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ABSTRACT 

The topic of uncertainty quantification in particle image velocimetry (PIV) is recognized as very relevant in the 
experimental fluid mechanics community, especially when dealing with turbulent flows, where PIV plays a prime role 
as diagnostic tool. The issue is particularly important when PIV is used to assess the validity of results obtained with 
computational fluid dynamics (CFD). An approach for PIV data uncertainty quantification based on image matching 
has been introduced by Sciacchitano et al [1], where the contribution of individual particle images to the correlation 
peak is analyzed and the uncertainty is retrieved from the ensemble of particle image disparities.   

In this paper, the universality of the approach’s working principle is investigated via the application to a wide gamut 
of experimental data of flows ranging from laminar to turbulent regime and from subsonic to supersonic. Also a 
methodology for evaluating the performance of the image-matching approach in different experimental conditions is 
proposed. 

 
1 Introduction 

Particle image velocimetry (PIV) is nowadays acknowledged as a standard diagnostic tool for fluid 
mechanics investigation. The topic of uncertainty quantification in PIV has received large attention since the 
dawn of the technique. Fincham and Delerce [2] distinguished two forms of error in PIV measurements, 
namely the mean bias errors, which mainly arise from the inadequacy of the discrete cross-correlation in 
evaluating the recordings, and the random errors, which result e.g. from background noise and in-plane and 
out-of-plane loss of pairs. A well-known example of bias error in PIV is the so-called peak-locking [3], 
which occurs when the particle image diameter is smaller than the pixel size; such error is due to the 
inadequacy of the three-point Gaussian fit [4] in evaluating the sub-pixel displacement. An additional form 
of error typical of PIV measurements is that associated to spurious vectors or outliers, which arise from 
erroneous correlation peak detection [5]. The error due to outliers is usually orders of magnitude greater than 
random and bias errors, therefore the detection of those is straightforward [6]. 

The investigation on PIV uncertainty quantification has been mainly conducted a-priori via theoretical 
modeling and/or Monte Carlo simulations. In the former case, theoretical models are proposed to describe 
the behavior of PIV interrogation and to quantify the effects of several error sources (e.g. displacement and 
displacement gradient) on the measurement precision [7], [8]. However, those models typically refer to 
simplified interrogation algorithms due to the complexity of modeling state-of-the-art multi-grid algorithms 
with window deformation. Monte Carlo simulations have been widely employed in literature to evaluate the 
performance of PIV interrogation algorithms [9], [10] because they allow complete control on flow and 
imaging parameters and a direct evaluation of the measurement error. However, it is acknowledged that 
numerical simulations lead to a major underestimate of the measurement errors due to the adoption of too 
idealized conditions. From the a-posteriori analysis, a typical figure of 0.1 pixels is obtained for the accuracy 
of PIV interrogation.  

In contrast to the a-priori analysis, which provides only general information on the accuracy of PIV 
algorithms, a-posteriori uncertainty quantification allows estimating the uncertainty bounds for specific 
vector fields. This is required e.g. in industrial measurement campaigns where the experimental data are used 
for validation of CFD results. The topic of a-posteriori uncertainty quantification in PIV has received 
increasing attention in the last years. Nogueira et al [11], [12] proposed a multiple ∆t strategy for the 
quantitative evaluation of peak locking errors. Timmins et al [13] introduced a method for automatic 
estimation of instantaneous local uncertainty, which relies on the errors obtained in numerical simulations 



 

conducted with flow and imaging conditions similar to those of the real experiment. Such approach has the 
limitations of taking into account only a limit number of error sources and relying on numerical simulations 
which typically yield an underestimate of the measurement error. Wilson and Smith [14], [15] discussed the 
propagation of instantaneous errors to the errors on statistical quantities such as time average and Reynolds 
stress, which are of paramount interest in turbulence. More recently, Charonko and Vlachos [16] investigated 
an approach where the measurement uncertainty is quantified from the correlation signal-to-noise ratio. Such 
method showed good performance for robust phase correlation [17], while is not effective for standard 
cross-correlation. In the strain community, Wang et al [18] proposed an approach to quantify the uncertainty 
due to background Gaussian noise in the recordings. 

 
Sciacchitano et al [1] investigated an uncertainty quantification methodology based on image matching. 

The basic idea of the approach consists in taking into account the contribution of individual particle images 
to the correlation peak and evaluating the positional disparity between paired particle images. In our previous 
work [1], the approach has been assessed via Monte Carlo simulations and on a water jet experiment. The 
aim of this paper is to prove the universality of the working principle by applying the method to different 
flow regimes considered representative of typical PIV measurements.  

 
2 Background 

 
2.1 Universality of the uncertainty quantification 

As discussed in the introduction, several approaches for uncertainty quantification of PIV data have been 
proposed in the last years. These have been assessed mainly via Monte Carlo simulations and applied to a 
limited number of real experiments where the exact velocity field was known either from a more accurate 
measurement ([13], [14], [15]) or from fluid dynamics equations for simple cases of laminar flow [16]. 
However, such approaches have not been demonstrated to be universal, in the sense that they provide 
accurate uncertainty estimates in all the possible flow and imaging conditions encountered in typical PIV 
measurements. The present work introduces a methodology to show the universality of the image matching 
approach for uncertainty quantification.   

