
1

Computer Graphics and Visualization

EEMCS, Delft University of Technology

Author

Kevin de Quillettes

Parallel and Distributed Systems

Master Computer Science

Supervisors

Prof. Dr. Elmar Eisemann

Leonardo Scandolo

by exploiting image coherence in epipolar space

Multiple viewpoint rendering

THESIS

submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Kevin de Quillettes

Computer Graphics and Visualization Group

Department of Intelligent Systems

Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Delft, The Netherlands

https://www.eemcs.tudelft.nl

Multiple viewpoint rendering by exploiting

image coherence in epipolar space

i

AUTHOR

Name: Kevin de Quillettes
Student id: 4077482
Email: K.A.deQuillettes@student.tudelft.nl

T ITLE

Multiple viewpoint rendering by exploiting image coherence in epipolar space

DATE OF THESIS DEFENCE

4 June 2018

SUPERVISORS

Prof. Dr. Elmar Eisemann

Leonardo Scandolo

THESIS COMMITTEE

Prof. Dr. Elmar Eisemann Faculty EEMCS, Delft University of Technology
Klaus Hildebrandt Faculty EEMCS, Delft University of Technology
Pablo Cesar Faculty EEMCS, Delft University of Technology

ii

Abstract

In recent years, there has been a widespread increase in the adoption of virtual reality and 3d displays

which require many images as input, e.g. head mounted displays or lightfield displays. Real-time

rendered imagery for such displays is commonly computed using brute-force rendering pipelines based

on forward(+) or deferred rendering pipelines. This process can be sped up based on the coherence

between images, and is the aim of the presented study. The result is a proof-of-concept framework

meant as alternative for brute force generation of each image, whereby the developed algorithms

interpolate from a set of source images based on the theory of epipolar geometry. This theory

describes a relation of a surface point in 3d space between different images.

Besides advantages as better performance compared to the baseline, interpolation-based image

generation also has disadvantages. Specific to the presented use case is the need for special support

of commonly used view dependent properties. As such, support for specularity is demonstrated based

on inclusion of the Phong reflection model in the framework.

Additionally, several techniques are included to improve the performance of the basic interpolation

algorithm. Thus, further reducing the frame times of the developed interpolation-based rendering

pipelines compared to the baseline rendering pipeline, which for this study is a deferred rendering

pipeline. Although, the increased performance results in decreased image quality, the resulting images

are of acceptable quality when compared to the baseline. All aspects considered, the results show a

rendering framework based on epipolar geometry is viable, but the current implementation leaves

many features used in production rendering pipelines to be ported. Moreover, the current framework

implementation is built upon techniques that may have a lot of room for improvement.

iii

Preface

Before you lies my master thesis report “Multiple viewpoint rendering by exploiting image coherence

in epipolar space”. It is the culmination of my research towards increasing the performance of multi-

view rendering. This master thesis has been done to complete the graduation requirements of the

Software Technology Track at the University of Technology Delft. As such, this report marks the end of

my study at the university.

The work for this master thesis was done under the Computer Graphics and Visualization group.

Notably, this research was supervised by Prof. Dr. Elmar Eisemann. I would like to thank you for your

guidance, insights and knowledge without which I would not have been able to conduct this research

project. Furthermore, I would like to thank my daily supervisor Leonardo Scandolo who was always

available to answer my questions, queries and think with me on the issues I faced.

To everybody else whom I had the pleasure to interact and work with during my time at the University

of Technology Delft: I would like to thank you for your cooperation and knowledge. I am sure that I’m

forgetting someone, but I would like to specially mention Ernst, Edward, Maikel, Niels and Radjino. You

made the university fun and interesting for me. Finally, I want to thank my parents and brother for

their support and believe in me finishing my degree. Especially, this master thesis that seemed to be

endless. Thank you.

I hope you enjoy your reading.

Kevin de Quillettes

Leidschendam, The Netherlands

mei 28, 2018

iv

Contents

1 Introduction ... 1

 Mission statement ... 1

 Main contributions .. 2

 Conventions ... 2

 Reading guidelines... 3

2 Background .. 4

 Related work ... 4

 Epipolar geometry ... 9

3 Epipolar based view interpolation .. 11

 Camera placement restrictions ... 11

 Overview of rendering framework .. 12

 Basic rendering framework ... 13

3.3.1 Acquisition of source views ... 14

3.3.2 Epipolar view interpolation ... 24

 Optimizations .. 32

3.4.1 Extended depth offset ... 32

3.4.2 Conservative visibility estimation .. 33

3.4.3 Primitive coalescing ... 35

3.4.4 Dynamic layer reduction ... 38

 View dependent properties .. 39

4 Results ... 45

 Test platform ... 45

 Systematic testing ... 46

 Ground truth ... 49

 Measured Performance ... 50

 Measured image quality .. 62

5 Discussion .. 77

 Implications of results ... 77

 Limitations of conducted research .. 87

6 Conclusion ... 90

7 Recommendations for future research ... 92

 Geometry parallel to view direction ... 92

 Vertical view offset .. 92

 Multiple light sources .. 93

v

 Per-pixel linked lists ... 93

 Visibility estimation with clustering .. 94

 Epipolar view volume interpolation .. 94

 A multitude of lighting models .. 95

References ... 96

 Additional image quality data ... 99

 Derivation of time complexity ... 101

 Deferred rendering .. 101

 Center view acquisition ... 103

 Hierarchical view acquisition ... 105

 Epipolar view interpolation ... 110

 Derivation of memory usage ... 115

 Deferred rendering .. 115

 Center view acquisition and epipolar view interpolation 116

 Dual view acquisition and epipolar view interpolation 117

1

1 Introduction

The current generation of graphics processing units (GPU) is capable of handling amazingly complex

scenes consisting of several tens of millions of lit and textured triangles every second. Even lower-end

hardware graphics chips, embedded in portable devices such as laptops and tablets, can handle

realistic looking scenes in real-time.

However, consumers want more realistic looking videos and games in real-time, even to the point

of photorealism. As such, the increase in fidelity of the shading models necessary to achieve this level

of quality counteracts the increase in computing power of next-generation graphics cards.

To make this problem worse, even more computations are moved to the GPU since it is so fast at doing

parallel computations. Examples are fluid simulation, collision detection or cloth simulation.

Another ongoing trend that diminishes the perceived increase in computing power is larger and

higher fidelity displays since more pixels lead to more computations to color each of them. Besides

this, there is a tendency towards multiple-viewpoint displays, which show a different viewpoint

depending on the angle at which a user looks to the screen. Some examples are the new 3D TVs, head

mounted displays such as the Oculus Rift or the HTC Vive, or light field displays.

The problem with multiple-viewpoint displays is the need for a multitude of input images, ranging from

a couple for head mounted displays to several tens of thousands for light field displays. Fortunately,

the difference between consecutive images is small. This allows for reuse of a lot of computations to

generate new images.

Data reuse, or more specifically, exploiting spatio-temporal coherence is a heavily researched topic

within the computer graphics research community. It has been successfully applied for improving ray

tracing, increase performance of global illumination algorithms, and many more. For the purposes of

this report, the interest specifically lies with decreasing frame time by reusing images. For this, several

usable example algorithms are based on reprojection, image warping and multi view rendering.

 Mission statement
The focus of the research presented in this report is to provide a method to efficiently, and in real-

time, generate the set of images that can serve as input of multiple-viewpoint displays. As mentioned

previously, one hinted possibility to achieve this is to reduce the amount of work spent on generating

the image set. More specifically, can epipolar geometry be used? This is the chosen route during the

currently presented research, and leads to the following main research question:

The possibility for a reduced frame time likely leads to several approximations. This raises the question:

“how much will the improvement be?” Also, it may also lead to an unreasonable image quality. In the

end, the main research question is amended with two more research questions:

1) How much is the performance increase over a baseline rendering pipeline? In other words, how

much is the reduction in frame time when the newly developed framework is compared to a

baseline rendering pipeline?

2) Are the resulting images of reasonable quality? More precisely, have the generated images

using interpolation an image quality such that they are usable in consumer products?

Can a framework be developed with the ability to generate a set of images

corresponding to user controllable viewpoints by exploiting the coherence between

consecutive images using epipolar space?

2

 Main contributions
The research conducted for the presented thesis has resulted in the following contributions to the field

of computer graphics:

1) A proof-of-concept implementation consisting of a collection of rendering pipelines which

shows the viability of interpolating images based on epipolar geometry to generate additional

images. The performance is such that it outperforms against the tested baseline rendering

pipeline in situations that are workable, while maintaining a usable image quality.

2) The collection of rendering pipelines is combined into a framework designed and built to form

the basis for future work. It includes tools to measure the performance and image quality of

the used algorithms. Furthermore, a few options are included to inspect the inner workings of

the algorithms and view the generated images.

3) Several optimizations and an extension on top of the basic interpolation framework have been

developed and documented. The optimizations reduce the footprint of the basic framework,

and show the framework is flexible and can relatively easily be amended. Additionally,

specularity is added as extension since the interpolation pipelines don’t natively support view

dependent properties, which are commonly used. As such, the addition of specularity in the

form of the Phong reflection model shows that it is possible to add support for view dependent

properties.

 Conventions
The following sections give detailed explanations and analyses of the research associated with this

report. Most of the remaining document, the source view acquisition and epipolar view interpolation

algorithms will be discussed. Herein, abbreviations and concepts are used that may be uncommon.

The purpose of this section is to identify and clarify them.

Firstly, the presented rendering framework entails several rendering pipelines. Each pipeline consists

of two stages. The source view acquisition stage, explained in detail in Section 3.3.1, is one of the

following three variations: center view acquisition, dual view acquisition or hierarchical view

acquisition. The second stage entails image interpolation and is explained in Section 3.3.2. The

combination of the respective source view acquisition stages with the image interpolation stage will

be abbreviated throughout the text to respectively center epipolar pipeline, dual epipolar pipeline and

hierarchical epipolar pipeline.

Additionally, the basic epipolar rendering framework has several options available for activation. The

different options must be tested in distinct configurations. Unfortunately, this leads to long strings

signifying a configuration, and is exacerbated by the relatively long names for the individual options.

To sidestep this issue for the different optimizations and extensions, the following abbreviations have

been used throughout the text and figures where the full names would be too long:

 Specularity = Spec

 Primitive Coalescing = PrimCoal

 Visibility Estimation = VisEst

 Dynamic Layer Reduction = DLR

Natural language has a lot of inherent ambiguity. Mathematical notation avoids many of these issues.

As such, the following sections rely on both natural and mathematical expressions to clearly

communicate the ideas and inner workings of the epipolar rendering framework. However, some

conventions are expected to be known.

3

Starting with the camera projection parameters. These parameters mathematically describe the

projection of 3-dimensional geometry to 2d images and consist of the internal and external parameters

of a camera. Examples are the field of view, near plane or far plane. It is commonly given in the form

of one or more matrices. This also includes the viewport projection parameters. These values are used

to project the scene geometry from world space to image space. The reason for aggregating these

properties is that none are used separately and would clutter and obscure the main ideas.

Regarding concepts used in the pseudo code, there is an unfortunate knowledge gap between

mathematical concepts and concepts implemented on actual hardware. More specifically, the epipolar

rendering framework makes extensive use of textures. A widely known and well-defined concept with

respect to graphics rendering APIs, such as the used OpenGL API. Unfortunately, mathematics has no

such concept. So, for the remainder of this report, textures are represented as sets of tuples. Each

tuple can be thought of as a pixel described by its x- and y-coordinate, and possibly other attributes

such as color or depth.

A second concept used throughout the report and in the pseudo code, are so called views. They

can be regarded as a special kind of textures. Explicitly, they contain images that are seen when looking

through a specific camera. In other words, these textures contain the fragments1 closest to the view

position as seen from a specific camera.

The last concept that might be different from traditional uses is the frame time. That is the amount of

time which is needed to render one frame. Unless otherwise specified this time is given in milliseconds,

and expresses the elapsed time to render a complete set of views. More explicitly, it is the total time

to render one view for each camera given as input. As an example, if ten cameras are given as input,

then the frame time is the amount of time to render all ten views once.

 Reading guidelines
The organization of this report is as follows. Chapter 2 starts with an overview of any previous work

and scientific publications that discuss similar problems and solutions. Included in this chapter is an

introduction into other important concepts needed for understanding the main contribution. Then,

Chapter 3 discusses the presented framework in detail, including any optimizations and additional

options. Following this, Chapter 4 starts explaining the used performance and quality measures and

how these were measured. The same chapter ends with the performance and image quality

measurement results. Chapter 5, explains the results as shown in Chapter 4 and discusses several

limitations of the performed research. The second to last chapter concludes with answering the

research question as posed in Section 1.1. Finally, Chapter 7 looks to the future and shows several

possible directions of potential research.

1 For more information about a fragment, see https://en.wikipedia.org/wiki/Fragment_(computer_graphics)

4

2 Background

This chapter will be the primer to the remainder of this report. To place the newly developed algorithm

in context with regards to current state-of-the-art computer graphics research, Section 2.1 will provide

some insight into general data reuse techniques and discuss notable research related to reprojection

methods, stereo rendering and multi-view rendering. Then, Section 2.2 ends this chapter with an

introduction to the main concept behind the developed view interpolation algorithm.

 Related work
As mentioned in the previous chapter, the basis of the presented research is to exploit coherence

between images to speed up the generation of them. Fortunately, exploiting coherence is an active

area of research within the computer graphics community with study, development and

documentation of numerous methods. Specifically, the interest of this report is data reuse targeted at

rendering more views as fast as possible. The found methods are mostly targeted at increasing the

framerate of image streams which is in line with the most common usage scenario of real-time

rendering.

Temporal coherence

The rendering framework described in Section 3 exclusively exploits spatial coherence, which is one of

several forms of coherence. Temporal coherence is a closely related form of coherence that is

employed in many areas of computer graphics. For the purposes of this report, temporal coherence

can be exploited by reusing computations when rendering views as seen by moving a single camera

along a line within a static scene at different points in time. An identical situation, but viewed from the

perspective of spatial coherence, is recording scene geometry from different camera viewpoints in a

static scene at one point in time. This situation is the focus of the presented study.

However, temporal coherence can be exploited for many computer graphics related techniques.

An interesting rendering technique which may benefit from exploitation of temporal coherence is ray

tracing. Attempts have been made to use ray tracing for real-time rendering, but the rendering

technique is still not heavily used in mass consumer products. Nonetheless, other uses of ray tracing

still benefit from better performance. For example, rendering movie animation sequences faster or

using less resources is beneficial to movie studios.

For ray tracers using a voxel spatial subdivision scheme, Jevans [22] exploited temporal coherence

by only updating voxels with changed geometry. For subsequent frames, rays intersecting geometry in

unchanged voxels could be ignored because the computation would be identical.

When ray tracing image sequences, temporal coherence can also be used to reduce the number of

object intersection tests. Havran et al. [18] devised a method to reproject object intersections across

frames for single bounce rays that pass through a pixel center. Possibly reducing the number of

intersection checks to one for a set of pixels. If the reprojection fails, the normal ray tracer is used.

 Temporal coherence can also be used to reduce the artifacts in ray traced image sequences.

Consecutive images may exhibit flickering and popping due to sampling from wildly different

directions. To aid this, Martin et al. [30] described a method to guide ray directions based on previous

frames. The idea is to track ray hit points across frames using reprojection and ensure that pixels add

some contribution of previously hit objects by directing new rays towards them.

On a different note, temporal coherence can also be exploited with photon mapping based global

illumination techniques. Photon mapping is typically implemented as two passes [21]. First, the photon

map is constructed by tracing the paths of photons emitted from light sources. Photon path tracing is

identical to ray tracing, except that the interaction with a material is different. A photon can either be

5

reflected, transmitted, or absorbed, which is probabilistically determined. Each photon bounce on a

non-specular surface is stored in a map, which contains the intersection point, incoming photon power

and incident direction. The second pass, gathers the radiance values for every pixel in the resulting

image from the photon map.

Tawara et al. [43] described several possibilities to exploit the temporal coherence. Among other

possibilities, gathering the radiance values for multiple frames can be done in a single pass due to the

coherence between image samples in the temporal domain. Another possibility for data reuse

amounts to reusing photon hit points for generating photon maps. A similar temporal coherence

method is employed by Wang et al. [46].

Spatial coherence

Exploitation of temporal coherence, or the study of signals that correlate at different points in time, is

one of many methods to reduce GPU workload. The subject of the presented study exploits a form of

coherence known as spatial coherence and is concerned with the correlation of different points in

space.

Intuitively, reducing the amount of data to produce in combination with a reconstruction filter

could reduce the GPU workload. Yang et al. [52] have documented a method whereby images are

produced at lower than desired resolutions. To get the correct image resolution, a geometry-aware

reconstruction filter is applied to the low-resolution image. Specifically, the filter is a bilateral filter

modified to reduce artifacts on depth boundaries and near high-frequency image features by adapting

the reconstruction kernel to each pixel such that data integration across region boundaries is avoided.

Another geometry-aware upsampling algorithm was developed by Herzog et al. [20]. The spatial

upsampling is computed as a weighted average with the weights being a function of sample

orientation, linear depth and image space filter. This is combined with temporal coherence to increase

image quality. More importantly, this method is suitable for execution on GPUs.

Besides reducing the amount of computation, it is also possible to reduce fragment shader

invocations. Yong et al. [19] proposed a rendering pipeline which is prepended to traditional pipelines

with a coarse processing step for triangles. Instead of processing fragments at pixel level, blocks of 2x2

or 4x4 pixels are processed under the assumptions that individual pixels within a block are identical.

However, if the quality is deemed not enough, the data can be passed on to the original shader and be

processed at individual pixel level.

But spatial coherence is not limited to reducing the amount of computation. it can also be exploited

to improve performance of ray tracing. Kim et al. [24] explored the usage of ray tracing on mobile

hardware and present an adaptive undersampling technique to reduce the number of rays that need

to be traced. The method adaptively decides whether rays need to be traced or can be approximated

based on similarity of neighboring samples, whereby ray tracing of missing samples is replaced by

cheaper linear interpolation of geometric attributes at the first hit points.

Reprojection

Another aspect of the presented research is rendering frames as fast as possible by exploiting

coherence. An intuitive idea to increase the framerate when generating images is reusing previously

generated frames by mapping the corresponding pixels in the source image to the target image. In this

case, the source image would be computed frames based on the scene geometry, and the target

frames are extra frames that are generated from the source images by means of copying pixels. In

literature this idea is referred to as reprojection. Now the question remains: What mapping can be

used to efficiently reproject source information to the target?

6

An intuitive possibility would be to reuse computation results from existing images to generate new

images. This is the basic idea behind the method developed by Nehab et al. [32]. Practically, the

proposed method is implemented as an addition to exisiting fragment shaders. Augmented with a

cache that stores values associated with visible surface points in viewport-sized, off-screen buffers. To

support this method, fragments shaders are modified to fetch a value from the cache if possible.

Otherwise, the original shader is evaluated.

The accuracy of values stored in the cache will degrade over time. The authors counteract this by

refreshing the cache. Two possible refresh policies are discussed. With the screen partitioned into a

grid of non-overlapping tiles, each tile could be refreshed in turn. Or, tiles could be randomly selected

to be refreshed.

To find a correspondence between the values stored in the cache and the new frame, the authors

supply the parameters of the source frame alongside the necessary parameters for the current frame.

This allows the vertex shader to attribute the vertices with the projection-space coordinates of the

same vertex in the cache, which is interpolated by the hardware such that each pixel knows it

correspondence to the location in the cache. This is augmented with a comparison of the depth, stored

in the depth map of the source frame to filter out occlusions by unrelated surface points.

The scene-assisted interpolation method by Yang et al. [53] uses an identical method to track the

correspondence between pixels in different frames. The difference being that scene-assisted

interpolation uses the previous and next frame to generate one or more in-between frames. For

reprojected frames, only the depth buffer is rasterized. The corresponding color is fetched from the

source frames whereby the color is merged using a few simple rules. If a surface point is visible in both

source frames, then the resulting color is a linear interpolation. If a surface point is visible in one source

frame, then that color is used. Otherwise, the authors give the option to evaluate the original shader

to compute the correct result, or, the pixel in either source frames that is closest to the camera can be

used.

The previously mentioned ideas required manual modification of exisiting rendering pipelines to add

reprojection capabilities. The paper “Automated reprojection-based pixel shader optimization” by

Sitthi-amorn et al. [41] provides an offline method with the ability to automate this process, and builds

upon the reprojection cache introduced by Nehab et al [32].

As input, a pixel shader and representative rendering session are expected. The modification

pipeline operates on the abstract syntax tree (AST) of the pixel shader where leaf nodes represent

variables, internal nodes represent calculations and the root node is the output color of the pixel

shader. The goal is to find the optimal internal nodes, which are expected to be expensive to evaluate,

and replace them with cache fetch instructions.

To guide the node selection process, a performance and error model are trained based on a

representative rendering session. The performance model is a prediction of the average time to render

a single pixel. This model is trained based on the render time, cache hits and misses of several randomly

picked frames from the sample rendering session. The error model is trained for different refresh

periods, and trained on a set of pre-generated shaders where each permutation caches a different AST

node. The error model gives an estimate of the average pixel error over a set of rendered frames. To

select a specific shader permutation for usage, the user must provide an error threshold. The system

selects the shader which is below the specified threshold and has the best performance.

7

Image warping

A similar idea to reprojection is referred to as image warping in literature. The contrast with

reprojection being that image warping operates on image data, whereas reprojection is more general

and can be applied to parameters that are internal to the rendering pipeline.

A method developed by Didyk et al. [10] uses image warping to upsample an image stream. In other

words, a stream of rendered images is interspersed with warped images to increase the framerate.

Along with the source images that will be warped, the pipeline assumes a depth map and motion

flow map are given as input. The additional maps are either a byproduct of the rendering process or

can easily be obtained.

To extrapolate images, a regular grid is placed over a source image. The grid is adjusted by moving

non-edge grid vertices, that are close to a discontinuity in the motion flow map, to the discontinuity

edge. The irregular grid warps the source images by applying the motion flow to the grid vertices since

the vertices have the original texture coordinates associated with them. Additionally, the warped

images are selectively blurred to hide small imperfections due to disocclusions. However, this results

in loss of high-frequency image content and is compensated for by subtracting a blurred version of the

source image to increase the high-frequency content. In turn, the modified source image could exceed

the display’s dynamic range. To ensure this does not happen, some high-frequency content from the

modified source image is moved to the warped images and a gamma correction is applied.

Another method, developed by Yang et al. [53], is bidirectional image warping to increase the

framerate of a real-time rendered image stream. The input to the algorithm is two traditionally

generated images 𝐼𝑡 and 𝐼𝑡+1 rendered at time 𝑡 and 𝑡 + 1, along with the corresponding depth maps.

Furthermore, the forward motion flow map 𝑉𝑡
𝑓

 and backward motion flow map 𝑉𝑡+1
𝑏 which

respectively encodes the motion of every pixel from image 𝐼𝑡 to 𝐼𝑡+1, and the motion from every pixel

from image 𝐼𝑡+1 to 𝐼𝑡 are expected as input. These might differ due to occlusions.

To generate an intermediate frame at time 𝑡 + 𝛼, the iterative greedy search algorithm described

for the forward direction by the following equations is applied to each pixel:

𝑝𝑡,0 = 𝑝𝑡+𝛼

𝑝𝑡,𝑖 = 𝑝𝑡+𝛼 − 𝛼 ∗ 𝑉𝑡
𝑓[𝑝𝑡.𝑖−1]. 𝑥𝑦

In these equations, 𝑝𝑥,𝑦 is the image-space pixel location at time 𝑥 in iteration 𝑦. Note that the authors

improve on these basic equations by using a different initialization for the greedy search algorithm.

Furthermore, the clip-space depth 𝑧𝑓 and a measure of the screen-space error 𝑒𝑓 are computed

using these equations:

𝑧𝑓 = 𝑍𝑡[𝑝𝑡,𝑖] + 𝛼 ∗ 𝑉𝑡
𝑓
[𝑝𝑡,𝑖]. 𝑧

𝑒𝑓 = || (𝑝𝑡,𝑖 + 𝛼 ∗ 𝑉𝑡
𝑓
[𝑝𝑡,𝑖]) − 𝑝𝑡+𝛼 ||

In parallel, a similar iterative search is done for the backward direction using similar equations.

The results of both iterative searches are combined based on the computed depth values and

screen-space errors. For each pixel, if the error measure is below a set threshold and they have similar

depth, then a linear interpolation between the color of the source pixel with the lowest error and the

color of that pixel projected to the other source image is used. Otherwise, the color of the pixel closest

to the camera is used.

8

Multiview rendering

Besides increasing the frame rate of a real-time rendering pipeline by interpolating images, a small

amount of research is also targeted at efficiently rendering a scene from multiple viewpoints. But, how

does this relate to the previously mentioned techniques? Imagine each reprojected or warped image

being a different viewpoint, then it becomes more obvious that reprojection and image warping are

targeting similar problems. However, the previously mentioned techniques operate under different

assumptions. The following methods are more closely related to the problem that is subject of the

presented research.

J. Hasselgren and T. Akenine-Möller [17] researched a method to efficiently render up to sixteen views.

The authors based their method on two observations. Texturing dominates the cost when considering

memory accesses, and increased pixel shader complexity led to many applications where the

performance is bound by pixel shader throughput. The novelty of this method is to rasterize the scene

to all views simultaneously. The authors claim this will maximize the texture sampling cache hit-ratio

since each view uses roughly similar texels. In turn, this should reduce the impact of texturing.

Rasterization of each triangle to all the views is done in normalized, perspective-correct barycentric

coordinates. As such, the color of a point within a triangle can be expressed in one set of barycentric

coordinates, and several constants that depend on the view. Combined with the deterministic nature

of pixel shaders, the conclusion can be drawn that roughly sorted barycentric coordinates will lead to

roughly sorted texture accesses with a maximized cache hit-ratio. The only requirement being that

texture accesses are view independent.

The basic rasterization algorithm operates on scanlines within the bounds of a triangle, where the

samples are generated ordered by view based on an efficiency measure. But Hasselgren and Akenine-

Möller found that this can be optimized by using a tile-based approach. It is expected to improve the

texture cache hit-ratio since the projection of a tile overlaps in two consecutively traversed views.

A second improvement to the basic rasterization algorithm is based on the observation that a pixel

shader with the same input will result in the same color, which implies that the results of the pixel

shader might be reused. The authors achieve this by storing and reusing color information in a cache.

The total set of views to be generated is split up in sets such that the divergences in each set are small.

From each set one view is picked to form the basis for the cache, for which the pixel shader is fully

evaluated. The fragments in the remaining views are partly based on a full evaluation of the pixel

shader, and partly on the cache.

A second method directed at multiview rendering was described by M. Halle [15]. A three-step pipeline

is used to render several hundred views for a single static scene.

The first step consists of preprocessing the scene data. More specifically, this entails doing view

independent lighting calculations for each vertex in the scene. Furthermore, the grid of cameras

corresponding with the views are decomposed in rows. The benefit hereof is that each vertex, as seen

from a row of cameras, only differs in its 𝑥-coordinate. As such, each vertex can be described by a five-

dimensional vector in homogeneous screen space. Coincidentally, the last preprocess step is to

transform the vertices to homogeneous screen space as seen from the left- and rightmost cameras in

each row.

The next step in the multiview rendering pipeline is to decompose the geometry into line segments

such that a segment aligns with a scanline in a final image. The author mentions that this process is

comparable with conventional scan conversion, except that the line segment preserves its 3-

dimensional continuity. Each line segment is stored such that its correspondence with the intersecting

scanline is preserved.

9

The last step in the rendering pipeline consists of rasterization of the captured line segments into

images that form epipolar planes and composition of the final images from the epipolar planes. One

horizontal slice, or pixel row, of the volume created by stacking each final image on top of each other

is called an epipolar plane. This also provides the method to compose the final images from the

epipolar planes. Included in the process of rasterizing each line segment is any view dependent

calculations, texturing and/or hidden surface removal.

 Epipolar geometry
Part of the mission statement of the presented research, as given in Section 1.1, was to exploit

coherence between images. To sustain this idea, a method relating a point in world space with its

coinciding image locations in different views is needed. This relation is described by an idea referenced

as epipolar geometry in literature [16].

Given two cameras looking at a 3-dimensional scene from two distinct positions and orientations.

The 2D projections, as seen from the cameras, and their 3D counterparts have several geometric

relations. Fortunately, the geometric relations lead to constraints between image points that relate to

the same origin in the 3D scene. The view interpolation framework described in the following chapters

uses a simplified case hereof.

For the general case regarding epipolar geometry, consider two cameras with center of projections 𝑂𝑙

and 𝑂𝑟, and a point 𝑋 in 3d space. The projection of 𝑋 onto the image planes of the two cameras is

given by 𝑋𝑙 and 𝑋𝑟. Furthermore, imagine a virtual line segment 𝐿𝑣 between 𝑂𝑙 and 𝑂𝑟. The

intersection of the two camera image planes and the line 𝐿𝑣 gives the epipoles of both image planes.

Now, consider the line 𝐸𝑙 going through 𝑂𝑙 and 𝑋. Any point along 𝐸𝑙 will always project to the point

𝑋𝑙 onto the image plane corresponding with center of projection 𝑂𝑙. But line 𝐸𝑙 projected onto the

image plane corresponding with center of projection 𝑂𝑟 results in a line which is called an epipolar line.

Furthermore, the plane formed by 𝑂𝑙, 𝑂𝑟 and 𝑋 is named the epipolar plane. For a visual example

setting, see Figure 2.1.

Figure 2.1. Example setting showing an epipolar plane and epipolar line corresponding to the center of projections
𝑂𝑙 and 𝑂𝑟, and point of interest 𝑋. The epipolar plane is formed by the triangle 𝑂𝐿𝑂𝑅𝑋. The epipolar line of point
X in the right view is from 𝑒𝑅 to 𝑋𝑅. (Source: https://en.wikipedia.org/wiki/Epipolar_geometry. Accessed: 27-06-
2017)

https://en.wikipedia.org/wiki/Epipolar_geometry

10

This notion is commonly used by computer stereo vision to recreate the depth from a pair of images.

However, the same concepts can be adapted to create an image-based view interpolation algorithm.

Since the camera configurations are controlled by the application, and thus known, and the depth of

3D points is also known, it is possible to warp image points from one image plane to another.

However, due to limitations in current generation graphics processors, it isn’t possible to do this

with unrestricted epipolar geometry. Instead, a simplified case is used with view interpolation. The

camera placement is restricted such that the image planes coincide. This leads to the situation that the

epipolar lines, and planes, are parallel to the horizontal axis of the image.

11

3 Epipolar based view interpolation

The research conducted to answer the research question stated in Chapter 1, has resulted in a

framework which provides several different methods to generate a set of images corresponding with

a set of given viewpoints. This framework is fundamentally built upon the theory of epipolar geometry,

which is used to correlate pixels across different views. Over the course of the study, the sourcing and

composition of the epipolar geometry led to three rendering pipelines.

This chapter provides a detailed insight into the inner workings of the three epipolar rendering

pipelines. The remainder of the chapter is structured as follows. Section 3.1 introduces the restrictions

on the positioning of the view corresponding cameras. Next, Section 3.2 provides a conceptual

overview of the rendering framework. Then, Section 3.3 covers the internals of the basic algorithms,

discussing three source view acquisition methods and the epipolar view interpolation method. Section

3.4 introduces several optimizations that were implemented to reduce the frame time. Lastly, Section

3.5 glosses over support for view dependent properties, particularly discussing support for specular

highlights based on the (Blinn-)Phong reflection model.

 Camera placement restrictions
Current generation graphics pipelines are only capable of efficiently rasterizing 3-dimensional

geometry to 2d images. Unfortunately, view interpolation in the epipolar plane without any

restrictions would require rasterization of volumetric data because the epipolar geometry could have

any orientation in 3d space. To sidestep this inherent issue, the camera orientation and placement has

been restricted for the presented view interpolation methods.

As part of the input, the epipolar rendering framework expects a set of cameras. Herein, each camera

corresponds with a single view that a user wants to be rendered by the framework. Since the presented

method relies on coherence between distinct views, there must be some amount of overlap between

them. Otherwise, there would be no possibility to reuse image sections for generating one or more

images. Furthermore, each camera must have identical internal parameters and orientation. In other

words, all the cameras must have an identical viewing direction, field of view and near and far plane.

The last two conditions are: the cameras must be positioned such that they all lie on a line segment

with two neighboring cameras positioned equidistant to any other pair of cameras, and the line

segment of cameras must be perpendicular to the viewing axis. See Figure 3.1 for a graphical depiction

of the described situation.

Due to the camera placement restrictions, the epipolar geometry describing a point sampled from

any scene will be on the same scanline in every given input camera. Thus, simplifying the capture

process of epipolar geometry from a 3d problem to a 2d problem. Lastly, the restriction on spacing

between cameras ensures that the points coinciding with the image location for the distinct cameras

are also evenly spaced, assuring that the epipolar geometry can be captured in textures by means of

interpolation.

12

 Overview of rendering framework
In broad terms, the fulfillment of the goal as stated in Chapter 1 has led to a two-stage framework. A

depiction of the developed render pipeline from input to output via the two processing stages is shown

in Figure 3.2. The input to the rendering pipeline consists of a set of triangles in combination with a set

of cameras describing each of the views expected as output and the inter-camera relation. Stage one

processes the geometry data into a format usable for interpolation into multiple views. The

incremental improvement of this process has resulted in three distinct rendering pipelines that are

collectively referred to as source view acquisition. As shown in Figure 3.2, the specific pipelines are

named: center view acquisition, dual view acquisition and hierarchical view acquisition. The internal

specifics of the different source view acquisition rendering pipelines are discussed in Section 3.3.1.

The output of the source view acquisition stage is a set of rendered views tagged with information

about the corresponding camera, and forms the input for the view interpolation stage and is

considered the second stage. The goal of the view interpolation stage is generation of a relatively large

set of views compared to the sparse set of rendered views given as input. The algorithm within this

stage executes on the GPU and operates based on the theory of epipolar geometry to efficiently

generate all output views. See Section 3.3.2 for a more detailed description.

Figure 3.1. Depiction of camera positioning on a line segment. All cameras have an identical view direction.
Furthermore, the up vectors are perpendicular to the optical axes of the cameras and the line segment. Lastly,
the distance between each pair of cameras is identical.

Figure 3.2. High-level overview of the newly developed multiview rendering pipeline, including input and output.
Additionally, a description of the inter-stage data is given.

13

The output of the view interpolation, and thus the output of the rendering framework, is the set of

generated views packed in a three-dimensional texture. A depiction of this is shown in Figure 3.3. The

views are stacked one after another such that each vertical slice corresponds with an individual view.

Incidentally, a row of pixels in the 3d volume is considered an epipolar slice in this configuration,

whereby the epipolar view interpolation stage uses each epipolar slice as a distinct render target. This

decomposition of epipolar volume in combination with the camera placement restrictions is one of the

reasons to having the view interpolation algorithm run efficiently on a GPU.

Lastly, it should be noted that the framework provides the three-dimensional texture as final

product instead of individual images. An additional copy step would increase computation time

without any benefit since usage of 2d textures is comparable to the packed epipolar volume in terms

of performance and programmer convenience.

 Basic rendering framework
The general framework overview of the previous section provided an idea of the architecture.

Moreover, it places the specific algorithmic details in a frame of reference. But, the generality of the

previous section still leaves many options open regarding the details within the distinct stages. Filling

this knowledge gap is the goal of the current section. Specifically, Section 3.3.1 disseminates the

information on stage 1 of rendering pipeline. Discussing details of the different source view acquisition

methods. Then, Section 3.3.2 will continue with the specifics of epipolar view interpolation.

Figure 3.3. Depiction of the epipolar volume and how it fits in the rendering framework. The implementation
stores it as a 3d texture, whereby views are stacked one after another. As such, each row of pixels is considered
an epipolar slice (two examples corresponding to the shown views are included in the figure). Lastly, it should be
noted that the framework does not separate the epipolar volume into individual views. Usage of individual views
can be done by reading vertical slices of the epipolar volume.

14

Note that the descriptions in this document with respect to the distinct parts of the different

epipolar rendering pipelines give an in-depth view of the inner workings, the necessary hardware

interfacing, graphics API setup, and asset and resource housekeeping is omitted for conciseness and

brevity. However, a concrete and working implementation of the ideas given in this chapter is used to

present real-world results on the performance and image quality compared to the baseline. It is built

upon the C++ programming language with OpenGL 4.3 as the graphics API.

3.3.1 Acquisition of source views

The epipolar geometry-based view interpolation to generate the final image set is done in image space.

Unfortunately, the scene geometry is given as a set of triangles in 3-dimensional space. Thus, some

processing needs to be done to transform the scene geometry to image space. This is stage 1 of the

two-stage description given in Section 3.2. Unfortunately, a straightforward projection of 3-

dimensional data to 2-dimensional images can lead to missing information due to occlusion. In the

resulting image set this might manifest as holes appearing because traditional rendering pipelines

discard geometry that is occluded by objects that appear in front.

Fortunately, capturing hidden geometry is a well-studied problem. A class of rendering techniques

which use these type of methods is known as order-independent transparency [3, 12, 31]. One of the

solutions used to solve it is known as depth peeling and provides a starting point for capturing the 3d

scene geometry in 2d images, while retaining the necessary information.

Center view acquisition

As discussed in Section 3.2.1, the camera array is configured such that the cameras form a line. The

first method for capturing the geometric information uses depth peeling and does so from the center

view.

Depth peeling [12] is a multi-pass rendering technique, whereby the geometry is rendered 𝑛 times to

get 𝑛 depth layers. During the rendering process, the geometry rasterizer produces a set of fragments

for each pixel. Considering only depth peeling, the fragments consist of the image location and a

corresponding depth value. The depth value in combination with standard depth testing gives the

fragments closest to the camera. To get the second closest fragments it is necessary to disregard the

closest fragments. Fortunately, this can be done with the modern graphics pipeline by means of

discarding fragments in the fragment shader based on the depth value of the previously captured layer.

This process is continued until all fragments are captured. See Code listing 3.1 and Code listing 3.2 for

a mathematical overview of the depth peeling algorithm.

The concrete implementation of the algorithm stores the depth values in 10 distinct viewport-

sized 2d textures, in which each depth value is stored as a 32-bit floating-point value to make sure no

precision is lost. To capture the necessary geometry, each pass renders to an unused texture, whereby

the standard depth testing is used to acquire the fragment closest to the camera. The actual depth

peeling is implemented using a texture fetch of the previous depth layer and a conditional discard.

Since each texture holds the depth values for a single depth layer, a maximum of 10 depth layers can

be captured. However, this should be enough to do the epipolar view interpolation in combination

with the extended depth offset which will be discussed in Section 3.4.1. To make sure the depth peeling

stops doing extra passes when it has captured all the depth layers, every pass keeps track of the

number of fragments that have been processed. This is done with OpenGL occlusion queries. When

the counted fragments reach zero, the depth peeling is stopped because there are no more fragments

left to process.

