training, resulting in
surplus agents. While the low values increase training efficiency with fewer state
cluster decomposition, at the expense of reduced model performance.

State group combination

Section 5.1.1discussed that agents trained on similar clusters could have the same
performance on the clusters. The state group combination is used to minimize
memory space for the trained agents. It removes duplicate agents that have the
same performance but are trained by different clusters and groups the state clusters
to form a new cluster.
Our state clustering combination method is similar to Q∗-irrelevant state abstraction
and is defined as follows:

Definition 5.1.1 (State approximate clustering). Given MDP M = (S,A,P,R,γ), two
states s1, s2 ∈ S form a cluster under ϵQ-approximate Q-irrelevant clustering ϕ if
there exists a Q-value function f: ϕ(S) X A → ℜ, such that | fs1 − fs2 | ≤ ϵQ

Based on this definition for states, two state clusters can be combined under the
two agents trained from the state clusters if they follow the Q-irrelevant clustering
approximation:

N

∑
n=0

|Qs1
n
− Qs2

n
| ≤ ϵQsum (5.2)

where N is the total number of states in the two-state groups, Qs1
n

is the Q value by
the first agent on state sn and Qs2

n
by the second agent. ϵQsum is the Q threshold

value.
The equation is similar to the equation 3.16as we use Manhattan distance to calcu-
late the similarity between two state groups. The Q values in equation 5.2 are out-
puts from the agents for each state in the state clusters. Like state decomposition,
the parameter ϵQsum also needs to consider the performance-efficiency trade-off for
state cluster grouping. Surplus grouping causes degraded agent performance while
ultra little grouping may not help minimize the train/test memory space.

Overall algorithm

Algorithm 5.1explains the HCSG algorithm. The following sections would explain
each part of the algorithm.
The selection of the threshold values depends on our target of the algorithm. For
high performance we use high values of ϵEenv and ϵEcase and low values of ϵQsum.
While for improving training efficiencies, we use low values of ϵEenv and ϵEcase and
high values of ϵQsum. Our method purposed on improving agent training efficiency
without losing performance, A good trade-off would be started with focusing on
high performance and gradually improving training efficiency.
The maximum state dimension dmax is the maximum number of states we consider
for state decomposition. For high state space, only the states are chosen such that
decompositions of the state dramatically alleviate training difficulties and facilitate
agent learning. dmax determines the problem complexity and trade-offs that need to
be considered when choosing this value. High values result in small state space and
accelerate learning, but might cause surplus agent training and combination which
is not efficient. Low values make the problem simpler but might add training diffi-
culties. Again, a good start is to focus on model performance first by setting high
values for dmax and reducing it if problem simplification is required.
Considering the randomness in agent exploration during RL training, we train each
agent multiple times for the best performance. The maximum train attempt maxatt
limit the number of training attempt for each agent. To compare the training diffi-
culties for each state cluster, we set the same training episodes Ntrain for RL training
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in each state cluster environment. This value should be set high enough to ensure
the RL training will reach convergence.
The outputs of the HCSG algorithm are the policy agents and associated state
groups at each state dimension. Before we enter the main loop of the algorithm,
We started with evaluating the training performance on the base environment us-
ing equation 5.1. The base environment is an environment with a state dimension
of zero and has equal probabilities for each initialized state. For this evaluation, we
generate both state cluster and state cluster environment using methods in section
5.1.2. State clusters that meet the partition criteria are then used for state partition
at higher state dimensions.

Algorithm 5.1: Hierarchical clustering based state grouping
Data: Environment reward threshold ϵEenv, case test reward threshold

ϵEcase, Q value threshold ϵQsum, maximum state dimension dmax,
maximum train attempt maxatt, training episodes Ntrain

Result: Policy network Q and state groups GQ
1 Initialize master policy and state cluster s0 = all;
2 Train agent A0 on environment env0 for Ntrain episodes ;
3 Find all state clusters at state dimension 1 s1 ;
4 Evaluate performance of agents A0 on s1 using equation 5.1 ;
5 Save state groups in se

0 that meet the partition criteria, save A0 in Q(0) and
the rest state clusters in GQ(0);

6 while d <= dmax do
7 Generate state cluster sd and state cluster environment envd from se

d−1;
8 Train agents Ad on envd for Ntrain episodes;
9 Evaluate the performance of agents Ad using equation 5.1 ;

10 Save agents in se
d that meet the partition criteria, save the rest agents in

Q(d) and state clusters in GQ(d);
11 Initialize attempt = 0 ;
12 while se

d not empty do
13 for i = 1, Length(sed) do
14 if attempt(i) >= maxatt then
15 remove se

d(i) from se
d;

16 save se
d(i) in se

d+1;
17 else
18 generate environment envd(i) re-train agent Ad(i) on envd(i)

using Behaviour Cloning DDQN algorithm for Ntrain episodes;
19 if Ad(i) meet equation 5.1 then
20 attempt(i) = attempt(i) + 1 ;
21 else
22 remove se

d(i) from se
d;

23 save Ad(i) in Q(d) and se
d(i) in GQ(d) ;

24 end
25 end
26 end
27 end
28 Combine agents in Q(d) and state groups in GQ(d) using equation 5.2 ;
29 remove duplicate models in Q(d) and combine the clusters in GQ(d);
30 d = d + 1;
31 Update master policy;
32 end

In the main loop, for each state dimension, new agents are trained based on
the partitioned state groups and then evaluated. For agents that are not trained
well, maximum maxatt attempts are tried with different seeds and apply behaviour
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cloning to facilitate learning. The resultant agents that meet the partition criteria
are inputs to the next loop. For well-performed agents, state clusters that meet
equation 5.2 are combined and duplicate agents are removed. These agents are
then included in the policy network and update the master policy (detail in section
5.3). The process ends until all end clusters are explored or no state clusters need
to be extended.

5.2 reinforcement learning
The main purpose of reinforcement learning in the HCSG algorithm (HCSG-RL) is
to find the cluster environments that are hard to train and send them to the HCSG
method to decompose. The RL method is composed of RL trainers and tester. The
RL trainer trains multiple agents taking input from the state cluster environments
and the agent tester tests the agents on the state cluster and cluster environments
using equation 5.1.

5.2.1 Agent tester

The agent tester evaluates the performance of the trained agents and outputs the
state clusters with high and low training difficulties to the HCSG method. The
state cluster (environment) with high training difficulties is based on the agent’s
performance evaluated by equation 5.1. And the rest state clusters are classified as
with low training difficulties. As equation 5.1indicates, both environment and case
rewards are considered for evaluating an agent’s performance. The environment
rewards are calculated as the average episode reward and case rewards as the av-
erage case test reward. The case test helps understand agents’ behaviour for each
case scenario in the state cluster. As a result, only states in the state cluster are
considered for the case tests. The reason for using case tests is that

agents achieving high rewards in a test environment may not necessarily output
high rewards in various test cases. The reason is that the agent tends to choose
actions that result in states with the highest rewards, avoiding reaching some states
in which the agents may not predict the best actions.

