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Abstract

Being able to solve numerically partial differential equations is fundamental for engineers to evalu-

ate, optimize and improve industrial equipments. The framework of mimetic finite element meth-

ods allows engineers to find solutions characterized by strong conservation properties: this may

result in a pointwise divergence free-flow field. However, sometimes, the computation of the solu-

tion of partial differential equations is time consuming, as a results, to reduce the computational

time, engineers and mathematicians have developed hybrid methods.

The objective of this thesis is the development of a hybrid mixed finite element formulation of

the vector Laplace equation without spurious modes. Discontinuous elements permit an higher

degree of parallelism, and, at the end, a lower computational time. Lagrange multipliers are used

to impose continuity between discontinuous elements. These turn out to be not only mathemat-

ical features but they are connected to the physical variables of the problem. Furthermore, it has

been found that the usage of a new Lagrange multiplier, on the intersection of 4 or more elements,

removes the spurious modes. Therefore, the associated system of equation is non-singular. The

usage of the hybrid finite element methods reduces the computational time while maintaining the

pointwise divergence constraint and the optimal convergence rate of all variables.

At the end, the mixed hybrid formulation is modified to solve the Stokes equations. Lagrange

multipliers are used as boundary conditions. Solution of the lid-driven Stokes flow is shown.
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1
Introduction

Computational Fluid Dynamics is the study of numerical methods, which are able to solve and anal-

yse the motions of fluids. Over the last years, its usage has significantly increased for the evaluation,

optimization and improvement of the design process for various industrial applications. The ad-

vent of commercial software and the exponential increase of computational power, in fact, drove its

transition from an exclusive research instrument to an instrument for almost everyday use.

Nonetheless, nowadays, CFD poses new challenges to researchers involved in its development.

Physical problems are described by partial differential equations (PDE), which express fundamental

conservation laws. Conserving quantities such as mass, momentum, or energy is paramount: this

has pushed the development of conserving methods, also called mimetic methods.

The incompressible Navier-Stokes equations, which describe the motion of fluids, can be mod-

ified in order to find a simpler equation that incorporates, at least, part of the structure of the fluid

flow equations. The reasoning starts from the incompressible Navier-Stokes equations


∂~u

∂t
+~u ·∇~u + 1

ρ
∇p −ν∇2~u = f

∇·~u = 0

,
(1.1)

(1.2)

1



2 1. Introduction

which, assuming Low Reynolds number 1, can be simplified into the Stokes equations:

∇p −µ∇2~u = f

∇·~u = 0
.

(1.3)

(1.4)

Although their simpler mathematical description, the Stokes equations find multiple engineering

application such as the computation of the flow around immersed bodies (i.e. small particles) or in

lubrication theory. Furthermore, their modified version, called Darcy-Brinkman-Stokes equations

[9], describes the flow through porous media, which is relevant, for example, to petroleum engi-

neering.

The equations (1.3) and (1.4) turn out to be very close to the mixed formulation of the vector Laplace

equation. For this reason, the objective of this thesis is the development of an hybrid mixed finite

element method for the vector Laplace equation, able to exactly impose the incompressibility con-

straint. However, the hybrid approach creates a singular system in many cases where more than

two elements come together (cross-intersection). As a consequence, the research question may be

stated as follows:

Research question: how do we remove singular modes from the hybrid

formulation of the vector Laplace equation?

In order to reply to this research question, the thesis has been structured as follows. In Chapter

2 the basics of mimetic methods is presented. The sets of basis functions are defined; incidence,

wedge and mass matrices are introduced. In Chapter 3 the relation between the Stokes equations

and the vector Laplace equation is explained. The variational formulation is derived first supposing

primal continuous elements, then primal-dual elements. The matrix formulation is set up. Fur-

thermore, advantages and disadvantages of a primal-dual formulation are discussed. Chapter 4

describes the hybrid formulation for discontinuous elements. A new set of Lagrange multipliers is

used to remove the singularities created by the cross-intersections among elements. At the end of

the chapter, the Lagrange multipliers’ system is introduced and the Lagrange multipliers are char-

acterized. In Chapter 5 results are shown using a divergence-free manufactured solution, while in

Chapter 6, after having modified the variational and matrix formulation to solve the Stokes equa-

tions, the lid-driven Stokes flow was computed and compared with [23]. Conclusions and possible

future developments are discussed in Chapter 7.

1Using the following dimensionless(∗) quantities: ~u∗ = ~u
U , x∗ = x

L , p∗ = pL
µU .



2
Basics of mimetic methods

A mimetic method is a numerical method which mimics fundamental properties of mathematical

and physical systems, including conservation laws, symmetry and positiveness [21]. In this context,

the word mimetic is related to the exactness, in some sense, of the discrete version of the partial

differential operators: We will see how the natural discrete counterpart of the divergence, the curl

and the gradient operator may be traced back, respectively, to the divergence theorem, the Stokes

theorem and the fundamental theorem of calculus[24].

A mimetic method may be developed using the pairing between geometry and variables, hid-

den in the conservation laws, which may get lost in the passage towards partial differential equation

(PDE). The first study on this geometry-variable association was conducted by E. Tonti, who recog-

nized that similarities between physical theories arise from the connection of the physical variables

to the same space elements1. Furthermore, he recognised that two orientations, outer or inner, are

associated to each space element [26, 28].

Having two possible orientations for each space element means, for example, that a velocity

field may be discretized using velocity fluxes through mesh surfaces (outer orientation) or using

tangential velocities along mesh edges (inner orientation)2. The double interpretation of the same

velocity field leads to the definition of an operator able to switch among the two. This is called

hodge and indicated by the symbol ?. Arnold, Falk & R. Winther [1]; Bochev & Hyman [6]; Kreeft,

1E. Tonti called space elements all points, lines, surfaces and volumes that create a mesh.
2Supposing a 3-dimensional domain.

3
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Palha & Gerritsma [20] agree that the definitions of the Hodge operator and the discrete operators

of the differential operator lead to a finite element method in which metric-dependent and metric-

independent terms are clearly recognizable. On this matter, Tarhasaari, Kettunen & Bossavit write:

the ?-operator can be exploited to separate the metric-dependent and metric-independent parts of

boundary value problems, [25].

The association between variable and space elements creates the need of new basis functions

(indicated with the letter ε along this thesis) defined over each element3. Finite element methods

are based on basis functions, which are continuous on each element and are defined according to

the following:

εi (x j ) =


1 if i = j ,

0 if i 6= j ,
(2.1)

where x j indicate the j th point of the element. It is worth to underline that, up to now, no restriction

on the geometry of the element, or the degree of the basis functions has been made. Nonetheless,

using this definition, we can state that such ε associate the variable that they discretize to the points

resulting from the discretization of the domain (i.e. the mesh). For this reason (2.1) will be called

nodal basis functions. This does not mean that such ε are defined only in certain points. On the

contrary, they are defined over the whole element, and consequently the whole domain.

Engineers and mathematicians, who are used to work on computational physics, know that a

mesh is composed by points, lines, surfaces and volumes. According to E. Tonti, all of them are

space elements and it should be possible to associate variables to each of them. This is the reason

why edge basis functions were developed in [12]. As the nodal basis functions are equal to 1 in one

point and equal to 0 in the other points of the element, the integral of an edge basis function is

equal to 1 over one edge and equal to zero over all the others. Furthermore, assuming quadrilateral

elements, we can define variables over surfaces and volumes using nodal and edge basis functions,

and the tensor product.

In order to be able to develop a mimetic finite element method, two other "ingredients" are

needed. Assuming that a variable u can be approximated in the following way:

u ≈∑
[u]i εi , (2.2)

the reduction (R) has been defined as the operator that maps u into [u], while the reconstruction (I)

as its right inverse. The vector of the coefficients [u]i is called the cochain, [20].

3An element is a subspace of the domain. The intersection of any two elements is the boundary, a portion of it, or it is

empty. The union of all the elements is equal to the domain. Such elements are computed by discretizing the domain.
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In the following sections of this chapter, starting from the divergence and the curl operator, the

geometry-variable association will be explained. The discrete counterpart of the continuous oper-

ators, called incidence matrix (E), will be introduced. Inner and outer orientations will derive natu-

rally. Nodal and edge basis functions will be introduced for a 1-dimensional domain and, using the

tensor product, generalised to a 2-dimensional one. On the same domain, the reduction and the re-

construction operator will be defined. Furthermore, the wedge and mass matrices will be computed

from the definition of the basis function. At the end of the chapter, the building blocks, needed to

develop a mimetic finite element method, will be known to the reader.

For these purposes, the domain is assumed to be 2-dimensional. This allows an easier rep-

resentation of the domain and its discretization, without loosing generality in the mathematical

derivation.

2.1. The divergence operator and its discrete counterpart

It has been underlined, at the beginning of this chapter, that the starting point of a mimetic finite

element method may be traced back to the construction of a discrete counterpart of the divergence

and the Stokes theorem. In this section, the divergence operator will be treated first because of its

importance in the imposition of the incompressibility constraint.

Consider a domain, for example the one in Figure 2.1, the divergence theorem relates the volume

integral of the divergence of a vector quantity, u, and the surface integral of the component of u

normal to the boundary. Algebraically:

∫
Ω
∇·~u dΩ=

∮
∂Ω
~u ·~n d∂Ω . (2.3)

Figure 2.1: Outer-oriented 2-dimensional cell complex.
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Figure 2.1 shows the 2-dimensional domain Ω, which is essentially a surface; its boundary ∂Ω

consisting of four lines; and four corner points. Surfaces, lines and points represent the space ele-

ments of the domain Ω. Furthermore, Figure 2.1 shows the orientations associated to them. The

divergence theorem assumes the outflow as positive, so the surface is associated with the same ori-

entation (indicated in the figure by the four arrows in the center pointing outward). Regarding the

boundary lines, they are positive oriented if the flux trough them is pointing rightward or upward

as the divergence operator is in function of the flux entering or exiting the domain. This results in

the definition of the oriented cell complex in Figure 2.1. This kind of orientation will be called outer

orientation and, as explained, it is intrinsically connected to (2.3).

Taking into account the sign convention depicted in the same figure, (2.3) may be re-written

dissociating the effect of each boundary:∫
Ω
∇·~u dΩ= (−1)

∫
∂Ωb

~u ·~n d∂Ω+(+1)
∫
∂Ωt

~u ·~n d∂Ω+(−1)
∫
∂Ωl

~u ·~n d∂Ω+(+1)
∫
∂Ωr

~u ·~n d∂Ω , (2.4)

where the +1 and −1 coefficients are associated to the boundaries where surface and line orien-

tations are pointing in the same or in the opposite direction, respectively. ∂Ωb , ∂Ωt , ∂Ωl and ∂Ωr

indicate the top, bottom, left and right boundary in Figure 2.1.

From (2.4), the first variable-geometry duality is obtained. On the one hand the divergence of

u is associated to the surface Ω, on the other hand the flux of the velocity ~u ·~n is coupled to the

boundary lines ∂Ω. The idea is, therefore, to discretize the divergence theorem using the integral of

the above variables on the respective geometry. This integral will be called cochain, indicated with

the brackets [·]. Using the cochians, (2.4) becomes:

[∇·u](n) = E(n,n−1)[u](n−1) 4 , (2.5)

where:

[∇·u](n) =
∫
Ω
∇·~u dΩ , (2.6)

[u](n−1) =



∫
∂Ωb

~u ·~n d∂Ω∫
∂Ωt

~u ·~n d∂Ω∫
∂Ωl

~u ·~n d∂Ω∫
∂Ωr

~u ·~n d∂Ω

 , (2.7)

4The superscripts (n) and (n −1) indicate the dimension of each space element on which the cochains have been com-

puted, where n is the dimension of the physical domain (i.e. In Figure 2.1, u is associated to the lines which are 1-

dimensional. The physical domain is 2-dimensional hence n −1 is equal to 1). The variable n is explicit for two reasons.

On the one hand the formula is the same for physical domain of dimension 1 or 3, on the other hand is used to indicate

that the cochain is outer oriented. Superscripts of cochains in which n does not appear are inner oriented.
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and E (n,n−1) is the matrix which takes into account the +1 and −1 coefficients (n is the dimension

of the physical domain):

E(n,n−1) = [−1+1−1+1] . (2.8)

(2.6) and (2.7) describe the reduction operator. The reduction operator derives naturally from the

divergence theorem, therefore it is unique.

More interesting is (2.8), where the incidence matrix -the discrete counterpart of the divergence

operator- is shown. It is clearly metric free because it depends only on the topology of the cell com-

plex.

Regarding the mimetic finite element method that we are going to developed in this thesis, two

considerations may be underlined on the difference between it, the finite element method and the

finite volume method:

• in a traditional finite element method only nodal basis functions are used, while the mimetic

finite element method involves the usage of nodal and edge basis functions at the same time,

• the main difference between a finite volume and a mimetic method is the location of the

variables. In the latter, variables are located in all the space elements of the discretization,

while in the common FVM method variables are located in the centroid of the cell.

2.2. The curl operator and its discrete counterpart

Analogously to the divergence operator, the curl operator has its discrete mimetic counterpart.

Starting from the algebraic definition of the Stokes’ theorem∫
Ω
∇×u dΩ=

∮
∂Ω
~u ·~t d∂Ω , (2.9)

it is clear that a new orientation is needed for the cell complex. In this case, the integral of the curl of

the vector field u is related to the integral of the component of u tangent to the boundary. Therefore,

the following orientation is used and it will be referred in the future as inner orientation:

Figure 2.2: Inner-oriented 2-dimensional cell complex.
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Using Figure 2.2, (2.9) may be re written as follows:∫
Ω
∇×u dΩ= (+1)

∫
∂Ωb

~u ·~t d∂Ω+(−1)
∫
∂Ωt

~u ·~t d∂Ω+(−1)
∫
∂Ωl

~u ·~t d∂Ω+(+1)
∫
∂Ωr

~u ·~t d∂Ω , (2.10)

which, using the cochains, becomes:

[∇×u](2) = E(2,1)[u](1) . (2.11)

In this case E(2,1) -the discrete counterpart of the curl operator- is equal to the following:

E(2,1) = [+1−1−1+1] . (2.12)

Analogously to the discrete divergence operator, even the discrete curl operator depends only on

the topology of the element. So it is metric independent.

It is interesting to notice that the vector field u in (2.3) and (2.9) may be the same. This leads to

the fact that the user has to decide the appropriate orientation in function of the operator that will

be applied later to the variable. Furthermore, it is clear the existence of an operator, called Hodge-

?, which maps [u](n−1) into [u](1) and vice versa. The dependence on the metric of the domain

discretization is condensed into the Hodge-?matrix.

As both orientations are equally important, we are looking for an element, or an oriented cell

complex, in which both of them are present.