To understand the rational of the universality proof, consider a generic measured quantity g affected by a 
measurement uncertainty ug. In order to obtain indications on the measurement accuracy, the uncertainty is 
expressed in relative terms: ur ≡ ug/g. Contrarily to the absolute uncertainty ug, the relative uncertainty ur 
allows evaluating the goodness of a measurement and comparing the accuracy of different measurements, 
even when they refer to different physical quantities. When dealing with multiple measurements, e.g. in PIV 
where thousands of velocity vectors are measured in a 2D or 3D domain, or when the measurand is close to 
zero, the relative uncertainty is often computed as the ratio between the local absolute uncertainty and a 
reference quantity gref: ur ≡ ug/gref. 

To evaluate the performance of the uncertainty estimator, the error discrepancy ε is defined as the absolute 
difference between actual measurement error δ, equal to the difference between exact and measured velocity, 
and the error �� estimated with the image matching approach: 

 
ε ≡ |δ − ��|    (1) 

 
Note that the computation of the error discrepancy ε requires the knowledge of the actual measurement 

error δ, which might be obtained as the difference between the measured velocity and the reference (or 
exact) velocity.  

The fraction of vectors having error discrepancy below a certain value ε is indicated here as population 
P(ε): 
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A point of the P–ε curve (Figure 1) indicates that for P% of the vectors the error discrepancy is below ε, 

while for the remaining (100–P)% it exceeds ε. Clearly these cumulative histograms strongly depend on the 
measurement: when the actual error is low (e.g. for uniform flows with negligible out-of-plane motion), low 



 

values of the error discrepancy are expected; in contrast, in case of large actual errors (e.g. for turbulent 
flows), most of the vectors are foreseen to have large error discrepancy. Two measurements are considered 
in Figure 1, having rms errors of 0.05 pixels and 0.15 pixels, respectively. In the first measurement, more 
than 80% of the total vectors have error discrepancy ε ≤ εThr =0.05 px (where εThr is arbitrarily chosen), while 
in the second one the percentage is reduced to about 30%. 
 

In order to evaluate the goodness of the error estimator comparing results from different measurements, the 
error discrepancy is normalized with respect to a reference error, similarly to what is done for the relative 
uncertainty: 

 

ε∗ ≡ ���	�
��

� !"
    (3) 

 
A point of the P–ε∗ indicates that P% of the vectors have relative error discrepancy below ε∗, while the 

remaining (100–P)% have relative error discrepancy above ε∗. Figure 2 shows that an appropriate choice of 
δRef makes the population curves fall on top of each other; now approximately the same percentage of vectors 
(P1 ≌ P2) have relative error discrepancy below the threshold value ε*

Thr. This means that the error estimator 
has similar performance when applied to the two measurements, even if they exhibit different values of the 
actual error. When this test is conducted for several different measurements representative of typical PIV 
experiments and the population curves fall on top of each other, the universality of the error estimator is 
proved. 

 

 
Figure 1. Cumulative histograms of the error 

discrepancy. 

 
Figure 2. Cumulative histograms of the relative error 

discrepancy. 
 

 
2.2 Working principle of the uncertainty quantification  by image matching 

This work investigates the universality of the image-matching uncertainty estimator introduced by 
Sciacchitano et al [1]. A detailed description of the estimator’s working principle and implementation is 
reported in the paper mentioned above [1]. Here a brief summary of the key points is reported. 

a. Image matching. The measured velocity is used as a predictor to match the particle images at the 
best of the velocity estimator. 

b. Particle image pair detection. Particle images occurring in both exposures and falling close to 
each other are detected as a pair. 

c. Disparity vector computation. The distance between the particle image pair is evaluated with 
sub-pixel accuracy. 



 

d. Statistical analysis of the disparity vector ensemble. The velocity vector uncertainty is retrieved 
from the mean value and the statistical dispersion of the disparity vector within the interrogation 
window. 

 
 
 

3 Setup of the experiments 
 

3.1 Methodology 
Exposures of a set of particle images are recorded by a PIV system, here referred to as the measurement 

system, in conditions similar to a typical experiment. These images are processed with the LaVision DaVis 
software and yield the measured displacement field, whose uncertainty is quantified via the image matching 
approach. 

The performance of the uncertainty quantification via image matching is evaluated by direct comparison 
with the true measurement error, which here is obtained in two different ways: 

 
1. Spectral analysis. For time resolved measurements conducted with a single camera, the velocity 

amplitude spectrum is computed in a measurement point. According to turbulence dynamics, energy 
is transferred from large time-scale eddies to small time-scale  eddies and then dissipated by 
viscosity at the Kolmogorov time scale [19].  Hence, for sufficiently high frequency, the energy 
content decreases for increasing frequency. However, the presence of measurement noise, which has 
high frequency content because mainly uncorrelated in time, prevents the measured spectrum from 
going toward zero. As proposed by Ghaemi et al. [20], the minimum value of the measured energy 
spectrum is here employed to determine the measurement noise level. 

