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A study is presented giving the response of three types of fiber-optic interferometers by which a standing
wave through an object is investigated. The three types are a Sagnac, Mach–Zehnder and Michelson–
Morley interferometer. The response of the Mach–Zehnder interferometer is similar to the Sagnac inter-
ferometer. However, the Sagnac interferometer is much harder to study because of the fact that one input
port and output port coincide. Further, the Mach–Zehnder interferometer has the advantage that the
output ports are symmetric, reducing the systematic effects. Examples of standing wave light absorption
in several simple objects are given. Attention is drawn to the influence of standing waves in fiber-optic
interferometers with weak-absorbing layers incorporated. A method is described for how these can be
theoretically analyzed and experimentally measured. Further experiments are needed for a thorough
comparison between theory and experiment. © 2011 Optical Society of America
OCIS codes: 020.1670, 060.2310, 350.7420.

1. Introduction

The phenomenon of standing waves produced by co-
traveling waves in interferometers is a well studied
subject (see for instance [1–3]) and also the reflection,
transmission, and absorption of traveling waves
through objects is well understood (see for instance
[4]). However, as soon as two counter traveling waves
are considered, the situation is quite different.
Wiener [5] and Ives [6] studied light standing waves
at a reflecting surface. Silvertooth [7] reports on the
construction of a light standing wave sensor. He
inserted a thin light-absorbing layer in a vacuum
photo-multiplier tube and detected a varying ab-
sorption in the standing wave. Only quite recently
Silvertooth’s sensor was reproduced by means of
transparent thin photodiodes, [8,9] enabling the con-
struction of very small interferometers [10,11]. The
influence of light absorption in standing waves cre-
ated by interferometers, however, is not comprehen-
sively studied. In this paper, a method is described by
which this is made possible. Examples of standing

wave light absorption in several simple objects are
given. Attention is drawn to the influence of standing
waves in fiber-optic interferometers with weak-
absorbing layers incorporated. A method is described
for how these can be theoretically analyzed and ex-
perimentally measured.

In general, interferometry is the detection of
standing waves in the superposition of two or more
wave phenomena. For visible light, the wave phe-
nomena in homogeneous media are mostly regarded
as plane waves, which are characterized as function
of location (~r) and time (t) by solutions of the Maxwell
equations:

Ψð~r; tÞ ¼ Ψ̂eiðϕþ~k·~r−ωtÞ; ð1Þ

where ω is the frequency of the wave and ~k is the
wave vector giving the direction of propagation.
The length of the wave vector k ¼ 2π=λ, where λ is
the wavelength of the light. Ψ̂ is the amplitude of
the wave and ϕ a constant phase. Here, only one com-
ponent of the electric or magnetic vector field is con-
sidered, but the treatment can be extended to include
polarization effects. In general, the length of the
wave vector and the frequency of the wave are
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coupled via the dispersion relation of the medium in
which the wave is traveling:

ω ¼ kvp; ð2Þ

where vp is the phase velocity of the wave. For light,
the phase velocity is given by the refractive index of
the medium, n and the velocity of light in vacuum, c

vp ¼ c
n
: ð3Þ

Defined in this way, the refractive index of a med-
ium depends on frequency and can be a complex
number. The real part represents the phase velocity
and the imaginary part represents the attenuation of
the wave traveling inside the medium. The attenua-
tion can be due to absorption or scattering of the
wave. For transparent objects like glass or water,
the imaginary part is very small and negligible in
most cases. For conductive objects like metals, the
imaginary part can becomemuch larger than the real
part, making those objects strong absorbers.

In the following, waves which can be represented
by Eq. (1) are referred to as traveling waves. The in-
tensity of the waves is proportional to the squared
modulus of the wave function jΨð~r; tÞj2. As can be
inferred from Eq. (1), for nonabsorbing media, the
intensity of a traveling wave is constant. A superpo-
sition of two (or more) traveling waves results in in-
terference effects. Let two traveling waves Ψ1ð~r; tÞ
and Ψ2ð~r; tÞ be superimposed, the resulting wave
function is

Ψð~r; tÞ ¼ Ψ̂1eiðϕ1þ~k1·~r−ω1tÞ þ Ψ̂2eiðϕ2þ~k2·~r−ω2tÞ: ð4Þ
The intensity is given by

jΨð~r; tÞj2 ¼ Ψ̂2
1 þ Ψ̂2

2 þ 2Ψ̂1Ψ̂2 cosðϕ1 − ϕ2

þ ð~k1 −~k2Þ ·~r − ðω1 − ω2ÞtÞ: ð5Þ

Hence, in general, the intensity is not a constant any
more, but depends on both time and space. When the
frequency of the traveling waves are taken, the same
the time dependence vanishes and only the space de-
pendence remains. In the following this is referred to
as a standing wave. Also, when the wave vectors are
in the same direction, the space dependence also dis-
appears and the resulting intensity only depends
on the phase difference ϕ1 − ϕ2. This is the situation
encountered in ‘standard’ interferometers.

In the following, the influence of materials with
different dispersion relations on the behavior of
standing waves is studied for two situations: a stand-
ing wave created by reflection of light to a mirror and
a standing wave created by superposition of two
counter traveling waves. Interestingly, if the waves
travel through a medium with an imaginary part,
the behavior of both standing waves is different.
The character of this behavior is investigated to get

a better understanding of standing light waves to be
able to improve fiber-optic interferometer designs.

2. Reflection at and Transmission through an Object

The normal reflection geometry to determine the re-
flection and transmission coefficients is shown in
Fig. 1. Here it is assumed that there is no z depen-
dence and that the object is a homogeneous half
space with the interface at y ¼ 0. The incident angle
with respect to the interface is θi and similar defini-
tions for the reflection and refraction angles θr and θt.
To find these angles and the reflection and transmis-
sion coefficients, one determines the plane waves in
the regions j (j ¼ 0 for y > 0 and j ¼ 1 for y < 0) and
then calculates the angles, phases ϕi, and amplitudes
Ψ̂i of the waves using the assumption that the sum of
the plane waves at the interface are continuous and
differentiable. This assumption is valid for electro-
magnetic s waves for any incident angle and for all
electromagnetic waves if the incident angle is 0. The
results are the standard Fresnel laws for the reflec-
tion and refraction angles and for the reflection and
transmission amplitudes [4]. For nonmagnetic med-
ia, the Fresnel laws for electromagnetic p waves can
be found by replacing the amplitudes of the waves by
Ψ̂i=