2.3. The mimetic element and the associated basis functions

Aiming to combine inner and outer orientations in the same oriented cell complex, a primal-dual

grid may be used. Using Figure 2.1, and associating each (n−k)-space element with its dual k-space

element5, the following oriented cell may be created.

Figure 2.3: (left) primal outer oriented grid, (center) dual inner oriented grid, (right) oriented cell complex.

5i.e. associating each surface (2-dimensional space element) with a point (0-dimensional space element)
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Figure 2.3 shows the complete oriented cell complex (right), which is the combination of the

outer oriented primal grid (left) and the dual inner oriented (center). The outer oriented surface and

the four inner oriented ones are shown using black and red shadows, respectively. The orientations

of the cell complex (Figure 2.3,right) are depicted in blue in order to underline that each space el-

ement (for example the black surface) and its dual (the red point) have the same orientation. The

oriented cell complex in the figure above will be referred as 1st -degree element for reasons that will

be explained when the basis functions will be introduced.

Using an analogous reasoning, an element of degree greater that one may be constructed.

Figure 2.4: 3r d -degree element. Primal and dual grid are show black and red. The vari-

ables -ω,u, p- may be associated to the primal points, lines and surfaces or to the dual

surfaces, lines and points, respectively. Blue arrows show the orientation of each primal

space element and its dual counterpart.

Figure 2.4 shows a 3r d -degree element. In the same figure, the space elements are labelled with

the variable to which they will be associated in this thesis and numbered in order to unequivocally

be able to refer to each of them. Considering ω, u and p being associated with the primal points,

lines and surfaces, the following incidence matrices may be computed:
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E(n,n−1) =



u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20 u21 u22 u23 u24

p1 −1 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0

p2 0 −1 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0

p3 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0

p4 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0

p5 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0

p6 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0

p7 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 −1 0 0 1 0 0

p8 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 −1 0 0 1 0

p9 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 −1 0 0 1



.

(2.13)

E(n−1,n−2) =



ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13 ω14 ω15 ω16

u1 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

u2 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0

u3 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0

u4 0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0

u5 0 0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0

u6 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0 0

u7 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0

u8 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0

u9 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0

u10 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0

u11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0

u12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1

u13 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

u14 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

u15 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

u16 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0

u17 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0

u18 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0

u19 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0

u20 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0

u21 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0

u22 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0

u23 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0

u24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1



. (2.14)

Furthermore, it can be easily seen that considering p, u, andω as the variables associated to the

dual points, lines and surfaces respectively, the following identities holds:

E(1,0) = (E(n,n−1))T , (2.15)

E(2,1) = (E(n−1,n−2))T . (2.16)

Assuming a two dimensional domain, the gradient, curl and divergence operator have an exact

discrete counterpart, which highly depends on the variable-geometry duality. The following scheme

(2.17), using the notation used in Figure 2.4, summarized what we have said so far.

ω(n−2) ∇×−−−−−−→
E(n−1,n−2)

u(n−1) ∇·−−−−→
E(n,n−1)

p(n) outer orientation

l? l? l?
ω(2) ∇×←−−−

E(2,1)
u(1) ∇←−−−

E(1,0)
p(0) inner orientation

(2.17)
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The scheme (2.17) may be considered an alternative form of the De Rham complex [20] (for a 2-

dimensional domain) which relates forms using the exterior derivative and the Hodge-? operator.

2.3.1. Primal grid: basis functions, reconstruction and reduction operators

At this point, it is fundamental to define the basis function, ε, belonging to the points ε(n−2), lines

ε(n−1) and surfaces ε(n) of the primal grid in Figure 2.4. With this objective in mind, it is funda-

mental to define the nodal and edge basis function on a 1-dimensional domain. Considering a 1-

dimensional domain (x ∈ [−1;1]), the Gauss-Lobatto-Legendre points are used. These are the roots

of the following equation:

(1−x2)
dLp (x)

d x
= 0 , (2.18)

where Lp (x) indicates the Legendre polynomial of degree p. Having N points, it is possible to define

N nodal basis functions of degree p = N −1, which satisfy (2.1):

hi (x) =
p+1∏

j=1, j 6=i

x −x j

xi −x j
. (2.19)

From (2.19), the edge basis functions may be constructed using the following formula [12]:

ei (x) =−
i∑

k=1

dhi (x)

d x
, (2.20)

so that each ei (x) satisfies the following property:

∫ x j+1

x j

ei (x)d x =


1 i f i = j ,

0 i f i 6= j ,
. (2.21)
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Figure 2.5: Primal nodal (left) and edge basis functions (right), N = 4. Circular marks are

placed where hi (xi ) = 1 and
∫ xi+1

xi
ei (x)d x = 1 is shown with a coloured shadow. xi repre-

sent the Lobatto points.

Nodal and edge basis functions are shown in Figure 2.5. It has to be noted that the former have

been described by a third order polynomial degree, while the latter with a second order polynomial.

Therefore, in the primal grid, the degree of the edge functions (p = N −2) is lower than the degree of

the nodal basis functions (p = N −1).

Knowing the nodal and edge basis functions on a 1-dimensional domain, the basis functions on

a 2-dimensional domain are constructed using the tensor product:

ε(n−2)
j+N (i−1)(x, y) = hi (x)h j (y) i = 1, · · · , N j = 1, · · · , N , (2.22)

ε(n−1)
j+N (i−1)(x, y) = ei (x)h j (y) i = 1, · · · , N −1 j = 1, · · · , N , (2.23)

ε(n−1)
N (N−1)+ j+(N−1)(i−1)(x, y) = hi (x)e j (y) i = 1, · · · , N j = 1, · · · , N −1 , (2.24)

ε(n)
j+(N−1)(i−1)(x, y) = ei (x)e j (y) i = 1, · · · , N −1 j = 1, · · · , N −1 , (2.25)

where (2.23) and (2.24) describe the basis function attached to the horizontal and vertical lines,

respectively.

The reduction (R) operator is defined as:

[ω](n−2)
i =ω(xi ) i = 1, · · · , N 2 , (2.26)

[u](n−1)
i =

∫
ei

~u ·~n dl i = 1, · · · ,2N (N −1) , (2.27)
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[p](n)
i =

∫
si

p dΩ i = 1, · · · , (N −1)2 , (2.28)

where x, e and s represent the points, lines and surfaces of the primal grid, the reconstruction (I)

may be defined in the following way:

ω(n−2)(x, y) =
N 2∑
i=1

[ω](n−2)ε(n−2)(x, y) , (2.29)

u(n−1)(x, y) =
2N (N−1)∑

i=1
[u](n−1)ε(n−1)(x, y) , (2.30)

p(n)(x, y) =
(N−1)2∑

i=1
[p](n)ε(n)(x, y) . (2.31)

Figure 2.4 shows an oriented cell complex in which boundaries are discretize with 4 points (N =
4). Being the basis functions associate with the primal points (ε(n−2)) of 3r d order in x and y direction

(p = N − 1), the element in Figure 2.4 will be called 3r d -degree element. Analogously, Figure 2.3

(right) will be called 1st -degree element.

2.3.2. Dual grid: basis functions, reconstruction and reduction operators

Analogously to the construction of the primal basis functions ε(n−2), ε(n−1) and ε(n), the dual basis

functions, associated to the points, lines and surface of the dual (red, Figure 2.4) grid, may be com-

puted. As the primal points were the Gauss-Lobatto points, the dual ones are the Gauss points which

are the roots of the following equation:

Lp (x) = 0 , (2.32)

where Lp (x) indicates the Legendre polynomial of degree p.
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Figure 2.6: Dual nodal (left) and edge basis functions (right), N = 4. Circular marks are

placed where hi (xi ) = 1 and
∫ x̃i+1

x̃i
ei (x)d x = 1 is shown with a coloured shadow. x̃i repre-

sent the Gauss points.

Figure 2.6 shows the nodal (left) and edge basis functions (right) associated to the dual grid. As

the primal functions, even the dual basis functions satisfy the properties (2.1) and (2.21) on the dual

grid. Starting from the dual nodal and edge fucntions in a 1-dimensional domain (Figure 2.6), the

basis functions on a 2-dimensional domain are constructed:

ε(0)
j+(N−1)(i−1)(x, y) = h̃i (x)h̃ j (y) i = 1, · · · , N −1 j = 1, · · · , N −1 , (2.33)

ε(1)
j+N (i−1)(x, y) = h̃i (x)ẽ j (y) i = 1, · · · , N −1 j = 1, · · · , N , (2.34)

ε(1)
N (N−1)+ j+(N−1)(i−1)(x, y) = ẽi (x)h̃ j (y) i = 1, · · · , N −1 j = 1, · · · , N , (2.35)

ε(2)
j+N (i−1)(x, y) = ẽi (x)ẽ j (y) i = 1, · · · , N j = 1, · · · , N , (2.36)

Analogously to the primal grid, also on the dual one the reduction (R) operator is defined as-

suming p, u and ω as belonging to the dual points (x̃), edge (ẽ) and surfaces (s̃):

[p](0)
i = p(x̃i ) i = 1, · · · , (N −1)2 , (2.37)

[u](1)
i =

∫
ẽi

~u ·~t dl i = 1, · · · ,2N (N −1) , (2.38)

[ω](2)
i =

∫
s̃i

ωdΩ i = 1, · · · , N 2 . (2.39)

The reconstruction (I) operator in the dual grid, is defined:

p(0)(x, y) =
(N−1)2∑

i=1
[p](0)ε(0)(x, y) , (2.40)
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u(1)(x, y) =
2N (N−1)∑

i=1
[u](1)ε(1)(x, y) , (2.41)

ω(2)(x, y) =
(N )2∑
i=1

[ω](2)ε(2)(x, y) . (2.42)

2.4. Wedge, mass and Hodge matrices

Let’s assume to have a(k), a(n−k), b(k), b(n−k) defined as (2.29),(2.30),(2.31),(2.40),(2.41) or (2.42). We

define the wedge (∧) product between a(k) and b(n−k) as [6]:(
a(k),b(n−k)

)
=

∫
Ω

a(k) ∧b(n−k) dΩ

= [a](k)W(k,n−k)[b](n−k)
wher e W

(k,n−k)
i , j =

∫
Ω
ε(k)

i ε(n−k)
j dΩ . (2.43)

The wedge matrix (W(k,n−k)) defined in (2.43) is metric independent. Furthermore, from the defini-

tion of the inner product, the mass matrix may be derived [6]:

〈a(k),b(k)〉 =
∫
Ω

a(k) ∧?b(k) dΩ

= [a](k)M(k)[b](n−k)
wher e M

(k)
i , j =

∫
Ω
ε(k)

i ε(k)
j dΩ . (2.44)

The presence of the Hodge-? operator in the definition of the inner product suggests that the mass

matrix (M(k)) is metric dependent. This implies that it will change under mappings. Furthermore, it

is clear that the wedge product, inner product and Hodge are not independent. The definition of the

Hodge-? matrix, may be written as a function of the wedge and the mass matrices. Assuming that

b(k) =?b(n−k), it is clear that:(
a(n−k),b(k)

)
=

∫
Ω

a(n−k) ∧b(k) dΩ=
∫
Ω

a(n−k) ∧?b(n−k) dΩ= 〈a(n−k),b(n−k)〉

[a](n−k)W(n−k,k)[b](k) = [a](n−k)M(n−k)[b](n−k)

W(n−k,k)[b](k) =M(n−k)[b](n−k)

[b](k) =
(
W(n−k,k)

)−1
M(n−k)[b](n−k)

, (2.45)

so the Hodge-?matrix may be computed:

H(k,n−k) =
(
W(n−k,k)

)−1
M(n−k) . (2.46)

When a primal and dual grid is employed, the Hodge is a square and invertible matrix [5] so

H(n−k,k) =
(
H(k,n−k)

)−1
. (2.47)

It is clear from (2.46) that the Hodge matrix is the multiplication of a metric-independent matrix

(W) and a metric-dependent one (M). With the objective of simplifying the matrix formulation, it is

useful to define a new set of dual basis function for which the wedge matrix is the identity matrix.
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2.4.1. Algebraic-dual basis functions

The development and the mathematical description of what will be referred as algebraic-dual basis

functions has been conducted in [15]. Analogously to Sections 2.3.1 and 2.3.2, first the algebraic-

dual basis functions will be defined on a 1-dimensional domain and then arranged in order to crate

the 2-dimensional basis functions.

Nodal algebraic-dual basis functions may be computed using the following equation:

Ψ̃(0)(x) =Ψ(1)
(
M

(1)
1

)−1
, (2.48)

whereM(1)
1 is the mass matrix associated with the primal edge polynomial e(x)

M
(1)
1 i , j =

∫ +1

−1
ei (x)e j (x)dx , (2.49)

Ψ(1) = [e1(x), · · · ,eN−1(x)] and Ψ̃(0) = [
h̃1(x), · · · , h̃N−1(x)

]
. Using the same reasoning, edge algebraic-

dual basis functions are given by:

Ψ̃(1)(x) =Ψ(0)
(
M

(0)
1

)−1
, (2.50)

where:

M
(0)
1 i , j =

∫ +1

−1
hi (x)h j (x)dx , (2.51)

Ψ(0) = [h1(x), · · · ,hN (x)] and Ψ̃(1) = [ẽ1(x), · · · , ẽN (x)].

Figure 2.7: Algebraic-dual nodal (left) and edge basis functions (right), N = 4. xi represent

the Lobatto points.
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Figure 2.7 shows the nodal (left) and edge (right) algebraic-dual basis functions. As can be seen,

they resemble the dual basis functions depicted in Figure 2.6. Furthermore, it can be seen that they

do not satisfy (2.1) and (2.21); as a consequence, the geometrical connection is lost.

However, the usage of the algebraic-dual basis function leads to an easier matrix formulation.

Starting from the dual nodal (ε̃) and edge (h̃) basis functions, ε(0), ε(1) and ε(2) may be computed

using (2.33), (2.34), (2.35) and (2.36). Using the pefect-dual basis functions, the computation of the

mass, wedge and hodge matrices becomes easier. They are equal to the following [15]:

M(k) =
(
M(n−k)

)−1
, (2.52)

W(k,n−k) = I , (2.53)

H(k,n−k) =M(n−k) , (2.54)

where I is the identity matrix.

Having lost the geometrical connection in the definition of the dual basis functions (ε(0), ε(1) and

ε(2)), it is necessary to use the hodge matrix to evaluate the dual cochains:

[a](k) =M(n−k)[a](n−k) , (2.55)

where [a](n−k) is defined in (2.26), (2.27) and (2.28). The reconstruction (I) is performed in the same

way as for the dual basis functions in (2.40), (2.41) and (2.42).

In the following chapters only the primal and the algebraic-dual basis functions will be used.

For simplicity, the term algebraic will sometimes be omitted.