15

Input: Center camera projection parameters 𝑀𝑉𝑃. Furthermore, scene geometry 𝐺.
Output: A partially ordered set of textures 𝑉, such that 𝑉𝑖 corresponds with depth layer 𝑖 and where
0 ≤ 𝑖 ≤ 𝑛. 𝑖 = 0 is the first depth layer and 𝑖 = 𝑛 coincides with the farthest depth layer as seen
from the center camera.

AcquireCenterSourceViews(𝑴𝑽𝑷, 𝑮):

𝑉 := { ∅ }

𝐹 := RasterizeGeometry(𝑀𝑉𝑃, 𝐺)
𝐹𝑣,0 := DetermineVisibleFragments(𝐹, { ∅ })

𝑉0 := CalculateLighting(𝐹𝑣,0)

𝑉 := 𝑉 ∪ { 𝑉0 }

𝑖 := 1
while true:
 𝐹𝑣,𝑖 := DetermineVisibleFragments(𝐹, 𝐹𝑣,𝑖−1)

 if 𝐹𝑣,𝑖 = { ∅ }:
 break
 end if

 𝑉𝑖 := CalculateLighting(𝐹𝑣,𝑖)

 𝑉 := 𝑉 ∪ { 𝑉𝑖 }

 𝑖 := 𝑖 + 1
end while

return 𝑉
Code listing 3.1. High-level mathematical overview of the depth peeling algorithm. This refers to several helper
functions that describe the standard rendering pipeline. They can be found in Code listing 3.2.

The current implementation of the view interpolation framework captures the geometric information

of a single depth layer using a method known as deferred rendering augmented with screen-space

ambient occlusion (SSAO). The process to capture each depth layer consists of three render passes.

The first pass processes the geometry and stores the albedo, depth and normals in textures. The

used formats for the textures are respectively 8-bit RGB, 32-bit floating-point depth component and

32-bit floating-point RGB. A simple optimization to reduce memory usage and bandwidth is to pack

the different properties together. For example, the albedo and depth could be stored in a single 32-bit

floating-point RGBA textures instead of separate textures. However, this was not done as it is highly

dependent on the use case.

The SSAO render pass takes the depth texture as input and computes the ambient occlusion in

screen-space. The ambient occlusion is stored in a 32-bit floating-point single channel texture. Refer

to Section 6.1 in ShaderX 7 [11] for information on implementing SSAO as that is outside the scope of

this report.

In traditional deferred renderers, the third render pass would compose the final color based on the

ambient, diffuse and specular light components. However, for the presented purpose, only the albedo

of the geometry, ambient contribution and ambient occlusion are gathered into a single color. The

reason being that these components don’t depend on the position of the camera.

For each depth layer, the textures containing the depth, normals and composed color are saved

and passed onto the next stage. Any other textures are cleared and reused to reduce memory usage.

Note that the source view acquisition is not inherently reliant upon deferred rendering to get the

ambient and diffuse color information. Deferred rendering is used because it is a renowned and widely

16

used rendering technique, implemented and shipped by several triple-A games such as Gears of War

4, Battlefield 4, FIFA 17 and Grand Theft Auto V. Fortunately, the usage of the deferred rendering

method is self-contained and can easily be replaced with other rendering techniques. Alternative

methods are forward rendering, forward+ rendering, or a mix of rendering methods.

RasterizeGeometry(Projection parameters 𝑴𝑽𝑷, Geometry 𝑮):

returns a set of tuples (𝑥, 𝑦, 𝑧) such that the geometry 𝐺 projected in accordance
with the projection matrix MVP intersects with (𝑥, 𝑦, 𝑧), i.e. the geometry is
discretized into fragments.

DetermineVisibleFragments(Fragments 𝑭, Occluding Fragments 𝑭𝒐):

if 𝐹𝑜 = { ∅ }:
 return 𝐹
end if

𝐹𝑣 := (𝑥, 𝑦, 1) | (𝑥, 𝑦, _) ∈ 𝐹 }
foreach fragment (𝑥, 𝑦, 𝑧) ∈ 𝐹 do:

if 𝐹𝑣 contains (𝑥, 𝑦, 𝑧𝑑) such that 𝑧𝑑 < 𝑧 or
 𝐹𝑜 contains (𝑥, 𝑦, 𝑧𝑜) such that 𝑧𝑜 > 𝑧:
 continue
 end if

𝐹𝑣 := (𝐹𝑣 \ { (𝑥, 𝑦, _) }) ∪ { (𝑥, 𝑦, 𝑧) }
end foreach

return 𝐹𝑣

CalculateLighting(Fragments 𝑭):

𝑃 := { ∅ }
foreach fragment (𝑥, 𝑦, 𝑧) ∈ 𝐹 do:
 𝑐 := color of (𝑥, 𝑦, 𝑧), computed according to lighting model
 𝑝 := (𝑥, 𝑦, 𝑧, 𝑐)
 𝑃 := 𝑃 ∪ { 𝑝 }
end foreach

return 𝑃

Code listing 3.2. Pseudocode for several support functions to complete the mathematical descriptions of the
different pipelines. The functions shown in this Code listing are a description of the standard graphics pipeline.

Runtime complexity

An indication of the runtime of an algorithm can be given by its time complexity. As a measure of the

amount of work for a given input size, it provides a hint about the performance of an algorithm when

compared to a baseline. However, it isn’t perfect because certain aspects of an implemented algorithm

are hidden or not considered. An example is the overhead incurred due to resource management.

For the center view acquisition algorithm, this is determined by derivation of the pseudocode for

AcquireCenterSourceViews in Code listing 3.1. The time complexity of the referenced functions, shown

in Code listing 3.2, are respectively shown in equation 3.1, 3.2 and 3.3 for RasterizeGeometry,

DetermineVisibleFragments and CalculateLighting. In the equations, 𝑣 refers to the number of vertices

in the input and 𝑝 is the number of pixels. Furthermore, 𝑙 represents the time complexity of computing

the color for a single fragment based on a lighting model. However, the lighting model is not considered

as part of this thesis, and thus treated as a constant.

17

Runtime RasterizeGeometry = 𝑂(𝑣) (3.1)
Runtime DetermineVisibleFragments = 𝑂(𝑝) (3.2)

Runtime CalculateLighting = 𝑂(𝑝) (3.3)

For AcquireCenterSourceViews, the overall time complexity would then lead to equation 3.4. For the

detailed derivation of the time complexity see Appendix B.2.

Runtime AcquireCenterSourceViews = 𝑂(𝑣 + 𝑝) (3.4)

Algorithm pros and cons

The advantages of the described depth layer capturing method is that it is a simple and well-known

method. Moreover, it operates independent of the rendering method, and as such it can work nicely

with any deferred rendering pipeline. Thus, making it easily integrable in most current-generation

graphics rendering engines.

Unfortunately, center view acquisition has several (severe) disadvantages making it undesirable to

use in practice. Starting with the choice of depth peeling to capture the necessary information. A GPU

works most efficiently if it can be constantly fed with work. Unfortunately, depth peeling requires the

use of occlusion queries to detect when all depth layers are captured. This leads to stalls in the graphics

processing pipeline because the results of the occlusion queries aren’t immediately available, and thus,

need to be waited on.

Another downside of center view acquisition is due to capturing the geometric information from a

single camera. There is a limit to the area that is seen from a single camera. The camera array for which

the views are expected as output cover a larger area. As such, some geometric information is missing

and needs to be extrapolated or the final set of views need to be cropped.

A third disadvantage inherent to center view acquisition is missing information for geometry

running parallel to the camera view direction. An example might be a wall on the center axis of the

center camera standing parallel to its view direction. From a different camera, the missing geometry

might be visible but isn’t captured. Thus, the interpolation misses this information. Ultimately, this

leads to holes in the final set of images.

Dual view acquisition

To counteract the two problems related to usage of a single camera as the source and the placement

of that camera in the center, a slightly modified variant was developed. Instead of depth peeling from

the center camera, dual view acquisition uses the same process as center view acquisition to capture

source views. However, from both the leftmost and rightmost cameras. This ensures that the entire

visible region is covered. Furthermore, the idea is that any missed geometry running parallel to the

view direction of the leftmost camera is covered by the rightmost camera, and vice versa. The

mathematical overview of the algorithm can be found in Code listing 3.3.

18

Input: Camera projection parameters 𝑀𝑉𝑃𝑙 and 𝑀𝑉𝑃𝑟 corresponding respectively with the leftmost
and rightmost camera projection parameters. Furthermore, scene geometry 𝐺.
Output: Two partially ordered sets 𝑉𝑙 and 𝑉𝑟 , such that 𝑉𝑥 ,𝑖 corresponds with the projection

parameters for camera 𝑥, where 𝑥 ∈ { 𝑙, 𝑟 } and depth layer 𝑖, with 0 ≤ 𝑖 ≤ 𝑛. 𝑖 = 0 is the frontmost
depth layer and 𝑖 = 𝑛 coincides with the farthest depth layer.

AcquireDualSourceViews(𝑴𝑽𝑷𝒍, 𝑴𝑽𝑷𝒓, 𝑮):

𝑉𝑙 := AcquireDepthLayers(𝑀𝑉𝑃𝑙, 𝐺)
𝑉𝑟 := AcquireDepthLayers(𝑀𝑉𝑃𝑟, 𝐺)

return (𝑉𝑙 , 𝑉𝑟)

AcquireDepthLayers(Projection parameters 𝑴𝑽𝑷, Geometry 𝑮):

𝑉 := { ∅ }

𝐹 := RasterizeGeometry(𝑀𝑉𝑃, 𝐺)
𝐹𝑣,0 := DetermineVisibleFragments(𝐹,{ ∅ })

𝑉0 := CalculateLighting(𝐹𝑣)
𝑉 := 𝑉 ∪ { 𝑉0 }

𝑖 := 1
while true:
 𝐹𝑣,𝑖 := DetermineVisibleFragments(𝐹, 𝐹𝑣,𝑖−1)

 if 𝐹𝑣,𝑖 = { ∅ }:
 break
 end if

 𝑉𝑖 := CalculateLighting(𝐹𝑣,𝑖)

 𝑉 := 𝑉 ∪ { 𝑉𝑖 }

 𝑖 := 𝑖 + 1
end while

return 𝑉
Code listing 3.3. Mathematical overview of dual view acquisition. Any function not listed in this section and used
by AcquireDepthLayers is identical to the function as used in the section on center view acquisition.

The mentioned change won’t increase the complexity classification of the overall algorithm since the

previously determined complexity will only be multiplied with a constant. But, note that the measured

runtime of dual view acquisition will increase noticeably due to capturing twice the number of depth

layers. Furthermore, double the number of images need to be processed by the epipolar interpolation

stage explained in subsection 3.3.2.

Hierarchical view acquisition

During the development of the presented framework, a third method for acquiring source views was

developed. The reason is that edge cases exist in which the left- and rightmost view are not sufficient

to capture all necessary geometry. Therefore, hierarchical view acquisition uses a heuristic to attempt

to obtain a minimum set of views that capture the necessary information to feed the epipolar

interpolation stage. Opposed to the operating assumption of the previous methods to capture all

geometric information, which leads to a time complexity as a function of the depth complexity of a

scene.

Hierarchical view acquisition tries to take advantage of the relatively small distance between the

leftmost and rightmost cameras. The idea is to render the two views corresponding to the outermost

19

cameras using standard deferred rendering, then check if the visual quality of the views between the

two rendered views is good enough using a heuristic. The quality check doesn’t use view interpolation,

instead a measure is used to predict if the quality of the output will be good enough when the acquired

views are interpolated. For sufficient quality, the hierarchical view acquisition is done. Otherwise, the

middle view is captured. This process is recursively done with both ranges of half the views, and is

continued until the heuristic is satisfied with each branch. In addition to the image quality heuristic, a

time-based rendering budget is used as stopping criterion to keep the time spent on acquiring views

within reasonable bounds since the heuristic could theoretically continue to an extreme number of

source views. The time to generate each view is tracked and accumulated. Views are continuously

generated if the accumulated time is less than a user-specified threshold, and the heuristic based stop

criterion isn’t fulfilled.

The threshold isn’t directly specified by a user because of the drawbacks. Even with identical input,

the time to render a single view is not constant due to external factors. Moreover, the time it takes to

render a single view can vary heavily from GPU to GPU since not every GPU has the same processing

power. So, if the threshold is specified by the user as the maximum time, the value must be tweaked

for every GPU the algorithm runs on. To overcome the user-unfriendliness and consistency issues, the

maximum number of views is set by the user. Technically, the number of views can be directly used as

the threshold in the proof-of-concept implementation since the threshold is static. However, in

production implementations this value could be supplied by a dynamically adapted render budget. So,

to make the system more integrable in existing render pipelines, a transformation is applied to get a

time-based threshold. This is done by multiplication with the average time to render a view. In addition

to cross-platform compatibility, the platform can change at runtime. For example, modern GPUs can

modulate the available processing power based on its temperature. To take the changing conditions

of the used platform into account, the frame time is tracked as the running average of the last five

views.

The implementation used for the performance and quality assessment is implemented iteratively,

instead of recursively. A mathematical overview of the iterative algorithm is shown in Code listing 3.4.

20

Input: An ordered set of camera projection parameters 𝑀𝑉𝑃𝑖 , where 0 ≤ 𝑖 ≤ 𝑛 and it is the index of
the camera. This set is ordered such that 𝑖 = 0 corresponds with the leftmost camera parameters
and 𝑖 = 𝑛 corresponds with the rightmost camera parameters. Furthermore, quality threshold 𝐻𝑡 ,
max renderbudget 𝐵 and scene geometry 𝐺 are given as input.

Output: A set of textures 𝑉, such that 𝑉𝑖 corresponds with the 𝑖𝑡ℎ source view.

AcquireRangedSourceViews(𝑴𝑽𝑷, 𝑮, 𝑯𝒕, 𝑩):

𝑇 := 0
RenderQueue := empty queue

(𝑉0 , 𝑇0) := RenderView(0, 𝑀𝑉𝑃0, 𝐺)
(𝑉1 , 𝑇1) := RenderView(𝑛, 𝑀𝑉𝑃𝑛, 𝐺)
𝑉 := 𝑉0 ∪ { 𝑉1 }

RenderQueue.Push((𝑉0 , 𝑉1))
𝑇 := 𝑇 + 𝑇0 + 𝑇1

while RenderQueue not empty and 𝑇 < 𝐵:
 (𝑉𝑙 , 𝑉𝑟) := RenderQueue.Pop()
 𝐼𝑛𝑑𝑒𝑥 :=

 𝑉𝑣𝑖𝑠 := ComputeVisibleSet(𝑇𝑙, 𝑀𝑉𝑃𝑙, 𝑇𝑟, 𝑀𝑉𝑃𝑟, 𝑀𝑉𝑃𝐼𝑛𝑑𝑒𝑥)
 𝐻 := CountHoles(𝑉𝑣𝑖𝑠)
 if 𝐻 < 𝐻𝑡:
 (𝑉𝑖 , 𝑇𝑖) := RenderView(𝐼𝑛𝑑𝑒𝑥, 𝑀𝑉𝑃𝐼𝑛𝑑𝑒𝑥 , 𝐺)
 𝑉 := 𝑉 ∪ { 𝑉𝑖 }

 RenderQueue.Push((𝑉𝑙 , 𝑉𝑖))
 RenderQueue.Push((𝑉𝑖 , 𝑉𝑟))
 𝑇 := 𝑇 + 𝑇𝑖
 end if
end while

return V

RenderView(ViewIndex 𝑰, Projection parameters 𝑴𝑽𝑷, Geometry 𝑮):

𝑇𝑖𝑚𝑒𝑠 := start time

𝐹 := RasterizeGeometry(𝑀𝑉𝑃, 𝐺)
𝐹𝑣 := DetermineVisibleFragments(𝐹,{ ∅ })
𝑉 := CalculateLighting(𝐹𝑣)

𝑇𝑖𝑚𝑒𝑒 := end time

return (𝑉, 𝑇𝑖𝑚𝑒𝑒 − 𝑇𝑖𝑚𝑒𝑠)
Code listing 3.4. Pseudocode for the hierarchical view acquisition pipeline. The shown functions refer to several
helper functions. These are shown in Code listing 3.2. Furthermore, the algorithmic description of the erosion
based image quality metric is given in Code listing 3.5 and Code listing 3.6.

21

ComputeVisibleSet(Left view 𝑽𝒍, 𝑴𝑽𝑷𝒍, Right view 𝑽𝒓, 𝑴𝑽𝑷𝒓, 𝑴𝑽𝑷𝒎):

𝑉𝑙 ,𝑒 := ErodeView(𝑉𝑙, 𝑀𝑉𝑃𝑟, 𝑀𝑉𝑃𝑙)

𝑉𝑟 ,𝑒 := ErodeView(𝑉𝑟, 𝑀𝑉𝑃𝑙, 𝑀𝑉𝑃𝑟)

return 𝑉𝑙 ,𝑒 ∪ 𝑉𝑟 ,𝑒

ErodeView(Target view 𝑽𝒕, Projection parameters 𝑴𝑽𝑷, Projection parameters 𝑴𝑽𝑷𝒖):

𝐸𝑑𝑔𝑒𝑀𝑎𝑝 := { ∅ }
foreach fragment (𝑥, 𝑦, 𝑧) ∈ 𝑉𝑡 do:
 if 𝑝 corresponds with an edge of object in scene geometry:
 𝐸𝑑𝑔𝑒𝑀𝑎𝑝 := 𝐸𝑑𝑔𝑒𝑀𝑎𝑝 ∪ { (𝑥, 𝑦, 𝑧, 1) }
 else
 𝐸𝑑𝑔𝑒𝑀𝑎𝑝 := 𝐸𝑑𝑔𝑒𝑀𝑎𝑝 ∪ { (𝑥, 𝑦, 𝑧, 0) }
 end if
end foreach

𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑢𝑚𝑀𝑎𝑝 := { ∅ }
foreach tuple (𝑥, 𝑦, 𝑧, 𝑚𝑎𝑟𝑘) ∈ 𝐸𝑑𝑔𝑒𝑀𝑎𝑝 do:
 𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑢𝑚 := 𝑚𝑎𝑟𝑘𝑥

𝑖=0 , where (𝑖, 𝑦, 𝑧, 𝑚𝑎𝑟𝑘) ∈ 𝐸𝑑𝑔𝑒𝑀𝑎𝑝
𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑢𝑚𝑀𝑎𝑝 := 𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑢𝑚𝑀𝑎𝑝 ∪ {(𝑥, 𝑦, 𝑧, 𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑢𝑚)}

end foreach

𝐸𝑟𝑜𝑑𝑒𝑑𝑉𝑖𝑒𝑤 := { ∅ }
foreach tuple (𝑥, 𝑦, 𝑧, 𝑝𝑟𝑒𝑓𝑖𝑥_𝑠𝑢𝑚) ∈ 𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑢𝑚𝑀𝑎𝑝 do:
 𝑥𝑤 := unproject 𝑥 to world space with parameters 𝑀𝑉𝑃𝑢

𝑥𝑟 := reproject 𝑥 to image space with parameters 𝑀𝑉𝑃

if (𝑥𝑟 , 𝑦, 𝑧, 𝑒𝑟𝑜𝑑𝑒𝑑_𝑠𝑢𝑚) ∈ 𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑢𝑚𝑀𝑎𝑝 and 𝑝𝑟𝑒𝑓𝑖𝑥_𝑠𝑢𝑚 ≠ 𝑒𝑟𝑜𝑑𝑒𝑑_𝑠𝑢𝑚:

𝐸𝑟𝑜𝑑𝑒𝑑𝑉𝑖𝑒𝑤 := 𝐸𝑟𝑜𝑑𝑒𝑑𝑉𝑖𝑒𝑤 ∪ { (𝑥, 𝑦, 1) }
else
 𝐸𝑟𝑜𝑑𝑒𝑑𝑉𝑖𝑒𝑤 := 𝐸𝑟𝑜𝑑𝑒𝑑𝑉𝑖𝑒𝑤 ∪ { (𝑥, 𝑦, 0) }
end if

end foreach

return 𝐸𝑟𝑜𝑑𝑒𝑑𝑉𝑖𝑒𝑤
Code listing 3.5. Pseudocode for the image-based erosion of geometry to compute the potentially visible
geometry when looking from camera positions other than the provided 𝑀𝑉𝑃𝑙 and 𝑀𝑉𝑃𝑟.

As mentioned, the hierarchical view acquisition algorithm uses a heuristic as part of the stopping

criterion. The idea of the heuristic is to provide a guestimate of the image quality using less resources

than performing actual interpolation since it is very hard to exactly measure the image quality. As such,

it exploits the ability of the human visual system to compensate for some amount of noise. The idea is

to use a filtered version of a captured view as a mask to compute the information which is lost if the

source view capture process were to stop. The decision would be to decide if the lost information leads

to an acceptable result.

Filtering the view to form the mask is like a problem known in literature as finding the potentially

visible set (PVS) since the image space mask should give all geometry which might be visible. In general,

computing the exact PVS is a very difficult problem. However, Décoret et al. [9] have shown that it is

possible to efficiently compute a conservative estimate given that the viewpoint origin region, denoted

as viewcell, is convex. The authors could modify the determination of a region’s visibility from a viewer

region to a point-to-point query.

The idea for computing the PVS is to erode the viewcell and area of which the visibility needs to be

computed using the viewcell as the structuring element. This reduces the two regions to a pair of

points. Furthermore, all occluders need to be eroded using the viewcell as the structuring element,

22

which is done as a preprocessing step. The visibility of a region is determined by checking if any

occluder intersects the line segment running between the pair of points acquired from the eroded

viewcell and eroded geometry.

The used heuristic for conservative visibility estimation is based on the mentioned principles for PVS

computation but operates in image-space and removes the need for the preprocessing step. The goal

is to get an estimate for the visible geometry after subtraction of the already captured geometry. The

computation entails a three-step process, with the depth map, a by-product of the deferred rendering

process, expected as input. The output is a visibility map for the pixels which contain visible geometry

after subtraction of the already captured geometry.

The first step consists of creating a discontinuity map with pixels set to 1 if they correspond with a

discontinuity, and all other pixels set to 0. Before erosion of the objects can take place, the edges of

the distinct objects need to be found. To this end, a discontinuity map is formed using a mean-based

local threshold. In other words, the depth of a pixel is compared with the geometric mean of several

surrounding pixels. In the current implementation, the mean is computed based on a 5-pixel wide one-

dimensional window. This is justified because the epipolar planes are generated per scanline. As such,

the visibility estimation, and thus also the thresholding, can be done per scanline. An advantage of a

1-dimensional window, compared to a 2d window, is the lower number of depth texture fetches per

pixel.

The second step is to apply a prefix sum to the scanlines of the discontinuity map. This will result in

ranges of pixels with the same value if no edge was detected in the previous step since the

discontinuity map consists only of binary values.

With the processed discontinuity map, the objects in the depth map can be easily eroded to form

a visibility map. Remember, the structuring element is equal to the viewcell. In this case it’s equal to a

line because the viewpoints all lie on a single line. As such, given a pixel 𝑝 with image location (𝑥, 𝑦),

the erosion is done by reprojecting 𝑝 to a pixel 𝑝′ with image location (𝑥′, 𝑦). The reprojection entails

an unprojection to view space, addition or subtraction of the distance between the leftmost and

rightmost viewpoints, and a projection to image space. The addition or subtraction is dependent on

the side of the view in the current range being eroded. To check if 𝑝 is within the set of visible

geometry, compare the value of 𝑝 in the summed discontinuity map against the value of 𝑝′. If the

values differ, then an edge of an object is crossed and thus is pixel 𝑝 marked as visible.

The erosion leaves holes in the visibility map where the captured views possibly miss information for

all cameras in between the cameras that belong to the captured views. The holes are pixelwise

counted, and the decision of an acceptable result is done against a user supplied threshold. The user

sets the threshold as a percentage of the total number of pixels in a texture to make the heuristic more

robust against textures size differences. The mathematical equivalent of counting the pixels is shown

in Code listing 3.6.

CountHoles(Eroded view 𝑽𝒆):

Count := 0
foreach pixel (𝑥, 𝑦, 𝑚𝑎𝑟𝑘) ∈ 𝑉𝑒 do:
 if 𝑚𝑎𝑟𝑘 ≠ 1:
 Count := Count + 1
 end if
end foreach

return Count

Code listing 3.6. Pseudocode for counting the number of holes in an eroded image. The image quality decision-
rule is implemented as a comparison of the count returned by this function and a user-provided threshold.

23

Runtime complexity

Determining the time complexity of the hierarchical view acquisition algorithm is a little more involved

than the previous two cases. The basis for the time complexity analysis is the pseudocode shown in

Code listing 3.4. For the previously determined time complexity of RasterizeGeometry,

DetermineVisibleFragments and CalculateLighting refer to equations 3.1, 3.2 and 3.3. Additionally,

AcquireHierarchicalSourceViews references the functions RenderView, CountHoles, ErodeView and

ComputeVisibilitySet. Their respective time complexities are shown in equations 3.5, 3.6, 3.7 and 3.8.

Herein, 𝑣 refers to the amount of geometry contained in a scene and 𝑝 is the number of pixels

contained in an image.

Runtime RenderView = 𝑂(𝑣 + 𝑝) (3.5)

Runtime CountHoles = 𝑂(𝑝) (3.6)

Runtime ErodeView = 𝑂(𝑝2 + 𝑝) (3.7)

Runtime ComputeVisibilitySet = 𝑂(𝑝2 + 2 ∗ 𝑝) (3.8)

The combined time complexity of the helper functions and the function

AcquireHierarchicalSourceViews results in equation 3.9. Herein, two additional variables are

referenced. 𝑇 refers to the time needed to render a single view. This is the time reported by

RenderView. 𝐵 refers to the render budget and is given as input to the algorithm. The time complexity

is dependent upon these variables since the number of executions of the while-loop is parameterized

by these variables. For the full derivation of the time complexity see Appendix B.3.

Runtime AcquireHierarchicalSourceViews =

2 ∗ 𝑂(𝑣 + 𝑝) + 𝑂(1) + 9 +
𝑇

𝐵
∗ (𝑂(𝑝2 + 2𝑝) + 𝑂(𝑣 + 𝑝) + 𝑂(𝑝) + 3 ∗ 𝑂(1) + 11) + 1 (3.9)

Algorithm pros and cons

One advantage which favors usage of the hierarchical view generation algorithm is the ability to target

a performance constraint by limiting the number of views that may be generated, or the ability to

target image quality by leaning towards a higher image quality threshold and limit the generated views

at infinity.

A second advantage is the modularity regarding the quality measure. It is easy to swap in different

quality measures. As an example, and to possibly improve performance, a second image quality

heuristic was implemented. The second heuristic performed a pixel wise reprojection of the captured

images in a range of views to its center image. If the resulting image has too many holes, then the

algorithm would continue; otherwise the recursion stops. However, more clever heuristics may

improve the performance further, and can be the subject of future research projects.

Unfortunately, the hierarchical view generation algorithm also has several undesired properties.

Starting with the interdependency between the generated views. The decision to continue generating

source views is dependent upon already generated views. As such, the CPU can’t generate new

graphics rendering commands and send them to the GPU without waiting for previous results. Like the

depth peeling based methods, this leads to stalls in the graphics pipeline and to underutilization of the

GPU.

A second disadvantage is the usage of a conservative visibility estimation. The conservative nature

of the visibility estimation can lead to extra, and unneeded, generation of source views. This may

benefit the quality of the resulting images because more information is captured, but there is also a

negative impact on the runtime as the epipolar rendering stage must perform more work.

24

The last undesired property is the potential for erratic behavior. Although the hierarchical view

generation algorithm is limited by a render budget, the visibility estimation can still result in large

fluctuations in the number of generated views depending on slight changes in the camera array

configuration or the visible geometry. An extreme example of visible geometry that might lead to

erratic behaviour is looking at a single curtain versus looking at the leaves of a bush.

3.3.2 Epipolar view interpolation

The source view acquisition methods, described in the previous section, were the first step towards

the goal stated in Section 1.1. They provide the necessary geometric information in image form.

This section documents the specific details of Stage 2 from the overview given in Section 3.2.

Explicitly, it presents the multi-pass, image-space interpolation algorithm that transforms the image-

based geometry information to the final set of images by means of interpolation. Conceptually, the

presented algorithm operates in epipolar space. In this context, the epipolar space is a 3-dimensional

space meaning that every point can be characterized by three coordinates. Additionally, each point

can have additional attributes such as color or depth. As was briefly introduced in Section 2.2, epipolar

space provides a structured link of a geometry sample across different views given the previously

described camera placement constraints. The idea behind the interpolation algorithm is to transform

each geometry sample into the epipolar space equivalent, and let the GPU interpolate the sample to

each view.

Each pass of the interpolation algorithm takes one source view as input and transforms each pixel

into a line segment in epipolar space. If GPUs can rasterize 3d geometry to a 3d texture, it would be

possible to directly generate the epipolar representation of the scene geometry. Unfortunately, this is

not (yet) possible. However, due to the restrictions on the camera placement, the line segment in

epipolar space stays within the same scanline. As such, it is possible to decompose the 3-dimensional

epipolar volume of all views into a set of distinct 2-dimensional planes. Each plane links one row of

pixels in the source view to its corresponding location in the epipolar volume.

Transforming a source view pixel to a line segment in epipolar space entails calculating the

coordinates for the endpoints and generating a vertex for each endpoint. To transfer the color of the

source pixel to the epipolar line segment, set the color and depth of the endpoints to be identical to

the source pixel. This can then be handed to the rasterizer to be placed into the correct epipolar plane.

Calculating the endpoint coordinates of a line, for one

source pixel, amounts to finding the coordinates (𝑥, 𝑦) of

both vertices that describe a line since the epipolar space

has been reduced to a plane.

Looking at Figure 3.4, computing the 𝑥-coordinate of

one endpoint equates to calculating the 𝑥-coordinate in

the final views, and can be done in several manners. The

proof-of-concept implementation settled for

unprojection of the source pixel coordinates to view

space, adding the disparity only to the 𝑥-coordinate, and

reprojecting the modified coordinates to image space.

The reason for choosing this method was that world

space coordinates are needed for adding specularity to

the final images. Section 3.5 contains more information

on support for specularity. Unprojection is done by multiplication of the source pixel coordinates with

the inverse of the projection matrix followed by a perspective division. Reprojection entails a

multiplication of the modified view space coordinates by the projection matrix again followed by a

perspective division. The disparity is equal to the distance from the position of the source view camera

Figure 3.4. Example diagram of a single epipolar
plane. Each row of pixels corresponds with a
pixel row for a different view. The red line
signifies one source pixel that has been
transformed to its counterpart in epipolar space.

25

to the position of the target camera, which is either the camera corresponding with the leftmost or

rightmost view. For mathematical equations to compute the disparity see the pseudocode for

DrawDepthLayer in Code listing 3.9.

What remains is calculating the 𝑦-coordinate. Looking to the example in Figure 3.4, a line must

always start in the center of the bottom row of pixels and end in the center of the top row of pixels

since the algorithm wants to know where each source pixel lands in every view. By definition, the

image space 𝑦-coordinate is fixed to 0.5 for the start vertex, and 0.5 + 𝑛 − 1 for the end vertex, in a

situation with 𝑛 views and where the pixel centers fall on half integers. Moreover, the 𝑦-coordinate is

identical for each line in epipolar space.

Note that the described epipolar line generation algorithm is sufficient for the basic view interpolation

algorithm. However, this does not allow for view dependent properties such as specularity. The

addition discussed in Section 3.5 requires the ability to compute properties on arbitrary locations along

a line in epipolar space. This is possible by generating multiple connected line segments, where the

end of a line segment, and conjointly the beginning of the next line segment, is determined by a vertex.

The coordinates of the additional vertices could be computed as a linear interpolation between the

computed end points in epipolar space. However, the world space coordinates are needed for view

dependent properties. As such, the needed coordinates are computed as a linear interpolation of the

world space coordinates. Any attributes such as color, depth or specular intensity are copied from the

source pixel.

However, doing a verbatim transformation of each source pixel to a epipolar line is not enough. A

method is needed to resolve crossing epipolar lines. The chosen method is to superimpose the epipolar

lines and let the depth of a fragment decide which is kept in the composed result. This method works

because only fragments closest to the camera are visible. As such, this resolution method can be

implemented by means of depth testing.

The same principle is also used to combine the epipolar planes from different views. For example,

each depth layer for the center view acquisition method has several epipolar planes that occupy the

same space in the epipolar volume. Again, the correct pixels are resolved by depth testing. An

advantage of depth testing as conflict resolution is nice integration with the conceptual interpolation

algorithm. But, more importantly, depth testing is commonly used, and thus implemented as a

hardware operation.

Unfortunately, depth testing by itself does not deliver the best image quality. For the human eye,

the quality difference between the composed views using only depth testing and views generated

using the baseline algorithm is barely noticeable. However, the described composition method suffers

from the finite precision of GPUs. Since the transformation and resolution of multiple epipolar planes

cannot be done in one operation, the intermediate result needs to be stored. Unfortunately, this leads

to precision loss and means that geometry which originally had different depths get treated as having

an identical depth. To work around this problem, the proof-of-concept implementation adds a depth

bias to the generated quads in epipolar space. The depth bias is a fixed value multiplied by the distance

from the camera corresponding to the source view. The distance is expressed in the interval [0; 1],

where 1 is equal to the distance between the camera used for the source view and the camera farthest

away from the source view camera.

Besides problems with precision, the proof-of-concept implementation has uncovered some more

shortcomings with the conceptual interpolation algorithm. Firstly, the lines were exchanged with

narrow quads composed of two triangles. Ideally, the quads have a width equal to the width of one

pixel. However, in practice, the quads needed to be slightly wider than one pixel to compensate for

the difference in rasterization between lines and triangles. More specifically, OpenGL has different

26

rules for triangles covering a pixel versus coverage of a pixel by lines. The reason for generating quads

is that one line per source view pixel results in a very large number of primitives that need to be

rasterized. As such, one pursued improvement was to coalesce several adjacent lines in a epipolar

plane into a single quad. More details about this optimization are given in Section 3.4.3.

In addition, the replacement of lines with quads resulted in a welcome side effect. Small, pixel sized

holes are filled by the quads. It is possible for the source views to not provide the necessary information

that can be seen from other views. The underlying reason is that the source views are generated by

sampling the geometry data. As such, small triangle sections may be missed. Fortunately, it is very

likely that the color information of the missed areas is like surrounding geometry. As such, slightly

overestimating the area that is covered by a quad in epipolar space contributes to a higher image

quality.

Note that the order of the emitted vertices became important

when the lines were exchanged with quads. See Figure 3.5 for an

example quad in an a epipolar plane, which is split in the middle.

The order in which the vertices are generated is 0, 1, 2, 3, 4, 5. The

order for the vertices in the four triangles is

(0, 1,2), (1,3,2), (2,3,4), (3,5,4). Every second triangle has a pair

of vertices that should be swapped. This is reflected by the

pseudocode for DrawDepthLayer in Code listing 3.9.

The proof-of-concept implementation uses a geometry shader

for the generation of the vertices. The order in which the vertices

are computed and emitted is from vertex 0 to vertex 5. The

triangle assembly including the vertex swap in every second

triangle are automatically done by the rasterizer.

A second issue that led to a change of the conceptual algorithm is

a consequence of how current generation GPUs operate. In theory

the source views can directly be transformed into epipolar

geometry. In practice, this leads to underutilization of the GPU

since the source views can contain pixels which don’t contribute to the final views. An example

situation would be a pixel that is not covered by geometry. The branching to filter the offending pixels

leads to execution divergence. Branching on GPUs is implemented as computing all branches and

masking out the incorrect answer. So, execution divergence would have a small impact if the mapping

of a pixel to epipolar geometry was relatively simple. Unfortunately, this is not the case.

This performance penalty was solved by adding an extra pass to filter out non-contributing pixels

and storing contributing pixels in an intermediate buffer. The proof-of-concept implementation

captures meaningful pixels using Transform Feedback [6, 27, 39]. The content of the intermediate

buffer is then used as the input for the generation of geometry in epipolar space. This solves the issue

because the branches in the intermediate pass are relatively short.

The last change made to the conceptual algorithm is a consequence of the interpretation of OpenGL

rasterization rules by the different GPU manufacturers. The OpenGL specification contains several

rules which dictate the pixels that are covered by a triangle. Unfortunately, GPU manufacturers have

some freedom in the implementation, and this leads to differing outcomes on different GPUs using

identical code. An example situation of the encountered problem can be seen in Figure 3.6 (a) and (b).

Different vendors pick different triangle edges of which fragments are discarded to account for shared

edges between triangles. If this happens in the epipolar plane, then a single view is missing from the

result.

Figure 3.5. Example of a quad in an
epipolar plane. The quad is split in the
middle (between vertices 2 and 3).
Additionally, the triangles
constituting the quad are visualized.

27

The chosen solution for this problem was to add two additional virtual views. In other words, the

epipolar coordinates where computed such that two additional views are added, but the endpoints lie

outside the rendering viewport. So, these views will be clipped out by the rasterizer. As such, it does

not matter which triangle edge has discarded fragments since they won’t be visible.

Note that the changes regarding generating quads instead of lines and the filter-pass for inactive pixels

are reflected in Code listing 3.7, Code listing 3.8 and Code listing 3.9. Additionally, triangle assembly

including vertex swapping is also included.

Figure 3.6. Different GPU hardware vendors wield different rules to handle overlapping triangle edges. This leads
to situations such as shown in (a) or (b), where the pixels covered by different triangle edges are discarded. As
such, computing the theoretically ideal epipolar coordinates leads to different behavior. For geometry in the
epipolar plane this results in a single missing view. The work around is to add to additional “virtual” views, as
shown in (c).

28

Input: A set of 𝑛 source views 𝑉 and corresponding projection parameters 𝑀𝑉𝑃𝑣 for each of the

source views, indexed such that 𝑉𝑖 is the 𝑖𝑡ℎ source view, and 𝑀𝑉𝑃𝑣,𝑖 are its corresponding projec-

tion parameters. A single source view is either a depth layer, in case of center view acquisition and
dual view acquisition, or an actual view, in case of hierarchical view acquisition. Furthermore, a pair
of camera projection parameters 𝑀𝑉𝑃𝑙 , corresponding with the leftmost camera, and 𝑀𝑉𝑃𝑟 corre-
sponding with the rightmost camera, are given as input.
Output: A partially ordered set 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑉𝑜𝑙𝑢𝑚𝑒 containing tuples of the form (𝑥, 𝑦, 𝑧, 𝑑, 𝑐). This
gives the color 𝑐 at location (𝑥, 𝑦, 𝑧) with depth value 𝑑. The pixels of a single view view can be re-
trieved by choosing a fixed 𝑧-coordinate and varying the 𝑥 and 𝑦. 𝑧 = 0 gives the view correspond-
ing with the leftmost view and 𝑧 = 𝑘 gives the rightmost view, where 𝑘 is at most the number of
views.

