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Abstract — Heavy trucks which undertake the majority of freight volume play an important
role in urban freight systems. By analyzing heavy truck trip data, we find a superlinear scaling
relationship for heavy truck trips and a sublinear scaling relationship for heavy truck numbers
relative to urban population size. Although these allometric scaling relationships that widely
appear in nature and social systems have been explained by many models, a simple model that
can cover a wide range of scaling exponents in these systems is still lacking. Here, we develop a
partially mixing city operation model by quantifying the mixability of the urban population to
explain why the superlinear and sublinear scaling exponents are in the range of 1 and 1 4+ 1/3.
This simple model not only helps us understand the mechanism of allometric scaling of urban
freight systems, but also provides a new framework for other superlinear and sublinear scaling

relationships in cities.

Copyright © 2023 EPLA

Introduction. — Cities are places of socioeconomic in-
teraction dependent on massive goods delivery through ur-
ban freight systems [1,2]. Thus, it is of great significance to
study urban freight systems from the perspective of com-
plex system. Previous studies on the complex systems of
urban freight mainly include the analysis of the overall
structure of city logistics networks [3], the prediction of
highway freight transportation networks using the gravity
model and radiation model [4,5] and the quantification of
the robustness and resilience of freight transportation net-
works [6,7]. However, studies of the allometric scaling of
urban freight systems are still lacking.

Although whether allometric scaling exists in urban
freight systems remains unknown, allometric scaling ap-
pears universally in nature and social systems [8-11]. For
example, researchers have found many properties of cities
that have superlinear allometric scaling relationships with
population, such as income [12], GDP [13], patents [14],
crimes [15] and total communication activity [16]. These
properties of cities related to wealth and innovation are
called socioeconomic outputs (the scaling exponent is be-
tween 1 and 4/3) [17]. Many properties of cities have

(2) B-mail: erjianliu@bjtu.edu.cn
(®)E-mail: yanxy@bjtu.edu.cn (corresponding author)

sublinear scaling relationships with population, such as
road area [18], urban area [19], gas station numbers [20]
and power grid length [8]. These properties of cities associ-
ated with infrastructure are called material quantities (the
scaling exponent is between 2/3 and 1) [8]. The allomet-
ric scaling relationship was first observed by evolutionary
biologists [21] and designates the power function relation-
ship between changes in certain parts of an organism and
changes in overall size. Metabolic rate follows a 3/4 power
relationship with the mass of an organism [22-27]. More-
over, in river systems, Pelletier found a similar sublinear
allometric scaling relationship between the average river
discharge and the drainage area [28]. In addition, there
is a sublinear allometric scaling relationship between the
corpus size and the vocabulary size of books [29]. These
studies show that allometric scaling relationships widely
appear in nature and social systems and inspire us to study
the allometric scaling of urban freight systems.

In recent years, with the improvement of massive in-
tracity freight trip data [30,31], it has become possible
for us to study the allometric scaling relationships be-
tween many properties of urban freight systems and urban
population size. In urban freight systems, heavy trucks
mainly undertake logistics to ensure the supply of goods
and raw material for people and firms, accounting for most
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of the urban freight volume and playing an important role
in cities. Therefore, in this letter, we take heavy trucks
as our research object. We find a superlinear allometric
scaling relationship between heavy truck trips and urban
population size and a sublinear allometric scaling relation-
ship between heavy truck numbers and urban population
size. At present, researchers have proposed many mod-
els to explain the allometric scaling relationships between
properties of cities and urban population size. For exam-
ple, Batty used a diffusion-limited aggregation model to
simulate the growth process of city which shows that the
scaling relationship of urban area and population is deter-
mined by the fractal dimension of a city’s geometry [32].
However, the scaling exponent in Batty’s model is not con-
sistent with the empirical data. Um et al.  established a
microdynamics model to explain the scaling relationship
of commercial and public facility density relative to urban
population density [33], but it remains unknown how to re-
late it with the urban scaling based on urban population
size [34]. Ribeiro and Rybski summarized the majority
of the theoretical models that explain urban scaling laws
from different premises [35]. Jusup et al. concluded the
most representative model of urban scaling laws [34]. At
the individual level, Pan et al. established a social density
model by assuming that the probability of the interaction
of each two agents in a city is inversely proportional to
distance to produce the log-form (but not power-form) su-
perlinear relationship between socioeconomic outputs and
urban population [36]. At the macro level, Bettencourt
proposed the simplest city operation model from the per-
spective of the balance of socioeconomic outputs and in-
teraction costs by assuming that the urban population is
fully mixing [17]. In his model, the superliner scaling ex-
ponents of socioeconomic outputs is 4/3. However, the
empirical superliner scaling exponents are generally be-
tween 1 and 4/3. Although Bettencourt introduced the
road fractal dimension and infrastructure network to mod-
ify the initial model [17] such that the theoretical scaling
exponent could be consistent with the empirical data, his
model considered too many other factors instead of inter-
actions, which made the modified model more complex.
In addition, Arbesman et al. used a hierarchical network
to quantify the social distance (network distance) of each
social interaction whereby the contribution of each interac-
tion to the output that reflects the amount of innovation
is affected by their social distance [37]. This model can
reflect the superliner scaling relationships between socioe-
conomic outputs and urban population size if parameters
are set to specific values. However, their models focus
too much on the microstructure of social interaction net-
works, which makes the model slightly more complicated.
Therefore, we aim to develop a simple model that quan-
tifies the total amount of social interaction at the macro
level without considering other detailed factors such as
network structure and road fractal dimension to explain
why the superlinear and sublinear scaling exponents are in
the range of 1 and 1+1/3. In this regard, Samaniego and