3
The vector Laplace equation

When engineers and mathematicians try to implement new numerical schemes, first, they try to

implement them on simple problems. In particular, referring to numerical schemes able to solve

partial differential equations, the word simple refers both to the equations and the domain on which

they are solved.

The simplest set of equations that have a meaningful aerodynamic application are the Stokes

equations. As introduced in the first chapter, the Stokes equations describe flows characterized by a

low Reynolds number.

In order to further simplify the problem, at first the vector Laplace equation will be solved in this

thesis. As suggested by Arnold, Falk & Gopalakrishnan [2] the study of the hybrid formulation of the

vector Laplace equation is strictly connected to the solution of the Stokes equation using a pressure-

vorticity-velocity hybrid formulation. Attention is given to the choice of stable and consistent finite

dimensional spaces [1]. Furthermore, they studied both natural and essential boundary condition

proving an optimal convergence for the former and a sub-optimal convergence for the latter.

3.1. From the Stokes to the Laplace equation

In this chapter attention will be given to the vector Laplace equation. This derives from the fact

that its fully-mixed formulation is very close to the mixed formulation of the Stokes equation for
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incompressible flows (3.1, 3.2).  ∇·~u = 0

∇p −µ∇2~u = f
.

(3.1)

(3.2)

Using the vector identity of the Laplace operator:

∇2~u =∇(∇·~u)−∇×∇×~u , (3.3)

substituting it into (3.2) and using (3.1), the Stokes equation for incompressible flows takes the fol-

lowing form:  ∇·~u = 0

∇p +µ∇×∇×~u = f
.

(3.4)

(3.5)

From (3.4) and (3.5), the mixed-formulation can be easily derived:
−∇·~u = 0

ω −∇×~u = 0

∇p +µ∇×ω = f

, (3.6)

which, assuming µ = 1 and imposing p = ∇·~u, resembles the fully mixed formulation of the vector

Laplace equation: 
p −∇·~u = 0

ω −∇×~u = 0

∇p −∇×ω = f

. (3.7)

It is preferable to study the vector Laplace equation instead of the Stokes equation for its proper-

ties, such as positiveness and symmetry, which will be characteristic even for the associated finite

element formulation.

Furthermore, E. Tonti [27] used geometrical arguments to describe that even the stationary

thermal conduction, the electric conduction and the electrostatic field can be all described by the

Laplace equation. In other words, it can be stated that the mathematical operators and the geomet-

rical features, in which the variables live, are strongly linked together.

3.2. Variable-geometry association

In Chapter 2 it has been explained how the association between mesh geometries -also called space

elements- and variables is fundamental in a mimetic finite element method. In the same chapter,
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it has been underlined how the partial differential operator, that has to be applied to the variable,

dictates on which space element the variable has to be placed.

Recalling the fully mixed formulation of the vector Laplace equation:
p −∇·~u = 0

ω −∇×~u = 0

∇p −∇×ω = f

, (3.8)

it can be noticed that both the divergence and the curl operator have to be applied to the veloc-

ity variable ~u. Whether ~u has to be associated to the outer oriented edges (u(n−2)) or to the inner

oriented ones (u(1)) will dictate whether the velocity vector could be pointwise divergence-free (in-

compressible flow) or curl-free (irrotational flow).

For their importance in engineering practice, we would like to focus on incompressible flows.

For this purpose, the vector field ~u will be discretized as a velocity flux through the primal outer-

oriented edges u(n−1). In order to prove the possibility to impose exactly the divergence free con-

straint using u(n−1), we have to define a new operator. This projection operator (π?) is equal to the

following:

π? = IR . (3.9)

One of the properties of the projection operator is that it can commute with the divergence operator.

The following diagram commutes

u
∇·−−−→ p

↓π? ↓π?
u(n−1) E(n,n−1)

−−−−→ p(n)

, (3.10)

which proves that the solution u(n−1) is pointwise divergence free when p = 0 [19].

Therefore, the variable u is associated to the outer oriented edges

u −−−→ u(n−1) =∑
[u](n−1)ε(n−1) . (3.11)

Furthermore, using the De Rham complex (2.17), it is clear to associate p to the primal outer-oriented

surfaces and ω to the primal outer-oriented points

p −−−→ p(n) =∑
[p](n)ε(n) , (3.12)

ω−−−→ω(n−2) =∑
[ω](n−2)ε(n−2) . (3.13)
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Figure 3.1 shows the mimetic element that derives from this reasoning. The three variables -ω, u

and p- are associated to the primal (black) points, lines and surfaces, respectively. Furthermore, the

figure underlines their outer orientations.

Figure 3.1: Continuous primal element. The variables ω(n−2), u(n−1) and p(n) are associ-

ated to the points, lines and surfaces of the primal grid, respectively. Arrows show the outer

orientations.

The mixed formulation of the vector Laplace equation (3.8) may be re-written using the variable-

geometry duality as follows:
p(n) −∇·u(n−1) = 0

ω(n−2) −∇∗×u(n−1) = 0

∇∗p(n) −∇×ω(n−2) = f

, (3.14)

where ∇∗× and ∇∗ indicate the curl and the gradient operator, which, according to the De Rham

complex (2.17), cannot be applied directly to u(n−1) and p(n), respectively.

3.3. Weak and matrix formulation

In the previous section, (3.11), (3.12), (3.13) it has been underlined how the unknown variables are

approximated by a finite number of polynomial basis functions. Using the theory developed in [7],

it can be said that p(n), u(n−1) and ω(n−2) belong to L2(Ω), H(di v,Ω) and H(cur l ,Ω), respectively.

L2(Ω) defines the square integrable functions over the domain Ω, while H(di v,Ω) and H(cur l ,Ω)

are defined as follows:
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H(di v ;Ω) := {
u |u ∈ L2(Ω) , ∇·u ∈ L2(Ω)

}
,

H(cur l ;Ω) := {
ω |ω ∈ L2(Ω) , ∇×ω ∈ L2(Ω)

}
.

Starting from the mixed formulation (3.14) and applying the Galerkin’s method, the weak for-

mulation may be stated as follows: for a given f ∈ L2(Ω), find p ∈ L2(Ω), u ∈ H(di v,Ω) and ω ∈
H(cur l ,Ω), such that:

〈ε(n), p(n)〉 −〈ε(n),∇·u(n−1)〉 = 0

〈ε(n−2),ω(n−2)〉 −〈ε(n−2),∇∗×u(n−1)〉 = 0

〈ε(n−1),∇∗p(n)〉 −〈ε(n−1),∇×ω(n−2)〉 = 〈ε(n−1), f (n−1)〉
, (3.15)

∀ε(n) ∈ L2(Ω), ∀ε(n−2) ∈ H(cur l ,Ω) and ∀ε(n−1) ∈ H(di v,Ω).

From Chapter 2, it is clear how to convert an inner product 〈·, ·〉 to its matrix formulation (2.44),

how to apply the divergence operator to u(n−1) (E(n,n−1)) and the curl operator to ω(n−2) (E(n−1,n−2)).

The only missing pieces are the matrix evaluation of 〈ε(n−2),∇∗×u(n−1)〉 and 〈ε(n−1),∇∗p(n)〉. These

may be evaluated using integration by parts (C.1) and (C.2). Therefore, the matrix formulation takes

the following form:

〈ε(n), p(n)〉 −〈ε(n),∇·u(n−1)〉 = 0

〈ε(n−2),ω(n−2)〉 −〈∇×ε(n−2),u(n−1)〉 = ∫
∂Ω ε

(n−2) ·~t u d∂Ω

−〈∇·ε(n−1), p(n)〉 −〈ε(n−1),∇×ω(n−2)〉 = 〈ε(n−1), f (n−1)〉−∫
∂Ω ε

(n−1) ·~np(n) d∂Ω

.

(3.16)

From the weak formulation, assuming p = 0 and ~u ·~t = 0 on ∂Ω1, the following matrix formula-

tion may be computed:
M(n) 0 −M(n)E(n,n−1)

0 M(n−2) −(
M(n−1)E(n−1,n−1)

)T

−(
M(n)E(n,n−1)

)T −M(n−1)E(n−1,n−2)




[
p

](n)

[ω](n−2)

[u](n−1)

=


0

0

M(n−1)
[

f
](n−1)

 .

(3.17)

The matrix formulation above will be referred as primal matrix formulation, in which the word "pri-

mal" underlines that all the variables -p,ω,u- are associated to the grid having the same name.

Looking at (3.17), two simplifications may be made. Firstly,M(n) may be simplified from the first

column and moved to multiply [p](n), secondly the first row may be multiplied by
(
M(n)

)−1
. This

yields to the following matrix formulation:
(
M(n)

)−1
0 −E(n,n−1)

0 M(n−2) −(
M(n−1)E(n−1,n−1)

)T

−(
E(n,n−1)

)T −M(n−1)E(n−1,n−2)



M(n)

[
p

](n)

[ω](n−2)

[u](n−1)

=


0

0

M(n−1)
[

f
](n−1)

 .

(3.18)
1p = 0 and ~u ·~t = 0 will be referred as natural or electric boundary conditions [2].
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What seems to be just a numerical simplification hides the transition towards a primal-dual grid

formulation. Recalling that M(n)
[
p

](n) = [p](0) (2.55), it can be said that the variable p(0) has been

moved to the points of the dual grid.

Figure 3.2 shows the collocation of the primal (black) and dual (red) variables on the element.

In this case the variable p(0) is associated to dual points and equipped with an inner orientation.

Figure 3.2: Continuous primal-dual element. The variables ω(n−2) and u(n−1) are asso-

ciated to the points and lines of the primal (black) grid, respectively. The variable p is

associated to the dual (red) points. Black arrows denote an outer orientation, while the red

ones an inner orientation.

Figure 3.3: Sparsity structure of the LHS in (3.17) (left) and in (3.18) (right). 2×2 grid, 4th order elements.

Figure 3.3 compares the matrix derived from the primal formulation (3.17) and the one from the
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primal-dual (3.18) formulation. It can be seen that the primal-dual formulation leads to a matrix

which is much more sparse. Considering a 2× 2 grid of 4th order elements, the non zero entries

decrease from 7665 in the primal formulation to 3057 in the primal-dual one. This is beneficial for

reducing the solution time and the computer memory needed to store such matrix.

As a result of the transition of the variable p from the primal outer-oriented surfaces to the dual

inner-oriented points, a new weak formulation has to be derived. The updated weak formulation

may be stated: for a given f ∈ L2(Ω), find p ∈ L2(Ω), u ∈ H(di v,Ω) and ω ∈ H(cur l ,Ω), such that:

〈ε(0), p(0)〉 −(
ε(0),∇·u(n−1)

) = 0

〈ε(n−2),ω(n−2)〉 −〈∇×ε(n−2),u(n−1)〉 = ∫
∂Ω ε

(n−2) u ·~t d∂Ω

−(∇·ε(n−1), p(0)
) −〈ε(n−1),∇×ω(n−2)〉 = 〈ε(n−1), f (n−1)〉−∫

∂Ω ε
(n−1)p(0) d∂Ω

,

(3.19)

∀ε(0) ∈ L2(Ω), ∀ε(n−2) ∈ H(cur l ,Ω) and ∀ε(n−1) ∈ H(di v,Ω).

The formulation (3.18) has been verified using the method of the manufactured solution. The

verifications proved that it optimally converges to the exact solution as a function of the the number

of elements.

In Appendix B contour plots of the variables p,ω and u will be shown together with h-convergence

and p-convergence plots. Furthermore, a further analysis on the sparsity of the system as a function

of the numerical computation of M(n−2) and M(n−1) has been conducted. As a result, it was proven

that even though the matrix elements are not computed exactly, they are close enough to the exact

ones to have an optimal convergence.





4
Discontinuous approach

During the last years, several discontinuous finite element methods have been developed. Their ad-

vantages range from a higher degree of parallelism to the higher-order approximation in compar-

ison with the standard Finite Volume methods. Furthermore, due to their discontinuity, different

polynomial degrees may be used on different elements [10].

It is appropriate to mention, for their similarities with the method that will be developed along

this thesis, the Interior Penalty method and the Mortar method. The former derives from the weakly

imposition of the Diricklet boundary conditions developed by Lions [3] and then modified by Nitsche

[4] to ensure consistency. Inter-element continuity can be obtained in the same fashion. The latter

is described by D. A. Kopriva as the imposition of the continuity on conformal and non-conformal

meshes through one-dimensional constructs called mortars [17]. This method was developed for

staggered meshes in which only edges need a continuity constraint. Furthermore, it was under-

lined that special corner algorithms must be devised to ensure correct propagation of waves through

the corners [18]. An attempt of doing so was performed by the same D. A. Kopriva using the mul-

tidomain Chebyshev spectral collocation method [16]. Three kind of point-intersections are studied

(subdomain-subdomain point, subdomain-wall point and cross point) and treated differently in the

numerical method.

A similar approach to the one that will be presented in this thesis was developed by B. Cockburn

et. al. in 2000 [14]. Based on the traditional finite element method on triangular meshes, Cockburn

et. al. wrote a mixed formulation for the Lagrange multipliers called tangential velocity-pressure

27
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formulation. Analogously to the previous research, authors found difficulties in treating mesh cor-

ners. Their solution consists in the elimination of one edge for every vertex in order to generate a

non-singular system. This method, therefore, sacrifices the topology equality of all elements.

The following chapter will describe the development of a fully discontinuous hybrid mimetic

finite element method in which both edges and points are discontinuous.

4.1. The discontinuous element

In the previous chapter the mimetic finite element was shown which consist of a primal grid (de-

picted in black) and a dual one (red). The continuity of the elements did not require any particular

treatment of the element boundary, which, in a discontinuous case, is vital to transfer information

between elements.

For this purpose, the following element will be used:

Figure 4.1: Element with embedded boundary.

Figure 4.1 shows the element used for the hybrid discontinuous approach in which degrees of

freedom are added at the boundary. They are the dual (in a one-dimensional sense) of the (black)

primal boundary considering the four boundaries (top, bottom, left and right) separately. Belonging

to the dual grid, they are described by the sets of dual basis functions for points and edges, which

will be called λ and γ, respectively. The development of the hybrid discontinuous finite element

methods, therefore, comes down to the creation of a finite element method in which the boundary

degrees of freedom are continuous.

It is fundamental to understand the function spaces in which the physical variables (u, ω, p)

and the Lagrange multipliers (λ,γ) lie.
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Let ΩK being the partition into elements of the physical domain Ω, such that Ω = ⋃K
i=1 ΩK .