AcquireInterpolatedViews(Source views 𝑽, Projection parameters 𝑴𝑽𝑷𝒗; 𝑴𝑽𝑷𝒍;
𝑴𝑽𝑷𝒓, 𝒏):

𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑉𝑜𝑙𝑢𝑚𝑒 := { ∅ }
for 𝑖 = 1 to 𝑛:
 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖𝑥𝑒𝑙𝑠 := CaptureActivePixels(𝑣𝑖, 𝑀𝑉𝑃𝑣,𝑖)

 𝑉𝑖𝑒𝑤𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 := DrawDepthLayer(𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖𝑥𝑒𝑙𝑠, 𝑀𝑉𝑃𝑣,𝑖, 𝑀𝑉𝑃𝑙, 𝑀𝑉𝑃𝑟, 𝑛)

 foreach tuple (𝑥, 𝑦, 𝑧, 𝑑, 𝑐) ∈ 𝑉𝑖𝑒𝑤𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠:
 if 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑉𝑜𝑙𝑢𝑚𝑒 contains (𝑥, 𝑦, 𝑧, 𝑑𝑒𝑣 , _) such that 𝑑 < 𝑑𝑒𝑣:
 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑉𝑜𝑙𝑢𝑚𝑒 := 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑉𝑜𝑙𝑢𝑚𝑒 \ { (𝑥, 𝑦, 𝑧, 𝑑𝑒𝑣 , _) }
 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑉𝑜𝑙𝑢𝑚𝑒 := 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑉𝑜𝑙𝑢𝑚𝑒 ∪ { (𝑥, 𝑦, 𝑧, 𝑑, 𝑐) }
 end if
 end foreach
end for

return 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑉𝑜𝑙𝑢𝑚𝑒
Code listing 3.7. Mathematical description of the core-loop in the epipolar based view interpolation algorithm.
Several functions are referenced from Code listing 3.8 and Code listing 3.9.

CaptureActivePixels(Source view 𝒗, Projection parameters 𝑴𝑽𝑷):

𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖𝑥𝑒𝑙𝑠 := { ∅ }
foreach fragment (𝑥, 𝑦, 𝑧, 𝑐) ∈ 𝑣:
 if 𝑧 = 0:
 continue
 end if

 𝑆𝑡𝑟𝑖𝑑𝑒 := 1
 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖𝑥𝑒𝑙𝑠 := 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖𝑥𝑒𝑙𝑠 ∈ { (𝑥, 𝑦, 𝑧, 𝑐, 𝑆𝑡𝑟𝑖𝑑𝑒) }
end foreach

return 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖𝑥𝑒𝑙𝑠

EmitVertex(𝑪𝒐𝒐𝒓𝒅𝒔, Projection parameters 𝑴𝑽𝑷, 𝜶, 𝒏, Color 𝒄):

𝑥𝑒𝑝𝑖 := 𝑥-coordinate from 𝐶𝑜𝑜𝑟𝑑𝑠 after projection to clip space using 𝑀𝑉𝑃

𝑦𝑒𝑝𝑖 :=
 (1 −𝛼)∗ 0.5 +𝛼 ∗ (𝑛 − 0.5)

𝑛
 ∗ 2 − 1

𝑧𝑒𝑝𝑖 := 𝑧-coordinate from 𝐶𝑜𝑜𝑟𝑑𝑠

return (𝑥𝑒𝑝𝑖 , 𝑦𝑒𝑝𝑖 , 𝑧𝑒𝑝𝑖 , 𝑐)
Code listing 3.8. Mathematical description of several support functions used by the view interpolation algorithm.
Note that the computation of 𝑦𝑒𝑝𝑖 assumes that pixel centers are positioned at half-integer locations.

29

DrawDepthLayer(𝑨𝒄𝒕𝒊𝒗𝒆𝑷𝒊𝒙𝒆𝒍𝒔, Projection parameters 𝑴𝑽𝑷𝒗,𝒊; 𝑴𝑽𝑷𝒍; 𝑴𝑽𝑷𝒓, 𝒏):

𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑙 := Get position from 𝑀𝑉𝑃𝑙
𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟 := Get position from 𝑀𝑉𝑃𝑟
𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑣,𝑖 := Get position from 𝑀𝑉𝑃𝑣,𝑖

𝑀𝑎𝑥𝑉𝑖𝑒𝑤𝑂𝑓𝑓𝑠𝑒𝑡 := || 𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟 − 𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑙 ||

𝑉𝑖𝑒𝑤𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 :=
| 𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜 𝑛𝑣,𝑖−𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜 𝑛 𝑙 |

 𝑀𝑎𝑥𝑉𝑖𝑒𝑤𝑂𝑓𝑓𝑠𝑒𝑡

𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦𝑙 := 𝑉𝑖𝑒𝑤𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝑀𝑎𝑥𝑉𝑖𝑒𝑤𝑂𝑓𝑓𝑠𝑒𝑡
𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦𝑟 := (1 − 𝑉𝑖𝑒𝑤𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) ∗ 𝑀𝑎𝑥𝑉𝑖𝑒𝑤𝑂𝑓𝑓𝑠𝑒𝑡

𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 := { ∅ }

foreach fragment 𝑥, 𝑦, 𝑧, 𝑐𝑙 ,𝑑 , 𝑆𝑡𝑟𝑖𝑑𝑒 ∈ 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖𝑥𝑒𝑙𝑠:

 // Compute epipolar plane end points corresponding to current fragment
 𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑣 := Unproject (𝑥, 𝑦, 𝑧) to view space using 𝑀𝑉𝑃𝑣,𝑖

 𝑆𝑡𝑎𝑟𝑡𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑣 := 𝐶𝑜𝑜𝑟𝑑𝑠𝑙,𝑣 + (𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦𝑙 , 0, 0)

 𝐸𝑛𝑑𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑣 := 𝐶𝑜𝑜𝑟𝑑𝑠𝑙,𝑣 − (𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦𝑟 , 0, 0)

 Get color 𝑐𝑟 ,𝑑 proper for 𝑥 + 𝑆𝑡𝑟𝑖𝑑𝑒

 𝐶𝑜𝑜𝑟𝑑𝑠𝑟 ,𝑣 := Get coordinates proper for 𝑥 + 𝑆𝑡𝑟𝑖𝑑𝑒 and

 unproject to view space using 𝑀𝑉𝑃𝑣,𝑖
 𝑆𝑡𝑎𝑟𝑡𝐶𝑜𝑜𝑟𝑑𝑠𝑟 ,𝑣 := 𝐶𝑜𝑜𝑟𝑑𝑠𝑟,𝑣 + (𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦𝑙 , 0, 0)

 𝐸𝑛𝑑𝐶𝑜𝑜𝑟𝑑𝑠𝑟 ,𝑣 := 𝐶𝑜𝑜𝑟𝑑𝑠𝑟,𝑣 + (𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦𝑟 , 0, 0)

 // Loop over geometry splits and emit corresponding vertices
 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝑆𝑝𝑙𝑖𝑡𝑠 := [0, 1]
 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 := []
 𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡 := 0
 for 𝐼𝑛𝑑𝑒𝑥 := 0 to length(𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝑆𝑝𝑙𝑖𝑡𝑠):
 𝛼 := 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝑆𝑝𝑙𝑖𝑡𝑠[𝐼𝑛𝑑𝑒𝑥]
 𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑣 := (1 − 𝛼) ∗ 𝑆𝑡𝑎𝑟𝑡𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑣 + 𝛼 ∗ 𝐸𝑛𝑑𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑣

 𝐶𝑜𝑜𝑟𝑑𝑠𝑟 ,𝑣 := (1 − 𝛼) ∗ 𝑆𝑡𝑎𝑟𝑡𝐶𝑜𝑜𝑟𝑑𝑠𝑟 ,𝑣 + 𝛼 ∗ 𝐸𝑛𝑑𝐶𝑜𝑜𝑟𝑑𝑠𝑟 ,𝑣

 𝑀𝑜𝑑𝑒𝑙𝑀𝑎𝑡𝑟𝑖𝑥 := 𝐼
 𝑉𝑖𝑒𝑤𝑀𝑎𝑡𝑟𝑖𝑥 := Get view matrix from 𝑀𝑉𝑃𝑙 and modify such that position
 corresponds with
 𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑙 + 𝛼 ∗ (𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟 − 𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑙)
 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 := Get projection matrix from 𝑀𝑉𝑃𝑙
 𝑀𝑉𝑃 := 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 ∗ 𝑉𝑖𝑒𝑤𝑀𝑎𝑡𝑟𝑖𝑥 ∗ 𝑀𝑜𝑑𝑒𝑙𝑀𝑎𝑡𝑟𝑖𝑥

 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡] := EmitVertex(𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑣, 𝑀𝑉𝑃, 𝛼, 𝑛, 𝑐𝑙 ,𝑑)

 𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡 := 𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡 + 1
 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡] := EmitVertex(𝐶𝑜𝑜𝑟𝑑𝑠𝑟 ,𝑣, 𝑀𝑉𝑃, 𝛼, 𝑛, 𝑐𝑟 ,𝑑)

 𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡 := 𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡 + 1
 end for

 // Loop over vertices to assemble create triangles
 for 𝑇𝑟𝑖𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑡𝑎𝑟𝑡 := 0 to 𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡 − 3 step 2:
 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 := 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 ∪
 { (𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑇𝑟𝑖𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑡𝑎𝑟𝑡], 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑇𝑟𝑖𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑡𝑎𝑟𝑡 + 1], 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑇𝑟𝑖𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑡𝑎𝑟𝑡 + 2]) }
 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 := 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 ∪ { (𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑇𝑟𝑖𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑡𝑎𝑟𝑡 +
 1], 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑇𝑟𝑖𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑡𝑎𝑟𝑡 + 3], 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑇𝑟𝑖𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑡𝑎𝑟𝑡 + 2] }
 end for
end foreach

𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 := RasterizeGeometry(𝐼, 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠)
return 𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠
Code listing 3.9. DrawDepthLayer transforms the geometry, gathered by the previously described view
acquisition stages, into epipolar geometry.

30

However, a conceptual description of an algorithm gives no information about the mapping to actual

hardware. To aid the reproducibility of the presented work, several important implementation details

are given. The interpolation algorithm is implemented as two render passes. One corresponds with the

theoretical CaptureActivePixels function, and one implements the DrawDepthLayer function. The

order of operations is such that the active pixels in all source views are captured and stored in

intermediate buffers, before all intermediate buffers are pushed through the interpolation pass

corresponding with DrawDepthLayer. One advantage of the chosen order is less state changes than

interleaving the CaptureActivePixels and DrawDepthLayer pipelines, which is relatively costly.

However, a major downside is increased memory cost which leads to increased memory bandwidth

usage. Additionally, a tight upper bound on the memory usage is not known beforehand because the

number of active pixels cannot easily be predicted. Thus, the maximum possible memory usage needs

to be preallocated. This is possible since discrete GPUs mostly have enough memory available.

However, if not enough memory is available, the two render pipelines can be interleaved to reduce

the memory usage.

The render pass associated with CaptureActivePixels runs once for each source view. It consists only of

a vertex and geometry shader. The input of the vertex shader is one vertex, without any attributes,

per pixel in the given source view. Associating a vertex to a source view pixel is done based on

gl_VertexID2. The second stage of the render pipeline consist of a geometry shader. This shader filters

the inactive pixels by checking the depth value. The attributes emitted the originating image location,

and corresponding depth value. Additionally, the stride is emitted. This attribute is specific to the

primitive coalescing optimization discussed in Section 3.4.3. The attributes are directed to a bound

buffer using Transform Feedback.

The stage associated with the theoretical DrawDepthLayer function, is a multi-pass process

whereby the contents of one intermediate buffer is processed per pass. The graphics pipeline is

configured as a graphics pipeline consisting of a passthrough vertex shader, a geometry shader and a

fragment shader. The vertex shader reads the input from the intermediate buffer and passes that to

the geometry shader without any modifications. The geometry shader transforms its input from a

source pixel into one or several connected quads that reside in epipolar space. This is done by

generating vertices of triangles that form the quad(s). To direct a quad to its corresponding epipolar

plane, layered rendering3 is used. Explicitly, this means that an invocation of the geometry shader sets

the gl_Layer variable to the source pixel 𝑦-coordinate. This ensures that a quad is directed to the

correct epipolar plane. A side effect is that all epipolar planes must be stored in a 3d texture that is

attached as a layered render target. The overlapping geometry resolution is implemented by activating

depth testing and configuring the depth function to be GL_LESS. As such, the hardware automatically

resolves any conflicts with the emitted geometry.

The last stage consists of a relatively simple fragment shader which writes the interpolated color to

the output.

2 For more information on gl_VertexID, see
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/gl_VertexID.xhtml.
3 For more information on Layered rendering, see
https://www.khronos.org/opengl/wiki/Geometry_Shader#Layered_rendering. More information on layered
framebuffers, necessary for layered rendering, can be found here:
https://www.khronos.org/opengl/wiki/Framebuffer_Object#Layered_Images.

https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/gl_VertexID.xhtml
https://www.khronos.org/opengl/wiki/Geometry_Shader#Layered_rendering
https://www.khronos.org/opengl/wiki/Framebuffer_Object#Layered_Images

31

Note that, technically, it would be possible to move some of the computations from the geometry

shader to the vertex shader, but the downside is that more information has to pass through slower

memory, whereas calculating everything in the geometry shader keeps the information in registers. As

such, it is more performant to keep the calculations in the geometry shader.

Runtime complexity

The theoretical performance analysis of the epipolar space based view interpolation algorithm is based

on the pseudocode shown in Code listing 3.7, Code listing 3.8 and Code listing 3.9. Note that

DrawDepthLayer references RasterizeGeometry. The time complexity of this function was earlier

determined to be 𝑂(𝑣). The respective time complexities of EmitVertex, CaptureActivePixels and

DrawDepthLayer were determined to be as shown in equations 3.10, 3.11 and 3.12.

Runtime EmitVertex = 𝑂(1) (3.10)

Runtime CaptureActivePixels = 𝑂(𝑝) (3.11)

Runtime DrawDepthLayer = 𝑂(𝑝) (3.12)

The pseudocode showing the main loop of the view interpolation algorithm referred to the function

AcquireInterpolatedViews in Code listing 3.7. Its time complexity is shown in equation 3.13, where 𝑛 is

the number of source views given by the source view acquisition algorithms and 𝑝 is the pixel count in

a single view. For source view acquisition based on depth peeling a constant number of source views

are given. In such cases, the time complexity for view interpolation simplifies to 𝑂(𝑝). See Appendix

B.4 for a more detailed derivation of the time complexity.

Runtime AcquireInterpolatedViews = 𝑂(𝑛2𝑝) (3.13)

Algorithm pros and cons

One advantage of the epipolar view interpolation pipeline is the ability to generate a large set of views

by interpolation from a small set of correctly chosen source images.

Another advantage is, the interpolation has no need for extra hole filling logic. To a certain extent

small holes are covered since the area occupied by a pixel is overestimated. This is done to counteract

some corner cases with the implementations for the OpenGL rasterization rules by the different

hardware vendors.

The third advantage is that epipolar based view interpolation operates in image-space. As such, the

algorithm scales independently of the scene complexity. Moreover, it can easily integrate into existing

rendering pipelines as an extra pass and the source view acquisition stages can evidently be based on

commonly used, and existing technology.

The last, discussed, advantage is having no dependency on a predefined scene data format. As such,

this algorithm is independent of currently used digital content creation pipelines and model data.

But, the presented interpolation algorithm has its share of disadvantages. One disadvantage is the

reliance on an intermediate pass to reduce frame time. The data from the source view acquisition

stage can contain superflouos data which leads to execution divergence when interpolating. More

concretely, some shader processing units remain idle while other perform computations. This leads to

underutilization of the available processing power and is solved in an intermediate pass by filtering out

pixels which don’t contribute to the result. A side effect of the intermediate pass is the higher memory

usage since the data transfer from the intermediate pass to the interpolation pass needs to be passed

through some form of a buffer.

Another disadvantage of the epipolar based view interpolation is its memory demand. It needs a

depth texture which has equal dimensions as the combined set of interpolated views since the

rasterization of epipolar geometry needs to have depth testing activated.

32

The last, mentioned, disadvantage is the extra effort involved to add support for view dependent

properties. As will be shown in Section 3.5, it is possible to add support for view dependent properties.

However, existing reflection models must be modified to fit the presented interpolation method, while

not leading to an exorbitant increase of the frame time. Furthermore, the proposed method of adding

view dependent properties by piecewise approximation might not fit every view dependent property.

 Optimizations
The rendering framework described in the previous section can generate the required views based on

interpolation. However, several amendments can be made to improve on the basic rendering

pipelines. During the development of the framework, several possible optimizations have been

explored and were included in the final implementation.

3.4.1 Extended depth offset

The previous section discussed the process to capture scene geometry by depth peeling, and the

interpolation to the different views. However, it was not mentioned that captured geometry not in the

first depth layer may be occluded. As such, it may not be seen from any viewpoint. Thus, leading to

inefficient and superfluous use of computational resources. More specifically, extended depth offset

focusses on small units of geometry in very close proximity to its occluder.

Until now, the depth layer extraction only considers the unmodified depth of captured geometry.

Specifically, consider a pixel 𝑝𝑑 which corresponds with a fragment at image location (𝑥, 𝑦) in depth

layer 𝑑 and pixel 𝑝𝑑+1 at the same location (𝑥, 𝑦) but in depth layer 𝑑 + 1. Pixel 𝑝𝑑+1 only captures

the fragment closest to the viewer such that 𝑑𝑒𝑝𝑡ℎ(𝑝𝑑+1) > 𝑑𝑒𝑝𝑡ℎ(𝑝𝑑). To diminish the impact of

capturing always hidden geometry, the depth layer extraction can be modified to 𝑑𝑒𝑝𝑡ℎ(𝑝𝑑+1) >

𝑑𝑒𝑝𝑡ℎ(𝑝𝑑) + 𝛿, with 𝛿 > 0.

Lee et al. [25] formulated a function that computes the offset 𝛿 such that the skipped area is

guaranteed to not be visible, and should bound the number of depth layers to maximum of ten layers.

Since the depth layers are stored in textures, the authors observed that advantage can be taken of the

pixel center, point-sampled geometry representation. The idea is to project the resulting pixels onto

the scene and skip a distance behind the projected pixel such that the area is not capturable by other

pixels. Comparable to the area covered by the umbra, if the viewer was a lightsource and the projected

pixel an occluder. To increase the skipped distance, the projection of an area almost equals two times

the pixel size projected onto the scene. This is justified because the geometry is sampled from the pixel

centers. As such, the geometry as seen from the area between pixel centers won’t be included in the

depth layers and will not lead to information loss.

The mathematical formulation is as follows:

𝛿 =
𝑑 ∗ 𝑠

𝐸 − 𝑠
 (3.1)

with depth 𝑑 of a fragment, pixel size 𝑠 and lens radius 𝐸. For the purposes in this report, 𝐸 is the

distance between the left- and rightmost view position.

Note that extended depth offset is portrayed as an optimization. But for the performance

measurements it is considered an integral part of the basic epipolar interpolation pipeline, since the

overhead of the interpolation method is exorbitantly high without this feature. As such, when the

performance measurements mention the “basic center/dual epipolar pipeline“, then this optimization

is considered to be included.

33

3.4.2 Conservative visibility estimation

The extended depth offset is great for reducing the amount of work by decreasing the number of depth

layers. However, the individual depth layers still contain geometry that won’t contribute to the result

because it is occluded. As an example, consider a wall with a decorative curtain some small distance in

front of it. But far enough behind the curtain to not be considered by the virtually projected pixels.

When looking straight ahead at the curtain, some amount of the wall will never be seen. No matter

how far the viewer strafes left or right.

Solving this issue equates to computing the potentially visible region. The same problem is

encountered by the heuristic used in the hierarchical view acquisition algorithm. As such, the

computation of the visibility map is reused for this optimization. A mathematical overview of the

generation of the visibility map is identical to the ErodeView function as shown in Code listing 3.5. The

visibility map is computed for each depth layer and is used as a mask for the next depth layer. The

holes in the visibility masks match the sections for which more information is needed. As such, only

those sections are captured during the next depth peeling pass.

Note that the masks of all previous depth layers are accumulated during the generation of a new

visibility mask. Otherwise, already masked out sections may be reincluded in later visibility masks and

would lead to unwanted extra work for the interpolation stage.

Usage of conservative visibility estimation by depth peeling based source view acquisition methods

requires modifications of the basic algoritm. Integration of conservative visibility estimation in the

center view acquisition is shown in Code listing 3.10. Necessary changes for the dual view acquisition

algorithm can be seen in Code listing 3.11. Both code listings only show modified functions; any other

referenced functions remain the same.

34

modified AcquireCenterSourceViews(Projection parameters 𝑴𝑽𝑷𝒄, Projection
parameters 𝑴𝑽𝑷𝒍, Projection parameters 𝑴𝑽𝑷𝒓, Geometry 𝑮):

𝑉 := { ∅ }

𝐹 := RasterizeGeometry(𝑀𝑉𝑃, 𝐺)
𝐹𝑣,0 := DetermineVisibleFragments(𝐹, ∅)

𝑉0 := CalculateLighting(𝐹𝑣,0)

𝑉 := 𝑉 ∪ { 𝑉0 }

𝑖 := 1
while true:
 𝑉𝑖𝑠𝑀𝑎𝑠𝑘𝑙 := ErodeView(𝐹𝑣,𝑖−1, 𝑀𝑉𝑃𝑐, 𝑀𝑉𝑃𝑙)

 𝑉𝑖𝑠𝑀𝑎𝑠𝑘𝑟 := ErodeView(𝐹𝑣,𝑖−1, 𝑀𝑉𝑃𝑐, 𝑀𝑉𝑃𝑟)

 𝑉𝑖𝑠𝑀𝑎𝑠𝑘 := (𝑥, 𝑦, 1) | (𝑥, 𝑦, 1) ∈ 𝑉𝑖𝑠𝑀𝑎𝑠𝑘𝑙 𝑜𝑟 (𝑥, 𝑦, 1) ∈ 𝑉𝑖𝑠𝑀𝑎𝑠𝑘𝑟 }

𝐹𝑣,𝑖 := DetermineVisibleFragments(𝐹, 𝐹𝑣,𝑖−1, 𝑉𝑖𝑠𝑀𝑎𝑠𝑘)

if 𝐹𝑣,𝑖 = ∅ :
 break
end if

𝑉𝑖 := CalculateLighting(𝐹𝑣,𝑖)

𝑉 := 𝑉 ∪ { 𝑉𝑖 }

𝑖 := 𝑖 + 1

end while

return V

Code listing 3.10. Modified functions to show integration of conservative visibility estimation in the center view
acquisition algorithm. Note, DetermineVisibleFragments also requires modification. The modified function is
shown in Code listing 3.11. The remaining referenced functions are identical to previously shown versions.

35

modified AcquireDepthLayers(Projection parameters 𝑴𝑽𝑷, Projection parameters
𝑴𝑽𝑷𝒐, Geometry 𝑮):

𝑉 := { ∅ }

𝐹 := RasterizeGeometry(𝑀𝑉𝑃, 𝐺)
𝐹𝑣,0 := DetermineVisibleFragments(𝐹, { ∅ })

𝑉0 := CalculateLighting(𝐹𝑣)
𝑉 := 𝑉 ∪ { 𝑉0 }

𝑖 := 1
while true:
 𝑉𝑖𝑠𝑀𝑎𝑠𝑘 := ErodeView(𝐹𝑣,𝑖−1, 𝑀𝑉𝑃, 𝑀𝑉𝑃𝑜)

𝐹𝑣𝑖 := DetermineVisibleFragments(𝐹, 𝐹𝑣,𝑖−1, 𝑉𝑖𝑠𝑀𝑎𝑠𝑘)

if 𝐹𝑣,𝑖 = { ∅ }:
 break

end if

𝑉𝑖 := CalculateLighting(𝐹𝑣,𝑖)

𝑉 := 𝑉 ∪ { 𝑉𝑖 }

𝑖 := 𝑖 + 1
end while

return 𝑉

modified DetermineVisibleFragments(Fragments 𝑭, Occluding Fragments 𝑭𝒐, Visibility
Mask 𝑽):

if 𝐹𝑜 = { ∅ }:

return 𝐹
end if

𝐹𝑣 := (𝑥, 𝑦, 1) | (𝑥, 𝑦, _) ∈ 𝐹 }
foreach fragment (𝑥, 𝑦, 𝑧) ∈ 𝐹 do:
 if 𝐹𝑣 contains (𝑥, 𝑦, 𝑧𝑑) such that 𝑧𝑑 < 𝑧 or
 𝐹𝑜 contains (𝑥, 𝑦, 𝑧𝑜) such that 𝑧𝑜 > 𝑧 or
 𝑉 not contains (𝑥, 𝑦, 1):

 continue
end if

𝐹𝑣 := (𝐹𝑣\ { (𝑥, 𝑦, _) }) ∪ { (𝑥, 𝑦, 𝑧) }

end foreach

return 𝐹𝑣

Code listing 3.11. Modified functions to show integration of conservative visibility estimation in the dual view
acquisition algorithm. Unless otherwise specified, any referenced functions are the same as shown in earlier
sections.

3.4.3 Primitive coalescing

The basic transformation of every pixel to its corresponding epipolar line, as described in Section 3.3.2,

is suboptimal with respect to the performance. Neighboring source pixels are likely to have similar

depth values. As such, the corresponding epipolar lines are likely to follow a similar direction. But, are

spatially shifted by one pixel. This can be taken advantage of by approximating the consecutive

epipolar lines with a single quad in epipolar space.

36

So, instead of transforming single pixels to epipolar lines, ranges of consecutive pixels can be

transformed to quads. Furthermore, since the slopes of the epipolar lines in a range of pixels are

similar, only the endpoints of a range of pixels needs to be transformed to the four corner points of an

epipolar quad. This should result in approximately the same epipolar area being covered as the

consecutive epipolar lines. The method to perform the transformation of the endpoints is the same as

the basic algorithm.

The ranges of consecutive pixels with similar depth values are computed based on the depth map.

These are a by-product of the source acquisition stage. A custom 1-dimensional mipmap is generated

for a given depth map, where the finest miplevel is initialized with the depth values acquired during

source acquisition. Each pixel in the mipmap stores the lowest and highest value in the range it belongs

to, or it is marked as not continuing a pixel range if the range between the minimum and maximum is

too large. The maximum allowed delta between the minimum and maximum depth value is a user

provided fixed value.

To extract the pixel ranges, the mipmap is traversed once for each source pixel from the coarsest level

to the finest level. For a given pixel 𝑝 at image location 𝑠 = (𝑥𝑠, 𝑦𝑠), its corresponding location 𝑡 =

(𝑥𝑡 , 𝑦𝑡) in mipmap level 𝑚 can be computed using Equation 3.2.

𝑡 = (⌊
𝑥𝑠

2𝑚⌋ , 𝑦𝑠) (3.2)

Only if pixel 𝑝 is at the beginning of a range is it transformed into an epipolar quad. Mathematically

this corresponds with 𝑥𝑠 𝑚𝑜𝑑 2𝑚 = 0, where 𝑚 is the coarsest mipmap level for which the range of

depth values is still similar.

The pseudocode for acquiring the mipmap necessary for primitive coalescing is shown in Code

listing 3.12. Any modifications to the original interpolation algorithm functions can be seen in Code

listing 3.13.

Unfortunately, a naïve primitive coalescing implementation, with one source pixel being processed by

a single thread on the GPU, leads to branch divergence because only pixels at the start of a range are

processed into quads. The threads processing the other pixels are performing superfluous calculations

or remain dormant.

To overcome this problem an intermediate step needs to be added. Collecting the pixels that form

a range in an intermediate buffer, instead of directly processing each source pixel. This leads to better

utilization of hardware because the branches are relatively short. To create the epipolar geometry, the

necessary data is read from the intermediate buffer. Fortunately, such a pass was already included in

the basic interpolation pipeline. As such, this optimization can be integrated into the conceptual

CaptureActivePixels function.

37

AcquirePrimitiveMipMap(Source view 𝒗, 𝑴𝒂𝒙𝑴𝒊𝒑𝑴𝒂𝒑𝑫𝒆𝒑𝒕𝒉, 𝑫𝒆𝒑𝒕𝒉𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅):

𝐷𝑖𝑚𝑋 := Get largest 𝑥-coordinate in 𝑣
𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑀𝑖𝑝𝑀𝑎𝑝_𝐷𝑖𝑚𝑋 := 0
for 𝑀𝑖𝑝𝑀𝑎𝑝𝐿𝑒𝑣𝑒𝑙 := 1 to 𝑀𝑎𝑥𝑀𝑖𝑝𝑀𝑎𝑝𝐷𝑒𝑝𝑡ℎ:

 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑀𝑖𝑝𝑀𝑎𝑝_𝐷𝑖𝑚𝑋 := 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑀𝑖𝑝𝑀𝑎𝑝_𝐷𝑖𝑚𝑋 +
𝐷𝑖𝑚𝑋

2𝑀𝑖𝑝𝑀𝑎𝑝𝐿𝑒𝑣𝑒𝑙

end for

// Copy depth values to primitive mipmap
𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑀𝑖𝑝𝑀𝑎𝑝 := { ∅ }
foreach fragment (𝑥, 𝑦, 𝑧, _) ∈ 𝑣:
 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑀𝑖𝑝𝑀𝑎𝑝 := 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑀𝑖𝑝𝑀𝑎𝑝∪ { (𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑀𝑖𝑝𝑀𝑎𝑝_𝐷𝑖𝑚𝑋 − 𝐷𝑖𝑚𝑋 + 𝑥, 𝑦, 𝑧, 𝑧) }
end foreach

// Generate primitive mipmap
𝑊𝑟𝑖𝑡𝑒𝐵𝑎𝑠𝑒𝐼𝑛𝑑𝑒𝑥 := 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑀𝑖𝑝𝑀𝑎𝑝_𝐷𝑖𝑚𝑋 − 𝐷𝑖𝑚𝑋
for 𝑀𝑖𝑝𝑀𝑎𝑝𝐿𝑒𝑣𝑒𝑙 := 1 to 𝑀𝑎𝑥𝑀𝑖𝑝𝑀𝑎𝑝𝐷𝑒𝑝𝑡ℎ:

 𝑅𝑒𝑎𝑑𝐵𝑎𝑠𝑒𝐼𝑛𝑑𝑒𝑥 := 𝑊𝑟𝑖𝑡𝑒𝐵𝑎𝑠𝑒𝐼𝑛𝑑𝑒𝑥

 𝑊𝑟𝑖𝑡𝑒𝐵𝑎𝑠𝑒𝐼𝑛𝑑𝑒𝑥 := 𝑊𝑟𝑖𝑡𝑒𝐵𝑎𝑠𝑒𝐼𝑛𝑑𝑒𝑥 −
𝐷𝑖𝑚𝑋

2𝑀𝑖𝑝𝑀𝑎𝑝𝐿𝑒𝑣𝑒𝑙

 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑅𝑒𝑎𝑑𝐵𝑜𝑢𝑛𝑑 :=
𝐷𝑖𝑚𝑋

2𝑀𝑖𝑝𝑀𝑎𝑝𝐿𝑒𝑣𝑒𝑙 − 1

 foreach fragment (𝑥, 𝑦, _, _) ∈ 𝑣:

 // Read depth values
 Read 𝐷𝑒𝑝𝑡ℎ𝐿𝑒𝑓𝑡_𝑀𝑖𝑛 and 𝐷𝑒𝑝𝑡ℎ𝐿𝑒𝑓𝑡_𝑀𝑎𝑥 from
 (𝑅𝑒𝑎𝑑𝐵𝑎𝑠𝑒𝐼𝑛𝑑𝑒𝑥 + 2 ∗ 𝑥, 𝑦, 𝐷𝑒𝑝𝑡ℎ𝐿𝑒𝑓𝑡_𝑀𝑖𝑛, 𝐷𝑒𝑝𝑡ℎ𝐿𝑒𝑓𝑡_𝑀𝑎𝑥) ∈ 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑀𝑖𝑝𝑀𝑎𝑝

 𝐷𝑒𝑝𝑡ℎ𝑅𝑖𝑔ℎ𝑡_𝑀𝑖𝑛 := 1
 𝐷𝑒𝑝𝑡ℎ𝑅𝑖𝑔ℎ𝑡_𝑀𝑎𝑥 := 1
 if 2 ∗ 𝑥 < 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑅𝑒𝑎𝑑𝐵𝑜𝑢𝑛𝑑:
 Read 𝐷𝑒𝑝𝑡ℎ𝑅𝑖𝑔ℎ𝑡_𝑀𝑖𝑛 and 𝐷𝑒𝑝𝑡ℎ𝑅𝑖𝑔ℎ𝑡_𝑀𝑎𝑥 from
 (𝑅𝑒𝑎𝑑𝐵𝑎𝑠𝑒𝐼𝑛𝑑𝑒𝑥 + 2 ∗ 𝑥 + 1, 𝑦, 𝐷𝑒𝑝𝑡ℎ𝑅𝑖𝑔ℎ𝑡_𝑀𝑖𝑛, 𝐷𝑒𝑝𝑡ℎ𝑅𝑖𝑔ℎ𝑡_𝑀𝑎𝑥) ∈ 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑀𝑖𝑝𝑀𝑎𝑝
 end if

 // Check for continuation of primitive coalescing in pixel range
 𝑀𝑖𝑛𝐷𝑒𝑝𝑡ℎ := 𝑚𝑖𝑛(𝐷𝑒𝑝𝑡ℎ𝐿𝑒𝑓𝑡_𝑀𝑖𝑛, 𝐷𝑒𝑝𝑡ℎ𝑅𝑖𝑔ℎ𝑡_𝑀𝑖𝑛)
 𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ := 𝑚𝑎𝑥(𝐷𝑒𝑝𝑡ℎ𝐿𝑒𝑓𝑡_𝑀𝑎𝑥, 𝐷𝑒𝑝𝑡ℎ𝑅𝑖𝑔ℎ𝑡_𝑀𝑎𝑥)
 if 𝑀𝑖𝑛𝐷𝑒𝑝𝑡ℎ = 1 and 𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ = 1 or 𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ − 𝑀𝑖𝑛𝐷𝑒𝑝𝑡ℎ > 𝐷𝑒𝑝𝑡ℎ𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑:
 𝑀𝑖𝑛𝐷𝑒𝑝𝑡ℎ := 1
 𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ := 1
 end if

 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑀𝑖𝑝𝑀𝑎𝑝 := 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑀𝑖𝑝𝑀𝑎𝑝∪ { (𝑊𝑟𝑖𝑡𝑒𝐵𝑎𝑠𝑒𝐼𝑛𝑑𝑒𝑥 + 𝑥, 𝑦, 𝑀𝑖𝑛𝐷𝑒𝑝𝑡ℎ, 𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ) }
 end foreach
end for

return 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑀𝑖𝑝𝑀𝑎𝑝

Code listing 3.12. Pseudocode for generation of a primitive coalescing mipmap. Mip level 0 stores ranges of single
pixels, mip level 1 stores ranges of 2 pixels wide, mip level 2 stores ranges of 4 pixels wide, etc. The mipmap is
generated based on the depth map and a user provided threshold. The pixels store minimum and maximum depth
values in a range of pixels.

38

modified CaptureActivePixels(Source view 𝒗, Projection parameters 𝑴𝑽𝑷,
𝑴𝒂𝒙𝑴𝒊𝒑𝑴𝒂𝒑𝑫𝒆𝒑𝒕𝒉, 𝑫𝒆𝒑𝒕𝒉𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅):

𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑀𝑖𝑝𝑀𝑎𝑝 := AcquirePrimitiveMipMap(𝑣, 𝑀𝑎𝑥𝑀𝑖𝑝𝑀𝑎𝑝𝐷𝑒𝑝𝑡ℎ, 𝐷𝑒𝑝𝑡ℎ𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

𝐷𝑖𝑚𝑋 := Find largest 𝑥-coordinate in 𝑣
𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖𝑥𝑒𝑙𝑠 := { ∅ }
foreach fragment (𝑥, 𝑦, 𝑧, 𝑐) ∈ 𝑣:
 if 𝑧 = 0:
 continue
 end if

 // Calculate Stride for current pixel from primitive mipmap
 𝑆𝑡𝑟𝑖𝑑𝑒 := 0
 𝐷𝑒𝑝𝑡ℎ𝑀𝑖𝑛𝑀𝑎𝑥 := (0, 0)
 𝑅𝑒𝑎𝑑𝐼𝑛𝑑𝑒𝑥 := 0
 𝑀𝑖𝑝𝑀𝑎𝑝𝐿𝑒𝑣𝑒𝑙 := 𝑀𝑎𝑥𝑀𝑖𝑝𝑀𝑎𝑝𝐷𝑒𝑝𝑡ℎ
 while 𝑀𝑖𝑝𝑀𝑎𝑝𝐿𝑒𝑣𝑒𝑙 ≥ 0:

 𝑆𝑡𝑟𝑖𝑑𝑒 := 2𝑀𝑖𝑝𝑀𝑎𝑝𝐿𝑒𝑣𝑒𝑙

 𝑅𝑒𝑎𝑑𝑋 := 𝑅𝑒𝑎𝑑𝐼𝑛𝑑𝑒𝑥 + ⌊
𝐷𝑖𝑚𝑋

𝑆𝑡𝑟𝑖𝑑𝑒
⌋

 Read (𝑅𝑒𝑎𝑑𝑋, 𝑦, 𝑀𝑖𝑛, 𝑀𝑎𝑥) ∈ 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑀𝑖𝑝𝑀𝑎𝑝

 𝐷𝑒𝑝𝑡ℎ𝑀𝑖𝑛𝑀𝑎𝑥 := (𝑀𝑖𝑛, 𝑀𝑎𝑥)
 if 𝑀𝑖𝑛 < 1 and 𝑀𝑎𝑥 < 1:
 break
 end if

 𝑅𝑒𝑎𝑑𝐼𝑛𝑑𝑒𝑥 := 𝑅𝑒𝑎𝑑𝐼𝑛𝑑𝑒𝑥 +
𝐷𝑖𝑚𝑋

𝑆𝑡𝑟𝑖𝑑𝑒

 𝑀𝑖𝑝𝑀𝑎𝑝𝐿𝑒𝑣𝑒𝑙 := 𝑀𝑖𝑝𝑀𝑎𝑝𝐿𝑒𝑣𝑒𝑙 − 1
 end while

 // Check for pixel validity and if it’s within viewport range
 (𝑀𝑖𝑛, 𝑀𝑎𝑥) := 𝐷𝑒𝑝𝑡ℎ𝑀𝑖𝑛𝑀𝑎𝑥
 if 𝑀𝑖𝑛 ≥ 1 and 𝑀𝑎𝑥 ≥ 1 or 𝑥 % 𝑆𝑡𝑟𝑖𝑑𝑒 > 0:
 continue
 end if

 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖𝑥𝑒𝑙𝑠 := 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖𝑥𝑒𝑙𝑠 ∪ { (𝑥, 𝑦, 𝑧, 𝑐, 𝑆𝑡𝑟𝑖𝑑𝑒) }
end foreach

return 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖𝑥𝑒𝑙𝑠

Code listing 3.13. Shows the modified CaptureActivePixels function with support for primitive coalescing.
MaxMipMapDepth and DepthDifferenceThreshold are user-provided parameters, where MaxMipMapDepth is
the maximum number of mipmap levels in the primitive mipmap and DepthDifferenceThreshold is the maximum
allowed distance between the minimum and maximum depth value in a range of pixels for them to be coalesced.