Moses studied the allometric scaling relationship between
the rescaled travel distance and urban population size
and used its scaling exponent to quantify the centrality
of human mobility pattern within a city [18]. Barthelemy
considered the effect of distance on the amount of social
interaction and established a link between the centrality
of human mobility pattern and destination choice behav-
ior [38]. This link tells us that the centrality of human
mobility pattern is positively correlated with population
mixability, which provides us with a means for expanding
Bettencourt’s simplest city operation model and proposing
the partially mixing population city operation model to
derive the theoretical scaling exponents of socioeconomic
outputs and material quantities. In this letter, we first
find a superlinear scaling relationship for heavy truck trips
and a sublinear scaling relationship for heavy truck num-
bers relative to urban population size through an empirical
analysis of heavy truck trip data. Then, we introduce a
method for quantifying the mixability of urban population
and develop a model based on the simplest city operation
model to derive a superlinear scaling exponent (from 1
to 4/3) and sublinear scaling exponent (from 1 to 2/3).
Finally, we discuss the potential application value of our
model.

Empirical analysis. — The data we use in this work
are intracity heavy truck trip [30,31] (origin and des-
tination, OD) data from 335 cities in China for over
2 weeks in 2018, urban population data for China for
2018 (downloaded from http://wuw.stats.gov.cn/) and
urban area data for China for 2018 (downloaded from
https://www.mohurd.gov.cn/). The heavy truck trip
data include heavy truck trips, heavy truck numbers and
the longitudes and latitudes of origins and destinations.

We study three statistical relationships between quanti-
ties (heavy truck trips, heavy truck numbers and rescaled
travel distances of heavy trucks) and urban population
size. The results show a superlinear allometric scaling
relationship between heavy truck trip numbers and urban
populations size with scaling exponent 3 = 1.08 £ 0.078 as
shown in fig. 1. This scaling exponent is similar to the scal-
ing exponents of socioeconomic outputs 5 € [1.07,1.34],
such as GDP, patents and crimes [8]. We believe this is
because the number of heavy truck trips is also a socioe-
conomic output that reflects the amount of interaction in
a city [17]. With an increase in urban population size, the
per capita socioeconomic outputs in cities increase, which
further increases the per capita freight demand, resulting
in a corresponding increase in the number of per capita
heavy truck trips.

Figure 2 shows a sublinear allometric scaling relation-
ship between heavy truck numbers and urban population
size with scaling exponent S = 0.95 + 0.078, echoing the
scaling exponents of material quantities 5 € [0.77,0.83],
such as road area, urban area, gas station numbers and
power grid length [8]. We believe this is the case because
heavy truck numbers are material quantities reflecting the
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Fig. 1: The superlinear allometric scaling relationship between
heavy truck trips Y and urban population size N. Each point is
a single city. The solid line represents regression to the points
and the scaling exponent 8 = 1.08. The dashed lines indicate
the 95% confidence interval of scaling exponent 3.
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Fig. 2: The sublinear allometric scaling relationship between
heavy truck numbers Y and urban population size N. The
solid line represents regression to the points and the scaling
exponent 8 = 0.95. The points and dashed lines have the
meaning defined in fig. 1.

infrastructure scale of cities. With an increase in ur-
ban population size, the per capita material quantities
decrease, resulting an increase in the number of people
served by each heavy truck.