5.2.2 Behaviour cloning

Behaviour cloning (BC) is one of the simplest forms of imitation learning. Besides
training experience, it generates state-only demonstration information and helps in-
crease agent learning speed [29]. Our DDQN as a model-based off-policy algorithm
makes it convenient to generate a demonstration experience for agents to learn be-
fore RL training. There are mainly two reasons for using behaviour cloning. Firstly,
the BC method accelerates training since the agent is initialized with a useful learn-
ing experience. Secondly, when it is extremely hard to reach certain states during
training and for an agent to learn through state experience, the BC method aug-
ments this information that helps the agent to learn better in these cases.
In spite of its advantages, the demonstration experience might limit RL agents’
exploration abilities and result in sub-optimal solutions. Thus we only adopt be-
haviour cloning when normal RL training cannot produce good agents.
The demonstration experience is cloned from the optimal policy, which is based
on the reward model. The optimal policy runs as follows: given a state, the op-
timal action is determined by executing each of the actions under the state and
comparing the rewards. The optimal action is one with the maximum reward. The
behaviour cloning method finds the optimal action and rewards for each state of
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the state cluster. The state-action-reward pair is then formulated as a dataset in the
reply buffer. During RL training, the agent selection randomly certain data from
the reply buffer to learn and these data in the reply buffer enables the agent to learn
more efficiently. Depending on the training difficulties, we may replicate these data
to increase demonstration experience in the reply buffer.

5.2.3 Exploration in critical scenarios

In the Mediator environment, when TTDU reaches too low values, the agent is ex-
pected to enforce a level shift to L4 or emergency stop if the L4 level is not available.
However, this experience is hard to learn in reinforcement learning. The reason is
that as the agent learns, it tends to avoid reaching low TTDU values which causes
a tail distribution for the low TTDU states in the reply buffer. And the agent would
perform badly for these states. One solution to this issue is to use behaviour cloning
to generate extra experience as in section5.2.2. Another direction is to exploit exist-
ing learning experiences for the low TTDU values and try to reduce the percentage
of negative experiences which is caused by exploring the wrong actions. Thus we
changed the exploration rule in critical scenarios. As shown in the training algo-
rithm 5.2, when TTDU reaches too low values, with some probability we explore
actions ES and ESL4 instead of the whole action space.
Compared with state clustering, this method groups the action specific to certain
scenarios. It makes agent exploration more efficient and facilitates learning by avoid-
ing selecting actions that not likely to be best under existing states. It can be applied
to other environments by condensing the action space under certain state scenarios
during exploration.

5.2.4 Overall algorithm

Algorithm 5.2 demonstrates the DDQN RL training algorithm. This algorithm is
a standard DDQN algorithm except for that methods in section 5.2.2 and 5.2.3 are
included. The BC method is executed before the training loop starts to initialize
the reply buffer. Exploration in critical scenarios is considered during agent action
selection when the agent decides to explore an action.
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Algorithm 5.2: DDQN Agent with behaviour cloning
Data: environment env, state cluster environment G, total episodes tmax,

cloning duplicates Clongn,
1 Initialize policies Q, Qtarget and replay buffer Replay ;
2 for each possible state si in G do
3 Find the best action ai for si ;
4 reset env and execute the action in env ;
5 store (si, ai, rewi, s

′
i) in Replay ;

6 end
7 for episode = 1, MaxEpisode¿ do
8 while episode not end do
9 if Epsilon then
10 if ttdu<=1 then
11 Set at ={

randomly choose from [ES, ESL4] P
randomly choose from [DN, CD, SSL4, ES, ESL4] 1-p

12 else
13 randomly choose from [DN, CD, SSL4, ES, ESL4]
14 end
15 else
16 AT = maxaQ∗(st, a; θ)
17 end
18 end
19 Execute action and store transition (si, ai, rewi, s

′
i) to Replay ;

20 sample random minibatch of transition from experience reply ;
21 perform policy gradient ;
22 end

5.3 policy network
The whole architecture of the policy structure is shown in Fig 5.4. We basically
built a hierarchy of policies consisting of the master policy and sub-policies. The
sub-policies consist of agents trained during HCSG-RL training. The master policy
determined which of the sub-policies to use given the input state, and sub-policies
are responsible for action prediction on the state input.

Figure 5.4: Policy structure for the HCSG-RL algorithm
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5.3.1 Master policy

The master policy basically find the state clusters given input to the state. The state
cluster number is also the policy number of the sub-policies. The policy structure
in Fig 5.4 is similar to the hierarchical neural network. However, the differences are
that, we do not train a neural network for master policy. The reason for this is that
in HRL, training master policy is equivalent to training one agent for all the scenar-
ios that entails integrating all the learning experience from various environments,
which makes the training highly inefficient. Considering that the prediction rules
can be traced during HCSG-RL training, we define a deterministic matrix whose
parameters can be updated during HCSG-RL training. The deterministic master
policy saves a huge amount of training costs for the master policy network. An-
other advantage of the deterministic master policy is that it cost little calculation
memory compared with neural network computation.
Fig 5.5details the composition of the master neural policy. The input to the policy
is a reduced observation < L, D, M >. The master policy network is composed of
a state encoder and a policy matrix. The state encoder generates a 1xM stream of
bits that has a value of one indicating the position of the current state observation.
It consists of a Mx3 matrix that records all possible combinations of the states, and
a finder which generates the bit stream based on the current input and the matrix.
The bit stream is then multiplied with the Mx1 policy matrix to output the policy
number, with each neuron corresponding to one state observation. The values of
the policy matrix are updated at the end of each dimension during training based
on the new agents and corresponded state clusters.

Figure 5.5: HCSG-RL master policy

5.3.2 Sub-policy networks

The sub-policies consist of multiple agents, each represented by a small neural net-
work. The size of the neural network plays an important role in the results of the
HCSG-RL method. Huge neural networks can achieve better performance and can
be used for bigger state group, but they suffer from low training efficiency as it
normally requires tremendous computation memory and time [4]. On the other
hand, small neural networks accelerate training but can only accommodate small
state space, which might require surplus agents for the resultant model. A trade-off
needs to be made between the size of agent space and neural networks.
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This section describes general experiment settings including experiment tools, train-
ing setup and evaluation methods. It also covers the experimental results compared
with different algorithm including a mixed environment transfer.
The neural networks were implemented using the open-source package from Py-
torch. The source code for the project can be found online on Github. All the
experiments were executed on Intel(R) Core(TM) i7-6700HQ CPU devices.

6.1 openai gym
The environment was built and trained using the OpenAI gym. The gym is an
open-source toolkit to develop RL by providing a set of standard APIs to communi-
cate between agents and the environments. The standard tasks of the APIs include:
defining the environment, resetting the environment and executing the action in the
environment and returning the outputs from the environment (mainly new observa-
tions and rewards). It also contains standard sets of environments compliant with
the APIs. In this paper, we implement the Mediator environment in the OpenAI
gym.

6.2 training setup
This section introduces the general settings of the HCSG-RL algorithm, including
parameter selection and algorithm implementation in the Mediator environment.

6.2.1 Training parameters

The hyper-parameters for the DDQN RL algorithm are set based on an experiment
on DDQN in [26]. The values are summarised in Table 6.2.1. These hyperparameters
are the same for all experiments. The differences are that, firstly, we use a smaller
neural net with one hidden layer of 64 neurons for low state and action spaces. As
discussed in section 3.1, exploration helps agents to learn new experiences while
exploitation accelerates agents’ training convergence. Suitable values of ϵ are from
0.5 to 0.02. We chose rather high values of ϵ for the reason that, although the
training converges faster with reduced exploration, the agent may not gain enough
experience of correctly explored actions. The batch length was not set too high as
the total training steps were set at low values to train small neural nets on state
sub-spaces. And this value helps store enough experience for the agent to learn
efficiently from historical information.

