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Preface
This report is the master thesis made for the conclusion of the degree of Master of Science in Mechanical
Engineering at the Delft University of Technology. The process which has resulted in this report, has
started more than 1.5 years ago, when prof. Pieter Jonker asked me to study the human cerebellum.
This was to gain inspiration for a new robust control algorithm for humanoid robotics. For my literature
survey, I started my journey at the Erasmus MC, at the Department of Neuroscience. Here, with the help
of Opher Donchin and Jos van der Geest, I have emerged myself into the physiology of the cerebellum
and what its functionality is. Although I was very interested into going more into depth within the
neuroscience side of it all, I quickly realized that the gap between what I was doing at the time and
implementation into robotics was getting too wide. I therefore choose not to go in too much detail of
the workings of the cerebellum’s cells structure, but more into its functionality within the brain. For my
literature study, I then came to the conclusion, that the gap between neuroscience and the robotics field
was even more extensive than first anticipated. A need exists to pull those two together, as both fields
can really benefit from each others work. Robotics engineers will receive inspiration for new robust
methods for their implementations and neuroscientist can test their ideas on robots as validation of
their research. It is hoped that this will eventually be the standard within their collaboration.

After a 6 months internship in Japan, and finishing my literature survey, I was officially able to
start my research the beginning of May 2014. PhD student Xin Wang was working on a robot-head
with movable cameras, which was able to imitate eye movements. Since the neuroscience department
is very focused on clinical research of the cerebellum by investigating eye movements, it was a logical
choice for me to start working with this system. However, the plan was quite ambitious from the start.
I wanted to use the physiology and functionality of the cerebellum, as inspiration to build a learning
cerebellar model, which learns based on the motion it detected. Neuroscience, machine learning and
computer vision are three separate research fields by themselves. Fortunately, I had experience with
all of them during the curriculum of my Masters’. However, combining them within a robotic setup
was something I did not have experience with. During my research, I had to learn about the Robotic
Operating System, and go through the differences between simulated and real life robots. I also had to
start out first with building a simulated robot, as the real binocular vision system was not available to
me at at the beginning. Usually, one first builds a simulation and then builds the robot, but since I did
it the other way around, it has given me a lot of knowledge about the dynamics of its movements and
the control of the real system. Although I would have liked to have worked with the robot-head from
the start, I do not see it as wasted time at all.

At the end of my Master thesis, I was able to achieve most of my previously set objectives. More
than three months before completion I was able to make a schedule and stick with it for the most
part. I therefore was able to complete most of my experiments on the robot-head with the implemented
cerebellar models. I did achieve some good results, but the workings of the models were not completely
as I hypothesized. However, I do appreciate the valued insights that I got on the functionality of
the cerebellum at the end, which is something I hope to see implemented one day in a robotic setup.
Throughout my research I had many moments where I had to think and philosophize about the human
brain itself and its wonders. It would be a privilege to see, when we will be able to translate part of
its functionality within a robot and to be able to really understand the human brain itself. Although I
tried to do it myself within this master thesis, there is still a long journey ahead in up-following research
and I hope that my perspectives fit within that outcome.

I would like to acknowledge some people who helped me through this process of writing the report.
First of all, I would like to thank Dr. Opher Donchin from the Ben-Gurion University of Negev and Dr.
Jos van der Geest from Erasmus University of Rotterdam, for helping me to understand the cerebellum’s
functionality from a Neuroscience point of view. I would also like to thank Dr. Boris Leseigne from the
University of Delft and Dr. Cagatay Soyer from the NATO Communications and Information Agency,
for giving me valuable feedback throughout my work on my literature survey and this thesis. Of course,
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a lot of gratitude is expressed to PhD candidate Xin Wang, who had built the system that I was allowed
to use during my research. I would also like to thank my boyfriend, Christian, which has endured and
helped me through the emotional roller-coaster ride during my thesis. And last but not least, I want
to express many thanks to Prof. Pieter Jonker, as he has started and guided me on this journey on the
cerebellum, and also taught me to be more confident in the quality of my own work.

K.N. McGuire
Delft, December 2014



Abstract
The need for vision guided mobile robotics is becoming more apparent, however, it is proven to be
troublesome to stabilize its vision. For two legged robots, it is, during motion, even more difficult than
for wheeled robots to be able to perceive the world around it. Finding a stabilization method which is
able to reduce the motion blur while walking is essential. Inspiration can be found within the human
body itself. The cerebellum is a brain area which is highly involved with stabilization in general, and
numerous neurological research has been done by studying stabilizing eye movements. The cerebellum
is responsible for adaption within the vestibular ocular reflex and the optokintetic reflex, compensatory
eye movements which directly act on signals from the vestibular organ and the detection of retinal flow.
An active binocular vision based robotic setup was used to implement this cerebellar model. During
the previous literature survey, several cerebellar models were found to be suitable for implementation,
however, they do not match the recent neurological discoveries. During this research, two kinds of
cerebellar models have been implemented, one existing model and one extended to recent neurological
research. Both models have been built using a self learning neural network and are evaluated by the
detected movement within an image. While experimenting with these models, the robotic head will
receive both rotational and translational disturbances to simulate the sensation of ego-motion. The
cerebellar model will learn to predict the sensory consequence (the optical flow) of the combined control
of the inertia sensor and the visual tracking system and creates a motor input signal which can counter
that movement. This results in the robotic head to stabilize its vision better, while it is on the move.
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1
Introduction

Combining both mobility and vision is bound to be troublesome in terms of stability for locomoted
robots. Given a humanoid robot with an active vision system, as in Fig. 1.1(a), it will be difficult to
stabilize its gaze during walking. If the image stream is corrupted with motion blur or the robot is not
able to keep the object within its field of view, it is not able to process it and recognize what the object
is. It is necessary for the robots’ performance to be mobile and to make use of its cameras at the same
time, not having to stand still every time to perceive its environment.

Motion blur can be compensated for by decreasing the shutter time, however this will mean that less
light from the scene will reach the image sensor. This means that a trade-off must be made between
those two factors: less image blur or the ability to work in low light conditions. Image blur can also
be post-processed by deconvolution techniques, resulting again in a sharp image. However, this does
not counter the fact that a lot of information is lost from that scene. If the cameras would be actively
compensated for external forces, their image stream could be used immediately by the robot, without
any post-processing to increase its quality.

Techniques exist to determine motion using a video stream retrieved from a camera. These algo-
rithms are able to detect the change of pixels from one frame to another and determine the flow of
them over time: The apparent motion of brightness patterns observed when a camera is moving relative
to the objects being imaged is called optical flow. (Horn (1986), page. 278)

Optical flow can be used to determine the speed of other objects, to segment them based on their
movements or to ignite a sense of depth perception. This technique is therefore widely used in the
automotive industry, as cars encounter other moving vehicles and people.

This master thesis’ research is done at the BioMechanical Engineering Department of the Faculty of
3ME at the Delft University of Technology. One of the important research topics of the department, is to
find better solutions, for mechanical problems existing today, using inspiration from nature. Humanoid
robotics is a branch of biologically inspired robotics, and therefore, to find solutions, one needs to look
at the human himself for inspiration. The human body is highly capable to stabilize and even adapt
itself to changing environments and surfaces. If a walking robot would encounter a floor structure,
which it is not familiar with or not programmed for, chances are high it will fall. The same goes for
the stability of its vision system and therefore a stabilization technique needs to be implemented. E.g.
based on how the human body solves these kinds of problems.

There are many important processes and mechanisms in the human body that we are not aware
of and/or just take for granted. One of them is the ability to stay upright and stable on our feet,
handling various types of external disturbance. Within the human brain, there is an area that is usually
mentioned in the same sentence as stability and posture maintenances: The cerebellum. It is located
just behind the brainstem (Fig.1.1(b)). People with a defect in the cerebellum, do experience serious
stability problems. The symptoms include the impairment of locomotion and stance stabilization, limb
co-coordination, compensatory eye movements, speech and motor learning.

The cerebellum receives an extensive amount of signals from the human body, which carries sensory
feedback of the current state of the body and the external world. This can be deciphered from various
senses, as the state of one’s body can be monitored by proprioception (sensors in the muscles), but

1
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(a) (b)

Figure 1.1: (a) A walking robot with an active vision system and (b) a representation of the human brain, and the location
of the cerebellum in blue.

it can also be seen by the eyes in what configuration the limbs are. The orientation of the body
relative to the outside world can be seen visually, but can also be sensed by the vestibular organ. The
cerebellum takes into account all these different representation of the same state, and combines them
to create a better sense of the current state of the body. As it has a big role in regulating stability and
posture maintenance, the cerebellum’s effect is directly noticeable in one’s eye movements. Learning
from experience on previous, similar encounters of tasks, environments and/or tools, it acts like a signal
regulator within the brain and is therefore responsible for smooth motion. In order to understand how
the cerebellum is capable of these matters, one needs to look into the structure and organization of its
nerve cells, their assigned role within the brain and the connections with the other brain areas.

The objective of this research is to implement a model based on the working of the cerebellum in an
active binocular vision robot head. This system contains two cameras and is therefore called binocular.
It is able to actively focus on an interesting object using actuators, in order to be able to better recognize
its 3D environment with its vision. This robotic head can be used for a variety of purposes, wherever
autonomous mobility is needed and high speed localization and recognition within its vision are needed.
The cerebellar-inspired model will inhibit machine learning, which is driven by the visual detection of
self-motion by the cameras. With these aspects, this method will be able to help the robotic setup to
better stabilize its vision during external disturbances.

The setup of this chapter is as follows: First some preliminaries will be given about the physiology
of the human vision system. The visual processing and gaze shifting will be briefly addressed, to give
a general overview for the motivation of human eye movements. Afterwards, the compensatory eye
movements will be explained, going into reflexes that act on the sensations of the vestibular organ and
the optical flow registered on the retina.

1.1. Preliminaries about the Human Vision System
The human vision system is one of the most sophisticated processes within the human body. Without
vision, one becomes totally dependent on the help of others to be able to function within society.
Although visual processing is a valuable aspect, the ability to detect and follow interesting objects
smoothly can not be overlooked. Unstable eye movements will result in motion blur and therefore
decrease the ability to recognize. This section will explain briefly the visual processing within the brain
and mostly the nature of human eye movements.

1.1.1. Visual Processing and Gaze Shifting
The eyeball contains a light sensitive layer called the retina, which consists of two types of photo-
receptive cells: rods and cones (Fig. 1.2(a)). Rods take up the majority of this layer, as they are the
most sensitive to light. However, they are only able to distinguish intensity and not color, as cones do.
Cones are mostly centered within the center of the retina, called the fovea. This is where one can see
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Figure 1.2: (a) The distribution of the photo-receptive cells on the retina: rods and cones. The location of the fovea is
where the distribution of cones is mostly centered.(b) A schematic drawing of the eyeball with the extra-ocular muscles:
The superior and inferior rectus for tilt movements, the lateral and medial rectus for pan rotations and the superior and
the superior and inferior oblique for roll movements.

the sharpest, even though it is just about 0.3 mm in diameter and covers about 2o degrees of the entire
field of view (FOV).

The detected intensity by the rods and cones is transported by the optical nerve to the rest of
the brain. Most of these signals are processed by the visual cortex. Exactly how the human brain
processes optical information is still not known, but it is eminent that one is not conscious of every
single detail within an observed scene. The brain selects interesting features from a scene and connects
those seamlessly, in order to deal with the excess of visual information.

The eyes are connected to other parts of the brain as well, where the visual information can be used
for more simple, rudimentary tasks. In case the pathways to the visual cortex are interrupted, which is
called cortical blindness or blindsight, people afflicted by it can still avoid obstacles or recognize simple
shape. However, they are not aware of it and cannot recall seeing or responding to such stimuli.

In order to do the visual processing correctly, one’s gaze must be directed toward whatever needs
to be processed. Due to the human’s foveal vision, eye movements are necessary in order to keep the
object of interest within the center of the eye. Rabbits for instance, see evenly sharp over its entire
retina and therefore do not have to move their eyes as extensively. The human eye ball is connected
with several extra-ocular muscles within the eye socket (Fig. 1.2(b)), which enable the eye to perform
pan, tilt and roll rotations.

Two types of gaze shifting movements can be categorized, which are saccades and smooth pursuit
(Leigh and Zee). Saccades are quick rapid movements of the eye, usually meant to redirect the fovea’s
orientation as quick as possible. It is important to be able to scan features of an environment quickly,
in order to make a good representation of it within the brain. Reading a book for instance, where the
eye makes tiny skips from syllable to syllable. When an object is within the fovea, then smooth pursuit
is necessary to keep it there while following it. Humans are able to follow up on to the speed of 30
o/sec, and it will perform catch up saccades if faster following speeds are necessary. Saccades can be
significantly faster at up to 600 o/sec.

1.1.2. Compensatory Eye Movements
In any mammal’s body, mechanisms exist to ensure the stabilization of its head and eyes. A fine example
would be the chicken, which is able to keep its head stable in specific position in 3D space. The rest
of its body can be moved around in all directions, which can be seen in Fig.1.3. The chicken hardly
uses his eye muscles, therefore compensates for external disturbances with its head mostly. Humans
stabilize their vision with their neck as well, to some degree, but due to the limits in maneuverability,
most of the compensatory movements are done by the eyes. However, why is it necessary for us and
the chicken to perform these movements?
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Figure 1.3: Footage of the Mercedes-Benz commercial, starring a chicken to emphasize their stable rides (Daimler AG,
2014 ).
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Figure 1.4: (a) The feedback loops of the OKR and VOR during self-motion.

Any kind of disturbance that the body endures is directly translatable to our eyes. If the eyes are
not compensated for this by the muscles, the image on the light sensitive layer of the eye, the retina,
will be in motion. This phenomenon is called retinal slip and it has an effect on how the world around
us is perceived. The photo-receptors, the light sensitive cells, on the retina have a certain sluggishness
to them, limiting our vision. This implies that fast moving objects can not be correctly detected and
are perceived as a blur. Also, in order to approximate the speed of other moving objects, it would be
useful if the whole image is not moving as well.

Compensatory eye movements are necessary in order to keep images stable on the retina, to retain
the quality of it for visual processing. The vestibulo ocular reflex (VOR) uses the vestibular organ’s
signals and the optokinetic reflex (OKR) uses the detected motion of the retinal image as reference to
that stabilization. The response of the VOR and OKR are projected to the eyes muscles to compensate
for self-motion, and also adjusted by the cerebellum if the signal does not match the outcome of the
eye’s movement (Fig.1.4). The OKR has a latency of about 75 milliseconds (Schweigart et al. (1997)),
therefore able to cope with self motion disturbances of a relatively low frequency. The VOR, however,
has a reaction time of about 15 ms and is more suitable for high frequency disturbances. Combining
these two types of movement results in the capability to keep the image stable on the eye and prevent
retinal slips.

The VOR’s neurological connections between the semicircular canals of the vestibular organ are well
known and the vestibular information is almost directly linked to the eyes’ muscles. If the rotational
speed detected in the vestibular organ does not excite the same rational speed in the eyes directly,
that signal needs to be modified to match the muscles’ dynamics. This adaption happens within in the
cerebellum.

There are two kinds of VOR: rotational and translational. The rotational VOR (rVOR) is the
most studied from the two and its mechanism is straight forward (Fig. 1.5(a)). The rotation that the
vestibular organ registers in its canals has to be exactly replicated by the eyes muscles. Even during
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Figure 1.5: (a)The mechanism of the rotational and (b) translational vestibulo ocular reflex.

a pursuit task, the distance between the eyes and the target does not have any consequence on this
gain. With translational VOR (tVOR), the distance of the target does have an effect (Fig. 1.5(b)). The
closer the object of interest is, the more the eyes have to counter rotate to account for the translation
of the head. Although the tVOR is not studied as extensively as the rVOR, it is known that they use
the same pathways and are also modulated by the vestibular nuclei. However, the difference is that
the gain of the signal must be modified depending on the position of the tracked object (Walker et al.
(2010)).

1.2. Objectives
The main objective of this master thesis is formulated as follows: Implementing an optical flow based
stabilization algorithm that handles external disturbances for an active, binocular robot, which is inspired
by the functionality of the cerebellum. To specify this objective, it is divided in four subgoals:

• Building a cerebellar model, which is able to adapt itself by means of supervised learning with
optical flow.

• Implementing the cerebellum inspired model and optical flow in a real active binocular robot head.

• Improving the robot-head’s vision, by reducing the optical flow and/or motion blur detected, with
help of the cerebellar model.

• Comparing two different implementations of the cerebellum inspired model, to be able to draw
conclusions on their functionality for the robot.

For the first sub objective, we have to study in several cerebellar learning models currently existing
in the field. This model is required to adapt itself by the error of its actions, which is detectable as
optical flow by cameras. The combination of machine learning of low level controllers and vision is a
challenge by itself. It has become more popular recently, since robots need to adapt themselves more
and more to cope with man built environments. However, since this is a new research topic, it has not
been extensively studied yet.

The second goal states that the system should work on a real life robot, which imposes another
big challenge. Some could argue that in theory the difference between a simulated robot and a real
life robot is relatively small. However, many who have experience with this, know that this is not the
case. A real life robot has aspects like friction, motor and sensor noise and delays, which can cause the
system to show non-linear behavior. With a simulated robot, one can choose to ignore and simplify
these matters. Problems like communication delays between the robot and the computer are also an
issue. However, on the other hand, with a real robot with cameras, one does not need to simulate
exactly what it should see. Capturing a natural, non simulated scene, is necessary for the optical flow
generation.
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The third sub-objective stands for the effectiveness of the cerebellar model. Until the whole model
has been implemented, we will not know if the implementation will be able to sufficiently run on the
robot. Many tests of the cerebellar model beforehand, on simulation, and the optical flow detection
are needed. Afterwards, the improvement must be validated with various experiments, to see if the
performance will hold for different situations.

The last objective implies that two different implementations of the cerebellar model will show a
difference in performance of the vision stabilization of the robot. The challenge lies in the fact that a
conclusion can be drawn on their performances alone. For this, a estimation can be made of where one
would think that one model will perform better than the other.

1.3. The setup of this thesis
This section explains the structure of the chapters within this thesis. It will start with chapter 2 which
will explain the physiology of the cerebellum in section 2.1, in terms of its anatomy and its nerve
cell structure. Afterwards, the computational models of the cerebellum are mentioned in section 2.2,
where the learning within the cerebellum is explained and its role within the scheme of motor control
of the human body. Also, previous implementations of the cerebellar-inspired control in a robotic setup
are presented, which are evaluated in the preamble of 2.3. The remainder of that section explains
the adaptive filter theory of the cerebellum model, as well an adaptation of it, called the information
filter and the implications of using these cerebellar learning models on the available equipment for this
research.

Chapter 3, presents some technical specifics of an active binocular robotic head, which we used for
the implementation of the cerebellar models. Some previous work on similar systems are explained
in section 3.1. The details about the hardware, including the calibration information of the cameras,
motors and inertia sensor, can be found in section 3.2. The control architecture of the active binocular
setup and the visual processing, all actions done mostly from an external computer, are explained in
section 3.3. A comparison between the equipment used in this research, and the equipment in a similar
experiment is available as well.

Chapter 4, discusses the theory of artificial neural networks, which are the building blocks for the
cerebellar learning models. Section 4.1 presents several types of machine learning in general. Section 4.2
explains the different types of artificial neural network models, the basic theory of supervised propaga-
tion learning and some alternatives to that. The chapter ends with section 4.3, which presents how the
cerebellar model is built up by neural networks and how some choices have been during that process.