 
2. Concurrent measurements. An additional PIV measurement system, here called the high-dynamic 

range (HDR) system, is used in the acquisition phase. Such system records the exposures in optimal 
imaging conditions (mean particle image diameter about 2.5-3 pixels according to [21], quantization 
level of 12 bits) and at higher velocity dynamic range (magnification factor typically 3 to 4 times 
higher than for the measurement system). Even assuming the same absolute error as in the 
measurement system, an increase by 3 to 4 times of the dynamic velocity range DVR [22] is 
achieved. However, since the HDR measurement is conducted in “optimal”  conditions, the DVR 
gain typically exceeds factor 5. The displacement field  retrieved with the HDR system can thus be 
regarded as a reference (or exact) displacement field, because it yields measurement errors at least 
five times below those of the measured displacement field. Finally the actual error is computed as 
the difference between measured and reference displacement field and is compared to the estimated 
uncertainty to investigate the performance of the image matching approach. 

 
Several flow fields considered representative of typical PIV experiments have been selected for the test; the 

main features of the experiments are reported in Table 1. 
 

Table 1. Description of the experiments 

Experiment Re [-] or Mach [-] Wind tunnel Type of analysis 

Shear layer Re = 12,000 V-tunnel 
Concurrent 

measurements 

Turbulent wake behind a prism Re =100,000 V-tunnel Spectral analysis 

Uniform transverse flow V∞ = 2.1 m/s V-tunnel 
Concurrent 

measurements 

Supersonic boundary layer M = 2.0 ST-15 
Concurrent 

measurements 

 
 



 

3.2 Experimental apparatus 
 

3.2.1  Subsonic experiments 
The subsonic experiments are conducted in the vertical wind tunnel located at the Aerodynamics 

Laboratories of Delft University of Technology. The wind tunnel has an open test section with circular 
cross-section of 60 cm diameter. The contraction ratio of 150:1 yields a turbulent intensity of about 0.02 % at 
free stream velocity of 10 m/s.  

A dual cavity diode pumped Nd:YLF laser (Litron Lasers, LDY303HE) provides light at wavelength 
λ = 527 nm. Each cavity delivers a pulse energy of 22.5 mJ/pulse at 1 kHz. The laser beam has an output 
diameter of 3 mm and is shaped into a sheet approximately 2 mm thick using spherical and cylindrical 
lenses. Seeding particles of mean diameter dp = 1 µm are generated by a SEFEX smoke generator and 
dispersed in the settling chamber. Images of the seeding particles are recorded by two Photron Fast CAM 
SA1 cameras, having 12-bit CMOS sensor of 1024×1024 pixels (pixel pitch of 20 µm). The cameras are 
equipped with Nikon objectives of focal length 105 mm and 200 mm respectively. 

 
3.2.1.1 Shear layer experiment 

The flow around a prism of rectangular base 4×6 cm2 (W×H) and spanwise length L = 70 cm is 
investigated. The free-stream velocity is set to V∞ = 3.6 m/s, yielding a Reynolds number ReH = 12,000 
based on the prism height. Images are recorded in continuous mode at facq = 5,000 Hz. The fields of view of 
the measurement and HDR systems (FOVM and FOVH, respectively) are 2.0W×2.0W and 0.7W×0.7W, 
respectively (Figure 3); the magnification factors equal MM = 0.25 and MH = 0.74, respectively. The origin of 
the coordinate system (x0,y0) = (0,0) is chosen at the bottom left corner of the base. The recordings are 
processed with LaVision Davis 8.1, which makes use of a multi-grid iterative interrogation algorithm with 
window deformation based on WIDIM [9]. Gaussian weighted interrogation windows are selected with size 
of 16×16, 32×32 and 64×64 pixels respectively. The overlap factor is kept constant to 75% for each 
interrogation window. 

 

 
Figure 3. Fields of view of the measurement and HDR systems. 

 
3.2.1.2 Turbulent wake behind a prism 

The same model as in section 3.2.1.1 is used for the present test case. The analysis is conducted with only 
one PIV system (i.e. the measurement system) imaging a field of view of 18.5×18.5 mm2 centered along the 
base centerline 4.5 W downstream of the prism (Figure 4). In order to achieve an acquisition frequency 
facq = 10,000 Hz, the active region of the sensor is reduced to 256×256 pixels. The optical magnification 
equals M = 0.28. The free-stream velocity is chosen equal to V∞ = 24 m/s, yielding a Reynolds number of 
about 100,000  based on the model’s height.  

 



 

 
Figure 4. Field of view of the turbulent wake experiment. 

 
The recordings are processed with LaVision Davis 8.1 using Gaussian weighted interrogation windows of 

size 16×16, 32×32 and 64×64 pixels respectively with 75% overlap factor. 
 

3.2.1.3 Uniform transverse flow 
The effect of the through-plane motion is investigated in the present experiment. The wind tunnel is run at 

free-stream velocity V∞ = 2.1 m/s without any model mounted in the test section. The laser sheet has a 
thickness ∆z = 2 mm and is tilted of α = 9 deg with respect to the free-stream direction. Hence, the 
free-stream velocity has a component V∞⊥ orthogonal to the laser sheet which causes a through-plane particle 

displacement (Figure 5); the latter can be regulated through the pulse separation time δt. The sensor size of 
the two cameras is cropped to 512 × 512 pixels to achieve an acquisition frequency of facq = 10,000 Hz in 
continuous mode, yielding a through plane displacement w0/∆z = 0.016. Larger through-plane displacements 
(multiples of  w/∆z = 0.016) are obtained by skipping recordings in time; for example, when the first image 
is correlated with the fourth one, the out-of-plane displacement equals 3·w0 = 0.048∆z. 