ffiffiffiffiϵip
, where ϵi is the electric permittivity of

medium i [4].
In region 0 exists a standing wave due to the reflec-

tion of the incident wave. In region 1 there is no
standing wave because the wave is only transmitted.
This geometry has to be adapted for the calculation of
the amplitudes and phases of the waves in case of in-
cident waves at both sides of the interface. In Fig. 2
the adapted geometry is shown. The homogeneous
half space is replaced by a stack of m homogeneous
layers made up of different media through which the
waves must pass. A wave incident from the bottom of
the stack is added. This results in the creation of a
standing wave at the bottom side of the object. It is
assumed that the medium on the top and on the bot-
tom side of the object is the same and has a re-
fractive index of 1. Hence, all angles in regions 0 and
mþ 1 are the same. In each layer j there is a wave
moving from top to bottom and a wave moving from
bottom to top. Omitting the x and t dependence, the
sum of the waves for y ≥ 0 is given by

Fig. 1. (Color online) Reflection and transmission of a plane wave
with incident angle θi on a substrate boundary at y ¼ 0.
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ΨðyÞ ¼ Ψþ
0 e

iq0y þΨ−

0e
−iq0y ð6Þ

and in each layer j

yjþ1 ≤ y ≤ yj: ΨðyÞ ¼ Ψþ
j e

iqjðy−yjÞ þΨ−

j e
−iqjðy−yjÞ; ð7Þ

where yjþ1 ¼ yj − dj with y1 ¼ 0 and dj equals the
thickness of layer j. Note that, by this definition
the interface between layer j and jþ 1 is at
y ¼ yjþ1. For y ≤ ymþ1,

ΨðyÞ ¼ Ψþ
mþ1e

iqmþ1ðy−ymþ1Þ þΨ−

mþ1e
−iqmþ1ðy−ymþ1Þ; ð8Þ

Ψ�
j represent the amplitudes and phases of the

waves traveling in layer j in the �y-direction, and
qj is the y-component of the wave vector of the wave
traveling in the þy-direction in the medium given by

q2j ¼ k20ðn2
j − sin2 θiÞ; ð9Þ

where k0 is the length of the incident wave vector and
nj represents the (complex) index of refraction of
layer j. Note that, for a normal medium (in which
no waves are generated) one should take the positive
root with a nonnegative imaginary part.

In general, there are four waves which have four
different wave vectors. However, when the interfaces
are flat and perpendicular to the y-axis, there is no
momentum change in the x‐direction, only in the
y‐direction and only the y-component of the wave vec-
tor has to be considered. Even when the wave vector
components parallel to the surface are not equal, in-
terference will occur. In such a case, however, the
phase of the waves are not fixed with respect to each
other (when the x position is changed) and the inter-
ference will be averaged. The averaging depends on
the lateral size of the interface and the mismatch be-
tween the wave vectors parallel to the surface. For
the averaging not having a detrimental effect on
the interference amplitude, it is needed that θt ≈ 0.

Note that this is the case if θi ≈ 0. In this case the
above equation reduces to

qj ¼ k0nj:

The amplitude and phase of the top incident
and reflected beam can be related to the bottom
ones by using the continuity and differentiability
conditions at each interface. The result is the matrix
equation [4].

�
Ψþ

mþ1
Ψ−

mþ1

�
¼
�
m11 m12

m21 m22

��
Ψþ

0
Ψ−

0

�
; ð10Þ

where

�
m11 m12

m21 m22

�
¼ MmMm−1…M1M0; ð11Þ

Mj ¼
1
2

 
1þ qj

qjþ1
1 −

qj
qjþ1

1 −
qj
qjþ1

1þ qj
qjþ1

!�
e−iqjdj 0
0 eiqjdj

�
;

where d0 ¼ 0. Hence, the matrix (11)determines the
coupling of the amplitudes and phases of the top and
bottom incident and reflected waves.

Note that, as long as qj=qjþ1 are real for all j, the
components of the matrix are correlated as m21 ¼
m�

12 and m22 ¼ m�
11. For the external reflections dis-

cussed here, this is the case as long as there are no
absorbing materials in the object.

One can rewrite the matrix elements in the form
of reflection and transmission amplitudes of the
standard geometry. If we set the incident wave
at the top to 1 (Ψ−

0 ¼ 1) and at the bottom to 0
(Ψþ

mþ1 ¼ 0), then reflection amplitude is given by ρt ¼
Ψþ

0 and the transmission amplitude by τt ¼ Ψ−

mþ1.
Hence, �

0
τt

�
¼
�
m11 m12

m21 m22

��
ρt
1

�
ð12Þ

yields ρt ¼ −m12=m11 and τt ¼ 1=m11, where it was
used that the determinant of the matrix is always
equal to 1. The same procedure for the ‘standard’
reflection at the bottom side

�
1
ρb

�
¼
�
m11 m12

m21 m22

��
τb
0

�
ð13Þ

yields ρb ¼ m21=m11 and τb ¼ τt ¼ τ. Hence, Eq. (11)
can be rewritten as

�
m11 m12

m21 m22

�
¼ 1

τ

�
1 −ρt
ρb τ2 − ρbρt

�
: ð14Þ

This representation can be used for the design of
standing wave experiments. If, for the geometry dis-
cussed here no absorbers are used, then Rt ¼ Rb ¼ R
and T þ R ¼ 1 where T ¼ jτj2, Rt ¼ jρtj2, and
Rb ¼ jρbj2.

Fig. 2. (Color online) Reflection and transmission geometry for a
standing wave at a multilayered object.
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3. Standing Wave Absorption in an Object

It is possible that one of the layers of the object dis-
cussed in the previous section has a strong imaginary
part of the refractive index. An example thereof is a
metal layer of a few nanometers thick. Another pos-
sibility is a layer in which photons are absorbed and
converted into electrons creating a photo current
proportional to the absorbed amount of light. The
amount of photons absorbed depends on the effi-
ciency of the absorber and the intensity of the electric
field. Hence, such an absorbing layer could yield
information on the phase of the standing wave.