28
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Parameter Value

Activation function ReLU
learning rate 0.0001

Initial layer weight Normal
mini batch size 8

batch length 1 ∗ 105

target update period 4

[ϵmax, ϵmin] [0.5, 0.02]
ϵ decay 0.995

τ 0.01

discount γ 0.99

6.2.2 Algorithm implementation

Fig 6.1 illustrates the full hierarchy of cluster environments generated by the HCSG
method for the Mediator environment. Each node can be represented as a state
cluster environment. For example, a node with ’Dimension = 1’ and ’Auto level’ of
L0 represents an environment at a state dimension of 1 and is configured to contain
states in which the automation level is constrained to L0. The HCSG-RL training
starts with training an agent on node ’Dimension = 0’ and testing its performance
on the next four nodes at ’Dimension = 1’. The nodes with high training difficulties
would then be extended to nodes at higher state dimensions.
The order of states for state partition at each dimension influences the structure of
the tree in Fig 6.1. We focus on producing the least number of leaf nodes to mini-
mize the training cost which results in the order of Automation level - Distraction
- Max automation level. Agent combiner in the HCSG-RL algorithm groups nodes
together and simplify the tree.

Figure 6.1: Hierarchical clustering based state grouping

6.2.3 Algorithm parameter selection

This section discusses the selection of values for parameters in the HCSG-RL algo-
rithm5.1. The size of the neural network for each RL agent should be high enough
to ensure it at the minimum can learn the experience from the leaf node environ-
ments in Fig 6.1. Experiments show that neural networks with one hidden layer of
60 neurons can meet this requirement.
Regarding the algorithm values, using the structure in Fig 6.1, the maximum state
dimension is set to three. As section 5.1.2explains, we choose the environment and
case test reward thresholds both as high as 4.9 (max reward equals 5) and a Q value
threshold as low as 0.01 to maximize the performance of the trained agents.
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6.3 performance encoding
Training in a single environment is hard to produce a well-performed model as
most of the states may have not been explored. Knowing that beforehand, we de-
fine various MDPs/environments, each with different initial states. For evaluation
of the experiment, we generate various state clusters and state cluster environments
from Fig 6.1, and encode the environments as in appendix Cand the state clustersD.
The model’s rewards in the environment give a high-level indication of the model’s
performance, and case tests were designed to understand the model’s behaviour at
the micro-level. This case test is different from the case test in the HCSG-RL algo-
rithm. In the experiments, we generate all possible cases and evaluate them by the
resultant policy network. With the results of the case test, we are able to understand
in which conditions the model outperforms models from other algorithms.

6.4 comparison method
We compare the resultant agents trained using the HCSG-RL algorithm with a base-
line tree decision algorithm and a transfer learning method (detail in section 6.4.2).
The purpose is to evaluate how agents perform in various environment scenarios/-
cases. To achieve this, we adopted environment encoding and case encoding men-
tioned in section6.3. We used both environment tests and case tests to evaluate the
model’s overall performance. The end purpose of training the generalized model is
to minimize driver unfit situations so as to maximize safety. Evaluations on drivers
unfit were conducted at the end.

6.4.1 Tree decision algorithm

The decision tree algorithm is manually designed that aims at maximizing the trade-
off between safety and comfort. Fig B.1 in appendix B illustrates the tree algorithm.
The tree decision makes decisions based on the distraction level and TTDU values
on different automation levels. For no distraction, it does not take any action. When
distraction level increase, it chooses to correct distractions when TTDU reaches
low or suggests shift automation levels when higher auto levels are available. In
emergency situations where at high distraction levels the drivers refuse to shift
automation level, emergency stop or enforce shift auto level is executed.

6.4.2 DDQN Agent with mixed environment transfer

In the case of agents RL learning among multiple environments, transfer learning is
one of the most popular methods. In this paper, we compare the performance of the
HCSG-RL algorithm with mixed environment transfer (MET). The MET algorithm
is detailed in Algorithm 6.1 and works as follows: Initially, we generate all the
environment configurations and assign selection probabilities to each environment.
For every 100 episodes, the environment probabilities are updated based on the
performance of the agent in these environments which is evaluated by case tests.
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Algorithm 6.1: DDQN Agent with mixed environment transfer
Data: environment env, total episodes tmax, cloning times Clongn,

1 Initialize policies Q, Qtarget and replay buffer Replay ;
2 Initialize environments envs ;
3 for episode = 1, MaxEpisode¿ do
4 if episode % 100 == 0 then
5 case test the model on envs ;
6 Update probabilities for selecting each environment ;
7 Update environments ;
8 else

9 end
10 episode not end if Epsilon then
11 if ttdu<=1 then
12 Set at ={

randomly choose from [ES, ESL4] with probability of P
randomly choose from [DN, CD, SSL4, ES, ESL4] 1-p

13 else
14 randomly choose from [DN, CD, SSL4, ES, ESL4]
15 end
16 else
17 AT = maxaQ∗(st, a; θ)
18 end
19 Execute action and store transition (si, ai, rewi, s

′
i) to Replay ;

20 sample random minibatch of transition from experience reply ;
21 perform policy gradient ;
22 end

6.5 evaluation metrics
We define the following as the performance metrics:

1. Average episode reward and episode loss during the training procedure

R =
1
E

E

∑
e=0

Te

∑
t=0

r(t) (6.1)

where E is the number of episodes and Te is the length of episode e

2. Average episode reward for test in one environment, using the same equation
as 6.6.

3. Cumulative average episode reward for tests (CAER) in multiple environ-
ments

R =
1

NE

N

∑
n=0

En

∑
e=0

Tn
e

∑
t=0

r(t) (6.2)

where N is the total number of environments En is the number of test episodes
in environment n and Tn

e is the length of episode e in environment n.

4. Cumulative case test rewards (CCTR)

Rc =
N

∑
n=0

c(n) wherec(n) =

{
1, if r(n) == ropt.
0, otherwise.

(6.3)

where N is the total number of test cases.
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5. Normalized cumulative case rewards (NCCR)

Rc =
N

∑
n=0

c(n)/cmax (6.4)

where N is the total number of test cases.

6. Driver unfit count and duration

Cun f it =
N

∑
n=0

c(n) wherec(n) =

{
1, if ∃t ∈ Tn TTDUt == 0 and autoLevelt < L3 .
0, otherwise.

(6.5)

Dun f it =
1
N

N

∑
n=0

Tn

∑
t=0

c(t) wherec(n) =

{
1, if TTDUt == 0 and autoLevelt < L3 .
0, otherwise.

(6.6)
where N is the total number of test episodes and Tn is the length of episode n.

The training average episode reward and loss give insight into how well agents
learn during RL training. An effective RL training should result in enough updates
on policy networks which is related to high loss values. As the episode length may
vary in each episode, we adopted an average episode reward to represent the agent’s
performances more accurately. The training reward and loss can represent the per-
formance of the RL methods in RL training. For the test environment, the aver-
age episode reward reflects the model’s performance in a specific test environment,
while the CAER in multiple environments reflects the model’s generalization abil-
ity and robustness in changing environments. Compare with CAER which reflects
the high-level long-term performance of the agents, cumulative case test reward
indicates the detailed behaviour and directly reflects agents’ overall performance.