Analogously to the continuous case, using discontinuous elements, u(n−1) belongs to a function

space similar to H(di v). In this case, a broken Sobolev space has to be defined:

H(di v ;ΩK ) := {
u |u ∈ L2(Ω) |u|Ωi ∈ H(di v ;Ωi ),∀Ωi

}≡∏K
i=1 H(di v ;Ωi ) ,

so that u ∈ H(di v ;ΩK ). The same reasoning may be applied to the variable ω

H(cur l ;ΩK ) := {
ω |ω ∈ L2(Ω) |ω|Ωi ∈ H(cur l ;Ωi ),∀Ωi

}≡∏K
i=1 H(cur l ;Ωi ) ,

so that ω ∈ H(cur l ;ΩK ), while p ∈ L2(Ω).

More difficult is the definition of the function spaces in which the interface Lagrange multipliers

lie. First, let’s focus on λ, which is defined on the red boundary points in Figure 4.1. The theory

developed in [7] suggests that the restriction on the boundary of H(di v ;Ωi ) is H− 1
2 (∂Ωi ). Its dual

counterpart, λ, lies in the dual space H
1
2 (∂Ωi ). Therefore, the following holds:

H
1
2 (∂ΩK ) =⋃K

i=1 H
1
2 (∂Ωi ).

Thus, λ ∈ H
1
2 (∂ΩK ). The (red) edge Lagrange multiplier called γ, instead, lies in the space H− 1

2 (∂Ωi )

[13]. So the broken Sobolev space can be defined as follows:

H− 1
2 (∂ΩK ) =⋃K

i=1 H− 1
2 (∂Ωi ).

4.1.1. Inter-element flux continuity

Recalling that the velocity fluxes are the degrees of freedom coupled to the edges of the primal grid,

imposing the flux continuity geometrically means to impose the continuity between neighbouring

edges. The dual element to the edges in the boundary, i.e. the red points depicted in the boundary of

Figure 4.1, will be used to achieve this goal. A graphical representation can be seen in the following

figure, in which the global numbering is used.

Figure 4.2: Flux continuity
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For example the inter-element flux continuity is achieved when

u19 −u11 = 0 . (4.1)

The continuity constraint may be imposed using a boundary variable λ as Lagrange multiplier in

the following way:

∫
∂K \∂Ω

λ�u� d∂Ω= 0 , (4.2)

where �·� indicates the jump between neighbouring edges (i.e. �u� = uR −uL). Applying (4.2) to the

case in figure 4.2, two equations, as the number of Lagrange multipliers, may be written:

(−1)λ1u11 + (+1)λ1u19 = 0 , (4.3)

(−1)λ1u12 + (+1)λ1u20 = 0 . (4.4)

Analogously to the divergence theorem, the +1 and −1 coefficients may be written in matrix for-

mulation. This will be called E(λ,n−1), for this reason (4.2) may be written in the following matrix

formulation:

[λ]E(λ,n−1)[u] = 0 . (4.5)

The usage of the letter E was not randomly chosen. The duality pairing between λ and u is metric

free (topological).

Additionally, another physical interpretation of the matrix E(λ,n−1) can be found. The third equa-

tion of the mixed formulation (3.19) after the integration by parts can be modified for discontinuous

elements:

− (∇·ε(n−1), p(0))−〈ε(n−1),∇×ω(n−2)〉+
∫
∂K \∂Ω

ε(n−1)p(0) = 〈ε(n−1), f (n−1)〉−
∫
∂Ω
ε(n−1)p(0) , (4.6)

so that the resemblance between the third term and (4.2) may be seen. In this case, the basis func-

tions, ε, belong to the edges of the primal grid while p to the dual points on the boundary as shown

in the following figure:
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Figure 4.3: Lagrange multiplier λ: local numbering.

Using the local numbering of the Lagrange multiplier in Figure 4.3, the following local E(p,n−1) can

be written:

E(p,n−1) =



ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 ε11 ε12

p1 0 0 0 0 0 0 1 0 0 0 0 0

p2 0 0 0 0 0 0 0 1 0 0 0 0

p3 0 0 0 0 0 0 0 0 0 0 −1 0

p4 0 0 0 0 0 0 0 0 0 0 0 −1

p5 1 0 0 0 0 0 0 0 0 0 0 0

p6 0 0 0 1 0 0 0 0 0 0 0 0

p7 0 0 −1 0 0 0 0 0 0 0 0 0

p8 0 0 0 0 0 −1 0 0 0 0 0 0



. (4.7)

which, rearranged in order to construct the global matrix, turns out to be equal to E(λ,n−1). It follows

that the third term in (4.6) can be written using the following matrix formulation:

∫
∂K \∂Ω

ε(n−1)p = [ε](n−1)(E(λ,n−1))T [p] . (4.8)

Therefore, the matrix E(λ,n−1) has two physical explanations. Comparing Figure 4.2 and 4.3 it can

be noticed that both p and λ belong to the red points located in the boundary. This suggests that

the Lagrange multiplier λ is not only a mathematical quantity but it has even a physical meaning: λ

describes the variable p on the element boundaries.

This statement, which derives from the variable-geometry duality and the variational formula-

tion in (4.6), will be numerically confirmed in Chapter 5.
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4.1.2. Inter-element point continuity

Looking back at the continuous case, it is worth to recall that the vorticity, ω, is the variable associ-

ated to the points of the primal mesh. Using the same procedure analysed in the previous section,

dual boundary variables (γ) are added at the boundary as it is depicted in the following figure:

Figure 4.4: Point continuity.

The vorticity-continuity may be imposed using the following formula∫
∂K \∂Ω

γ�ω� d∂Ω= 0 , (4.9)

which, for the case depicted in Figure 4.4, originates three equations as the number of γ Lagrange

multipliers:

(+1)γ4ω7 + (−1)γ4ω10 = 0 (4.10)

(+1)γ5ω8 + (−1)γ5ω11 = 0 (4.11)

(+1)γ6ω9 + (−1)γ6ω12 = 0 . (4.12)

which can be translated into the following matrix formulation:∫
∂K \∂Ω

γ�ω� d∂Ω= [γ]E(γ,n−2)[ω] . (4.13)

The matrix E(γ,n−2) arises even in the mixed formulation of the vector Laplace equation. After

the integration by parts and the modification for discontinuous elements, the second equation of

the mixed formulation (3.19) leads to the following:

〈ε(n−2),ω(n−2)〉−〈∇×ε(n−2),u(n−1)〉−
∫
∂K \∂Ω

ε(n−2) u ·~t d∂Ω=
∫
∂Ω
ε(n−2) u ·~t d∂Ω . (4.14)

The third term resembles (4.9) where ε(n−2) belongs to the points of the primal grid (as ω) and u ·~t
belongs to the dual edges in the boundary (as γ). Using the following local numbering for u ·~t , the

matrix (4.15) may be written.
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Figure 4.5: Lagrange multiplier γ: local numbering.

E(u·~t ,n−2) =



ε(n−2)
1 ε(n−2)

2 ε(n−2)
3 ε(n−2)

4 ε(n−2)
5 ε(n−2)

6 ε(n−2)
7 ε(n−2)

8 ε(n−2)
9

u·~t1 −1 0 0 0 0 0 0 0 0

u·~t2 0 −1 0 0 0 0 0 0 0

u·~t3 0 0 −1 0 0 0 0 0 0

u·~t4 0 0 0 0 0 0 1 0 0

u·~t5 0 0 0 0 0 0 0 1 0

u·~t6 0 0 0 0 0 0 0 0 1

u·~t7 1 0 0 0 0 0 0 0 0

u·~t8 0 0 0 1 0 0 0 0 0

u·~t9 0 0 0 0 0 0 1 0 0

u·~t10 0 0 −1 0 0 0 0 0 0

u·~t11 0 0 0 0 0 −1 0 0 0

u·~t12 0 0 0 0 0 0 0 0 −1



(4.15)

E(u·~t ,n−2) turns out to be equal to E(γ,n−2). The inter-element boundary term in (4.14) may be written

using the following matrix formulation:∫
∂K \∂Ω

ε(n−2) u ·~t d∂Ω= [ε](n−2)(E(γ,n−2))T [u ·~t ] . (4.16)
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Therefore, analogously to the Lagrange multiplier λ, even γ has an associated physical meaning, which is the tangential velocity to the element

boundary, u ·~t . Assuming an orthogonal grid, γ, in order to comply to the above mentioned physical meaning, should converge to ux for the top and

bottom boundaries and to uy for the left and the right ones.

4.2. Variational formulation: discontinuous elements

Starting from (3.7), multiplying by the correct test function and integration by parts, the following variational formulation may be written for discon-

tinuous elements:

〈ε(0), p(0)〉 −(ε(0),∇·u(n−1)) = 0

〈ε(n−2),ω(n−2)〉 −〈∇×ε(n−2),u(n−1)〉 −∫
∂K \∂Ω ε

(n−2) u ·~t d∂Ω = ∫
∂Ω ε

(n−2) u ·~t d∂Ω

−(∇·ε(n−1), p(0)) −〈ε(n−1),∇×ω(n−2)〉 +∫
∂K \∂Ω ε

(n−1)p(0) d∂Ω = 〈ε(n−1), f (n−1)〉−∫
∂Ω ε

(n−1)p(0) d∂Ω
(4.17)

Taking into account that p(0) = λ and u ·~t = γ in ∂K \ ∂Ω, two additional boundary variables born. To ensure the resolvability of the system of

equations, as many equations as the number of λ and γ have to be appended to the system. These are (4.2) and (4.9). Adding them to (4.17), leads to

the variational formulation for fully discontinuous elements:

〈ε(0), p(0)〉 −(ε(0),∇·u(n−1)) = 0

〈ε(n−2),ω(n−2)〉 −〈∇×ε(n−2),u(n−1)〉 −∫
∂K \∂Ω ε

(n−2)γ d∂Ω = ∫
∂Ω ε

(n−2) u ·~t d∂Ω

−(∇·ε(n−1), p(0)) −〈ε(n−1),∇×ω(n−2)〉 +∫
∂K \∂Ω ε

(n−1)λ d∂Ω = 〈ε(n−1), f (n−1)〉−∫
∂Ω ε

(n−1)p(0) d∂Ω

+∫
∂K \∂Ωλ�u� d∂Ω = 0

−∫
∂K \∂Ωγ�ω� d∂Ω = 0

(4.18)
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The variational formulation (4.18) can be translated into the following matrix formulation using

the inner product, the wedge product (discussed in Chapter 2) and the boundary integrals discussed

in the previous sections:



(M(n))−1 0 −E(n,n−1) 0 0

0 M(n−2) −(M(n−1)E(n−1,n−1))T 0 −(Eγn−2)T

−(E(n,n−1))T −M(n−1)E(n−1,n−2) 0 (Eλn−1)T 0

0 0 Eλn−1 0 0

0 −Eγn−2 0 0 0





[
p

](0)

[ω](n−2)

[u](n−1)

[λ][
γ
]


=



0[
γB

]
M(n−1) [ f

](n−1) − [λB ]

0

0


(4.19)

The matrix formulation (4.19) is singular, as Cockburn et. al. [14] found, and the number of singular

modes is coincident with the number of points where four or more elements come together. In the

following section, an innovative way to deal with this problem will be presented.

4.3. Cross-intersections: a non-singular system

Completely discontinuous elements create cross-intersections (shown in Figure 4.6) which, if not

treated correctly, generate a singular system. Contrary to Cockburn et. al. [14] (Appendix E), in this

thesis singularities are avoided adding a new Lagrange multiplier (θ) in the middle of each cross-

intersection. Its graphical representation and sign convention can be seen in Figure 4.6.

Figure 4.6: Cross-intersection: local numbering.

The idea is that θ, instead of being a point singularity in which information born (source) or die

(sink), is a non-singular point in which information are transferred. Influx and outflux must balance
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each other. This idea leads to the following equation (using the sign convention in Figure 4.6):

(−1)γn + (+1)γe + (−1)γs + (+1)γw = 0 , (4.20)

which, multiplied by a test function θ and integrated along the element boundary, yields the follow-

ing integral equation: ∫
C
θ�γ� = 0 , (4.21)

where �γ� indicates the LHS of (4.20) and C is the cross-intersection point depicted in Figure 4.6.

Analogously to the previous cases, taking into account that θ is a 0-dimensional volume in the pri-

mal grid and that λ is the described by the perfect dual functions, (4.21) can be written using the

following matrix formulation: ∫
C
θ�γ� = [θ]E(θγ)[γ] , (4.22)

where E(θγ) is the topological matrix that takes into account the coefficients in (4.20).

In order to maintain the symmetry of the numerical method, (4.9) has to be modified in the

following way: ∫
∂K \∂Ω

γ�ω� d∂Ω−
∫

C
γθ = 0 . (4.23)

The Lagrange multiplier θ differs from λ and γ because it does not appear in the variational

formulation of the physical equations (4.17). This makes the physical interpretation of θ quite diffi-

cult. An attempt in this direction can be made looking at the equations (4.23) using the numbering

in Figure 4.6:

γn (ωnw −ωne )+γnθ1 =0

γe (ωne −ωse )+γeθ1 =0

γs (ωsw −ωse )+γsθ1 =0

γw (ωnw −ωsw )+γwθ1 =0

. (4.24)

From (4.24) we can conclude that the Lagrange multiplier θ will not effect the continuity of the

vorticity in the intersection points only if it will be equal or it will converge to zero. The value of θ

and its effects on the overall solution will be analysed in the next chapter.

4.4. Domain discretization

In the previous sections it has been explained how the Lagrange multipliers, λ and γ, have been

used to impose the continuity between elements.
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Figure 4.7: Position of the Lagrange multipliers on a 3×3 grid of 2nd order elements. λ is represented by red

points on the boundary of the elements, γ by the red lines and θ by the black points in the intersections.

Each element may be seen in Figure 4.1.

Figure 4.7 shows the discretization of a squared physical domain with a 3×3 grid of 2nd -order

elements. The figure underlines the location of the Lagrange multipliers which are positioned along

horizontal and vertical lines. This explains why in Chapter 5 and 6 Lagrange multiplies are recon-

structed along horizontal and vertical lines.

4.5. Non-singular variational formulation

Adding (4.21) and its transposed term (4.23) into the variational formulation (4.18), the final vari-

ational problem, which takes into account the discontinuities among elements and the use of La-

grange multipliers, may be stated as follows: for a given f ∈ L2(ΩK ), find u ∈ H(di v ;ΩK ), p ∈ L2(Ω),

ω ∈ H(cur l ;ΩK ), λ ∈ H
1
2 (∂ΩK ) and γ ∈ H− 1

2 (∂ΩK ), such that:
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< ε(0), p(0) > −(ε(0),∇·u(n−1)) = 0

< ε(n−2),ω(n−2) > −<∇×ε(n−2),u(n−1) > −∫
∂K \∂Ω ε

(n−2)γ d∂Ω = ∫
∂Ω ε

(n−2) u ·~t d∂Ω

−(∇·ε(n−1), p(0)) +< ε(n−1),∇×ω(n−2) > +∫
∂K \∂Ω ε

(n−1)λ d∂Ω = < ε(n−1), f (n−1) >−∫
∂Ω ε

(n−1)p(0) d∂Ω

+∫
∂K \∂Ω ε

λ �u� d∂Ω = 0

−∫
∂K \∂Ω ε

γ �ω� d∂Ω +∫
C ε

γθ = 0

+∫
C ε

θ�γ� = 0
(4.25)

∀ε(0) ∈ L2(Ω), ∀ε(n−2) ∈ H(cur l ;ΩK ), ∀ε(n−1) ∈ H(di v ;ΩK ), ∀ελ ∈ H
1
2 (∂ΩK ) and ∀εγ ∈ H− 1

2 (∂ΩK ).