In chapter 5, the visual detection of motion in an image stream is researched . The theory about
feature recognition will be explained in section 5.1, where both feature detection and description are
addressed. Section 5.2 will pick up from there by explaining how optical flow can be approximated,
from both dense and sparse features in a scene. Finally, in section 5.3, several optical flow techniques
will be compared with each other on the active binocular vision setup itself, determining which one to
use for the final implementation.

The experiments and validation the final implementations will be explained in chapter 6, where
first section 6.1 will explain the implementation of the cerebellar models and optical flow within the
current control architecture of the robotic head. In section 6.2, the experiments conducted to validate
the cerebellar model, and the results are presented next to each other. A summary of the performance
of the cerebellar models can be found in section 6.3.

Chapter 7 gives an evaluation about research done for this master thesis, where in section 7.1 a
discussion is given on the results as well as every step in the process done to acquire those. Section 7.2
provides a conclusion on the degree of fulfillment of the research objectives given in the introduction.
From this, some future perspectives and recommendations for up-following research projects of the same
topic can be found in section 7.3. problems



2
Cerebellum Inspired Learning and

Control
This chapter explains the physiology of the human eye movement and the functionality of the cerebellum
within that framework. The cerebellum has an important role in regulating and adapting compensatory
eye movements. Researchers therefore believe that the cerebellum contains an internal model containing
the dynamics of the human body, and/or every object that needs handling. With this, it fine-tunes and
smooths out body movements for specific tasks, based on experience. It is known that stability problems
occur when the cerebellum contains a defect. As this has an immediate effect on eye movements, this is
an important aspect to investigate, in order to create a bio-inspired binocular stabilization mechanism
for a robot.

2.1. Physiology of the Cerebellum
Patients with cerebellar damage show a high deterioration in the performance of direct (on-line) con-
trol as well as planning (off-line) of movement. The cerebellum is said to be an integral part of the
regulation of posture maintenances and stabilization mechanisms, but what is its functionality within
these movements? And how are the anatomy, structure and connections of the cerebellum linked to
this specific role? These topics will be discussed in this section, first by explaining the anatomy of the
cerebellum and its surrounding areas. The network structure of its nerve cells and its signal processing
capabilities are explained afterward.

2.1.1. Anatomy
The cerebellum is located underneath the human brain and behind the brainstem, which can be seen
in Fig. 2.1. It actually consist mostly of a long thin plane of tissues, which is called the cerebellar
cortex. This layer is folded tightly, so that by appearance, the cerebellum has fine parallel grooves,
which are distinguishable from the rest of the brain. The cerebellum can be divided into three sub-
anatomical parts. The vestibular cerebellum plays a role in regulating balance and eye movements. It
also receives information of the visual cortex. The spinocerebellum plays a role in the body and limb
movements. The cerebro-cerebellum is connected with planning and evaluates sensory information for
action movements and cognitive functions (Mottolese et al. (2013)).

There are three types of input signals to the cerebellar cortex. The first are the somato-sensory
signals, which are redirected from the spinal cord to the cerebellum. Another is the input of the
vestibular nuclei, which receives information of the vestibular organ. From the Inferior Olive (IO), it
receives input by the climbing fibers into the cerebellum. From the cerebral (neo) cortex, it receives
information through the pons with its pontine nuclei. These signals originate from wide spread parts
of the neocortex, including the frontal, parietal, temporal and occipital lobes. It was initially thought
that the cerebellum is mostly in contact with the primary and secondary motor cortexes (from the
frontal lobe), however, since the influence of the cerebellum is noticeable in cognitive processes as well
(Ito (2006)), it has been established that it actually receives information from more sections of the
neocortex.

7
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Figure 2.1: The anatomy of the cerebellum and surrounding areas.
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The inputs to the cerebellum are processed by the cerebellar cortex and are than given to the rest of
the brain through its deep cerebellar nuclei. These are sent to different sections of the thalamus, which
is connected to different parts of the neocortex. Also with the outputs, it was initially thought that it
was mostly connected to the primary and secondary motor cortex. By virus transneural tracers, where
modified virus strains were used to trace the projections of the cerebellum to the brain. It could be
seen that the cerebellum makes connections to the frontal, parietal areas and the basal ganglia as well
(Bostan et al. (2013)).

2.1.2. Cell Structure and Signal Processing
If one zooms into the structure of the cerebellum, as can be seen in Fig. 2.2, its composition cannot
be compared to the rest of the neurons of the brain (D’Angelo (2010)). The two main neurons that
exist in the cerebellum are the granule cells (GC) and the Purkinje cells ( PC). GC are the smallest
neurons, which make it possible for the cerebellum to contain more than 2/3 of the total number of
neurons in the brain (40 billion in total). They receive input from the mossy fibers (MF), which consist
of information originating from all sensory organs (Proprioception, vision, vestibular etc.).

The PC are the largest type of neurons within the brain. They contain a large amount of dendrite
branches which are connected to many parallel fibers (about 200 000 connections). As they receive a
single spike signal from different parallel fibers at their branches, they generate a simple spike signal as
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output. This output has an inhibitory effect on the deep cerebellar nuclei (DCN), which also receive an
excitatory effect from the mossy fibers (sensory information).

The climbing fibers (CF) originate from the Inferior Olive located in the brain stem, and it is said
to be the teaching signal for the plasticity (learning) of the Purkinje cells, carrying the error signal of
the predicted state and the actual state Ito (2006). The adaption within the cerebellum is done by
changing the sensitivity between the PF/PC synapses, which is possible due to synaptic plasticity. As
the signals are being processed forward through the cerebellum, the PC (the post-synapses) will become
less sensitive to the signals that come through the PF by means of Long Term Depression (LTD). LTD
stands for the reduction in the efficacy of the synapses, which is caused by an external performance
measure which is activity depended. Long Term Potentiation (LTP) occurs within the cerebellar cortex
as well, which is the opposing mechanism to LTD. Motor learning within the cerebellum must be
reversible to prevent saturation.

Eccles et al. (1967) has established early on, that there are four principles identified from the
structure of the cerebellum and its signal processing. This principle still hold today:

1. The first is feed-forward processing, as the cerebellum has almost no recurrent connections within
its nerve cell system. Although it does have many recurrent communications with the other brain
parts, it does not apply for communication within itself. This enables fast signal processing within
the brain, which is an asset for smooth motor control.

2. The second is divergence and convergence, as 200 million MF are diverged to 40 billion GC, which
then converges to 15 million PC and finally to just 50 DCN. All this processing is done parallel
to each other, it also contributes to its high computational speed.

3. Modularity is the third principle, as the cerebellum can be divided in thousands of modules, which
all have a exact same nerve cell network structure but receive different input or outputs from the
other brain parts.

4. Finally, the last principle is plasticity, were many synapse combinations with the cerebellum can
be adapted by strength, which fine-tunes the relation ship between the inputs of the MF to the
output of the CF.

The next section will go more into this principle of plasticity, as it discusses several cerebellar learning
models.

2.2. Computational Models of the Cerebellum
The cerebellum has a unique and well known structure, therefore giving researchers the chance to
develop computational models of its capabilities. First there will be a focus on learning/performance
models of the cerebellum itself, where different mechanisms within its signal processing are linked to
its learning capabilities. Then, some examples are shown of how the cerebellum is connected to other
brain areas in terms of motor control.

2.2.1. Cerebellar learning models
In the course of years, several models have been developed, that simulate the learning process of the
cerebellum. In Fig. 2.3(a), a simple representation of this principle can been seen, as formulated by
Kawato (2009). In the previous section, it was explained that the cerebellum receives two kinds of
input, MF and CF, and gives out its output by the PC. The learning models presented here will look
mostly into the input signals, which are used to induce the supervised learning within the cerebellum.

One of the earliest learning models comes from the research done by Marr (1969) and Albus (1971)
a few decades ago. They have established that the changes in sensitivities with the PF/PC synapses is
due to the correlated firing of the PF and CF. It will occur when both the excitatory inputs of the PC’s,
from the PF and CF, will fire together within a certain time window. The effect will be the highest if
the CF are activated about 50-200 ms after the PF (Ogasawara et al. (2008)). Since the PC output is
inhibitory to the DCN, it will mean that the desensitizing of one synaptic output at a PF, will actually
increase its influence. Afterwards, the output of the cerebellum will be the weighted combination of
its input. Albus (1975) also created the cerebellar model articulation controller (CMAC) based on his
cerebellar learning model (see Fig. 2.3(b)). This neural network based controller is considered the basis
of reinforcement learning, which currently has its uprise within the machine learning community.



10 2. Cerebellum Inspired Learning and Control

Body and
World

Actual
State

+
Desired
State

-
Cerebellar Cortex

Sensory
Organ

Inferior
Olive

-

Error
Transform

Post-
Cerebellar
Network

Mossy
Fibers

Climbing
FiberSensory

Error

Transformed
Error

(a)

E
nc

od
er

fo
r

Jo
in

ts

PF/PC synapses

Output

Error Output

Parallel
Fibers

P
ro

pi
oc

ep
tio

n
M

ot
or

C
om

m
an

ds

(b)

Tr
an

sd
uc

er
(T

ap
D

el
ay

) PF/PC synapses

Output

Error Output

Parallel
Fibers

M
ot

or
C

om
m

an
ds

(c)

Figure 2.3: (a) The simple representation of the cerebellar learning model, adapted from the paper of Kawato (2009),
(b) the CMAC representation of Albus (1975) and (c) the adaptive filter theory according to Fujita (1982). According to
Dean and Porrill (2011), the transducer stand for a tapped delay line.

Since the early mentioned time window is necessary for LTD, timing synchronization models from
the cerebellum have become more apparent. Many activities require the limbs to be synchronized
relative to each other, where locomotion is an important example of this. The gait of walking depends
on how the legs are coordinating with each other, and must be adapted to different surfaces in order to
sustain stability (Takakusaki and Okumura (2008)). These theories suggest that LTD will occur if there
is a synchronization error between these mechanisms, where the CF plays a significant role. A study
by (Molinari et al. (2007)) showed that cerebellar patients did have difficulty with a rhythmic task, like
finger tapping, apposed to the control group. However, this does not mean that the cerebellum is not
necessary the location for this ’time-keeper’ functionality, as that some timing information did preserve
with cerebellar-damaged patients.

Physiological data shows that the simple spike firing from the PC encodes dynamic features of
movement. The internal model theory is therefore a supported functionality of the cerebellum as it
fits in the framework of the kinematic representation and supervised learning (Wolpert et al. (1998),
Imamizu et al. (2003)). An internal model is a term from field of the optimal control and is used for
prediction of a next world state. This internal model could represent the dynamics of the external world
or the system/body itself. It is therefore of great importance for the improvement of motor control in
terms of execution and planning. This would mean that the CF would carry the difference of what the
internal model represents, and what the actual real life interaction is.

In terms of eye movements, the eyes are the most important performance feedback for the supervised
learning. Instead of subtracting an actual state with a desired state, the retinal slip detected can be used
as motive for the adaption of compensatory eye movements. Graf et al. (1988) had proposed that the
climbing fiber carry information about retinal slip to the PC’s. However, retinal slip as a performance
measure for the eye movements are not necessarily the same. Frens et al. (2001) have done a study with
rabbits, where several visual flow stimuli were presented, so that the eyes can not compensate for all
of them. They found that the climbing fiber complex spikes do not change for different optical stimuli,
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with identical eye movements. They therefore concluded that the CF are encoding the performance of
the eye movement itself rather than retinal slip.

As the cerebellar signal processing is time depended, and its climbing fiber error imposes dynamical
systems, there have been theories about the GC function as well. Fujita (1982) has developed the adap-
tive filter theory of the cerebellum, implying that the GC layer acts out as a transducer (Fig. 2.3(b)).
This means that the signal entering the cerebellum will be transformed to fit the task’s dynamic re-
quirements. Dean and Porrill (2011) has implied that this must be a tapped delay line. A tapped
delay line means that the input by the MF will be delayed in several time steps. The cerebellum will
therefore not only receive the current version of a signal, but its previous versions as well. With this,
the cerebellar model is more able to determine the dynamics of the tasks it encounters.

2.2.2. Cerebellum’s influence on motor control
The previous subsection discussed mostly the inputs of the cerebellum, and how it manifests those
signals to adapt itself. Here, the output from the PC and the effect on the other brain areas will be
explained, in the form of motor control schemes.

Different theories about the cerebellum’s function in this scheme exist (see Manto (2012) for a
review). It has been said that the cerebellum acts like a comparator between different sensor signals
or that it is an on-line error corrector, which sends corrective motor signals to the muscle to smooth
out the execution movement. It has also been claimed to be a temporal pattern generator which is
used by the rest of the brain as a certain internal clock by Jacobson et al. (2008). However, it has
been noticed that these claims are less supported in the recent years. A widely supported hypothesis
about the role of the cerebellum nowadays, looking at the large amount of available recent papers is
that of an internal model (Wolpert et al. (1998), Imamizu et al. (2003)). An internal model is a term
from the optimal control terminology and is used either for prediction of a next world state, a forward
model, or the production of motor output given a desired state, an inverse model. This internal model
could represent the dynamics of the external world or the system/body itself. It is therefore of great
importance for the improvement of motor control in terms of execution and planning.

There are researchers who support the claim of the cerebellum being an inverse model, where it
generates motor commands with a desired state as input (Taig et al. (2012), Shidara et al. (1993)).
This feed forward motor command would be added upon an already generated feed backward motor
command. This can be seen in the study done by Kawato and Gomi (1992), as he had developed a
cerebellar feedback-error learning model, illustrated Fig. 2.4(a). The cerebellum is presumed to receive
a desired state through it GC and gives a feed forward motor command as output. The inverse model
is adapted by the feedback controllers’ motor command by the CF, therefore updating its model to
different situations.

However, recordings of the output of the cerebellum do not show signals similar to motor commands
(Horne and Butler (1995)). Miall and Wolpert (1996), Lisberger (2009) and many more, therefore
support the theory of the cerebellum being a forward model instead of an inverse model. A example
of a forward model representation, is the state-predicting feedback controller (SPFC) from the paper
by Frens and Donchin (2009) (Fig. 2.4(b)). This principle is based on the optimal control theory of
neuro-control of human movement by Todorov (2004). Here the cerebellar model receives the current
motor command, in order to make a prediction about the state a step later. The prediction can be
directly used by the feedback controller (like with the (smith) predictor architecture of Miall et al.
(1993)), but in the SPFC model a trade-off is made between the reliability of the current sensed state
and the predicted one, like in a Kalman filter. This state estimation is then used by the feedback
controller within the scheme to create a motor command for the muscles.

These were several suggestions and theories, based on clinical research or in vivo cerebellum record-
ings of the PC. In the up-following section, some implementations of cerebellar models for the control
of robotic systems will be explained.

2.2.3. Previous Cerebellum Inspired Robotic Implementations
Many robotics researchers have noticed the amount of research done on the cerebellum, and have tried
to implement its functionality within a robotic system. These cerebellum-inspired models have been
used for a variety of tasks. For instance, Eskiizmirliler et al. (2002) have implemented a model of
the cerebellum for the movement control of a single joint robot arm by simulating the structure of its
connections. McKinstry et al. (2006) created a cerebellar model which was detailed up to the neuron
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Figure 2.4: (a) The scheme of the cerebellar feedback-error learning model, adapted from the paper of Kawato and Gomi
(1992) and (b) the state predicting feedback controller (SPFC) on the right, modified from the paper of Frens and Donchin
(2009).
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Figure 2.5: Robotic setups used for the implementation of cerebellum-inspired control are (a) One joint arm robot
(Eskiizmirliler et al. (2002)), (b) Segway robot McKinstry et al. (2006) and (c) robotic eyes (Lenz et al. (2009)).

and synapse level and implemented this in a Segway-like robot. With visual cues, it was able to predict
the collisions with obstacles and acted accordingly.

Lenz et al. (2009) used an actuated robot eye to test out the VOR with a simulated cerebellum.
Carrillo et al. (2008) and Luque et al. (2011) have done this as well by implementing an adaptive
cerebellar spiking model into a brain-based control of a 2D actuated arm. This model was able to adapt
to different kinematics where corrective actions were required. A similar spiking cerebellar model has
been used on a virtual robot to learn a certain behavior, giving it only two wheels, two photo-receptors
and a tendency to go towards the light. Finally, Nassour et al. (2013) has used inspiration from the
cerebellum for a brain based control algorithm, where it acts as a comparator of sensory output (see
Fig. 2.5 for the implementations).

If we want to implement a cerebellar inspired model within a robotic setup for this master thesis, it
is wise to look at already existing implementations. These models have already been modified to fit the
hardware of their setups, therefore modifications needed will be kept to the minimum. In the preamble
of the next section, a trade off is made between these, to be able to choose one as an inspiration for our
implementation in a robot-head ourselves.
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2.3. Implementation of Adaptive Control with a Cerebellar
Model

In the previous section computational models of the cerebellum have been explained. Since the objective
of this thesis is to implement the cerebellums’ functionality into an active binocular vision system, it
is important to see which of these systems have been implemented into robotics before. To be able to
choose a cerebellar learning model for implementations, there are some criteria to consider:

• The model can be used in combination with vision and/or applied for simulating eye-movements.

• The model should be able to be implemented on the available hardware for this research.

• The model should have a good foundation from neuro-scientific research.

From the previous cerebellar-inspired robotic implementations, the research of Eskiizmirliler et al.
(2002), McKinstry et al. (2006), Lenz et al. (2009) and Iwadate et al. (2014) have been using vision in
combination with their cerebellar model. Only the model from the research of Lenz et al. (2009) has
been used for simulating eye movements. Carrillo et al. (2008) and Luque et al. (2011) used a spiking
cerebellar model to actuate their robot, however I feared that this will be too much of a strain for the
moderate strength of the computer used for this research. It is also a matter of complexity, since the
same computer will have to run the controller for the system, optical flow detection and the neural
network at the same time.

Finally, the model chosen should link with the cerebellar learning model as its role in the control
scheme of the robot. In terms of the structure of the model, all the implementations have looked
to some degree to the physiology of the cerebellum. However, in terms of their role in the control
scheme, the models of Eskiizmirliler et al. (2002), McKinstry et al. (2006) and Iwadate et al. (2014)
have implemented their cerebellar-model as it were the only control module within their robot. It can
be seen in Fig. 2.4, that it has been established that the cerebellum has a sidekick role next to the
main feedback controller within the human body. Luque et al. (2011) and Lenz et al. (2009), have
incorporated this principle in the control loop. Nassour et al. (2013) did not use the cerebellar model
for direct control as well, however, he uses it just as a non adaptive comparator between signals, which
is no longer a much supported role of the cerebellum, looking at the recent available neuroscientific
papers (see section 2.2.2).

There is one model which clearly fits each criterium, and that is the cerebellar model of the research
of Lenz et al. (2009), namely the adaptive filter. It has been used on active camera system as well, the
model’s complexity is suitable for implementation into the current available hardware. On top of that,
it has a good link with the neuroscientific research on cerebellar learning models, as they were inspired
from the work of Fujita (1982). Also, Dean and Porrill (2011) have made a good effort to connect their
work with clinical research.

The theory of the adaptive filter will be explained within this section, where we will go into the
details and a variation is proposed to pull it more towards the physiology of the cerebellum. Afterwards
some implications for the remainder of the master thesis will be formulated, which will explain the
necessary steps to implement this cerebellar model into the active binocular vision system.

2.3.1. The Adaptive Filter
It was Fujita (1982), who first simulated the cerebellum as an adaptive filter based on this research.
Many versions have emerged from this principle, from which the most famous work comes from Dean and
Porrill (2011). The vision setup that Lenz et al. (2009) used, was a monocular robotic eye with actuated
by four McKibbens’ pneumatic artificial muscles (PAM), where two were used for a pan rotation and
two for tilt. They used a custom designed micro controller board for the adaptive filter, which allowed
a separate control of each of the Degrees of Freedom (DOF).