3.4.4 Dynamic layer reduction

The extended depth offset and visibility estimation optimizations reduced the amount of work for the

epipolar interpolation stage. However, during the development of the center and dual view acquisition

algorithms, the observation was made that the resulting views mostly relied on the first several depth

layers. So, to further reduce the number of unnecessary computations, a lazy layer reduction step was

added to the view interpolation stage.

This process is lazy because there is a one frame delay in the acquired fragment counts. The

concrete implementation of the algorithm uses occlusion queries to count the number of fragments.

To ensure the graphics pipeline doesn’t stall when a frame is rendered, the results of the occlusion

queries for the previous frame are retrieved and used to determine whether to add an extra depth

layer or discard the last depth.

39

The actual layer reduction decides each frame to include or discard the last depth layer. The input

to the decision is the number of fragments that pass the depth test during the epipolar plane rendering

and two fixed, user-specified thresholds. The thresholds are a minimum and maximum percentage of

fragments. If the number of passed fragments is below the lower limit, then the last layer is dropped

from the result during rendering of the next frame. If the number of passed fragments is higher than

the upper limit another depth layer is added, if more layers are available.

Note that the fixed user-specified thresholds are not ideal, and probably needs to be replaced with a

more robust metric. As a proof-of-concept it is easy to implement, but the downside is an inherent

dependency on the scene and size of the viewport. For example, imagine a situation with a pilot flying

in a star field versus a fast-paced shooter in a close quarters combat scenario. Rendering the star field

results in a lot empty space, where most of the pixels are not touched. On the other hand, the fast-

paced shooter likely has an entire image of colored pixels. Thus requiring different thresholds for the

layer reduction per scene. A more suitable threshold might be based on the location and view direction

of the player.

 View dependent properties
Illumination models are used to compute the light intensity reflected from a given point on the surface

of an object. The light intensity is commonly computed as the sum of three components: ambient,

diffuse and specular reflection, with the ambient and diffuse reflection being independent of the

position of the viewer with respect to a given surface. Unfortunately, the specular reflection has a

dependency, and needs special attention.

In previous sections, the topic has been the epipolar interpolation and how to improve the

performance of the basic algorithm. The implicit working assumption was that surfaces only had an

ambient and diffuse light response, because there is no dependency on the viewer position. But, this

section will relax that assumption and discuss support for view dependent properties. More

specifically, the implementation of the framework allows for support of the (Blinn-)Phong reflection

model.

The Phong reflection model [36] is a local

illumination model that is based on

empirical correctness instead of physical

correctness. Given a situation

comparable to Figure 3.7, the specular

intensity 𝑘𝑠𝑝𝑒𝑐 is calculated using the

formula shown in Equation 3.3. Herein,

𝑅 is the reflection vector of the incoming

light on a surface, 𝑉 is the viewpoint

vector and 𝑛 determines the shininess of

the surface.

𝑘𝑠𝑝𝑒𝑐 = ‖𝑅‖‖𝑉‖ cos𝑛(𝛼) = (𝑅 ∙ 𝑉)𝑛 (3.3)

Figure 3.7. Visual representation of a surface with the necessary
vectors for computing the specularity according to the Phong
reflection model. 𝑳 is the incoming light; 𝑽 is the eye position; 𝑵 is
the surface normal; 𝑹 is the reflection direction vector. The vectors
have the following constraint: the angle between 𝑳 and 𝑵 is
identical to the angle between 𝑵 and 𝑹.

40

A disadvantage of the Phong reflection model is continual recalculation of 𝑅 ∙ 𝑉. As such, a

computationally more efficient model is used in practice. It is commonly known as the Blinn-Phong

reflection model, and is formulated as Equation 3.4, where 𝑁 is the surface normal, 𝐿 is the light

direction vector and 𝑉 is the viewpoint vector.

𝑘𝑠𝑝𝑒𝑐 = (𝑁 ∙ (
𝐿 + 𝑉

‖𝐿 + 𝑉‖
)) (3.4)

Figure 3.8. Polar plot of the reflected light distribution by the Blinn-Phong reflection model. The green line is the
surface normal. The cyan line represents the incident light and is configured at 50°. The magenta line is the
reflected light direction. The red lobe is the light distribution, whereby the distance from the center signifies the
intensity. Source: BRDF Explorer by Disney Enterprises, Inc.

The pseudocode for calculating the specularity given a surface position, including its normal, a light

position, a camera position, and various color and light attributes is given in Code listing 3.14. The given

algorithm computes the specularity in world space. For traditional rendering pipelines, using world

space coordinates is slightly less efficient to implement than using view space coordinates, but the

world space coordinates of the different attributes given a quad in an epipolar plane don’t change. As

such, using world space coordinates is the only viable option.

Note that the Blinn-Phong reflection model has been superseded by more physically correct BRDFs for

most real-time, photorealistic rendering applications. The reason for opting to show support for view

dependent properties using the Blinn-Phong reflection model is that it is widely known. Moreover, the

model is relatively simple compared to state-of-the-art reflection models in terms of both

understanding and implementing it. Furthermore, this is only a proof-of-concept that view dependent

properties can be implemented in combination with the presented view interpolation algorithm.

Additionally, the Blinn-Phong reflection model is symmetric around the reflection vector at non-

grazing angles. An example of this property can be seen in Figure 3.8. This allows for piecewise

approximation without introducing significant error as brute forcing specularity is too costly

performance-wise.

41

ComputeSpecularity(𝑪𝒐𝒐𝒓𝒅𝒔𝒘, 𝑵𝒐𝒓𝒎𝒂𝒍𝒘, 𝑪𝒐𝒍𝒐𝒓𝒔, 𝑪𝒐𝒍𝒐𝒓𝒊, 𝑪𝒐𝒍𝒐𝒓𝒍,
𝑪𝒂𝒎𝒆𝒓𝒂𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒘, 𝑳𝒊𝒈𝒉𝒕𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒘,
𝑳𝒊𝒈𝒉𝒕𝑨𝒕𝒕𝒆𝒏𝒖𝒂𝒕𝒊𝒐𝒏𝒄, 𝑳𝒊𝒈𝒉𝒕𝑨𝒕𝒕𝒆𝒏𝒖𝒂𝒕𝒊𝒐𝒏𝒍, 𝑳𝒊𝒈𝒉𝒕𝑨𝒕𝒕𝒆𝒏𝒖𝒂𝒕𝒊𝒐𝒏𝒒):

𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐿𝑖𝑔ℎ𝑡𝑉𝑒𝑐 := 𝐿𝑖𝑔ℎ𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑤 − 𝐶𝑜𝑜𝑟𝑑𝑠𝑤
𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐿𝑖𝑔ℎ𝑡𝐷𝑖𝑠𝑡2 := 𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐿𝑖𝑔ℎ𝑡𝑉𝑒𝑐 ∙ 𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐿𝑖𝑔ℎ𝑡𝑉𝑒𝑐
𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐿𝑖𝑔ℎ𝑡𝐷𝑖𝑠𝑡 := sqrt(𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐿𝑖𝑔ℎ𝑡𝐷𝑖𝑠𝑡2)

𝐿𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡𝑦 :=
1

𝐿𝑖𝑔ℎ𝑡𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜 𝑛𝑐+ 𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐿𝑖𝑔 ℎ𝑡𝐷𝑖𝑠𝑡 ∗ 𝐿𝑖𝑔ℎ𝑡𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜 𝑛𝑙+ 𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐿𝑖𝑔 ℎ𝑡𝐷𝑖𝑠𝑡 2 ∗ 𝐿𝑖𝑔ℎ𝑡𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜 𝑛𝑞

𝐿𝑖𝑔ℎ𝑡𝐷𝑖𝑟 :=
𝐿𝑖𝑔ℎ𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜 𝑛𝑤− 𝐶𝑜𝑜𝑟𝑑 𝑠𝑤

 |𝐿𝑖𝑔ℎ𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜 𝑛𝑤− 𝐶𝑜𝑜𝑟𝑑 𝑠𝑤 |

𝑉𝑖𝑒𝑤𝐷𝑖𝑟 :=
𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜 𝑛𝑤− 𝐶𝑜𝑜𝑟𝑑 𝑠𝑤

 |𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜 𝑛𝑤− 𝐶𝑜𝑜𝑟𝑑 𝑠𝑤 |

𝐻𝑎𝑙𝑓𝑤𝑎𝑦𝐷𝑖𝑟 :=
𝐿𝑖𝑔ℎ𝑡𝐷𝑖𝑟 + 𝑉𝑖𝑒𝑤𝐷𝑖𝑟

 |𝐿𝑖𝑔ℎ𝑡𝐷𝑖𝑟 + 𝑉𝑖𝑒𝑤𝐷𝑖𝑟 |

𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 := 𝑚𝑎𝑥(𝑁𝑜𝑟𝑚𝑎𝑙𝑤 ∙ 𝐻𝑎𝑙𝑓𝑤𝑎𝑦𝐷𝑖𝑟, 0)𝐶𝑜𝑙𝑜 𝑟𝑖

return 𝐿𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡𝑦 ∗ 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 ∗ 𝐶𝑜𝑙𝑜𝑟𝑙 ∗ 𝐶𝑜𝑙𝑜𝑟𝑠

Code listing 3.14. Pseudocode for calculating the specularity of a surface point in world space, given the necessary
parameters. 𝐶𝑜𝑜𝑟𝑑𝑠𝑤 are the coordinates of the surface point, 𝑁𝑜𝑟𝑚𝑎𝑙𝑤 is the corresponding normal, 𝐶𝑜𝑙𝑜𝑟𝑠 is
the specular surface color, 𝐶𝑜𝑙𝑜𝑟𝑖 is the specular intensity, 𝐶𝑜𝑙𝑜𝑟𝑙 is the color of the light source,
𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑤 is the position of the viewer, 𝐿𝑖𝑔ℎ𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑤 is the position of the light source, and
respectively 𝐿𝑖𝑔ℎ𝑡𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛𝑐, 𝐿𝑖𝑔ℎ𝑡𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛𝑙 , 𝐿𝑖𝑔ℎ𝑡𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛𝑞 are the constant, linear and

quadratic light attenuation.

A straightforward implementation to support view dependent properties would be to interpolate the

necessary properties for the per-view computation and do the actual computation for each pixel in

each view. Quality wise, the outcome would be on par with a baseline deferred pipeline

implementation. However, the performance will probably suffer. Moreover, the Big O performance

characteristic of the entire interpolation pipeline would be a function that is linear relative to the

number of views. Thus, not leading to a theoretical performance improvement over the brute force

deferred pipeline.

Alternatively, specular reflection is incorporated into the epipolar view interpolation algorithm by

approximation. The idea is to do a piecewise approximation by splitting every quad in the epipolar

plane into multiple connected parts. At every vertex, the specularity is computed. The computed

specular contribution will be interpolated by the rasterizer and added to the diffuse component in the

fragment shader. The number of splits is variable and left to be decided by a user. More splits will

result in higher quality images, but also requires more computational and memory resources. See

Figure 3.5 for a visual representation of the integration of split geometry in the interpolation algorithm.

This method takes advantage of hardware acceleration to interpolate the specular highlights to the

different views. A disadvantage is the added overhead to compute the locations of the geometry splits.

Furthermore, more geometry must be processed by the rasterizer, and extra memory is needed to

store the extra geometry.

The location where quads are split in epipolar space is important. They must be placed such that the

key features of specular highlights are visible after interpolation. For the Blinn-Phong reflection model,

this equates to the brightest spot. As an example, consider an even spread of the splits in the epipolar

geometry. This will probably result in a reduced intensity or missing specular highlight because the

location of the highlight doesn’t coincide with the location of a split vertex.

To sidestep this issue, at least one epipolar geometry split is placed on the scanline in the epipolar

plane that coincides with the view containing a location for a specular highlight. This location can easily

be computed for the Blinn-Phong reflection model since it coincides with the pixel locations for which

42

the light reflection vector of a surface intersects with the line segment between the left- and rightmost

camera. Finding the intersection is done with a line segment-to-line segment intersection in world-

space. The computation is done in world space since the position of a source pixel remains identical in

the entire epipolar plane. As a result, the light reflection vector is constant since the position of the

light source is kept constant during the rendering of a single frame. The mathematical formulas for the

intersection test can be found in Code listing 3.15.

Input: Two line segments in the form 𝑦 = 𝑎 + 𝑥𝑏, where 𝑎 and 𝑏 are 3d vectors. The first line segment
consists of a surface location 𝑆 and a light reflection direction 𝑅. The second
line segment consists of the position of the leftmost camera 𝐶𝑙 and the direction vector 𝐶𝑑 = 𝐶𝑟 − 𝐶𝑙 ,
where 𝐶𝑟 is the position of the rightmost camera. Every vector is expected to be in world-space.
Output: If the line segments intersect, a value 𝐼 between 0 and 1, such that 𝐶𝑙 + 𝐼 ∗ 𝐶𝑑 corresponds
with the location of the intersection. Otherwise, a value of −1 is returned.

LineIntersect(𝑺, 𝑹, 𝑪𝒍, 𝑪𝒅):

// Check if the given line segments are collinear
𝑊 := 𝑅 ∙ 𝐶𝑑
if 𝑊 ∙ 𝑊 == 0:
 return −1
end if

// Compute the closest distance between the given line segments

𝐼𝑐𝑎𝑚 := ((𝑆 − 𝐶𝑙) × 𝑅 ∙ 𝑊) ∗ (
1

𝑊∙𝑊
)

𝐼𝑟𝑒𝑓𝑙𝑒𝑐𝑡 := ((𝑆 − 𝐶𝑙) × 𝐶𝑑 ∙ 𝑊) ∗ (
1

𝑊∙𝑊
)

// Check if the intersection is in range of the line segments
if 𝐼𝑐𝑎𝑚 < 0 or 𝐼𝑐𝑎𝑚 > 1:
 return −1
end if

// Check if closest distance between the given line segments is 0
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐿𝑖𝑛𝑒 := (𝑆 + 𝐼𝑟𝑒𝑓𝑙𝑒𝑐𝑡 ∗ 𝑅) − (𝐶𝑙 + 𝐼𝑐𝑎𝑚 ∗ 𝐶𝑑)

if (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐿𝑖𝑛𝑒 ∙ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐿𝑖𝑛𝑒) ≠ 0:
 return −1
else
 return 𝐼𝑐𝑎𝑚
end if

Code listing 3.15. Pseudocode for computing the intersection between two line segments in 3-dimensional space.

A mathematical overview of integrating specular reflection into the basic epipolar view interpolation

algorithm can be found in Code listing 3.17. Additionally, Code listing 3.16 contains the pseudocode

for several functions that control the placement of the splits for the quads in epipolar space. Note that

several lines of the original pseudocode have been omitted for brevity.

The described method comes with a remark regarding the general applicability. The piecewise

approximation only works if only one light source is considered. In this case, the location of the

specular reflection can easily be computed. As such, the current implementation is limited to a single

light source.

43

A second remark about the support for specularity is its usage in conjunction with the primitive

coalescing optimization. If the quads are only split along one direction, as is currently the case, then it

could happen that the specular highlight may be missed because it falls in a pixel range that is

coalesced together. For this reason, the activation of these options is mutually exclusive in the proof-

of-concept implementation. It might be possible to split a quad in epipolar space along multiple axes,

but this is left as future work.

ComputeIntersection(𝑪𝒐𝒐𝒓𝒅𝒔𝒘, 𝑵𝒐𝒓𝒎𝒂𝒍𝒘, 𝑪𝒂𝒎𝒆𝒓𝒂𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒘, 𝑪𝒂𝒎𝒆𝒓𝒂𝑫𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏𝒘, 𝑳𝒊𝒈𝒉𝒕𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒘):

𝐿𝑖𝑔ℎ𝑡𝐷𝑖𝑟 := 𝐿𝑖𝑔ℎ𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑤 − 𝐶𝑜𝑜𝑟𝑑𝑠𝑤
𝐿𝑖𝑔ℎ𝑡𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝐷𝑖𝑟 := 𝐿𝑖𝑔ℎ𝑡𝐷𝑖𝑟 − 2 ∗ (𝐿𝑖𝑔ℎ𝑡𝐷𝑖𝑟 ∙ 𝑁𝑜𝑟𝑚𝑎𝑙𝑤) ∗ 𝑁𝑜𝑟𝑚𝑎𝑙𝑤

𝐿𝑖𝑔ℎ𝑡𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝐷𝑖𝑟 :=
𝐿𝑖𝑔ℎ𝑡𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝐷𝑖𝑟

 |𝐿𝑖𝑔ℎ𝑡𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝐷𝑖𝑟 |

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡 := LineIntersect(𝐶𝑜𝑜𝑟𝑑𝑠𝑤, 𝐿𝑖𝑔ℎ𝑡𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝐷𝑖𝑟, 𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑤, 𝐶𝑎𝑚𝑒𝑟𝑎𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑤)
if 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡 = −1:
 return 0
else
 return 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡
end if

GenerateEpipolarSplits(𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏𝑷𝒐𝒊𝒏𝒕, 𝑺𝒑𝒍𝒊𝒕𝑪𝒐𝒖𝒏𝒕):

𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑒𝑛𝑔𝑡ℎ :=
1

𝑆𝑝𝑙𝑖𝑡𝐶𝑜𝑢𝑛𝑡 − 1

𝐶𝑒𝑛𝑡𝑒𝑟𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑑𝑒𝑥 := 𝑚𝑎𝑥(0, 𝑚𝑖𝑛(𝑟𝑜𝑢𝑛𝑑(
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡

𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑒𝑛𝑔𝑡 ℎ
), 𝑆𝑝𝑙𝑖𝑡𝐶𝑜𝑢𝑛𝑡 − 2))

𝑆𝑝𝑙𝑖𝑡𝑠 := []
𝐶𝑜𝑢𝑛𝑡𝑒𝑟 := 0

𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑒𝑛𝑔𝑡ℎ :=
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡

𝐶𝑒𝑛𝑡𝑒𝑟𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑑𝑒𝑥

while 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 < 𝐶𝑒𝑛𝑡𝑒𝑟𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑑𝑒𝑥:
 𝑆𝑝𝑙𝑖𝑡𝑠[𝐶𝑜𝑢𝑛𝑡𝑒𝑟] := 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ∗ 𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑒𝑛𝑔𝑡ℎ
 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 := 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + 1
end while

𝑆𝑝𝑙𝑖𝑡𝑠[𝐶𝑜𝑢𝑛𝑡𝑒𝑟] = 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡
𝐶𝑜𝑢𝑛𝑡𝑒𝑟 := 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + 1

𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑒𝑛𝑔𝑡ℎ :=
1 − 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡

𝑆𝑝𝑙𝑖𝑡𝐶𝑜𝑢𝑛𝑡 − 𝐶𝑜𝑢𝑛𝑡𝑒𝑟

while 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 < 𝑆𝑝𝑙𝑖𝑡𝐶𝑜𝑢𝑛𝑡:
 𝑆𝑝𝑙𝑖𝑡𝑠[𝐶𝑜𝑢𝑛𝑡𝑒𝑟] := 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡 + (𝐶𝑜𝑢𝑛𝑡𝑒𝑟 − 𝐶𝑒𝑛𝑡𝑒𝑟𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑑𝑒𝑥) ∗ 𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝐿𝑒𝑛𝑔𝑡ℎ
 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 := 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + 1
end while

return 𝑆𝑝𝑙𝑖𝑡𝑠

Code listing 3.16. Several support functions to calculate the locations on a quad where the splits should be placed.

44

modified DrawDepthLayer(𝑨𝒄𝒕𝒊𝒗𝒆𝑷𝒊𝒙𝒆𝒍𝒔, Projection parameters 𝑴𝑽𝑷𝒗,𝒊; 𝑴𝑽𝑷𝒍; 𝑴𝑽𝑷𝒓, 𝑳𝒊𝒈𝒉𝒕𝑷𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒘,
𝑺𝒑𝒍𝒊𝒕𝑪𝒐𝒖𝒏𝒕):

.....

foreach fragment 𝑥, 𝑦, 𝑧, 𝑐𝑙 ,𝑑 , 𝑆𝑡𝑟𝑖𝑑𝑒 ∈ 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖𝑥𝑒𝑙𝑠:

 // Compute epipolar plane end points corresponding to current fragment
 𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑣 := Unproject (𝑥, 𝑦, 𝑧) to view coordinates using 𝑀𝑉𝑃𝑣,𝑖

 𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑤 := Unproject 𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑣 to world coordinates using 𝑀𝑉𝑃𝑣,𝑖

 Get color 𝑐𝑟 ,𝑑 proper for 𝑥 + 𝑆𝑡𝑟𝑖𝑑𝑒

 𝐶𝑜𝑜𝑟𝑑𝑠𝑟 ,𝑣 := Get coordinates proper for 𝑥 + 𝑆𝑡𝑟𝑖𝑑𝑒 and
 unproject to view coordinates using 𝑀𝑉𝑃𝑣,𝑖

 𝐶𝑜𝑜𝑟𝑑𝑠𝑟 ,𝑤 := Unproject 𝐶𝑜𝑜𝑟𝑑𝑠𝑟 ,𝑣 to world coordinates using 𝑀𝑉𝑃𝑣,𝑖

 Get normal 𝑁𝑜𝑟𝑚𝑎𝑙𝑙 ,𝑤 for the coordinates (𝑥, 𝑦, 𝑧) in world space
 Get specular color 𝐶𝑜𝑙𝑜𝑟𝑙 ,𝑠 for the coordinates (𝑥, 𝑦, 𝑧)

 Get specular intensity 𝐶𝑜𝑙𝑜𝑟𝑙 ,𝑖 for the coordinates (𝑥, 𝑦, 𝑧)

 Get normal 𝑁𝑜𝑟𝑚𝑎𝑙𝑟 ,𝑤 for the coordinates (𝑥 + 𝑆𝑡𝑟𝑖𝑑𝑒, 𝑦, 𝑧) in world space

 Get specular color 𝐶𝑜𝑙𝑜𝑟𝑟 ,𝑠 for the coordinates (𝑥 + 𝑆𝑡𝑟𝑖𝑑𝑒, 𝑦, 𝑧)
 Get specular intensity 𝐶𝑜𝑙𝑜𝑟𝑟 ,𝑖 for the coordinates (𝑥 + 𝑆𝑡𝑟𝑖𝑑𝑒, 𝑦, 𝑧)

 // Loop over epipolar splits and emit corresponding vertices
 𝐿𝑖𝑔ℎ𝑡𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 := ComputeIntersection(𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑤, 𝑁𝑜𝑟𝑚𝑎𝑙𝑙 ,𝑤, 𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑙, 𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑙 −
 𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟, 𝐿𝑖𝑔ℎ𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑤)
 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑆𝑝𝑙𝑖𝑡𝑠𝑙 := GenerateEpipolarSplits(𝐿𝑖𝑔ℎ𝑡𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡, 𝑆𝑝𝑙𝑖𝑡𝐶𝑜𝑢𝑛𝑡)
 𝐿𝑖𝑔ℎ𝑡𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 := ComputeIntersection(𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑤, 𝑁𝑜𝑟𝑚𝑎𝑙𝑟 ,𝑤, 𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑙, 𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑙 −
 𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟, 𝐿𝑖𝑔ℎ𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑤)
 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑆𝑝𝑙𝑖𝑡𝑠𝑟 := GenerateEpipolarSplits(𝐿𝑖𝑔ℎ𝑡𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡, 𝑆𝑝𝑙𝑖𝑡𝐶𝑜𝑢𝑛𝑡)

 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 := []
 𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡 := 0
 for 𝐼𝑛𝑑𝑒𝑥 := 0 to length(𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑆𝑝𝑙𝑖𝑡𝑠):

 𝑐𝑙 ,𝑠 := ComputeSpecularity(𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑤, 𝑁𝑜𝑟𝑚𝑎𝑙𝑙 ,𝑤, 𝐶𝑜𝑙𝑜𝑟𝑙 ,𝑠, 𝐶𝑜𝑙𝑜𝑟𝑙 ,𝑖)

 𝑐𝑟 ,𝑠 := ComputeSpecularity(𝐶𝑜𝑜𝑟𝑑𝑠𝑟 ,𝑤, 𝑁𝑜𝑟𝑚𝑎𝑙𝑟 ,𝑤, 𝐶𝑜𝑙𝑜𝑟𝑟 ,𝑠, 𝐶𝑜𝑙𝑜𝑟𝑟 ,𝑖)

 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡] := EmitVertex(𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑣, 𝑀𝑉𝑃, 𝛼, 𝑛, 𝑐𝑙 ,𝑑, 𝑐𝑙 ,𝑠)
 𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡 := 𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡 + 1
 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡] := EmitVertex(𝐶𝑜𝑜𝑟𝑑𝑠𝑟 ,𝑣, 𝑀𝑉𝑃, 𝛼, 𝑛, 𝑐𝑟 ,𝑑, 𝑐𝑟 ,𝑠)
 𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡 := 𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡 + 1
 end for

 # Loop over vertices to assemble created triangles

end foreach

𝑅𝑎𝑠𝑡𝑒𝑟𝑖𝑧𝑒𝑑𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 := RasterizeGeometry(𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦, 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠)

𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 := { ∅ }
foreach fragment (𝑥, 𝑦, 𝑧, 𝑑, 𝑐𝑑 , 𝑐𝑠) ∈ 𝑅𝑎𝑠𝑡𝑒𝑟𝑖𝑧𝑒𝑑𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠:
 𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 := 𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 ∪ { (𝑥, 𝑦, 𝑧, 𝑑, 𝑐𝑑 + 𝑐𝑠) }
end foreach

return 𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠

Code listing 3.17. Modified function DrawDepthLayers with support for specularity. In addition to the original
parameters, the function expects the position of the light source as 𝐿𝑖𝑔ℎ𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑤, and the number of splits to
be placed in each quad as 𝑆𝑝𝑙𝑖𝑡𝐶𝑜𝑢𝑛𝑡. Note that several unchanged lines are omitted for brevity.

45

4 Results

To evaluate whether the goal, as stated in Chapter 1, is met by the framework as described in the

previous chapter, a means of quantifying the performance and image quality of the framework is

needed. Furthermore, to guarantee the reproducibility of the presented research the test method

needs to be documented.

This chapter documents the measurements to quantify the performance and image quality of the

previously described framework. Since the performance and image quality are heavily dependent upon

the hardware used to measure, it is considered part of the test method. As such, Section 4.1 starts

with documenting the hardware used for measuring. Then, Section 4.2 explains which measures are

used and which measurements are performed to determine the quality of the framework. Afterwards,

Section 4.3 outlines the ground truth against which the rendering framework is compared. Lastly,

Section 4.4 and Section 4.5 give the outcome of the measurements for, respectively, the performance

and image quality.

 Test platform
The performance of an algorithm is highly dependent on the used hardware platform. Furthermore,

the performance also depends on the software layers connecting the hardware to the algorithm.

Examples are the operating system and device drivers. There could even be a difference in

performance within different versions of the same software. Additionally, the translation of source

code to machine understandable instructions also has a significant influence. Newer compiler versions

could transform source code to functionally be the same, but with increased utilization of the

underlying hardware. Thus, to improve the reproducibility of the presented study, the used hardware

and software is documented in Table 4.1. Additionally, this makes it easier for future researchers to

compare the performance of improved versions or algorithms. Note, only the hardware, including

driver versions, and software impacting the test results are disclosed.

Note that the tests were measured using two different GPUs. Most of the performance and all image

quality tests were performed on the Nvidia Titan X. However, due to an unforeseen failure of the

previously mentioned GPU, a subset of the performance testing was done on the Nvidia GeForce GTX

1080Ti. All performance tests using the center epipolar pipelines with the San Miguel and Hairball

scenes were done with the faster GTX 1080Ti. The remaining tests with the center epipolar pipeline,

and other pipelines, were ran on the Nvidia Titan X. All image quality tests have also been completed

on the Nvidia Titan X.

Table 4.1. The hardware and software used to build and test the framework as presented in Section 3. This
includes version information as different versions could have a different impact on performance.

 Model Remarks
CPU Intel Core i7-5820k Clock rate: 3.3 GHz

RAM 32 GB DDR4

GPU Nvidia Titan X
Nvidia GeForce GTX 1080Ti

Driver version: 387.92
Driver version: 388.59

Operating System Windows 10

Compiler Microsoft Visual C++ 2017 Toolset: v141

46

 Systematic testing
In Section 1.1, the goal of the presented study was to find a method of rendering faster than existing

methods, while making sure that the image quality remained reasonable. To determine whether the

three described epipolar rendering pipelines satisfy the stated goal, three elements are required. This

section focusses on the systematical process of quantifying the performance and image quality.

Input specification

To have comparable results between the baseline and epipolar rendering pipelines, the input to both

must be equal. As noted in Section 3, the input consists of a 3-dimensional description of a scene and

a set of cameras.

It is undoable to test every possible input configuration. As such, the chosen 3d models represent

common use cases. Starting with a simple cube. This model represents very low poly, extremely simple

test scenes. A medium complexity scene, in terms of vertices and triangles, included in the test set is

referred to as Sponza (xxx), where xxx refers to the amount of subdivision. It represents an

architectural setting, which seems very common when looking to popular AAA-games such as GTA V

™, Mafia III ™ and Sleeping Dogs ™. In addition to the original Sponza scene, several modified versions

have been included to observe the scaling of the algorithms. These have been subdivided between 0

and 3 times using Blender to artificially increase the number of vertices and triangles. A subdivision

means that each edge is split 0, 1, 2 or 3 times. The reason for subdividing a scene opposed to using a

different and more complex scene to show the algorithm scaling is that a different scene might lead to

different behavior by the algorithm. An example is a different depth complexity, which might lead to

a different number of depth layers. The San Miguel scene has been added to represent high complexity

scenes. Like the Sponza scene, it went through the artificial complexity boosting process. Besides, the

algorithms have also been tested with the Hairball model, since this model has a lot of detail in a small

object. The exact number of vertices and triangles contained in each model can be found in Table 4.2.

Aside from the previously mentioned models. The view dependent properties are additionally

tested with a separate set of models. The difference between the previously covered models are the

specular material properties, such as specular color and specular intensity. Although the sponza scene

has specularity in its materials, the chosen models are affected more by specularity, which should lead

to a more pronounced effect. Thus, any errors introduced by the epipolar interpolation should be

easier to spot and measure. The specularity test set consist of the Stanford Lucy model and the Mitsuba

model.

Table 4.2. Number of vertices and triangles for each of the models used during the testing process.

Model name Number of vertices Number of triangles

Cube 8 12

San Miguel (Original) 4,488,339 7,838,629

San Miguel (High) 10,469,048 19,313,050

San Miguel (Extreme) 16,729,835 31,354,140

Sponza (Original) 145,185 262,267

Sponza (High) 551,211 1,049,026

Sponza (VeryHigh) 2,150,064 4,196,244

Sponza (Extreme) 8,494,946 16,784,976

Hairball 1,470,000 2,880,000

Lucy 249,771 499,530

Mitsuba 30,869 61,612

Note that the performance testing was only done using the San Miguel, Sponza and Hairball scenes.

The quality testing was done using the Cube, Sponza (Original), Hairball, Lucy and Mitsuba scenes.

47

Besides the 3D models, the rendering framework specified in the previous chapter also expects a set

of cameras. To be able to compare the baseline against the epipolar based algorithms, this set must

be similar for all test cases using an identical configuration. To achieve this for the image quality

measurements, a static camera position and view direction are chosen, saved to a file and reused for

each tested configuration. The inter-camera distance controls the distance between the different

cameras within a view set, and for each test configuration consists of a set of three values. The smallest

distance represents a very small shift, where the content displaces by up to several tens of pixels. The

middle distance is results in a moderate shift of content, where the content moves by up to several

hundreds of pixels. The largest inter-camera distance is chosen such that the left- and rightmost views

have a small overlap, but the content is still entirely visible.

Unfortunately, the inter-camera distance is dependent on the scene since the different models

don’t have the same scale. The different values belonging with each of the test scenes can be found in

Table 4.3. To give an indication of the scale of the scene, the near and far plane of the cameras can be

found in the same table.

To measure the performance, the same variation of inter-camera distance and the same number of

views are used with regards to the image quality tests. However, the camera moves along a predefined

path to simulate player movement through a scene. This will expose changes in the performance of

the algorithm as the visible geometry changes. The path along which the cameras move is unique to

each scene. Furthermore, it will be reset and replayed for each rendering configuration.

The distance between the leftmost and rightmost camera doesn’t change for the performance

tests, and equals the maximum numbers of views multiplied by the inter-camera distance. For the used

test cases, the maximum is 500 views. For test configurations with less than the maximum numbers of

views, the inter-camera distance is the distance between the leftmost and rightmost camera divided

by the number of views. Lastly, the number of views is variable and can be one from the following set

of numbers: 2, 10, 25, 50, 75, 100, 200, 300, 400, 500 .

Table 4.3. Overview of the inter-camera distance settings for each test scene. The maximum distance is the
distance between the left- and rightmost camera. It is computed by multiplying inter-camera distance with the
maximum number of views, which is 500 for the reported values. The near and far plane give an indication of the
scale of the scene.

Model name Inter-camera distance Max camera distance Near Far

Cube 0.001; 0.01; 0.03 0.5; 5; 15 1 500

Sponza 0.3; 0.6; 0.9 150; 300; 450 50 5000

Hairball 0.0025; 0.005; 0.01 1.25; 2.5; 5 0.1 50

Lucy 0.0025; 0.005; 0.01 1.25; 2.5; 5 0.1 50

Mitsuba 0.0025; 0.005; 0.01 1.25; 2.5; 5 1 50

Performance metrics

The metric used to quantify the performance of the algorithm is the frame time, and is reported in

milliseconds. It is measured as an average over 32 frames, where each frame is taken as the time

needed to compute a single set of views. Herein, averaging mostly compensates for interfering

irregularities, such as the operating system preempting the execution of the algorithm to let other

programs run.

However, note that the runtime doesn’t include the time needed to setup the rendering pipeline.

Examples hereof are allocation of memory for resources such as textures or buffers, or loading GLSL

shaders from disk.

48

Image quality metrics

Image quality of two different image sets can be compared based on several characteristics. The goal

for the epipolar rendering pipelines is to acquire image sets that humans cannot reliably distinguish

from the baseline image sets in terms of image quality. The ideal solution to judge the image quality

between several image sets would be to have a large enough group of test subjects judge the

difference between image sets. Unfortunately, due to limitations imposed on the study, as discussed

in Section 5.2, it is unfeasible to setup and conduct such an experiment.

The next best option to quantify the image quality objectively, is the usage of metrics. To compare

different image sets several full-reference metrics have been used. The image quality was measured

using the following four metrics: Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR),

Structural Similarity (SSIM) [47] and lastly PSNR-HVS-M [37].

The MSE is defined as

𝑀𝑆𝐸 =
1

𝑊 ∗ 𝐻
∗ ∑ ∑ (𝑓(𝑤, ℎ) − 𝑓(𝑤, ℎ))

2
𝐻

ℎ=1

𝑊

𝑤=1

(4.1)

where 𝑊 is the width of an image, 𝐻 is the height of an image, 𝑓(𝑥, 𝑦) gives the color at the

coordinates (𝑥, 𝑦) of the interpolated image and 𝑓(𝑥, 𝑦) returns the color at the coordinates (𝑥, 𝑦) of

the baseline image. Lastly, the unit of the measurements is the square of the pixel values.

One limitation of using MSE as an objective measure for image quality is that its uninformative without

additional information. For example, a MSE of 100.0 for an RGB image with 8-bit color channels is very

noticeable. On the other hand, a MSE of 100.0 for an RGB image with 10-bit color channels is barely

noticeable. Another issue related to the MSE is its independence of the sign of the error, which may

lead to drastically different visual fidelity, but result in the same measured error.

PSNR slightly improves om the MSE by scaling according to the range of possible values. The

mathematical definition is as follows:

𝑃𝑆𝑁𝑅 = 10 ∗ log10 (
𝑀2

𝑀𝑆𝐸
) (4.2)

where 𝑀 is the maximum possible value of any pixel in a given image and 𝑀𝑆𝐸 is the same as Equation

4.1. The unit of PSNR is defined to be decibels (dB).

Unfortunately, both the MSE and PSNR suffer from the fact that they do not consider how the

human visual system responds to artifacts. They only measure the strength of the error, and don’t

distinguish between distinct types of errors. An example where the MSE breaks down is when a

reconstructed image is changed to have several pairs of pixels’ swap locations. This will result in the

same MSE value but the human visual system could very easily detect the errors [48]. See some

examples of this problem in Figure 4.1.

49

Thus, leading to the inclusion of two measures that try to incorporate the human visual system

response. Among other properties, the human visual system is sensitive to image contrast and

luminance [13, 50]. The PSNR-HVS-M measure incorporates this insight into the 𝑃𝑆𝑁𝑅 measure. It

builds upon equation 4.2, but the 𝑀𝑆𝐸 is replaced with equation 4.3.

𝑀𝑆𝐸ℎ𝑣𝑠−𝑚 =
1

𝑊 ∗ 𝐻
∗ ∑∑(∑∑((𝑓(𝑖, 𝑗) − 𝑓(𝑖, 𝑗)) ∗ 𝐶𝑀(𝑖, 𝑗) ∗ 𝐶𝑆𝐹(𝑖, 𝑗))

2
8

𝑗=1

8

𝑖=1

)

𝑊
8

𝐽=1

𝐻
8

𝐼=1

 (4.3)

where 𝑊 is the width of the image, 𝐻 is the height of the image, (𝐼, 𝐽) is the position of an 8𝑥8 block

of pixels in an image, (𝑖, 𝑗) is the position of a pixel in the 8𝑥8 block of pixels, 𝑓(𝑥, 𝑦) gives the color at

the coordinates (𝑥, 𝑦) of the interpolated image and 𝑓(𝑥, 𝑦) returns the color at the coordinates (𝑥, 𝑦)

of the baseline image. Furthermore, 𝐶𝑆𝐹(𝑥, 𝑦) gives predetermined Discrete Cosine Transform (DCT)

[1] coefficients that are determined based on the Contrast Sensitivity Function. This function models

the sensitivity of the human visual system in response to visual stimuli frequencies. The values hereof

are precomputed and can be found in [37]. Lastly, 𝐶𝑀(𝑥, 𝑦) applies a contrast masking metric to the

DCT coefficients. The unit of the PSNR-HVS-M measure is decibels.

Furthermore, the human visual system is sensitive to the spatial frequency. The SSIM measure

incorporates this information by comparing the structural information between a pair of images. Wang

et al. [47] note that images are highly structured. The pixels contained within an image exhibit strong

dependencies, especially when they are spatially proximate. The information within these

dependencies provide essential information about the structure of objects to the human visual system.

For the mathematical definition of SSIM refer to [47]. The SSIM reports the similarity between a

pair of images as a percentage, where a value of one corresponds with an image that is identical to a

given reference image.

 Ground truth
To classify the performance of the epipolar rendering framework, a baseline is needed against which

the performance and image quality can be compared. The intended usage is in the realm of real-time

rendering algorithms. As such, it doesn’t make sense to compare the epipolar rendering framework

against the family of ray tracing algorithms, since these types of rendering algorithms focus more on

image quality and usually don’t generate images in real-time.