The variational formulation above (4.25) can be translated into the following matrix formulation:



(M(n))−1 0 −E(n,n−1) 0 0 0

0 M(n−2) −(M(n−1)E(n−1,n−1))T 0 −(Eγ,n−2)T 0

−(E(n,n−1))T −M(n−1)E(n−1,n−2) 0 (Eλ,n−1)T 0 0

0 0 Eλn−1 0 0 0

0 −Eγ,n−2 0 0 0 (Eθ,γ)T

0 0 0 0 Eθ,γ 0





[
p

](0)

[ω](n−2)

[u](n−1)

[λ][
γ
]

[θ]


=



0[
γB

]
M(n−1)

[
f
](n−1) − [λB ]

0

0

0


(4.26)
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in which all the matrices are the global ones. The same matrix formulation may be re-written, by

renumbering the unknowns, in order to enhance the decoupling of the elements in which the do-

main is discretized as it can be seen in (4.27):

A (Eλ,n−1)T −(Eγ,n−2)T

Eλ,n−1

−Eγ,n−2 (Eθ,γ)T

Eθ,γ





X

[λ][
γ
]

[θ]

=



F

0

0

0

 , (4.27)

whereA, X and F are equal to the following 1:

A=



(
M

(n)
Ω1

)I
0 −E(n,n−1)

Ω1

0 M
(n−2)
Ω1

−
(
M

(n−1)
Ω1

E
(n−1,n−1)
Ω1

)T

−
(
E

(n,n−1)
Ω1

)T
−M(n−1)

Ω1
E

(n−1,n−2)
Ω1

0

. . . (
M

(n)
ΩK

)I
0 −E(n,n−1)

ΩK

0 M
(n−2)
ΩK

−
(
M

(n−1)
ΩK

E
(n−1,n−1)
ΩK

)T

−
(
E

(n,n−1)
ΩK

)T
−M(n−1)

ΩK
E

(n−1,n−2)
ΩK

0



, (4.28)

X =∏K
i=1


[
p

](0)

[ω](n−2)

[u](n−1)


Ωi

, and F=∏K
i=1


0[
γB

]
M(n−1)

[
f
](n−1) − [λB ]


Ωi

.

Equation (4.26) and its rearrangement, (4.27), are non singular systems. This replies to the re-

search question: adding the Lagrange multiplier θ, the singular modes are removed from the hybrid

formulation of the vector Laplace equation.

Figure 4.8: Sparsity structure of the LHS in (4.26) (left) and in (4.27) (right). 2×2 grid, 4th order elements.

1·Ωi indicates the local matrix associated to the elementΩi .
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Figure 4.8 compares the sparsity structure of the matrices in (4.26) (left) and in (4.27) (right).

Both matrices have 3388 non-zero entries underlying the fact that the difference, among the two, lies

only in the global numbering. Two main advantages arise using the block diagonal configuration:

on one hand only the three matrices connected to the Lagrange multipliers needs to be assembled

to the global configuration (in the previous case all seven matrices needed to be assembled), on the

other handA, being an element block diagonal matrix, can be inverted very efficiently.

At this point, it is worth to recall what has been already done. In Chapter 3 the continuous

formulation was derived while in this chapter the hybridized system was formulated. This was

achieved adding the Lagrange multipliers which increase the number of degrees of freedom of the

problem and so the size of the matrix in (4.27) with respect to (3.18). Therefore, even thought the

definition of the non-singular system is a result per se, the numerical advantage of the hybrid for-

mulation has not been shown. This will be elaborated in the following section.

4.6. The Lagrange multipliers’ system

In Sections 4.1.1 and 4.1.2 it was explained the fact that the Lagrange multipliers λ and γ can be

seen as boundary conditions for each element. Once the value of the Lagrange multipliers is known,

the solution within each element can be computed locally, independent of each other. Using this

solution path, we aim to reduce the computational time required for the solution of the physical

variables -p,ω,u- in the whole domain.

Computation of the

Lagrange multipliers

λ , γ , θ

Boundary conditions Forcing term f

Computation of the

physical variables

u , p , ω

Figure 4.9: Solution flowchart

The solution flowchart may be seen in Figure 4.9. The first step is the computation of the La-

grange multipliers on the elements boundaries. For this purpose a dedicated system of equation has
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to be written and will be called reduced system due to the fewer number of unknowns in comparison

to the full system in (4.26) and in (4.27).

The reduced system is the following:


∇2
λλ

∇2
λγ

0

∇2
γλ

∇2
γγ (Eγθ)T

0 Eγθ 0




[λ][
γ
]

[θ]

=


Fλ

Fγ

0

 , (4.29)

where the four matrices ∇2·· and the two vectors F · can be computed using the algebraic elimination

method:

∇2
λλ = E1λ[(E21)TM2E21 +M1E10(M0)−1(M1E10)T ]−1(E1λ)T , (4.30)

∇2
λγ = E1λ[(E21)TM2E21 +M1E10(M0)−1(M1E10)T ]−1M1E10(M0)−1E0γ , (4.31)

∇2
γλ = (∇2

λγ)T , (4.32)

∇2
γγ =−E0γ(M0)−1(E0γ)T − (M1E10(M0)−1E0γ)T [(E21)TM2E21

+M1E10(M0)−1(M1E10)T ]−1(M1E10(M0)−1E0γ) ,
(4.33)

Fλ = E1λ[(E21)TM2E21 +M1E10(M0)−1(M1E10)T ]−1M1 f (1) , (4.34)

Fγ =−(M1E10(M0)−1E0γ)T [(E21)TM2E21 +M1E10(M0)−1(M1E10)T ]−1M1 f (1) . (4.35)

After having solved the reduced system (4.29) in the whole domain, the Lagrange multipliers λ

and γ are used as boundary conditions for the computation of the physical variables -p, u, ω- in

each element (Ωi ) using (4.36):


(M(n)

Ωi
)−1 0 −E(n,n−1)

Ωi

0 M0 −(M(n−1)
Ωi

E
(n−1,n−2)
Ωi

)T

−(E(n,n−1)
Ωi

)T −M(n−1)
Ωi

E
(n−1,n−2)
Ωi

0




[
pΩi

](0)[
ωΩi

](n−2)[
uΩi

](n−1)

=


0

(Eγ,n−2)TγΩi

M(n−1)[ fΩi ](n−1) − (Eλ,n−1)TλΩi

 .

(4.36)
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Figure 4.10: Number of degrees of freedom of the continuous, the full hybrid and the reduced formulation varying the

number of elements (left) and the polynomial degree (right).

Figure 4.10 shows the number of unknowns for the continuous, the hybrid and the reduced formulation

as a function of the number of elements (left) and the polynomial degree (right). It can be seen that the

number unknowns for the hybrid and the full hybrid formulations converges, while the ones in the reduced

system is considerably lower for any number of elements and polynomial degree.

As the original matrix (4.27), even the reduced system (4.29) maintains the positiveness and symmetric

properties of the Vector Laplacian operator. This suggest (4.29) may be the matrix formulation of the Lapla-

cian operator for another set of basis and test functions.

The following section is therefore dedicated to find this new, unknown set.

4.7. A new set of basis functions
It is easy to show that the number of the degrees of freedom of u(n−1), p(0) and ω(n−2) is generally higher than

the number of the Lagrange multipliers (λ, γ, θ). Due to the fact that the solution is only in function of the

latter , it is easy to conclude that the solution lies in a space smaller than the initial one:

(p,ω,u) ∈ H(div;ΩK )×L2(Ω)×H(curl;ΩK ) . (4.37)

B. Cockburn et. al. [11] computed the new set of basis functions for the scalar Poisson equation by

solving the discontinuous system for the original variables when each Lagrange multiplier was equal to one.

The solution was one set of functions of the unknown function space. In this thesis, dealing with the vector

Laplace equation, two sets of basis functions (one for λ and the second for γ), which will be respectively

called pλi , ωλi , uλi and pγi , ωγi , uγi . They have been computed using the following systems of equation (the

difference between the two lies in the RHS):


(M(n))−1 0 −E(n,n−1)

0 M0 −(M(n−1)E(n−1,n−2))T

−(E(n,n−1))T −M(n−1)E(n−1,n−2) 0




[
pλi

](0)[
ωλi

](n−2)[
uλi

](n−1)

=


0

0

−(Eλn−1)Tλi

 , (4.38)
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
(M(n))−1 0 −E(n,n−1)

0 M0 −(M(n−1)E(n−1,n−2))T

−(E(n,n−1))T −M(n−1)E(n−1,n−2) 0




[
pγi

](0)[
ωγi

](n−2)[
uγi

](n−1)

=


0

(Eγn−2)Tγi

0

 . (4.39)

where λi (and γi ) refers to the boundary conditions in which one λ (or one γ) on the boundary (pi in Figure

4.3, u · ti in Figure 4.5) is equal to one and the others equal to zero.

Figure 4.11: pλ1
(top-left), ωλ1

(top-right), uλ1
(bottom). Solution of (4.38) for λ1 = 1. Single element of

2nd -order degree.
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Figure 4.12: pγ1 (top-left), ωγ1 (top-right), uγ1 (bottom). Solution of (4.39) for λ1 = 1. Single element of

2nd -order degree.

Figure 4.11 shows the solution on a single 2nd -degree element of (4.38) supposing p1 = 1 (p numbering in

Figure 4.3). Immediately, it can be seen that even thought p is equal to 1 in one part of the boundary, the max-

imum value of pλ1 is 0.6. This suggest the weak imposition of the Dirichlet boundary condition, which will

be further analysed in Chapter 6. Furthermore, considering the velocity flux (uxλ1 for x =−1 and x = 1, uy λ1

for y = −1 and y = 1) and the vorticity, ωλ1 , restricted to the boundary, this procedure is analogous to the

(Neumann-Dirichlet) Steklov-Poincar‘e operator which maps Neumann interface variables (p = ∇ ·u ∈ ∂Ω)

to Dirichlet intrface variables (u ·n and ω ∈ ∂Ω) [29]. Analogously, Figure 4.12 shows the solution of (4.39)

considering γ1 = 1 (u · t1 in Figure 4.5). In this case pγ1 is equal to zero up to machine precision and ωγ1 is

constant and equal to −0.25 in the whole domain. Furthermore, uyγ1 is positive in (x, y) = (−1,−1) which was

expected imposing the tangential velocity equal to 1 on the leftward vertical boundary.

At this point, having the basis functions pλi ,ωλi , uλi and pγi ,ωγi , uγi , it is interesting to combine them in

order to compute the reduced system (4.29) in an alternative way. Considering that the inner product between

the velocity u(n−1) and the vector Laplace of the velocity is equal to the following (using the integration by

parts)

〈u,∇2u〉Ω = 〈u,∇(∇·u)〉Ω−〈u,∇×∇×u〉Ω
= 〈∇·u,∇·u〉Ω+〈u ·n,∇·u〉∂Ω−〈∇×u,∇×u〉Ω+〈u · t ,∇×u〉∂Ω ,

(4.40)

the matrix ∇2
λλ

can be computed even in the following way:

∇2
λλ = (u(n−1)

λ
, (E 21)T pλ)+〈uλ,E 10ωλ〉 . (4.41)

Looking at (4.41), someone may disagree with the first term being actually a duality pairing and not an
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inner-product. In fact, looking more carefully at it, it can be noticed that u(n−1) and (E 21)T p(0)
λ

belong to the

primal and the dual grid, respectively. In Chapter 2 , it was proved that a variableψ(1) and its dual, ψ(n−1), are

mutually connected by the following formula [15]:

ψ(n−1) = (M(n−1))Iψ(1) . (4.42)

Therefore, the inner product between u(n−1)
λ

and (M(n−1))I (E 21)T pλ can be computed in the following way:

〈u(n−1)
λ

, (Mn−1)I (E 21)T pλ〉 = u(n−1)
λ

M(n−1)(M(n−1))I (E 21)T pλ

= u(n−1)
λ

(E 21)T pλ

= (u(n−1)
λ

, (E 21)T pλ) ,

(4.43)

which completes the proof that (4.41) is equal to < u(n−1)
λ

,∇2u(n−1)
λ

>.

Using the same reasoning, the following identities were found:

∇2
γλ =< uγ,cur l ωλ > , (4.44)

∇2
γγ =<ωγ,ωγ > , (4.45)

proving that the reduced system is actually the Vector Laplace operator on a different test and basis function,

called pλ, ωλ, uλ and pγ, ωγ, uγ.

Even simpler are the explicit formulas for the computation of the known terms Fλ and Fγ. As in the full

system formulation, the RHS is the inner product < ε(1), f (1) >. It follows that the formulas for the Lagrange

multiplier’s system will be the following:

Fλ = 〈u(n−1)
λ

, f (n−1)〉 , (4.46)

Fγ = 〈u(n−1)
γ , f (n−1)〉 . (4.47)





5
Model Verification

The verification procedure of a newly-developed numerical method is defined as the process of determining

that a model implementation accurately represents the developer’s conceptual description of the model and the

solution to the model [22].

For simple domainsΩ, such as a square in 2D, the manufactured solution is the easiest and fastest method

to be used for verifying that the numerical scheme, developed in the previous chapters, actually solves the

Laplace equation.

The domain used for the verification is the following:

Ω=
{
∀(x, y) ∈R2 | −1 ≤ x ≤ 1 & −1 ≤ y ≤ 1

}
. (5.1)

5.1. Divergence-free manufactured solution
In order to verify the scheme and to test the exactness of the imposition of the incompressibility constraint,

a divergence-free solution was chosen with p = 0 & ~u ·~t = 0 along ∂Ω1. In light of the above, the following

manufactured solution has been used as model verification test:

u =
 cos(πx)sin(πy)

−sin(πx)cos(πy)

 . (5.2)

The curl of the vector field u, ω, is the following:

ω=−2πcos(πx)cos(πy) . (5.3)

1p = 0 & ~u ·~t = 0 are the natural boundary conditions.