6.6 overview of experiment models
The following models were generated for evaluation of the algorithms:

• HCSG D1: 4 sub-policies (1 base and 3 clusters) and one master policy

• HCSG D2: 5 sub-policies (1 base and 4 clusters) and one master policy

• HCSG D3: 7 sub-policies (1 base and 6 clusters) and one master policy

• MET: one policy trained on a mixture of 40 MDPs

• Baseline: rule-based decision tree algorithm

6.7 results and discussion
This chapter evaluates the HCSG-RL abilities to improve agents’ training efficiencies.
With limited training resources (training episode, neural network size, etc), the eval-
uation results can basically reflect the agent training efficiencies. The evaluation
basically shows that the HCSH-RL algorithm improves both the agent’s training
efficiencies and overall performance. Firstly, in one environment, the agents’ per-
formance on the tail training dataset is improved without losing experience from
head distribution. Next, the agent does not or hardly decrease performance as the
test environments are changing, so as to prove the model’s overall performance in
various scenarios. The results from baseline and transfer learning methods are com-
pared to prove our algorithm’s advantage.
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Fig 6.2 shows the resultant hierarchy of the state clusters, each colour represents a
well-trained agent. For the Mediator environment, we trained out 7 sub-policies in
total, with 3 agents for states in dimension 1, one agent in state dimension 2 and
two extra agents in state dimension 3.

Figure 6.2: State clusters are covered by the resultant sub-policies.

We start by comparing the resultant model’s performance in the base environ-
ment (environment in appendix I.1) with the baseline and MET algorithm by look-
ing into tested average episode reward and reward in head and tail. Then we extend
to multiple environments. Next, we use a case test to compare the model’s exact
behaviour and features in a multi-dimension state space, which directly reflects the
model’s generalization ability. After the environment and case test, we evaluate
how a generalised model gives benefits by looking into the model’s effectiveness
in reducing drivers’ unfit situations. And we investigate some ablation statistics to
explain the reasons for this effect. At last, we will do some ablation study in which
we investigate the effect of behaviour cloning and its necessity in accelerating agent
learning and improving performance. And we then do some visualizations of neu-
ral net structures for the sub-policy agents to investigate the agent differences.

6.7.1 Performance in environments

Rewards in the base environment

In the section4.3, we trained agents in the base environment with settings in ap-
pendix I.1. And illustrated the detected long-tail problem and its consequence on
the head-tail performance. This sectionshows the performance improvement of the
trained model using the HCSG-RL algorithm in the base environment. Fig 6.3
shows the head-tail performance of the HCSG-RL model for various head-tail split
criteria ratios. Compared with the result in Fig 4.4, the model trained from our al-
gorithm gains significant improvement on the tail performance without sacrificing
performance on the head class distribution.
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Figure 6.3: Model’s accuracies on the head and tail scenarios for various head-tail split ratios
from HCSG-RL algorithm with θ of 100%. Accura- cities calculated based on the
per cent of actions with the maximum reward.

Section 4.1 discussed the influence of the environment parameter initial TTDUs
and road length on a variety of scenarios. To test the model’s overall performance,
we define a different variety of scenarios by changing road length and configur-
ing TTDU values. In the following experiments, we set initial TTDU values fixed
and vary road lengths. Experiment details are included in appendix F. Fig 6.4
(left) includes the results of the HCSG-RL model trained on various state dimen-
sions. The high threshold values in the HCSG algorithm produce agents with high
performance and thus HCSG D3 achieve the best episode reward in various scenar-
ios. HCSG D1 and D2 models are not generalized enough as their average episode
reward decreases with increasing road length. This is because HCSG D1 and D2

models may still have state clusters not well-trained, and for high road length, more
critical scenarios occur and HCSG D1 and D2 models result in sub-optimal solutions
to these scenarios. The HCSG D3 model trained on smaller state clusters achieves
dramatic performance improvement and is able to generalize to various scenarios
since reduced state clusters add balance to the training data. And the HCSG D3

model achieves the highest episode reward regardless of the road length.
Next, we compare the average episode rewards of the HCSG D3 model with the
baseline and the MET model. To ensure the MET model has gained enough expe-
rience, it was trained in a total of 1000k steps. Each agent from HCSG was trained
1k steps in D1, 500 steps in D2 and 300 steps in D3. Fig 6.4 (right) shows the result,
compared with baseline, it seems that transfer learning in multiple environments
does improve the agent performance in various scenarios, but is still hard to be as
generalized as HCSG models that train in sub-groups.
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Figure 6.4: Left: Average test episode reward on the base environment for HCSG-RL models
with dimensions of 1, 2 and 3. Right: Average test episode reward on-base
environment on HCSG-RL model, MET model and baseline.

Performance in multiple environments

The goal of the experiments in this section is to compare HCSG’s ability in im-
proving training efficiencies by evaluating agents’ overall performance with limited
training resources. CAER is a useful benchmark metric for this task. Considering
the uncertainties in the Mediator environment, the experiments were repeated at
least three times with different seeds for each algorithm. Each environment has
different configuration settings resulting in various initial states, transitions and
episode properties.
Fig 6.5shows the CAER results of various state dimensions of the HCSG algorithm
compared with baseline and MET algorithms. The performance of the baseline al-
gorithm drops as new environments are tested, showing that the baseline is not
perfect in various scenarios. MET agent that was trained by a mixture of environ-
ments has relatively stable performance as new environments come in. HCSG D1

HCSG D2 models are only well-trained for parts of the state clusters, and are less
generalized than the MET model. HCSG D3 model has well-trained agents for all
the stat clusters and produces the best-generalized model and its CAER stabilizes
at the peak related to the number of environments added in.

Figure 6.5: Cumulative average episode reward with an increasing number of environments
involved.
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6.7.2 Performance in observation cases

Besides environment tests, a case test is another way to evaluate a model’s overall
performance from a micro level. Fig ?? compares the normalized case rewards of
the HCSG, MET and baseline algorithms, the rest of the similar results for other
models are stored in appendix

Table 6.7.2 lists the calculated CCTR results of models on the four automation
levels. It summarizes the information from Fig ?? and basically explains the differ-
ence in models’ performance in environmental tests. Overall, HCSG D3 achieves the
highest NCCR values and thus has the best performance. The baseline algorithm is
not generalized in most of the cases with very low CCTR values. Low CCTR and
high NCCR in MET indicate that the MET algorithm results in many sub-optimal
solutions. The results from HCSG indicate that optimal agents are hard to train at
high automation levels. This conforms to the intuition that, at low auto levels criti-
cal scenarios are more likely to happen and thus agents were well trained in those
scenarios. Whereas at high auto levels, agents easily learn action correct distractions
which avoid critical scenarios to happen.

CCTR in L0 CCTR in L1 CCTR in L2 CCTR in L3 NCCR

Max CCTR 16 12 8 4 40

HCSG D1 14 9 3 1 35.3
HCSG D2 16 9 3 1 35.8
HCSG D3 16 12 6 4 39.55

Baseline 1 4 5 0 20.9
MET 5 5 3 1 30.8

6.7.3 Driver fitness

The section evaluates the algorithm for improving real-world scenarios. We use
driver unfit to test models’ abilities in optimizing driver safety. Some ablation
studies were conducted on statistics to understand models’ behaviours in critical
scenarios.
For the evaluation of models’ performance on driver unfit. We tested each model
for 100 episodes on the base environment. Details on the experiments are stored
in appendixH. Well-trained RL agents would choose the optimal actions and try to
avoid situations that make drivers unfit. Fig 6.6illustrates the counts and duration
of driver unfit scenarios for the experiments on HCSG D3, MET and baseline algo-
rithms.
These results reflect the models’ performance in critical scenarios where TTDU
reaches low and drivers become unfit. It is obvious from the figure that the MET
algorithm outperforms the baseline algorithm in driver safety with a lower average
driver unfit count and duration. The HCSG model trained on smaller state clusters
could put care more on the driver unfit situations and could avoid driver unfit sit-
uations to occur, thus it performs the best of the three algorithms in driver unfit
evaluation.
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.