In real-time rendering environments, the deferred rendering technique is commonly used. Several

graphics engines that implement a variation of this technique are Unreal Engine 4 [45], Unity [44],

Frostbite 2 [28] and Rockstar Advanced Game Engine [33]. These graphics rendering frameworks are

Figure 4.1. Example of several images with the same MSE, but are perceived extremely different by the human
visual system. Source: “Mean Squared Error: Love it or Leave It?” [46].

50

used in numerous AAA games such as Gears of War 4, Battlefield 4, FIFA 17, Grand Theft Auto V. Since

the epipolar rendering framework targets similar real-time constraints as deferred rendering is used

for, it will serve as the ground truth against which the presented epipolar rendering framework will be

benchmarked.

The implementation of the deferred rendering technique used for benchmarking is custom, and geared

towards the specific, presented research setting. Typical production-ready implementations would

include optimizations such as frustum culling or accounting for level of detail to reduce the geometry

processing done by the GPU. For some example algorithms, refer to respectively [2, 8] and [29].

Alongside the optimizations, the resulting images are often post-processed to increase the visual

fidelity using methods such as color grading or antialiasing. Some example algorithms can be found in

respectively [5] and [23]. However, these types of methods are outside the scope of the presented

research and thus not included, otherwise the comparison between the deferred and epipolar

rendering pipelines would be unfair and result in skewed results. But note that both a deferred

rendering pipeline and an epipolar pipeline could benefit in the same manner, since the respective

pipelines don’t need to change internally to accommodate the mentioned additions.

 Measured Performance
The described experiments have resulted in several traces characterizing the performance of the

baseline algorithm and the epipolar based view interpolation algorithms. A comparison between the

measured frame time for the different pipeline configurations can be seen in Figure 4.2 and Figure 4.3.

The figures respectively correspond with measurements for the CPU timeline and GPU timeline. When

considering only the CPU based measurements, the consensus is, that the deferred rendering pipeline

outperforms all interpolation-based pipelines except for several test cases with the Sponza(Original),

Sponza(High) and SanMiguel(Original) scenes. However, comparing the two timelines, the GPU is

reporting higher frame times to process a single frame, and is thus leading in the frame time

judgement. This is typical for algorithms involving the GPU since the only responsibility of the CPU is

preparing and sending commands and data. The GPU performs the actual work.

An observation which is less typical is the constant amount of work performed by the CPU under

the interpolation-based pipelines. For the deferred rendering pipeline, the frame time on the CPU

timeline increases with an increasing number of views. On the contrary, the epipolar interpolation-

based pipelines have a constant frame time.

The measurements on the GPU timeline show a slightly different story. The frame time for the

deferred rendering pipeline still appears linear in the number of views. However, the frame time of

the interpolation-based pipelines with source acquisition using depth peeling also appear linear in the

number of views. But, with a much lower slope compared to the deferred rendering pipeline, which

means that the interpolation-based pipelines scale better to larger number of views. Furthermore, the

performance of the hierarchical epipolar pipelines appear to scale superlinearly. Though, the evidence

is not very conclusive since the results at more than 100 views are missing. Most test cases related to

the hierarchical epipolar pipeline could not complete their execution within reasonable time.

Combined with the better performance of the center and dual epipolar pipelines in all test cases, it

was decided not to wait for the probably uninteresting results. It seems the hierarchical epipolar

pipelines could improve on the performance of the deferred pipeline, but only in cases with very high

vertex and triangle counts. This can be seen in the test cases marked with San Miguel (High) and San

Miguel (Extreme) at roughly 75 views.

51

Figure 4.2. For all test scenes, a comparison between the measured rendering pipelines. The shown times are
measured on the CPU. No optimizations or extensions were active for the shown test cases. Note, the graphs are
scaled differently.

Figure 4.3. For all test scenes, a comparison between the measured rendering pipelines. The shown times are
measured on the GPU. No optimizations or extensions were active for the shown test cases. Note, the graphs are
scaled differently.

52

Deferred pipeline

Figure 4.4 shows the accumulated time to render all views in a single frame, for the different test

scenes, using the deferred rendering pipeline. It shows a perfectly linear correlation between the

number of views and the elapsed time. Furthermore, the slope of the line increases as the scene

complexity increases, meaning the time spend per view increases. This holds for both the CPU and GPU

timelines.

Figure 4.5 shows a breakdown for the time spend in the individual steps to render one view. The

specific breakdown comes from a set of 500 views, which were generated without any additional

options active, such as optimizations or specularity. Nonetheless, this behavior is typical for test cases

with differing numbers of views. It illustrates the geometry buffer stage has the most notable impact

on the processing time and becomes more dominating with higher fidelity scenes. This stage only

consists of a simple transformation and rasterization of the scene geometry, and several texture

fetches to associate the geometry data with color information. Though not shown in any figure, this

also holds true with specularity activated.

Figure 4.4. Measured performance for the deferred rendering pipeline across the different scenes. This shows
how the deferred rendering pipeline scales with the different scenes. For these measurements optimizations
and additional options were turned off.

53

Center epipolar pipeline

Figure 4.6 shows how the center epipolar pipeline fares for the different scenes. One observation is

that the measurements for the different Sponza scenes follow a very similar pattern. Equally, the

performance measurements with the San Miguel scene also follow a similar pattern.

Additionally, it is also noticeable that the Sponza and San Miguel scenes, compared to each other, lead

to different growth rates. The graphs corresponding with the Sponza scene have a steeper slope. If this

is crosschecked against the amount of geometry, then it is possible to conclude that higher complexity

scenes lead to better performance and better scalability since the San Miguel scenes consist of more

vertices and triangles than the Sponza scenes.

Also, note the lower frame time for 10, 25, 50 or 75 views. Not only do most test cases with the

center epipolar pipeline suffer from this peak in frame time, but this pattern is also visible with the

dual epipolar and hierarchical epipolar pipelines. The results were checked for outliers in the

measurements, but no evidence for this was found since usage of the median or discounting the 𝑛

highest and lowest timings resulted in marginally different timings.

Figure 4.7 shows how the performance changes under the different optimizations and extensions. Only

primitive coalescing significantly improves the performance and seems to reduce the slope of graph.

As such, the variable time cost per view is slightly reduced instead of the constant overhead.

Additionally, specularity does not seem to negatively impact the performance of the algorithm.

Figure 4.5. Breakdown showing the elapsed time spend in the individual steps when rendering a single view using
the deferred rendering pipeline. This was measured on the GPU timeline. Optimizations or specularity was not
active for this test case.

54

Figure 4.6. Measured timings for the different scenes using the center epipolar pipeline. For these measurements
optimizations and extensions were turned off.

Figure 4.7. Measured performance of the center epipolar pipeline under the optimizations and extensions. Each
option has only one optimization active, except for “Basic”, which corresponds with no active optimizations or
extensions, and “All”, which corresponds with all optimizations actived. The rendered scene was Sponza (Original).

55

Dual epipolar pipeline

The dual epipolar pipeline is built on the same components as the center epipolar pipeline. Instead of

performing depth peeling on the center view, the left- and rightmost views are used as source for view

interpolation. The interpolation stage shares the same code and is thus similar. For the different test

scenes, Figure 4.8 shows the accumulated times to render complete sets of views in a single frame for

the dual epipolar pipeline. This is with no optimizations or extensions active. The frame times exhibit

similar behavior, but are slightly higher, compared to the center epipolar pipeline, with exception of

the reduced frame time at 300 views. The timing breakdown of the exceptional test case reveals that

the interpolation for the views from the rightmost source view takes significantly less time, and this

happens consistently over 32 rendered frames of which the graph shows the average.

A second difference between the center and dual epipolar pipelines is the difference in scaling

behavior for the Sponza and San Miguel scenes. Figure 4.6 displays a clear distinction showing that the

Sponza scene results in worse scaling behavior compared to the San Miguel scene, for the center

epipolar pipeline. On the contrary, the dual epipolar pipeline contains a similar but far less pronounced

effect as is shown in Figure 4.8.

Figure 4.9 shows the consequences of the different optimizations and extensions when rendering the

Sponza (original) scene. Dynamic layer reduction performs similar as with the center epipolar pipeline

and does not appear to reduce the frame time. Visibility estimation evidently does seem to reduce the

frame time significantly, and primitive coalescing has the largest impact on the frame time.

Figure 4.8. Measured performance for the dual epipolar pipeline rendering the different scenes. For these
measurements optimizations and additional options were turned off.

56

Regarding the dual epipolar pipeline, Figure 4.10 displays a breakdown of the time cost for each step.

It shows, the cost for epipolar rendering is significant compared to depth peeling, whereas the cost for

depth peeling increases with increasing scene complexity. For unusually complex scenes, the depth

peeling accounts for nearly half the frame time. Furthermore, the raw values for the graph show the

combination of both primitive coalescing and visibility estimation is less effective than their respective

reductions in frame time.

In Figure 4.11 a breakdown is given for an increasing number of views. For 2 views, the cost of

epipolar rendering is 102 ms, and averages to 51 ms per view. At 500 views, the cost of epipolar

rendering is roughly 599 ms, or 1.19 ms per view. This is significantly less than the deferred pipeline,

which uses a constant 12 ms to render a single view for the same scene.

Before moving to the test results of the hierarchical epipolar pipeline, a note on additional tests

performed with the dual epipolar pipeline rendering 2048 low resolution images (256 x 256 px). The

underlying reason is that the described test configuration of Section 4.2 might be biased towards the

deferred rendering pipeline since it is more suitable for generating a relatively small number of views

at high resolution. However, additional testing was limited due to being an afterthought.

Nonetheless, the measured results are shown in Figure 4.12. The shown results correspond with

a test case whereby the Sponza (Original) scene is rendered and no optimizations or extensions are

active. The original test cases reported times that were similar to or higher than the frame times for

the baseline rendering pipeline. However, at high view counts with low resolution images, the dual

epipolar pipeline reports significantly lower frame times compared to the baseline with 198.61 ms for

the deferred rendering pipeline and 100.89 ms for the dual epipolar pipeline. Furthermore, the

difference in frame times increases for more complex scenes. Although, not shown in this report, the

dual epipolar pipeline recorded frame times 8.6x lower when rendering the Sponza (High) scene. The

deferred rendering pipeline reported a frame time of 858.82 ms, whereas the dual epipolar pipeline

had a frame time of 100.43 ms.

Figure 4.9. Measured performance for the dual epipolar pipeline with the different optimizations and extensions
active. Each option has only one optimization active, except for “Basic”, which corresponds with no active
optimizations or extensions, and “All”, which corresponds with all optimizations actived. The rendered scene is
Sponza (Original).

57

Figure 4.10. Breakdown, of the time spend on the GPU, into the separate steps for the generation of a single set
of views using the dual epipolar pipeline. 500 views are generated per set, and options are defined as follows:
Basic = no optimizations, VisEst = visibility estimation, PrimCoal = primitive coalescing and Both = visibility
estimation and primitive coalescing.

Figure 4.11. Breakdown of the time spend on the GPU into the separate steps for the generation of the view sets
using the dual epipolar pipeline. This figure shows how the spend time increases for higher view counts. The
shown graph corresponds with the San Miguel (High) scene.

58

Hierarchical epipolar pipeline

The source view acquisition stage for the hierarchical epipolar pipelines is fundamentally based on a

different method compared to both pipelines using depth peeling for source view acquisition. Thus, it

is expected to see a difference in the performance. Figure 4.13 shows the measured timings for the

hierarchical epipolar pipeine with the erosion-based image quality metric, and no optimizations or

extensions active. The performance is notably worse than the dual epipolar pipeline, with the worst-

case difference being approximately 500 ms.

Figure 4.14 shows a breakdown of the time spent for the hierarchical epipolar pipeline (erosion).

Compared to the dual epipolar pipeline, a lot more time is spent capturing the source views. For

hierarchical epipolar pipelines this stage is denoted by “Deferred Render PVS”. A second observation

is the correspondence between the CPU and GPU timelines for the source view acquisition stage. The

time on both timelines is very similar.

The hierarchical epipolar pipeline with reprojection based image quality measure exhibits similar

behavior to the pipeline with the erosion-based measure. Figure 4.15 displays the performance for the

different test scenes without any optimizations and extensions active. A breakdown of a single frame

is displayed in Figure 4.16, and shows that the different image quality measures result in similar

algorithm behavior.

Figure 4.12. Comparison of the baseline deferred rendering pipeline against the dual epipolar interpolation
pipeline. For this test case, 2048 low resolution views (256 x 256 px) were rendered with no optimizations or
extensions active. The rendered scene was Sponza (Original).

59

Figure 4.13. Measured performance for the hierarchical epipolar pipeline (Erosion) across the different scenes.
For these measurements optimizations and extensions were deactivated.

Figure 4.14. Breakdown of timings in individual algorithm steps. The measurements were taken with the
hierarchical epipolar pipeline (erosion). The shown test case used the San Miguel (High) scene. Any optimizations
and extensions were turned off.

60

The previous graphs show the distinct performance deficit compared to the center and dual epipolar

pipelines. Opposed to the optimizations implemented for the center and dual epipolar pipeline, both

hierarchical epipolar pipelines had less optimizations implemented. Only primitive coalescing was

implemented which previously led to a significant reduction in the measured frame times. For the

hierarchical epipolar pipelines the reduction is less pronounced. Additionally, support for specularity

was also implemented for the hierarchical epipolar pipelines. Figure 4.17 and Figure 4.18 show the

impact of the two features.

Figure 4.15. Measured performance for the hierarchical epipolar pipeline (Reprojection) rendering the different
scenes. For these measurements optimizations and additional options were turned off.

Figure 4.16. Breakdown of the timings from a single frame into individual algorithm steps. The measurements
were taken with the hierarchical epipolar pipeline (reprojection). The shown test case used the San Miguel (High)
scene. Any optimizations and extensions were turned off.

61

Figure 4.17. Impact of the optimizations and extensions on the frame time for the hierarchical epipolar pipeline
(erosion). The only optimization implemented was primitive coalescing. Additionally, specularity is also supported.
The test scene was Sponza (Original).

Figure 4.18. Impact of the optimizations and extensions on the frame time for the hierarchical epipolar pipeline
(reprojection). The only optimization implemented was primitive coalescing. Additionally, specularity is also
supported. The test scene was Sponza (Original).

62

 Measured image quality
The image quality measurement experiments have resulted in several quality traces. Table 4.4, Table

4.5 and Table 4.6 show an overview of the measured image quality for the different test scenes. The

tables respectively refer to the center view acquisition, dual view acquisition and hierarchical view

acquisition render pipelines combined with epipolar view interpolation.

The tables give the average, minimum and maximum PSNR and SSIM values. The values for a given test

scene are derived from all generated images for a fixed configuration. For example, the values for the

Sponza test case are computed from the images in the combined view sets corresponding with 2, 10,

25, etc. views. Unless otherwise specified, the configuration was such that primitive coalescing was

not active, and specularity was also not activated. If an option was activated, it’s tagged onto the model

name.

Center epipolar pipeline

Table 4.4 displays the accumulated PSNR and SSIM values for the center epipolar pipeline. For

respectively the Lucy and Mitsuba scene, the PNSR fall in the mid-twenties and mid-to-high thirties.

The SSIM values are upward of 98%. On the contrary, the different test configurations for the Sponza

scene resulted in SSIM values in the mid 80% range.

The accumulated results also show the center epipolar pipeline can generate perfect images

according to the SSIM measure. Figure 4.19 shows an exemplary, but typical, spread of the image

quality within a set of images. The center view has the highest image quality, and the image quality

degrades for views further away from the center. More so, according to SSIM, the center image is a

perfect match with the baseline. The PSNR also reports a high image quality, although not perfect.

Additionally, when specularity is added, the image quality of the center view drops.

Table 4.4. Overview of quality measurement results for the rendering pipeline configured as center view
acquisition with epipolar rendering. Unless otherwise stated, the results are given for the basic pipeline, and
without specularity.

Center Epipolar

Model
PSNR SSIM

Avg. Min. Max. Avg. Min. Max.

Hairball 19.405 9.630 23.616 0.911 0.668 1.000

Lucy 37.321 32.312 41.281 0.991 0.984 1.000

Lucy (Specularity) 37.321 32.312 41.281 0.991 0.984 1.000

Mitsuba 25.174 17.998 36.341 0.983 0.950 1.000

Mitsuba
(Specularity)

25.187 17.995 51.443 0.982 0.950 1.000

Sponza 22.598 15.466 31.227 0.869 0.716 1.000

Sponza
(Primitive
Coalescing)

22.634 15.467 53.929 0.868 0.716 0.998

Sponza (Specularity) 22.321 15.410 38.546 0.866 0.713 1.000

Note that it would be unfair to compare the image quality for the different scenes test scenes because

the center epipolar rendering pipeline suffers from an inherent problem. It uses only images captured

from the center camera to generate all views. As it stands, a part of the images that correspond to

several left- and right-side cameras miss information which cannot be reconstructed. In turn, the image

quality of the Sponza scene drops because it fills an entire image whereas the Lucy scene, and to a

lesser degree, the Mitsuba scene only cover a part of the image. See Figure 4.20 for several example

63

images showing why Lucy and Mitsuba are not suffering from the mentioned problem, while the

Sponza scene reports a lower image quality.

When the results are compensated for the lacking information by leaving part of the image out of

the image quality comparison, then the average PSNR increases to 29.740 for the basic pipeline. The

averages for the pipelines configured with primitive coalescing and specularity respectively increase

to 29.737 and 28.898. The average SSIM also increases to 0.915, 0.914 and 0.913 for respectively the

basic pipeline, the pipeline with primitive coalescing activated and the pipeline with specularity

activated.

Figure 4.19. Individual image quality trace. It shows the center epipolar pipeline can generate perfect images,
and degrading image quality for views further from the center. Test scene: Sponza (original); render pipeline:
center epipolar; view set size:75 views.

64

Note, the coverage of a scene within an image is a large contributor to the high PSNR and SSIM values

for the Lucy and Mitsuba scenes. Large sections of the scenes are background and are considered equal

by the image quality metrics. However, this does not measure the quality of the algorithms. As such,

these scenes are not preferred when judging the image quality of the view interpolation algorithm.

That said, another noticeable result is the image quality of the Hairball scene. Like the test scenes Lucy

and Mitsuba, the Hairball does not cover an entire image. However, the Hairball related PSNR and

SSIM values are the lowest of all test scenes, especially the minimum values. See Figure 4.21 for

example images of the Hairball test scene, rendered using the center epipolar interpolation pipeline

with no primitive coalescing or specularity.

Figure 4.20. Several example images of the leftmost views, captured using the center epipolar render pipeline.
The shown test scenes are Lucy (top left), Mitsuba (top right) and Sponza (bottom). The sponza scene is missing
part of the left side due to missing information in the interpolation source views. Lucy does not suffer from this
problem since only part of the image is covered, and Mitsuba is only missing a small section.

65

Dual epipolar pipeline

The dual view interpolation pipeline corrects the missing information of the previous render pipeline.
A corresponding increase in SSIM values can be seen with the Sponza scene, shown in Table 4.5.
Furthermore, the minimums are higher, and the maximums are slightly lower. See Figure 4.22 for an
example of how the measured image quality relates to an actual view of the Sponza scene. The Lucy
and Mitsuba scenes show comparable results to the center epipolar pipeline for PSNR and SSIM.
Hairball has similar average and maximum PSNR values, but the minimum PSNR has doubled. The
corresponding SSIM outcome is slightly lower.

Table 4.5. Overview of quality measurement results for the rendering pipeline configured as dual view acquisition
with epipolar rendering. Unless otherwise stated, the results are given for the basic pipeline, and without
specularity. The models annotated with “mod.” are generated based on a modified test to circumvent an edge
case.

Dual Epipolar

Model
PSNR SSIM

Avg. Min. Max. Avg. Min. Max.

Hairball 18.746 17.753 22.607 0.895 0.867 0.957

Lucy 37.677 35.973 45.635 0.991 0.988 0.998

Lucy (Specularity) 37.677 35.973 45.635 0.991 0.988 0.998

Mitsuba 35.165 34.040 38.804 0.994 0.992 0.998

Mitsuba (Specularity) 35.138 34.027 38.787 0.993 0.992 0.998

Sponza 28.663 24.055 36.476 0.916 0.892 0.991

Sponza
(Primitive Coalescing)

28.662 24.054 36.408 0.915 0.892 0.989

Sponza (Specularity) 28.595 24.030 36.377 0.916 0.892 0.991

Sponza (mod.) 33.023 31.781 39.080 0.945 0.924 0.993

Sponza (mod.;
Primitive Coalescing)

33.015 31.777 39.001 0.944 0.923 0.991

Sponza (mod.;
Specularity)

32.979 31.733 39.021 0.945 0.924 0.993

Figure 4.21. Examples of left- and rightmost view of the Hairball scene. The set of views from which these images
originated contains 100 views.

66

Another noticeable result is that the average values lie significantly closer to the minimum values than

the maximums. This suggests that the bulk of the images have an image quality close to minimum and

average quality, with some images having an image quality that can be considered outliers.

Looking at the measured quality of individual images, the quality drops for larger view sets. Figure

4.23 shows the image quality of individual images for a view set consisting of 100 views. The image

quality is similar across the different views. Contrastingly, larger view sets have an observable decrease

in image quality for the right half of the views, when considering test cases with the Sponza scene.

Figure 4.24 and Figure 4.25 show the individual image quality for view sets containing 300 and 500

views. When the image sets containing these views are left out, then the values are as follows: the

average, minimum and maximum PSNR are respectively 30.725, 29.517, 36.476. The resulting average,

minimum and maximum SSIM values are respectively 0.929, 0.907, 0.991. These results are for the

Sponza scene without any optional settings active. This suggests the test cases trigger an edge case

with the dual epipolar pipeline, and this is also argued in Section 5.1. When the test cases are changed

to account for these edge cases, then the results improve to respectively 0.945, 0.924 and 0.993 for

the average, minimum and maximum SSIM values. Several example image quality traces are shown in

Figure 4.26 and Figure 4.27.

Furthermore, the maximum SSIM values are not 1.000, or 100%. However, the views used as basis for

the interpolation should have resulted in identity transformations, and thus identical views. When

looking at the individual image quality within a set of views, as expected, the source views have the

highest image quality, but are not perfect. For some examples, see the graphs displaying the individual

image quality in Figure 4.23, Figure 4.24 and Figure 4.25.

Figure 4.22. Shows view 121 of 200 for a test configuration with the Sponza scene, rendered with the dual epipolar
pipeline. View 0 corresponds with the leftmost view, and view 200 with the rightmost view.

67

Figure 4.23. Individual image quality of the Sponza test scene. The image set comprised 100 views, and the quality
is relatively even over the complete image set. Note, the view index is a reference to a specific camera for which
the views were generated. View index 0 corresponds with the leftmost camera, and index 100 represents the
rightmost camera.

Figure 4.24. Individual image quality of the Sponza test scene from an image set comprised of 300 views. The
right half of the views shows a decline in image quality. Note, the view index is a reference to a specific camera
for which the views were generated. View index 0 corresponds with the leftmost camera, and index 300 represents
the rightmost camera.

Figure 4.25. Individual image quality of the Sponza test scene, whereby the image set comprised 500 views. Like
the view set containing 300 views, the quality decreases for the right half of the images. Note, the view index is a
reference to a specific camera for which the views were generated. View index 0 corresponds with the leftmost
camera, and index 500 represents the rightmost camera.

68

The image quality traces don’t show how the interpolated images differ from the reference images. To

this end, Figure 4.28 and Figure 4.29 show some examples of the absolute error in the generated

images. The absolute error shows the interpolation introduces noise throughout the entire image, with

most of the error located on the edges between different surfaces. For more examples, see Appendix

A. Another anomaly in the image quality traces is the decreased image quality between the left- and

rightmost views, and the views in between. The SSIM values for the images corresponding to the

absolute error maps shown in Figure 4.28 and Figure 4.29 have a difference of roughly 2 percent when

comparing the SSIM metric. However, the difference between the absolute error maps is minimal and

mostly limited to the sides of the images.

Figure 4.26. Individual image quality trace with modified test case. The camera position and orientation were
changed such that the view direction did not run parallel with a wall, which increased the image quality. However,
from inspection of the images some holes were visible due to missing information. Test scene: Sponza; render
pipeline: dual epipolar; view set size: 500 views.

Figure 4.27. Individual image quality trace with modified test case. Compared to the results from Figure 4.26,
these results were generated using a smaller distance between cameras. This reduces hole forming and thus
increases image quality. Test scene: Sponza; render pipeline: dual epipolar; view set size: 500 views.

69

Fi
g

u
re

 4
.2

8
.

A
b

so
lu

te
 e

rr
o

r
o

f
vi

ew
 0

 f
ro

m
 t

h
e

sa
m

e
vi

ew
se

t
u

se
d

 t
o

 g
en

er
a

te
 t

h
e

g
ra

p
h

 s
h

o
w

n
 i

n
 F

ig
u

re
 4

.2
7

.
Th

is
 v

ie
w

 w
a

s
g

en
er

a
te

d
 u

si
n

g
 n

o
 o

p
ti

m
iz

a
ti

o
n

s
o

r
ex

te
n

si
o

n
s.

 F
o

r
m

o
re

 e
xa

m
p

le
s

se
e

A
p

p
en

d
ix

 A
.

70

Fi
g

u
re

 4
.2

9
.

A
b

so
lu

te
 e

rr
o

r
o

f
vi

ew
 2

 f
ro

m
 t

h
e

sa
m

e
vi

ew
se

t
u

se
d

 t
o

 g
en

er
a

te
 t

h
e

g
ra

p
h

 s
h

o
w

n
 i

n
 F

ig
u

re
 4

.2
7

.
Th

is
 v

ie
w

 w
a

s
g

en
er

a
te

d
 u

si
n

g
 n

o
 o

p
ti

m
iz

a
ti

o
n

s
o

r
ex

te
n

si
o

n
s.

 F
o

r
m

o
re

 e
xa

m
p

le
s

se
e

A
p

p
en

d
ix

 A
.

71

Hierarchical epipolar pipeline

Table 4.6 gives an overview of the measured image quality of the hierarchical view acquisition-based

interpolation pipeline. For the pipeline configured with the erosion-based image quality measure, the

Sponza scene gives SSIM values around 0.85, with slightly lower values when primitive coalescing is

active. However, when the test case is modified identical to the modification done for the previously

discussed pipeline, then an increase is noticeable to SSIM values of roughly 0.90. A similar behavior

can be observed for both image quality measure configurations of the hierarchical pipeline.

The most notable difference compared to the previously mentioned pipelines is the lower image

quality according to SSIM. Whereas, the PSNR values are on par with the center and dual epipolar

pipelines. However, a side-by-side comparison of several images (for the sponza scene) doesn’t show

any obvious or major errors. An exemplary side-by-side comparison of a single view for the different

pipelines is given in Figure 4.33.

The quality of individual images within view sets show interesting patterns. Figure 4.30 has a noticeable

drop in image quality for the images on the right side of the spectrum. Inspection of the images shows

that some cameras clip into the geometry resulting in a different behavior compared to the baseline

generated images. Additionally, the image quality peaks for a small set of views. However, based on

results of the previous pipelines, the expectation would be to see peaks for the views used as source

for the interpolation. But, it is known, the generation of this set of views used more than two views as

source. An example of the expected pattern can be seen in Figure 4.31.

However, the expected image quality trace also contains a similar loss of image quality as with the

dual epipolar render pipeline rendering the Sponza scene. This holds for both image quality prediction

measures. Figure 4.32 shows an example of this behavior for the erosion-based measure.

Figure 4.31 does raise the suggestion that the pattern on the right half of the views should be similar

on the left half of the views due to the slight bumps in quality visible around view 350 and view 440,

which are likely to reference the used source views. If the test is adjusted to circumvent the edge case,

then the result is as shown in Figure 4.34 and Figure 4.35. The changed tests show an improvement in

image quality, and clearly show the view indices that were used as source view.

Table 4.6. Overview of quality measurement results for the hierarchical view rendering pipelines. The first section
employs the erosion-based quality measure, and the second section is based on the reprojection based quality
measure. Unless otherwise stated, the results are given for the basic pipeline, and without specularity. The models
annotated with “mod.” are generated based on a modified test to circumvent an edge case.

Hierarchical Epipolar (Erosion)

Model
PSNR SSIM

Avg. Min. Max. Avg. Min. Max.

Hairball 12.705 11.876 13.508 0.743 0.726 0.756

Lucy 38.039 36.603 39.807 0.991 0.989 0.994

Lucy (Specularity) 38.039 36.603 39.807 0.991 0.989 0.994

Mitsuba 34.732 32.730 36.917 0.990 0.971 0.996

Mitsuba (Specularity) 34.629 32.691 36.746 0.990 0.971 0.995

Sponza 27.547 25.106 28.053 0.851 0.842 0.869

Sponza
(Primitive Coalescing)

26.563 23.465 28.102 0.826 0.738 0.859

Sponza (Specularity) 27.178 24.993 27.683 0.851 0.841 0.871

Sponza (mod.) 30.262 29.351 30.793 0.902 0.896 0.909

Sponza (mod.;
Primitive Coalescing)

30.224 29.402 30.950 0.903 0.897 0.911

Sponza (mod.;
Specularity)

29.410 27.647 30.975 0.908 0.901 0.919

72

Hierarchical Epipolar (Reprojection)

Model
PSNR SSIM

Avg. Min. Max. Avg. Min. Max.

Hairball 12.428 11.740 13.281 0.734 0.720 0.747

Lucy 37.131 35.523 39.807 0.989 0.987 0.994

Lucy (Specularity) 37.131 35.523 39.807 0.989 0.987 0.994

Mitsuba 33.450 32.833 36.917 0.962 0.951 0.996

Mitsuba (Specularity) 34.350 32.762 36.746 0.980 0.951 0.995

Sponza 24.724 19.317 29.440 0.850 0.798 0.913

Sponza
(Primitive Coalescing)

24.725 19.317 29.446 0.850 0.798 0.912

Sponza (Specularity) 24.459 19.256 28.899 0.850 0.797 0.912

Sponza (mod.) 28.535 26.840 30.987 0.901 0.893 0.918

Sponza (mod.;
Primitive Coalescing)

28.537 26.829 30.995 0.901 0.893 0.917

Sponza (mod.;
Specularity)

28.490 26.749 30.925 0.906 0.898 0.922

Figure 4.30. Individual image quality trace. Notice the decreased image quality with respect to the PNSR metric
for view indices in the range 450 to 500. Furthermore, only the image quality peaks when primitive coalescing is
active. Test scene: Sponza (Original); render pipeline: hierarchical epipolar (Erosion); view set size:500 views.

Figure 4.31. Individual image quality trace. The image quality peaks for the views which are included in the source
view set. Test scene: Sponza; render pipeline: hierarchical epipolar (Reprojection); view set size: 500 views.

73

Figure 4.32. Individual image quality trace. Like the dual epipolar pipeline, the image quality is lower to the right
of the center view. Test scene: Sponza; render pipeline: hierarchical epipolar (Erosion); view set size: 400 views.

74

Fi
g

u
re

 4
.3

3
.

Si
d

e-
b

y-
si

d
e

co
m

p
a

ri
so

n
 o

f
a

 s
in

g
le

 v
ie

w
 b

et
w

ee
n

 t
h

e
d

ef
er

re
d

 r
en

d
er

in
g

 p
ip

el
in

e
(t

o
p

 l
ef

t)
,

d
u

a
l

ep
ip

o
la

r
(t

o
p

 r
ig

h
t)

,
h

ie
ra

rc
h

ic
a

l
ep

ip
o

la
r

(E
ro

si
o

n
)

(b
o

tt
o

m
 le

ft
)

a
n

d
 h

ie
ra

rc
h

ic
a

l e
p

ip
o

la
r

(R
ep

ro
je

ct
io

n
)

(b
o

tt
o

m
 r

ig
h

t)
 p

ip
el

in
es

.

75

Regarding the support for specularity, it was added as an afterthought to the basic epipolar

interpolation algorithm. However, the aggregated numbers in Table 4.4, Table 4.5 and Table 4.6 show

that the support for specularity is adequate, and on par with the other test configurations. The quality

traces for the individual images also show minimal differences in quality. See, Figure 4.36 for an

example comparison of support for specularity using the Mitsuba test scene.

Figure 4.34. Individual image quality trace of changed test case to circumvent edge cases in the original tests.
The original trace is shown in Figure 4.32. The modifications lead to an improvement in quality. Test scene:
Sponza; render pipeline: hierarchical epipolar (Erosion); view set size: 400 views.

Figure 4.35. Individual image quality trace of changed test case to circumvent the edge cases in the original tests.
The original trace is shown in Figure 4.31, the modifications lead to an improvement in quality. Test scene: Sponza;
render pipeline: hierarchical epipolar (Reprojection); view set size: 500 views.

76

Figure 4.36. Example of support for specularity by the epipolar interpolation pipeline. The shown top image was
generated using the dual epipolar pipeline. The specularity is manifested as the white higlights around the
rectangular hole. The top image gives an overview of the camera sight. The bottom row shows cropped versions
of the same view. Hereby, the bottom left was generated using the baseline deferred rendering pipeline. The
bottom middle is a cropped version of the top image. The bottom right image was also generated using the dual
epipolar pipeline but has no specularity.

77

5 Discussion

The previous chapter reported the measured numbers with respect to the performance of the

different algorithms and the image quality of the resulting images. But how do these numbers relate

to the research question posed in Chapter 1? Is the outcome of the conducted study an improvement

in the field of computer graphics? And what were the limitations of the research? This chapter will

answer these questions.

Section 5.1 starts with interpreting the results as reported in the previous chapter and tries to give

insight into the behavior of the algorithms based on the measured results. Also, a few

recommendations on algorithm usage and an idea of the impact this study has on computer graphics

are given. Section 5.2 ends this chapter with choices that were made during the entire process and

explaining the limitations inherent to the conducted research.

 Implications of results
The developed algorithms are evaluated on two characteristics. The quality of the generated images,

and the performance characteristics. The main expectation regarding performance would be to see

the epipolar based pipelines outperform the baseline. As a starting point, and to guide expectations, a

theoretical analysis of the computational complexity was given. In Appendix B.1, the runtime

complexity of the deferred pipeline was reported to be 𝑂 𝑥 ∗ (𝑣 + 𝑝) . This is the baseline against

which the interpolation-based pipelines are compared. The runtime complexity of the center view

acquisition, dual view acquisition and hierarchical view acquisition were determined to respectively be

𝑂(𝑣 + 𝑝), 𝑂(𝑣 + 𝑝) and 2 ∗ 𝑂(𝑣 + 𝑝) + 𝑂(1) + 9 + 𝑇/𝐵 ∗ (𝑂(𝑝2 + 2 ∗ 𝑝) + 𝑂(𝑣 + 𝑝) + 𝑂(𝑝) +

3 ∗ 𝑂(1) + 11) + 1 in Section 3.3.1. Furthermore, Section 3.3.2 established the runtime complexity of

the epipolar based view interpolation algorithm to be 𝑂(𝑝). As such, considering only the theoretical

result, the center and dual view interpolation based pipelines take less computational resources based

on the analysis of the runtime complexity because the computational complexity for both pipelines is

known to be 𝑂(𝑣 + 𝑝) + 𝑂(𝑝)) = 𝑂(𝑣 + 𝑝), and is less than the computational complexity of the

deferred rendering pipeline given enough views. The computational complexity for the baseline was

determined to be 𝑂(𝑥 ∗ (𝑣 + 𝑝)). The computational complexity of the hierarchical epipolar pipeline

is more nuanced and does not clearly state under which conditions it becomes better than the deferred

rendering pipeline.

Performance

Unfortunately, a theoretical analysis doesn’t paint the whole picture since a lot of the constant

overhead is not considered with computational complexity, which is also the case for the presented

method. Furthermore, a functioning implementation must incur extra overhead due to bookkeeping

of used resources. Or, maybe an algorithm doesn’t translate well to actual hardware because of hidden

data or computational dependencies that lead to underutilization of the available parallel processing

power. This leads to the question: how does the theoretical performance result carry over when

evaluating a real-world implementation?

The computational complexity predicts that the center epipolar pipelines should have better

performance with two or more views. However, it is expected this is optimistic due to a lot of constants

hidden by the theoretical analysis, which is reflected in the measured timings. The lower complexity

scenes favor the deferred rendering pipeline and shows the overhead for view interpolation resulting

in higher frame times. However, this is mostly a constant cost. From the measurements it was apparent

the deferred rendering pipeline was very sensitive for the volume of geometry. As shown in Figure 4.5,

higher fidelity models had a highly negative impact on the frame times. It appears the deferred

78

rendering pipeline is bottlenecked by the generation of the geometry buffer. More specifically, the

data suggests it is bound by vertex processing.

The epipolar based pipelines are less affected by this since they are image-based algorithms. The

overhead of brute force calculating each view becomes higher than the overhead of epipolar based

interpolation at roughly 2 million vertices and 4 million triangles. The epipolar pipelines use deferred

rendering when capturing the source views. As such, the volume of geometry must have some effect.

But this is kept to a minimum because the number of rendered views is capped. Figure 4.3 shows that

the basic center epipolar pipeline seems to have better performance starting from roughly 500 or more

views with the original Sponza scene, and less as the fidelity of the scenes increase. For the original

San Miguel scene, there is an improvement at roughly 50 or more views. In the most demanding test

case, the speedup achieved by the dual epipolar pipeline is roughly 11.85. Figure 4.10, Figure 4.11,

Figure 4.14 and Figure 4.16 are some exemplary breakdowns of how the time is spend rendering a

frame. The bulk of the processing is spend doing the interpolation. More so, when the number of views

increases.

A key observation on the computational complexity of the epipolar pipelines is the independence from

the number of views. This result is not exactly corroborated by the measured performance. Figure 4.3

and Figure 4.6 hint at the existence of a linear correlation between the frame time and the number of

views for the basic center and dual epipolar pipelines. Nonetheless, the time cost per view for the

center and dual epipolar pipeline is much less than the cost per view for the deferred rendering

pipeline. As such, the improvement over the deferred pipeline will continue to grow as the number of

views increases. Arguably, a more important result is that the basic center and dual epipolar pipelines

will always outperform the deferred rendering pipeline given enough views, as predicted by the

computational complexity analysis. Coupled with optimizations, the case for the center epipolar

pipeline improves because the frame times decrease by up to 150ms for the original Sponza scene, as

shown in Figure 4.7. More importantly, the optimizations reduce the time to generate a single view. In

other words, the growth rate of the frame time is reduced.

The dual epipolar pipeline utilizes a method like the center epipolar pipeline. As such, it’s to be

expected that the performance follows a similar pattern. However, the dual epipolar pipeline performs

roughly twice the amount of work. Thus, it stands to reason that the frame times double, or at least

increase. Figure 4.2 and Figure 4.3 show this expectation appears to be true. However, the frame times

between the mentioned pipelines can’t be compared based on the presented measurements because

the results were gathered on different test platforms. As such, it is not possible to judge if the frame

times have doubled. In return for the lower performance, the interpolated images are complete. The

center epipolar pipeline is not capable of such a feat because the center view does not span the visible

range of all other views in general. The increased frame times mean that the dual epipolar pipeline is

still usable in common and workable situations but requires larger size view sets to be competitive

with the baseline deferred rendering pipeline, compared to the center epipolar pipeline.