Furthermore, we calculate the rescaled travel distance
of heavy trucks in each city. We first calculate the spheri-
cal distance of each heavy truck trip using the coordinates
of the origin and destination and obtain the total travel
distance L of each city. Then, we can obtain the rescaled
travel distance of heavy trucks which can be expressed
as the total travel distance divided by the square root
of urban area L/A'Y/2. Figure 3 shows a sublinear scal-
ing relationship between the rescaled travel distance and
urban population size (o« = 0.68 +0.111), which is similar
to the sublinear scaling relationship between the rescaled

L/NNOC

10%4

108,

rescaled travel distance (L)

107,

a=0.68%+0.111

R=0.759

102 103

population (N)

Fig. 3: The allometric scaling relationship between rescaled
travel distance L' and urban population size N. The solid line
represents regression to the points and the scaling exponent
a = 0.68. The points and dashed lines have the meaning de-
fined in fig. 1.

travel distance of urban motor vehicles and population size
(o 2 0.66) found in previous studies [18].

Partially mixing population city operation
model. — We carry out our work based on the simplest
city operation model established by Bettencourt [17]. The
hypothesis of the model reflecting how a city operates
includes the following: 1) per capita interaction is pro-
portional to urban population density; 2) urban socioe-
conomic outputs are proportional to the total amount of
social interaction; 3) the interaction costs are proportional
to the total travel distance; 4) the urban population is fully
mixing, that is, the per capita travel distance is propor-
tional to the radius of the city; and 5) urban socioeconomic
outputs are proportional to the interaction cost. Betten-
court points out that the total amount of social interac-
tion is the key factor that determines the total amount
of socioeconomic output in cities [17]. Thus, according to
hypotheses 1) and 2), the socioeconomic output of a city
can be expressed as

N N2
YNINN@NN/)NNANA, (1)
where Y is the socioeconomic output, I is the total amount
of interaction, i is per capita interaction, and p is urban
population density. Bettencourt assumes that the urban
population is fully mixing; that is, each person can ran-
domly interact with anyone else in the city. Therefore,
according to hypothesis 4), the per capita travel distance
can be expressed as

I~ AY2, (2)

According to hypothesis 3), the interaction cost of a city
can be expressed as

T~L~N-l~NAY2 (3)
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where T is the total cost of interaction, L is the total
travel distance, and [ is the per capita travel distance. By
combining hypothesis 5), eq. (1), eq. (2) and eq. (3), one
can obtain ,

N
~NA,

(4)
and further obtain the sublinear scaling relationship be-
tween urban area and urban population size

A~ N?/3, (5)
In combination with eq. (1) and eq. (5), the superliner scal-
ing relationship between socioeconomic output and urban
population size can be derived as

Y ~ N4/3, (6)
However, the theoretical scaling exponent of 4/3 is obvi-
ously too large relative to the actual scaling exponents [8]
of socioeconomic outputs. Moreover, the assumption of
a fully mixing population in this model is also inconsis-
tent with the actual interaction behavior. In an actual
city, some people are very active, and interact with any-
one in the city, while some people only interact with people
within the area around their homes. This means that the
urban population is not fully mixing.

To make our model more realistic, we consider the mix-
ability of urban population by assuming that the urban
population mixability ranges from fully mixing to not mix-
ing. In this respect, the centrality of human mobility pro-
posed by Samaniego and Moses [18] and further extended
by Barthelemy [38] provides important precedent for us.
The work of Samaniego and Moses establishes a link be-
tween human mobility patten and rescaled travel distance
in the city. The authors argue that there are two extreme
cases of human mobility patten in cities, namely, central-
ized and decentralized. When human mobility pattern is
centralized, everyone interact with others randomly in the
city. Therefore, according to eq. (2), the per capita travel
distance is proportional to the square root of urban area.
This is similar to the assumption of fully mixing popula-
tion in the simplest city operation model [17]. In this case,
the rescaled travel distance L’ can be expressed as

, L NI

However, when human mobility pattern is decentralized,
the interaction area of each person is reduced to the per
capita area in the city, which means that each person only
interacts with his nearest neighbor. Therefore, the per
capita travel distance is proportional to the square root
of the per capita urban area, which means that the urban
population is not mixing. In this case, the rescaled travel
distance can be expressed as

L N -1

L= ALz T A2

(8)

In an actual city, the human mobility pattern is between
these two extremes. Samaniego and Moses [18] assumed
an allometric scaling relationship between the rescaled
travel distance and urban population size that can be ex-
pressed as

r L ~ N

s A ©)

where « is the scaling exponent ranging from 1/2 to 1.
Then, the authours conducted a statistical analysis of the
relationship between the rescaled travel distance of motor
vehicles and the urban population size of 425 cities in the
United States within a day and found a sublinear scaling
exponent of 0.66 [18]. This result indicates that the hu-
man mobility pattern in a city is between centralized and
decentralized and that the scaling exponent « in eq. (9)
can be used to quantify the centrality of human mobility
pattern in cities at a macro level. When scaling exponent
« is closer to 1, the human mobility pattern in the city
is more centralized. When scaling exponent « is closer
to 1/2, the human mobility pattern in the city is more
decentralized.