The measurement camera mounts a Nikon objective with 105 mm focal length, while for the HDR camera 
the objective’s focal length is 200 mm. The f-number is set to 4.0 for both cameras. The fields of view of 
HDR and measurement system are 10.6×10.6 mm2 and 40.5×40.5 mm2 respectively, yielding magnification 
factors MH = 0.97 and MM = 0.25.  

 

  
Figure 5. Experimental setup for the uniform transverse flow experiment. 

 

3.2.2  Supersonic experiment – Supersonic boundary layer 
Supersonic experiments are performed in the ST-15 wind tunnel of the Aerodynamics Laboratories of Delft 

University of Technology. The wind tunnel has a test section of 150 × 150 mm2 and is operated at Mach 2.0 
and total pressure p0 = 3.1 bar.  

Planar PIV experiments are conducted to investigate the boundary layer generated at the wind tunnel’s 
wall. The flow is seeded with micron size di-ethyl-hexyl-sebacate (DEHS) particles, having a nominal 
median diameter of dp = 1 µm. Experiments conducted by Ragni et al [23] showed a typical relaxation time 
of 2 µs of such particles in a Mach 2.0 flow. The seeding particles are injected into the flow in the settling 
chamber. 

The particle tracers are illuminated by a Quantel CFR PIV-200 laser (double-pulsed Nd:YAG laser, with 
200 mJ pulse energy and 9 ns pulse duration at 532 nm wavelength). Laser optics are used to shape the laser 



 

beam into a plane of 1 mm thickness along the span. Images are recorded by two PCO Sensicam QE cameras 
having CCD sensors with 1376×1040 pixels, pixel pitch of 6.45 µm and 12-bit quantization level. The sensor 
is cropped to 320×800 pixels in the streamwise and vertical directions respectively to achieve an acquisition 
rate of 10 Hz in double-frame mode. The pulse separation time is set to 0.6 µs. 

The measurement camera is equipped with a Nikon objective of focal length 60 mm and images a region of 
15.3×38.2 mm (magnification factor MM = 0.14); a 105 mm focal length Nikon objective is mounted on the 
HDR camera, which images a region of 4.0×10.0 mm (magnification factor MH = 0.52, Figure 6). The 
f-number is set to f# = 11 and f# = 16 for the two cameras, respectively. 

The recordings are processed with LaVision DaVis 8.1, using interrogation windows of 64×64 pixels for 
the HDR camera and 16×16 pixels for the measurement camera, both with Gaussian weighting and 75% 
overlap factor. Due to the difference in the magnification factor, the selected processing parameters yield 
velocity fields that have approximately the same spatial resolution for measurement and acquisition system. 

 

  
 

Figure 6. Measured and HDR fields of view (FOVM and FOVH, respectively) for the supersonic boundary layer 
experiment; top view (left) and side view (right). 

 
 

 
4 Results 

 
4.1   Shear layer 

 
A shear layer originates at (0,0) which divides the outer flow from the separated region adjacent to the 

prism edge (left of Figure 7). In the separated shear layer, vortices are periodically formed due to the 
Kelvin-Helmotz instability; the frequency of formation of the vortices is determined from visual inspection 
and corresponds to Strouhal number StH =3.5, which agrees with the value measured by de Kat et al. [24]. In 
the outer region the flow is laminar and low velocity fluctuations are found (below 0.5 pixels, Figure 7 
right); the fluctuation level is higher in the separated region (about 1 pixel) where the flow is turbulent. The 
largest velocity fluctuations (exceeding 3 pixels) occur at the shear layer location and are associated to the 
vortex formation and the flapping motion of the shear layer. The maximum fluctuations take place 
downstream the location x = 300 px (x/W = 0.6) due to the transition from laminar to turbulent regime.  



 

 
 

  
Figure 7. Left: reference mean horizontal velocity with velocity vectors (for sake of clarity, one every 6 vectors is 

displayed in the x-direction). Right: reference fluctuations root mean square. Both quantities are expressed in pixels.  
 
Figure 8 shows the time series of measured and reference velocity (i.e. velocity measured by the HDR 

system) in a point P in the outer region. The plots evidence that the measured velocity is affected by random 
noise that yields high-frequency spurious fluctuations. In contrast, the reference velocity exhibits only 
low-frequency fluctuations associated with the vortex shedding phenomenon.  

 

  
Figure 8. Time series of horizontal velocity component (left) and vertical velocity component (right). Full squares: 

measured velocity; continuous line: reference velocity. 
  
Three error sources are predominant in the present test case: first, the velocity gradient in the shear layer, 

which reaches 0.2 pixels per pixel (Figure 9 left); second, the curvature of the streamlines due to the Kelvin-
Helmotz vortices (Figure 9 right); finally, the out of plane motion downstream of the transition point. These 
error sources are major along the shear layer, while they are small in the outer flow region, where 
significantly lower errors are expected. 