Based on the computational complexity, the performance characteristics of the hierarchical

epipolar pipeline should be different. The expectation is it performs worse than the previous two

mentioned pipelines. This result is reflected in the performance measurements reported in Section

4.4, which report a higher frame time compared to the baseline deferred rendering pipeline under

equal circumstances. Additionally, Figure 4.2 and Figure 4.3 show higher frame times on both the CPU

and GPU compared to the center and dual epipolar pipelines. The most likely reason is the higher

volume of data that is processed each frame. Like the center and dual epipolar pipelines, the source

view capture process is based on deferred rendering with hardware queries to transfer results from

the GPU to the CPU. The difference being that no effort has been put in reducing overlapping source

79

information. This makes it likely that the performance of the hierarchical epipolar pipeline can be

improved significantly, but this requires a considerable time investment.

A positive property of the hierarchical epipolar pipeline is that it’s also an image-space interpolation

algorithm. As such, it is less affected by increasing model complexity than the deferred rendering

pipeline. The results show the hierarchical epipolar pipeline can perform on par with or possibly

outperform the deferred rendering pipeline for the highest fidelity models. If the measured results are

extrapolated to higher view counts, then it is likely that the hierarchical epipolar pipeline has better

performance than the deferred rendering pipeline. As such, it might be worthwhile to investigate

viable solutions to improve the source view capturing process.

Unfortunately, a reduction of the captured source information alone is not enough. If the source

acquisition stage were to be improved to filter out parts of the source images, a bottleneck is still

present in the source view acquisition stage that will undermine the viability of this method. Figure

4.13 and Figure 4.15 show that both hierarchical epipolar pipeline variations spend a lot of time on the

CPU. More specifically, Figure 4.14 shows the time is mostly allocated to “Deferred Render PVS”. As

described, this process consists of deferred rendering and image quality feedback. The baseline

deferred rendering pipeline shows it doesn’t use much CPU time, and since this deferred pipeline is

similar it also shouldn’t. It is known, the communication between the CPU and GPU using OpenGL

query objects leads to a lot of idle CPU time. However, relative to the other epipolar based pipelines,

the spend time is also significantly more than expected. It is not clear why this method takes more

time compared to the depth peeling methods. Two possibilities are, either, hierarchical source view

acquisition is more impacted by the stall, or more views are captured. Based on the computational

complexity, it is likely more views are captures.

It should be noted that depth peeling has a similar issue. Depth peeling stalls the GPU from processing

rendering commands, and is a known drawback. Unfortunately, the feedback is necessary for deciding

to continue. As such, the time spend on the CPU for source view acquisition is roughly equal to the

time needed by the GPU to process all corresponding commands. An example hereof can be observed

by combining the CPU measurements in Figure 4.8 with the depth peeling timings in Figure 4.10 or

Figure 4.11.

A second disadvantage of depth peeling is its inherent need for multiple passes over the geometry.

More so, Figure 4.10 shows an increasing percentage of frame time is spend on depth peeling with

higher fidelity scenes. Both problems could possibly be solved with methods that capture all depth

layers in a single pass. The tradeoff with such methods is the substantial increase in memory usage.

Refer to Section 7.4 for more detailed information on a possible solution.

One unexpected commonality between the center and dual epipolar pipelines is how the frame time

grows with an increasing number of views depending on the scene. Figure 4.6 displays this

phenomenon for the center epipolar pipeline, and correspondingly Figure 4.8 shows it for the dual

epipolar pipeline, although to a lesser extent. Both pipeline variations seem to scale better with the

San Miguel scene compared to the Sponza scene. A possible explanation for this is the difference in

the type of geometry that is rendered in the respective scenes. The Sponza scene consists of mostly

large surfaces, whereas San Miguel contains smaller geometry with a decent amount of foliage. As

explained, the extended depth offset optimization is considered part of the basic pipeline. This

optimization filters out small geometry located closely behind each other. An example of this is the

foliage in the San Miguel scene. It is speculated that due to the camera position, overlooking the tree

in the courtyard from the balcony, more geometry is filtered out from the depth layers with the San

Miguel scene. Thus, less information must be interpolated and, hence, leads to lower growth rates.

The aforementioned behavior can result in two conclusions. Firstly, the source view acquisition

stage is optimized for small geometry that sits closely together, which seems logical since geometry

80

occluded by other (very) nearby geometry does not allow a lot of sight lines and thus doesn’t

contribute much to the interpolated views. Secondly, the developed image-space interpolation

algorithm is dependent on the area of connected geometry that gets captured by the source view

acquisition stage. However, this behavior combined with the measured impact of the visibility

estimation optimization and experience with the lesser performance of the hierarchical epipolar

pipeline, it might be advantageous to adopt a more aggressive visibility estimation algorithm to filter

out more information in the source views.

Besides the basic epipolar interpolation pipelines, several optimizations were described to reduce the

frame time. After testing, it was found that primitive coalescing is the most impactful optimization.

With the original Sponza scene and generating 500 views, an improvement was seen of roughly 150ms

and 280ms for respectively the center and dual epipolar pipelines. The hierarchical epipolar pipelines

showed improvements of roughly 100ms (erosion) and 90ms (reprojection) at 100 views for the same

scene. However, arguably, a more important result is, this optimization reduces the frame time growth

rate. Additionally, this optimization significantly reduces pressure on the rasterizer since the number

of primitives is reduced, and could hint at a bottleneck. This means either the GPU is not built to handle

a high volume of relatively small geometry, or the number of generated fragments is too high.

The two remaining optimizations, dynamic layer reduction and visibility estimation, are only

applicable to the center and dual epipolar pipelines. Dynamic layer reduction had no measurable

impact on the performance.

Visibility estimation had a minor impact. The center epipolar pipeline showed no improvement with

visibility estimation. On the contrary, the dual epipolar pipeline showed a modest improvement of

about 100ms at 500 views for the original Sponza scene. A possible explanation for the minor impact

could be that it’s fighting with the always active extended depth offset. This optimization merges

different depth layers which leads to many small, unconnected areas at different depths. However,

the visibility estimation optimization works best for large connected sections since it is a conservative

estimate of the potentially visibile set of geometry. For small geometry sections, the algorithm cannot

guarantee invisibility for occluded geometry.

In addition to the optimizations, an extension was described in Section 3.5 to prove that the

developed pipelines are capable of interpolating view dependent properties. Specularity was added

by means of the (Blinn-)Phong reflection model. Regarding the performance, the expectation was to

see an increase in frame time. However, the addition was barely noticeable in the measured timings

for both the deferred rendering pipeline and the newly developed algorithms. Most likely because this

reflection model is not computationally expensive.

Besides the performance characteristics of the different pipelines, the measurements also contained

several outliers compared to surrounding results. All interpolation-based pipelines, for view set sizes

between 10 and 75 views, had a lower frame time than could be expected from other view set sizes.

This result is not due to outliers in the measurements, since using the median or discounting 𝑛 lowest

and highest timings resulted in similar graphs. Another possibility could be an issue with the test cases.

For example, clipping geometry could lead to less depth peeling layers because a couple layers are not

located between the camera near and far plane, and thus not included in the captured depth layers.

As a result, this should reduce the frame time. However, after double checking the framing, this was

found not to be the case.

The most likely reason is a difference in the distance between cameras for the different number of

views. The performance tests are setup such that the distance between the left- and rightmost

cameras are fixed across the different view set sizes. Consequently, the distance between cameras

must change. For less views, the distance between consecutive cameras increases. For the geometry

in the epipolar plane, this means that the angle increases since the overall disparity remains identical.

81

In other words, the disparity per view is more. Likely, this leads to more overlapping fragments which

are discarded due to depth testing and would lead to less fragment shader invocations. This reasoning

is corroborated by less impact of this behavior with the San Miguel scenes, which were earlier inferred

to have less captured pixels due to the foliage. Furthermore, this reasoning also holds for the other

pipelines, which exhibit similar behavior.

Besides, if the algorithm is bound by processing of the substantial number of fragments, then it

could also explain the lower frame times with the San Miguel scene compared to comparable, in

number of vertices and / or triangles, Sponza scenes. All other parameters equal, it would be expected

that a scene with more geometry would take longer to render, but this is not the case.

Taken at face value, the mentioned behavior does not explain the increased frame time for 2 views.

However, for 2 views, it is likely that the processing time is dominated by the transformation of pixels

to geometry in epipolar space. Furthermore, the distance between the leftmost and rightmost views

is such that there is not much overlap between the two views. As such, nearly all captured pixels are

needed to generate the set of interpolated views. Again, this would also hold for the dual and

hierarchical epipolar pipelines.

Lastly, a note on the lower than expected frame time of the dual epipolar pipeline at 300 views. As

shown in Figure 4.8 and Figure 4.9, a drop in the frame time is visible only for test cases with the Sponza

scenes. No other pipeline had a similar behavior. Furthermore, the detailed timing information

showed, this consistently happened over a series of frames. Also, the anomalous results were

measured in succession. Unfortunately, the source of this behavior is unknown. It could be due to an

external factor such as Windows installing updates, but an anomaly in the measurements or a bug in

the implementation is equally likely.

Image quality

The second aspect on which the presented view interpolation algorithm is evaluated is the quality of

the output images. The expectation before measuring is that the quality of the images is less than the

baseline images. The reason being that the view interpolation algorithms are approximating

algorithms. Nonetheless, for the epipolar interpolation algorithm to be usable, the quality should still

be sufficient. This raises the question: what is the definition of reasonable or usable? And, how does

this translate to the used measures?

In a perfect world, the best solution would be to ask people if sets of images are indistinguishable.

However, such is infeasible for the presented research project due to the scope of the project and the

time involved to do this properly. Fortunately, the presented algorithm is not the first to generate or

use approximate images. Some examples are static image compression algorithms for still pictures, or,

image stream compression algorithms for tv broadcasting. The goal of these types of algorithms is to

trade image quality for storage space, but such that the image quality is still usable. Fortunately, these

algorithms are mostly compared and calibrated using measures identical to the ones used for this

project.

Unfortunately, there is no authoritative source which gives concrete values for reasonable or usable

images. Furthermore, papers using identical image quality measures don’t give specific thresholds or

value ranges for images that are considered good. This makes sense because the judgement depends

on the use case. As such, for the purposes of this report, reasonable or usable is defined as commonly

used and reported values. For PSNR, a range of 25dB to 30db is commonly used for acceptable quality,

and 30db to 35db is typically considered good quality. SSIM is a newer measure, and thus less

commonly used. But, SSIM values of roughly 0.90 and higher typically correspond with a relatively good

image quality.

82

From all test scenes, only Sponza covers the entire image. Furthermore, it is most representative for

common usage scenarios since most (or all) used scenes cover the entire image. As such, the

judgement for usable image quality is mostly based on it. The image quality for Lucy and Mitsuba are

better but would unfairly boost the results.

From the original image quality tests, as displayed in Table 4.4, Table 4.5 and Table 4.6, it is known

that the average PSNR values for the center epipolar pipeline rendering the Sponza scene lie within

the range [15.410; 53.929] with an average around 22.51. This is uncorrected for the missing

information on the sides of images. The range after correction is [28.898; 29.740]. The dual view

epipolar pipeline gives PSNR values in the range [24.030; 36.476] with an average around 28.64. The

PSNR results for the hierarchical epipolar pipeline lie in the range [23.465; 28.102] with the average

around 27.10 or [19.317; 29.446] with an average around 24.64 for respectively the pipeline

configured with erosion or reprojection based quality measures. However, as mentioned in Section

4.2, the PSNR only measures the strength of the error and does not consider the human visual system,

which may not notice or correct small, specific types of errors. As such, the image quality was also

measured using SSIM. The average values for the center epipolar pipeline are within the range

[0.713; 1.000] with an average of 0.878, when the measurements are uncorrected for the missing

image parts. If the image quality is corrected for this, then the average SSIM value is 0.914. The dual

view epipolar pipeline reports SSIM values in the range [0.892; 0.991] with an average of 0.916.

Furthermore, the hierarchical view interpolation pipeline with erosion-based quality measure gives

SSIM results in the range [0.738; 0.871] with an average of 0.843. For the same pipeline with

reprojection based quality measure, the range is [0.797; 0.913] with an average of 0.85.

Unfortunately, those results were obtained with a test case that triggered an edge case inherent to

the algorithm and is a compound of two problems. The test cases were configured with too large of a

view offset. As such, the distance between the left- and rightmost views were such that the parts of

the scene that are visible in the leftmost view, are (mostly) not visible in the rightmost. This leads to a

situation where the information captured in source views don’t cover enough visible geometry, and

holes form in the interpolated views. This problem is exacerbated by undersampling due to storing the

source views in textures. The source views captured geometry that ran almost parallel to the viewing

direction, and on the eye direction vector. As such, the source views (almost) didn’t capture geometry

which should be visible in other views but were missing in the interpolated views. Unfortunately, this

problem is inherent to the used algorithm, but its solution is left as future work.

To get representative results and circumvent the edge case, the image quality tests using the

Sponza scene were redone with a modified camera position and orientation to not trigger the edge

case. This was only done for the dual and hierarchical epipolar pipelines since they were only affected

by this issue.

The resulting measurements are slightly better. The dual epipolar pipeline has PNSR results in the

range [31.733; 39.080] with an average of 33.006. The corresponding SSIM values fall in the range

[0.923; 0993] with an average of 0.945. The hierarchical epipolar pipeline with erosion-based image

quality measure results in PNSR values in the range [27.647; 30.975] with an average of 29.965, and

SSIM values in the range [0.896; 0.919] with an average of 0.904. When based on the reprojection

image quality measure, the PSNR values are within the range [26.749; 30.995] with an average of

28.521. Its corresponding SSIM values are within the range [0.893; 0.922] with an average of 0.903.

For the unmodified Sponza test cases, the minimums show an image quality which could be

considered low image quality. However, the average values are above the lower bound for an image

quality which can be considered quite good. Furthermore, manually inspecting the images reveals that

most artifacts are hardly noticeable. An analogous conclusion can be made based on the SSIM values.

When looking at the modified test case, then the minimum image quality for both the PSNR and SSIM

metric are close to the lower bound for good image quality, with averages and maximums well above

83

the threshold. As such, it can be concluded that the images produced by the interpolation algorithm

have sufficient quality to be usable in the general case. However, this is highly dependent on the

specific use case and needs to be determined on a case-by-case basis.

At the beginning of this section, a remark was made about the higher image quality of non-image filling

scenes. However, the Hairball scene falls in this category. Contrastingly, it led to images with the lowest

overall image quality. This was expected since it shows a pathological case where the algorithm breaks

down. The discretization of the 3d description of the hairball model to the image space domain

resulted in precision loss. Furthermore, some amount of information is lost with the interpolation.

However, one unexpected observation was the lower image quality of the dual epipolar pipeline

compared to the center epipolar pipeline. Based on the results from the center epipolar pipeline, the

conclusion can be drawn that the interpolation-based generation is able to generate perfect images

with respect to the baseline. Most notably, this holds true for the center views on the center epipolar

pipeline. In general, the views used as source views should have perfect image quality since they are

copied from the original. However, technically, these views are regenerated based on the

interpolation. But, the calculations for these views should lead to the identity transformation. As such,

the upper bound on the SSIM quality results should be 1.0. The dual view and hierarchical interpolation

pipelines use the images corresponding to two or more cameras as the basis for view interpolation.

But, the test results show these images are less than perfect.

This could stem from several causes. The interpolation could introduce a small amount of error in

the computed transformations, possibly due to rounding errors. In turn, this could lead to small

rasterization errors that lead to one-pixel offset differences. However, a more probable cause is

imperfect mixing of the different source views during interpolation. In other words, depth testing does

not select the correct mix of colors in every pixel. This was improved by introducing an additional depth

bias, and led to an increase in image quality. But, it is apparent that this solution is not ideal. The

absolute error maps in Figure 4.28 and Figure 4.29 show that the error should be applied selectively

since certain image areas are only covered by one source view. These image sections don’t suffer from

view mixing errors, but the depth bias is applied regardless. As such, the geometry is slightly moved

which could lead to a slightly higher error.

Memory cost

The performance and image quality of an image reconstruction algorithm are important aspects for

the adoption in production. However, if better performance comes at the cost of unreasonable

amounts of memory, then an algorithm still cannot be used outside academia.

Unfortunately, the OpenGL specification doesn’t specify an API to measure the memory usage of

individual resource. Some GPU manufacturers released vendor-specific OpenGL extensions that only

provide information on the total or available GPU memory. For example, Nvidia provides

GL_NVX_gpu_memory_info [42], and AMD exposes the WGL_AMD_gpu_association [14] and

GL_ATI_meminfo [4] extensions. Moreover, Nvidia is working on an extension that provides object

level memory usage statistics.

However, even object level memory usage would give an answer near the truth because of GPU

drivers or internal hardware requirements. As such, OpenGL might not exactly allocate what was asked

for. For example, OpenGL might allocate more than one copy of a resource to promote pipelining and

avoid stalls. A more concrete example could be that a GPU doesn’t support a 32-bit color framebuffer

with 16-bit depth buffer. So internally, OpenGL might create a combination that is supported but uses

more memory. Thus, resulting in hardware dependent memory usage information from a very small

GPU sample size because of time and hardware availability constraints.

84

The next best option is a theoretical comparison where the memory footprint of a resource is counted

as requested by the algorithm implementation, and not counting any duplicates, and is the chosen

route for the presented analysis. An example memory usage breakdown of a deferred rendering

pipeline is shown in Table 5.1. This example assumes an output of 500 distinct views, with each view

having a resolution of 1920 by 1080 pixels. The breakdown is based on the implementation used for

performance and image quality testing. The total memory usage sums up to roughly 4.21 GB.

Table 5.1. Example memory usage breakdown of the deferred rendering pipeline. The resolution of the images in
this example is 1920x1080 pixels, and the number of views expected as output is chosen to be 500.

Categorization Description Dimensions
(Width x Height x Depth)

Required memory (MB)

 Composed views 1920 x 1080 x 500 4,147.2

Geometry-
Buffer

Albedo 1920 x 1080 x 1 6.22

Depth 1920 x 1080 x 1 8.29

Normals 1920 x 1080 x 1 24.88

Specular Color 1920 x 1080 x 1 6.22

Specular Intensity 1920 x 1080 x 1 8.29

Screen Space
Ambient
Occlusion

SSAO 1920 x 1080 x 1 8.29

SSAO Blur 1920 x 1080 x 1 8.29

SSAO Noise 4 x 4 x 1 9.6 ∗ 10−5

Table 5.2 shows the memory usage breakdown for the center view acquisition pipeline combined with

the epipolar view interpolation pipeline. Also note that the shown example has included the extended

depth offset optimization to limit the number of depth layers. Identical to the deferred rendering

pipeline example, the assumed output is 500 distinct views with a resolution of 1920 by 1080 pixels

for each view. The memory usage of the interpolation-based pipeline is 7.84 GB. As such, the required

memory is a little less than twice the amount needed for the baseline for this example.

On top of this, two of the performance optimizations increase the memory usage. Table 5.3 gives a

breakdown of the memory usage for the visibility estimation and primitive coalescing optimizations

under the same conditions as mentioned for the non-optimized pipeline. The additional memory usage

is roughly equivalent to 0.75 GB.

85

Table 5.2. Example memory usage of the center view acquisition pipeline combined with the epipolar view
interpolation pipeline. The resolution of images in this example is 1920x1080 pixels, and the number of views
expected as output is chosen to be 500.

Categorization Description Dimensions
(Width x Height x Depth)

Required memory (MB)

 Depth layers
(Composed)

1920 x 1080 x 10 82.94

Geometry-
Buffer

Albedo 1920 x 1080 x 1 6.22

Depth layers (Depth) 1920 x 1080 x 10 82.94

Depth layers (Normals) 1920 x 1080 x 10 248.83

Depth layers
(Specular Color)

1920 x 1080 x 10 62.21

Depth layers
(Specular intensity)

1920 x 1080 x 10 82.94

Screen Space
Ambient
Occlusion

SSAO 1920 x 1080 x 1 8.29

SSAO Blur 1920 x 1080 x 1 8.29

SSAO Noise 4 x 4 x 1 9.6 ∗ 10−5
Epipolar View
Interpolation

Epipolar planes (Color) 1920 x 1080 x 500 4,147.2

Epipolar planes (Depth) 1920 x 1080 x 500 3,110.4

Table 5.3. Example memory usage breakdown of the two performance optimizations for the dual view acquisition
and epipolar view interpolation pipelines that increase memory usage. The example shown uses the exact same
conditions as used in Table 5.1 and Table 5.2.

Categorization Description Dimensions
(Width x Height x Depth)

Required memory (MB)

Visibility
Estimation

Discontinuity map 1920 x 1080 x 1 8.29

Occlusion map 1920 x 1080 x 1 2.07

Primitve
Coalescing

Primitive mipmap 1920 x 2127 x 10 326.71

Primitive buffer 1920 x 1080 x 10 414.72

But, what about less or more views? Or different image resolutions? Respectively equation 5.1.1, 5.1.2

and 5.1.3 are the functions to calculate the bytes per pixel for the deferred rendering pipeline, center

view acquisition with epipolar view interpolation pipeline and dual view acquisition with view

interpolation pipeline. The input to the functions is the number of views. To see which data types are

used for the different resources and a more detailed derivation of these functions, see Appendix C. As

expected, these functions show that the presented view interpolation-based methods have a higher

memory consumption than the deferred rendering pipeline, independent of the image resolution and

number of views. The deferred rendering pipeline has a baseline of 4 bytes per pixel, whereas the

interpolation-based methods have a baseline of 7 bytes per pixel. Furthermore, all the pipelines have

an additional per pixel memory overhead that decreases as the number of views increases. So, for

large numbers of views, the epipolar based method should still be usable in practical use cases with a

little less than double the number of bytes per pixel compared to the baseline in the best-case scenario.

For smaller number of views, it is more beneficial to use a deferred rendering pipeline.

86

𝐵𝑦𝑡𝑒𝑠𝑃𝑒𝑟𝑃𝑖𝑥𝑒𝑙𝐷𝑒𝑓𝑒𝑟𝑟𝑒𝑑(𝑣) = 4 +
34

𝑣
 (5.1.1)

𝐵𝑦𝑡𝑒𝑠𝑃𝑒𝑟𝑃𝑖𝑥𝑒𝑙𝐶𝑒𝑛𝑡𝑒𝑟(𝑣) = 7 +
481

𝑣
 (5.1.2)

𝐵𝑦𝑡𝑒𝑠𝑃𝑒𝑟𝑃𝑖𝑥𝑒𝑙𝐷𝑢𝑎𝑙(𝑣) = 7 +
951

𝑣
 (5.1.3)

The hierarchical view acquisition algorithm was left out from the memory usage analysis because the

exact number of views captured for use by the epipolar view interpolation stage is unknown. However,

during development, the hierarchical view acquisition algorithm has shown that the number of

captured images is similar or slightly higher than the number of depth layers captured by the dual view

acquisition pipeline. As such, it requires at least a similar amount of memory as the dual view

acquisition algorithm. But, it could also need more memory.

However, note that the memory cost analysis is done based on the latest proof-of-concept

implementation. As such, both the baseline deferred rendering pipeline and epipolar based pipelines

could benefit from several common memory reduction techniques. For example, the geometry buffers

could be packed more tightly by combining the several textures into one. This is done by assigning

different image channels to hold data from different textures in the original configuration. Compared

to the deferred pipeline, the epipolar based pipelines should benefit more from this optimization since

it uses one geometry buffer per depth layer.

Furthermore, the memory usage could be reduced by changing the order of operations within the

epipolar based pipelines. Currently, all depth layers are captured before any interpolation is done.

However, that means at least ten geometry buffers must be stored in memory before they can all be

processed by the interpolation stage. It should be possible to capture and interpolate one depth layer

at a time. Unfortunately, a likely downside is a performance hit due to extra state changes configuring

the graphics pipelines.

Lastly, small benefits may be gained from a memory reduction technique known as memory

aliasing. This allows distinct resources to occupy the same memory region at different moments in

time. However, this requires the usage of more low-level graphics APIs, such as DirectX 12 or Vulkan,

since OpenGL doesn’t expose explicit memory placement capabilities in its current API.

Recommendations for usage

Based on observations of the performance and image quality traces, and the resulting characteristics

of the algorithm, several recommendations can be given for the use of the different pipeline

configurations.

Performance-wise, the current iteration of the center view acquisition combined with epipolar

interpolation is very usable. However, the general advise for its usage would be negative, not

considering any modifications. The view space spanned by the center view, and thus correctly

interpolated are of high quality. But, as shown in the previous section, the sides of images not

corresponding with the center view are incorrect for scenes which cover the entire image. As such, it

might be worth it to fix the missing information. A possibility would be to account for this by widening

the horizontal view angle, but this might result in image distortions due to perspective projection. A

second alternative might be to patch the images individually, however, this could get expensive

timewise. Thirdly, the interpolated views from two different invocations of the pipeline could be

combined such that only the missing image parts are stitched together.

The dual view acquisition pipeline with epipolar view interpolation does not suffer from the

mentioned problems and should be preferred over the center view acquisition and epipolar

87

interpolation pipeline. Although, it has worse performance, the performance is such that the baseline

deferred rendering pipeline is still outperformed. Besides, the offset in image quality likely results in

better performance than the previous pipeline combined with an additional patch up step. However,

the image quality tests showed that the dual epipolar view interpolation pipeline suffers from too

much distance between the left- and rightmost cameras. This might lead to holes due to

undersampling of the geometry. The solution for this would be to clamp the distance to a maximum.

Unfortunately, specific maximum distances are dependent on the used scene and need to be

determined on a project basis. Support for larger distances is possible by splitting the total range into

several smaller distinct subranges that are separately interpolated.

The hierarchical view acquisition and interpolation pipeline is built on the concept of dividing the

cameras in distinct sets which are separately interpolated. Just like the other pipelines, the image

quality tests show that it suffers from (large) geometry running parallel to the view direction, but to a

smaller extent. When this is accounted for, large distances between cameras have little to no impact

on the quality of the resulting images. Regrettably, the image quality is currently somewhat lacking

compared to the dual view acquisition and interpolation pipeline. As mentioned, this is likely due to

the missing depth bias since, compared to the other epipolar based pipelines, a similar implementation

is used for the interpolation, and the image quality should thus be comparable. Unfortunately, the

hierarchical epipolar pipeline was developed late in the project. More specifically, this pipeline

variation is less optimized and, thus, lacks in terms of performance since the interpolation stage must

process more data. As such, it’s not beneficial to run the hierarchical epipolar pipeline to render views

unless the used scenes contain a very high number of vertices and triangles.

Lastly, it should be noted that this algorithm is targeted at (very) high end graphics cards at the time

of conducting this study. This is mostly due to the memory requirements. At full HD resolution, the

views already consume 4,1 GB. On top of this, the interpolation algorithm has a significant overhead.

Furthermore, currently there is no need to have mobile graphics chips generate such a high amount of

views since there is not any mobile application (yet). Additionally, the typical trajectory from research

to usage in products typically spans several years. At that time, it is likely that current generation high

end graphics cards are in common use.

 Limitations of conducted research
As with any conducted study, there are certain conditions and design choices that lead to

imperfections in the result. In the end, they may impact the reported results, and ultimately may lessen

the impact on the field of computer graphics. Unfortunately, the work presented in this report also

suffers from this.

Firstly, not all possible directions of research have been explored. Several more months or even years

could be spent tweaking, expanding and/or optimizing the various pipelines. Unfortunately, only a

finite amount of time and funding is available. As such, several recommendations for potential future

research directions are outlined in Chapter 7.

Furthermore, there is a discrepancy between the theoretical performance of an algorithm and an

actual implementation of the algorithm on real hardware. Meaning, the implementation used to

measure the results as reported in Chapter 4 is probably not optimal. However, overcoming this

requires a deeper understanding about the inner workings of the used graphics API and knowledge

about the specifics of the hardware used to conduct the performance and image quality

measurements, which is not feasible within the confounds of the performed study.

Additionally, a deeper understanding of the hardware utilization may result in new directions for

future research. For example, if it turns out that the current transition from image-space data to

88

epipolar space geometry via intermediate buffers hurts performance since the post-vertex shader

cache is underutilized. Or, the usage of geometry shader could be replaced with compute shaders to

increase performance, since geometry shaders make heavy use of atomics. Or, the massive amounts

of micro geometry in epipolar space lead to performance degradations. Answers to these types of

question could point to troublesome parts in the developed algorithm that increase the performance

most relative to the time spend fixing. Besides, they may increase the confidence of the conclusions

made in the section on implications of results, or, debunk false implications.

Also, the reported timing results in Chapter 4 are highly dependent on the hardware that was used

to perform the measurements. Moreover, if the hardware is the same in all use cases, timings are

dependent on the implementation of the graphics API. Hardware vendors provide these

implementations in the form of device drivers. The problem is that different versions of the device

drivers may contain changes and/or optimizations as insight is gained into bottlenecks in previous

iterations of the same device drivers, which lead to different timings results. Thus, to aid the

reproducibility of presented study the exact test platform is reported in Chapter 4. All things

considered, differences in hardware and graphics API implementations will probably lead to the same

implications, but the extent of the impact may be different. As such, the developed algorithms must

be tested on more hardware and driver configurations to have more confident in the results.

Not only those concerns may impact the applicability of the results. A variety of models were used as

input for the performance and image quality measurements. Scenes ranging from very a simple cube

with a low triangle count to architectural models with a moderate number of triangles, and even

unusually complex scenes with a high triangle count. Furthermore, the test models include the Mitsuba

and Lucy statue models which specifically target specularity. However, for practicality reasons the set

of models is finite and doesn’t cover all imaginable situations. Instead, the test set is chosen such that

the most common use cases are covered.

Additionally, the set of test models could benefit from a scene specific to the dual and hierarchical

epipolar pipeline. Both use images from multiple cameras as source; possibly with heuristics to guide

the source view capturing process. With the current test set, this most likely leads to different captures

for the different views. To better understand how the different views contribute to the final images a

symmetric scene should be added. With the center of all cameras placed on the symmetry axes, this

should lead to predictable source view captures and eliminates parameters from the source view

mixing except for the actual merging of the different views.

Another impacting decision is the baseline against which the developed pipelines were tested.

Although, the performance of the different algorithms was tested in a variety of settings. The

performance of the algorithm was tested against a barebone baseline implementation. This is a result

of the features implemented in the interpolation framework, and the scope of research. As such, the

vertex and pixel processing workloads are not representative of real-world usage patterns. Production

rendering pipelines are likely to have more computations in the vertex and fragment shaders. Since

the presented interpolation pipelines reduce these types of computations, the results are likely to

become more favorable for the interpolation framework. However, this needs to be tested to have a

certain answer.

Moreover, the current iteration of the framework is only tested in situations which are vertex

shader bound. In other words, the rendering pipeline is flooded with vertices to check if the processing

time is dominated by vertex processing, and the interpolation-based algorithm already improves over

the baseline deferred rendering pipeline. However, current rendering pipelines are more likely to be

fragment shader bound with the adoption of complex lighting models. In other words, processing time

is dominated by the computations in the fragment shader. Since the interpolation utilizes very simple

fragment shaders, the situation will likely favor the interpolation-based view generation.

89

The last notable limitation of the current test setting is the possible focus on the strong points of

the baseline deferred rendering pipeline. The current test configuration is exclusively targeted at a

relatively small number of high resolution views. As shown by the limited, additional test with the dual

epipolar pipeline rendering many small resolution views, the current test configuration appears to

favor the deferred rendering pipeline. As such, the shown performance of the epipolar-based pipelines

is likely not worse than the performance in typical use cases. On the other hand, the chosen test cases

do not properly show how much performance can be gotten from the developed algorithms, and what

use cases are best for the epipolar-based pipelines. However, due to time constraints, the evidence for

this is limited and more testing must be done to be certain.

Besides the human and practicality factor influencing the research outcome, the implications of the

performance and image quality is also limited by certain inherent properties. Starting with the

performance of the implemented algorithms. To make generalized statements recommending the

presented framework to be used by the masses requires knowledge about the specific use case, since

it is not only dependent upon the used scene but also on the requirements set by the end user, and

the software alongside which the proposed algorithm needs to operate and cooperate with. A couple

examples are the hardware platform on which the final product needs to run or the maximum available

memory.

Likewise, making generalized statements about the image quality not affecting people is limited

since any measure trying to quantify image quality focuses on a single aspect of the image. For

example, they do not consider that less image quality is required when a human is looking at high

speed content since a lot of the fidelity is filtered out by humans. In the end, the implications of the

results do provide a strong indication, and lead to probable predictions. But, ultimately users should

decide for themselves whether the proposed solution is good enough.

90

6 Conclusion

In the last several years, the tendency for current gaming markets has shifted towards the

development and integration of virtual reality. The corresponding display devices require more than

one view as input. The specific focus of this report has been devices that require massive numbers of

views as input, such as light field displays. The presented study questioned whether it was possible to

build a framework around the concept of epipolar space, allowing the exploitation of coherence

between images to speed up rendering.

The development of the proof-of-concept implementation resulted in several rendering pipelines

that can be used to generate many views more efficiently than a deferred rendering pipeline. From a

high-level viewpoint, each pipeline consists of two stages. The first stage is named source view

acquisition, and gathers the input required for the second stage. Three different methods were

developed for this stage, of which two are based on depth peeling and one is a novel approach that

samples different cameras which are used as source view. The second stage consists of the actual

generation of all distinct images. This process is based on interpolation and is done in epipolar space.

The first pipeline captures the depth layers from the center views, and is referred to as center epipolar

pipeline. The second combination is named dual epipolar pipeline since it uses the depth layers of the

leftmost and rightmost view as source view. The combination named hierarchical epipolar pipeline, is

the third and last combination, and is named as such because it recursively splits the range of views in

half and uses the center view of each split as source view. The recursion is stopped by means of a

heuristic.

The various components are self-contained and use conventions to pass data between stages. As

such, this allows substitution of different methods and integration of different optimizations and

extensions within the various stages with relative ease. Included are several optimizations to reduce

the amount of information to be processed by the pipelines. Furthermore, it is shown that support for

specularity is possible since the basic interpolation stage is not able to use standard specular reflection

models without modification.

The formed pipelines were reviewed on their performance. Specifically, the research subquestion was

formulated as follows: “How much is the performance increase over a baseline rendering pipeline? In

other words, how much is the reduction in frame time when the newly developed framework is

compared to a baseline rendering pipeline?”

The answer to this question is more complicated than a single 𝑥-times improvement, or 𝑦-times

reduction of frame time, over the baseline deferred rendering pipeline. For the basic center epipolar

pipeline with Sponza (Original) scene, an improvement is noticeable starting from 500 views. With the

Sponza (Extreme) scene, the improvement is visible starting from roughly 50 views, and the difference

at 500 views is one order of magnitude. If optimizations are activated, the frame times are further

reduced and the center epipolar pipeline is even better. The dual epipolar pipelines shows similar

behavior except it takes more time to generate complete images. It does twice the amount of work,

but in return the images have acceptable quality. Whether the extra work translates in twice the frame

time cannot be determined based on the gathered information since the test platforms were different.

To summarize, the improvement for both epipolar pipelines with depth peeling based source view

acquisition becomes better with increasing number of views or scenes with higher vertex and triangle

count. On the contrary, the hierarchical epipolar pipeline has differing results. When comparing the

frame times measured on the CPU, it is slower than the baseline deferred rendering pipeline for the

measured test cases. The frame times from the perspective of the GPU show that in most cases the

hierarchical epipolar pipelines is also slower, except for the two highest detail San Miguel scenes. Using

91

those two scenes, the hierarchical epipolar pipeline improves over the baseline pipeline starting from

roughly 75 views. This holds true for both image quality measures.

The last dimension on which the developed pipelines were evaluated was the quality of the generated

images. The subquestion regarding image quality was stated as follows: “Are the resulting images of

reasonable quality? More precisely, have the generated images using interpolation an image quality

such that they are usable in consumer products?”

Based on observations of the measured image quality, it can be stated that interpolation in epipolar

space is capable of producing images that are of sufficient quality. However, the different pipelines

have their own nuances and peculiarities. The center epipolar pipeline produces images with SSIM

values in the range [0.713; 1.000] with an average of 0.878. This comes with the side note that the

images contain sections that are incorrect. The center view cannot span the visible area of all views,

and as such, the interpolation misses information. When this is corrected for, the average SSIM

increases to 0.914. The dual epipolar pipeline generates images with SSIM values in the range

[0.923; 0993] with 0.945 as average. But, only if the inter-camera distance is within a safe operating

envelope. For large inter-camera distances, the interpolation must rely on too little information, and

as such, holes can form. The SSIM values fall in the range [0.893; 0.922] with 0.904 being the average

when considering the hierarchical epipolar pipeline. For the purposes of this document, an SSIM value

of 0.90 was the threshold for sufficient image quality.

92

7 Recommendations for future research

The results in Section 4 and the explanation in Section 5 show that the presented framework is already

an improvement over the baseline method. However, the current iteration of the algorithm still has

several shortcomings and more work needs to be done to solve them.

This chapter discusses several problems with the current algorithm and gives some directions that

might be explored to overcome them. Section 7.1 starts with possible solutions for the edge case found

during image quality testing. Then, Section 7.2 discusses the possibility to relax the camera offset to

allow vertical view offset. Section 7.3 discusses support for multiple light sources and the problems

associated with them. Afterwards, Section 7.4 mentions a possible area to improve the runtime of the

framework by replacing depth peeling with per-pixel linked lists. Section 7.5 goes over a possible

performance improvement for the hierarchical epipolar renderer. A possibly viable method to

artificially increase the number of generated views is discussed in Section 7.6. Finally, support for a

multitude of lighting models is discussed in Section 7.7.

 Geometry parallel to view direction
During image quality testing, an edge case of the interpolation algorithm was found. The problem was

attributed to geometry going parallel to the view direction and coinciding with the view direction

vector of the views. As a result, this geometry was not getting captured since geometry is

infinitesimally thick. However, other views may see this area as a large object. Thus, to increase the

usefulness of the algorithms to more situations, additional processing is required. Note, this is more

likely to happen for the center view acquisition and dual view acquisition methods. The hierarchical

view acquisition methods suffer less since more distinct camera positions are sampled.

Fortunately, it is possible to detect this type of geometry. The subset of geometry can then be

processed for additional information. A naïve method would be to capture the offending geometry

using a virtual camera that is orthogonal to the original set of cameras and use the existing epipolar

interpolation to fill the holes. A more involved option would be to manually sample the offending

geometry and perform epipolar interpolation on the samples. The advantage over the naïve method

is reduced overhead since less empty pixels need to be processed.

 Vertical view offset
The introduction chapter posed several restrictions on the placement of a set of viewpoints. One

restriction stated that the viewpoints could only have an offset in the horizontal direction. This will

lead to a configuration where all the viewpoints lie on a single line. The reasoning behind this

restriction is due to the current graphics rasterization pipelines implemented on graphics cards. The

current pipelines are currently only capable of efficiently rasterizing 3d geometry to 2d images. As

explained in Section 3.1, when the viewpoints are restricted to lie on single line, then the problem of

capturing 3d epipolar geometry can be reduced to 2 dimensions. This allows the previously presented

algorithm to reap the benefits of the highly-optimized rasterization hardware.