Based on Samaniego and Moses’s work [18], Barthelemy
considered the effect of distance on the probability of social
interaction between two individuals and established a link
between human mobility centrality and destination choice
behavior [38]. Barthelemy assumed that the probability
of the social interaction between two individuals can be
expressed as

f(I) ~ I_Ta

where x is the distance between two individuals and 7 is a
decay exponent that reflects the interaction range. In his
work, when 7 is very small, each individual interacts with
others randomly, which means that the urban population
is fully mixing. In this case, the human mobility pattern
in city is centralized and o« approaches 1. In contrast,
when 7 is very large, each individual only interacts with his
nearest neighbor, which means that the urban population
is not mixing. In this case, the human mobility pattern
in city is decentralized and « approaches 1/2. This result
shows that the centrality of human mobility is positively
correlated with the mixability of urban population.

(10)

To further verify the positive correlation between hu-
man mobility centrality and urban population mixability,
we conduct a numerical simulation to show how scaling ex-
ponent « in eq. (9) changes with parameter 7. The steps
of our simulation include the following: 1) build m cities
with different areas n x n; 2) distribute the same number
of individuals per unit area; 3) set 7 = 0; 4) each individ-
ual interacts with others with a probability proportional
to 77, see eq. (10); 5) calculate the rescaled travel dis-
tance in eq. (9) for each city; 6) estimate scaling exponent
a of eq. (9) from m cities; and 7) set 7 = 7+ s, where s is
the step size, and return to step 4).

According to these steps, we set the city number as

m = 10, the n range to 10 to 20 and the step size to
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Fig. 4: The relationship between decay exponent T and scaling
exponent a. The blue points are the simulation results, which
show that the scaling exponent « decreases form 1 to 1/2 with
the increase of 7. This result reflects the positive correlation
between human mobility centrality and urban population mix-
ability. The insert diagram shows the scaling relationship be-
tween rescaled travel distance L’ and urban population size N
when 7 takes specific values, which verifies the assumption in
eq. (9).

s = 0.5 to conduct the simulation. The result of our sim-
ulation is shown in fig. 4. We can see that as parameter
7 grows, the scaling exponent « of eq. (9) decreases from
1 to 1/2. This indicates that urban population mixability
is positively correlated with the centrality of the human
mobility pattern. We also find that regardless of how 7
changes, the allometric scaling relationship between the
rescaled travel distance and urban population size exists.
This result verifies the allometric scaling relationship be-
tween rescaled travel distance and urban population size
given in eq. (9).

Therefore, we can generalize eq. (3) and extend the
simplest city operation model by using the method for
quantifying urban population mixability. We call this
the partially mixing population city operation model
(PMPCO), i.e.,

T ~L~N*AY2, (11)
Since socioeconomic output in hypothesis 5) is propor-
tional to the total cost of social interaction, according to
eq. (1) and eq. (11), we can obtain

N2
- NaAl/Q.
A

(12)
Consequently, the sublinear scaling relationship between
urban area and urban population size is

A~ N2 (13)

By combining eq. (13) and eq. (1), we derive the superliner
scaling relationship between heavy truck trips and urban
population size, i.e.,

242a
3

Y ~ NT55, (14)

Y ~ NP

—— Estimated (f = 1.08+0.078)
Predicted (B = 1.12+0.074)
Empirical data

106,

105,

104,

heavy truck trips (Y)

10° 106 107
population ()

Fig. 5: Comparison between the scaling exponent of heavy
truck trip number Y derived from empirical data and that de-
rived from the PMPCO model. Each point represents the em-
pirical data of a single city. The solid line denotes the scaling
relationship estimated from empirical data and the dashed line
is the scaling relationship predicted by the PMPCO model.

which means that its scaling exponent is

24+ 2«
B = 5

(15)

This indicates that the higher the mixability of an urban
population is, the stronger the superlinear scaling rela-
tionships between the socioeconomic outputs and urban
population size are. When « = 1/2 , the mixability of the
urban population is the lowest, and the scaling exponent
is # = 1. When a = 1, the mixability of urban population
is the highest and the scaling exponent is § = 4/3 , which
is consistent with the simplest city operation model [17].
When « € (1/2,1), the scaling exponent 8 € (1,4/3) can
cover the range of scaling exponent of the majority of so-
cioeconomic outputs including the number of heavy truck
trips.