The cerebellar model developed by Dean & Porrill can simply be explained as a two layered neural
network (Fig. 2.6(a)). The input u(t), which is the motor command to the actuator, comes in and is
transported by the parallel fibers (pi(t)) to the PF/PC synapses. According to the model, the parallel
fibers consist as a vector of:

p(t) = [u(t− 1), ..., u(t−N)]T (2.1)
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Figure 2.6: (a) The scheme used in the research of Lenz et al. (2009) and (b) the variation on adaptive filter for the
compensatory eye movements. sp and se stand for the sensory input of the proprioception and exteroception. u for motor
input, e for the error signal which drives the learning in the cerebellum, and z is the output of the cerebellum.

Which means each that both Dean and Porrill (2011) are seeing the granule cell as a tapped delay line,
so that old motor inputs can be used for the calculation within the model. With their implementation,
they were able to realize a sample frequency of 100 Hz and a tap delay size of N=200. The output
signal z(t) is the combination of pi(t) with the synaptic weight wi(t):

z(t) = p1(t) · w1(t) + p2(t) · w2(t) . . . pN (t) · wN (t) (2.2)
= u(t− 1) · w1(t) + u(t− 2) · w2(t) . . . u(t−N) · wN (t) (2.3)

Connected to the Purkinje cell dentrices, is the climbing fiber carrying an error signal (e(t)). This
error signal stands for an entity that needs to be corrected for. In the case of eyes, this indicates retinal
slip. The learning rule is formulated as follows:

w(t+ 1) = w(t)− γE[p(t)e(t)] (2.4)

where w is a vector of all the weights within the adaptive filter, γ is the learning rate and E[p(t)e(t)]
is the learning rate and E[p(t)e(t)] stands for the relation between p(t) and e(t).

A concern with the model of Dean and Porrill (2011) is the notion of the time delay tap. Also, the
large number of the tapped delay line seems quite extensive, as one only needs a handful to approximate
a dynamic system. Within the neuroscience field, there is little evidence that the cerebellum has a
temporary/recurrent mechanism that is able to do this.As a conclusion of section 2.1.2, one of the
principles of the cerebellum was its feed forward kind of way of processing. It has recurrent connections
to the rest of the brain, but not with itself. Moreover, the fact that the cerebellum exclusively receives
motor commands, and only that, is something that neurophysiology data tell otherwise. The reason
why the Purkinje cells are so large, is to enable them to reach as many data signals from the human
body as possible: state of the joints, the muscles, vestibular organ and so on. This connection of all the
signals within body and brain is an asset that will be focused on in my new variation of the adaptive
filter. In this thesis, this model will be called the information filter.

In Fig. 2.6(b), this alternative model is represented. As can be seen, instead of the cerebellar model
only receiving the motor command that goes to the robot, it will receive all (state) signals of the robot.
To keep a distinction, the signals will be denoted as exteroception (signals from outside the robot), and
proprioception (signals from inside the robot). Exteroception stands for the input received from the
cameras and inertia sensor and proprioception stands for the current states of the actuators and joints,
as well of other information resulting from internal processes.

2.3.2. Implications
Both the adaptive and information filter will be implemented into an active binocular vision system.
There are some implications to that choice, as the hardware that Lenz et al. (2009) used for their
implementations, has many differences with our setup. First of all, all the processing of the cerebellar
models and all the higher control functionality, will be done from the computer itself in our research,
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since a custom made control chip board is not available. This will result in some modification to the
original model, to be able to run it directly from our computer. The next chapter will go more into
detail about equipment available for our research and therefore to make a comparison with Lenz et al.
(2009)’s equipment.

To be able to implement the adaptive and information filter, there are two subjects that need
to be looked into. The cerebellar model is clearly built by means of artificial neural networks, the
computational variant of the connections within the brain. Chapter 4 is dedicated to its theory within
the supervised learning paradigm, and how to it can be used to build the cerebellar learning models.
As the neural network will learn for movement detected from its cameras, we have to look into optical
flow detection as well. Chapter 5 treats algorithms for feature detection and optical flow generation
and tests these algorithms on our vision setup.

After the building blocks of the cerebellar model are known, we will look how the adaptive and
information filter can be integrated into an already existing control architecture of a robotic head.
Finally, in order to validate them, several experiments are conducted which ignite optical flow in the
image stream from the cameras, which enables the learning of the two. Different disturbances will be
performed, were the models will be compared with each other and with a case without their influences.
Based on their performances, we can conclude if the objectives given in the introduction are fulfilled.





3
An Active Binocular Vision Setup

An active binocular vision setup is available for this research, with its corresponding control architecture.
It was initially used by PhD student Xin Wang for tracking an object and to create a depth map based
on convergence of the eyes (Wang et al. (2013)). This chapter explains the equipment and software used
for the implementation of the adaptive and information filter. First, some other work on active vision
stabilization are given, where comparable robotic platforms systems have been used. Our robot-head
is capable of recreating several human eye movements. The second section explains the details of the
vision setup and the existing software. Afterwards, a comparison is made of this setup, and the setup
used by Lenz et al. (2009)’s work.

3.1. Previous Work on Active Vision Stabilization
The need to actively stabilize a mobile robot’s vision has been shared by other parties, who have
attempted to mimic eye reflexes for vision guided robots. Kaushik et al. (2007) for instance, had used
a quadruple AIBO robot with a mounted active binocular vision system and an inertia measurement
unit (IMU) to stabilize the cameras (Fig. 3.1(a)). The IMU’s output was coupled with the actuators
controlling the orientation of the eyes, compensating for the accelerations and disturbances generated
by the robot’s locomotion in real-time. The study only shows the compensatory eye movements by the
actuators ,however does not show any quantized measurements of the camera’s image stabilization. It
difficult to establish if their algorithm is truly successful or not.

Ryu et al. (2009) had developed a feature tracker system, which can stabilize the image based on
IMU information of the robot’s system. The difference with the research of Kaushik et al. (2007), is
that their algorithm stabilize the images not by compensatory eye movements, but digitally. However,
they are using the actual images as a performance measure of their technique, by comparing the optical
flow in the image stream to detect improved stabilization.

(a) AIBO (b) Pneumatically actuated robot

Figure 3.1: The AIBO robot with an mounted active binocular vision system and an IMU, taken from the paper of
Kaushik et al. (2007). The camera with pneumatic artificial muscles for implementing a simple VOR, taken from the
paper of Lenz et al. (2009)

.

17
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Tilt 3Mxl
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(b)

Figure 3.2: (a) A photo of the active binocular vision setup used our research and (b) a representation of the same system,
with hardware descriptions.

To implement the opto-kinetic reflex (OKR), Labutov et al. (2008) have done some studies where
they combine both the OKR and vestibulo ocular reflex (VOR) into a binocular system. It calculates
the signal which drives the OKR based on the movement of the object it is tracking. It combines it with
the signal coming from the IMU with sensor integration to generate compensatory eye movement for
external disturbances with different frequencies. The study concludes that the VOR and OKR together
creates a more robust stabilization than the OKR alone, since the OKR has a slower response due to
the processing and VOR has less delay. However, these statements where only backed-up by movement
data and not by image stabilization measurements.

As said earlier, the cerebellum is said to be an important regulator of the VOR and OKR. It is
also well researched within the neuroscience community since it is the one task that the cerebellum
has almost direct influence on. Therefore, Lenz et al. (2009) have implemented a cerebellar inspired
model to create compensatory eye movements for a robotic monocular eye system (Fig. 3.1(b)). The
camera’s are actuated by McKibben’s artificial muscles, to make the system’s response similar to human
eye movements. However, these pneumatic actuators are difficult to implement into a compact system
when compared to electrical motors and on-off systems.

3.2. Hardware
This section goes into detail the important elements of the available active binocular robot, which are
the motors, the cameras and inertia sensor, which are their description, technical aspects and necessary
calibration processes.

3.2.1. Actuators
The robot head vision system contains four motors, where two motors are used to rotate the two
camera’s, and the other two are for the pan and tilt rotation of the lower side of the robot head. The
type of the motor is called 3Mxl, where its modules and firmware have been developed in the Delft
BioRobotics lab. They have a similar protocol as the Dynamixel actuators, however its uses Maxon
motors instead (Maxon Motor ag). Not only the actuation of the motor, but the PID control of the
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Actuators Encoder Resolution
(CPR)

Gearbox Ratio (GR) Dead Time (DT) [s] Kp Ki Kd

Left Eye 512 1:19 0.03 0.2 0.4 0.5
Right Eye 512 1:19 0.04 0.2 0.2 0.5
Tilt 32 1:4.4*60 0.1006 0.5 0.05 0.0
Pan 32 1:231 0.1144 1.5 0.1 0.0

Table 3.1: Technical aspects of the Maxon motors and the PID gains used by the 3Mxl modules used in the binocular
setup.

position, speed and torque is done by the 3Mxl modules located on the robot head.
In table 3.1, some technical aspects of the 3Mxl motors are shown. The encoder resolution (ER)

stands for the number of counts per revolution of the motor’s shaft. The dead time (DT) stands for
the time that the motor does not respond after a reference signal is given to follow. The gearbox ratio
(GR) stands for the ratio of the velocity of the input gear to the velocity of the output gear. Looking at
the two rotating camera motors, they contain the most resolution of the four motors and the smallest
dead time, however their GR is low. The pan and tilt motors do have a larger GR, therefore capable
of handling more force. However, their DT is higher and encoder resolution lower, making them less
useful for fast and delicate tasks as the camera motors.

The PID control performed by the firmware of the 3Mxl modules has to be tuned with the values
The DT, ER and GR can say much about the systems’ response. The lower PID tuning’s values can
be found in table 3.1, and the theory behind it in Appendix A.1.

3.2.2. Cameras
Two cameras have been mounted on top of the setup, connected to the two rotating motors. These
provide the required image stream to the software, as vision drives this robot’s control. The two cameras
consist of two simple camera modules, which have a max resolution of 640 x 480 pixels, however now
downsized to 320 x 240 for faster processing. The modules can reach a speed of 30 frames per second
[fps].

The camera must be calibrated at least ones in its lifespan. This is done tagging multiple pictures
containing a checkers board in different positions and orientations, with a corner detection utility
(Fig. 3.3). Each image should have a different rotation and translation matrices in Mext for each
picture. However, the extrinsic matrix should be the same. By calibrating, the system is told how to
interpret the image’s coordinates to a 3D model and what its relative coordinate system is.

Where u and v are the image coordinates and X, Y , Z the 3D coordinates of the checker board in
the real world, with q as rotation. Mint is the intrinsic matrix and Mext, the extrinsic matrix:

Mint =

fku ρ u0
0 fkv v0
0 0 1

 (3.1)

Mext =
(
r1 r2 r3 T

)
(3.2)

where f is the camera’s focal length, ku and ku stands for the pixel size in distance and u0 and v0
stands for principle point (middle of image). r1, r2 and r3 stand the columns of the rotation matrix R
and T for the translation matrix.

An effect that also needs to be taken into account for calibrating the cameras is distortion. This is
a phenomenon which is created by the lens of the camera. As a result, it causes straight lines in the
scene to not appear straight on an image. The two types of distortion to be calibrated are the radial
and tangential. Radial distortion can be corrected by the following formula:

unew = uold(1 + c1r
2 + c2r

4 + c3r
6) (3.3)

vnew = vold(1 + c1r
2 + c2r

4 + c3r
6) (3.4)

where c1, c2 and c3 stands for the radial distortion coefficients. uold and vold stand for the old pixel
positions and unew and vnew for the new position after transformation. The tangential distortion in the
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Figure 3.3: Schematic drawing to illustrate object transformation from real world to origin and to image plane. Mext

stands for the extrinsic matrix and Mint for the intrinsic matrix. X, Y, Z stand for the 3D coordinates of the object,
and X′, Y ′ and Z′ stand for the same coordinates in respect to the lens and image alignment. u and v are the image
coordinates.

Accelerometer Rate Gyro Magneto Meter
Full Scale 50 [m/s2] 300 [deg/s] 5 [a.u.]
Bandwidth [hz] 30 50 10
Default sample frequency [hz] 100 100 100
Default Baudrate [bps] 115200 115200 115200
Noise 0.013 [m/s2] 0.007 [rad/s] 0.001 [a.u.]

Table 3.2: Technical specifications of IMU sensor of the type MTi, from motion technology

image is corrected as follows:

unew = uold + (2p1uoldvold + p2(r2 + 2v2
old)) (3.5)

vnew = vold + (p1(r2 + 2v2
old) + 2p2uoldvold) (3.6)

where p1 and p2 ar the tangential distortion coefficients. These coefficients can be stored in matrix
D = (c1, c2, p1, p2, c3)T .

The calibration is done by the OpenCV package for camera calibration. The results of the process
is the following for the left camera and right camera respectively :

M left
int =

269.1600 0.0 162.2064
0.0 265.5488 115.7278
0.0 0.0 1.0

 Mright
int =

273.8821 0.0, 160.6790
0.0000 269.8726 117.0881

0.0 0.0 1.0

 (3.7)

Dleft =


0.0713
−0.1771
−0.0010
0.0004

0.0

 Dright =


0.0572
−0.1494
−0.0018
0.0003

0.0

 (3.8)

The calibration tool does offer the option to do a stereo calibration of the two cameras, therefore
also providing a rectification matrix. However, the robot will not be used to determine the 3D position
of the object its following for this research. A rectification matrix was unnecessary, therefore made
it possible to calibrate both cameras separately. This resulted in better calibration approximation for
both cameras.

3.2.3. Inertia Measurement Unit
The system has an inertia measurement unit (IMU) to measure its 3D rotational velocity and orientation,
linear acceleration and gravitational forces (Fig. 3.4). This sensor is used for various of fields of research
in robotics, aerospace, autonomous vehicles, bio mechanics, and motion capture. In the binocular vision
setup, it is mainly used to align the camera motors to counter the rotation of the neck motor. The
specifications can be found in table 3.2
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Figure 3.5: The angular velocity, sensed by the Xsens IMU on the robot-head during a neck motor perturbation.

The sensors within the IMU, which are the accelerometers, gyroscopes and magnetometers, are
calibrated by means of a linear physical sensor model. The theory behind this model as well as the
obtained parameters are found in Appendix A.2. A plot of its response during a rotational neck
disturbance can be found in Fig. 3.5.

3.3. Software
Many aspects of the active binocular setup’s processing are done by the computer it is connected to,
which means it is not fully embedded. This section explains the software and control that has been
provided as a base for this master thesis research. It consists of a tracker, which is able to detect an
augmented reality marker in 3D space in the image streams that the cameras provide. A higher PID
control module is used to be able to follow this marker and keep it in the center of its view. These
modules are combined by means of an open source operating system for robotics, which all are explained
in the following section.

3.3.1. Marker Tracker
To be able to follow a marker within the image stream that the cameras provide, an existing vision library
for augmented reality (AR) purposes is used called ARToolKit. The software uses a previously specified
marker (fig: 3.6), from which it can calculate its 3D position from the camera and its orientation. With
this, a 3D virtual object can be projected upon the marker in the image, creating a connection of that
virtual robot with the real world.

In the binocular setup, the 2D position of the center of the marker on the image must be provided.
This is done by first using the camera (extrinsic) matrix to get the relative 3D position of the center axis
of the lens and camera sensor. Then the 2D position of the marker can be calculated by the following
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Figure 3.6: Marker used for tracking task and the detected off center pixel distance

formula:

ue = X ′

Z ′
− uc (3.9)

ve = Y ′

Z ′
− vc (3.10)

where ue and ve are the horizontal and vertical coordinates of the marker (off-center pixel distance),
uc and vc are the coordinates of center of the image, X ′, Y ′ and Z ′ are the 3D coordinates of the marker
after transformation by the extrinsic matrix (see sec. 3.2.2). The coordinates of the marker are used
for the higher control module, which are explained in the next section.

3.3.2. Pursuit Control
From the tracker, the off-center distance of the marker within the image can be detected. This distance
is used as error signal for the PID controllers, which role is to minimize this error (Fig. 3.7 a.). There
are two PID controllers for each camera actuator, which respond to the horizontal element of the off
center distance (ue,left and ue,right ). They give out a goal speed to the motor (ω∗e,left and ω∗e,left),
which response accordingly. The difference of the position of the left and right camera drives the PID
controller of the neck. This is to ensure that the angle of the cameras are similar and the robot head
is faced to whatever it is looking at. The tilt motor is driven the same way as the camera motors, only
now with the vertical element of the off center distance (ve). The control schemes of the pursuit can be
found in Fig. 3.7(b).

The PID values of the tracker had to be re-tuned, due to the difference of processing speed per
computer. The higher PID controllers have been tuned by means of the Ziegler and Nichols (1942)
method (see table. 3.3a). This is done by a top down approach: first the camera motors are tuned,
then the tilt and finally the pan motor. The proportional gains (Kp) of the actuator is increased until
it reaches the ultimate gain (Ku). This can be recognized if the motor keeps on oscillating without
damping. From this oscillation, the period (Pu) is measured as well. From these two values, the
proportional (Kp), differential (Kd) and integral (Ki) can be calculated depending on the control type
(table. 3.3b). After implementing these control types, it has been chosen to drive the left, right camera
and the tilt motors with a PI controller and the pan’s motor with a P controller.
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Left Cam 0.0151 0.0254
Right Cam 0.0151 0.0254
Tilt 0.0137 0.0208
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Figure 3.7: (a) The robotic setup with the direction of the goal speed and (b) the control schemes of the robot responding
to the tracking system.

Control Type Kp Ki Kd

P 0.50Ku

PI 0.45 Ku 1.2 Kp
Pu

PID 0.6Ku 2KpPu
KpPu

8
(a)

Ku Pu [sec] Kp Ki

left eye 0.0335 0.71 0.0150 0.0254
right eye 0.0335 0.71 0.015 0.0254
Tilt 0.0305 0.79 0.0137 0.0208
Pan 0.6 5 0.27 0.0

(b)

Table 3.3: (a)Ziegler and Nichols (1942) method’s formulas and (b) the resulting ultimate gain (Ku), it’s oscillation period
(Pu) and the resulting proportional and integral gain (Kp and Ki) from the robotic setup.

3.3.3. Robot Operating System
The Robot Operating System (ROS), is an open source environment designed for robotic platforms
(Quigley et al. (2009)). It contains a modular design, and is distributed by many people all over
the world. Its contains a large community of fellow robotics engineers, keen on helping and sharing
knowledge with each other. The core components of ROS consist of the packages and the communication
between them. Each element of the robot can be contained by a software module, the package. This
enables the user to easily add and remove elements of the control of the robot. The packages can send
messages (topics) to the ROS environment or subscribe to a messages stream.

ROS can be seen as the glue which binds all the functionalities together within the software of the
active binocular vision setup. In Fig. 3.8, the package and topic structure of the binocular setup can be
seen. Here the robot sends out its current state of its actuators to the higher control, which on his turn
uses the current 2D position of the marker. This position is retrieved by the tracker module, which uses
the image stream provided by the cameras. The IMU also contributes to the pursuit control module by
sharing its knowledge about the current angular velocity and linear acceleration.

Another benefit of ROS, is the ability to easily connect those modules to a simulation of the robot-
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Figure 3.8: Structure of the ROS packages of the binocular eye setup.

head. With a simulation, different concepts of the cerebellar model can be tested without doing harm
to the actual hardware. Testing ideas before implementing them in real life improves the safety of
the experiments and provides an extra step within the gap between theory and implementation. See
Appendix B for a detailed description of the simulation.