However, with a 2d grid of evenly spaced viewpoints, a naïve implementation would be to treat each

row as a separate set of views. A more experimental, but possibly more performant implementation

would use the implementation as described to generate all views for the top and bottom row. Then,

the resulting images are used as input for the second pass. Each pair of images, from the top and

bottom row, in a column is interpolated with only a vertical offset.

However, the method as described in Section 3 needs to slightly adapted. Currently, the epipolar

renderer discards any epipolar geometry that cannot be seen in any image by means of depth testing.

However, this information might be needed when a rendering with a horizontal offset. As such, this

93

information needs to be captured and interpolated during the horizontal interpolation pass. Secondly,

the interpolation method as discussed in Chapter 3 is an approximation. Thus, the input of the

horizontal pass might lead to unacceptable results that need to be fixed by an additional pass.

 Multiple light sources
To reduce the computational resources spend on the specular contribution to the final pixel colors, the

framework outlined in Chapter 3, approximates the light contribution. This is done by calculating the

light contribution in several views, and the computed value is approximated by linear interpolation for

the other viewpoints.

A major downside of the current method is, the current support is limited to a single light source.

However, current AAA games use up to several hundred lights in a single scene. Thus, to make the

current implementation viable for consumption by the masses, support needs to be added for multiple

light sources. One issue herein lies in the need to capture the most noticeable characteristics of a

specular reflection. More specifically, the brightest spot of a highlight. For a single light source this can

be computed, and coincides with the spots where the reflection direction vector intersects with a

camera location.

Unfortunately, this no longer holds for multiple light sources. A straightforward way to circumvent

this problem is to approximate the specular contribution separately for the different light sources and

add together the specular intensities. However, this will lead to an algorithmic complexity which is

dependent on the number of views and light sources. This can be reduced to only be dependent on

the number of light sources, if the contribution of all the light sources can be described by a single

equation.

 Per-pixel linked lists
As described in Section 3, the first stage used by the center and dual epipolar renderers uses depth

peeling to uncover occluded geometry. Unfortunately, depth peeling is considered inefficient by

current standards. One of the reasons for this is the synchronization needed between the CPU and

GPU to read back how many primitives have been rendered. This is worsened by the fact that a

synchronization happens after each depth layer and leads to two consequences. Firstly, the CPU must

wait on the GPU to finish previously queued rendering commands before it can generate the next set

of rendering commands. Secondly, the read command leads to a pipeline flush on the GPU since it

requires all commands sent by the CPU to have finished before the readback command. A second

reason contributing to the slowness of depth peeling is the need to rasterize the geometry multiple

times, once for each depth layer.

Depth peeling has been superseded by several methods. A possible replacement for depth peeling,

that also fits the current use case, are per-pixel linked lists [51]. The idea is to build linked lists per pixel

where fragments that coincide with a pixel are linked together by a singly linked list. This allows the

scene geometry to be captured in a single pass, instead of the multiple passes required when using

depth peeling.

However, there are certain practicalities that need to be improved before per-pixel linked lists are

a viable option to replace depth peeling. Starting with a method to remove samples that are hidden

behind geometry and cannot be seen from any of the views in the final view set. As described in Section

3, depth peeling adds an extra offset to the depth layers to skip any samples that cannot be seen;

which leads to a reduction in the number of depth layers. An unfortunate problem with per-pixel linked

lists is the order in which geometry is rasterized. Consequently, it is not known during the rasterization

pass which fragments can be discarded based on the extra offset. Thus, basic per-pixel linked lists

would lead to an inordinate number of pixels that need to be interpolated by the epipolar renderers.

94

However, it might be possible to apply the extra depth offset by updating the linked lists in an

additional pass. This pass would need to sort the samples for each pixel by depth and remove any

samples that are within the depth offset as computed by the current method.

The next practicality issue would be to prune the per-pixel linked lists. The current depth peeling

implementation uses an erosion-based, conservative visibility estimation method to find any pixels in

a depth layer that are always hidden behind geometry from an earlier depth layer and this could be

adapted to work per-pixel linked lists. However, this might lead to an imbalance of workload due to

linked lists having different lengths. In turn, the divergence in data and branch execution may lead to

a significant performance decrease [34, 35, 38].

 Visibility estimation with clustering
The current hierarchical epipolar renderer implementation, as outlined in Section 3, generates the

source images by starting with generation of the view corresponding with the left- and rightmost

viewpoints. Next, the algorithm decides whether it has enough source images by counting the holes

with help of an erosion-based visibility estimation. If more source images are needed, the center

location between the two surrounding viewpoints is taken and image is therefore generated. This

recursive process is continued until no more source images are needed or until the hierarchical

epipolar renderer has run out of time.

The problem with always taking the center between two viewpoints is that it does not necessarily lead

to more holes being filled. One example of this not being the case is if the center view is mostly covered

by a flat wall.

A solution might be to append an extra step, which computes a new view location that is better. A

byproduct of the visibility estimation is an estimation of the location of the holes. It might lead to

better and more stable results if the new view location is based on the pixel location around which the

most holes are clustered. This pixel location can be projected to view or world space because the

camera parameters are known. If the location of the new view is computed such that the largest

concentration of holes is roughly centered on the center of the new view, then it might have a better

contribution to filling the holes opposed to always taking the center view. One class of clustering

algorithms that could be used is k-means clustering. Several GPU based implementations can be found

in [26, 40].

 Epipolar view volume interpolation
In its current form, the output of the epipolar rendering pipelines consists of the 3-dimensional

epipolar volume. As explained in Chapter 3, each vertical 2-dimensional slice of the volume

corresponds with one of the predetermined views. Additionally, each consecutive pair of cameras has

the same horizontal offset.

Since the views are ordered in the 3-dimensional volume, it might be possible to do a pixelwise

interpolation between two consecutive vertical slices to generate extra views between the original

cameras. However, this can only work if the original camera array is sufficiently close together. The

idea is that the information belonging in the intermediate views doesn’t change dramatically and can

thus be inferred from the surrounding views.

However, some questions remain: What kind of interpolation? For example, a linear, pixelwise

interpolation or is something more sophisticated necessary? Besides this, may interpolation lead to

undesirable image quality? Or is it better to half the inter-camera distance in the original camera array

and incur the overhead of the presented epipolar rendering pipeline?

95

 A multitude of lighting models
Current lighting models separate the light response of a surface into four components. These are the

ambient, diffuse, specular and emissive responses. Hereof, the ambient, diffuse and emissive light

contributions do not depend on the position of the camera. As such, the color that emits from such

surfaces can be interpolated to the different views without needing to be recomputed.

However, the specular light contribution of a surface does depend on the position of the viewer.

Thus, the interpolation of this type of light response needs to be explicitly incorporated into the

epipolar rendering algorithm.

As described in Section 3.5, the current implementation of the epipolar rendering framework only

supports the basic phong reflection model [36]. But it has been superseded by more complex,

physically based models such as the Ward anisotropic distribution [49] or the Cook-Torrance model

[7]. The epipolar framework uses several assumptions about the used reflection model, but does this

also translate to other reflection models? Can more complex reflection models also be supported but

with their own set of assumptions? And lastly, does the epipolar rendering framework not lose any of

the key details of other reflection models due to the interpolation?

96

References

[1] Ahmed, N. et al. 1974. Discrete cosine transform. IEEE transactions on. (1974).

[2] Assarsson, U. and Moller, T. 2000. Optimized view frustum culling algorithms for bounding
boxes. Journal of graphics tools. (2000).

[3] Bavoil, L. and Myers, K. 2008. Order independent transparency with dual depth peeling. NVIDIA
OpenGL SDK. (2008).

[4] Blackmer, R. et al. 2009. GL_ATI_meminfo. ATI Technologies; Khronos.

[5] Bonneel, N. et al. 2013. Example-based video color grading. ACM Trans. Graph. (2013).

[6] Brown, P. and Zolnowski, E. 2012. ARB_transform_feedback2. AMD; NVIDIA; Khronos Group
Inc.

[7] Cook, R.L. and Torrance, K.E. 1982. A Reflectance Model for Computer Graphics. ACM
Transactions on Graphics. 1, 1 (Jan. 1982), 7–24.

[8] Coorg, S. and Teller, S. 1997. Real-time occlusion culling for models with large occluders.
Proceedings of the 1997 symposium on Interactive. (1997).

[9] Décoret, X. et al. 2003. Erosion Based Visibility Preprocessing. Proceedings of the Eurographics
Symposium on Rendering. (2003).

[10] Didyk, P. et al. 2010. Perceptually-motivated real-time temporal upsampling of 3D content for
high-refresh-rate displays. Computer Graphics Forum. 29, 2 (2010), 713–722.

[11] Engel, W.F. 2009. ShaderX7: Advanced Rendering Techniques. Charles River Media.

[12] Everitt, C. 2001. Interactive order-independent transparency. White paper, nVIDIA. (2001).

[13] Foley, J. 1994. Human luminance pattern-vision mechanisms: masking experiments require a
new model. JOSA A. (1994).

[14] Haemel, N. 2009. AMD_gpu_association. AMD; Khronos.

[15] Halle, M. Multiple Viewpoint Rendering.

[16] Hartley, R. and Zisserman, A. 2004. Multiple view geometry in computer vision. Cambridge
University Press.

[17] Hasselgren, J. and Akenine-Möller, T. 2006. An Efficient Multi-View Rasterization Architecture.
Eurographics Symposium on Rendering. (2006), 61–72.

[18] Havran, V. et al. 2003. Exploiting temporal coherence in ray casted walkthroughs. Proceedings
of the 19th spring conference on Computer graphics - SCCG ’03 (New York, New York, USA,
2003), 149–155.

[19] He, Y. et al. 2014. Extending the graphics pipeline with adaptive, multi-rate shading. ACM
Transactions on Graphics. 33, 4 (Jul. 2014), 1–12.

[20] Herzog, R. et al. 2010. Spatio-temporal upsampling on the GPU. Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games - I3D 10 (New York, New York,
USA, 2010), 91–98.

[21] Jensen, H.W. 2001. Realistic image synthesis using photon mapping. A K Peters.

97

[22] Jevans, D.A. 1992. Object Space Temporal Coherence for Ray Tracing. Proceedings of the
conference on Graphics interface ’92 (Vancouver, 1992), 176–183.

[23] Jimenez, J. et al. 2011. Filtering approaches for real-time anti-aliasing. ACM SIGGRAPH. (2011).

[24] Kim, Y. et al. 2016. Adaptive undersampling for efficient mobile ray tracing. The Visual
Computer. 32, 6–8 (Jun. 2016), 801–811.

[25] Lee, S. et al. 2010. Real-time lens blur effects and focus control. ACM Transactions on Graphics
(TOG). (2010).

[26] Li, Y. et al. 2010. Speeding up K-Means Algorithm by GPUs. 2010 10th IEEE International
Conference on Computer and Information Technology (Jun. 2010), 115–122.

[27] Lichtenbelt, B. et al. 2010. ARB_transform_feedback3. AMD; ARM; NVIDIA; Khronos Group Inc.

[28] Lighting you up in Battlefield 3: 2011. http://www.frostbite.com/wp-
content/uploads/2013/05/GDC11_LightingYouUpInBattlefield3.pdf. Accessed: 2017-05-03.

[29] Luebke, D. et al. 2003. Level of detail for 3D graphics. Morgan Kaufmann.

[30] Martin, W. et al. 2002. Temporally Coherent Interactive Ray Tracing. Journal of Graphics Tools.
7, 2 (Jan. 2002), 41–48.

[31] Maule, M. et al. 2012. Memory-Efficient Order-Independent Transparency with Dynamic
Fragment Buffer. 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images (Aug.
2012), 134–141.

[32] Nehab, D. et al. 2007. Accelerating Real-time Shading with Reverse Reprojection Caching.
Proceedings of the 22Nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware.
(2007), 25–35.

[33] No longer just a programming niche, deferred rendering is becoming an increasingly popular
technique on consoles too? 2009. http://www.develop-online.net/tools-and-tech/build-
deferred-rendering/0116368. Accessed: 2017-05-03.

[34] Nvidia Corporation 2012. OpenCL Programming Guide for the CUDA Architecture. Nvidia. 41,
(2012), 371–379.

[35] Nvidia Corporation 2009. PTX : Parallel Thread Execution ISA Version 1.4. (2009), 133.

[36] Phong, B.T. and Tuong, B. 1975. Illumination for computer generated pictures. Communications
of the ACM. 18, 6 (Jun. 1975), 311–317.

[37] Ponomarenko, N. et al. 2007. On between-coefficient contrast masking of DCT basis functions.
Proceedings of the. (2007).

[38] Sartori, J. and Kumar, R. 2013. Branch and data herding: Reducing control and memory
divergence for error-tolerant GPU applications. IEEE Transactions on Multimedia. (2013).

[39] Sellers, G. 2010. ARB_transform_feedback_instanced. AMD; Khronos Group Inc;

[40] Shalom, S. et al. 2008. Efficient k-means clustering using accelerated graphics processors.
International Conference on Data. (2008).

[41] Sitthi-amorn, P. et al. 2008. Automated reprojection-based pixel shader optimization. ACM
Transactions on Graphics. 27, 5 (2008), 1.

[42] Stroyan, H. et al. 2003. NVX_gpu_memory_info. NVIDIA Corporation; Khronos.

98

[43] Tawara, T. et al. 2004. Exploiting temporal coherence in global illumination. Proceedings of the
20th spring conference on Computer graphics - SCCG ’04 (New York, New York, USA, 2004), 23.

[44] Unity 3 Feature Preview – Deferred Rendering: 2010.
https://blogs.unity3d.com/2010/09/09/unity-3-feature-preview-deferred-rendering/.
Accessed: 2017-05-03.

[45] Unreal Engine 4 - Rendering Overview:
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Overview/index.html. Accessed:
2017-05-03.

[46] Wang, R. et al. 2009. An efficient GPU-based approach for interactive global illumination. ACM
Transactions on Graphics. 28, 3 (Jul. 2009), 1.

[47] Wang, Z. et al. 2004. Image quality assessment: from error visibility to structural similarity. IEEE
transactions on. (2004).

[48] Wang, Z. and Bovik, A. 2009. Mean squared error: Love it or leave it? A new look at signal fidelity
measures. IEEE signal processing magazine. (2009).

[49] Ward, G.J. et al. 1992. Measuring and modeling anisotropic reflection. ACM SIGGRAPH
Computer Graphics. 26, 2 (Jul. 1992), 265–272.

[50] Watson, A. and Solomon, J. 1997. Model of visual contrast gain control and pattern masking.
JOSA A. (1997).

[51] Yang, J.C. et al. 2010. Real-Time Concurrent Linked List Construction on the GPU. Computer
Graphics Forum. 29, 4 (Aug. 2010), 1297–1304.

[52] Yang, L. et al. 2008. Geometry-aware framebuffer level of detail. Computer Graphics Forum. 27,
4 (2008), 1183–1188.

[53] Yang, L. et al. 2011. Image-based bidirectional scene reprojection. ACM Transactions on
Graphics. 30, 6 (2011), 1.

99

 Additional image quality data

The developed algorithms have been evaluated on the quality of the generated views. The most

interesting and relevant findings were discussed in Section 4.5. However, several additional,

complementary artifacts were produced during the analyses of the image quality.

To locate the troublesome areas in images, Section 4.5 showed several error maps by means of the

absolute error between a pair of interpolated and reference images. Figure A.1 and Figure A.2 show

additional error maps. Like the previous error maps, the most notable errors are located on pixels

which transition between different surfaces.

Fi
g

u
re

 A
.1

. A
b

so
lu

te
 e

rr
o

r
o

f v
ie

w
 1

2
0

. T
h

is
 v

ie
w

 w
a

s
g

en
er

a
te

d
 u

si
n

g
 n

o
 o

p
ti

m
iz

a
ti

o
n

s
o

r
ex

te
n

si
o

n
s.

 T
es

t
sc

en
e:

 S
p

o
n

za
; r

en
d

er

p
ip

el
in

e:
 d

u
a

l e
p

ip
o

la
r;

 v
ie

w
 s

et
 s

iz
e:

 5
0

0
 v

ie
w

s.

100

Fi
g

u
re

 A
.2

.
A

b
so

lu
te

 e
rr

o
r

o
f

vi
ew

 2
5

2
.

Th
is

 v
ie

w
 w

a
s

g
en

er
a

te
d

 u
si

n
g

 n
o

 o
p

ti
m

iz
a

ti
o

n
s

o
r

ex
te

n
si

o
n

s.
 T

es
t

sc
en

e:
 S

p
o

n
za

;
re

n
d

er

p
ip

el
in

e:
 d

u
a

l e
p

ip
o

la
r;

 v
ie

w
 s

et
 s

iz
e:

 5
0

0
 v

ie
w

s.

101

 Derivation of time complexity

Part of the mission statement of the presented research was to produce an algorithm that generates

a set of views more efficiently than brute force computation. To understand the efficiency of an

algorithm a valuable property is the time complexity, as it links the size of the input to the number of

basic operations to produce a result. Furthermore, it allows the efficiency of two algorithms to be

compared independently of a specific hardware platform. Besides, it is a precursor for the measured

runtime when compared to a baseline.

One more benefit of a time complexity analysis is the ability to show, with some certainty, what an

algorithm does for unreasonably large input sizes. In other words, data sets which are too large current

generation hardware. An example that applies to the presented algorithm is the limited amount of

available memory to compute more than 1000 views.

For the comparison of the time complexity between two algorithms it is necessary that the analysis

assigns the same cost to basic operations. To this end, the time complexity analyses in this document

operate under the uniform-cost measurement model. Regardless of the bit sizes of the numbers

involved, this model assigns a constant cost to every basic operation. Some exemplary basic operations

are variable assignment, multiplication or comparison.

The use of the chosen cost model is justified because the computations used by the presented

algorithms don’t have a strict need for more precision than is provided by most commonly used

hardware. On top of this, basic operations on actual hardware have similar runtimes. Furthermore,

more complex cost models would only clutter the analysis whilst not providing more information about

the performance characteristic of the algorithm.

The remainder of this appendix shows detailed analyses of respectively a deferred rendering pipeline,

center view acquisition, hierarchical view acquisition and epipolar view interpolation in Appendix B.1,

Appendix B.2, Appendix B.3 and Appendix B.4.

 Deferred rendering
The determination of the time complexity for the baseline deferred rendering pipeline is based upon

the pseudocode shown in Code listing B.1.1. For completeness of the time complexity analysis, several

support functions that cover the standard graphics pipeline operations are included. The pseudocode

is shown as Code listing B.1.2.

Starting with the time complexity of RasterizeGeometry. Several algorithms exist to rasterize geometry

into fragments. Examples are Bresenham’s line rasterization algorithm or triangle rasterization based

on half-spaces. Unfortunately, the exact implementation by the various GPU manufacturers is a closely

guarded secret. However, it is a reasonable assumption that the time complexity is always a function

of the amount of geometry because each piece of geometry can be distinct from all others and thus

must be rasterized separately. So, for the purposes in this report, the amount of geometry is

summarized by 𝑣 and the time complexity of RasterizeGeometry is aggregated into and approximated

by 𝑂(𝑣), where 𝑂(𝑥) is the order of function 𝑥. Furthermore, the different rendering pipelines

discussed in this report are not inherently bound to a rasterization algorithm. As such, the rasterization

is assumed to be identical for the different pipelines.

The time complexity of DetermineVisibleFragments is determined by summation of the time

complexity of the return statement on line 15 of Code listing B.1.2, the comparison, return and

assignment statements from lines 1 through 5, and the foreach loop spanning lines 6 through 13. A

return statement is assumed identical to any basic operation, and as such takes a constant amount of

time. Lines 1 through 4 and 15 have a total time complexity of 3. The assignment on line 5 is the

102

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

combined time complexities of an assignment and set creation. The set creation takes 𝑂(𝑝) operations

because 𝐹 contains 𝑂(𝑝) distinct tuples. As such, the time complexity of line 5 is 1 + 𝑂(𝑝). The foreach

loop consists of two comparisons, one set complement, one set union and an assignment. The set

operations can be done in constant time if the set is based on an hashmap with key (𝑥, 𝑦) and tuples

with similar key are sorted based on their 𝑧-coordinate. The loop is executed 𝑂(𝑝) times, where 𝑝 is

the number of pixels in an image. Thus, the time complexity of DetermineVisibleFragments is 𝑂(𝑝).

See equation B.1.1 for the derivation.

3 + 1 + 𝑂(𝑝) + 𝑂(𝑝) ∗ 5 + 1 ≤ 𝑂(𝑝 ∗ 6 + 5) = 𝑂(𝑝) (B. 1.1)

Lastly, the time complexity of CalculateLighting is the sum of one assignment, one return, and a

foreach-loop. The loop runs over each pixel, and thus loops 𝑂(𝑝) times. The inner body of the loop

consists of 3 assignments and one disjoint union. The time complexity hereof is 4. Furthermore, the

loop body references a function to compute the color of a fragment. The time complexity is dependent

on the used lighting model, and is outside the scope of the presented research. So, for this report, it is

represented by the variable 𝑙, and is assumed to be constant for each fragment. This leads to a

complete time complexity of 𝑂(𝑝) for CalculateLighting. See equation B.1.2 for the derivation.

2 + 𝑂(𝑝) ∗ (4 + 𝑙) ≤ 𝑂(2 + 4 ∗ 𝑝 + 𝑙 ∗ 𝑝) = 𝑂(𝑝) (B. 1.2)

Input: Set of camera projection parameters 𝑀𝑉𝑃. One for each camera, such that 𝑀𝑉𝑃𝑖 are the pro-
jection parameters for camera 𝑖. Furthermore, scene geometry 𝐺.
Output: An ordered set of views 𝑉, such that 𝑉𝑖 contains the projection of 𝐺 as described by the cam-
era projection parameters 𝑀𝑉𝑃𝑖 .

AcquireDeferredViews(𝑴𝑽𝑷, 𝑮):

𝑉 := { ∅ }
for 𝑖 = 0 to |𝑉|:
 𝐹𝑖 := RasterizeGeometry(𝑀𝑉𝑃𝑖, 𝐺)
 𝐹𝑣,𝑖 := DetermineVisibleFragments(𝐹, { ∅ })
 if 𝐹𝑣,𝑖 = ∅:
 continue
 end if

 𝑉𝑖 := CalculateLighting(𝐹𝑣,𝑖)

 𝑉 := 𝑉 ∪ { 𝑉𝑖 }
end for

return 𝑉

Code listing B.1.1. Pseudocode for a basic deferred rendering pipeline. The functions shown refer to several helper

functions. These are shown in Code listing B.1.2. The time complexity analysis for the deferred rendering pipeline

is done based on the shown mathematical description.

With all the support functions analyzed, the time complexity of the deferred rendering pipeline can be

determined. The for-loop body runs 𝑥 times, once for each view. The loop body uses 4 assignments,

one comparison and one disjoint set union. Furthermore, RasterizeGeometry,

DetermineVisibleFragments and CalculateLighting are referenced once. Thus, the entire loop has a

time complexity of 𝑥 ∗ (𝑂(𝑣 + 𝑝). Refer to equation B.1.3 for the derivation.

𝑥 ∗ (𝑂(𝑣) + 𝑂(𝑝) + 𝑂(𝑝) + 4 + 1 + 1) =

𝑥 ∗ (𝑂(𝑣 + 2𝑝) + 6) ≤

103

1
2
3
4
5
6
7
8

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

𝑥 ∗ 𝑂(𝑣 + 2𝑝 + 6) =

𝑥 ∗ 𝑂(𝑣 + 𝑝) (B. 1.3)

Additionally, AcquireDeferredViews uses one assignment and one return statement. As such, the time

complexity for the deferred rendering pipeline is 𝑂(𝑥 ∗ (𝑣 + 𝑝)). The derivation is shown in equation

B.1.4.

2 + 𝑥 ∗ 𝑂(𝑣 + 𝑝) ≤ 𝑂 2 + 𝑥 ∗ (𝑣 + 𝑝) = 𝑂 𝑥 ∗ (𝑣 + 𝑝) (B. 1.4)

RasterizeGeometry(Projection parameters 𝑴𝑽𝑷, Geometry 𝑮):

returns a set of tuples (𝑥, 𝑦, 𝑧) such that the geometry 𝐺 projected in accordance
with the projection matrix MVP intersects with (𝑥, 𝑦, 𝑧), i.e. the geometry is
discretized into fragments.

DetermineVisibleFragments(Fragments 𝑭, Occluding Fragments 𝑭𝒐):

if 𝐹𝑜 = { ∅ }:

 return 𝐹

end if

𝐹𝑣 := (𝑥, 𝑦, 1) | (𝑥, 𝑦, _) ∈ 𝐹 }

foreach fragment (𝑥, 𝑦, 𝑧) ∈ 𝐹 do:

if 𝐹𝑣 contains (𝑥, 𝑦, 𝑧𝑑) such that 𝑧𝑑 < 𝑧 or

 𝐹𝑜 contains (𝑥, 𝑦, 𝑧𝑜) such that 𝑧𝑜 > 𝑧:

 continue

 end if

𝐹𝑣 := (𝐹𝑣 \ { (𝑥, 𝑦, _) }) ∪ { (𝑥, 𝑦, 𝑧) }

end foreach

return 𝐹𝑣

CalculateLighting(Fragments 𝑭):

𝑃 := { ∅ }
foreach fragment (𝑥, 𝑦, 𝑧) ∈ 𝐹 do:
 𝑐 := color of (𝑥, 𝑦, 𝑧), computed according to lighting model
 𝑝 := (𝑥, 𝑦, 𝑧, 𝑐)
 𝑃 := 𝑃 ∪ { 𝑝 }
end foreach

return 𝑃

Code listing B.1.2. Pseudocode of several helper functions referenced by the different rendering pipelines. The

functions shown in this code listing give a high-level, mathematical overview of core graphics pipeline parts and

are included in the time complexity analyses of the different pipelines.

 Center view acquisition
The time complexity analysis for the center view acquisition algorithm is based on the pseudocode

shown in Code listing B.2.1. This algorithm refers to the same support functions as the

AcquireDeferredViews function from the previous section. For brevity, the same derivation won’t be

repeated in this section. See Appendix B.1 for the details on the derivation of the time complexity for

the referenced support functions.

104

 1
 2

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

18

19

20
21

Input: Center camera projection parameters 𝑀𝑉𝑃. Furthermore, scene geometry 𝐺.
Output: A partially ordered set of textures 𝑉, such that 𝑉𝑖 corresponds with depth layer 𝑖 and where

0 ≤ 𝑖 ≤ 𝑛. 𝑖 = 0 is the first depth layer and 𝑖 = 𝑛 coincides with the farthest depth layer as seen
from the center camera.

AcquireCenterSourceViews(𝑴𝑽𝑷, 𝑮):

𝑉 := { ∅ }

𝐹 := RasterizeGeometry(𝑀𝑉𝑃, 𝐺)
𝐹𝑣,0 := DetermineVisibleFragments(𝐹, { ∅ })
𝑉0 := CalculateLighting(𝐹𝑣,0)

𝑉 := 𝑉 ∪ { 𝑉0 }

𝑖 := 1
while true:
 𝐹𝑣,𝑖 := DetermineVisibleFragments(𝐹, 𝐹𝑣,𝑖−1)

 if 𝐹𝑣,𝑖 = { ∅ }:
 break
 end if

 𝑉𝑖 := CalculateLighting(𝐹𝑣,𝑖)

 𝑉 := 𝑉 ∪ { 𝑉𝑖 }

 𝑖 := 𝑖 + 1
end while

return 𝑉
Code listing B.2.1. Pseudocode for center source view acquisition pipeline. AcquireCenterSourceViews refers to

several helper functions. These are shown in Code listing B.1.2. The time complexity analysis for the center source

view acquisition pipeline is done based on this mathematical description.

The time complexity of lines 1 through 8 of Code listing B.2.1 is 6 + 1 + 𝑂(𝑣) + 𝑂(𝑝) + 𝑂(𝑝), which

is the sum for respectively 6 assignments, one union between an empty and non-empty set, the

reference to RasterizeGeometry, the reference to DetermineVisibleFragments and, the reference to

CalculateLighting.

The operations within the depth peeling loop body consists of four assignments, one comparison,

one addition, one disjoint set addition, the reference to DetermineVisibleFragments and the reference

to CalculateLighting. The combined time complexity is 4 + 1 + 1 + 1 + 𝑂(𝑝) + 𝑂(𝑝) for the loop

body. In theory, the number of loop iterations is unbounded. Fortunately, the number of layers

captured using depth peeling can be bounded to ten layers, if the optimization discussed in Section

3.4.1 is applied. As shown by equation B.2.1, the depth peeling loop complexity is 𝑂(𝑝).

10 ∗ 4 + 1 + 1 + 1 + 𝑂(𝑝) + 𝑂(𝑝) =

10 ∗ 7 + 2 ∗ 𝑂(𝑝) =

70 + 20 ∗ 𝑂(𝑝) ≤

𝑂(70 + 20 ∗ 𝑝) =

𝑂(𝑝) (B. 2.1)

To complete the time complexity analysis, the return statement for line 21 needs to be added to the

time complexity of AcquireCenterSourceViews. The total time complexity is 𝑂(𝑣 + 𝑝). The derivation

is shown in equation B.2.2.

105

6 + 1 + 𝑂(𝑣) + 𝑂(𝑝) + 𝑂(𝑝) + 𝑂(𝑝) + 1 =

𝑂(𝑣) + 2 ∗ 𝑂(𝑝) + 8 ≤

𝑂(𝑣 + 2 ∗ 𝑝 + 8) =

𝑂(𝑣 + 𝑝) (𝐵. 2.2)

 Hierarchical view acquisition
The time complexity analysis for the hierarchical view acquisition algorithm is based on the

pseudocode shown in Code listing B.3.1. This algorithm refers to the same support functions as

discussed in Appendix B.1. For brevity, the derivation of the support functions won’t be repeated in

this section. See Appendix B.1 for a detailed derivation of the time complexity for the referenced

support functions. However, additional functions are also referenced. The corresponding pseudocode

is listed in Code listings B.3.2 and B.3.3.

RenderView is composed of five assignments, one return statement, one call to the RasterizeGeometry

function, one call to the DetermineVisibleFragments function and one call to the CalculateLighting

function. The time complexity for these operations is 5 + 1 + 𝑂(𝑣) + 𝑂(𝑝) + 𝑂(𝑝). Furthermore, two

statements to get the current time are made. The purpose of the timepoints is to deduce the elapsed

time during the execution of RenderView by means of a subtraction. A common hardware

implementation is to provide special registers that contain the timestamp as an integer. As such,

getting a timestamp shouldn’t be more time consuming than assigning a value to a variable. So,

fetching a timestamp is assumed to take a single, constant unit of time. As such, 3 units of time need

to be considered for the time management. Two units for getting the timestamps, and one unit of time

to compute the elapsed time by subtracting the two timestamps. As such, the time complexity for

RenderView is 𝑂(𝑣 + 𝑝). See equation B.3.1 for the derivation.

5 + 1 + 𝑂(𝑣) + 𝑂(𝑝) + 𝑂(𝑝) + 3 =

𝑂(𝑣) + 2 ∗ 𝑂(𝑝) + 9 ≤

𝑂(𝑣 + 2 ∗ 𝑝 + 9) =

𝑂(𝑣 + 𝑝) (B. 3.1)

The time complexity of ComputeVisibleSet is mostly composed of the computation time of

ErodeView since it consists of 2 assignments, one return statement and 2 calls to ErodeView.

Additionally, it uses a set union where the sizes of the sets are dependent on the number of pixels in

the given image. So, the set union can be done in 𝑂(𝑝) operations. As such, equation B.3.2 derives a

time complexity of 𝑂(𝐸𝑉 + 𝑝) for the ComputeVisibleSet function, where 𝐸𝑉 stands in for the time

complexity of ErodeView.

2 + 1 + 2 ∗ 𝐸𝑉 + 𝑂(𝑝) = 3 + 2 ∗ 𝐸𝑉 + 𝑂(𝑝) ≤ 𝑂(𝐸𝑉 + 𝑝) (B. 3.2)

As shown in Code listing B.3.2, the ErodeView function starts off with an assignment on line 1. This

is followed by a loop spanning lines 2 through 8. The loop body is executed once for every fragment in

𝑉𝑡, and thus runs 𝑂(𝑝) times. The condition of the if-statement corresponds to an edge detection

algorithm. In Section 3.3.1, it was explained that a mean-based local threshold with a 5-pixel wide 1-

dimensional window was used in the test implementation and this will be the basis for the time

complexity analysis. The computation of the mean takes four additions and 1 divide. The threshold

operation equates to one comparison. The remaining statements in the if-branch contains an

assignment and a union of a disjoint set. The else-branch consists of identical operations. In the end,

106

this leads to a time complexity of 1 + 𝑂(𝑝) ∗ (6 + 1 + 1) for lines 1 through 8. Line 10 consists of an

assignment on line 10, which counts as a basic operation, and is followed by a loop. This loop runs over

each tuple in EdgeMap, and the loop body executes 𝑂(𝑝) times. The reason being the number of

contained elements is equal to the tuple count of 𝑉𝑡 because one tuple is added to EdgeMap for each

tuple in 𝑉𝑡, and 𝑉𝑡 contains 𝑂(𝑝) items. The loop body consists of two assignments, 1 disjoint set union

and a sum over 𝑝 tuples in the worst-case scenario. As such, the time complexity of lines 10 through

14 sums to 1 + 𝑂(𝑝) ∗ (2 + 1 + 𝑝). Furthermore, the variable ErodedView gets assigned an empty set

on line 16 which counts as a basic operation. Before ending ErodeView with the return statement on

line 28, there is a foreach-loop spanning lines 17 through 26. The projections on lines 18 and 19 in the

loop body are implemented as matrix projections, where the matrices have a 4x4 dimension. As such,

the time complexity analysis counts the reprojections as several matrix vector multiplications. Each

matrix vector multiplication takes sixteen multiplications and twelve additions. So, including the two

assignments, the unprojection and reprojection are done in 58 basic operations. The condition of the

if-else branch is one look-up in PrefixSumMap that can be done in 𝑂(1) operations if the tuples are

stored in order based on the 𝑥 and 𝑦 coordinates. Inside the if-else statement an assignment and

disjoint set union of which the combined time complexity is 2. The foreach-loop is executed 𝑂(𝑝) times

because PrefixSumMap contains a single tuple for each element in EdgeMap which was determined to

hold 𝑂(𝑝) tuples, bringing the time complexity of the foreach-loop to 𝑂(𝑝) ∗ (58 + 1 + 1 + 1 + 1) =

62 ∗ 𝑂(𝑝). As shown by the derivation in equation B.3.3, the time complexity of the ErodeView

function equates to 𝑂(𝑝2 + 𝑝).

1 + 𝑂(𝑝) ∗ (6 + 1 + 1) + 1 + 𝑂(𝑝) ∗ (2 + 1 + 𝑝) + 1 + 𝑂(𝑝) ∗ (58 + 1 + 1 + 1 + 1) =

𝑝 ∗ 𝑂(𝑝) + 8 ∗ 𝑂(𝑝) + 3 ∗ 𝑂(𝑝) + 62 ∗ 𝑂(𝑝) + 3 =

𝑝 ∗ 𝑂(𝑝) + 73 ∗ 𝑂(𝑝) + 3 ≤

𝑂(𝑝 ∗ 𝑝 + 𝑝) =

𝑂(𝑝2 + 𝑝) (𝐵. 3.3)

CountHoles is composed of one assignment, one return statement and one foreach-loop, executing

once for each pixel given as input. The loop body performs a constant number of operations. One

comparison, one assignment and one addition. As such, the time complexity of CountHoles is derived

to be 𝑂(𝑝) in equation B.3.4.

1 + 1 + 𝑂(𝑝) ∗ (1 + 1 + 1) = 3 ∗ 𝑂(𝑝) + 2 ≤ 𝑂(3 ∗ 𝑂(𝑝) + 2) = 𝑂(𝑝) (B. 3.4)

107

1
2
3
4
5
6
7
8
9

 1
 2
 3
 4
 5
 6
 7
 8
 9

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27

Input: An ordered set of camera projection parameters 𝑀𝑉𝑃𝑖 , where 0 ≤ 𝑖 ≤ 𝑛 and 𝑖 is the index of
the camera. This set is ordered such that 𝑖 = 0 corresponds with the leftmost camera parameters
and 𝑖 = 𝑛 corresponds with the rightmost camera parameters. Furthermore, quality threshold 𝐻𝑡 ,
max renderbudget 𝐵 and scene geometry 𝐺 are given as input.

Output: A set of textures 𝑉, such that 𝑉𝑖 corresponds with the 𝑖𝑡ℎ source view.

AcquireRangedSourceViews(𝑴𝑽𝑷, 𝑮, 𝑯𝒕, 𝑩):

𝑇 := 0
RenderQueue := empty queue

(𝑉0, 𝑇0) := RenderView(0, 𝑀𝑉𝑃0, 𝐺)
(𝑉1, 𝑇1) := RenderView(𝑛, 𝑀𝑉𝑃𝑛, 𝐺)
𝑉 := 𝑉0 ∪ { 𝑉1 }

RenderQueue.Push((𝑉0 , 𝑉1))
𝑇 := 𝑇 + 𝑇0 + 𝑇1

while RenderQueue not empty and 𝑇 < 𝐵:
 (𝑉𝑙 , 𝑉𝑟) := RenderQueue.Pop()
 𝐼𝑛𝑑𝑒𝑥 := (𝑙 + 𝑟) / 2

 𝑉𝑣𝑖𝑠 := ComputeVisibleSet(𝑇𝑙, 𝑀𝑉𝑃𝑙, 𝑇𝑟, 𝑀𝑉𝑃𝑟, 𝑀𝑉𝑃𝐼𝑛𝑑𝑒𝑥)
 𝐻 := CountHoles(𝑉𝑣𝑖𝑠)
 if 𝐻 < 𝐻𝑡:
 (𝑉𝑖 , 𝑇𝑖) := RenderView(𝐼𝑛𝑑𝑒𝑥, 𝑀𝑉𝑃𝐼𝑛𝑑𝑒𝑥 , 𝐺)
 𝑉 := 𝑉 ∪ { 𝑉𝑖 }

 RenderQueue.Push((𝑉𝑙 , 𝑉𝑖))
 RenderQueue.Push((𝑉𝑖 , 𝑉𝑟))
 𝑇 := 𝑇 + 𝑇𝑖
 end if
end while

return V

RenderView(ViewIndex 𝑰, Projection parameters 𝑴𝑽𝑷, Geometry 𝑮):

𝑇𝑖𝑚𝑒𝑠 := start time

𝐹 := RasterizeGeometry(𝑀𝑉𝑃, 𝐺)
𝐹𝑣 := DetermineVisibleFragments(𝐹,{ ∅ })
𝑉 := CalculateLighting(𝐹𝑣)

𝑇𝑖𝑚𝑒𝑒 := end time

return (𝑉, 𝑇𝑖𝑚𝑒𝑒 − 𝑇𝑖𝑚𝑒𝑠)
Code listing B.3.1. Pseudocode for the hierarchical view acquisition pipeline. The shown functions refer to several

helper functions which are shown in Code listing B.1.2. Furthermore, the algorithmic description of the erosion

based image quality metric is given in Code listing B.3.2 and B.3.3. The time complexity analysis for the

hierarchical view acquisition pipeline is done based on this mathematical description.