For an electromagnetic plane wave, the dissipation
Q is equal to the time-averaged change of the
Poynting vector, ~S. The wave field of Eq. (1) can be
interpreted as the electromagnetic wave. If it is as-
sumed that the absorption is caused by nonmagnetic
effects only, then the imaginary part of the perme-
ability will be zero. Photons are absorbed in propor-
tionality to the electric field intensity only. Then,
according to equation (80.4) of Landau [12], the
absorption (or dissipation) is given by

QðyÞ ¼ ωϵ0jΨðyÞj2ℜðnðyÞÞℑðnðyÞÞ; ð15Þ

where ϵ0 is the permittivity of free space. ℜðxÞ is
used to denote the real part of x and ℑðxÞ its imagin-
ary part. nðyÞ is the refractive index as function of y.
For each layer j defined in the previous section, nðyÞ
is given by nj. To find the absorbed amount in one
layer, this equation has to be integrated over the
layer thickness

Aj ¼
Z

yj

yjþ1

QðyÞdy; ð16Þ

Note that yj > yjþ1. This absorbed amount must be
taken relative to the total available amount, which
is given by the time-averaged Poynting vector [12]:

hSðyÞi ¼ cϵ0
2

jnðyÞjjΨðyÞj2: ð17Þ

From this, it follows that the time-averaged Poynt-
ing vector for a standing wave depends on the loca-
tion where it is determined. In a node, where ΨðyÞ is
zero, the time-average Poynting vector is also 0. This
means that the energy flux density at this point is 0.
For a single plane wave, the time-averaged Poynting
vector is constant. Hence, as a reference to determine
the relative amount of absorbed photons, the sum of

the Poynting vectors of the top and bottom incident
waves is used. Then the time-averaged Poynting vec-
tor representing the energy density flux incident on
the layer from the bottom and top is given by

hSiref ¼
cϵ0
2

ðjΨ−

0 j2 þ jΨþ
mþ1j2Þ ð18Þ

and the absorbed fraction in layer j can be defined as
αj ¼ Aj=hSiref . Herein inserting Eqs. (18), (16), (15),
(7), (2), and (3) gives

αj ¼ 2k0djℜðnjÞℑðnjÞ ×
jΨþ

j j2f ð−ℑðqjÞdjÞ þ jΨ−

j j2f ðℑðqjÞdjÞ þ 2ℜððΨþ
j Þ�Ψ−

j f ð−iℜðqjÞdjÞÞ
jΨ−

0 j2 þ jΨþ
mþ1j2

; ð19Þ

where

f ðxÞ ¼ 1 − e−2x

2x
¼ 1 − xþOðx2Þ;

where Oðx2Þ is a small quantity of order x2. Note that
the coefficients Ψþ

j and Ψ−

j can be determined by
using the appropriate value for m in Eq. (10). If
jqjjdj ≪ 1, Eq. (19) reduces to

αj ¼ 2k0djℜðnjÞℑðnjÞ
jΨþ

j þ ðΨ−

j Þ�j2
jΨ−

0 j2 þ jΨþ
mþ1j2

: ð20Þ

This equation shows that, for a first approximation
the absorbed fraction in a standing wave is propor-
tional to the thickness of the layer, to the length of
the wave vector inside the layer, and the imaginary
part of the refractive index. (This is the same for a
single traveling wave, which can be inferred from
the above equation by taking Ψþ

mþ1 ¼ 0, Ψþ
j ¼ 0, and

jΨ−

j j ¼ jΨ−

0 j.) It is also proportional to jΨþ
j þ

ðΨ−

j Þ�j2, which can be reduced to 0 if Ψþ
j ¼ −ðΨ−

j Þ�.
For larger values of ℑðqjÞdj, damped interference os-
cillations can occur due to the last term of Eq. (19).
Hence, photon absorption in a standing wave can
be similar to or very different from absorption of
photons in a traveling wave, depending on both
the top and bottom incident waves and the structure
and media of the absorbing object.

The dependence on the top and bottom incident
waves gives the opportunity to study this phenomena
in three geometries. One geometry consists of the ob-
ject in a Sagnac interferometer. Another one is to put
the object in a Mach–Zehnder interferometer. And
the last one considered is a Michelson–Morley inter-
ferometer. These geometries will be discussed in the
next sections. Before the interferometers are
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discussed, it is explained how a bidirectional coupler
works as the fiber-optic equivalent of a beam splitter.

4. Fiber-Optic Bidirectional Coupler

Optical fibers are very thin glass fibers which act as
waveguides to light. Because of total internal reflec-
tion inside the glass fiber, the light is guided through
the fiber. A full description of light waveguides and
their applications is given by Chen [13]. When two
optical waveguides are brought in close proximity
of each other, the electromagnetic fields of the light
waves start to interact, changing the propagation be-
havior of the light through the fibers. Depending on
the properties of the waveguides, there can be a sig-
nificant power exchange between them. It is possible
to adapt the interaction of two waveguides in such a
way that they will act similar to a beam splitter.
Therefore, a considerable part of the waveguides
have to be parallel and should exhibit the same or
almost the same phase velocity. The characteristics
of such a bidirectional coupler can be described by
using the transfer matrix approach [13]. Let i1 and
i2 be the amplitudes of the light waves at the two in-
puts of the directional coupler and o1 and o2 the same
for the outputs (see Fig. 3), then for couplers with
identical waveguides�

o1
o2

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ η2
p �

ηeiϕη −i
−i ηe−iϕη

��
i1
i2

�
; ð21Þ

where

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 δ sin2 ζ þ cos2 ζ

cos2 δ sin2 ζ

s
¼ cot ζ þ δ2

sin 2ζ þOðδ4Þ;

tanϕη ¼ tan ζ sin δ;

in which δ is the mismatch parameter of the coupler,
normally close to 0 and the effective length of the cou-
pler is determined by ζ ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2ð1þ δ2Þ

p
, where L is

the length of the interaction region and k1 and k2 are
the wave vectors of the waves in both waveguides.
For an ideal coupler δ ¼ 0 and ζ ¼ πð1þ 2pÞ=4, where
p is a positive integer. Hence, η ¼ 1 and ϕη ¼ 0. The
2 × 2 matrix is referred to as transfer matrix and
describes the propagation of the beam through the
coupler [13]. For an ideal coupler, when only one of
the entrance waveguides is supplied with light, the
output of both exit waveguides can be inferred by
taking i1 ¼ 1 and i2 ¼ 0. Then, according to Eq. (21),

�
o1
o2

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ η2
p �

ηeiϕη

−i

�
≈

1ffiffiffi
2

p
�

1
−i

�
: ð22Þ

The wave energy is split over both exit waveguides.
The phase difference between the waves of both exit
waveguides is −π=2. This is similar to the working of
a beam splitter. Inversely, if at both entrances wave-
guides waves are supplied with the same amplitude
and a phase difference of Δϕ, the output of both exit
waveguides can be inferred by taking i1 ¼ 1=

ffiffiffi
2

p
and

i2 ¼ expðiΔϕÞ= ffiffiffi
2

p
. Then, according to Eq. (21),

�
o1
o2

�
¼ 1

2

�
1 − eiΔϕi
eiΔϕ

− i

�
; ð23Þ

so that the amplitudes of o1 and o2 are given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinΔϕ

p
=
ffiffiffi
2

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sinΔϕ

p
=
ffiffiffi
2

p
, again similar

to the interference effect after the joining of two light
beams at a beam splitter.