4
Simulating Cerebellum with
Artificial Neural Networks

When one looks at the structure of the cerebellum and figures out a way to simulate it computationally,
similarities are found with artificial neural networks. This chapter explains the theory of these artificial
neurons and their connections, as they are used to simulating the cerebellar model within our active
binocular vision setup. By implementing a supervised learning algorithm, the setup is able to predict
motion within its image stream and respond to it. First, the context of machine learning is explained,
as many varieties of learning exist, and to explain why a neural network would be suitable with the
cerebellar model. Then several structures of the technique are explained, as well as the adaption of
the connections within the network. Finally, the structure of a cerebellum inspired model in our active
binocular vision system is presented.

4.1. Types of Machine Learning
One of the most important aspects which sets humans apart from robots, is their ability to adapt en
learn. Every time one is introduced to a new environment or a new tool, the brain makes its connections
in its neurons and adjusts their synaptic weights, to learn how to deal with these new encounters. Since
robots are starting to emerge in our everyday lives, they need to have this ability as well, in order for
them to really participate in both cognitive and motor tasks. The field that is focused on this aspect is
called Machine Learning, and consists of all kinds of learning techniques involved.

Learning in general can be divided in three divisions: supervised, reinforcement and unsupervised
(Russell and Norvig (2010)). In supervised learning, a ’teacher’ guides the ’student’ the entire way,
explaining every step to achieve its goal. In reinforcement learning, the student gets a reward from
the teacher, after he has correctly accomplished a task. With unsupervised learning, there is simply
no teacher available and no feedback is provided, so the student must establish for himself if he did
something correctly.

As for applications within machine learning, supervised learning is mostly applied for function
approximation, from which the direct input and output are given as a training example. Although this
type of learning is quite rapid, the time for preparation of the training data is quite extensive.

Reinforcement learning is done when the exact input and output are not known, but only the
task that the system needs to achieve (Barto (1998)). An application made within the same Delft
BioRobotics Lab is LEO, a robot which is able to learn himself how to walk, by giving it a reward if it
achieves to move forward in any kind of way (Schuitema et al. (2010)). The downfall of reinforcement
learning is that it takes longer to reach a possible solution than with supervised learning.

Unsupervised learning is by far the most difficult type of learning and is still found to be unsuitable
for many tasks still. Clustering is an application where this type of learning is mostly used for, where it
detects certain groups within data without any prior knowledge, therefore only relaying on the statistical
properties of the input’s data.

Within the human brain, Doya (2000) has established some types of learning methods for different
brain areas. He claims that the cerebellar cortex executes unsupervised learning, which is able to
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Figure 4.1: (a) A single layered network where the input and output layer are connected to each other by its nodes, with
weighted synapses (wi,j). (b) is an enlarged neuron with summation of weighted inputs (ai) and activation to output (au

and (c) types of activation-function.

recognize a task and chose the appropriate architecture for it. The basal ganglia practices reinforcement
learning, since that brain area is responsible for the fabrication of dopamine (the reward function for
the human body). The cerebellum learns supervised, as it contains the internal models of the body
and environment and has a big task within the fine-tuning of processes. Since this research focuses on
implementing the functionality of the cerebellum, supervised learning is going to be further investigated.
This is done by the most applied supervised learning technique, namely artificial neural networks (ANN).

4.2. Theory of Artificial Neural Networks
Artificial Neural Networks (ANN) are the computational variant of neuron’s structure within our brains.
They are used for various functionalities in the field of computer vision, speech recognition and more.
Within system control engineering, they are also becoming more common, as they can be trained to
predict the next possible consequence of the controllers actions within the loop.

4.2.1. Types of common Artificial Neural Network Models
Artificial neural networks are developed inspired by the connections within the neurons in the brain. It
consists of several nodes which are connected to each other by weighted synapses (Russell and Norvig
(2010)). The network has several layers and at least has one input and one output layer, from which
an example can be seen in Fig. 4.1(a). The input that a neuron receives is the weighted combination of
all the signals. On top of that, each node within the hidden and output layers contains an activation
function, which means that a certain node only ’fires’ an output if some threshold is received. The
formula for that goes as followed, given the node in Fig. 4.1(b) as reference:

aj = g(inj) = g

(
n∑
i=0

wi,jai

)
(4.1)

au = g(in) = g(w1a1 + w2a2 + w3a3) (4.2)

where ai and aj stand for the output signal of the ith and jth node, wi,j for the weight applied to
the output signal that goes from the ith node to the jth node. There are several activation functions
available, where the four visualized in Fig. 4.1(c) are the most used ones.

Many types of neural network exist, varying in size, connections or processed signals. A network
with only one input and output layer is called a single layered perceptron (Fig. 4.2(a)). This type of
ANN is mostly used as a classifier for linear functions and it is suitable for on-line learning due to fast
processing. However it was not able to recognize many types of patterns.

The multilayer perceptron (MLP) is the extension of the single layered perceptron, and is able to
learn non linear functions due to its added hidden layer (Fig. 4.2(b)). These added hidden layers have
proven to be of much use within the field of computer vision, as certain aspects of the scene can be
identified, analyzed and finally classified to a specific category. Within the layers of the MLP, the
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Figure 4.2: A representation of (a) a perceptron and (b) a multi layered perceptron.

hidden layer would extract the specific features (interesting objects) out of an image of a scene, from
which the scene can be classified in the output layer. If the number of hidden layers are increased, the
scene’s features can be decomposed even more (Ciresan et al. (2012)). Such a multi-hidden layer MLP
is also known as a Deep Neural Network (DNN).

There are several other ANN structures to consider. A recurrent network is an MLP, where the
output of the hidden layers are fed back to the same neuron in the next time step (Fig. 4.3(a)). This
enables the network to have short term memory, and makes it suitable to interpret written sentences for
instances. The more recurrent connections, the longer those sentences can be. Another type of ANN is
the time delay neural network (TDNN), which receives not only one input, but also the past versions
of that signal (as can be seen in Fig. 4.3(b)). The TDNN is able to recognize an input sequence, for
instance speech recognition, or is able to reproduce one as a time series prediction. As last, the radial
basis function network (RBFN) is explained, which can be seen Fig. 4.3(c). This network has just two
layers, from which the hidden layer contains a radial basis (Gaussian) function as activation function.
Also, only the weights from the hidden layer to the output layer can be tuned and the hidden layer’s
radial basis functions are tuned in its parameters. RBFN’s are used for various applications, varying
from classifiers to time series prediction.

To push even closer to the actual simulation of neurons within the brain, spiking neural networks
(SPNN) extends that limit even further. The difference with MLP, is that their neurons do not fire
at each cycle of the execution, but only when they have reached enough signals themselves, as their
’membranes’ electrical charge has reached a certain threshold (Vreeken (2002)). Their signals are more
similar in how the human brain processes information, which are short electrical bursts instead of a
continuous stream. The principle of the SPNN can be used for almost all the information processing
tasks that ordinary ANN are applied for. For now they have mostly been implemented to simulate part of
the central nervous system of small insects and animals for computational neuroscience. Although their
potential for engineering purposes are great, they have not been applied due to excess of computational
power needed to simulate the synapses, therefore have only been applied on a small scale. Recently
more and more research has been done on the uses of SPNN, for simulating the cerebellum for motor
control(see section 2.2.3) or robot control in general (Batllori et al. (2011) and Krichmar (2013)).

4.2.2. Back Propagation
The most used supervised learning algorithm for ANN, is error back propagation (BP). What BP does
is to calculate the errors at the output of the neurons, adjust their weights and propagate the error back
into the network to adjust its hidden layers weights. This is usually done for a particular training set
of data, containing input and expected output of the network. BP is a first order gradient method and
is applied by the following chain rule which calculates the influence of each weight (wij) to the error of
the network (e):
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Figure 4.3: A representation of (a) a recurrent neural network, (b) a time delay neural network and (c) a radial basis
function network.

δe

δwij
= δe

δr

δr

δau

δau
δwij

(4.3)

where r is the weighted sum of the neurons inputs, without going through the activation function
(au = g(r)). If each partial derivative is known and the above chain rule can be solved, that value can
be used in for a gradient decent rule to update the weights:

wij(t+ 1) = wij(t)− β
δe

δwij
(4.4)

where β stands for the learning rate. This can be done for several epochs, which stands for the
amount of times that the train data set is used for the learning. However, choosing the learning rate
is of great importance and should be done with care. If it is set too low, the network takes too long
time to converge to a certain value. If it is set too high, the learning process becomes be unstable and
it might even learn the wrong solution.

To deal with this problem, adaptive learning rate methods have been proposed for learning of an
ANN, from which resilient back propagation (RPROP) is the most used one. RPROP is developed
by Riedmiller and Braun (1993) and is a local adaption technique, where it is only aware of the local
gradient information of the weight itself. This is apposed to having global knowledge about the entire
network.

The adaption rule for RPROP goes as follows:

∆w∗ij(t) =


β+ ·∆w∗ij(t− 1) if δe

δwij
(t− 1) · δe

δwij
(t) > 0

β− ·∆w∗ij(t− 1) if δe

δwij
(t− 1) · δe

δwij
(t) < 0

∆w∗ij(t− 1) else

(4.5)

where 0 < β− < 1 < β+ (4.6)

Where the value of the weight update (∆w∗ij), is depended on sign change of the partial derivative
of the weight. This is an indication that the last update performed on that neuron was too heavy and
that the updated value needs to be decreased back with a factor β−. On the other hand, the update
value is increased with β+ if the local minimum has not been reached yet. Subsequently, the update
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Figure 4.4: (a) A cascade architecture for the Cascade Correlation training adapted from Fahlman and Lebiere (1989)
and (b) the evolving topographies of Neuro-evolution

value is added to the current value of the neurons weight in the following manner:

∆wij(t) =


−∆w∗ij(t) if δe

δwij
(t) > 0

+∆w∗ij(t− 1) if δe

δwij
(t) < 0

0 else

(4.7)

∆wij(t) = wij(t) + ∆wij(t) (4.8)

With RPROP, no initial parameter of the learning rate has to be chosen beforehand, making it more
robust than ordinary BP. It is therefore more able to be applied for ANN used in dynamic systems,
where an adaptive learning rate is necessary.

4.2.3. Alternative Training Methods
Although back propagation methods are the most commonly used training algorithm for ANNs, the
learning abilities can be improved even further. Arguments can be given that are they are un-biological,
since there is no evidence that the brain executes error back propagation. Subsequently, there are usually
no exact input and wanted output training sets available from which the neurons can learn. Therefore,
some alternative ways to train ANN are explained here. Mazzoni et al. (1991) had proposed a method
for ANNs to learn by reinforcement learning, as it is based on the update rule proposed by Barto (1998).
Every neuron within the network receives a reward signal which is depended upon how close the overall
output is to the desired value. This learning rule is formulated as follows:

∆wij = ρr(ai − pi)aj + λρ(1− r)(1− ai − pi)aj (4.9)

r = 1−
(

1
K

K∑
k=1
|a∗k − ak|

)1/n

(4.10)

where ρ and λ are constants, pi is the possibility of the neuron’s firing, K is the amount of output
neurons and r is the reward signal. This learning rule therefore does not need to back-propagate the
exact error back into the network, however, it still needs an exact desired output of the total network
to be able to learn.

Another method to train a neural network is by building up its topography from scratch. This
is called cascade correlation and developed by Fahlman and Lebiere (1989). The principle is that the
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training begins with a minimal network, and adds one new hidden neuron at the time, therefore creating
multiple layers. First the minimal network, which is fully connected to each neuron, is trained with a
conventional learning method, until the error of the output and the desired is minimized. Afterwards,
candidate units are created, which are connected with all the input and hidden layer neurons but not
with the output layer. All the links to the candidate unit are trained, until one candidate unit has
reached the best with the error of the entire net. This particular unit is chosen to be added to the
ANN, and the weights leading up to it are frozen in value. This process is repeated until the overall
error of the network has improved enough, and the final network gets a structure similar to Fig. 4.4 (a).

Cascade Correlation modifies the actual structure of the ANN, however there is a method which
takes this aspect a step further: Neuro-evolution (Stanley and Miikkulainen (2002)). Evolutionary
algorithms are used here, to produce a generation of different ANN structures and connections, train
them and submit them to a fitness function (Fig. 4.4 (b)). This fitness function is based upon the
performance of the neural network within its task. This does not necessary has to be its direct output,
but its effect on the task is sufficient. The structures which perform the best on the fitness function,
are selected from the pool and their aspects are used to create new offspring for the next generation.
This generation is also trained and goes trough the same process, until an optimal structure of the
neural network can be found. This method is based on an overall fitness function, which applies that
these neural networks can be more widely used than the conventional supervised learning algorithms,
which need an exact input and output pair in order to function. Therefore, evolutionary ANN have
been applied within artificial life and evolutionarily robotic applications (Hülse et al. (2004)).

4.3. Cerebellar-inspired Model as an ANN
Now the theory behind artificial neural networks have been explained, the implementation of the adap-
tive filter from Dean and Porrill (2011) and its variation, the information filter, is described in this
section. From their description and the current knowledge about ANNs, the cerebellar inspired model
is built by means of the Fast Artificial Neural Network library (FANN). This thesis’s objective is to
this model run (close to) real time with the robot, so the ’fast’ attribute is important to have. First
the building block of the model are explained, from which afterwards some considerations are pointed
out, which needs to be addressed in the later chapters.

4.3.1. Choices and Considerations
There are some choices and considerations to discuss regarding the implementation of the adaptive and
information filter. First of all, although the model is described within the paper of Lenz et al. (2009)
as a two layered network, which is basically a perceptron, from theory it is known that it is not be able
to handle non-linear problems. Later with the experiments, this needs to be addressed too for testing
this principle. It suspected that it is not be able to handle a linear disturbance, which is a non-linear
transformation to the motors.

Also, this the reason for the use of the FANN library for the development of the models. The
formulas given in the paper of the adaptive filter are not extensive in terms of a ANN, therefore, it
seems quite straightforward to implement them. However, there was no source code was made available
and Lenz et al. (2009) were using a custom made chip board for processing. Therefore, it seemed more
wise to use a library which has been developed and optimized for fast computation, also considering the
time frame of this research. Choosing the learning method to be RPROP, however, is a decision based
on how the adaptive filter is described in the literature. When the different networks of the adaptive
and information filter are compared with each other, it is more fair to compare them containing a
similar structure. With cascade or evolutionary training, these topographies would change and differ
dramatically from each other which is not useful for the comparison.

Another is the indirect learning problem, discussed in section 4.2.3. It has been referred to as the
distal supervised learning problem by Jordan and Rumelhart (1992). It stands for that the learner, does
not know its desired output to be trained on, until it has been exposed to the outside world and its
effect is known. This issue complicates the supervised learning as the exact input and output training
set can not be determined straight away This has been de reason why I looked into alternative training
algorithms to circumvent this issue. However, all of them still need an exact training set which had to
be determined by its user. For both the cerebellar models, the training set will therefore be handled in
the same conventional way, but the distal learning problem will be noted for discussion.
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Subsequently, the type of motor input can also be open for debate. Now, the goal speeds originated
from the higher PID controllers are used, but the actual voltages given by the lower PID controllers in
the 3Mxl modules can be considered as well. Using the goal speeds from the higher control puts the
cerebellar model on the same level as them, as they both use information from the cameras and the
filters’ output is added to the pursuit signal. These signals can also be separated, which can increase
the performance if the adaptive or information filter receives motor input without its influences. To
give this argument some back-up, the experiments dedicate some small devotion to this as well.

It would seem to be benefit to stay true to the biology as close as possible. However, using a
spiking neural network for simulation is not done even though its closer to the actual computation in
the brain. SPNN are computationally heavy on a conventional computer. Since three ANN are running
and learning at the same time, together with all the functionalities within the binocular robot, it would
be unfortunate if the computer’s processor on which it runs, is not able to handle excess of tasks. The
second generation ANN type is used to simulate the structure of the cerebellum for this research.

4.3.2. Building The Model
In the adaptive filter theory (Lenz et al. (2009) and Dean and Porrill (2011)), the motor input was
used as an input for the network with tap delays. This indicates that they have used a TDNN type
of network. This indicates that the neural network receives input in form of a time series, so it knows
the history of the motor commands given to the system. Its output signal is given to the control of
the robot, from which the visual detected motion of the image (emotion) is the signal which drives the
learning within the model. See section 2.3.1 for the formulas from the paper of the adaptive filter.

In Fig. 4.5, the schematic representation of the to-be-implemented adaptive filter is seen. The motor
inputs (u) which is given to the robot by the controller, from the current time-step (k) and six time-
steps back. This is due to a tapped delay line, from which its developers believe it resides in the granule
cell layer of the physical cerebellum. u is a vector which contains the values of both the camera motor
(uleft, uright) and the tilt motor input (utilt). The adaptive network contains only two layers, from
which the input layer contains Gaussian activation functions and the single output layer consists linear
activation-functions. The inputs are given to an ANN, where the weighted combination of them is the
output of the cerebellum. The training of the weights w1..w6 is done by RPROP. Although from the
research from Lenz et al. (2009) is not clear what learning algorithm they used, they did say that it was
depended on the sign of the error. Since RPROP is driven by the sign of the error’s gradient, it seems
to come close to their idea of learning algorithm of the cerebellar model.

To prepare the training data with the exact input and desired output it is important to consider
standardizing the data within that set (Sola and Sevilla (1997)). The data’s values should stay within
a range of [-1, 1], in order for the ANN to be able to process it. The data would have been normalized
apposed to each other and used for training, and rescale the output back to its original order of
magnitude. In practice it is shown to be a benefit to the ANN’s learning and convergence speed and
the FANN library provides this functionality as well. However, since the input and output data already
consist within a range of [-1 1] (see Appendix C), this made little influence for the learning speed. In
theory, any scale difference within the data would be account for by the weights of the neural network.
Since it does not make a significant difference in learning for our cerebellar models, the training data is
not normalized. Instead, a short check is conducted, to monitor if the training data have stayed within
the boundaries.

The information filter is the variation of the adaptive filter made, but pulled closer to recent neu-
rological research. There are some conflicting aspects with the adaptive filter theory and the research
about the cerebellum from a neurological point of view. First af all, the cerebellum contains all the
information from the brain and the body’s senses not only the motor input to the muscles. On top
of that, the cerebellum is not indicated to have recurrent connections (see section 2.1.2). This is the
reason for the information filter to only receive information of the motor input, the state sensors, the
IMU and vision from just one time step k. In table 4.1 shows the exact input of the information filter,
from what type of signal, which direction and corresponding symbol. In Fig. 4.6 as well that the rest
of the information filter’s structure is the same as the adaptive filter’s structure.
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Figure 4.5: The implementation of the adaptive filter model of the cerebellum for the active binocular vision setup
(R). The network receives the three motor inputs to the setup’s actuators ( u = (uleft, uright, utilt)t), for the cur-
rent time step (k) and the six before that (k − N), so 21 in total. After computation with the 21 tunable weights
(wn = (wn,leftwn,rightwn,tilt)t) is given to the control of the robot, from which the visual detected motion of the image
(emotion) is the signal which drives the learning within the model.
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Figure 4.6: The implementation of the information filter model of the cerebellum for the active binocular vision setup (R).
The network receives signals from the controller , the state sensors , the IMU and vision as the motor input u, position φ
and velocity ω of actuators, rotational velocity ωIMU and linear acceleration aIMU , and position of the marker m and
detected motion in the image o After computation with the 21 tunable weights (wn = (wn,leftwn,rightwn,tilt)t) is given
to the control of the robot, from which the visual detected motion of the image (emotion) is the signal which drives the
learning within the model.
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Sensors value direction symbol
Control Motor input Left uleft

Right uright
Tilt utilt

State Position Left φleft
Right φright
Tilt φtilt

Velocity Left ωleft
Right ωright
Tilt ωtilt

IMU Rotational Velocity X ωIMU
x

Y ωIMU
y

Z ωIMU
z

Linear Acceleration X aIMU
x

Y aIMU
y

Z aIMU
z

Vision Marker Position u (left) mu,left

u (left) mu,right

v (both) mv,both

Optical Flow u (left) ou,left
u (left) ou,right
v (both) ov,both

Table 4.1: The input signals of the information filter displayed in Fig. 4.6, with the sensor they originate from, their type
and direction and the symbol used.