Figure 6.6: Driver unfit count(left) and duration(right).

Next, we look into the two episodes case by case to understand how the HCSG
model avoids driver unfit and outperforms the baseline algorithm. Tree decision
algorithms only makes decisions only based on the circumstances humans can think
of, while RL agents trained on generalized state scenarios could outperform tree
decisions. The first test episode illustrates this benefit. Fig 6.7 and 6.8 shows the
states of the first episode. Near the end of this episode, the following scenario
happened:

• Distraction level at L0 and TTDU reaches zero

• Auto level equal to the maximum auto-level and is not fully automated

Over a long road, the driver may become tired (TTDU decrease to zero) even with-
out distraction. For the above-mentioned scenario, action CD, ESL4 and SLL4 are
not possible under the distraction of L0 and the highest automation level. The
partitioned state cluster enables the HCSG method to gain some experience in this
scenario and can handle it by doing emergency stops, so as to avoid occurrences
of driver unfit situations and maximize average episode reward, at the expense
of reduced episode length. Whereas the tree decision algorithm did not take this
scenario into account.
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Figure 6.7: Rendering of one episode for training HCSG D3 model on the base environment.

Figure 6.8: Rendering of one episode for baseline algorithm on-base environment.

Besides its advantage in generalization, RL agents also outperform the decision
trees in maximizing the long-term reward. The decision tree algorithm takes actions
based on the existing state, which might disregard some future circumstances that
the tree algorithm may not consider, resulting in sub-optimal performance. While
the DDQN RL agent is trained by trial and error on predictions and can achieve
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better results in terms of long-term rewards. The following test episode illustrates
this benefit. In this episode, the following critical scenario happens:

• Distraction level at L0 and TTDU reaches zero

• Auto level smaller than the maximum auto-level L3

Figure 6.9: State clusters are covered by the resultant sub-policies.

Figure 6.10: State clusters are covered by the resultant sub-policies.
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Fig 6.9 and 6.10 includes the states of this scenario. For this scenario, a higher
automation level is available, the HCSG D3 agent enforces auto-level to the highest
level to avoid any delay or uncertainties from driver response, so as to avoid this
critical scenario to continue. While the baseline algorithm makes decisions on the
existing distraction level, with no distraction, the tree decision considers a safe
situation and chooses to do nothing, which causes the driver to become unfit and
eventually stopped the car, the HCSG D3 agent let the automation system take
full control so that the car can drive to the end and the long-term reward of the
environment is maximized.

6.8 ablation study
In this section, we compare the algorithms by looking into action and state statistics.
We do an ablation study by reviewing techniques and analysing their necessities for
improvements in the results.

6.8.1 Ablation statistics

An ablation study was done on statistics from the base experiment with details in
appendix H. Table 6.11 shows the results. The statistics were obtained by testing
the baseline algorithm and models from MET and HCSG for 100 episodes. As for
the HCSG D3 model, the average time between actions and the average number of
actions are the lowest and thus the HCSG agents take action the most frequently.
Besides, the HCSG model takes the most emergency stops. This explains why the
HCSG model outperforms the other two algorithms in critical scenarios. Although
the MET agent was trained in a variety of environments. It could lose information
learned during knowledge transfer among environments. These statistics prove the
benefit of distributing training over transfer learning in RL learning in multiple
environments.

Figure 6.11: Ablation statistics

6.8.2 Behaviour cloning

In this paper, we implemented behaviour cloning in RL training to accelerate agent
training efficiencies. We would do experiments in a random environment to evalu-
ate this advantage. Details of the experiments are stored in appendix I. We trained
two agents each for 350 episodes for the experiment, one with behaviour cloning
and initialize the replay buffer with 1000 times the formalized experience, and an-
other agent without behaviour cloning.
Fig 6.12shows the training reward and losses of the two agents. Looking into the
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training rewards, with some initial expert experience, the agent converges within
350 training episodes. While training without behaviour cloning does not converge.
Loss values give a rough indication of agent learning. As equation 3.13 shows, high
loss values mean huge policy updates. When the loss value stabilizes, the agent
converges and stops to learn. Loss values of the agent without behaviour cloning
increase at episode 60 indicating that the agent just starts to learn at this episode,
and continues learning at the end of the episode. As for the agent trained with be-
haviour cloning, with some initial experience, the agent learns fast at the beginning
with big gradient updates and stabilizes after around 200 episodes.

Figure 6.12: Training results with(left) and without(right) behaviour cloning.

The ratio of expert and training experience is worth exploring. With a high pro-
portion of expert experience, the trained agent might be overfitting to the expert
data resulting in reduced generalization ability to similar state clusters. And for a
low proportion, the agent may not gain enough experience and become underfit.
We set up several experiments, each trains the agent for 500 episodes but is initial-
ized with various lengths of expert data in the reply buffer. Fig 6.13 shows the
training rewards and losses for these experiments. It seems that policy gradient up-
date increases with the proportion of the expert experience, the agents do not differ
much from training rewards. These findings prove that the agents learn faster with
a higher proportion of expert learning experience.

Figure 6.13: train loss(left) and rewards(right) for agents with various train-trajectory
ratios(5000meansnobehaviourcloning).

6.8.3 Exploration in critical scenarios

In algorithm 5.1, during exploration, we condense the action space in critical scenar-
ios to accelerate learning in these scenarios. This section would prove the benefit
of this method. We test by comparing the agent performance in critical scenarios
trained with this method and the agent trained by the same exploration in all sce-
narios.
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To learn how much the method accelerates learning, we train both agents for 100

episodes with setup details in appendixI. This experiment setup ensures enough
occurrences of low TTDU values even at low distraction. We limit the training
episodes to 100 to compare agents’ performance with limited exploration steps to
investigate the training efficiency of the two exploration methods. The agents are
tested on the same setup for 100 episodes with various road lengths. Higher road
length results in lower TTDU values and thus generates more critical scenarios.
Table 6.14shows the average episode rewards for the two agents. With higher road
length, more critical scenarios occur and the agent trained with exploration in all
action space does not learn well with limited training episodes and results in lower
test rewards. While the agent trained with condensed action space exploration in
critical scenario learns critical scenarios fast within 100 training episodes as the
episode reward slightly increase as road length increases. These results prove con-
densing action space during the exploration can dramatically speed up learning.

Figure 6.14: Average episode rewards

6.8.4 Visualization of the neural network

Visualization of neural nets gives unique insights into neural nets. Fig 6.15shows
the plotted weights of the layers for each of the 7 sub-policies. The distinct weight
distribution of the neurons indicates the difficulty in combining the agents and the
difficulty in using the existing neural net structures to learn various scenarios. It
is also interesting to note that some policies have similar weight distribution, this
gives hint for neural net ensembling or the use of a bigger neural network to replace
these policies networks.

Figure 6.15: Neural net visualization of HCSG sub-policies.