5. Sagnac Geometry

An important type of interferometer is the Sagnac in-
terferometer. It typically splits an incoming light
wave into two equal amplitude components which
travel through an optical circuit in opposite direc-
tions. After traversing the circuit, the waves are
joined again and the interfering intensities are de-
tected. This is schematically shown in Fig. 4. In-
cluded in the setup is an object with possibly an
absorbing layer (representing a standing wave detec-
tor). It is inserted approximately half way in the cir-
cuit to minimize possible nonreciprocity effects. The
collimators are used to couple light out and into the
fibers. The fiber stretchers change the optical path of
the light waves. These stretchers are optical fibers
wrapped around a thin walled cylinder made of piezo
material. When applying a voltage over the wall of
the cylinder, the piezo material is either contracted
or expanded, reducing or extending the length of the
fiber wrapped around it. When the fiber stretches,
the optical path length changes accordingly and
the phase of one light beam with respect to the other
is changed.

Fig. 3. (Color online) Sketch of fiber-optic bidirectional coupler.

Fig. 4. (Color online) Sketch of fiber-optic Sagnac interferometer.
The different directions of the light waves on top and at the bottom
of the object are only for display purposes.
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The incident light wave presented at the first en-
trance waveguide of the bidirectional coupler, i1, is
provided by a He-Ne laser with a wavelength of
632:8nm. The other entrance waveguide is not sup-
plied with an incident light beam. Hence, the light
wave is split into the two exit waveguides, denoted
by o1 and o2 and given by Eq. (22).

The propagation of the wave through the arms of
the interferometer up to the object (including the col-
limators) can be described by a simple multiplication
of the amplitude at the beginning of the arm by the
transmission and a phase factor describing the opti-
cal path length. Here, it is assumed that the trans-
mission of the fiber is one and the added phase
can be described by expðiϕAÞ for the arm with fiber
stretcher A and expðiϕBÞ for the one with fiber
stretcher B.

Hence, the incident waves at the top and bottom of
the object can be calculated from

�
a0

bmþ1

�
¼
�
eiϕA 0
0 eiϕB

��
o1
o2

�
: ð24Þ

b0 and amþ1 can be found by applying the matrix
Eq. (10) and rearranging the variables.

�
b0

amþ1

�
¼
�
ρt τ
τ ρb

��
a0

bmþ1

�
: ð25Þ

After transmission through or reflection at the ob-
ject, the bottom and top reflected waves are coupled
back into the fiber (note that θi ¼ 0) by the collima-
tors and guided back to the bidirectional coupler. The
phases accumulated by the waves at the entrance of
the bidirectional coupler are

�
i3
i4

�
¼
�
eiϕA 0
0 eiϕB

��
b0

amþ1

�
: ð26Þ

In the bidirectional coupler, the waves interfere
and result in the waves at the exit wave guides de-
noted by o3 and o4, according to Eq. (21), where i1 and
i2 are replaced by i3 and i4 and similar replacement
for o1 and o2:�

o3
o4

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ η2
p �

ηeiϕη −i
−i ηe−iϕη

��
i3
i4

�
: ð27Þ

If the Eqs. (22) and (24)–(26) are inserted, one gets

�
o3
o4

�
¼ eiðϕAþϕBÞ

1þ η2 ×
�

eiϕηðρtη2eiϕs − ρbe−iϕs − 2iτηÞ
ðη2 − 1Þτ − ηiðρteiϕs þ ρbe−iϕsÞ

�
;

ð28Þ

where ϕs ¼ ϕA − ϕB þ ϕη. Note that ϕs can be changed
by either fiber stretcher A or B and that the effect of
both stretchers is in opposite directions. Hence, if
both increase the optical phase by the same amount,
the results do not change. The sum of the intensities

at the exit of the bidirectional coupler can be written
as

jo3j2 þ jo4j2 ¼ T
j1þ ηχtj2 þ jηþ χbj2

1þ η2 ; ð29Þ

where

χt ¼
ρt
τ eiðϕsþπ=2Þ and χb ¼ ρb

τ e−iðϕsþπ=2Þ:

This is a sinusoidal variation on top of a constant
level. Note that, if ρbτ� ¼ −ρ�t τ (nonabsorbing object),
this reduces to a constant

jo3j2 þ jo4j2 ¼ T þ R ¼ 1: ð30Þ
For a symmetric object this is

jo3j2 þ jo4j2 ¼ T þ R −
4η

ffiffiffiffiffiffiffiffi
TR

p
cosðarg ρÞ sinϕs

1þ η2 : ð31Þ

Note that for a symmetric and nonabsorbing object
arg ρ ¼ π=2.

6. Mach–Zehnder Geometry

Another important interferometer is a Mach–
Zehnder interferometer. Here, the light wave is split
by a beam splitter and the two waves travel along
different routes toward a second beam splitter. At
the second beam splitter, the light waves are re-
joined, resulting in interference between the light
waves. In case a standing wave is needed, the inter-
ferometer has to be adjusted a bit to provide the
standing wave at the object. The way this is done
is shown schematically in Fig. 5. Two extra bi-
directional couplers above and under the object are
added to be able to create a standing wave at the po-
sition of the object. The left-hand side of the set-up is
similar to the Sagnac configuration with the differ-
ence that due to the additional couplers the wave

Fig. 5. (Color online) Sketch of fiber-optic Mach–Zehnder inter-
ferometer including a standing wave at the object. The different
directions of the light waves on top and at the bottom of the object
are only for display purposes.
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intensity back after the first coupler is a factor of four
less than in the previous section. The right hand side
of the set-up couples the same light waves at, but
here it is easier to connect a detector to each of
the two output ports of the bi-directional coupler.