5
Visual Detection of Ego-Motion

In the previous chapter, the structure of the cerebellar model as an artificial neural network was ex-
plained. The learning signal which adapts the weights of that model, is based on the detection of
ego-motion within the image stream from the cameras. Self-motion stands for the movement that the
robot conducts on itself, not the movement of other objects within its field of view. In the physiology of
the human brain, the cerebellum does the same uses retinal slip as a learning signal to adapt the VOR.

To detect motion within an image stream, one needs to compare the change of pixel intensity from
two sequential frames. This can either be done pixel by pixel, or by matching several interesting points
which each other. Therefore, some basic algorithms for feature detection are explained, from which the
movement, also called optical flow, can be derived from one frame to the next. There are two main
aspects to hold into account for feature recognition and optical flow, which are repeatability and speed.
Repeatability stands for the ability to detect the same feature in a scene with different configurations,
where speed stands for the computational effort to detect them. Although in an ideal world, one would
like to have a good performance of both, however in reality a trade off must be made for both of these
items. By investigating the theory behind ego-motion detection, it will becomes more clear of what
that trade off should be for the implementation with our active binocular vision system.

5.1. Interesting Features Recognition
When a human looks at a natural scene for the first time, one does not look at the scene in whole, but
makes saccades from one points to another. These points are called features, and their characteristics
in terms of texture, gradient and color is what draws one’s eye towards them. Combining these features
together within the brain, enables the viewer e.g. to recognize of where he/she is standing or whatever
he/she is looking at.

For the recognition of features, there are several steps to undertake. First is the detection of
an interesting point or area, where an algorithm looks at certain aspects and details of the image.
Afterward, that feature needs to be correctly described, related to its orientation, its neighboring pixels
or other characteristics. This description increases the ability to find a feature back on another image of
the same scene, so that they can be matched. Such a matching algorithm can help in object recognition,
creating a depth map or determining the motion of the camera.

5.1.1. Feature Detection
Within a natural image, there are several aspects that one’s eyes are easily drawn too. An edge is
recognizable as a strong cutoff of contrast in one dimension and a corner has this same characteristic
in two dimensions. Therefore, corners can be localized as a single precise point in the scene. These
large difference in contrast and color within an image are called a gradient. The Harris corner detection
algorithm, developed by Harris and Stephens (1988), actually uses these aspects. The method is applied
to the image gradients as follows:

35
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(a) Harris (b) Shi-Tomasi

Figure 5.1: (a) The Harris corner detection and (b) the Shi-Tomasi corner detection from the same scene.
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Figure 5.2: (a) The scale invariant representation, and the difference in Gaussians (DoG)

S(∆u,∆v) =
∑

∆u∆v
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v (5.1)
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u IuIv

IuIv I2
v

]
(5.3)

where S is the degree of variation of the intensity within a certain window (W ) and Iu and Iv are
the image gradients in the horizontal and vertical direction. M is called the Harris matrix and by its
characteristics, corners can be found in an image. In the Harris corner detection the strength of the
corner can be found by the determinant and trace of this matrix, but Shi and Tomasi (1994) have taken
a simpler approach by determining if the smallest eigenvalue stays above a certain criterion:

min(λ1, λ2) > λ (5.4)

Where λ1 and λ2 are the eigenvalues of M , and λ is a predefined threshold. For tracking corners
from frame to frame, the Shi-Tomasi approach is said a more stable way of corner detection. The results
of both the Harris and Shi-Tomasi corner detection can be found in Fig. 5.1.
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Naturally there are other items than corners which can capture the eye. These areas of interest,
also called blobs, can also be detected within the image, for which Lowe (2004) uses the difference
of Gaussians (DoG). In Fig. 5.2(a), the scale invariant representation can be seen. Here the image is
constantly downsized in its size (octave), and at each level, the images is convolved by a Gaussian filter
with a standard deviation of σ (scale). At each level of the scale, σ increases with the multiple of

√
2.

The DoG is calculated by taking the difference of 2 images, both neighboring each other by their octave
and from the same scale (see Fig 5.2(b)). In formulas, this process goes as follows:

L(u, v, σ) = G(u, v, σ) ∗ I(u, v) (5.5)
DoG(u, v, σ) = L(u, v, kσ)− L(u, v, σ) (5.6)

Where L(u, v, σ) stand for the Gaussian convolved image, with the σ the standard deviation of
the Gaussian function G(u, v, σ) and a constant multiplicative factor k. After the DoG’s of each scale
and octave are calculated, the local extrema detection can be used. All the DoG’s upon the scale are
compared with each other at each sample pixel locally per neighborhood at the current location and the
adjacent scale. If the value is the largest or smallest at the local comparison, that location is marked
as a candidate key point.

Another method to find interesting areas is the fast Hessian detector, which uses the second derivative
of the image’s gradient. For any point (u, v), in the image I, the Hessian matrix H used for the detection
(Bretzner and Lindeberg (1998)) is described as follows:

H(u, v, σ) =
[
Luu(u, v, σ) Luv(u, v, σ)
Luv(u, v, σ) Lvv(u, v, σ)

]
(5.7)

where Luu(u, v, σ), Luv(u, v, σ) and Lvv(u, v, σ) are the convolution of the second order derivative of
a Gaussian filter , which are ∂2

∂u2G(σ), ∂2

∂v2G(σ) and ∂2

∂u∂vG(σ) respectively (see Fig. 5.2(c)). Where
the determinant of the Hessian matrix become maximal, is where the candidate key points can be
found. This enables the method to also detect points with strong texture. The features therefore are
more resilient to heavy rotation, however less precise in location oppose to the Harris/Shi-Tomasi corner
detection. Therefore, these candidate key points first needs to be correctly described, which is explained
in the next subsection.

5.1.2. Feature Description and Matching
In order to use specific features for a tracking task like calculating optical flow, interesting points need to
be found by a detector in every step of the image stream. The repeatability of the detection is therefore
crucial, and this has to be done for different scales, orientations and luminosity. Not just detecting
these features is enough, but they need to be selected and described according to these characteristics.

Lowe (2004) has developed a method, which is able to describe features from an image, which can
be matched with the same feature from a different scale. This is called the Scale-Invariant Feature
Transform (SIFT) and it consists of several steps. Of course, the feature needs to be detected first,
which is done by the DoG explained in the last subsection. Afterwards, its characteristics needs to
be determined, namely its magnitude and orientation. Depending on what DoG-scale a particular key
point is detected, this aspect used to select the Gaussian convolved image to use for calculating its
magnitude and orientation:

m(u, v) =
√

(L(u+ 1, v)− L(u− 1, v))2 + L(u, v + 1)− L(u, v − 1))2 (5.8)
θ(u, v) = tan−1((L(u+ 1, v)− L(u− 1, v))/(L(u, v + 1)− L(u, v − 1))) (5.9)

where L stand for the Gaussian blurred image for any σ,m for de magnitude and θ for the orientation.
This is done for each image sample of the scale-invariant representation, and done so that the 2D
coordinate of that descriptor is repeatable for each rotation and scale of the key point (see the result
in Fig. 5.3(a)). Although rotation invariance is a great asset to have, it can also be a negative for the
preciseness of the descriptor. Making it too invariant might lose its ability to repeatably detect the
exact position of that feature every time, especially when one frame is compared to the other and the
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(a) SIFT (b) SURF

Figure 5.3: (a) SIFT descriptors and (b) SURF descriptors

(a) Harris (b) Shi-Tomasi (c) SIFT (d) SURF

Figure 5.4: Comparison of v.l.r. Harris, Shi-Tomasi, SIFT and SURF feature detection with matching one frame to the
other .

rotation of the camera is not significantly large. Bay et al. (2006) did remark this in their research, in
addition to the needed accelerated computational speed of the detector descriptor combo. They had
developed a method called Speeded Up Robust Features (SURF). The first step of the algorithm is to
find the features using a Fast-Hessian detector as explained in the last section. In terms of description,
the keypoint is similarly described as SIFT features, however it has been slimmed down to some bare
basics. Firstly, the circular region around the interesting point is used to describe the orientation. The
SURF descriptor is extracted from the squared region aligned to that orientation, which is split up in 4
smaller subregions. From the sample points within each of these subregions, the Haar wavelet responses
are calculated and placed within a descriptor vector v.

v = (
∑

du,
∑

dv,
∑
|du|,

∑
|dv|) (5.10)

where du and dv stand for the Haar wavelet responses in the horizontal and vertical direction. A
haar wavelet is a squared shaped functions, and analysis by these are similar to the Fourier analysis.
The lack of continuity of this function is an advantage of analyzing signals with sharp transitions, makes
it suitable to describe the interesting features found in a scene (see the result in Fig. 5.3(b)).

The euclidean distance between each feature of two images can be compared with each other and
the pair that is the closest to each other is selected as a match. In Fig. 5.4, this principle is done for
the feature which are detected and described as above, for two frame images from the active binocular
setup own cameras. Different matching techniques are available, which can appeal to object detection,
depth map creation and more. However, since the purpose of this chapter is ego-motion detection, the
next section goes further onto this by, discussing techniques for optical flow.

5.2. Optical Flow Approximation
To perceive ego-motion within an image stream, one frame must be compared with its version of a
previous time step. From this it becomes clear on how much the current image pixels have moved
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Figure 5.5: (a) The representation of optical as retinal slip in the human eye and (b) the type of optical flow depending
on the type of ego-motion.

within that time frame. This is called optical flow and its techniques used widely for tracking, motion
estimation, navigation systems and visual odometry. The algorithms does not need to be constrained
by the 2D plane of the image only, but can also express 3D position and velocity of objects within the
scene.

Within the physiology of the human eye, optical flow is detected as retinal slip, which stands for the
amount of flow that a detected feature has traveled upon the retina (Fig. 5.5 (a)). Depending on the
movement of the body or just the eye ball itself, the motion in the scene have different characteristics
(Fig. 5.5(b)). From these, it can become eminent on how the body moves oppose to the outside world.

The mechanism of optical flow can be expressed in the following formulas:

I(u, v, t) = I(u+ ∆u, v + ∆v, t+ dt) (5.11)

Where I(u, v, t) stands for the pixel value, u for the horizontal coordinates, v for the vertical coor-
dinates and t for time. It says that the same pixel value from frame at t = 1, has moved with dv and
dv at frame at t+ 1. Eq. 5.11 can be rewritten as:

Ixu̇+ Iy v̇ + It = 0 (5.12)

where

Iu = ∂I

∂u
, Iv = ∂I

∂v

u̇ = ∆u
dt
, v̇ = ∆v

dt

Here, Iu and Iv are image gradient in vertical and horizontal direction and It is the gradient among
time. u̇, v̇ are the optical flow in horizontal and vertical direction as a derivative of time. However, they
are the two unknowns in one equation, which can not be solved by simple algebra, therefore can only
be approximated. There are two main strategies to detect optical flow in an image stream sequence:
dense or sparse optical flow. Dense optical flow is a pixel to pixel algorithm, oppose to sparse which
is a feature based optical flow algorithm and only need to process some pixels within the image. The
following subsection explains how the optical flow equation can be solved by these two strategies.

5.2.1. Sparse Optical Flow
Sparse optical flow stand for the motion detected between matched features, which were discussed the
first section of this chapter. Assuming that the change of the position of the camera and/or scene is
relatively small, the match of two features are linked to each other and a flow vector can be generated
between them. This prevents the need of having to generate the entire image’s optical flow. The
most used algorithm for sparse optical flow between feature is the Lucas-Kanade (LK) Feature Tracker,
developed by Lucas et al. (1981). The LK method assumes that the motion between two frames is as
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(a)

(b)

(c)

Figure 5.6: (a)The pyramidal implementation of the Lucas-Kanada optical flow estimation and (c) the result of using the
method between features detected by the Shi-Tomasi corner detection, between the two frames represented in (b).

small that it fits within the neighborhood around a feature. It is considering that the image velocity
(d = (∆u,∆v) is found by minimizing the following function:

γ(d) =
u+Wu

2∑
u−Wu2

v+Wv
2∑

v−Wv2

(I1(u, v)− I2(u+ ∆u, v + ∆v) (5.13)

The recent, most used version of this algorithm is the pyramidal implementation from the work of
Bouguet (2001). Since the LK method is based on small motion within a window, any slightly larger
motions can not be detected anymore if it does not fit within the search window. However downscaling
the image, as shown in Fig. 5.6 (a), it would be possible to detect motion at each level/octave of the
pyramidal representation. At each level the spatial gradient matrix M, similar to the Harris matrix, is
calculated:

M = W (∆u,∆v)
[
I2
u IuIv

IuIv I2
v

]
(5.14)

which is than used to iteratively solve the following solution:

d = M−1 · b (5.15)
where (5.16)

b =
[
∆Ik(u, v)Iu
∆Ik(u, v)Iu

]
(5.17)

where ∆Ik(u, k) is the image difference at iteration k, from the one frame to the other, taken into
consideration the guesses of optical flow from the previous level, and previous iteration k − 1. Thus is
done until the optical flow d has reached a certain threshold which is deemed acceptable.

Fig. 5.6 (c), shows the result of the LK method with the features of the Shi-Tomasi corner detection
algorithm. Using sparse optical flow increases the ability to segment different moving objects. For
visual tracking tasks, sparse optical flow methods is deemed to be more suitable.
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(a) (b)

Figure 5.7: Dense optical flow by (a) assuming the smoothness by Horn and Schunck (1981)’s algorithm and (b) Farneback
(2003)’s method of using polynomial expansion.

5.2.2. Dense Optical Flow
Another way to detect the optical flow within an image, is not to first calculate the features and
selecting them, but to determine the motion directly. Dense optical flow is a direct method which is
able to recover motion from every single pixel from the camera, using the intensity variations from frame
to frame. There are several assumptions to make for the calculation of optical flow from one frame to
the other, and one of them is the brightness constancy assumption. Horn and Schunck (1981) were one
of the first to use this as their algorithm, the Horn-Schunck method (HS), deals with the smoothness
of the optical flow components. It therefore minimizing the following constraint:

∂
2∆u
∂u2

∂2∆v
∂v2

− 1
α
Iu(Iu∆u+ Iv∆v + It) = 0 (5.18)

Where α is the smoothness weighing constant, where a higher value leads to a smoother optical
flow. Although the HS method holds for most surfaces seen by the camera, features like corners and
edges introduces problems to the algorithm as they are no smooth transitions at all. This causes these
features to corrupt the optical flow. In Fig. 5.7(a), it can be seen that HS has trouble at the locations
with a sharp cut-off of contrast.

One of the most commonly used dense optical flow approximation method that is used in computer
vision more recently, is developed by Farneback (2003). The Färneback method (FS) can approximate
the neighborhood of each sequencing image frames by a 2nd order polynomial:

f1 = (x)TA1x+ bT1 + c1 (5.19)
f2 = (x)TA2x+ bT2 + c2 (5.20)

Where f1 and f2 are the signals corresponding to the two frames each, x is a vector of the image
coordinates (u, v), and matrices A1 and A2, vectors b1 and b2 and scalars c1, c2 contain the parameters
for the polynomial expansion. If a displacement d = (∆u,∆v) is considered and that f1(x) = f2(x−d)
than the following holds for the translation:

d = −1
2A
−1
1 (b2 − b1) (5.21)

However, the above assumptions hold for an ideal situation, where it is expected for the entire global
translation to be related to just two signals. Therefore, some approximation are made for practical
considerations which leads to the following constraint:
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A(x)d(x) = ∆b(x) (5.22)
where (5.23)

A(x) = 1
2(A1(x) +A2(x)) (5.24)

∆b(x) = −1
2(b2(x)− b1(x)) (5.25)

Assuming that the displacement is slowly changing from one frame to the other, this can be inte-
grated over each pixel. For a neighborhood W in the image from coordinates x, the following has to be
minimized:

∑
∆xεW

w(∆x)||A(x+ ∆x)d(x)−∆b(x+ δx)||2 (5.26)

where w(∆x) stand for the weight assigned to each point of the neighborhood. In Fig. 5.7(b), the result
of the FB optical flow detection can be seen. Here parts with an even contrast, like walls, are not taken
into account for the motion detection. However, it does clearly present a better result overall than the
HS algorithm. Overall, although dense optical flow gives an overload of flow fields, each small variation
can be detected by this method.

5.3. Optical flow detection in the Vision Setup
As said at the beginning of this chapter, selecting an optical flow algorithm comes with a trade-off
between repeatability and time. Even within the notion of repeatability, it has to be decided if it is
more necessary to have the ability to find a description of feature back a second time or to retrieve the
exact location of that interesting point. In order to make a decision on which methods to use for the
robotic head’s cameras, the algorithms from the previous sections had been evaluated in terms of time
and ability to correctly approximate the motion.

At each stage of the feature recognition and the optical flow calculation, the times are registered
for each algorithm. This is done with help of the OpenCV library and executed on the same computer
were the active binocular robot is controlled from. Using the same video footage from the robotic head
on each method, the amount of time to calculate the optical flow is given in table 5.1. The Shi-Tomasi,
SIFT and SURF features are used for the LK optical flow approximation. The HS and FB methods
however, already use the entire image directly so they do not lose time on feature detection. From
these measurements, it has become apparent that, from the algorithms tested, the Shi-Tomasi & LK
combo and the FB methods are the two fastest algorithms. They were both able to keep their detection
algorithm within the control frequency of 30 hz, which is a requirement in order to make the experiments
real time.

All the above mentioned methods have been compared with the markers’ speed, which is used for
the pursuit control, detected in the same images. During a rotational disturbance of the neck of the
binocular setup, the overage horizontal optical flow is monitored, from which the results can be seen in
Fig. 5.8. The fact that the optical flow values do not have the same magnitude as the marker, is that
it is the average taken over an entire scene. The marker is much nearer to the camera than the rest
of the scenery, therefore appears to be moving must faster. To be able to determine a fixed number
on the correlation between the marker speed and the average horizontal optical flows, the normalized
maximum correlation is calculated, which can be found in the last entry of table 5.1. The closer to one,
the higher the correlation between them, and the highest score is achieved for the Färnback method.

However, the differences between these scores are very small, so before making a decision on which
optical flow algorithm to use, the LK and FB method are both applied to the active binocular vision
setup. In Fig. 5.9(a), some samples of the Shi-Tomasi and LK method in action is shown, where in
Fig. 5.9(b), the same is done for the FB method. In the first frame of 5.9(a), a lot of distortion is
eminent, which results in high peak noise within the average optical flow signal. Also, the marker itself
does not contain as many features as the rest of the scene. In the FB method, the optical flow detected
is much smoother of nature, and is also takes the entire marker into account since it is dense.
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Extract [s] Describe [s] Opt. Flow [s] time total [s] Norm Max Corr.
Shi-Tomasi (LK) 0.0040705 0.01729 0.0015829 0.022943 0.97646
SIFT (LK) 0.039299 0.028454 0.00098833 0.068741 0.97842
SURF (LK) 0.033058 0.061528 0.0039663 0.098552 0.97994
Horn-Schunck (HS) 0 0 0.1361 0.1361 0.96704
Farneback (FB) 0 0 0.022517 0.022517 0.98018

Table 5.1: This table displays the time used by the computer to extract and described the features, the optical flow
approximation and the total time for the entire sequence. Also, the normalized maximum correlation of the average
horizontal optical flow and the marker speed from Fig. 5.8, is given.
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Figure 5.8: This plot gives the average horizontal flow of one set of images, which are made during a rotational disturbance
of the neck. This is compared to the marker speed detected in that very same image stream.