The PMPCO model can reproduce not only the super-
linear scaling relationships between socioeconomic outputs
and urban population size, but also the sublinear relation-
ship between urban area and urban population, the scaling
exponent of which is

4 — 2
B=——

(16)

This shows that the higher the mixability of the urban
population is, the stronger the sublinear scaling relation-
ships between material quantities and urban population
size are. When « = 1/2, the mixability of an urban pop-
ulation is the lowest, and the scaling exponent is § = 1.
When a = 1, the mixability of the urban population is
the highest, and the scaling exponent is § = 2/3. When
a € (1/2,1), the scaling exponent € (2/3,1) can cover
the range of scaling exponent of the majority of material
quantities including heavy truck numbers.
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Y ~ NP
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Fig. 6: Comparison between the scaling exponent of heavy
truck number Y derived from empirical data and that derived
from the PMPCO model. The points, solid lines and dashed
lines have the meaning defined in fig. 5.

Model validation. — Here, we use the scaling rela-
tionship between rescaled travel distance and urban pop-
ulation size to explain the allometric scaling relationships
of socioeconomic outputs and material quantities rela-
tive to urban population size. The scaling exponent «
of the rescaled travel distance relative to urban popula-
tion is 0.68 + 0.111 as shown in fig. 3, which indicates
that the mixability of an urban population is between
fully mixing and not mixing. We set the scaling expo-
nent in eq. (15) as o = 0.68 £ 0.111 and use the PMPCO
model to derive the theoretical scaling exponent of heavy
truck trip 0 = 1.12 + 0.074, which is close to the em-
pirical scaling exponent § = 1.08 4+ 0.078, as shown in
fig. 5. The result shows that the PMPCO model can ef-
fectively reproduce the superlinear allometric scaling of
socioeconomic outputs. Moreover, we can also obtain the
theoretical sublinear scaling exponent of material quanti-
ties B =0.88 + 0.074 by letting the scaling exponent be
a =0.68 £ 0.111 in eq. (16). The scaling exponent derived
from the PMPCO model is very close to empirical value
£ =0.95+0.078 in fig. 6. This result indicates that our
model is also helpful for understanding the sublinear scal-
ing relationship between heavy truck number and urban
population size.

Conclusion. — In this letter, we use intracity heavy
truck trip data for China to obtain heavy truck trips,
heavy truck numbers and rescaled travel distances of
heavy trucks for 335 cities. We in turn find a superlinear
scaling relationship between the number of heavy truck
trips and urban population size and a sublinear scaling
relationship between the heavy trucks number and urban
population size through statistical analysis. To explain the
cause of this allometric scaling in urban freight systems,
we propose urban population mixability as a key determi-
nant to establish the PMPCO model. Our simple model
can effectively reproduce the observed allometric scaling
relationships we find.

In the PMPCO model, the change in urban population
mixability can greatly affect the allometric scaling rela-
tionships between urban quantities and population size,
which can explain why the superlinear scaling exponents
of socioeconomic outputs are in the range of [1,4/3] and
the sublinear scaling exponents of material quantities are
in the range of [2/3,1]. The PMPCO model can cover al-
most all the scaling exponents found in nature and social
systems, including socioeconomic outputs such as income
levels [12], GDP [13], patents [14], crimes [15] and material
quantities such as road area [18], city area [19], the num-
ber of gas stations [20], and power grid length [8]. This
simple model provides a new perspective for the study of
urban scaling. Not only that, but our model may also help
to explain the allometric scaling laws in other systems in-
cluding living organisms [21], rivers [28] and books [29].

Our work can also serve as a reference for practical ap-
plications. For example, the PMPCO model reveals that
the mixability of the urban population is an important fac-
tor affecting the scaling relationship between urban quan-
tities and population size. We can measure the deviations
of urban quantities from average value in each city [11]
and adjust the urban population mixability to make the
urban quantities more closely reflect the empirical allomet-
ric scaling relationships. This also provides more reference
for policy makers seeking to take measures to adjust ur-
ban quantities to improve the performance of urban freight
systems or even the entire city.
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