Again the incident light wave presented at the first
entrance wave guide of the most left bi-directional
coupler, i1 is provided by a He-Ne laser. The other en-
trance waveguide is not supplied with an incident
light beam. The light is split into the two exit wave-
guides, denoted by o1 and o2 and given by Eq. (22).
The propagation of the wave through the arms of
the interferometer up to the next couplers in the path
of the light can be described by a simple multiplica-
tion of the amplitude at the beginning of the arm by
the transmission and a phase factor describing the
optical path length. Here, it is assumed that the
transmission of the fiber is 1 and the added phase
can be described by expðiϕAÞ for the arm with fiber
stretcher A and expðiϕBÞ for the one with fiber
stretcher B. Hence, the incident waves at the en-
trance of the next couplers can be calculated from

�
i3
i4

�
¼
�
eiϕAo1
0

�
; ð32Þ

�
i5
i6

�
¼
�
eiϕBo2
0

�
: ð33Þ

In the bidirectional coupler, the waves interfere
and result in the waves at the exit wave guides de-
noted by o3, o4 and o5, o6, similar to Eq. (21). Then,

�
a0

bmþ1

�
¼
�
eiϕE 0
0 eiϕF

��
o3
o5

�
: ð34Þ

b0 and amþ1 are calculated from matrix Eq. (25). The
waves go further to the couplers where now

�
i7
i8

�
¼
�
eiϕEb0
0

�
; ð35Þ

�
i9
i10

�
¼
�
eiϕFamþ1

0

�
: ð36Þ

In the encountered bidirectional couplers, the
waves interfere again and result in the waves at the
exit wave guides denoted by o7, o8 and o9, o10, similar
to Eq. (21). Then outputs o7 and o9 are transported
back to the first coupler, yielding

�
i13
i14

�
¼
�
eiϕA 0
0 eiϕB

��
o7
o9

�
: ð37Þ

In the first coupler, the waves interfere again and
result in the waves at the exit wave guides denoted
by o13, o14 similar to Eq. (21).

Outputs o4 and o6 can be used to monitor the in-
cident light intensity. With the above equations,
the amplitude of the optical wave exiting these wave
guides can be shown to be constant:

�
o4
o6

�
¼ −1

1þ η2
�
−iηeiðϕηþϕAÞ

eiϕB

�
: ð38Þ

Further, it can be shown that

�
o13
o14

�
¼ η2eið2ϕηþϕAþϕBþϕEþϕFÞ

ð1þ η2Þ2

×
�

eiϕηðρtη2eiϕs − ρbe−iϕs − 2iτηÞ
ðη2 − 1Þτ − ηiðρteiϕs þ ρbe−iϕsÞ

�
; ð39Þ

where ϕs ¼ ϕη þ ϕA − ϕB þ ϕE − ϕF. This is almost
equivalent to Eq. (28). The factor in front of the
matrix is different, because now four bidirectional
couplers are passed before the light waves reach
the output ports and optical paths E and F are added
to A and B. Outputs o8 and o10 are transported
further to the last coupler, yielding

�
i11
i12

�
¼
�
eiϕC 0
0 eiϕD

��
o8
o10

�
: ð40Þ

In the last coupler, the waves interfere again and
result in the waves at the exit wave guides denoted
by o11, o12 similar to Eq. (21). Using the above equa-
tions it can be shown that

�
o11
o12

�
¼ −iηeiðϕηþϕEþϕFþðϕAþϕBþϕCþϕDÞ=2Þ

ð1þ η2Þ2

×
�

eiϕηðρtη2eiϕs − ρbe−iϕs − 2iτη cosϕmÞ
ðη2eiϕm − e−iϕmÞτ − ηiðρteiϕs þ ρbe−iϕsÞ

�
;

ð41Þ

where ϕs ¼ ϕη þ ϕE − ϕF þ ðϕA − ϕBÞ=2þ ðϕC − ϕDÞ=2
and ϕm ¼ ðϕA − ϕBÞ=2 − ðϕC − ϕDÞ=2. Again this is si-
milar to Eqs. (28) and (39). The factor in front of the
matrix is different, because now four bidirectional
couplers are passed before the light waves reach
the output ports and the other waveguides exits of
the bidirectional couplers are used. Again, optical
paths E and F are added to A and B, but also to C
and D. If ϕC ¼ ϕA and ϕD ¼ ϕB, then ϕm ¼ 0 and
the matrix in the above equation reduces to that
of Eq. (39).

There are three advantages of this setup over the
simple Sagnac geometry. First, both output ports o11
and o12 can easily be connected to a detector so that
the symmetry is not broken. Second, outputs o4 and
o6 can be used to monitor the intensity of the incident
wave. And third, the symmetry of the setup is broken
so that an extra parameter can be varied and more
information obtained about the object.

The sum of the intensities at the exit of the last
bidirectional coupler can be written as
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jo11j2 þ jo12j2 ¼ η2T
ð1þ η2Þ3 ðj1þ ηχtj2 þ jηþ χbj2Þ; ð42Þ

where now

χt ¼
ρt
τ eiðϕ0

sþπ=2Þ and χb ¼ ρb
τ e−iðϕ0

sþπ=2Þ

and ϕ0
s ¼ ϕs þ ϕm ¼ ϕη þ ϕA − ϕB þ ϕE − ϕF, indepen-

dent of ϕC and ϕD, as it should because they only dis-
tribute the power over the two output waveguides
depending of the phase difference between i11 and
i12. ϕ0

s is the phase difference between the waves tra-
veling toward the object. Again, without absorption
this reduces to

jo11j2 þ jo12j2 ¼ η2
ð1þ η2Þ2 ≈

1
4

ð43Þ

because η ≈ 1.
The visibility of this interferometer can be defined

as the relative difference between the two outputs of
the exit coupler, hence

V ¼ jo11j2 − jo12j2
jo11j2 þ jo12j2

¼ η2 − 1

η2 þ 1
V1 þ V2: ð44Þ

Calculating the result from Eq. (41) gives

V1 ¼ j1þ ηχtj2 − jηþ χbj2
j1þ ηχtj2 þ jηþ χbj2

;

V2 ¼ υ cosð2ϕm − argð1þ ηχtÞ þ argðηþ χbÞÞ;

where

υ ¼ 4η
η2 þ 1

jð1þ ηχtÞðηþ χbÞj
j1þ ηχtj2 þ jηþ χbj2

:

Note that V1 and υ are fully determined by the object
and the standing wave conditions (determined by ϕ0

s)
on the object. Only V2 depends also on the difference
between ϕC and ϕD via 2ϕm. Hence, by varying
ϕm and keeping ϕ0

s constant the visibility changes si-
nusoidal with an amplitude of υ. This can be ac-
complished by moving the object along the optical
path. If ρbτ� ¼ −ρ�t τ (nonabsorbing object), this
reduces to

V1 ¼ ð1 − η2Þð2T − 1Þ þ 4ηTℜfχtg
1þ η2 ;

υ ¼ 4ηT
ðη2 þ 1Þ2 jð1þ ηχtÞðηþ χtÞj:

Note that, for bi-directional couplers where η ≈ 1 the
first term of Eq. (44) can be neglected.