 

P 



 

  
Figure 9. Left: instantaneous horizontal velocity. For clarity, the vectors are displayed every 6 in x-direction. Right: 

instantaneous vorticity field. The velocity is expressed in pixels, the vorticity in arbitrary units. 
 
The error magnitude along two profiles is computed as the root-mean-square of the error time series 

(Figure 10); the former profile is located in the laminar regime (x = 200 px), while the latter is beyond 
transition (x = 340 px). In the laminar profile, the measurement error exhibits a clear peak at the mean shear 
layer location (y = 150 px), which suggests that the error is primarily due to in-plane velocity gradients. The 
estimated peak value is in good agreement with the actual value (0.2 pixels). In the separated region and the 
outer flow, the low velocity gradients cause the measurement error to drop significantly down to 0.03 pixels. 
As already stated in our previous work [1], the image matching approach overestimates errors below a “fog 
level” (typically 0.05 pixels), which represents the sensitivity of the algorithm and is related e.g. to the image 
interpolation algorithm and the particle image peak detection. 

Beyond transition, the amplitude of the shear layer flapping motion increases, resulting in high velocity 
fluctuations spread over a larger region. Also at this location, the measurement error peak is found where the 
velocity fluctuations are the highest. In this case, the measurement error is primarily due to the streamlines 
curvature and to three-dimensional turbulent motion. As a consequence of the larger amplitude of the shear 
layer flapping motion, the error peak broadens (Figure 10, right). The image matching approach correctly 
reproduces the broadening of the mean error peak; however, the peak value is underestimated of 25%. In the 
separated region and the outer flow, the same considerations as before apply: the error is overestimated 
because it lies below the fog level.  

 

  
Figure 10. RMS error profiles at x = 200 pixels (x/W = 0.4, left) and x =340 pixels (x/W = 0.68, right). For clarity, 

one every two samples is displayed. 
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To evaluate the agreement between instantaneous actual and estimated errors, the cross-correlation 

coefficient ρ between the two quantities is computed [25]. Such parameter equals 1 if δ and ɵδ  are linearly 
dependent, while it is null when they are uncorrelated. The contour plot of Figure 11 shows that where the 
measurement error exceeds the fog level, that is in the shear layer and in the separated region, the 
cross-correlation  coefficient typically exceeds 0.2 with peaks up to 0.6. The error time series extracted from 
point A (Figure 11 top-right) evidences the presence of error peaks ascribed to out-of-plane motion or small 
vortices not accurately reproduced  by the measurement system. In contrast, values of ρ approaching zero are 
found in the outer  region because here the measurement error falls below the fog level; as it is illustrated in 
the time series of point B (Figure 11 bottom-right), in this case the image matching approach overestimates 
the error. 

 
 

 
 

Figure 11. Left: cross-correlation coefficient between actual and estimated error. Right: error time series in A (top) 
and B (bottom). 

 
4.1.1 Effect of the particle image diameter 

The particle image diameter is known to affect the accuracy of PIV measurements. Theoretical models and 
numerical simulations ([7], [21]) evidence that the measurement error is minimized for particle image 
diameters between 2 and 3 pixels. Smaller particle images yield systematic errors known as peak locking [3], 
ascribed to the inadequacy of three-point Gaussian fit to accurately estimate the sub-pixel displacement. In 
contrast, large particle images lead to increased uncertainty in the determination of the particle centroid.  

A common practice to mitigate peak locking errors consists in slightly translating the focal plane with 
respect to the measurement plane [26], so that the particles are imaged slightly out of focus and their 
diameter increases in the recordings. However, it is not clear whether such practice also increases the random 
component of the error.  

In this section, three sets of recordings of the shear layer flow are analyzed, with particle images correctly 
in focus (mean diameter dτ = 1 pixel), slightly out of focus (dτ = 2.5 pixels) and strongly out of focus (dτ = 
3.5 pixels) respectively, see Figure 12. In the former case the peak locking is severe (degree of peak locking 
C = 0.4, according to [26]), while it is dramatically reduced when the particles are out of focus (C below 0.15 
in both sets 2 and 3).  

 

A 

B 



 

   

   
Figure 12. Details of the acquired recordings (top row) and corresponding fractional displacement histograms (bottom 

row). From left to right, set 1, 2 and 3. 
 
The error profiles of Figure 13 evidence the effects of the image defocusing on the measurement accuracy. 

The peak errors obtained with particles in focus and slightly out of focus (dτ = 1 and 2.5 pixels, respectively) 
are comparable and are estimated within 30% by the image matching approach. In the outer region, the 
measurement errors drop significantly and a large difference is noticed between the two measurement sets, 
with the latter yielding an error reduction by factor 2 with respect to the former, which is ascribed to the 
reduction of peak locking errors due to the defocusing practice. In this region, the error is typically 
overestimated when it falls below a fog level of about 0.05 pixels.  