In order to make every element of the implementation, hardware and software run at the same time,
including the cerebellar model, the optical flow detection could be taking longer than usual. Moreover,
since the marker is the object of the pursuit, this is the object to keep stable in its vision. For the final
implementation, it becomes necessary to only detect optical flow in the middle, similar to the foveal
vision in the human eye. Therefore, a smaller image needs to be processed, which has a bigger effect
on the computation speed of the FB than for LK. Considering these aspects of the implementation
and the above mentioned advantages of the Färneback method over the others, this is the optical flow
approximation used for the active binocular vision system.
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(a)

(b)

Figure 5.9: (a) Sparse Optical flow by Lucas et al. (1981) and Bouguet (2001)’s algorithm on the binocular setup. (b)
Dense optical flow by Farneback (2003)’s method of using polynomial expansion on the binocular setup.



6
Learning stabilization with the

Cerebellar model
The previous chapter explained how to detect motion within an image by optical flow. Before that,
the description of the cerebellar-inspired model was given. This chapter explains how to combine these
two algorithms together and to test their validity of the adaptive and information filter. The cerebellar
models and the optical flow are integrated within an already existing software architecture of an active
binocular vision robot. Afterwards, the setup is put up to the test, with a couple of experiments meant
for the simulation of a locomoted motion. There are different configurations and situations where both
the adaptive and information filter are tested on, conducted in the Delft Biorobotics Lab (DBL). From
these, the results from these experiments are given and its observations are discussed in the next chapter.

6.1. Combining Implementations
In chapter 4 explains how the cerebellar model is constructed by means of artificial neural networks.
Moreover, chapter 5 shows how to construct a learning signal for that model, by means of the detection
of optical flow within the image stream. In Fig. 6.1, a global overview of the current communication
between different modules for the experiment is shown, where the cerebellar model and optical flow
detection are added. With the pursuit control and marker tracker, these two implementations are fully
conducted on the same computer as well. In Appendix D.1, the ROS architecture can be seen, which
can be compared with the graph given in section 3.3.3, Fig. 3.8.

To zoom in more specifically on the implementation of the control, the learning module of the
cerebellum is placed next to the already existent pursuit and IMU module in the system (Fig. 6.2).
The pursuit control follows the marker as seen on its cameras, providing the signal which controls the
robot. The IMU detects the rotational speed that the robot head executes, and provides that signal
negatively to the robot’s neck motor. Finally, the cerebellar model predicts the optical flow with the
image stream from the cameras, which is basically the residue movement of both the IMU and pursuit
control working together. The combined control signal is as follows:

ω∗pursuit − ωIMU
z − ω∗Cereb = ω∗robot (6.1)

where ω∗pursuit is a vector of goal speeds for pursuit the tracker (see Fig. 3.7 of chapter 3). ωIMU
z is

a vector of detected rotation by the IMU, ω∗Cereb the goal speed to counter the predicted optical flow
and ω∗robot is a vector with the resulting goal speeds for all the motors, to be processed by the 3Mxl
modules on the robot for speed control. This combination’s purpose is to create a robust method to
stabilize the vision of the robotic head, by reducing the average optical flow.

There are a few practical considerations to consider regarding this implementation. Firstly, it is
measured that the robotic setup has a dead time of about 100 ms, before it responds on a command
from the computer. Given that the optical flow detection takes less than 33 ms, it means that the
cerebellar models must detect the optical flow 4 steps in advance, which is about 132 ms in total.

45
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Figure 6.1: The hardware and software of the active binocular setup, with the communication between the higher and
lower PID control, the image processing for the tracker and optical flow and the cerebellar model.

Moreover, it was noticed that it was more effective to provide the adaptive filter with the robot’s goal
speed minus the cerebellar influence (ω∗robot − ω∗cereb). This was mostly necessary if the robot was
learning off-line instead of on-line.

6.2. Experiments
This section gives specific details on the conducted experiments testing the active binocular vision setup
and the cerebellar-inspired model, with the accompanied results. As the robot-head must stabilize its
vision based on the ego-motion detected by its cameras, disturbances must be excited to simulate the
sensation of walking or moving. This is noticeable for the robot through its IMU as well. Moreover,
there are different configurations of the information and adaptive filter with various environmental
situations, where the setup is experimented on. The stability of the system is verified by amount of
reduction of the average optical flow and the motion blur.

There are two types of disturbances, which are going to be administered to the robot, namely a
rotational and translational disturbance. In section 1.1.2, a distinction was made between rotational
and translational VOR. Although their mechanisms are not the same, the same neurological pathways
are used and they are both adapted by the cerebellum. Here with the binocular setup, the rotational
disturbance is executed by the neck motor of the robot, therefore decoupling the control of the neck
from the pursuit marker system. The linear disturbance is done by a cart where the robot is mounted
upon, which moves sideways in a linear fashion.

The step frequency of the human walking cycle is about 1.8 to 2 hz (Pachi and Ji (2005)), which
can vary depending on the velocity of his/her pace. The disturbance to simulate the ego-motion for
the robot therefore approximately the same frequency. The upward movement can be seen sequences
of skips/hops, from which each impact of one of the foots restarts that cycle. Of-course, the exact
movement of locomotion is difficult to simulate without mounting the vision system on an actual
walking robot. Also, most of the disturbance which can be conducted is mostly rotational and sideways.
Therefore, the disturbances are given in a form of a sine, executed on approximately halve of the step
frequency of the human walking cycle. Here it is hoped, that the same speeds as locomotion can be
achieved.

This section displays all the results for both the adaptive as information filter. First the plots and
values for the rotational disturbance are displayed, in terms of reducing the optical flow and motion
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Figure 6.2: A representation of the three types of control combined together for the final goal speed for the robot.
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Figure 6.3: The procedure of the rotational neck disturbance, with the marker located at a distance of 650 mm from the
center of the robotic setup.

blur within the image stream. The same items are evaluated for the sideways disturbance with a cart.
In order to come even closer to a walking-like motion, both of the disturbances initiated at the same
time, from which the reduction of the optical flow is noticeable in both horizontal and vertical direction.
Finally, an experiment is shown where both the cerebellar-inspired models are learning on-line. Sequence
examples of the first two experiments can be found in Appendix D.7 and the learned neuron weights of
the first layer of the cerebellar models in Appendix D.8.

6.2.1. Rotational Neck Disturbance
For the first experiment, the ego-motion was initiated by the neck of the robotic setup, where several
frequencies of rotational disturbances were given (Fig. 6.3). This started at a low frequency of 0.5 hz
and ended at 1.5 hz, with an amplitude of 0.1 rad, for which each level lasted 5 seconds (150 data
points). In Fig. 6.4, one can see that the first data was collected for a sequence of 60 seconds (which
are 60*30 hz=1800 data points). After collecting data from the first sequence, the cerebellar model has
time to train and adapt its weights based on this set.

After the training was finished, which took between 5.5 and 6.0 seconds, the neural network is put to
the test for another 60 seconds, which means that it only receives its required input, but its outputs not
given to the control of the setup and only being monitored. This gives the possibility of a check for the
ability of the model to predict the future optical flow of the system. In table 6.1(a), the mean squared
error (MSE) of the prediction is shown for both the adaptive as information filter. In this experiment,
the adaptive filter was better able to approximate the future optical flow than the information filter.

In the execute mode, the output of either the adaptive or information filter were given to the robotic
head, which shows an effect in its performance. In table 6.1(b), both the change in optical flow and
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Figure 6.4: The experiments modes of the rotational neck disturbance, with a frequency which increases from 0.5 hz to
1.4 hz.

MSE prediction
Adaptive Filter 0.019737
Information Filter 0.029885

(a)

Opt. Flow vLAP
Adaptive Filter 0.13188 1723.0168
Information Filter 0.14812 1631.4649
Pursuit Only 0.19965 1384.9925
Pursuit + Opt. Flow 0.16593 1551.2069

(b)

Table 6.1: (a) The MSE error of the cerebellar-inspired model’s output and the optical flow 4 steps ahead and (b) the
average optical flow and the variance of Laplacian (VLAP) from both the adaptive and information filter, the pursuit
control only and the pursuit with the optical flow. The average is taken from both cameras for this values, for a rotational
neck disturbance.
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Figure 6.5: The average optical flow per frequency, with and without the adaptive filter and information filter, given that
the disturbance is rotational.
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(a) (b) (c)

Figure 6.6: The procedure of the linear disturbance, executed by the cart.

400 mm 250 mm
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Figure 6.7: The locations of the marker during the linear cart disturbance given in Fig. 6.6

motion blur are given for both filters. The optical flow is the horizontal average optical flow taken for
both cameras, using the Färneback method (FB) from Farneback (2003) and motion blur detection,
using the variance of the Laplacian (VLAP) from the paper of Pech-Pacheco et al. (2000). The latter
is a method which is able to gives a measure on the amount of focus within the image. The higher the
value, the ’sharper’ the measured image and visa versa. Here, VLAP is a measure of motion blur in the
image, however, it is not an absolute measure. This means that it can be used for comparing images
from the same scenery with different focus values. Since all the experiments are done within the same
configurations and setup, I assume that the compared image streams are similar in content.

In table 6.1(b), the results of adaptive filter and information filter, in terms of average optical flow and
VLAP, are compared with the situation with only the pursuit control and using only optical flow. From
the entire sequence the average was taken for both values , and it can be seen that both the adaptive
and information filter do perform better than their control groups. In Fig. 6.5, their performances are
separated per frequency sequence. Overall, it can be seen that as the frequency increases, the optical
flow and motion blur are increasing as well. If the pursuit tracker is handling the disturbance alone,
it has the worse performance of all three control modes. Using only optical flow and pursuit control
does improve the vision stabilization, however the lowest optical flow and motion blur is achieved by
the adaptive filter, followed by the information filter.

6.2.2. Linear Disturbance with Cart
The linear disturbance is done by a cart where the robot is mounted upon, which moves sideways in
a linear fashion (see Fig. 6.6). The cart does not receive different frequencies as disturbance as in the
last experiment, but just one frequency of 1 hz with an amplitude of 0.025 hz. The closer the marker is
to the setup, the larger the compensating signal must be to handle for the motion in the image. Also,
there is a non-linear connection to the optical flow detected and what the motor must compensate for
during the experiments. Therefore, the variation within the experiment for the linear disturbance is
based on the position of the marker (see Fig. 6.7). The variation in marker position was handled by an
industrial robotic arm from Universal Robots. See Appendix D.2 for photos of the experimental setup.

This linear cart disturbance experiment is on many parts similar to the previous one, except for
less variation oppose to the amount of frequencies executed by the neck (6 positions opposed to 10
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Figure 6.8: The experiments modes of the rotational neck disturbance, with the marking moving from 6 different positions.

MSE prediction
Adaptive Filter 0.0056259
Information Filter 0.0087144

(a)

Opt. Flow vLAP
Adaptive Filter 0.093479 2073.1622
Information Filter 0.088954 2043.8414
Pursuit Only 0.16991 1383.3535
Pursuit + Opt. Flow 0.097778 1977.4322

(b)

Table 6.2: (a) The MSE error of the cerebellar-inspired model’s output and the optical flow 4 steps ahead and (b) the
average optical flow and the variance of Laplacian (VLAP) from both the adaptive and information filter, the pursuit
control only and the pursuit with the optical flow. The average is taken from both cameras for these values, for a
translational cart disturbance.

frequencies). The markers are held on each position for 8 seconds (8 x 30 hz = 240 data points per
marker) and is moved to another within 2 seconds. However, each collect, test and execute mode still
lasts 60 seconds (see Fig. 6.8).

In table 6.2(a), the MSE of the prediction performance of both the adaptive and information filter
are seen for the test sequence. Here it can be seen that the information filter had more trouble of
exactly predicting the future optical flow than the adaptive filter. Also, both MSE are higher for the
linear disturbance compared to the rotational disturbance in table 6.1.

In table 6.2(b), the results from the execute mode is displayed, where again the adaptive and
the information filter performs better than the pursuit control only or the pursuit with optical flow.
Interesting to see, is that in terms of optical flow, the information filter is better able to stabilize the
vision system, as it is able to reduce the optical flow overall than the adaptive filter. However, in terms
of motion blur, it performance slightly lower that the adaptive filter.

Plot are been made on these performances, where the sequences of various marker locations has
been separated as well, which can be found in Fig. 6.9. In terms of optical flow reduction, it can be seen
that it is difficult to see any real difference between the optical flow only and the cerebellar control,
however still a clear difference comparing it to the pursuit only control. Looking at the VLAP, the
motion blur over the entire image is approximately the same no matter where the marker stands, which
is as expected.

6.2.3. Two-Dimensional Disturbance
With the previous experiments, only the two camera actuators have been used. They are only able to
make pan rotations, which makes the stabilization problem quite one dimensional. In order to further
validate the cerebellar models, the tilt motor can be exited as well, which means that the detected
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Figure 6.9: The average optical flow and the average variance of the Laplacian per frequency, with and without the
adaptive filter and information filter, given that the disturbance is rotational.

ego-motion also has to have a vertical element. In Fig. 6.10, a simple solution is presented, where the
cart is put on a slope and moved forth and back. In the mean time, the neck disturbance is initiated as
well. Both the cart and neck motors have a frequency of 1 hz, and the neck has an amplitude of 0.75 rad
and the cart still has an amplitude of 0.025 meters. This results in type of ego-motion more closely to
locomotion. This causes optical flow to also occur in the vertical direction, giving the cerebellar-inspired
models a chance to work with the tilt motor as well.

Similar to the rotational and sideways disturbance, this experiment is also conducted with three
experiment modes as seen in Fig. 6.11. Since there is no variation in disturbance here, the sequence
time per mode is lowered to 30 seconds. First the experiment is performed with only the cerebellar
models initialized in the tilt motor (and not running the pan disturbance in the neck). The results of
optical flow and VLAP is seen in table 6.3(a), and it can be seen that again that the adaptive filter is
better in reducing both values. The information filter is the runner-up, since it is still better stabilizing
the vision system that the pursuit tracker alone.

In table 6.3(b), both the cerebellar models and the neck motor are initiated, so the optical flow
can be compensated in 2 dimensions in the image. The horizontal optical flow is definitely higher than
the vertical optical flow, indicating that the ramp has to be even more steep in order to enlarge that
value. Unfortunately, this is where the limit of the experimental equipment lies, however, the image feed
from the cameras do show a very similar disturbance which can be related to actual walking. Here the
information filter is performing slightly better in compensating the horizontal element of the optical flow
but react poorly for the vertical optical flow, even worse than the pursuit only control mode. However,
this would indicate that this experiment has to be redone as a second opinion. The adaptive filter is
able to compensate for both the horizontal and vertical optical flow, therefore also scores the highest in
reducing the overall motion blur in the image stream.

6.2.4. On-line Learning
Finally, since the previous test are only done with off-line learning, the adaptive and information filter
are tested on performance with on-line learning as well. Here, both the adaptive and information filter
are split in two: one module for data collecting and learning, and one module for the execution of the
compensatory signal (Fig. 6.13) The execute model makes use of the newly learned weights as soon as the
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Figure 6.10: The procedure of the 2D vision disturbance, with the cart riding back and forth upon a slope.
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Figure 6.11: The experiments modes of the 2D vision disturbance, with both the cart and the neck giving a disturbance
at the same time.

Opt. Flow (vert) vLAP
Adaptive Filter 0.058708 1637.0309
Information Filter 0.0793 1526.9197
Pursuit Only 0.088916 1399.51

(a)

Opt. Flow (hor) Opt. Flow (vert) vLAP
Adaptive Filter 0.16027 0.066531 1158.9488
Information Filter 0.14875 0.13261 895.6172
Pursuit Only 0.28843 0.091449 755.2416

(b)

Table 6.3: (a) The MSE error of the cerebellar-inspired model’s output and the optical flow 4 steps ahead and (b) the
average optical flow and the variance of Laplacian (VLAP) from both the adaptive and information filter, the pursuit
control only and the pursuit with the optical flow. The average is taken from both cameras for these values, for a
translational cart disturbance and rotational neck disturbance at the same time
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Figure 6.12: Here are experiment modes of the on-line learning experiments, where the training and execute module are
taken apart and run parallel from each other. The training module collects and trains data, while the execute module
uses those adapted weights. The training module initiates no-train sequences, where it does not adapt the weights at all,
where the learned cerebellar model can be executed without it influence. This training modes are conducted for (a) a
rotational neck disturbance and (b) a rotational cart disturbance.
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Figure 6.13: The average optical flow and the average variance of the Laplacian per frequency, with and without the
adaptive filter and information filter, given that the disturbance comes from the neck. This is done with on-line learning

training module is finished learning a data set. They both run simultaneously and the training module
initiates some pauses every 30 seconds. This is done to be able to correctly evaluate the learned model
in those no-train periods, where the performance would not be influenced by the constant changing
of cerebellar models’ weights. This on-line learning experiment is done for both rotational and linear
disturbance separately, which are given to the robotic setup with a random variation.

For the random rotational disturbance, which is a multiple of three kinds of sine signals (Fig. 6.12(b)),
it was found that it was enough for the adaptive filter to learn with a small data-sets of 31 points. For
the information filter, it was enough to learn with just 15 points. However, to compare both filters
equally with each other, both data-sets had the same size of 31 data-points. In Fig. 6.13, the average
horizontal optical flow and the average VLAP from the training pause sequences is seen in the plot. The
on-line learning performance is held against situation where only optical flow and the pursuit control
was used, with the same disturbances. In the plot, one can be seen that, that they were able to cross
the red dotted line and converged to a better value.

For the linear disturbance, the marker was moved to another random position every 2 seconds. This
time, both models were put on a training set size of 151 data points and 151 epochs, as that was the
lowest the adaptive filter could handle in terms of on-line learning. In Fig. 6.14, one can see that the
adaptive filter is actually creating more optical flow at the second train pause sequence than the pursuit
control by itself at the first sequence. The information filter is able to converge faster to an optimal
solution, which gives a better performance than the pursuit control and the optical flow alone. The
adaptive filter is not able to cross that line until sequence 3. The information filter, however, crosses
the comparison line back up again as sequence 4. This same behavior can be monitored for both the
average optical flow as for the motion blur plot.

6.2.5. Extra Results
In section 4.3.1, some choices were explained during the built of the cerebellar models. Some discussion
was conducted, regarding the input of the adaptive filter, the ability of the models to handle a random
disturbance and the amount of layers of the ANN. These variations to the model has been experimented
on as well. In appendix D.3, the difference in stabilization performance is shown, if the adaptive filter’s
inputs was the actual voltage to motors by the 3Mxl modules, instead of the goal speed given to them.
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Figure 6.14: The average optical flow and the average variance of the Laplacian per frequency, with and without the
adaptive filter and information filter, given that the disturbance comes from the cart. This is done with on-line learning.

In appendix D.4, both adaptive and information filter have been exposed to a random disturbance, to
see if they still were able to reduce the optical flow in the image. Appendix D.5 shows a comparison to
both the cerebellar models, with two or three layers and to both a rotational and linear perturbation.