It is also possible to directly couple the detectors to
outputs o8 and o10, then calculations similar as above
result in

�
o8
o10

�
¼ −iηeiðϕηþϕEþϕFþϕBÞ

ð1þ η2Þð3=2Þ ×
�

ηρteiϕ
0
s − iτ

eiðϕF−ϕEÞðηeiϕ0
s − ρbiÞ

�
;

ð45Þ

where as before ϕ0
s ¼ ϕη þ ϕA − ϕB þ ϕE − ϕF. The

sum of the intensities is equal to Eq. (42) and the
visibility defined similar as before is equal to V1.

The advantage of the previous method (i.e. mea-
suring jo11j2 and jo12j2) is that the determination
of T can be done without an absolute value for the
visibility amplitude, as other instrumental factors
might influence this. For instance, polarization rota-
tion could reduce the visibility amplitude of the
couplers. Let X be the minimum value and Y be
the maximum value of the visibility amplitude, then
if η ≈ 1,

j2T − 1j ¼ X
Y
:

The response of the Mach–Zehnder interferometer
is similar to the Sagnac interferometer. However, the
Sagnac interferometer is much harder to study be-
cause of the fact that one input port and output port
coincide. Hence, in the following, only the Mach–
Zehnder interferometer will be considered.

7. Michelson–Morley Geometry

The last important interferometer discussed here is a
Michelson–Morley interferometer. The light wave is
split by a beam splitter and the two waves travel
along different routes toward two separate mirrors.
At the mirrors, the light is reflected backwards so
that the light waves meet again at the beam splitter.
There, the light waves are rejoined, resulting in in-
terference between the light waves at the output
ports. The Michelson–Morley geometry is shown
schematically in Fig. 6. The object is inserted in
one of the arms between the collimator and the
mirror.

Fig. 6. (Color online) Sketch of fiber-optic Michelson–Morley in-
terferometer including a standing wave at the object. The different
directions of the light waves on top and at the bottom of the object
are only for display purposes.
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Again, the incident light wave presented at the
first entrance wave guide of the most left bidirec-
tional coupler, i1, is provided by a He-Ne laser. The
other entrance waveguide is not supplied with an
incident light beam. The light is split into the two
exit waveguides, denoted by o1 and o2 and given by
Eq. (22). The propagation of the wave through the
arms of the interferometer up to the next couplers
in the path of the light can be described by a simple
multiplication of the amplitude at the beginning of
the arm by the transmission and a phase factor de-
scribing the optical path length. Here, it is assumed
that the transmission of the fiber is 1 and the added
phase can be described by expðiϕAÞ for the arm with
fiber stretcher A and expðiϕBÞ for the one with fiber
stretcher B. After the wave passes the object in the
upper arm, the light wave is reflected back at the
mirror. The optical phase acquired by the light wave
between object and mirror is ϕE, hence bmþ1 ¼
amþ1eið2ϕEþπÞ where it was assumed that the reflec-
tion coefficient at the mirror is −1. Applying Eq. (10)
yields b0 ¼ −ξa0, where

ξ ¼ m12 þm22e2iϕE

m11 þm21e2iϕE
: ð46Þ

Using the above considerations it can be shown
that

�
o3
o4

�
¼ e2iϕB

1þ η2
�

1 − ξη2eiϕm

ηie−iϕηð1þ ξeiϕmÞ
�
; ð47Þ

where ϕm ¼ 2ðϕη þ ϕA − ϕBÞ. The sum of the intensi-
ties at the exit of the bidirectional coupler can be
written as

jo3j2 þ jo4j2 ¼ 1þ η2jξj2
1þ η2 ; ð48Þ

jo3j2 − jo4j2
jo3j2 þ jo4j2

¼ ð1− η2Þð1− η2jξj2Þ− 4η2ℜfξeiϕmg
ð1þ η2Þð1þ η2jξj2Þ : ð49Þ

Note that, for a nonabsorbing object jξj ¼ 1, so that

jo3j2 þ jo4j2 ¼ 1; ð50Þ

jo3j2 − jo4j2
jo3j2 þ jo4j2

¼ ð1 − η2Þ2 − 4η2 cosðϕm þ arg ξÞ
ð1þ η2Þ2 : ð51Þ

8. Examples

A. Nonabsorbing Single Layer

The most simple object is a single layer with thick-
ness t and refractive index n. As this object is sym-
metric, the top and bottom reflection amplitudes
are equal to

ρ ¼ e2inq0t − 1

1 − ρ2Fe2inq0t
ρF;

where the Fresnel reflection amplitude is given by

ρF ¼ n − 1
nþ 1

:

The transmission amplitude is

τ ¼ einq0t

1 − ρ2Fe2inq0t
τF;

where the Fresnel transmission amplitude is

τF ¼ 4n

ðnþ 1Þ2 :

Hence, the ratio between ρ and τ is simply

ρ
τ ¼ i sinðnq0tÞ

ρF
τF

:

For a single nonabsorbing layer with a refractive in-
dex n ¼ 1:45 and a thickness corresponding to an op-
tical path of half a wavelength, the visibility of the
Mach–Zehnder and Michelson–Morley configura-
tions as function of ϕ0

s, ϕm, and ϕE, ϕm, respectively,
are shown in the bottom part of Fig. 7. In the upper
part, the same is shown for a layer thickness corre-
sponding to a quarter wavelength. For a thickness
with an optical path of half a wavelength nq0t ¼ π,
hence ρ ¼ 0. Because there is no reflection at all,
the visibility of the interferometers does not depend