The third set (recordings strongly out of focus, mean particle image diameter dτ = 3.5 pixels) exhibits 
increased measurement errors both in the shear layer and in the outer region due to the higher uncertainty in 
determining the particle image centroid. The peak error is correctly estimated by the image matching 
approach, while the estimated error in the outer region does not drop below 0.1 pixels, which suggests that 
the fog level depends on the particle image diameter. This occurs because large particle images are more 
sensitive to noise in the recordings, therefore the location of the particle image centroid with the three-point 
Gaussian fit becomes more uncertain. A singnificant enhancement of the particle image location detection 
and therefore of the uncertainty estimation for large particle images is expected with a more advanced 
particle position detector, e.g. a two-dimensional 5×5 Gaussian fit [27]. Such improvement of the image 
matching algorithm for uncertainty quantification is left to future work. 

 



 

  
Figure 13. RMS error profiles at x = 200 pixels (x/W = 0.4, left) and x =340 pixels (x/W = 0.68, right) for the three 

different sets of measurement. For clarity, one every four samples is displayed. 
 

4.2   Turbulent wake behind a prism 
 
The turbulent flow at Reynolds number ReH = 100,000 has been selected due to the wide range of length 

and time scales present. An instantaneous contour of 
u v u v

Q
x y y x

∂ ∂ ∂ ∂= −
∂ ∂ ∂ ∂

 [28] is depicted in Figure 14 to 

illustrate the presence of small-scale vortical structures having wavelength λ below 50 pixels. Figure 15 
shows a portion of the horizontal velocity time series extracted in a point P of coordinates (x,y)  = (130,130) 
px. Considering the entire sequence of velocity fields, the mean and standard deviation of the horizontal 
velocity equal umean = –0.94 px and ustd = 0.98 px respectively.  

 

 
Figure 14. Instantaneous value of Q and velocity 
vectors relative to the convective velocity. 

 

 
Figure 15. Horizontal velocity time series in x = 130 px and y 
= 130 px. 

The Eulerian linear spectral density (LSD) of the horizontal velocity in P is computed for the three 
interrogation window sizes.  

From turbulence dynamics, the amplitude spectrum (viz. LSD) can be divided into three different regions 
[19]. The large-scale sub-range is characterized by low frequency fluctuations (in the experiment below 
60 Hz), where the viscous effects are negligible and energy is transferred from the mean flow to small scales. 
In the inertial sub-range, no energy is added by the mean flow and no energy is taken out by viscous 
dissipation; in contrast, energy is transferred from low to large frequencies. Finally, in the viscous sub-range 
the energy is dissipated by viscosity. 



 

In the ideal case of large Reynolds number and no measurement noise, the time spectrum is approximately 
constant in the large-scale sub-range, it monotonically decreases in the inertial sub-range and it is null in the 
viscous sub-range (Figure 16).  

 

 
Figure 16. Eulerian energy time spectrum in the ideal case of large Reynolds number and no measurement noise. 

 
In the real case, high frequency fluctuations are present due to measurement noise and the LSD reaches a 

positive minimum value which equals the noise level, as shown in the plots of Figure 17; in these plots, the 
value of the LSD is multiplied by the square root of the frequency so that the vertical axis of the plots 
indicates the amplitude (in pixels) of the velocity fluctuations.  

The plot for widow size of 16×16 pixels (Figure 17 left) exhibits an amplitude distribution varying over 
one decade up to a frequency of approximately 700 Hz; the measurement noise obtained from the linear 
spectrum is 0.048 pixels. In addition to the indication of the time spectrum, the measurement error is also 
evaluated with the image matching approach, obtaining an estimated value of 0.080 pixels. Increasing the 
interrogation window size to 64×64 pixels yields a major reduction in both the actual and the measured error 
due to the increase in the correlation signal strength. In this case, the amplitude distribution varies over one 
decade and a half up to a frequency of 1,000 Hz.   

 
    

  
Figure 17. Pre-mulitplied LSD of the horizontal velocity in P. Left: 16×16 px; right: 64×64 px. 

 
Figure 18 summarizes the measurement errors for different interrogation window sizes. As discussed in our 

previous work ([1]), the error is inversely proportional to the linear window size, i.e. it scales with the square 
root of the number N of particle image pairs. The results of  Figure 18 prove the validity of the proposed 
model. However, the image-matching approach yields an overestimate by up to factor two of the 
measurement error with respect to the value obtained with the spectral analysis. 

An additional approach for error estimation is analyzed here, already employed by Violato and Scarano 
[29]. In such approach, a second-order polynomial least-square regression is applied to the velocity time 
series over a time kernel smaller than the typical time scales (here 11 time steps). The measurement error is 



 

estimated as the residual of the difference between velocity time history and polynomial regression. Such 
approach can be applied whenever time-resolved data are available and, as illustrated in Figure 18, it 
provides accurate estimates of the measurement error under the condition that the latter is mainly 
uncorrelated in time. 

 

 
Figure 18. Measurement error as a function of the interrogation window size. 

 
4.3   Uniform transverse flow 

 
The contribution of the out-of-plane motion to the measurement error is well documented in literature 

([21], [22], [30], among others). The seeding particles motion thorugh the light sheet causes variations of the 
imaged intensity level; in presence of overlapping particle images, the relative variation of intensity yields a 
biased displacement estimate. Furthermore, the out-of-plane motion leads to loss-of-pairs which lessens the 
correlation peak strength. The resulting error is of the order of 0.1 pixels and is reported to increase 
exponentially with the through-plane displacement [30]. This behavior is also retrieved in the present 
experiment (Figure 19), where the estimated error matches the actual error within 35% of its value. Also, the 
total error decreases when increasing the interrogation window size from 16×16 pixels 32×32 pixels due to 
the larger number of particle image pairs that strengthen the correlation signal.  