7 D I S C U S S I O N A N D C O N C L U S I O N

7.1 conclusion
In this paper, we introduced a novel hierarchical clustering-based state grouping
algorithm to improve the model’s training efficiencies and overall performance in
reinforcement learning. This algorithm preserves near-optimal behaviour makes ef-
ficient computation and lowers the time and data needed for decision-making.
Looking back to the research questions in section 1.2.1, as for the first question, the
HCSG algorithm accelerates RL learning by partitioning the ground state space into
smaller state clusters and distributing the training budget, this method also adds
balance to the training data which helps maintain/improve model performance.
For the second research question, by limiting the training memory and episodes, the
performance of the trained agents can reflect the training efficiencies. We use multi-
ple evaluation metrics to evaluate the model performance, and compared the HCSG
algorithm with mixed environment transfer and baseline algorithm. We use case
tests and collected some ablation statistics to understand the different performances
from macro and high levels. We compare models trained with different maximum
state dimensions of the HCSG algorithm to evaluate the effects of state space split-
ting. As for the last question, the improved rewards in base environment regardless
of the road length for the HCSG model indicates that the HCSG algorithm achieves
better performance in improving agents’ overall performance in various scenarios
compared with the MET and baseline algorithm. The CAER results in multiple
environments prove that the HCSG algorithm is more robust to changing environ-
ments. Besides, the HCSG algorithm avoids driver unfit situations and surpassed
the other two algorithms in improving driving safety. At last, the state distribution
for two test scenarios proved that our proposed algorithm transcends the decision
tree algorithm by generalizing to more scenarios and maximizing the long-term re-
wards. The case test results help explain the performance differences by looking
into each model’s behaviour in each specific case, and the ablation statistics explain
that the HCSG model outperforms MET and baseline algorithm by avoiding criti-
cal scenarios in which it takes more frequent actions and keeping high automation
levels.

7.2 discussion

7.2.1 Algorithm advantages

Modern AI industries mostly use huge neural networks plus big data to solve com-
plicated tasks. Our HCSG algorithm, instead, uses small neural networks to solve
complicated tasks. This provides a promising future for reinforcement learning
in the AI industry. The smaller policy networks require less computation budget.
Thus, the HCSG algorithm weakens the reliance on hardware and reduces the cost
of implementing the AI models in the industry.
the HCSG-RL algorithm is also transferable. For this paper, the HCSG-RL algorithm
is trained and tested solely in a Mediator environment. It can also be implemented
in other environments or RL algorithms. The algorithm is independent of environ-
ments. As Fig 1.2 shows, the HCSG-RL algorithm has separate algorithm structures,

43
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each part can be easily adapted to different training algorithms and neural net-
works. HCSG generated and optimize multiple agents and distribute computation
for complicated tasks. This provides promising future work for few-shot learning
and Distributed Reinforcement Learning.

7.2.2 Drawbacks of the agent

This Mediator environment has discrete and limited action and state space. In the
case of continuous or high dimensional state space, it may generate surplus sub-
policies. Current methods for grouping the sub-polices use case test, for high state
space, this might seem inefficient. But does not indicates that the HCSG algorithm
is inferior in high dimension/complicated state space. Conversely, as for transfer
learning becomes much harder as state-space grows, splitting state-space seems a
more promising method in high-dimension state spaces.

7.3 future work
This section provides possible future research direction for our future work.

Extending to more environments The current algorithm was evaluated based
on the Mediator environment and produced a fairly generalized model. As the
algorithm is separated from the RL training environment, It might be worth in-
vestigating the adaptability of HCSG-RL to other environments and evaluating its
effectiveness to improve the model’s generalization abilities.

Extending to high dimension state space The basic idea behind the HCSG al-
gorithm is to decompose the training environment into multiple MDPs and train
multiple agents for groups of them and apply hierarchical RL that uses a master
policy for choosing agents. As mentioned in the above section, the HCSG algorithm
might suffer from surplus sub-policies in high dimensional state space. Current
state and environment encoding might become inefficient, thus a smarter algorithm
in state and agents grouping might give more efficient results. RL algorithm The
model-based off-policy algorithm is selected for the current RL algorithm in HCSG.
A better RL algorithm could train a better agent and simplify the training pro-
cedure. D3QN with prioritized experience replies might train agents with better
performance on tail distribution. Compared with other RL algorithms, DQN can be
unstable and gives poor convergence. SAC with a regularization entropy factor can
be more efficient. Improving the RL algorithm in HCSG probably can give a more
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optimized model.
Network architecture Current HCSG uses a rather small neural net for the sub-
agents with one hidden layer. A deeper/wider neural net might be more gener-
alized than small neural nets. And that can reduce the number of agents for the
HCSG algorithm. A bigger neural net is whereas harder to train. Thus a trade-off
is worth investigating.
Reply buffer For the existing HCSG algorithm, we utilize all the experience learned
during training to update the policies. Some of the experience in the reply buffer
might be useless and disturbs the agent from learning important information. The
algorithm that produces a rather even distribution of states in the reply buffer might
generate agents with better overall performance. It could be worth investigating
methods to efficiently utilize replay buffers to accelerate agent learning.
Master policy In this paper, we use a deterministic master policy for selecting
trained agents from state clusters. Its number of parameters is proportional to the
size of the state space. Huge state space might require surplus parameters for the
master policy which is inefficient in training and testing. Thus it might be worth
looking into how to better design master policies for selecting the sub-policies.



B I B L I O G R A P H Y

[1] David Abel. “A theory of state abstraction for reinforcement learning”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 01. 2019,
pp. 9876–9877.

[2] Jing An, Lexing Ying, and Yuhua Zhu. “Why resampling outperforms reweight-
ing for correcting sampling bias with stochastic gradients”. In: arXiv preprint
arXiv:2009.13447 (2020).

[3] Shin Ando. “Deep Over-sampling Framework for Classifying Imbalanced Data”.
In: Lecture Notes in Computer Science book series 10534 (2017), pp. 770–785. doi:
https://doi-org.tudelft.idm.oclc.org/10.1007/978-3-319-71249-9 46.
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A A P P E N D I X A . E X P E R I M E N T S E T U P
F O R T H E B A S E E N V I R O N M E N T

Parameters values
toolkit pytorch
training algorithm DDQN
learning rate 5e-5
loss function smooth L1 loss
optimizer Adam
exploration ϵ 0.5 to 0.02

eps decay 0.995

γ 0.99

τ 0.01

total batch length 100k
batch size 8

target update period 4

seed 0

initial level probabilities [0.25,0.25,0.25,0.25]
initial distraction probabilities [0.25,0.25,0.25,0.25]
maximum level probabilities [0.25,0.25,0.25,0.25]
allowed driver events [”DISTRACTION”, ”NDRT”]
maxoccurrences o f driver event [300, 5]
driver event probability [0.99, 0]
distraction increase prob 0.005

distraction ends midway prob 0.02

distractions ends prob 0.1
ndrt ends prob 0.001

driver request cancel prob 0.005

decline threshold 120.0
road length 30

road types [”URBAN”, ”PROVINCIAL”, ”HIGHWAY”]
max roadtypes [1, 1, 3]
urban max level L4

provincial max level L4

highway max level L4

allowed static events []
allowed dynamic events []
available actions [’DN’,’SSL4’, ’ESL4’, ’CD’, ’ES’]
total simultaneous actions 1

ssl max response time 10.0
suggested shi f t response probability 1

suggested shi f t acceptance probability 0.5
pd success probability 0.95

cd success probability 0.8
esl time 2

Table A.1: Experiment A
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B A P P E N D I X B . D E C I S I O N
T R E E / B A S E L I N E A LG O R I T H M

Figure B.1: Decision tree/baseline algorithm.
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C A P P E N D I X C . E N V I R O N M E N T
E N C O D I N G

Environment Initial Initial Max
Number Automation Level Distraction Level Automation Level