Fig. 7. (Color online) Visibilities of Mach–Zehnder (left) and
Michelson–Morley (right) interferometers including a single layer
(refractive index n ¼ 1:45) with a thickness corresponding to an
optical phase of π=2 (top) and π (bottom) as function of the two
optical phases ϕ0

s, ϕm and ϕE, ϕm, respectively.
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on the phase difference between the traveling waves
hitting the object (i.e. ϕ0

s and ϕm − 2ϕE). The visibility
response is similar to the one of a standard interfe-
rometer. For a thickness with an optical path of a
quarter (or three quarter) wavelength nq0t ¼ π=2,
hence ρ ¼ −2ρF=ð1 − ρ2FÞ and is maximal. Now there
is reflection and the visibility of the interferometers
does depend on the phase difference between the
traveling waves hitting the object. Both the visibility
responses for the Mach–Zehnder and Michelson–
Morley interferometer are changed. Here, for con-
stant ϕ0

s, ϕE, the visibility variations are still
sinusoidal, although the amplitude of the visibility
oscillations decreases. This makes clear why it is im-
portant to minimize reflections in interferometers.

B. Strong-absorbing Single Layer

The most simple absorbing object is a single layer
with thickness t and refractive index n ¼ nr þ iκ. The
reflection and transmission amplitudes are equal to
the ones in the previous section, except now the re-
fractive index is complex. For a silver (at 632:8nm
the refractive index is nr ¼ 0:135 and κ ¼ 3:99) layer
of 15nm thickness, the visibility of the Mach–
Zehnder and Michelson–Morley configurations as
function of ϕ0

s, ϕm and ϕE, ϕm, respectively, are shown
in the bottom part of Fig. 8. In the upper part, the
same is shown for a layer of titanium (at 632:8nm
the refractive index is nr ¼ 2:153 and κ ¼ 2:92) with
the same thickness. The four graphs are all comple-
tely different, stressing the different behavior of the
visibility of the interferometers. Note that, for the
Michelson–Morley interferometer, the visibility
change dependence of ϕE is reduced. Even if ϕE
would change its value very fast, the average visibi-
lity change of the interferometer by changing ϕm is

not reduced to 0. Hence, the interferometer looses
its sensitivity for ϕE. Off course, this is logical if
the object would be a perfect reflector.

In Fig. 9, it is shown that the absorption for these
objects is also different in the two interferometers
and depends in a nonregular way on the thickness
of the layer.

C. Weak-absorbing Single Layer

If the absorption is less, then the absorbed fraction
starts to oscillate with the thickness of the layer. This
is shown for a layer with a real part of the refractive
index of 1.8 and an imaginary part of 0.02 in Fig. 10.

D. Fabry–Pérot Cavity

With two semitransparent mirrors a Fabry–Pérot
cavity can be constructed. Here, the semitransparent
mirrors are made out of a thin single layer of metal
on a piece of glass as schematically shown in Fig. 11.
The mirrors can be positioned in four different ways
to form the cavity: (a) glass substrates facing each

Fig. 8. (Color online) Visibilities of Mach-–Zehnder (left) and
Michelson–Morley (right) interferometers including a single tita-
nium (top) and silver (bottom) layer of 15nm thickness as function
of the two optical phases ϕ0

s, ϕm and ϕE, ϕm, respectively.

Fig. 9. (Color online) Absorbed fraction in a Mach–Zehnder (left)
and Michelson–Morley (right) interferometers including a single
titanium (top) and silver (bottom) layer of varying thicknesses
as function of the optical phase between the propagating waves,
ϕ0
s and ϕE, respectively.

Fig. 10. (Color online) Absorbed fraction in aMach–Zehnder (left)
and Michelson–Morley (right) interferometers including a single
layer of varying thicknesses as function of the optical phase
between the propagating waves, ϕ0

s and ϕE, respectively. The
refractive index of the layer is n ¼ 1:8þ 0:02i.
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other, (b) and (c) glass substrate facing metal layer,
and (d) metal layers facing each other. The length
of the cavity can be varied. The result for a Mach–
Zehnder interferometer for a metal layer of 15nm
titanium on top of a 3mm thick glass (n ¼ 1:45) sub-
strate is shown in Fig. 12. Again, the absorbed frac-
tion depends on the phase difference between the
traveling wave and also on the length of the cavity
and how the cavity is constructed. If the metal layers
are facing each other (D), the waves inside the cavity
at reflection first encounter the absorbing metal
layer increasing the absorption with respect to the
situation when the glass substrates are facing each
other (A). For a suitable phase difference between the
traveling waves and an appropriate cavity length,
the absorption virtually vanishes. If the metal layer
of one mirror faces the glass substrate of the other (B
and C), the absorption is in between these extremes.
The result for the same type of semitransparent

mirror and a Michelson–Morley interferometer is
shown in Fig. 13. If the metal layers are facing each
other (D), the waves inside the cavity at reflection
first encounter the absorbing metal layer increasing
the absorption with respect to the situation when the
glass substrates are facing each other (A). For a sui-
table phase difference between the traveling waves
and an appropriate cavity length, the absorption vir-
tually vanishes. If the metal layer of one mirror faces
the glass substrate of the other (B and C), the absorp-
tion pattern is almost inverted. The more complex
behavior of the absorption in this interferometer is
due to the a-symmetry of the Michelson–Morley set-
up. A second cavity is created between the mirror of
the interferometer and the second mirror of the cav-
ity. The result for aMach–Zehnder interferometer for
a metal layer of 15nm silver on top of a 3mm thick
glass (n ¼ 1:45) substrate is shown in Fig. 14. Here
the absorption is much less, due to the small real part
of the refractive index. The patterns are more sym-
metric, but similar differences as in the previous case
can still be recognized. The result for the same type
of semitransparent mirror and a Michelson–Morley
interferometer is shown in Fig. 15.

From these examples, it is clear that, as soon as
standing waves are considered in interferometers,
the absorption phenomena in the objects placed in
the interferometer depend strongly on the properties
of the created standing waves.

9. Experiments

To check if the above described effects are observable
in fiber-optic interferometers, measurements were
performed with a Mach–Zehnder interferometer
corresponding to Fig. 5 and a Michelson–Morley
interferometer corresponding to Fig. 6. The object

Fig. 11. (Color online) Schematic of Fabry–Pérot cavity with
length, L. Each semitransparent mirror consists of a thin metal
layer on top of a glass substrate. The mirrors can be positioned
in four different ways to form the cavity: (a) glass substrates facing
each other, (b) and (c) glass substrate facing metal layer, and
(d) metal layers facing each other.