 

 
Figure 19. RMS error as a function of the out-of-plane displacement. 

 
4.4   Supersonic boundary layer 
 

The boundary layer develops for a length of approximately 1 m on a surface under nearly adiabatic 
conditions, reaching a thickness of δ99 = 5.5 mm. The characteristics of the boundary layer are evaluated 
using the recordings from the HDR system. The incompressible displacement thickness δ* and the 
incompressible momentum thickness θ equal 0.67 mm and 0.52 mm respectively, yielding an incompressible 
shape factor Hinc of 1.29. The Reynolds number based on the incompressible momentum thickness is 



 

Reθ = 21,000. The skin friction coefficient Cf is computed with the Van Driest II formula in combination 
with the Crocco-Buseman relation [31] with recovery factor r = 0.89 and equals 1.8×10–3; the corresponding 
friction velocity is uτ = 19.7 m/s. The parameters of the supersonic boundary layer experiment are reported in 
Table 2; the results are in good agreement with previous experiments conducted by Sun et al [32].  

 
Table 2. Supersonic boundary layer parameters. 

Parameter Value 

M∞ [-]  2.0 
u∞ [m/s] 501 
p0 [Pa] 3.1×105 
T0 [K]  285 
δ99[mm] 5.5 
δ*[mm] 0.67 
θ [mm] 0.52 
Hinc [-] 1.29 
Reθ [-] 21,000 
Cf [-] 1.8×10–3 
uτ [m/s] 19.7 

 
 
Figure 20 shows the boundary layer profile expressed in inner units u+= u/ uτ and y+=y uτ /ν, being ν the 

fluid kinematic vicosity at the wall. The reference profile and the measured one are plotted for comparison. 

The reference profile follows the log law ($% = '
(.*'

ln-.%/ + 5.0, [31]) in the range 60 < y+ < 2,000, which 

corresponds to 0.01 < y/δ99 < 0.32. The linear sublayer (where u+ = y+) is not visible in the present 
experiment due to the limited spatial resolution of PIV. For y+ > 2000, the reference profile departs from the 
log law due to a mild adverse pressure gradient in the outer region (wake component, [31]). The measured 
boundary layer profile falls on top of the reference one for y+ ≥ 200 (y/δ99 ≥ 0.03); this result suggests that 
the present experiment is free of major systematic error sources. The measurement point closest to the wall is 
in y+ = 90; such data departs from reference profile and log law due to the limited spatial resolution of the 
measurement system. 

The streamwise velocity fluctuations (Figure 21) exhibit the typical trend of a turbulent boundary layer 
with zero pressure gradient [33], with reference fluctuations up to u’rms/uτ = 2.2 (u’rms/u∞ = 0.09) in proximity 
of the wall; low reference velocity fluctuations (about u’rms/u∞ = 0.006) are found in the free-stream region 
(y/δ99 > 1), where the flow is nearly uniform. The measured velocity fluctuations show the same trend as the 
reference ones. However, the fluctuations root-mean-square is slightly overestimated (u’rms/u∞ ≌ 0.01) in the 
free-stream region due to random noise in the measured velocity fields. The overestimation is larger in the 
near wall region (y/δ99 < 0.2, u’rms/u∞ overestimated by 0.04) due to the limited spatial resolution of the 
measurement system and to laser light refelctions not completely removed in the pre-processing phase. 

 



 

 
Figure 20. Mean boundary layer profile in inner units; 
reference data (hollow triangles) and measurement data 
(full squares).  

 
Figure 21. Velocity fluctuations in the boundary layer; 
reference data (hollow triangles) and measurement data (full 
squares). For clarity, every three reference data point is 
displayed. 

 
The measurement error is evaluated both from the difference between measured and reference velocity and 

with the image matching approach. The error is expected to be the minimum in the free-stream region, where 
the flow is uniform, and to grow in the wall-normal direction due to the larger velocity fluctuations.  

Figure 22 shows an instantaneous velocity profile in the boundary layer with the error bars computed with 
the image matching approach. As predicted, in the free-stream region measured and reference velocity 
coincide and the estimated error is few hundredth of a pixel. In contrast, close to the wall the discrepancy 
between reference and measured velocity becomes evident and the estimated error exceeds 0.2 pixels. For 

the measured profile, the reference velocity is within the range [u–ɵδ , u+ɵδ ] for 85% of the vectors.  
The plots of Figure 23 showing the root-mean-square error profiles confirm that the error along the 

boundary layer follows a trend similar to the velocity fluctuations, being the minimum in the free-stream 
region ( RMS uδ ∞ = 0.01) and the maximum in the vicinity of the wall ( RMS uδ ∞ = 0.07). The image matching 
estimation reproduces the same trend as the actual error; however, close to the wall the maximum error is 
underestimated of about 30%. This “clipping” of the estimated error may be attributed to inadequate particle 
image detection and pairing in presence of large disparities exceeding one pixel. 
 