To also accommodate the combination of the OKR/VOR mentioned in the introduction, the robotic
setup was also tested with a control scheme using only the detected optical flow and or only the detected
rotation by the IMU. Also a ratio was set between those two values, determining each influence on the
systems control. The results can be found in Appendix D.6 and is done for various frequencies, similar
to the rotational neck disturbance experiment.

6.3. Summary Observations Results
In the previous section, the results of the experiments were given, from which the observations are
summarized in this section. First of all, with the linear disturbance and off-line learning, it is seen
that the both the information filter and adaptive filter are able to better stabilize the vision system, by
reducing the optical flow in the image compared with the tracker pursuit with and without direct optical
flow compensation. From the two, the adaptive filter exceeded the information filter’s performance, and
the same trend can also be seen in the MSE of the prediction. Also, with the translational disturbance,
the adaptive filter is better in predicting the up following optical flow, however, in terms of optical flow
reduction, it performance is slightly worse that the information filter. The same trend could not be
spotted with the VLAP, as that the adaptive filter is able to reduce the motion blur more.

With the 2D disturbance, where only one frequency is used, the cerebellar model had been applied to
tilt motor alone, and all three motors. Using just the tilt motor, both the information filter and adaptive
filter are able to reduce the vertical average optical flow as the motion blur within the image, compared
to the pursuit tracker alone. The adaptive filter has again the best result. When the cerebellar-model
is used on all three motors, the information filter’s effect is able to reduce the horizontal optical flow
more than the adaptive filter, however the performance for the tilt motor has dramatically decreased.
Therefore, the total motion blur of the implementation of the adaptive filter is a lot less than the other.
This indicates for a redemption of the experiment for future recommendations.

Finally, a form of on-line learning was performed, to see how the cerebellar-inspired models would
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respond to that, using again both types of disturbance used in the first two experiments. This was
possible by separating the training and execution functionalities. The train module collected the data
and trained with it, and it was noticeable that for the information filter, fewer data points per training
set was needed than with the adaptive filter, in order to enable it to learn. Looking at the rotational
disturbance, the adaptive filter converged faster and ended up with a better result than the information
filter, but they both were able to cross the red doted comparison line. This indicated that the prediction
capability of the cerebellum model does reach a better performance eventually, than if the optical flow
was used on the setup’s control directly. At the linear disturbance, the faster convergence was again
achieved by the information filter. Here both implementations of the filters where able to cross the
optical flow-only border at one point. However, it was significantly slower than with the rotational
disturbance.



7
Discussion, Conclusion and Future

Perspectives
In the previous chapter, the experiments and results of an active-binocular vision system with a cere-
bellum inspired model were presented. This chapter reflects on those results and more importantly, on
the process that lead to them. First, each step of the research is discussed, where some choices and
considerations are evaluated. Afterwards, the research objectives given in the introduction are reflected
on, to conclude if they have been achieved within this research and in what manner. From these, some
recommendations and future perspectives are presented, with ideas to improve the performance and
further enhance cerebellar-inspired control for robots.

7.1. Discussion
To briefly summarize the previous chapter in this thesis: First human eye movements and the cerebellum
had been investigated. An active binocular vision setup is used to implement two cerebellum-inspired
models, to stabilize its vision. The models are built using artificial neural networks, which learns from
the visual motion detected by optical flow. To validate the implementation, experiments are conducted
to simulate various disturbances. This section reflects on the steps taken within this thesis’ research,
to determine on how well they were executed in order to obtain the research objectives.

7.1.1. Cerebellar Learning Models
The choice to implement the adaptive filter (from Dean and Porrill (2011)’s work) and its variation,
the information filter, into our robotic head setup, is explained in this subsection. For inspiration on
how the human eye compensates itself for external disturbance, I looked into the physiology of the
cerebellum. In neuroscientific research, this brain area has been thoroughly investigated by studying its
influence on compensatory eye movements. It is interesting to find out that it did not only have an effect
on motor control within the human body, but with cognitive tasks as well. Within the cerebellum’s
anatomy, it is discovered that the cerebellum has a large amount of connections with the rest of the
central nervous system, which underpins the notion that it might have an important role in the brain.
Its structure is very distinguishable from other brain areas, which enables massive parallel forward
processing, therefore fast computation.

What does the physiology of the cerebellum mean for its learning capabilities? Several studies,
presented in section 2.2.1 indicate that the climbing fiber has a big role in a supervised learning process.
The signal it carries, can either be linked to a prediction error, retinal slip or a synchronization error.
However, some researchers have discussed that the climbing fiber does not initiate any synaptic weight
adaption at all. Electro-physiology studies are still deciphering, what the climbing fiber is not encoding
to the cerebellum, instead of what it could be. Since it is still unsure what type of information drives
the cerebellar learning process, I chose to go with the theory that the final implemented model came
with. With the adaptive filter, the teaching signal was presumed to be the retinal slip.

From neuroscientific research, various functionalities have been given to the cerebellum in the scheme
of human movement control, which have been described in section 2.2.2. Recently many researchers

57



58 7. Discussion, Conclusion and Future Perspectives

Body and
World

-
Cerebellum

Sensory
Organs

Post-
Cerebellar
Network

Forward
Model

(Prediction)

Memory
(tapped
delay)

Sensors

Muscle
Commands

Available
Information

Selected In-
formation

Performance
Measure

Consequences

Command

Figure 7.1: My perspective on the cerebellar function. The functionalities of a forward model, tapped delay line, or others,
is believed to exist outside of the cerebellum. It will receive the systems output, where it selects the information needed
to perform a certain task. With this information, the rest of the brain will create a command signal to the muscles. This
creates an interaction with the human body with the outside world, which will result in a positive or negative consequence.
This performance measure is fed back to the cerebellum, guiding its synaptic plasticity.

support the internal/forward model role of the cerebellum. However, most of these models assume that
it receives only an efferent copy of the muscle commands, in order to predict a sensory outcome for an
improved state estimation. The adaptive filter consist of a tapped delay line, where it is assumed that
its input are just muscle commands. Looking at the anatomy of the cerebellum, this contradicting as
it receives massive amounts of information from the neocortex, vestibular organ, eyes, spinal cord etc.
This is one of the conflicts that I came across during my research, which would finally be an important
reason why I have proposed the information filter.

However, this proposal is not the end of the discussion of whether the learning models of the
cerebellum are close to their biological origins. In section 2.2.1, the synchronization regulator role of
the cerebellum was put up for discussion, as Molinari et al. (2007) had found out that cerebellar damaged
patients did preserve some timing control in rhythmic based task. They say that the cerebellum does
have an influence on it, but does not need to be the one and only position where timing synchronization
takes place. To extend this thought to the workings of the adaptive filter, does the adaptive filter’s
tapped delay line exactly takes place within granule cell layer of the cerebellum? Although in the
research of Lenz et al. (2009) its tapped delay goes back for 200 steps, this large amount seems very
unnecessary. To determine the dynamics of an action, knowledge about just a few would be adequate,
which already will represents values as velocity, acceleration, jerk and other derivatives. This is of
course dependable on what kind of movement and task must be determined.

The cerebellum has a bigger role than the functionalities described in section 2.2.2. My current
perspective on its role, is that prediction, corrective motor commands, synchronization, storing past
sensory signals or motor commands are performed elsewhere in the central nervous system. The cere-
bellum receives the output of those systems, plus all the somato-sensory signals and muscle commands.
From this massive amount of signals, it will be able to select which information is useful to perform
a certain task (see Fig. 7.1). This process can be monitored by the climbing fibers input for instance.
This is a notion that fits with four principles explained in the conclusion of section 2.1.2, especially in
the terms of feed forward processing and modularity. However, with this perspective, it is difficult to
implement a cerebellar model, without simulating its connections with the other brain areas as well.

For research conducted for this thesis, I chose to go ahead with implementing the adaptive filter.
Although the above mentioned perspectives have started to subvert the use of the model, the main
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Figure 7.2: A representation of the distal supervised learning problem as Jordan and Rumelhart (1992) describes. With
supervised learning, it is necessary to have a training set of input and a direct desired output. However, in the case of
the cerebellum, it will not know what its desired output is, after it has been used by the body the external world.

objective is to implement a cerebellar model into a robot, to improve the stability of its vision. Due
to the time limitation, reinventing the cerebellar learning model and to make it work on the active
binocular setup is unwise. The rest of this section will therefore discuss topics according to the main
objective. To accommodate my perspective of the cerebellar function, the information filter had been
proposed. This is to shed some light on whether the robotic framework has a need for signal selection.
This will be discussed in the subsection on results.

7.1.2. The Active Binocular Vision Setup
For this research, an active binocular vision setup was provided as a platform, to simulate a cerebellar-
inspired control for the stabilization of its cameras. As it contained motors for both the cameras, tilt
and pan rotations, it is able to recreate many of the human eye movements. However, recreating a
movement is not the same as responding at actual eye movements. Giving these motors an impulse
will result in a different response than giving a similar impulse to one of the ocular motor muscles.
In the study of Lenz et al. (2009), their setup was not driven by electro motors but by McKibben’s
pneumatic artificial muscles, which are more similar to the way that organic muscles actuate a part
of the body1The question is, if the current setup had these as actuators, would it have improved the
result? It would seem unlikely that it would, as these special actuators are difficult to control as they
are by just on-off systems. Moreover, the cerebellum, or the human brain overall, is able to handle all
kinds of body types. Every human contains different characteristics for their muscles and joints, which
all respond in different ways. If the principle of adaptivity of the human body is incorporated in a robot
correctly, it would be able to learn with electro motors as well.

Zooming in more on the current functionalities of the binocular robotic head: many of its features
are run from the computer. Only some rudimentary parts of robot are done by embedded modules.
However, those 3Mxl modules are capable of more. Next to position and speed control, they can also
be used for generating sine motions. If the signal for a goal speed is sent to the robot by a USB
cable, some commands can get lost, therefore the movement will not be as smooth as required. Also,
communication by a USB cable is a big reason for the delay in sending the goal speeds to the setup.
This embedded generation of sine movements could have a big benefit for the initiation of disturbance of
the experiments and/or the pursuit control by itself. However, since this knowledge was only available
at the end of this thesis’ research, it could not have been used to its potential, therefore given as a
future recommendation

In the research of Lenz et al. (2009), a custom made chipboard is used to control the adaptive filter
and their robot, therefor achieving high control frequency, performance and less delay. As said earlier,
one of the fundamentals of cerebellar processing, is the magnitude of the feed-forward parallel processing.
The computer used for my research is not able to parallel process the 21 outputs of the cerebellar on its
processor, as it only contains 8 cores. This is necessary to truly simulate the cerebellum’s processing.
This could have not been exploited on in this research’s process, but is a pointer to future work.

7.1.3. Simulation of the Cerebellum by Artificial Neural Networks
In this thesis, the cerebellum had been simulated by an artificial neural network, using resilient back-
propagation and an exact input-output training set. It can be argued to what degree this happens
biologically. It seems unlikely that the human brain has an exact input and output ready for the
cerebellum to learn which it propagates back to its synaptic weights. The plasticity could be ignited

1However, one McKibben’s muscle represents just once muscle cell. Our muscles contains thousands of those cells, where
are connected which each other in series and parallel, together sharing the load for contraction.
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by an indirect performance measure. Within the human body, there are many links in completing a
certain task, however it will not be known if it was performed correctly until the entire task had been
complete. This issue is called the distal supervised learning problem (Fig. 7.2) as formulated by Jordan
and Rumelhart (1992), which requires some other non-conventional learning architecture.

In section 4.2.3, some alternative training algorithms have been discussed. Comparing it to the
cerebellum’s physiology: If the climbing fibers encode a reset function, then it would plausible that a
connection would be added one by one as cascade training. If the last made connection worsened the
performance, the reset function will remove it. If the climbing fiber encodes a fitness function, maybe
each Purkinje cell is a blank template, where random connections are being created and evolved if they
survive the fitness test. From the remaining Purkinje cells, the other layers will vibrate along with
them, therefore creating connections which are similar to theirs. In case the climbing fiber provides a
noise signal, it can be that the cerebellum is more involved with reinforcement learning.

Doya (2000) commented that the basal ganglia is learning with a reinforcement reward signal.
However, the cerebellum contains all the aspects of a supervised learning system. In section 2.1.1, it
was mentioned that those two brain areas might have more connections with each other than initially
was assumed (Bostan et al. (2013)). A solution to the earlier mentioned distal supervised learning
problem could lie in the cooperation of between those two brain areas. The basal ganglia can determine
the information needed, i.e. an input and output training set for a certain task, which is modified
by a performance measure as reinforcement signal. The cerebellum will manifest this information by
supervised learning, therefore fine-tuning and improving fine motor control.

The cerebellum can also simulated by spiking neural network, also called the third generation of
neural network by Maass (1997). Due to computational limitations, this method was not used within
my research. However, its computation is closer to what is actually happening in the human brain.
This raises the question on how similar the cerebellar-inspired model must be to its original, biological,
counter part, in order to grab the essence of its functionality. Although the human body’s neurons use
spiking signals, it is not necessarily apt for robotics. The ability to extract the functionality of a brain
part, able to integrate within a robot, without changing the framework within it operates, would lead
to a better understanding of the human brain.

7.1.4. Optical Flow
For this master thesis, a dense optical flow algorithm was used to visually detect the ego-motion of the
binocular robot. This signal was then fed back to the cerebellar-inspired model as a learning signal,
as it needs to predict the optical flow a couple of steps in advance. In chapter 5, several techniques
are given to do this task, and evaluated based on speed and ability to accurately determine what the
ego-motion of the algorithm was. I investigated how to achieve this for the 2D image.

However, the resulting motion parallax was not taken into consideration. The rotational and linear
disturbance used for the experiments will create different motion characteristics within the image.
Objects far away will appear to move faster with rotational disturbance, however with linear disturbance,
further objects will actually appear to move less fast than objects nearby. If a more 3D motion detection
was used, these motion parallaxes could be identified. For this research, it was sufficient for the algorithm
to use the optical flow of the object that the tracker was following.

One of the requirement of the motion detection, was computation speed. Since this optical flow
algorithm should drive the real time smooth pursuit, its calculation time should stay under 0.033
seconds, for a control frequency of 30 hz. The computation time calculated within section 5.3, is done
without any of the other processes within the implementation running. If the cerebellar-model for each
of the motors were initiated, together with the pursuit, the duration was increased three to four times.
This is the reason why the optical flow was only calculated by a smaller, middle portion of the image,
i.e. on the object on which the eyes focused.

For this research, mostly existing computer vision techniques had been used to calculate optical flow
within an image-stream. The main objective of the research required to focus more on the mechanism
of cerebellar learning, where the optical flow is the supervising sensing system. Therefore, conventional
algorithms to detect optical flow have been used, instead of a developing a new method inspired on the
human vision system. For future recommendations, more can be done to study the human processing
capabilities for optical flow.
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7.1.5. Experiments
In section 1.1.2, some types of compensatory eye movements are explained, where a distinction was
made between reflexes of a rotational disturbance, excited by the semicircular canals, and the linear
disturbance, excited by the otolith organs. These two types of disturbances has been the inspiration for
the conducted experiments. Initiating a rotational disturbance is done by the neck of the robot itself.
Since the neck joint is immediately connected to a motor, it was easy to ensure repeatability of the
experiment.

For the linear disturbances, the system was put upon a cart and driven back and forth. The difference
here, is that using a cart will increase the chance of the cart to slip or be affected by the slope of the
floor it is riding on. As a temporary solution for this, a short pause was initiated in between experiment
sequences, to have time to put the setup back to its original position. Although it could not be done
with precise accuracy, it was enough to prevent a bias in the output of the learned cerebellar model.
Eventually, it would have been much easier to have used linear translation actuators instead of a cart.

As the variation within the linear disturbance was given by the position of a marker, initially this was
done by hand. Fortunately, an industrial robot was then added to assist placing the marker. Although
this definitely increased the repeatability of the experiment, still some arguments can be given on how
it is handled. Now the movement of the robotic arm, the vision setup and the execution of the software
were manually matched by setting time limits for the systems. A check on the marker position, for
the results, was done by registering the distance of the marker as calculated by the cameras. However,
it is not ideal in terms of synchronization, especially since ROS does not work real-time and is highly
depended on the computer’s processor. A better way would have been to connect the robotic arm
directly to the same operating system, where the binocular robot and cart also are controlled from as
well. It can receive commands on, when to start, when to pause and when to move the marker to a
new position from the same program which controls the experiments and collects the data.

Ensuring repeatability of the experiments had been the biggest issues I had to deal with during the
experiments. Although this was important to be able to separate the data in theory this should not make
much difference for the supervised learning of the cerebellar models. In order to achieve generalization
of the models, they must come in contact with as many situations/disturbances as possible. These
variations in the experimental setup should actually improve the performance. However, to be able
to separate the data, for different frequencies and marker positions, I chose to keep those in-between-
experiment variations to a minimum.

7.1.6. Results
The experiments showed that the implementations of the adaptive and information filter were able to
stabilize the vision system better, by more reduction of the optical flow and the motion blur, than
the pursuit tracker alone. However, when the models were compared to a case where the pursuit
control receives the optical flow directly, the difference in performance is not as significant. For the
prediction of the optical flow, certain delays are taken into account for the cerebellar models’ prediction
horizon, which is assumed to be 120 ms in total. However, since ROS is so depended on the computer’s
processor, the computational limits are reached, increasing the latency of the optical flow detection.
The expectation is that both the adaptive and information filter’s performance can be increased by
extending their prediction horizon.

It was initially thought that the adaptive filter will perform better for the rotational disturbance
and that the information filter would do better for linear disturbances. Although the first hypothesis
did hold, the second is not as significant. In terms of optical flow, the information filter was able to
reduce its value, however the adaptive filter reduced the motion blur more within the image stream.
As the optical flow has more access to different representation of the current state, including visual
feedback, it seems logical that it would have been more qualified to handle the linear disturbance with
the variable marker position. However, the experiments show that this was not the case.

The adaptive filter was able to reduce the optical flow and motion blur at all the experiments. The
information filter also achieved this, but not as well. In section 7.1.1, arguments have been given to
support the information filter role of the cerebellum. However, it was mentioned as well that prediction
and memory systems probably would exist outside of the cerebellum. This information filter is used
to predict optical flow, which is contradicting to that principle. It does not necessarily mean that the
cerebellum does not exercise the information selection functionality, however it is eminent that this
model must be developed further.
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7.2. Conclusions
In the introduction of this master thesis, a main research objective had been formulated: Implementing
a stabilization algorithm which handles external disturbances for an active, binocular vision system
inspired by the functionality of the cerebellum. This has been divided in four sub-objectives, which will
be evaluated on how they have been achieved in this research. This will be done using the discussion
of the previous section.

The first sub objective is about building the cerebellar model, which is able to adapt itself by means
of supervised learning with optical flow. Both the adaptive and information filter are built with artificial
neural networks. They are both able to learn a prediction of an optical flow signal within the image
streams from the cameras, with a given input originating from the robotics head. Although the adaptive
filter theory needed some simplifications and adjustments and the help of a neural network library, this
objective has been achieved.

The next sub-goal was the implementation of the model within a real life active binocular robot
head. To be able to achieve this, a simulation of the robot had been made. Its description can be
found in appendix B. This simulation is able to run on the same software as the robotic setup in ROS,
which enabled the easy switching between those two. It gave me the possibility to try out the cerebellar
models freely, to be even more sure that they were able to learn and work on the real setup. On top
of that, developing it provided me with some useful knowledge about the technical specifics and the
dynamics of movements. Instead of trying to make the cerebellar models work on the robot straight
from the theory, the simulation provided an extra step in between. Therefore, it was possible for me to
make the cerebellar models work on a real system, which has much added value for their validation by
the experiments.