47
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Furthermore, the source term can be computed from the manufactured solution, which is necessary to con-

struct the RHS of the numerical method. Therefore f is equal to the following:

f =
−2π2cos(πx)sin(πy)

2π2sin(πx)cos(πy)

 . (5.4)

5.2. Qualitative analysis

Substituting f in the RHS of the numerical scheme, (4.27) can be solved. In order to qualitatively analyse the

solution, a 5×5 square grid of 2nd order discontinuous elements was chosen.

Following the solution procedure, at first the reconstruction of the Lagrange multipliers will be shown

in Figures 5.1 and 5.2. For clarity, Figures 5.1 and 5.2 show the reconstruction of λ and γ only along the

horizontal and vertical internal elements boundaries (i.e. ∂K \∂Ω) in which the value of γ is not zero.

Figure 5.1: Comparison of the reconstruction of the Lagrange multiplier γ along internal

element boundaries (coloured full lines) with the tangential part of the solution (dashed

lines, grey shadow). The reconstruction on vertical lines is compared to uy (left) while the

one on horizontal lines to ux (right). 5×5 grid, 2nd order elements.



5.2. Qualitative analysis 49

Figure 5.2: Comparison of the reconstruction of the Lagrange multiplier λ along internal

element boundaries (coloured full lines) with the divergence of the solution (dashed lines,

grey shadow). 5×5 grid, 2nd order elements.

Figure 5.1 (bottom) visually compares the coloured reconstruction of γ with the tangential velocity be-

tween the elements of the manufactured solution (5.2) depicted as a grey shadow. The latter is equal to uy for

the vertical boundaries (left) and to ux for the horizontal ones (right). Figure 5.1 (top) shows the comparison

between the numerical solution (solid lines) and the exact one (dashed lines). It can be seen that γ, which

represents the tangential velocity, is not continuous between the elements. Analogously, Figure 5.2 shows

the agreements between the reconstruction of λ and the divergence of the solution. As can be seen, the re-

construction of λ is always lower than 10−14 which already suggests the exactness of the incompressibility

constraint (∇·u = 0).

Figure 5.3: Reconstruction of the Lagrange multiplier θ on the point intersection of more

than two elements. 5×5 grid, 2nd order elements.

Figure 5.3 shows the value of the Lagrange multiplier θ on the point intersections. At first look, it is

clearly visible the fact that θ is equal to zero up to machine precision in every point of the domain in which it
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is defined. Starting from (4.24) and imposing θ = 0 yields:

ωnw −ωne = 0 ,

ωne −ωse = 0 ,

ωsw −ωse = 0 ,

ωnw −ωsw = 0 .

(5.5)

Equation (5.5) implies the correct imposition of the continuity of the vorticity in the corner points which is

described by the following formula:

ωnw =ωne =ωse =ωsw . (5.6)

Leaving behind the analysis of the Lagrange multipliers and moving to the one of the physical variables,

Figures 5.4, 5.5 and 5.6 compare the exact and the numerical solution of the vorticity, ω, horizontal, ux , and

vertical, uy , velocity computed on an element-by-element fashion.

Figure 5.4: Comparison between the numerical (left) and the exact solution (right) of the

vorticity (ω). 5×5 grid, 2nd order elements.

Figure 5.5: Comparison between the numerical (left) and the exact solution (right) of the

horizontal velocity (ux ). 5×5 grid, 2nd order elements.
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Figure 5.6: Comparison between the numerical (left) and the exact solution (right) of the

verical velocity (ux ). 5×5 grid, 2nd order elements.

As can be seen, although the mesh is coarse and the polynomial degree low, the numerical solutions

(right) resemble the exact ones (left) . However, while ω is continuous in Figure 5.4, ux shows discontinuities

in the y-direction in Figure 5.5 while uy in the x-direction in Figure 5.6. These discontinuities can be clearly

seen by looking at the reconstruction of ux and uy in prospective view in Figure 5.7.

Figure 5.7: Reconstruction of the vertical velocity, ux , (left) and the horizontal velocity, uy ,

(right) in prospective view. 5×5 grid, 2nd order elements.



52 5. Model Verification

Figure 5.8: Position of the degrees of freedom of ux (left) and uy (right) and the Lagrange

multipliers λ which respectively impose their continuity.

Figure 5.8 explicitly indicates the location of the degrees of freedom which describe the horizontal veloc-

ity, ux , on the left and the vertical velocity, uy , on the right. Furthermore, λ Lagrange multipliers are divided

into the ones which impose the continuity on ux and uy , respectively 2. As can be seen, the continuity of the

horizontal component of the velocity is imposed by λ Lagrange multipliers on the right and left boundaries of

the elements while λ on top and bottom boundaries impose the continuity on uy . These are the reasons why

ux is continuous in the x-direction and discontinuous along y. The opposite reasoning may be used to explain

the discontinuities in the reconstruction of uy . Increasing the degrees of freedom (increasing the number of

elements or the polynomial degree) these discontinuities reduce.

The fact that the γ Lagrange multiplier converges to the expected quantity gives a positive indication of

the successful implementation of the Lagrange multipliers and suggests that they have a physical meaning.

Furthermore, the fact that λ is close to the machine precision suggests that the method is able to compute

exactly divergence-free solutions. This can be seen even in Figure 5.9 where the numerical solution of p is

shown. It has to be noted that p is equal to zero, up to machine precision, in the whole domain.

2It is worth to point out that this is only an alternative way to see Figure 4.3 which can be considered as the summation

between Figures 5.8 (left) and (right).
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Figure 5.9: Reconstruction of the variable p, which is equal to ∇·u, on the domainΩ.

5×5 grid, 2nd order elements.

In order to unequivocally prove the quality of the numerical method, the convergence rate will be studied.

5.3. h-Convergence rate analysis
When engineers and mathematicians study the quality of a new numerical method, they do not only focus on

the error as an absolute value, but they even analyse how fast (i.e. at which rate) the error converges to zero

increasing the number of elements. In contrast to before, initially the attention will be given to the relevant

physical variables p, ω and u and only afterwards to the Lagrange multipliers λ and γ.

The L2-error, naturally derived from the L2(Ω) norm, will be computed and the convergence rate calcu-

lated. Calling φ the variable for which the error has to be computed, the following formula will be used:

∣∣∣∣∣∣φe −φh
∣∣∣∣∣∣

L2(Ω)
=

√∫
Ω

(φe −φh)2 , (5.7)

where φe indicates the exact solution and φh the reconstruction of the numerical solution.

Figure 5.10: h-Convergence plot of L2(Ω)-error of the divergence of u, p. K = { 32, 62, · · · , 332 }.

Figure 5.10 shows the convergence analysis of the variable p = ∇ ·u. It can be seen that the divergence
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of u is exact up to machine precision even with very coarse meshes (K = 22) and low polynomial degree (N

= { 1, 2 , 3 }). Increasing K , the error increases up to O(10−14). This is caused partially by the the increase of

the condition number, and partially by the fact that [p]0 is equal to 10−15 but, decreasing the element size,

the edge basis functions grows, increasing the error. This indicates that the divergence-free constraint can be

imposed exactly using discontinuous elements equipped with Lagrange multipliers at the element boundary.

Once this is established, it is worth to analyse if this constraint compromises the convergence of the other

variables or not.

Figure 5.11: h-convergence of L2(Ω)-error of the velocity u (left) and the vorticity (right). K = { 32, 62, · · · , 332 }.

Figure 5.11 shows the h-convergence analysis of the L2-error of ω and u using elements of degrees 1, 2

and 3 as depicted in the legend. The black number above each line indicates the rate of convergence.

The optimal convergence rate is achieved when the error is proportional to hP+1 for sufficiently smooth

problems, where h is the element size (h = 2/
p

K ), K denotes the number of elements) and P the minimum

degree of the basis functions that describe the variable.

N ω ux uy p

1 (1,1) (1,0) (0,1) (0,0)

2 (2,2) (2,1) (1,2) (1,1)

3 (3,3) (3,2) (2,3) (2,2)

Table 5.1: Polynomial degree in the horizontal (·, ) and vertical (, ·) direction of the basis

functions associated to the variables ω, u, and p in relation to the element degree (N ).

Table 5.1 shows the degrees of the basis functions in which each variable is discretized. Comparing the

table and the figure, it is possible to notice that both u and ω converge optimally with decreasing element

size. An interesting example is the velocity variable (u), for which the basis functions have different poly-

nomial degrees in x and y-directions: in this case, the convergence is determined by the lowest polynomial

degree.
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Focusing the attention on the Lagrange multipliers λ and γ, it is interesting to see how fast they converge

to p and the tangential velocities respectively.

Figure 5.12: h-Convergence plot of L2(∂K )-error of λ (left) and γ (right). K = { 32, 62, · · · , 332 }.

Figure 5.12 (left) shows the convergence rate of λ. Recalling that it is equal to the divergence of u on the

boundary it does not surprise that it is equal to zero up to machine precision for every domain discretization

and polynomial degree. Figure 5.12 (right) shows the convergence of γ increasing the number of elements.

Recalling that it is defined on the dual counterpart of the primal points (in which ω is defined) γ does not

converge optimally but with the same rate as u.

5.4. p-Convergence rate

Using the L2-error previously defined, it is possible to compute the convergence of the three variables p, ω

and u varying the degree (N ) of the elements used

Figure 5.13: N -Convergence plot of L2(Ω)-error of p, ω ad u. 2×2 grid (left) and 3×3 grid (right).

Figure 5.13 shows the convergence on a 2 × 2 (left) and 3 × 3 grid (right). The linear trend on a semi

logarithmic plot proves the exponential convergence for the variables ω and p which is equal to 2.8 and 3.1
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for the 2×2 (left) and 3×3 grid, respectively. The exponential convergence rate, α, is defined as follows:

y =C ·e−αN . (5.8)

It is to be noted that even in this case p is equal to zero up to machine precision and that the error only

slightly increases with N . In both graphs the errors of ω and u reach the numerical precision and then follow

the same trend as p.

5.5. Computation time
In the introduction of Chapter 4 it was pointed out that the usage of discontinuous elements leads to a higher

degree of parallelism of the computational method.

Therefore, it is interesting to understand if and how much computational time can be saved passing from

the continuous formulation to the newly developed hybrid discontinuous method.

Figure 5.14: Computational time [s] for K = {22,42, · · · ,402}, N = 2 (left) and for K = 32, N = {2,3, · · · ,15} (right).

Figure 5.14 (left) shows the computational time required for the computation of the physical time varying

the number of elements for a 2nd -degree element. For the continuous case, it refers to the time needed for

assembling the matrices and the solution of the full system, instead the time of the hybrid formulation refers

to the summation of the time needed to assemble the matrices, the computation of the reduced system and

the computation of the physical variables on one element. It can be noticed that, apart from a very coarse

mesh, the time required by the hybrid formulation is lower than the one required by the continuous method.

Furthermore, for finer meshes, a linear trend is identified in the logarithmic plot which is lower for the hybrid

formulation. Similar conclusions can be made looking at the plot in Figure 5.14 (right) in which, for a 3 by 3

grid, the degree of the element is increased.

This confirms that the hybrid approach is interesting for the reduced computational time derived by its

usage.



6
Lid-driven cavity Stokes-flow

The lid-driven cavity Stokes flow is a unique test case for numerical methods applied to fluid dynamics. It

combines the geometrical simplicity and the numerical complexity of flows with singularities.

This particular test case deals with a zero-Reynolds number flow in a square domain, in which the upper

boundary moves with a unit velocity to the right. On the one hand, the geometrical simplicity is derived by

the square fluid domain which is very easy to discretize. On the other hand, the numerical complexity derives

from the fact that the solution becomes singular in the two upper vertices (both vorticity (ω) and pressure (p)

become infinity), due to the discontinuities of the velocity [19].

6.1. Incompressible Stokes equations: from the variational to the matrix

formulation
Assuming the square domainΩ described in (5.1), the lid-driven cavity Stokes flow is described by the follow-

ing mixed formulation (3.6, with µ= 1) and boundary conditions:


∇·~u = 0

ω −∇×~u = 0

−∇p −∇×ω = 0

and


u ·~n = 0 on Γ

u ·~t = 0 on Γl ∪Γr ∪Γb

u ·~t = 1 on Γt

. (6.1)

where Γ= ∂Ω=⋃
i=l ,r,t ,b Γi

1.

The same variable collocation described in Chapter 3 is used according to which the velocity (u) is asso-

ciated to the primal edges, the vorticity (ω) to the primal points and the pressure (p), which represents the

1l ,r ,t ,b stand for left, right, top and bottom boundary.
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pressure of the fluid, to the dual points. Due to the boundary conditions in (6.1), the Lagrange multipliers

need to be positioned as per requirement of boundary conditions.

Figure 6.1: Lid-driven cavity Stokes flow: discretization of the physical domain.

u andω are described by the primal black edges and points while the internal dual red points describe the

position of p. The red points and lines in the element boundaries shows the Lagrange multipliers λ and

γ, respectively. The blue points represents the location of θ. On the boundary blue primal edges impose

the impermeability condition while the green edges, on the top boundary, impose the unitary tangential

velocity boundary condition.

Figure 6.1 shows the positioning of the Lagrage multipliers for a 3×3 grid of 2nd order elements. It can

be seen that in the physical boundary (∂Ω) blue edge are added to strongly impose the non-permeability

condition (u ·~n = 0). Tangential boundary conditions are applied using γ. Green γ Langrange multipliers are

added to the top boundary to impose u ·~t = 1 while on the other boundaries Γl ,r,b zero tangential velocity has

been imposed and are, therefore, left out of the figure.

Taking into account the variable-geometry coupling, (6.1) and the usage of Lagrange multipliers to im-

pose the continuity among discontinuous elements and the boundary conditions on the physical domain,

the variational formulation may be stated as follows: for a given f ∈ L2(Ω), find u ∈ H(di v ;ΩK ), p ∈ L2(Ω),

ω ∈ H(cur l ;ΩK ), λ ∈ H
1
2 (∂ΩK ) and γ ∈ H− 1

2 (∂ΩK ), such that:



6.1.In
co

m
p

ressib
le

Sto
kes

eq
u

atio
n

s:fro
m

th
e

variatio
n

alto
th

e
m

atrix
fo

rm
u

latio
n

59

(ε(0),∇·u(n−1)) = 0

〈ε(n−2),ω(n−2)〉 −〈∇×ε(n−2),u(n−1)〉 −∫
∂K \∂Ω ε

(n−2)γ d∂Ω = ∫
∂Ω ε

(n−2) u ·~t d∂Ω

(∇·ε(n−1), p(0)) −〈ε(n−1),∇×ω(n−2)〉 −∫
∂K \∂Ω ε

(n−1)λ d∂Ω = 〈ε(n−1), f (n−1)〉
−∫

∂K \∂Ω ε
λ �u� d∂Ω = 0

−∫
∂K \∂Ω ε

γ �ω� d∂Ω −∫
∂K \∂Ω ε

γθ = 0

−∫
∂K \∂Ω ε

θ�γ� = 0

(6.2)

Using the definition of the inner product defined in Chpater 2 and the Lagrange multipliers’ matrices in Chapter 4, the variational formulation (6.2) can be translated

into the following matrix formulation: 

A −(Eλ,n−1)T −(Eγ,n−2)T

−Eλ,n−1

−Eγ,n−2 (Eθ,γ)T

Eθ,γ





X

[λ][
γ
]

[θ]

=



F

Eλn−1
B [u(n−1)

B ]

0

0

 (6.3)

whereA, X and F are equal to the following 2:

2·Ωi indicates the local matrix associated to the elementΩi .
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A=



0 0 E
(n,n−1)
Ω1

0 M
(n−2)
Ω1

−
(
M

(n−1)
Ω1

E
(n−1,n−1)
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The boundary conditions in (6.1) are represented in the matrix formulation: [u(n−1)
B ] = 0 andγB =M(n−2)

1 [ux (x,1)(n−2)].