 
Figure 22. Instantaneous reference and measured 

velocity profile with error bars in the boundary 
layer. For clarity, every other data point is 
displayed. 

Figure 23. Actual and estimated RMS error profiles in the 
boundary layer. For clarity, every other data point is displayed. 

 
 

 
 
 



 

4.5 Universality proof 
To prove the universality of the image matching approach, the uncertainty of the velocity fields from all the 

experiments discussed in the previous section is examined here; these experiments cover a gamut of flow 
regimes considered representative of typical PIV measurements.  

The cumulative histograms of the actual error δ (Figure 24) show how the measurement error depends on 
flow regime, imaging conditions and processing parameter. The value 0.1 pixels often considered the typical 
uncertainty of PIV measurements is far from beeing “universal”: in some experiments (e.g. uniform 
transverse flow with w/δz = 0.02 and 16×16 pixel interrogation window) 80% of the vectors have actual 
error below 0.1 pixels, while in others (e.g. uniform transverse flow with w/δz = 0.17 and 16×16 pixel 
interrogation window) the error of more than 70% of the vectors exceeds this value. 

 

 
Figure 24. Cumulative histograms of the actual error. 

 
As discussed in section 2.1, both the difference between estimated and actual error (absolute error 

discrepancy ε) and the normalized difference between the two quantities (relative error discrepancy ε∗) are 
monitored to investigate the universality of the uncertainty estimation; for the relative error discrepancy, the 
normalization factor is chosen to be the absolute value of the local actual error. The cumulative histograms 
of the error discrepancy (Figure 25) are computed excluding the vectors with actual error below 0.03 pixels, 
which is the fog level regarded to as the sensitivity of the image matching algorithm. Error discrepancies 
below the fog level fall within the uncertainty of the error estimator. 

 
 
 

  
Figure 25. Cumulative histograms of the absolute error discrepancy (left) and of the relative error discrepancy (right). 

The symbol key applies to both plots. 
 
When plotting the population of vectors against the absolute error discrepancy (Figure 25, left), it is clear 

that different experimental conditions yield different discrepancy between actual and estimated error. For 

Fog level 



 

example, in experiments with large measurement errors (e.g. shear layer experiement with dτ = 3.5 px and 
uniform transverse flow with w/δz = 0.17 and interrogation window of 16×16 px2) only 30% of the vectors 
have error discrepancy below 0.05 pixels, while the percentage rises to 80% in experiments with low 
measurement errors (e.g. uniform transverse flow with w/δz = 0.02 and interrogation window of 16×16 px2).  

In contrast, when the relative error discrepancy is considered instead of the absolute error discrepancy 
(Figure 25, right), the spread of the histograms is strongly reduced. This result indicates that the performance 
of the image matching error estimator is rather independent of flow regimes, experimental conditions and 
processing parameters. In detail, the error is estimated within 50% of its actual value for more than 50% of 
the vectors. The only test case that shows lower accuracy in the uncertainty estimation is the shear layer case 
with large particle images (dτ = 3.5 pixels): in these imaging conditions, the estimation of the particle image 
position is strongly affected by noise and leads to a lower accuracy of the error estimator, as discussed in 
section 4.1.1. A major improvement of the uncertainty estimation for large particle images is expected with a 
more advanced particle position detection, e.g. through a two-dimensional 5×5 Gaussian fit instead of the 
conventional 3-point Gaussian fit [32]. Repeating the calculation of the cumulative histogram only with 
actual errors above 0.06 pixels, which is justified by the higher fog level for these imaging conditions, the 
curve of this test case aligns with the other curves (dashed curve with left facing triangles). 

 
5 Conclusions 

This work investigates the universality of the image matching approach for uncertainty quantification of 
PIV data, introduced by Sciacchitano et al [1]. The approach is assessed using an experimental database that 
reproduces flow and imaging conditions representative of typical PIV experiments. The analyzed flow fields 
include laminar shear layer and transition to turbulent regime, turbulent wake behind a bluff body, uniform 
flow with out-of-plane motion and supersonic turbulent boundary layer. Also the effect of the image 
defocusing on the measurement accuracy is investigated. Finally the influence of a processing parameter 
such as the interrogation window size is scrutinized. 

The experimental assessment of the uncertainty quantification approach requires the knowledge of the 
exact measurement error, which is retrieved either with a more accurate measurement conducted by a high 
dynamic range system or by physical considerations on the velocity field and the frequency spectrum. In all 
the measurement conditions, the image matching approach estimates the RMS error within 30% of the actual 
value. Measurement errors below 0.05 pixels are typically overestimated due to an intrinsic limit of the 
approach ascribed to the uncertainty in determining the particle image position with subpixel accuracy. 

 
To discuss the universality of the method, the relative discrepancy between actual and estimated error is 

considered. Cumulative histograms are plotted which represent the population of vectors having a relative 
error discrepancy below a given value. It is found that when the error discrepancy is normalized with respect 
to the absolute value of the local actual error, the population curves spread is strongly reduced, which 
indicates that the estimator performance are rather independent of flow and imaging conditions and of the 
selected processing parameters. For more than 50% of the vectors the error is estimated within 50% of its 
actual value. 
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