AcquireRangedSourceViews, shown in Code listing B.3.1, begins with two assignments. This is followed

by three assignments, two calls to RenderView and a union of two 1-element sets. As determined

previously, the time complexity of RenderView is 𝑂(𝑣 + 𝑝). The queue push operation takes a constant

number of operations. So, its time complexity is 𝑂(1), and is followed by two additions and one

108

assignment. In total, the time complexity of lines 1 through 9 is 2 + 3 + 2 ∗ 𝑂(𝑣 + 𝑝) + 1 + 𝑂(1) +

2 + 1 = 2 ∗ 𝑂(𝑣 + 𝑝) + 𝑂(1) + 9. The following while-loop body starts with a queue pop operation,

which takes 𝑂(1) operations. The calculation of Index takes one addition, one division and an

assignment. Line 15 has a time complexity of 1 + 𝑂(𝑝2 + 𝑝 + 𝑝) for the assignment and call to

ComputeVisibleSet. Line 16 has a time complexity of 1 + 𝑂(𝑝) because of the assignment and call to

CountHoles. The if-branch condition is a comparison between two numbers, and counts as one basic

operation. The body of the if-branch consists of three assignments, one disjoint set union, one

addition, two queue push operations, and one call to RenderView. The time complexity for the while-

loop body is 𝑂(1) + 1 + 1 + 1 + 1 + 𝑂(𝑝2 + 𝑝 + 𝑝) + 1 + 𝑂(𝑝) + 1 + 3 + 1 + 1 + 2 ∗ 𝑂(1) +

𝑂(𝑣 + 𝑝) = 𝑂(𝑝2 + 2 ∗ 𝑝) + 𝑂(𝑣 + 𝑝) + 𝑂(𝑝) + 3 ∗ 𝑂(1) + 11. Lastly, the return statement

accounts for one more basic operation.

The observant reader might have noticed that the number of executions of the loop body was not

determined. Unfortunately, a general, platform independent solution for the time complexity of

AcquireRangedSourceViews cannot be determined because the while-loop condition is dependent on

the outcome of the image quality heuristic, which cannot be theoretically bound. Or, it is dependent

on the ratio between the time to render a single view and the render budget, which makes it platform

dependent.

For the remainder of this time complexity analysis it is assumed that RenderView completes in the

same time as it takes to do 𝑇 operations. Furthermore, a renderbudget of 𝐵 is assumed. Then, the

worst-case time complexity of AcquireRangedSourceViews is 2 ∗ 𝑂(𝑣 + 𝑝) + 𝑂(1) + 9 + 𝑇/𝐵 ∗

(𝑂(𝑝2 + 2 ∗ 𝑝) + 𝑂(𝑣 + 𝑝) + 𝑂(𝑝) + 3 ∗ 𝑂(1) + 11) + 1.

109

 1
 2
 3
 4
 5
 6
 7
 8

 1
 2
 3
 4

 1
 2
 3
 4
 5
 6
 7
 8
 9

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28

ComputeVisibleSet(Left view 𝑽𝒍, 𝑴𝑽𝑷𝒍, Right view 𝑽𝒓, 𝑴𝑽𝑷𝒓, 𝑴𝑽𝑷𝒎):

𝑉𝑙 ,𝑒 := ErodeView(𝑉𝑙, 𝑀𝑉𝑃𝑟, 𝑀𝑉𝑃𝑙)

𝑉𝑟 ,𝑒 := ErodeView(𝑉𝑟, 𝑀𝑉𝑃𝑙, 𝑀𝑉𝑃𝑟)

return 𝑉𝑙 ,𝑒 ∪ 𝑉𝑟 ,𝑒

ErodeView(Target view 𝑽𝒕, Projection parameters 𝑴𝑽𝑷, Projection parameters
𝑴𝑽𝑷𝒖):

𝐸𝑑𝑔𝑒𝑀𝑎𝑝 := { ∅ }
foreach fragment (𝑥, 𝑦, 𝑧) ∈ 𝑉𝑡 do:
 if 𝑝 corresponds with an edge of object in scene geometry:
 𝐸𝑑𝑔𝑒𝑀𝑎𝑝 := 𝐸𝑑𝑔𝑒𝑀𝑎𝑝 ∪ { (𝑥, 𝑦, 𝑧, 1) }
 else
 𝐸𝑑𝑔𝑒𝑀𝑎𝑝 := 𝐸𝑑𝑔𝑒𝑀𝑎𝑝 ∪ { (𝑥, 𝑦, 𝑧, 0) }
 end if
end foreach

𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑢𝑚𝑀𝑎𝑝 := { ∅ }
foreach tuple (𝑥, 𝑦, 𝑧, 𝑚𝑎𝑟𝑘) ∈ 𝐸𝑑𝑔𝑒𝑀𝑎𝑝 do:
 𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑢𝑚 := 𝑚𝑎𝑟𝑘𝑥

𝑖=0 , where (𝑖, 𝑦, 𝑧, 𝑚𝑎𝑟𝑘) ∈ 𝐸𝑑𝑔𝑒𝑀𝑎𝑝
𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑢𝑚𝑀𝑎𝑝 := 𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑢𝑚𝑀𝑎𝑝 ∪ {(𝑥, 𝑦, 𝑧, 𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑢𝑚)}

end foreach

𝐸𝑟𝑜𝑑𝑒𝑑𝑉𝑖𝑒𝑤 := { ∅ }
foreach tuple (𝑥, 𝑦, 𝑧, 𝑝𝑟𝑒𝑓𝑖𝑥_𝑠𝑢𝑚) ∈ 𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑢𝑚𝑀𝑎𝑝 do:
 𝑥𝑤 := unproject 𝑥 to world space with parameters 𝑀𝑉𝑃𝑢

𝑥𝑟 := reproject 𝑥 to image space with parameters 𝑀𝑉𝑃

if (𝑥𝑟 , 𝑦, 𝑧, 𝑒𝑟𝑜𝑑𝑒𝑑_𝑠𝑢𝑚) ∈ 𝑃𝑟𝑒𝑓𝑖𝑥𝑆𝑢𝑚𝑀𝑎𝑝 and 𝑝𝑟𝑒𝑓𝑖𝑥_𝑠𝑢𝑚 ≠ 𝑒𝑟𝑜𝑑𝑒𝑑_𝑠𝑢𝑚:

𝐸𝑟𝑜𝑑𝑒𝑑𝑉𝑖𝑒𝑤 := 𝐸𝑟𝑜𝑑𝑒𝑑𝑉𝑖𝑒𝑤 ∪ { (𝑥, 𝑦, 1) }
else
 𝐸𝑟𝑜𝑑𝑒𝑑𝑉𝑖𝑒𝑤 := 𝐸𝑟𝑜𝑑𝑒𝑑𝑉𝑖𝑒𝑤 ∪ { (𝑥, 𝑦, 0) }
end if

end foreach

return 𝐸𝑟𝑜𝑑𝑒𝑑𝑉𝑖𝑒𝑤
Code listing B.3.2. Pseudocode for the image-based erosion of geometry to compute the potentially visible

geometry when looking from other positions than the provided 𝑀𝑉𝑃𝑙 and 𝑀𝑉𝑃𝑟. The time complexity analysis of

ComputeVisibleSet and ErodeView is based on the pseudocode shown in this Code listing.

CountHoles(Eroded view 𝑽𝒆):

Count := 0
foreach pixel (𝑥, 𝑦, 𝑚𝑎𝑟𝑘) ∈ 𝑉𝑒 do:
 if 𝑚𝑎𝑟𝑘 ≠ 1:
 Count := Count + 1
 end if
end foreach

return Count

Code listing B.3.3. Pseudocode for counting the number of holes in an eroded image. The count returned by this

function is compared against a user-provided threshold, and is the image quality decision-rule. This Code listing

is the basis for the time complexity analysis of the function CountHoles.

110

 1
 2
 3
 4
 5

 6
 7
 8
 9
10

11

 1

 2

 3

 4
 5

 Epipolar view interpolation
The time complexity analysis of the epipolar view interpolation algorithm is done based on the

pseudocode shown in Code listing B.4.1, Code listing B.4.2 and Code listing B.4.3. Before commencing

the time complexity analysis of the epipolar view interpolation algorithm, shown as the function

AcquireInterpolatedViews, the time complexities of CaptureActivePixels and DrawDepthLayer need to

be known.

CaptureActivePixels(Source view 𝒗):

𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖𝑥𝑒𝑙𝑠 := { ∅ }
foreach fragment (𝑥, 𝑦, 𝑧, 𝑐) ∈ 𝑣:
 if 𝑧 = 0:
 continue
 end if

 𝑆𝑡𝑟𝑖𝑑𝑒 := 0
 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖𝑥𝑒𝑙𝑠 := 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖𝑥𝑒𝑙𝑠 ∪ { (𝑥, 𝑦, 𝑧, 𝑐, 𝑆𝑡𝑟𝑖𝑑𝑒) }
end foreach

return 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖𝑥𝑒𝑙𝑠

EmitVertex(𝑪𝒐𝒐𝒓𝒅𝒔, Projection parameters 𝑴𝑽𝑷, 𝜶, 𝒏, Color 𝒄):

𝑥𝑒𝑝𝑖 := 𝑥-coordinate from 𝐶𝑜𝑜𝑟𝑑𝑠 after projection to clip space using 𝑀𝑉𝑃

𝑦𝑒𝑝𝑖 :=
 (1 −𝛼)∗ 0.5 + 𝛼 ∗ (𝑛 − 0.5)

𝑛
 ∗ 2 − 1

𝑧𝑒𝑝𝑖 := 𝑧-coordinate from 𝐶𝑜𝑜𝑟𝑑𝑠

return (𝑥𝑒𝑝𝑖 , 𝑦𝑒𝑝𝑖 , 𝑧𝑒𝑝𝑖 , 𝑐)
Code listing B.4.1. Mathematical description of several support functions used by the view interpolation

algorithm.

The for-loop body in the CaptureActivePixels function uses one comparison, two assignments and a

disjoint-set union, with a time complexity of 4. The loop is executed 𝑂(𝑝) times because it was

determined in Appendix B.2 and Appendix B.3 that a view contains 𝑂(𝑝) tuples. Additionally,

CaptureActivePixels has an assignment and return statement. As such, the time complexity for

CaptureActivePixels is 𝑂(𝑝). See equation B.4.1 for the complete time complexity derivation.

1 + 𝑂(𝑝) ∗ 4 + 1 = 4 ∗ 𝑂(𝑝) + 2 ≤ 𝑂(4 ∗ 𝑂(𝑝) + 2) = 𝑂(𝑝) (B. 4.1)

The function EmitVertex has a time complexity of 𝑂(1). The calculation of 𝑥𝑒𝑝𝑖 is counted as a matrix-

vector multiplication of a 4-by-4 matrix and 4-dimensional vector. Identical to the reprojection in

ErodeView, as analyzed in Appendix B.3. The time complexity of this is 29, including the assignment.

The calculation for 𝑦𝑒𝑝𝑖 consists of four additions or subtractions, four multiplications or divisions and

one assignment. These operations have a time complexity of 9. Computing 𝑧𝑒𝑝𝑖 consists of a read and

assignment, and has a time complexity of 2. Furthermore, an additional return statement must be

counted. All aspects considered, this leads to the time complexity derivation as shown in equation

B.4.2.

29 + 9 + 2 + 1 = 41 ≤ 𝑂(41) = 𝑂(1) (B. 4.2)

111

 1
 2
 3
 4
 5

 6

 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46

47

48
49
50
51
52

DrawDepthLayer(𝑨𝒄𝒕𝒊𝒗𝒆𝑷𝒊𝒙𝒆𝒍𝒔, Projection parameters 𝑴𝑽𝑷𝒗,𝒊; 𝑴𝑽𝑷𝒍; 𝑴𝑽𝑷𝒓, 𝒏):

𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑙 := Get position from 𝑀𝑉𝑃𝑙
𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟 := Get position from 𝑀𝑉𝑃𝑟
𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑣,𝑖 := Get position from 𝑀𝑉𝑃𝑣,𝑖

𝑀𝑎𝑥𝑉𝑖𝑒𝑤𝑂𝑓𝑓𝑠𝑒𝑡 := || 𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟 − 𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑙 ||

𝑉𝑖𝑒𝑤𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 :=
| 𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜 𝑛𝑣,𝑖−𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜 𝑛 𝑙 |

 𝑀𝑎𝑥𝑉𝑖𝑒𝑤𝑂𝑓𝑓𝑠𝑒𝑡

𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦𝑙 := 𝑉𝑖𝑒𝑤𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝑀𝑎𝑥𝑉𝑖𝑒𝑤𝑂𝑓𝑓𝑠𝑒𝑡
𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦𝑟 := (1 − 𝑉𝑖𝑒𝑤𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) ∗ 𝑀𝑎𝑥𝑉𝑖𝑒𝑤𝑂𝑓𝑓𝑠𝑒𝑡

𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 := { ∅ }

foreach fragment 𝑥, 𝑦, 𝑧, 𝑐𝑙 ,𝑑 , 𝑆𝑡𝑟𝑖𝑑𝑒 ∈ 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖𝑥𝑒𝑙𝑠:

 // Compute epipolar plane end points corresponding to current fragment
 𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑣 := Unproject (𝑥, 𝑦, 𝑧) to view space using 𝑀𝑉𝑃𝑣,𝑖

 𝑆𝑡𝑎𝑟𝑡𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑣 := 𝐶𝑜𝑜𝑟𝑑𝑠𝑙,𝑣 + (𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦𝑙 , 0, 0)

 𝐸𝑛𝑑𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑣 := 𝐶𝑜𝑜𝑟𝑑𝑠𝑙,𝑣 − (𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦𝑟 , 0, 0)

 Get color 𝑐𝑟 ,𝑑 proper for 𝑥 + 𝑆𝑡𝑟𝑖𝑑𝑒

 𝐶𝑜𝑜𝑟𝑑𝑠𝑟 ,𝑣 := Get coordinates proper for 𝑥 + 𝑆𝑡𝑟𝑖𝑑𝑒 and

 unproject to view space using 𝑀𝑉𝑃𝑣,𝑖
 𝑆𝑡𝑎𝑟𝑡𝐶𝑜𝑜𝑟𝑑𝑠𝑟 ,𝑣 := 𝐶𝑜𝑜𝑟𝑑𝑠𝑟,𝑣 + (𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦𝑙 , 0, 0)

 𝐸𝑛𝑑𝐶𝑜𝑜𝑟𝑑𝑠𝑟 ,𝑣 := 𝐶𝑜𝑜𝑟𝑑𝑠𝑟,𝑣 − (𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦𝑟 , 0, 0)

 // Loop over geometry splits and emit corresponding vertices
 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝑆𝑝𝑙𝑖𝑡𝑠 := [0, 1]
 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 := []
 𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡 := 0
 for 𝐼𝑛𝑑𝑒𝑥 := 0 to length(𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝑆𝑝𝑙𝑖𝑡𝑠):
 𝛼 := 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦𝑆𝑝𝑙𝑖𝑡𝑠[𝐼𝑛𝑑𝑒𝑥]
 𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑣 := (1 − 𝛼) ∗ 𝑆𝑡𝑎𝑟𝑡𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑣 + 𝛼 ∗ 𝐸𝑛𝑑𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑣

 𝐶𝑜𝑜𝑟𝑑𝑠𝑟 ,𝑣 := (1 − 𝛼) ∗ 𝑆𝑡𝑎𝑟𝑡𝐶𝑜𝑜𝑟𝑑𝑠𝑟 ,𝑣 + 𝛼 ∗ 𝐸𝑛𝑑𝐶𝑜𝑜𝑟𝑑𝑠𝑟 ,𝑣

 𝑀𝑜𝑑𝑒𝑙𝑀𝑎𝑡𝑟𝑖𝑥 := 𝐼
 𝑉𝑖𝑒𝑤𝑀𝑎𝑡𝑟𝑖𝑥 := Get view matrix from 𝑀𝑉𝑃𝑙 and modify such that position
 corresponds with
 𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑙 + 𝛼 ∗ (𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟 − 𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑙)
 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 := Get projection matrix from 𝑀𝑉𝑃𝑙
 𝑀𝑉𝑃 := 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 ∗ 𝑉𝑖𝑒𝑤𝑀𝑎𝑡𝑟𝑖𝑥 ∗ 𝑀𝑜𝑑𝑒𝑙𝑀𝑎𝑡𝑟𝑖𝑥

 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡] := EmitVertex(𝐶𝑜𝑜𝑟𝑑𝑠𝑙 ,𝑣, 𝑀𝑉𝑃, 𝛼, 𝑛, 𝑐𝑙 ,𝑑)

 𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡 := 𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡 + 1
 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡] := EmitVertex(𝐶𝑜𝑜𝑟𝑑𝑠𝑟 ,𝑣, 𝑀𝑉𝑃, 𝛼, 𝑛, 𝑐𝑟 ,𝑑)

 𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡 := 𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡 + 1
 end for

 // Loop over vertices to assemble triangles
 for 𝑇𝑟𝑖𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑡𝑎𝑟𝑡 := 0 to 𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑢𝑛𝑡 − 3 step 2:
 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 := 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 ∪
 { (𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑇𝑟𝑖𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑡𝑎𝑟𝑡], 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑇𝑟𝑖𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑡𝑎𝑟𝑡 + 1], 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑇𝑟𝑖𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑡𝑎𝑟𝑡 + 2]) }
 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 := 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 ∪ { (𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑇𝑟𝑖𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑡𝑎𝑟𝑡 +
 1], 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑇𝑟𝑖𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑡𝑎𝑟𝑡 + 3], 𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑇𝑟𝑖𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑡𝑎𝑟𝑡 + 2] }
 end for
end foreach

𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 := RasterizeGeometry(𝐼, 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠)
return 𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠

Code listing B.4.2. DrawDepthLayer transforms the geometry, gathered by the previously described view

acquisition stages, into epipolar geometry.

112

DrawDepthLayer, shown in Code listing B.4.2, starts with the computation of three positions from the

projection parameters given as input to the function. The actual implementation of the algorithm does

this by computing the inverse of the view matrix, followed by reading the three elements from the

inverse matrix that make up the 𝑥, 𝑦 and 𝑧-coordinate of the position. Computing the inverse of a view

matrix takes 𝑂(𝑛3) operations using Gauss-Jordan elimination4, where 𝑛 = 4 in this specific case since

it represents the dimensions of the matrix. All aspects considered, computing the three positions,

including reading the elements from the matrix and assigning them to the variables, has a time

complexity of 3 ∗ (𝑂(43) + 3 + 3) = 3 ∗ (𝑂(64) + 6) ≤ 𝑂(3 ∗ 𝑂(64) + 18) = 𝑂(1). Calculating

MaxViewOffset is done by a 3-dimensional vector subtraction, dot product and square root. The vector

subtraction takes 3 basic operations; the dot product consists of 3 multiplications and 2 additions; the

sqrt function takes 𝑂(1) operations5. As such, calculating MaxViewOffset and ViewDistance is done

using 2 ∗ 3 + 3 + 2 + 𝑂(1) + 1 + 2 = 2 ∗ 𝑂(1) + 19 ≤ 𝑂(2 ∗ 𝑂(1) + 19) = 𝑂(1). Lines 8

through 11 consist of three assignments, two multiplications and one subtraction. The time complexity

for this is 6. The foreach-loop executes 𝑂(𝑝) times since it executes once for tuple of ActivePixels,

which was previously determined to hold 𝑂(𝑝) elements. The loop body starts with calculating two

pairs of StartCoords and EndCoords using six assignments, six additions and six subtractions. The

lefthand-side of the additions and subtractions are dependent on a pair of Coords, these are calculated

using a unprojection. Identical to previous unprojections, this takes 28 basic operations. Furthermore,

𝐶𝑜𝑜𝑟𝑑𝑠𝑟,𝑣 needs to read the values corresponding with 𝑥 + 𝑆𝑡𝑟𝑖𝑑𝑒. This is implemented as

textureFetch, and thus equates to reading a value from memory. Similarly, for fetching the color for

𝑐𝑟,𝑑. As such, the time complexity for lines 15 through 21 is 6 + 6 + 6 + 28 + 28 + 1 + 1 = 76.

Furthermore, lines 24 through 26 consists of four assignments. The first inner for-loop, from lines 28

until 42 in the Code listing, starts with reading and assigning a value. Then, the computation of the pair

of Coords. Until this point, the time complexity is 2 + 2 + 4 + 4 = 12, for two assignments, four

additions or subtractions and four multiplications. For generating the ModelMatrix and

ProjectionMatrix, 32 assignments of scalar values are used. Computing the ViewMatrix means copying

16 scalar values and calculating the new position, which is computed using three additions, three

multiplications and three subtractions. As such, ViewMatrix is generated using 16 + 3 + 3 + 3 = 25

basic operations. Composing ModelMatrix, ViewMatrix and ProjectionMatrix into MVP is done using

one assignment and two matrix-matrix multiplications. The time complexity for a single matrix-matrix

multiplication is 𝑂(𝑛3), where 𝑛 can be substituted by 4 for this specific use case since 𝑛 is the

dimension of a square matrix. Lastly, adding the vertices to the array uses four assignments, two

additions and two calls to EmitVertex. The time complexity hereof totals to 4 + 2 + 2 ∗ 𝑂(1) = 2 ∗

𝑂(1) + 8 ≤ 𝑂(2 ∗ 𝑂(1) + 8) = 𝑂(1). The final detail for the time complexity of the for-loop spanning

lines 28 through 42 is that its body is executed twice; once for each element in the array EpipolarSplits.

As such, the total time complexity for emitting the vertices that describe the epipolar geometry

corresponding to a single pixel is 2 ∗ 12 + 32 + 25 + 1 + 2 ∗ 𝑂(43) + 𝑂(1) = 2 ∗ 𝑂(64) + 2 ∗

𝑂(1) + 140 ≤ 𝑂(2 ∗ 𝑂(64) + 2 ∗ 𝑂(1) + 14) = 𝑂(1). The loop-body for assembling the triangles in

epipolar space uses two assignments, two disjoint-set union and reads six values from the Vertices

array. The loop-body, spanning lines 45 through 48, is executed once because the array named Vertices

only contains four vertices after it is filled. The combined time complexity of this for-loop is 2 + 2 +

6 = 10.

4 For more information on matrix inversion using Gauss-Jordan elimination, see
https://en.wikipedia.org/wiki/Gaussian_elimination#Finding_the_inverse_of_a_matrix
5 For completeness, computing the square root using Newton-Rhapson takes log2(𝑁) operations, where 𝑁 is the
number of bits. Since 𝑁 is a constant with value 32, the time complexity of the function sqrt is 𝑂(log2(32)) =
𝑂(5) = 𝑂(1). For more information on Newton-Rhapson, see
https://en.wikipedia.org/wiki/Newton%27s_method

https://en.wikipedia.org/wiki/Gaussian_elimination#Finding_the_inverse_of_a_matrix
https://en.wikipedia.org/wiki/Newton%27s_method

113

 1
 2
 3
 4
 5

 6
 7
 8
 9
10

11
12
13
14

With each aspect of the foreach-loop analyzed, its total time complexity amounts to 𝑂(1) + 6 + 76 +

4 + 𝑂(1) + 10 = 2 ∗ 𝑂(1) + 96 ≤ 𝑂(2 ∗ 𝑂(1) + 96) = 𝑂(1). The function call to

RasterizeGeometry, including the assignment to Fragments, has a time complexity of 𝑂(𝑣), as

determined in Appendix B.1. In this case, 𝑣 refers to the number of triangles generated by the foreach-

loop. It was determined earlier that the loop runs 𝑂(𝑝) times. Furthermore, it outputs two triangles

during each run. As such, the call to RasterizeGeometry has a time complexity of 2 ∗ 𝑂(𝑝). Lastly, the

return statement on line 52 needs to be accounted for. The time complexity for the complete

DrawDepthLayer function is analyzed to be 𝑂(𝑝). See equation B.4.3 for the final derivation.

𝑂(1) + 𝑂(1) + 6 + 𝑂(1) + 2 ∗ 𝑂(𝑝) + 1 =

2 ∗ 𝑂(𝑝) + 3 ∗ 𝑂(1) + 7 ≤

𝑂(2 ∗ 𝑂(𝑝) + 3 ∗ 𝑂(1) + 7) =

𝑂(𝑝) (B. 4.3)

Input: A set of 𝑛 source views 𝑉 and corresponding projection parameters 𝑀𝑉𝑃𝑣 for each of the

source views, indexed such that 𝑉𝑖 is the 𝑖𝑡ℎ source view, and 𝑀𝑉𝑃𝑣,𝑖 are its corresponding projec-

tion parameters. A single source view is either a depth layer, in case of center view acquisition and
dual view acquisition, or an actual view, in case of hierarchical view acquisition. Furthermore, a pair
of camera projection parameters 𝑀𝑉𝑃𝑙 , corresponding with the leftmost camera, and 𝑀𝑉𝑃𝑟 corre-
sponding with the rightmost camera, are given as input.
Output: A partially ordered set 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑉𝑜𝑙𝑢𝑚𝑒 containing tuples of the form (𝑥, 𝑦, 𝑧, 𝑑, 𝑐). This
gives the color 𝑐 at location (𝑥, 𝑦, 𝑧) with depth value 𝑑. The pixels of a single view view can be re-
trieved by choosing a fixed 𝑧-coordinate and varying the 𝑥 and 𝑦. 𝑧 = 0 gives the view correspond-
ing with the leftmost view and 𝑧 = 𝑘 gives the rightmost view, where 𝑘 is at most the number of
views.

AcquireInterpolatedViews(Source views 𝑽, Projection parameters 𝑴𝑽𝑷𝒗; 𝑴𝑽𝑷𝒍;
𝑴𝑽𝑷𝒓, 𝒏):

𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑉𝑜𝑙𝑢𝑚𝑒 := { ∅ }
for 𝑖 = 1 to 𝑛:
 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖𝑥𝑒𝑙𝑠 := CaptureActivePixels(𝑣𝑖)
 𝑉𝑖𝑒𝑤𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 := DrawDepthLayer(𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑖𝑥𝑒𝑙𝑠, 𝑀𝑉𝑃𝑣,𝑖, 𝑀𝑉𝑃𝑙, 𝑀𝑉𝑃𝑟, 𝑛)

 foreach tuple (𝑥, 𝑦, 𝑧, 𝑑, 𝑐) ∈ 𝑉𝑖𝑒𝑤𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠:
 if 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑉𝑜𝑙𝑢𝑚𝑒 contains (𝑥, 𝑦, 𝑧, 𝑑𝑒𝑣 , _) such that 𝑑 < 𝑑𝑒𝑣:
 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑉𝑜𝑙𝑢𝑚𝑒 := 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑉𝑜𝑙𝑢𝑚𝑒 \ { (𝑥, 𝑦, 𝑧, 𝑑𝑒𝑣 , _) }
 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑉𝑜𝑙𝑢𝑚𝑒 := 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑉𝑜𝑙𝑢𝑚𝑒 ∪ { (𝑥, 𝑦, 𝑧, 𝑑, 𝑐) }
 end if
 end foreach
end for

return 𝐸𝑝𝑖𝑝𝑜𝑙𝑎𝑟𝑉𝑜𝑙𝑢𝑚𝑒
Code listing B.4.3. Mathematical description of the entry point to the view interpolation algorithm.

AcquireInterpolatedViews begins with an assignment to EpipolarVolume. Then, it contains a for-loop

that runs once for each source view. For the depth peeling based source view acquisition pipelines the

loop-body is executed at most twenty times. The number of executions with a hierarchical view

acquisition is undeterminable in general. The loop-body is made up of two assignments, one function

call to CaptureActivePixels and one function call to DrawDepthLayer. The time complexity of this

section is 2 + 𝑂(𝑝) + 𝑂(𝑝). Furthermore, the for-loop encloses a foreach-loop. The body of the

114

foreach-loop has a time complexity of 2 + 1 + 1 + 𝑂(1) = 𝑂(1) + 4, since it is made up of two

assignments, one disjoint-set complement, one disjoint-set union and one check that can be done in

𝑂(1) operations. The foreach-loop is executed 𝑂(n ∗ p) times because the triangles generated by

DrawDepthLayer lie in the epipolar plane. The first dimension of each epipolar plane is the width of a

view, in other words 𝑂(𝑝) pixels; the second dimension of each epipolar plane is the number of views,

or 𝑛. Lastly, AcquireInterpolatedViews makes use of a return statement. As such, the aggregated time

complexity is 𝑂(𝑛2𝑝) in the general case. See equation B.4.4 for the derivation of the time complexity

from the individual parts. However, for the depth peeling based view acquisition pipelines, the time

complexity can be simplified to 𝑂(𝑝) because the number of source views is a constant, as explained

in Appendix B.2.

1 + n ∗ 2 + O(p) + O(p) + O(n ∗ p) ∗ (O(1) + 4) =

1 + 2 ∗ 𝑛 + 𝑂(2 ∗ 𝑛 ∗ 𝑝) + 5 ∗ 𝑂(𝑛2 ∗ 𝑝) ≤

𝑂 1 + 2 ∗ 𝑛 + 𝑂(2 ∗ 𝑛 ∗ 𝑝) + 5 ∗ 𝑂(𝑛2 ∗ 𝑝) =

𝑂(𝑛2𝑝) (𝐵. 4.4)

115

 Derivation of memory usage

Besides performance, memory usage is an important aspect for the adoption of an algorithm in

practical use cases. The memory usage cost for the different pipelines is reported as a function to

compute the bytes per pixel. The bytes per pixel is the ratio between the total memory usage and the

dimensions of a view multiplied by the number of views. This provides a method that is image

resolution independent, and only depends on the number of views that are expected as output of the

different pipelines.

To get the memory usage of the different algorithms, the best option would be measure the memory

cost in actual use cases. However, this is complicated due to OpenGL not providing APIs to query the

memory usage of individual resources. Furthermore, the hardware and accompanying drivers may

skew measurements because resources may be duplicated to promote pipelining and avoiding stalls.

Besides, resources may have a different memory representation than was requested with OpenGL

because of hardware compatibility. This would make the memory usage specific to a combination of

hardware and drivers. To circumvent these problems, this appendix derives the theoretical memory

usage.

The memory usage cost functions are derived from the OpenGL data types that the resources have in

the implementation which was used to measure the reported performance in Section 4.4. The

numerator of the derived memory cost functions is the sum of the used memory by the individual

resources. So, for completeness, each section also provides a list of the used resources and its

corresponding data type.

 Deferred rendering
The deferred rendering pipeline, as used for testing purposes, makes use of the resources as listed in

Table C.1. Each of the resources is a texture, with composed views being a 3d texture. The remaining

resources are a 2d texture. All the textures, except for “Composed views” and “SSAO Noise” have the

same dimension as the viewport. “Composed views” has 2 dimensions equal to the viewport size and

the third dimension is the number of views. Lastly, “SSAO Noise” is a 4 by 4 texture.

Table C.1. List of resources and corresponding OpenGL data types used in the baseline deferred rendering pipeline
implementation.

Categorization Description OpenGL data type

 Composed views GL_RGBA8

Geometry-Buffer

Albedo GL_RGB8

Depth GL_DEPTH_COMPONENT32F

Normals GL_RGB32F

Specular Color GL_RGB8

Specular Intensity GL_R32F

Screen Space Ambient
Occlusion

SSAO GL_R32F

SSAO Blur GL_R32F

SSAO Noise GL_RGB16F

The list of used resources weighted by their respective dimensions leads to a memory cost function as

shown in equation C.1, where 𝑤 and ℎ are, respectively, the width and height of the viewport used for

rendering, and 𝑣 is the number of views expected as output.

𝑓(𝑣) =
𝑡𝑜𝑡𝑎𝑙 𝑚𝑒𝑚𝑜𝑟𝑦 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝑑𝑖𝑚𝑒𝑛𝑖𝑜𝑛𝑠 𝑜𝑓 𝑣𝑖𝑒𝑤 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑒𝑤𝑠

116

=
𝑤 ∗ ℎ ∗ (𝑣 ∗ 4 + 3 + 4 + 12 + 3 + 4 + 4 + 4) + 4 ∗ 4 ∗ 6

𝑤 ∗ ℎ ∗ 𝑣

=
𝑤 ∗ ℎ ∗ (4 ∗ 𝑣 + 34) + 96

𝑤 ∗ ℎ ∗ 𝑣

=
𝑤 ∗ ℎ ∗ (4 ∗ 𝑣 + 34)

𝑤 ∗ ℎ ∗ 𝑣
+

96

𝑤 ∗ ℎ ∗ 𝑣

≈𝑤∗ℎ∗𝑣 ≫ 96
4 ∗ 𝑣 + 34

𝑣

= 4 +
34

𝑣
(C. 1)

 Center view acquisition and epipolar view interpolation
The combined memory usage of the center view acquisition and epipolar view interpolation pipelines

is taken up by the resources listed in Table C.2. Each resource with “Depth layers” as part of their

description is an array of 10 Texture 2ds. Herein, each depth layer has dimensions equal to the

viewport. “Albedo”, “SSAO” and “SSAO blur” are viewport sized texture 2ds. “SSAO Noise” is a 4-by-4

Texture 2d. Furthermore, respectively “Epipolar planes (Color)” and “Epipolar planes (Depth)” are a

Texture 3d and a Texture 2d Array with 2 dimensions equal to the dimensions of the viewport and the

last dimension equal to the number of views expected as output. Lastly, “Primitive buffer” contains

one instance of a custom struct for each pixel in each depth layer. In other words, the number of

instances it contains is ten times the width multiplied by the height of the viewport. The custom struct

is composed of 2 32-bit floats and 3 32-bit integers, which totals to 20 bytes.

Table C.2. List of resources and corresponding OpenGL data types used in the center view acquisition pipeline
combined with the epipolar view interpolation pipeline implementation.

Categorization Description OpenGL data type

 Depth layers (Composed) GL_RGBA8

Geometry-Buffer

Albedo GL_RGB8

Depth layers (Depth) GL_DEPTH_COMPONENT32F

Depth layers (Normals) GL_RGB32F

Depth layers (Specular Color) GL_RGB8

Depth layers
(Specular intensity)

GL_R32F

Screen Space Ambient
Occlusion

SSAO GL_R32F

SSAO Blur GL_R32F

SSAO Noise GL_RGB16F

Epipolar view interpolation

Epipolar planes (Color) GL_RGBA8

Epipolar planes (Depth) GL_DEPTH_COMPONENT24

Primitive buffer Custom struct (20 bytes)

The list of used resources weighted by their respective dimensions leads to a memory cost function as

shown in equation C.2, where 𝑤 and ℎ are, respectively, the width and height of the viewport used for

rendering, and 𝑣 is the number of views expected as output.

𝑔(𝑣) =
𝑡𝑜𝑡𝑎𝑙 𝑚𝑒𝑚𝑜𝑟𝑦 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝑑𝑖𝑚𝑒𝑛𝑖𝑜𝑛𝑠 𝑜𝑓 𝑣𝑖𝑒𝑤 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑒𝑤𝑠

117

=
𝑤 ∗ ℎ ∗ (10 ∗ 4 + 3 + 10 ∗ 4 + 10 ∗ 12 + 10 ∗ 3 + 10 ∗ 4 + 4 + 4 + 10 ∗ 20) + 4 ∗ 4 ∗ 6

𝑤 ∗ ℎ ∗ 𝑣

+
𝑤 ∗ ℎ ∗ (𝑣 ∗ 4 + 𝑣 ∗ 3)

𝑤 ∗ ℎ ∗ 𝑣

=
𝑤 ∗ ℎ ∗ (481 + 7 ∗ 𝑣) + 96

𝑤 ∗ ℎ ∗ 𝑣

=
𝑤 ∗ ℎ ∗ (7 ∗ 𝑣 + 481)

𝑤 ∗ ℎ ∗ 𝑣
+

96

𝑤 ∗ ℎ ∗ 𝑣

≈𝑤∗ℎ∗𝑣 ≫ 96
7 ∗ 𝑣 + 481

𝑣

= 7 +
481

𝑣
 (C. 2)

 Dual view acquisition and epipolar view interpolation
Table C.3 has listed the used resources by the dual view acquisition and epipolar view interpolation

pipelines. The resources in these pipelines are of the same type and have the same data types. The

difference being that each resource description with “Depth layers” in their name has doubled. In other

words, ten depth layers are used for rendering the leftmost view and the remaining ten depth layers

are used for rendering the rightmost view. This has been accounted for in equation C.3.

Table C.3. List of resources and corresponding OpenGL data types used in the dual view acquisition pipeline
combined with the epipolar view interpolation pipeline implementation.

Categorization Description OpenGL data type

 Depth layers (Composed) GL_RGBA8

Geometry-Buffer

Albedo GL_RGB8

Depth layers (Depth) GL_DEPTH_COMPONENT32F

Depth layers (Normals) GL_RGB32F

Depth layers (Specular Color) GL_RGB8

Depth layers
(Specular intensity)

GL_R32F

Screen Space Ambient
Occlusion

SSAO GL_R32F

SSAO Blur GL_R32F

SSAO Noise GL_RGB16F

Epipolar view interpolation

Epipolar planes (Color) GL_RGBA8

Epipolar planes (Depth) GL_DEPTH_COMPONENT24

Primitive buffer Custom struct (20 bytes)

The list of used resources weighted by their respective dimensions leads to a memory cost function as

shown in equation C.3, where 𝑤 and ℎ are, respectively, the width and height of the viewport used for

rendering, and 𝑣 is the number of views expected as output.

ℎ(𝑣) =
𝑡𝑜𝑡𝑎𝑙 𝑚𝑒𝑚𝑜𝑟𝑦 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝑑𝑖𝑚𝑒𝑛𝑖𝑜𝑛𝑠 𝑜𝑓 𝑣𝑖𝑒𝑤 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑒𝑤𝑠

=
𝑤 ∗ ℎ ∗ (10 ∗ 2 ∗ 4 + 3 + 10 ∗ 2 ∗ 4 + 10 ∗ 2 ∗ 12 + 10 ∗ 2 ∗ 3 + 10 ∗ 2 ∗ 4 + 4 + 4 + 2 ∗ 10 ∗ 20) + 4 ∗ 4 ∗ 6

𝑤 ∗ ℎ ∗ 𝑣

+
𝑤 ∗ ℎ ∗ (𝑣 ∗ 4 + 𝑣 ∗ 3)

𝑤 ∗ ℎ ∗ 𝑣

118

=
𝑤 ∗ ℎ ∗ (951 + 7 ∗ 𝑣) + 96

𝑤 ∗ ℎ ∗ 𝑣

=
𝑤 ∗ ℎ ∗ (7 ∗ 𝑣 + 951)

𝑤 ∗ ℎ ∗ 𝑣
+

96

𝑤 ∗ ℎ ∗ 𝑣

≈𝑤∗ℎ∗𝑣 ≫ 96
7 ∗ 𝑣 + 951

𝑣

= 7 +
951

𝑣
(C. 3)