M
(n−2)
1 is the mass matrix associated to the primal points considering the boundary as a one-dimensional do-

main and [ux (x,1)(n−2)] is the value of the tangential velocity on the upper boundary in the primal points.

Figure 6.2: Sparsity structure of the LHS in (6.3)(left) and mixed method presented by

J.Kreeft et. al. in [19] (right). 2×2 grid, 4th order elements.

In Figure 6.2 we show the sparsity structure of the matrix resulting from the primal-dual hybrid formula-

tion3 (left) with the continuous primal formulation developed by J.Kreeft et. al. in [19] (right). For clearness,

plots in Figure 6.2 were originated by a 2×2 grid of 4th order elements. It can be seen that even though the

total number of unknowns in the hybrid formulation is higher, 393 degrees of freedom versus 289 for the con-

tinuous formulation, the number of non zero entries in the sparse matrix of the hybrid formulation is roughly

one third (2428 versus 6641).

3Matrix in 6.3.
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It has to be noted that due to the mimetic structure of the finite element method presented, no other

changes, concerning the singularities on the upper corners, are needed, which is in contrast to the common

nodal finite elements methods [8]. Another solution to overcome this problem is the transition to the regu-

larized driven cavity problem, which has qualitatively the same dynamical properties as the lid-driven cavity

flow [23].

6.2. Numerical solution

Figure 6.3: Numerical solution of the lid-driven Stokes flow: velocity magnitude (top-left), vorticity (top-right),

pressure (bottom-left) and the divergence of the velocity (bottom-right). 16×16 grid, 4th order elements.

Figure 6.3 shows the velocity magnitude, vorticity and pressure distribution of the lid-driven cavity Stokes

flow computed using (6.3). At the bottom-left image the two singularities on the pressure field are clearly

visible on the upper corners. The pressure converges to minus and plus infinity on the upper left and right

corner, respectively. A 16×16 grid and 4th order elements were used. It is worth to underline that this solution

is in perfect agreement with the one in [23] for Re = 0, in which the effects of the singularities are visible in

the pressure and vorticity distribution. The absence of discontinuities proves the successful application of

the Lagrange multipliers for the imposition of the continuity among elements, while the overall agreement
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indicates the correct implementation of the Dirichlet boundary conditions in ∂Ω. To validate further the cor-

rectness of the implementation of the Lagrange multipliers, Figure 6.4 and Figure 6.5 show the reconstruction

of λ and γ, respectively. Even in this case, both have a physical meaning: λ converges to the pressure while γ

to uy along the vertical element boundaries and to ux on the horizontal ones.

Figure 6.4: Comparison of the reconstruction of the Lagrange multiplier λ along internal

element boundaries (colored lines) with the pressure (grey shadow). 16×16 grid, 4th order

elements.
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Figure 6.5: Comparison of the reconstruction of the Lagrange multiplier γ along internal

element boundaries (colored lines) with the tangential velocity (grey shadow). The recon-

struction on vertical lines is compared to uy (left) while the one on horizontal lines to ux

(right). 16×16 grid, 4th order elements.

Analogous to the verification test in Chapter 5, the Lagrange multipler θ is equal to zero, up to machine

precision, for any element size and polynomial degree. Figure 6.6 shows the value of the Lagrange multipliers

θ at every cross-intersection in a 16×16 grid of 4th order elements.

Figure 6.6: Reconstruction of the Lagrange multiplier θ at every cross-intersection. 16×16

grid, 4th order elements.

Paramount is the analysis of the divergence of the solution. Figure 6.3 (bottom-right) shows the diver-
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gence of the velocity, which demonstrates the fact that it is equal to zero up to machine precision. Further-

more, Figure 6.7 shows the L2-error for the divergence of the velocity (E(n,n−1)[un−1]). Being at maximum

O(10−11), it can be stated that the incompressibility constraint is exactly satisfied using discontinuous ele-

ments even for very coarse meshes and low polynomial degree.

Figure 6.7: Incompressibility constraint. N = 1,2,4 and K = { 42, 52, · · · , 162 }.

After having analysed the solution in the overall domain, it is interesting to have a direct comparison with

the reference solution [23]. Generally, lid driven cavity flow solutions were compared looking at the horizontal

velocity, ux , on the vertical centreline and the vertical velocity, uy , on the horizontal centreline.

Figure 6.8: Comparison of horizontal velocity (ux ) on the vertical centreline (left) and vertical velocity (uy )

on the horizontal centreline. Reference solution [23]. 16×16 grid, 1st ,2nd and 4th order elements.

These comparisons may be seen in Figure 6.8 (left) and (right), respectively. As can be seen, the numerical

solutions for N equal to 2 and 4 overlap each other and the reference solution (in black). Obviously, the

solution using the 1st order element degree, in which it is worth to recall that the velocity trough the edges is

described by constant basis functions, is the farthest from the reference solution. Furthermore, it can be seen

that the horizontal and the vertical velocity do not match the boundary conditions (ux (x,1) = 1, ux (x,−1),

uy (−1, y), uy (1, y) = 0). So it is fundamental to understand if the velocity solution converges to the above-
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mentioned boundary conditions.

Figure 6.9: Horizontal velocity (ux ) on the vertical centreline (left) and vertical velocity (uy ) on the

horizontal centreline. Reference solution [23]. K = { 42, 82, 162, 322 }, 1st order elements.

To clearly show the solution’s convergence behaviour decreasing the element size, 1st degree elements

were used in Figure 6.9 (left) and (right). In both graph the velocity solution on the boundary converges to the

tangential boundary conditions increasing the number of element from 4×4 to 32×32. We recall that the La-

grange multiplier γ strongly couples the nearest mesh points in the element boundaries (4.10,4.11,4.12,5.6).

Furthermore, Figure 6.9 proves that it weakly imposes the tangential velocity’s boundary condition on the

physical boundaries.

Figure 6.10: Horizontal velocity (ux ) on the vertical centreline (left) and vertical velocity

(uy ) on the horizontal centreline. K = { 42, 82, 162, 322 }, 1st order elements.

In Figure 6.10 we show how well the impermeability boundary condition (~u ·~n = 0 on ∂Γ) is imposed.

In Figure 6.1 blue primal edges were added at the boundary of the domain to impose this condition. The

solution, restricted on the boundaries, can be seen in Figure 6.10, which proves that the velocity, normal to

the boundary, is equal to zero up to machine precision for any element size (for clarity N = 1 was chosen).
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Figure 6.11: Effect of the h-convergence on the solution of the top-right vorticity (ω) sin-

gularity. Red empty circles show the primal points of the most upper-left element.

Figure 6.11 shows the solution of the vorticity, ω, on the top-right corner of the domain (Ω) varying the

number of elements. The primal points of the upper-right element are shown as empty red circles. Theory

suggests that the point (1,1) in Ω is a singular point. The solution plots in Figure 6.11 shows that the contour

lines does not intersect the boundary exactly in the vertex, but they approach it as much as the second primal

point from the top on the right boundary, approach the previous-mentioned vertex. This ensures that the

vorticity in (1,1) has a finite value and that, increasing the number of elements and/or the polynomial degree,

the solution approaches the theoretical one.



7
Conclusions and further developments

This thesis has described the development of an hybrid mimetic formulation of the vector Laplace equation

and its modification to solve Stokes flow. The motivations for studying such numerical method have been

derived from the literature: coupling mimetic and hybrid methods combines the conservation properties of

the former and the computational advantages of the latter. The difficulties hidden in the development of the

hybrid formulation of the vector Laplace equation, noticed among the others by Cockbunn et. al. [14], are the

spurious modes arising in the corner points.

Chapter 3 focused on the development of a continuous mimetic finite element method for the Laplace

equation. In Chapter 4, the new hybrid mimetic method, derived by geometrical considerations, has been

presented. Three different Lagrange multipliers (λ,γ,θ) have been used and geometrically represented in the

physical domain (Ω). It has been shown how, adding the third Lagrange multiplier θ, the matrix formula-

tion becomes non-singular. This eliminates the spurious modes and so affirmatively answers to the research

question stated at the beginning of this thesis.

Furthermore, it has been shown that the Lagrange multipliers may be computed first and then used as

boundary condition for the computation of the physical variables in each single element. This solution pro-

cedure has been proved to be faster than the solution of the continuous case, proving that the usage of dis-

continuous element of the hybrid approach can be an effective way to reduce the computational time of CFD

calculations.

The numerical method has been verified using a divergence free manufactured solution on a square do-

main. The reconstructions of the Lagrange multipliers along the element boundaries have proved to converge

to the physical variables predicted from the mixed formulation. Indeed, λ and γ, which are used to impose

the continuity between nearest mesh edges and points respectively, converge to the divergence and the tan-

gential velocity solution. Differently, θ turns out to be equal to zero, up to machine precision, for any mesh

67
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size and element degree. As expected from a mimetic method, the divergence of the solution is zero up to

machine precision. Furthermore, the optimal h-convergence of the physical variables (p, ω and u) has been

demonstrated and the exponential p-convergence shown. Optimal convergence has been shown even for the

Lagrange multiplier λ, while an expected sub-optimal convergence rate has been shown regarding γ.

At the end, in Chapter 6, the hybrid mimetic method has been modified to solve the Stokes equations.

The matrix formulation has been compared to the continuous one developed by J.Kreeft et. al. [19] showing

the fewer non-zero entries for the method developed in this thesis. The physical variables have been com-

pared to a reference solution and the point-wise divergence free constraint has been shown. Doing so, the

correct usage of the Lagrange multipliers and the imposition of the boundary condition have been proven.

In conclusion, the weak imposition of the tangential boundary condition and the strong imposition of the

normal boundary condition have been shown for different element sizes.

7.1. Further developments

In this thesis, while replying to the research question, weak points have been found and underlined. Aiming

to solve them, further developments are suggested. They focus on:

• a physical meaning for the Lagrange multiplier θ;

• the possibility of an h or p refinement to be included in the development of the hybrid formulation.

In the next two sections, ideas that will help the numerical development of the above-mentioned tasks will

be presented.

7.1.1. A physical meaning for θ

Aiming to understand the physical meaning of θ, which is the Lagrange multiplier arising in the intersection

point of four elements, we look back at the hybrid element. In this respect, recalling Section 4.1, it is worth to

recall that the red Lagrange multipliers on the boundary of the element in Figure 4.1 are not the perfect dual

of the complete black boundary. Instead, the perfect duality may be seen in Figure 7.1.
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Figure 7.1: Element with embedded dual boundary.

Figure 7.2: Comparison of the Lagrange multipliers’location on the intersection of four elements:

numerical method developed along this thesis (left) and its possible improvement (right).

From Figure 7.1 a new configuration for the Lagrange multipliers may be created around the intersection

of more than two elements1. This new configuration can be seen in Figure 7.2 (right) and can be compared

to the one used in Chapter 4 (left). Differences are not only the curved Lagrange multipliers γ around the

element corner, but even the sign convention of the Lagrange multiplier in the middle: in Chapter 4, θ has

been described as a 0-dimensional volume (source), while the correspondent Lagrange multiplier in this new

approach, called ωc , is an outer oriented point as ω.

Starting from the Lagrange functional for the vector Laplace equation defined as follows:

L(u, p,ω,λ,γ,ωc ; f ) =
∫
ΩK

1

2
ω2 dΩK −

∫
ΩK

1

2
p2 dΩK −

∫
ΩK

di v(u)p dΩK +

+
∫
ΩK

u
(−cur l (ω)− f

)
dΩK +

∫
∂ΩK

uλ d∂ΩK +
∫
∂ΩK

(ωc −ω)γ d∂ΩK ,
(7.1)

1Having changed only the Lagrange multipliers in the corners, the hybridization of straight interfaces remain unchanged.
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the variational problem may be computed taking variations around u,p,ω,λ,γ,ωc . The equations arising from

the variations around p,ω,u and λ are equal to the first four of the variational formulation in (4.25). Instead,

the last two equations of the system change around the intersections points. From the variational formula-

tion:

∫
∂ΩK

γ (ωc −ω) d∂ΩK = 0 , (7.2)∫
∂ΩK

ωcγ d∂ΩK = 0 , (7.3)

and Figure 7.2 (right) a new set of equations may be written for each corner point:

γne (ωne −ωc ) = 0

γse (ωse −ωc ) = 0

γsw (ωsw −ωc ) = 0

γnw (ωnw −ωc ) = 0

ωc
(−γne −γse −γsw −γnw

)= 0

. (7.4)

This new reasoning should maintain the non-singularity of the numerical method and, at the same time,

assign to the Lagrange multiplier in the middle of the corner (ωc ) a physical meaning: ωc should converge to

the vorticity of the solution in the intersection point.

7.1.2. h and p local refinement

Although it was not mentioned explicitly, all along the thesis, meshes were uniform and composed of ele-

ments of the same degree. h or p local refinements may be useful in physical application when gradients in

the physical variables change on the fluid domain. As example, in the lid-driven cavity Stokes-flow, refine-

ments would be useful in the corners of the domain where gradients are high, while the rest of the domain,

characterized by lower gradients, may be solved accurately with a coarser mesh and lower polynomial degree.

In Chapter 4, Lagrange multipliers have been used to impose the continuity constraint between con-

formal meshes (Figures 4.2 and 4.4) in which the mesh points (and so the mesh edges) match up along the

element boundary.
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Figure 7.3: Graphical representation of a p-refinement.