0 [1,0,0,0] [1,0,0,0] [1,0,0,0]
1 [1,0,0,0] [1,0,0,0] [0,1,0,0]
2 [1,0,0,0] [1,0,0,0] [0,0,1,0]
3 [1,0,0,0] [1,0,0,0] [0,0,0,1]
4 [1,0,0,0] [0,1,0,0] [1,0,0,0]
5 [1,0,0,0] [0,1,0,0] [0,1,0,0]
6 [1,0,0,0] [0,1,0,0] [0,0,1,0]
7 [1,0,0,0] [0,1,0,0] [0,0,0,1]
8 [1,0,0,0] [0,0,1,0] [1,0,0,0]
9 [1,0,0,0] [0,0,1,0] [0,1,0,0]

10 [1,0,0,0] [0,0,1,0] [0,0,1,0]
11 [1,0,0,0] [0,0,1,0] [0,0,0,1]
12 [1,0,0,0] [0,0,0,1] [1,0,0,0]
13 [1,0,0,0] [0,0,0,1] [0,1,0,0]
14 [1,0,0,0] [0,0,0,1] [0,0,1,0]
15 [1,0,0,0] [0,0,0,1] [0,0,0,1]
16 [0,1,0,0] [1,0,0,0] [0,1,0,0]
17 [0,1,0,0] [1,0,0,0] [0,0,1,0]
18 [0,1,0,0] [1,0,0,0] [0,0,0,1]
19 [0,1,0,0] [0,1,0,0] [0,1,0,0]
20 [0,1,0,0] [0,1,0,0] [0,0,1,0]
21 [0,1,0,0] [0,1,0,0] [0,0,0,1]
22 [0,1,0,0] [0,0,1,0] [0,1,0,0]
23 [0,1,0,0] [0,0,1,0] [0,0,1,0]
24 [0,1,0,0] [0,0,1,0] [0,0,0,1]
25 [0,1,0,0] [0,0,0,1] [0,1,0,0]
26 [0,1,0,0] [0,0,0,1] [0,0,1,0]
27 [0,1,0,0] [0,0,0,1] [0,0,0,1]
28 [0,0,1,0] [1,0,0,0] [0,0,1,0]
29 [0,0,1,0] [1,0,0,0] [0,0,0,1]
30 [0,0,1,0] [0,1,0,0] [0,0,1,0]
31 [0,0,1,0] [0,1,0,0] [0,0,0,1]
32 [0,0,1,0] [0,0,1,0] [0,0,1,0]
33 [0,0,1,0] [0,0,1,0] [0,0,0,1]
34 [0,0,1,0] [0,0,0,1] [0,0,1,0]
35 [0,0,1,0] [0,0,0,1] [0,0,0,1]
36 [0,0,0,1] [1,0,0,0] [0,0,0,1]
37 [0,0,0,1] [0,1,0,0] [0,0,0,1]
38 [0,0,0,1] [0,0,1,0] [0,0,0,1]
39 [0,0,0,1] [0,0,0,1] [0,0,0,1]
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D A P P E N D I X D. S TAT E E N C O D I N G

index Auto distraction max auto TTDU index Auto distraction max auto TTDU
level level level index level level level

0 0 0 0 0 83 1 1 2 0

1 0 0 0 1 84 1 1 2 1

2 0 0 0 2 85 1 1 2 2

3 0 0 0 3 86 1 1 2 3

4 0 0 0 4 87 1 1 2 4

5 0 0 0 5 88 1 1 3 0

6 0 0 1 0 89 1 1 3 1

7 0 0 1 1 90 1 1 3 2

8 0 0 1 2 91 1 1 3 3

9 0 0 1 3 92 1 1 3 4

10 0 0 1 4 93 1 2 1 0

11 0 0 1 5 94 1 2 1 1

12 0 0 2 0 95 1 2 1 2

13 0 0 2 1 96 1 2 1 3

14 0 0 2 2 97 1 2 2 0

15 0 0 2 3 98 1 2 2 1

16 0 0 2 4 99 1 2 2 2

17 0 0 2 5 100 1 2 2 3

18 0 0 3 0 101 1 2 3 0

19 0 0 3 1 102 1 2 3 1

20 0 0 3 2 103 1 2 3 2

21 0 0 3 3 104 1 2 3 3

22 0 0 3 4 105 1 3 1 0

23 0 0 3 5 106 1 3 1 1

24 0 1 0 0 107 1 3 2 0

25 0 1 0 1 108 1 3 2 1

26 0 1 0 2 109 1 3 3 0

27 0 1 0 3 110 1 3 3 1

28 0 1 1 0 111 2 0 2 0

29 0 1 1 1 112 2 0 2 1

30 0 1 1 2 113 2 0 2 2

31 0 1 1 3 114 2 0 2 3

32 0 1 2 0 115 2 0 2 4

33 0 1 2 1 116 2 0 2 5

34 0 1 2 2 117 2 0 3 0

35 0 1 2 3 118 2 0 3 1

36 0 1 3 0 119 2 0 3 2

37 0 1 3 1 120 2 0 3 3
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E
A P P E N D I X E . E X P E R I M E N T S S E T U P
F O R B A S E , L 4 A N D L 3
E N V I R O N M E N T S

Parameters values
toolkit pytorch
training algorithm DDQN
Episodes 500

learning rate 5e-5
loss function smooth L1 loss
optimizer Adam
exploration ϵ 0.5 to 0.02

eps decay 0.995

γ 0.99

τ 0.01

total batch length 100k
batch size 8

target update period 4

seed 0

initial level probabilities [0.25,0.25,0.25,0.25]
initial distraction probabilities [0.25,0.25,0.25,0.25]
maximum level probabilities [0.25,0.25,0.25,0.25]
allowed driver events [”DISTRACTION”, ”NDRT”]
maxoccurrences o f driver event [300, 5]
driver event probability [0.99, 0]
distraction increase prob 0.005

distraction ends midway prob 0.02

distractions ends prob 0.1
ndrt ends prob 0.001

driver request cancel prob 0.005

decline threshold 120.0
road length 30

road types [”URBAN”, ”PROVINCIAL”, ”HIGHWAY”]
max roadtypes [1, 1, 3]
urban max level L4

provincial max level L4

highway max level L4

allowed static events []
allowed dynamic events []
available actions [’DN’,’SSL4’, ’ESL4’, ’CD’, ’ES’]
total simultaneous actions 1

ssl max response time 10.0
suggested shi f t response probability 1

suggested shi f t acceptance probability 0.5
pd success probability 0.95

cd success probability 0.8
esl time 2

Table E.1: Experiment Base Environment
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appendix e. experiments setup for base, l4 and l3 environments 54