Fig. 12. (Color online) Absorbed fraction in a Mach–Zehnder in-
terferometer as function of the optical phase between the propa-
gating waves, ϕ0

s and the varying length of a Fabry–Pérot cavity
for geometries (a) to (d) (see Fig. 11). The semitransparent mirrors
consist of a single layer of 15nm titanium of top of a 3mm glass
substrate.

Fig. 13. (Color online) Absorbed fraction in a Michelson–Morley
interferometer as function of the optical phase between the propa-
gating waves, ϕE and the varying length of a Fabry–Pérot cavity
for geometries (a) to (d) (see Fig. 11). The semitransparent mirrors
consist of a single layer of 15nm titanium of top of a 3mm glass
substrate.

5684 APPLIED OPTICS / Vol. 50, No. 29 / 10 October 2011



consisted of a glass (BK7) substrate (thickness 3mm)
with a layer of silver (thickness 14:7nm) deposited
on it at one side. The light of a stabilized He-Ne laser
(type Coherent 200, linear polarized, 0:5mW, maxi-
mum mode sweep 10MHz) was coupled into the i1
arms of the interferometers via a polarization depen-
dent optical isolator (isolation at least 35dB). The
interferometers were put in a temperature controlled
environment where the temperature control was

within 3mK. For the Mach–Zehnder geometry the fi-
ber stretchers were made from 1m long SM600 fibers
wrapped around a thin-walled cylinder made of piezo
material. In the Michelson–Morley geometry, the
fiber stretchers were omitted, but the mirrors were
mounted by means of piezo stacks enabling the inde-
pendent change of the optical paths. The light inten-
sity at outputs o11 and o12 of the Mach–Zehnder
interferometer was measured by two amplified sili-
con detectors. The visibilities can be calculated from
these intensities according to Eq. (44). After normal-
izing the maximum visibility to 1, they are shown in
Fig. 16 as function of the voltage applied to the fiber
stretchersB andC for themeasurements without the
object (a) and with the object (b). The theoretical
values are sensitive to the exact glass thickness
(3000025nm) and refractive index (1.515). The sum
of these intensities relative to the output intensity of
the laser for the same data is given in Figs. 17(a) and
17(b). The modulation visible in Figs. 16(a) and 17(a)
indicates that already the interferometer without an
object contains absorbing parts or reflecting inter-
faces. This probably is due to the used fibers and ap-
plied antireflecting coatings. From Fig. 17, it is clear
that the insertion of the object in the optical path
reduces the light intensity at the output of the inter-
ferometer. Part of this reduction is due to the absorp-
tion in the object, part is due to reflection at the
object. From these figures it is evident that by chan-
ging the optical path corresponding to fiber stretcher
C, the sum of the intensities does not change. This is
due to the fact that the standing wave at the position
of the object does not change. The relative change in
absorption as function of VB is increased, showing
the influence of the phase of the standing wave on
the absorption of light in the object.

Fig. 15. (Color online) Absorbed fraction in a Michelson–Morley
interferometer as function of the optical phase between the propa-
gating waves, ϕE and the varying length of a Fabry–Pérot cavity
for geometries (a) to (d) (see Fig. 11). The semitransparent mirrors
consist of a single layer of 15nm silver of top of a 3mm glass
substrate.

Fig. 16. (Color online) Measured (top) and theoretical (bottom)
renormalized visibility of a Mach–Zehnder interferometer as func-
tion of the voltage applied to fiber stretchers B and C. (a) without
object; (b) object consisting of a single layer of 14:7nm silver on top
of a 3mm glass substrate.

Fig. 14. (Color online) Absorbed fraction in a Mach–Zehnder in-
terferometer as function of the optical phase between the propa-
gating waves, ϕ0

s and the varying length of a Fabry–Pérot cavity
for geometries (a) to (d) (see Fig. 11). The semitransparent mir-
rors consist of a single layer of 15nm silver of top of a 3mm glass
substrate.
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The light intensity at output o4 of the Michelson–
Morley interferometer was also measured as func-
tion of the voltage applied to the mirror piezo stacks
1 and 2. The results normalized to the laser intensity
is shown in Fig. 18 for the measurements without the
object (a) and with the object (b). The theoretical cal-
culations have been done for the same parameters as
above. A slight modulation is visible in Fig. 18(a).
The slight curvature of the intensity should not exist
if an object is not present. However, as has been
shown in Figs. 7 (right), a simple glass substrate as
an object could already cause these effects. As the in-
terferometer is made out of optical fibers, there are
quite a few air-glass and glass-air interfaces. Their
combined effect can easily explain the observed
features.

From Figs. 16(b) and 18(b), it is clear that the in-
sertion of the object in the optical path changes
the behavior of the output of the interferometers
as function of the phase of the standing wave cross-
ing the object. As can be inferred from Figs. 8 and 9,

the response of the interferometers is very much de-
pendent on the exact properties of the absorbing
layer. The theoretical calculations of Fig. 16(b) and
18(b) were performed with literature values for the
refractive index and an independently measured
value of the thickness of the silver layer. Better cor-
respondence could be achieved by fitting these val-
ues. However, this would not add to the insight and
fitted plots are omitted here.

In this case, the deviation between the theoretical
calculations and the measurements is larger for the
Michelson–Morley geometry than with the Mach–
Zehnder geometry. This is due to the different way
in which the standing wave is created in the inter-
ferometers. In the former case the standing wave
is created directly by reflection to a mirror. In the lat-
ter, it is created by splitting it at the bidirectional
coupler. The reduction of the deviations between
the two is left to the interested reader.

10. Conclusions

The different behavior of the standing waves in the
interferometers is caused by the different ways the
standing waves are produced and the different ways
the object reacts on them. As long as the object is
nonabsorbing and the reflectivity is kept low, the in-
fluence on the interferometers is small. As soon as
considerable absorption or reflection occurs, the vis-
ibility changes of the interferometers become more
complex. For the Mach–Zehnder interferometer, the
visibility changes sinusoidal as long as the phase dif-
ference of the incident waves on the object remains
the same. For the Michelson–Morley interferometer,
the visibility changes are more complex. Experi-
ments in a temperature controlled environment con-
firm the complex behavior of the visibility changes
and are compatible with the presented calculations.
Although the measurements show similar charac-
teristics compared to the theoretical calculations,
further experiments are needed for a thorough com-
parison between theory and experiment.
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