Figures 7.3 shows the non-conformal boundary interfaces derived by a p refinement. Lagrange multi-

pliers, λ, are added to impose the continuity between nearest edges. They are considered as the dual of the

most refined side of interface (in Figure 7.3 it is the right ride). The continuity may be imposed between edges

modifying (4.2) in the following way: ∫
∂K \∂Ω

λ
(∑

uR −∑
uL

)
d∂Ω= 0 . (7.5)

λ1 λ2 λ3 λ4

u1 0.763621 0.361379 -0.174335 0.049335

u2 -0.116326 0.616326 0.616326 -0.116326

u3 0.049335 -0.174335 0.361379 0.763621

u4 1 0 0 0

u5 0 1 0 0

u6 0 0 1 0

u7 0 0 0 1

Table 7.1: Value of
∫
∂K \∂Ωui λ j d∂Ω

The table above shows the value of the integral
∫
∂K \∂Ωui λ j dl . It is worth to point out that this integral

is metric independent. Furthermore, from the table, it is clearly visible that the Lagrange multipliers are the

dual of the right interface: for this reason the value of the integrals can be only 0 or 1. From (7.5) and the Table

7.1, four equations may be written. The one related to λ1 is the following:

(+1)u4 − (+0.763621)u1 − (−0.116326)u2 − (+0.049335)u3 = 0 , (7.6)

and the other equations may be written accordingly. This idea was not tested numerically and consequently

further developments are needed. However, one of the problems that will arise is the increase of the non-zero

entry in the matrix Eλ,n−1 which may effect the sparsity structure of the system.
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Analogously, Figure 7.4 shows an h-refinement.

Figure 7.4: Graphical representation of an h-refinement.

Looking at the figure, it is clear an h-refinement not only disjoint points and edges as the p-refinements,

but originates even a corner point in which 3 elements come together. Further developments are needed to

understand if an additional Lagrange multiplier, such as θ or ωc is needed in this case or not.
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A
2-dimensional basis functions

In Chapter 2 primal and dual basis functions have been constructed using the 1-dimensional nodal and edge

polynomials.

In this appendix, all the basis functions belonging to the 3r d element in Figure 2.4 have been shown. It is

worth to remember that each variable is approximated as a finite weighted sum of basis functions

ξ(k) =∑
[ξ](k) ε(k) . (A.1)

The weights, [ξ](k), are called cochain.

The element size is the following:

ΩK =
{
∀(x, y) ∈R2|−1 ≤ x ≤ 1&−1 ≤ y ≤ 1

}
. (A.2)
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A.1. Primal basis functions
Starting from the primal basis functions, figure A.1 shows ε(n−2), which are the basis functions associated to

the points of the element. In the same figure, the point in which ε(n−2)
i = 1 is shown in red to emphasize the

connection between basis functions and geometry.

Figure A.1: ε(n−2) on a 3r d order element (Figure 2.4) in the domainΩk (A.2).

Figure A.2: Horizontal ε(n−1) on a 3r d order element (Figure 2.4) in the domainΩk (A.2).
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Figure A.3: Vertical ε(n−1) on a 3r d order element (Figure 2.4) in the domainΩk (A.2).

Figure A.4: ε(n) on a 3r d order element (Figure 2.4) in the domainΩk (A.2).
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A.2. Perfect-dual basis functions
As it was already underlined in chapter 2, only the perfect dual basis functions will be used in this thesis and

for this reason simply called dual basis functions. Contrarily to the primal basis functions, the perfect-dual

basis functions have lost the connection to the geometry.

Figure A.5: ε̃(0) on a 3r d order element (Figure 2.4) in the domainΩk (A.2).

Figure A.6: Vertical ε̃(1) on a 3r d order element (Figure 2.4) in the domainΩk (A.2)
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Figure A.7: Horizontal ε̃(1) on a 3r d order element (Figure 2.4) in the domainΩk (A.2)

Figure A.8: ε̃(2) on a 3r d order element (Figure 2.4) in the domainΩk (A.2)





B
Verification: continuous formulation

The continuous primal-dual formulation (3.18) has been verify using the method of the manufactured solu-

tion on the following domain:

Ω=
{
∀(x, y) ∈R2 | −1 ≤ x ≤ 1 & −1 ≤ y ≤ 1

}
. (B.1)

B.1. Manufactured solution
In order to compare the continuous and the hybrid formulation (Chapter 5), the same divergence free man-

ufactured solution has been chosen in order to verify the continuous formulation:

u =
 cos(πx)sin(πy)

−sin(πx)cos(πy)

 . (B.2)

The curl of the vector field u is the following:

ω=−2πcos(πx)cos(πy) , (B.3)

and the RHS, f , is equal to

f =
−2π2cos(πx)sin(πy)

2π2sin(πx)cos(πy)

 . (B.4)

It has to be noted that ∇·~u = 0 and ~u ·~t = 0 in ∂Ω, so no boundary terms have to be computed.

B.2. Qualitative analysis
Using the continuous primal dual formulation (3.18) and substituting the cochain [ f ](n−1) on the RHS, the

solution can be computed.
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Figures B.1, B.2 and B.3 compare the exact and the numerical solution of the vorticity, ω, horizontal, ux ,

and vertical, uy , velocity. As it can be seen, the numerical solution (left) resemble the exact one (right). Fur-

thermore, comparing figures B.1, B.2 and B.3 to 5.4, 5.5 and 5.6, it can be seen that the hybrid (discontinuous)

formulation is as good as the continuous one.

Figure B.1: Comparison between the numerical (left) and the exact solution (right) of the

vorticity (ω). 5×5 grid, 2nd order elements.

Figure B.2: Comparison between the numerical (left) and the exact solution (right) of the

horizontal velocity (ux ). 5×5 grid, 2nd order elements.
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Figure B.3: Comparison between the numerical (left) and the exact solution (right) of the

verical velocity (ux ). 5×5 grid, 2nd order elements.

B.3. Convergence analysis

In order to unequivocally prove that the numerical solution of the continuous formulation converges to the

exact mathematical solution, an error analysis has to be conducted. Figures B.4 and B.5 show the convergence

of the error increasing the number of elements, for element degree 1, 2 and 3. The error has been computed

using the following formula:

∣∣∣∣∣∣φe −φh
∣∣∣∣∣∣

L2(Ω)
=

√∫
Ω

(φe −φh)2 , (B.5)

where φe indicates the exact solution and φh the reconstruction of the numerical solution.

Figure B.4: h-Convergence plot of L2(Ω)-error of the divergence of u, p. K = { 32, 62, · · · , 332 }.
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Figure B.5: h-convergence of L2(Ω)-error of the velocity u (left) and the vorticity (right). K = { 32, 62, · · · , 332 }.

Figure B.4 shows the error on the divergence of the velocity (∇·~u = 0) in function of the the element size.

It can be seen that the error increases increasing the element size 2/
p

K , but it is always lower than 10−13.

This proves that the solution is exactly divergence free for any element degree and size. Furthermore, the

h-convergence rate of the velocity -u- (left) and vorticity -ω- (right) may be seen in figure B.5. Calling N the

element degree, ω is described by a function of degree N in both direction, while ux and uy are described

by a 2-dimensional function of degree N in one direction and N −1 in the other one. This explains why the

convergence rates, depicted in B.5, are optimal.

Figure B.6: p-convergence of L2(Ω)-error of the p, u andω. 2×2 grid (left) 3×3 grid (right).

Figure B.6 shows the exponential convergence of the velocity -u- and the vorticity -ω- increasing the

element degree. Furthermore, it can be seen that p is equal to zero up to machine precision for any element

degree.

B.4. Analysis on the sparsity structure
In Chapter 3 it has been underlined how the primal-dual formulation, although it dissociates the dual variable

from the dual grid, leads to a matrix formulation with fewer non-zero entries. In this section, we would like to
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analyse the sparsity structure of the matrix as a function of the method used to compute the mass matrices.

We will focus on the the outer ones -M(n−2),M(n−1) andM(n)-, which appear in the matrix formulation.

Recalling that the mass matrices are defined in the following way:

M(n−k) =
∫
Ω
ε(n−k)

i ε(n−k)
j dΩ , (B.6)

it hasn’t been explained how the integral is numerically computed.

Methods able to numerically compute integrals are a key part of the numerical analysis. In this thesis,

the Lobatto-Quadrature rule has been chosen for the evaluation of the integral regarding the primal basis

functions, which are defined on a grid based on the Lobatto points.

Calling xi the Lobatto points1, the integral of a function ψ over a 1-dimensional domainΩ, may be com-

puted using the following formula: ∫
Ω
ψdΩ=

N∑
i=1

ψ(xi )wi , (B.7)

where the weights wi are equal to:

wi = 2

N (N −1)(LN−1(xi ))2 . (B.8)

(LN−1 indicates the Legendre polynomial of degree N −1.)

The mass matrices associated to the primal points M(n−2), are the integral of the product of 2 basis func-

tions ε(n−2) each having degree N −1 (in each direction), where N in the number of the primal points in the

horizontal or vertical direction. This means that the integrand has degree (N −1)2.

The Lobatto-Quadrature integration is exact up to degree 2N −3 where N in the number of the Lobatto

points used in the quadrature rule, which may be different from the primal points in the mesh.

Figure B.7: Sparsity structure of the LHS in (3.17) computed using N (left) and 2∗N Lobatto

points (right). 2×2 grid, 4th order elements.

Figure B.7 shows the sparsity structure of (3.17) computed using N (left) and 2∗N (right) Lobatto points.

It can be seen that only in the first case the matrix is very sparse but, being (N −1)2 > 2N −3 (if N > 2), the

1Lobatto points are the roots of (2.18).
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integration is not exact. In the second case, using 2N points in the computation of the integral, the integration

is exact but the matrix has almost 3 times more non-zero entries (3057 v s 11777).

Figure B.8: h-convergence of L2(Ω)-error of u and ω (left) and p (right) using the approximated matrix (figure B.7-left)

and the exact one (figure B.7-right).

Figure B.8 shows he convergence error using the approximated (appr.) integration and the exact one. The

error computed with the approximated sparse matrix are overlapping the ones computed with the exact full

matrix.

Considering the fact that the approximated matrix returns the same solution as the exact one but, having

fewer non-zero entries, requires less memory and allows a faster computation of the linear system, it has

been used throughout this thesis.



C
Vector calculus

∫
Ω
ε∇∗×~u dΩ=

∫
Ω
ε

(
∂~uy

∂x
− ∂~ux

∂y

)
dΩ

=
∫
Ω
ε
∂~uy

∂x
dΩ+

∫
Ω
−ε∂~ux

∂y
dΩ

=
∫

y

[
ε~uy

∣∣∣x=1

x=−1
−

∫
x

∂ε

∂x
~uy d x

]
d y +

∫
x

[
−ε~ux

∣∣∣y=1

y=−1
+

∫
y

∂ε

∂y
~ux d y

]
d x

=
∫

y
ε
(
~uy (x,1)−~uy (x,−1)

)
d y +

∫
x
ε
(
~ux (−1, y)−~ux (1, y)

)
d x+

+
∫
Ω

(
∂ε

∂y
,− ∂ε
∂x

)
·~u dΩ

=
∫
Ω
∇×ε ·~u +

∫
∂Ω
ε~u ·~t

(C.1)

∫
Ω
~ε∇∗p dΩ=

∫
Ω
~ε

(
∂p

∂x
,
∂p

∂y

)
dΩ

=
∫
Ω
~εx
∂p

∂x
dΩ+

∫
Ω
~εy
∂p

∂y
dΩ

=
∫

y

[
~εy p

∣∣∣x=1

x=−1
−

∫
x

∂~εx

∂x
pd x

]
d y +

∫
x

[
~εy p

∣∣∣y=1

y=−1
−

∫
y

∂~εx

∂y
pd y

]
d x

=
∫

y
~εx

(
p(x,1)−p(x,−1)

)
d y +

∫
x
~εy

(
p(1, y)−p(−1, y)

)
d x+

−
∫
Ω

(
∂~εx

∂x
+ ∂~εy

∂y

)
p dΩ

=−
∫
Ω
∇·~εp +

∫
∂Ω
~ε ·~n p

(C.2)
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D
Condition number and error propagation

Summing up the results, in Chapter 5, it was mentioned that the incompressibility constraint was exactly

satisfied even when the error was O(10−12). It was mentioned that this was due to the increase in the condition

number if the matrix.

Assuming

A~x = ~f , (D.1)

it is possible to bound the propagation of an error in ~f to the solution~x [citare top]. Imposing an error in the

rhs δ~f , the following may be written:

A (δ~x +~x) = δ~f +~f . (D.2)

Because mathbb Aδ~x = δ~f , using the normo properties immediately leads to:

‖δ~x‖ ≤ ‖A−1‖‖δ~f ‖ , (D.3)

and dividing it by ‖~f ‖, the formula for the relative error propagation:

‖δ~x‖
‖~x‖ = ‖A‖‖A−1‖‖δ

~f ‖
‖~f ‖

. (D.4)

‖A‖‖A−1‖ is the condition number of the matrixA.

From (D.4) it is possible to see that an error in the rhs (for example the machine precision error) propa-

gates to the solution~x but it is bounded bu the condition number.
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E
Elimination of spurious modes by

Cockburn et. al. [14]

While reading this thesis, a reader may be interested in why singularities arise using the Lagrange multipliers

γ and how Cockburn et. al. avoided them in [14]. This appendix will reply to these two questions.

First, it is interesting to underline why, using the Lagrange multipliers, singular modes arise on the inter-

section points.

Figure E.1: Singular cross intersection.

Figure E.1 shows the point-intersection of four elements. We recall that Lagrange multipliers, λ and γ,

have been used to impose the continuity between edges and points. Therefore, focusing on the intersection,
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γ have been used to impose the following identity:

ωnw =ωne =ωse =ωsw , (E.1)

which imposes the continuity of the vorticity. With this objective in mind, four Lagrange multipliers have

been used. For each of them one equation is written in the system. These equations are:

ωnw −ωne = 0 , (E.2)

ωne −ωse = 0 , (E.3)

ωsw −ωse = 0 , (E.4)

ωnw −ωsw = 0 . (E.5)

It is clearly visible that ωnw = ωne , ωne = ωse and ωse = ωsw lead to ωsw = ωnw , as a result (E.5) is linearly

dependent on the other three equations. This yields to a singular system of equations.

Furthermore, in order to unequivocally prove that the singularities arise due to the four Lagrange multiplier γ

near each intersection point, the kernel of the singular matrix in (4.19) can be numerically computed. Using

a 2× 2 grid of 2nd order elements, the kernel is a one-dimensional space (one corner leads to one singular

mode). The basis describing this function space has only one vector whose non zero entries are correspon-

dent to γn , γe , γs and γw .

Cockburn et. al., in [14], noticed that not all γ (called ψΛ in their paper) are linearly independent. Us-

ing a triangular mesh and linear elements, they discovered that the number of linearly independent γ are

3nK −nV where nK and nV are the number of triangles and vertices, respectively. Their solution consists

in randomly deleting one Lagrange multiplier γ and the correspondent equation, for each vertex. Translat-

ing this methodology to the above example means to delete one of the four Lagrange multipliers and the

corresponding equation. This leads to three linearly independent equations which originate a non-singular

system.
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