Parameters values
toolkit pytorch
training algorithm DDQN
Episodes 500

learning rate 5e-5
loss function smooth L1 loss
optimizer Adam
exploration ϵ 0.5 to 0.02

eps decay 0.995

γ 0.99

τ 0.01

total batch length 100k
batch size 8

target update period 4

seed 0

initial level probabilities [0,0,0,1]
initial distraction probabilities [0.25,0.25,0.25,0.25]
maximum level probabilities [0,0,0,1]
allowed driver events [”DISTRACTION”, ”NDRT”]
maxoccurrences o f driver event [300, 5]
driver event probability [0.99, 0]
distraction increase prob 0.005

distraction ends midway prob 0.02

distractions ends prob 0.1
ndrt ends prob 0.001

driver request cancel prob 0.005

decline threshold 120.0
road length 30

road types [”URBAN”, ”PROVINCIAL”, ”HIGHWAY”]
max roadtypes [1, 1, 3]
urban max level L4

provincial max level L4

highway max level L4

allowed static events []
allowed dynamic events []
available actions [’DN’,’SSL4’, ’ESL4’, ’CD’, ’ES’]
total simultaneous actions 1

ssl max response time 10.0
suggested shi f t response probability 1

suggested shi f t acceptance probability 0.5
pd success probability 0.95

cd success probability 0.8
esl time 2

Table E.2: Experiment L4 environment
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Parameters values
toolkit pytorch
training algorithm DDQN
Episodes 500

learning rate 5e-5
loss function smooth L1 loss
optimizer Adam
exploration ϵ 0.5 to 0.02

eps decay 0.995

γ 0.99

τ 0.01

total batch length 100k
batch size 8

target update period 4

seed 0

initial level probabilities [0,0,1,0]
initial distraction probabilities [0.25,0.25,0.25,0.25]
maximum level probabilities [0,0,1,0]
allowed driver events [”DISTRACTION”, ”NDRT”]
maxoccurrences o f driver event [300, 5]
driver event probability [0.99, 0]
distraction increase prob 0.005

distraction ends midway prob 0.02

distractions ends prob 0.1
ndrt ends prob 0.001

driver request cancel prob 0.005

decline threshold 120.0
road length 30

road types [”URBAN”, ”PROVINCIAL”, ”HIGHWAY”]
max roadtypes [1, 1, 3]
urban max level L4

provincial max level L4

highway max level L4

allowed static events []
allowed dynamic events []
available actions [’DN’,’SSL4’, ’ESL4’, ’CD’, ’ES’]
total simultaneous actions 1

ssl max response time 10.0
suggested shi f t response probability 1

suggested shi f t acceptance probability 0.5
pd success probability 0.95

cd success probability 0.8
esl time 2

Table E.3: Experiment L3 environment



F A P P E N D I X H . E X P E R I M E N T S E T U P
T T D U C O N F I G U R AT I O N

Parameters values
toolkit pytorch
tTest model HCSG D3

Episodes 100

seed 0

initial level probabilities [0.25,0.25,0.25,0.25]
initial distraction probabilities [0.25,0.25,0.25,0.25]
maximum level probabilities [0.25,0.25,0.25,0.25]
allowed driver events [”DISTRACTION”, ”NDRT”]
maxoccurrences o f driver event [300, 5]
driver event probability [0.99, 0]
distraction increase prob 0.005

distraction ends midway prob 0.02

distractions ends prob 0.1
ndrt ends prob 0.001

driver request cancel prob 0.005

decline threshold 120.0
road length [3,10,20,30]
road types [”URBAN”, ”PROVINCIAL”, ”HIGHWAY”]
max roadtypes [1, 1, 3]
urban max level L4

provincial max level L4

highway max level L4

allowed static events []
allowed dynamic events []
available actions [’DN’,’SSL4’, ’ESL4’, ’CD’, ’ES’]
total simultaneous actions 1

ssl max response time 10.0
suggested shi f t response probability 1

suggested shi f t acceptance probability 0.5
pd success probability 0.95

cd success probability 0.8
esl time 2

initial TTDU at L0 [D0:200,D1:25,D2:14,D3:3]
initial TTDU at L2 [D0:500,D1:45,D2:30,D3:10]
initial TTDU at L3 [D0:500,D1:45,D2:30,D3:10]
initial TTDU at L4 [D0:500,D1:45,D2:30,D3:10]

Table F.1: Experiment 5
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G A P P E N D I X I . C A S E T E S T R E S U LT S

Figure G.1: Normalized case test reward of HCSG at D1 and MET algorithm

Figure G.2: Normalized case test reward of HCSG at D1 and pre-trained model
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appendix i. case test results 58

Figure G.3: Normalized case test reward of HCSG at D1 and baseline algorithm

Figure G.4: Normalized case test reward of HCSG at D2 and MET algorithm

Figure G.5: Normalized case test reward of HCSG at D2 and pre-trained model
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Figure G.6: Normalized case test reward of HCSG at D2 and baseline algorithm

Figure G.7: Normalized case test reward of HCSG at D3 and MET algorithm

Figure G.8: Normalized case test reward of HCSG at D3 and pre-trained model
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Figure G.9: Normalized case test reward of HCSG at D3 and baseline algorithm



H A P P E N D I X J . E X P E R I M E N T S E T U P 5

Parameters values
toolkit pytorch
tTest model [HCSG D3, HCSG, baseline]
Episodes 100

seed 0

initial level probabilities [0.25,0.25,0.25,0.25]
initial distraction probabilities [0.25,0.25,0.25,0.25]
maximum level probabilities [0.25,0.25,0.25,0.25]
allowed driver events [”DISTRACTION”, ”NDRT”]
maxoccurrences o f driver event [300, 5]
driver event probability [0.99, 0]
distraction increase prob 0.005

distraction ends midway prob 0.02

distractions ends prob 0.1
ndrt ends prob 0.001

driver request cancel prob 0.005

decline threshold 120.0
road length 30

road types [”URBAN”, ”PROVINCIAL”, ”HIGHWAY”]
max roadtypes [1, 1, 3]
urban max level L4

provincial max level L4

highway max level L4

allowed static events []
allowed dynamic events []
available actions [’DN’,’SSL4’, ’ESL4’, ’CD’, ’ES’]
total simultaneous actions 1

ssl max response time 10.0
suggested shi f t response probability 1

suggested shi f t acceptance probability 0.5
pd success probability 0.95

cd success probability 0.8
esl time 2

initial TTDU at L0 [D0:200,D1:25,D2:14,D3:3]
initial TTDU at L2 [D0:500,D1:45,D2:30,D3:10]
initial TTDU at L3 [D0:500,D1:45,D2:30,D3:10]
initial TTDU at L4 [D0:500,D1:45,D2:30,D3:10]

Table H.1: Experiment 5
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I A P P E N D I X K . E X P E R I M E N T S E T U P 6

Parameters values
toolkit pytorch
tTest model [HCSG D3, HCSG, baseline]
Episodes 100

seed 0

initial level probabilities [0,0,1,0]
initial distraction probabilities [0,0,1,0]
maximum level probabilities [0,0,0,1]
allowed driver events [”DISTRACTION”, ”NDRT”]
maxoccurrences o f driver event [300, 5]
driver event probability [0.99, 0]
distraction increase prob 0.005

distraction ends midway prob 0.02

distractions ends prob 0.1
ndrt ends prob 0.001

driver request cancel prob 0.005

decline threshold 120.0
road length 30

road types [”URBAN”, ”PROVINCIAL”, ”HIGHWAY”]
max roadtypes [1, 1, 3]
urban max level L4

provincial max level L4

highway max level L4

allowed static events []
allowed dynamic events []
available actions [’DN’,’SSL4’, ’ESL4’, ’CD’, ’ES’]
total simultaneous actions 1

ssl max response time 10.0
suggested shi f t response probability 1

suggested shi f t acceptance probability 0.5
pd success probability 0.95

cd success probability 0.8
esl time 2

initial TTDU at L0 [D0:200,D1:25,D2:14,D3:3]
initial TTDU at L2 [D0:500,D1:45,D2:30,D3:10]
initial TTDU at L3 [D0:500,D1:45,D2:30,D3:10]
initial TTDU at L4 [D0:500,D1:45,D2:30,D3:10]

Table I.1: Experiment 5
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