The third sub-objective was to improve the robot-head’s vision by reducing of the optical flow and
motion blur detected, with the help of the prediction of optical flow by the cerebellar model. Looking
at the results, the implementation the adaptive filter is indeed able to improve the stability of the
binocular robot’s vision, in terms of reducing the optical flow and motion blur. However, it can be
discussed whether the prediction horizon can be made even larger, and if that would have an effect for
the performance of the cerebellar model.

The last subgoal covers if the existing cerebellar-model (the adaptive filter) could be compared with
the information filter, which is based on more recent neurological research. This adapted filter, is able
to still predict optical flow, after changing the input to the neural network. The experiments show
that the information does not give a better performance than the adaptive filter. For this particular
situation, it appears to be more beneficial to know the history of motor commands, than to know
as much information as possible from the current time frame. It was expected to be otherwise, as it
was hoped that the information filter was able to select the correct signals needed for the prediction.
Moreover, as it is connected to various dynamic signals, I expected that by its nature it would have
more state information than just the current time step. This can be reflected on that the information
filter either receiving too little state information, or that it needs more history of motor input in order
to determine the dynamics of the disturbance, in order to make a prediction. Therefore, a combination
of both the adaptive and information filter should have been researched as well.

7.3. Recommendations and Future Perspectives
From the research conducted for this thesis, there are a few recommendations to give to my successor in
cerebellar-inspired control for robotics. First of all, one has to look more into the proposed functionality
of the cerebellum being an information selector instead of a forward model (see section 2.2.1). A good
starting point for this, is to assume the cerebellum is a black box with just input and output. By going
into neuroscientific papers, with help of people who have experience with clinical research, one can find
which are the established input and output signals to the cerebellum.

The cerebellum’s relationship and connections must be investigated with the rest of the brain, to
get a better sense of its functionality. To further increase the robustness of the cerebellar-inspired
model, one should look into a joint reinforcement learning and supervised learning algorithm, based on
the cooperation between the cerebellum and the basal ganglia (as discussed in section 7.1.1). As an
example, the basal ganglia will try out different control policies for various of task, therefore providing
the training data for the cerebellum to fine tune. This will result in a more robust robot control
algorithm.
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In terms of hardware, it would be wise to look into various parallel processing architectures, which
are able to simulate the forward parallel processing capabilities of the cerebellum. One should look
at what other researchers have used for their cerebellum-inspired implementation into a robotic setup,
like in section 2.2.3. What should remain the key of cerebellar inspired control, is the determination of
what it processes, what it learns and how it should communicate with different systems.

It is important to reflect on the future of the binocular vision robot and cerebellar-inspired model
implementations. Not only will it provide a view on more robust and adaptive control methods for
robotics, it may become a platform for neuroscientists to express their ideas about the human brain.
The ability to transform functionality of a brain area into a robot will underline the theories they have
on their neurological counterpart. Therefore, it is recommended to have a more intense collaboration
on these topics, where people of both expertises can enhance each-others’ knowledge on the processing
and functionality of the cerebellum.





A
Hardware

A.1. ThreeMXL PID control Tuning
As calibration, the PID gains must be tuned. The vision system has springs to reduce backlash. To
tune it, first a reference speed is given to the system as a step function. The reaction in the motor’s
position is recorded as well. From these plots (found in the Appendix), certain values are extracted for
the calculation of the gains. The initial slope of the response (∆R) estimates the dead time (DT ) ,
which the time it takes for the system to respond to stimuli. That all with the reference’s size (dMV ),
the gearbox ratio (GR), the encoder’s resolution (ER), and a scaling factor (k) the following formula
is used to calculate the proportional (Kp) and integral gain (Ki)

∆P = 4 · ER ·∆R
2π ·GR (A.1)

PG = ∆P
dMV

(A.2)

Kp = k

2 ∗DT · PG (A.3)

Ki = PG

8 · k (A.4)

The used values and its resulting gains can be seen in table A.1.

∆R [rad/s] ER GR DT [s] dMV [rad] Kp Ki

Left Eye 0.32 512 1:19 0.03 0.15 0.1261 0.5256
Right Eye 0.33 512 1:19 0.04 0.15 0.0917 0.2867
Tilt 0.039 32 1:4.4*60 0.1006 0.3 0.7109 0.8833
Pan 0.03 32 1:231 0.1144 0.3 0.9291 1.0155

Table A.1: The table with used values and resulting gains, using a scaling factor of 0.01

A.2. IMU Calibration by Physical model
The sensors within the IMU, which are the accelerometers, gyroscopes and magnetometers, are cali-
brated by means of a linear physical sensor model. The model is explained as followed:

s = K−1
t (u− bt) (A.5)

where s stand for the physical quantity, u for the sampled digital voltages, Kt is the gain matrix
and bt is the bias vector. The gain matrix consist of an alignment matrix A and an gain matrix G.

65



66 A. Hardware

A =

a1,x a1,y a1,z
a2,x a2,y a2,z
a3,x a3,y a3,z

 G =

G1 0 0
0 G2 0
0 0 G3

 (A.6)

Kt = G ·A+O (A.7)

where O stands for additional terms related to non linear, temperature modeling offsets and etc.
The calibration data for these matrices are as follows:

Aaccel =

1.00 −0.01 0.00
0.01 1.00 0.00
0.00 −0.01 1.00

 Gaccel =

549.3 0 0
0 547.2 0
0 0 551.1

 (A.8)

Agyro =

1.00 0.01 0.00
0.00 1.00 0.01
0.00 0.00 1.00

 Ggyro =

3730 0 0
0 3816 0
0 0 3777

 (A.9)

Amagn =

 1.00 0.00 −0.04
0.02 1.00 0.05
−0.05 −0.02 1.00

 Gmagn =

7958 0 0
0 8159 0
0 0 7941

 (A.10)

(A.11)



B
Simulation

Several simulations have been done for this project within Matlab and SimMechanics. However, since
the hardware is run by ROS and C++ code, it is more ideal to have a simulation which can work with
the same code as well. I therefore decided to build a robot model with cameras in gazebo (Fig. B.1(b)).
Gazebo is a robot simulation tool, which enables to easily designed robots and test these within a
simulated environment.

I first modeled the robot-head within Solid Works 2014, which can be seen in Fig. B.1(a). This could
than be imported into a Gazebo URDF file, which could than be used within the ROS architecture
of the robot. The guidelines in the manual of Watson and Strickland had been used to achieve this.
Afterwards, have been simulated cameras was placed upon the simulated setup, and a object with the
same marker it was programmed to follow. After the PID controllers had been tuned for this occasion,
it was able to follow this marker, using the exact same control architecture as the real life setup.

(a) (b)

Figure B.1: (a) The robotic setup modeled in Solid Works and (b) the same model active within Gazebo.

B.1. Experiments on Simulation
To test the cerebellar models, the simulation was used by the prediction of the marker speed, the given
the goal speeds and the previous goal speeds (until k − 3). This has been done for just the left eye,
within the simulation
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Figure B.2: Here the results can be seen of the adaptive filter’s prediction performance in the Gazebo simulation. The
goal speeds are seen which were the input of the adaptive filter. It was setup to predict the optical flow a 120 ms in
advance, from which the results are placed over each other in the second plot. The third plot shows the prediction error,
which has a total mean squared error of 0.0174. This is done for a rotational disturbance of the neck.
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Figure B.3: Here the results can be seen of the adaptive filter’s prediction performance in the Gazebo simulation. The
goal speeds are seen which were the input of the adaptive filter. It was setup to predict the optical flow 120 ms in advance,
from which the results are placed over eachother in the second plot. The third plot shows the prediction error, which has
a total mean squared error of 0.0121. This is done for a translational disturbance from right to left of the base
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B.2. Active Binocular Setup Dynamics Modeled by Matlab
Before Gazebo was used, the active binocular setup was simulated within Matlab 2014 itself. This is done
by using the 3D plot functionality, dynamical equations and the differential equations solver available.
The result for the simulation can be found in Fig. B.4(a), for which a camera system which displayed
the to be followed object on the cameras, by means of its orientation and translation (Fig. B.4(b)). The
differential equations used to simulate the dynamics on the model can be found in the next subsection,
which was solved by a variable order method for stiff differential equations called ODE15s. The equations
also consited of the PID control, to follow the red dot on its camera’s

Although, it was chosen not to proceed with this simulation, since it was difficult to implement the
cerebellar model, as a fixed time step was not possible to solve these differential equations fast enough.
It seemed by then counter productive to solve these problems within this program, and to be able to
still fulfill the research objectives. Also, it was difficult to ignite any kind of optical flow with this
current camera view. It was therefore chosen to look for other options to model the robotic head. Still,
building this simulation modeling its vision system had given me a good experience and sense on the
movement and dynamics of the active binocular setup, and stereo vision overall.
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Figure B.4: (a)The robot head modeled within Matlab 2014 and (b) the camera system made for the occasion.

B.3. Dynamic Differential Equations
Here the equations for the dynamical behavior of the hardware are derived. This has been done with
the TMT method from van der Linde and Schwab (1998).

Rα =

 cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 Rβ =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

 (B.1)

Rγ1 =

 cos(γ1) − sin(γ1) 0
sin(γ1) cos(γ1) 0

0 0 1

 Rγ2 =

 cos(γ2) − sin(γ2) 0
sin(γ2) cos(γ2) 0

0 0 1

 (B.2)

R1 =

 cos(α) cos(β) cos(γ1)− sin(α) sin(γ1) − cos(γ1) sin(α)− cos(α) cos(β) sin(γ1) cos(α) sin(β)
cos(α) sin(γ1) + cos(β) cos(γ1) sin(α) cos(α) cos(γ1)− cos(β) sin(α) sin(γ1) sin(α) sin(β)

− cos(γ1) sin(β) sin(β) sin(γ1) cos(β)


(B.3)

R2 =

 cos(α) cos(β) cos(γ2)− sin(α) sin(γ2) − cos(γ2) sin(α)− cos(α) cos(β) sin(γ2) cos(α) sin(β)
cos(α) sin(γ2) + cos(β) cos(γ2) sin(α) cos(α) cos(γ2)− cos(β) sin(α) sin(γ2) sin(α) sin(β)

− cos(γ2) sin(β) sin(β) sin(γ2) cos(β)


(B.4)
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p′neck = pneck (B.5)
p′tilt = pneck +Rα · pcam,left (B.6)

p′cam,left = p′tilt +Rα ·Rβ · pcam,left (B.7)
p′cam,right = p′tilt +Rα ·Rβ · pcam,right (B.8)
p′focus,left = p′cam,left +R1 · pfocus,left (B.9)
p′focus,right = p′cam,left +R2 · pfocus,right (B.10)

q = [α, β, γ1, γ2]T (B.11)
q̇ = [α̇, β̇, γ̇1, γ̇2]T (B.12)
p = [p′neck, p′tilt, p′cam,left, p′cam,right]T (B.13)

For the motion equations, the TMT method is used. The implementation goes as following.

Ti,jMi,jTT
i,j · q̈j = Qj + TT

i,j · (fi −Mijgj)−Dv · k−Dd · c (B.14)

where

pi = Ti(qj) = p
Ti,j = jacobian(Ti, qj)
gj = jacobian(Tij · q̇i, qj) · q̇j

(B.15)

and

fi = g · [0, 0,−mneck, 0, 0,−mtilt, 0, 0,−,mcam, 0, 0,−mcam, 0, 0, 0, 0, 0, 0]T (B.16)
Q = [τneck, τtilt, τcam,left, τcam,right, ]T (B.17)

Mij = diag([mneck,mneck,mneck,mtilt,mtilt,mtilt,mcam,mcam,mcam,mcam,mcam,mcam,0])
(B.18)

k = [kα, kβ , kγ1 , kγ2 ]′ (B.19)
c = [cα, cβ , cγ1 , cγ2 ]′ (B.20)

Dv = [α, 0, γ1, γ2]′ (B.21)
Dd = [0, β̇, 0, 0]′ (B.22)

B.4. Active Binocular Setup Dynamics by SimMechanics
The second model of the active binocular system I made, was with the combination of Simulink and
SimMechanics (Fig. B.5). With the latter, a solid works model could be imported, and its joints could
be connected to each other with different characteristics. With Simulink, the PID controls and the
disturbance could be added to the system. However, due to its limitations of modeling its cameras
output, it was also chosen to continue with other solutions to simulate the robot head. Therefore, I
ended up with simulating it in Gazebo, as explained in the beginning of this appendix’s chapter.
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(a)

(b) (c)

Figure B.5: (a) The control architecture in Simulink in Matlab 2014 from the (b) Solid Works modeled robotic head. (b)
This simulation is build with the use of SimMechanics, also part of Matlab.



C
Neural Networks

The cerebellar model is tested on the simulated robotic setup. In fig. C.1, the different signals resulting
from the setup can be seen. In Fig. C.2, their prediction capability of the detected marker speed (
optical flow was not implemented yet), is shown. This is done for several types of data inputs. The
prediction error per various data input, can be seen in Fig. C.3.
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Figure C.1: Different signals resulting from the sensors of the simulated robot-head in gazebo. These are candidate inputs
for the cerebellar models.
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Figure C.2: The cerebellar model received different inputs: goalspeed, states (velocity and speed) and all the data possible.
With this, they had to predict the marker speed several steps in advance.
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Figure C.3: Here the error of the prediction from Fig. C.2 is displayed. For the entire sequence the MSE is: goalspeeds:
0.0672, states: 0.1983, all: 0.0209



D
Experiments and Results

D.1. ROS graph after Implementation Cerebellar Models
In section 3.3, Fig. 3.8, the simplified ROS architecture is displayed of the existing software architecture,
before my implementation. In Fig. D.1, the new ROS architecture is seen, which is based on the
ROSgraph plot made within ROS itself. However, since that plot was so extensive due to its many
connections, an abstraction was made to make it more organized. The three biggest modules added
to the architecture was the optical flow, the cerebellar model and the experiment. These consist of
separate nodes displayed underneath them. The logging data of Experiments, has the task to store
almost all the state data available within the system. Its many connections are not displayed in this
graph. The same principle hold for the extensive connections of the information filter.
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Figure D.1: Structure of the ROS packages of the binocular eye setup, after implementation of the cerebellar models
(marked in red).
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D.2. Photos Experimental Setup
In Fig. D.2 some photos to give a general idea of the experiments performed in section 6.2.

(a) (b)

(c)

Figure D.2: Photos of (a) the experimental setup of the sideways disturbance with the cart and (b) for a 2D disturbance
experiment, where the cart drives forward and backward on a slope. (c) shows an image of the robotic arm (Universal
Robots A/S) which assisted me during the experiment for the variable marker placement.

D.3. Input Adaptive Filter: Low PID vs High PID
In Fig. D.3, the result is shown for a situation that the input of the adaptive filter would have been
the direct voltage of the lower PID controller of 3Mxl consoles. This is compared to the conventional
goal speed inputs used in the experiments. The adaptive filter with a higher PID input, was able to
reduce the optical flow more (0.1181 px/frame), than when it received an input of the lower PID control
(0.1351). This is both opposed to the pursuit tracker only control of the vision setup.
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Figure D.3: The average optical flow per frequency for the control with the adaptive filter, with voltage (avg: 0.1351
px/fr) or goal speeds (avg: 0.1181 px/fr) as input, and without the adaptive filter (avg: 0.2336 px/fr).

D.4. Random Disturbance
This section displays the result of both the information and adaptive filter, while handling random
disturbances. This was an experiment to check if the cerebellar models were not learning the order of
disturbances, but actually the prediction of optical flow. This has been done for a random rotational
disturbance, as a summation of multiple sines (Tab. D.1) and for the linear disturbance, with a random
marker position (Tab. D.2). Here it can be seen that both the cerebellar models were able to increase
the stability of the control better than the pursuit tracker alone.

MSE prediction
Adaptive Filter 0.13892
Information Filter n/a

(a)

Opt. Flow vLAP
Adaptive Filter 0.24604 1033.0322
Information Filter n/a n/a
Pursuit Only 0.36415 757.2042

(b)

Table D.1: (a) The MSE error of the cerebellar-inspired model’s output and the optical flow 4 time-steps ahead and (b)
the average optical flow and the variance of Laplacian (VLAP) from both the adaptive and information filter, the pursuit
control only and the pursuit with the optical flow. The average is taken from both cameras for these values, for a random
rotational neck disturbance. The information filter’s experiment data unfortunately got corrupted, so it’s performance
can not be compared.

MSE prediction
Adaptive Filter 0.044817
Information Filter 0.052343

(a)

Opt. Flow vLAP
Adaptive Filter 0.09755 1917.8424
Information Filter 0.09509 1923.895
Pursuit Only 0.15829 1380.1851

(b)

Table D.2: (a)The MSE error of the cerebellar-inspired model’s output and the optical flow 4 time-steps ahead and (b)
the average optical flow and the variance of Laplacian (VLAP) from both the adaptive and information filter, the pursuit
control only and the pursuit with the optical flow. The average is taken from both cameras for this values, for a linear
sideways disturbance, with a random marker position.

D.5. Multiple Network Layers
Here, both cerebellar models are compared, containing 2 or 3 layers in total in their neural network’s
structure. This is done for both a rotational (Fig. D.4) and translational disturbance (Fig. D.5). It
seems that overall, the 2-layered neural network performs better that the 3-layered network, which is
different then initially anticipated. Several causes for this is, is that the 3-layered neural network takes
longer to generate an input, therefore that delay must be dealt as well. Also, both neural networks have
been put on the same amount of epochs and training data sets. Since the 3-layered network had to
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Figure D.4: The results of both the adaptive and information filter for a rotational disturbance of different frequencies.
The adaptive filter was compared with 2 (avg: 0.1252 px/fr) and 3 layers (avg: 0.1425 px/fr) . The information filter
was compared with 2 (avg: 0.1425 px/fr) and 3 layers (avg: 0.1316 px/fr). This was both compared to the pursuit only
tracker (0.2074 px/fr)

learn significantly longer (61 seconds) than the 2-layered one (5.5 seconds), it would need longer time
due to its added hidden layer.
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Figure D.5: The results of both the adaptive and information filter for a linear disturbance of different marker positions.
The adaptive filter was compared with 2 (avg: 0.0863 px/fr) and 3 layers (avg: 0.0897 px/fr) . The information filter
was compared with 2 (avg: 0.0871 px/fr) and 3 layers (avg: 0.0913 px/fr). This was both compared to the pursuit only
tracker (0.1567 x/fr)
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D.6. IMU vs. Optical Flow Ratio Performance
In this section, a small experiment is conducted, where the active binocular setup left camera’s actuator
only receives the output of the IMU, or the average horizontal optical flow as input. This is done for
several ratios set between the IMU and optical flow, were the result of the average optical flow per
frequency sequence can be seen in Fig. D.6. A plot is made, where the data has been normalized per
frequency to easily see the difference in performance between the different ratios (Fig. D.7). This was
done to compare the active binocular setup’s response to the OKR/VOR characteristics of the human
body. The OKR (retinal flow compensation) is useful for low frequency disturbances and the VOR
(inertial compensation) is suitable for high frequency disturbances. This trend can be seen within an
active binocular vision robot as well.
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Figure D.6: The average horizontal optical flow per frequency of the left camera of the robot-head, given a control by just
the IMU output, the optical flow alone and a ratio in between. This is done for a rotational disturbance with the neck
with a frequency from 0.1 to 2.0 hz, with an amplitude of 0.1 rad. The blue line represents the values of the IMU only
control, and the green line represents the values of the optical flow only control. The ratio given in the legend stands for
the ratio γ (γ*opticalflow=(1-γ)IMU).
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Figure D.7: The same data as in Fig. D.6, but now with normalized data per frequency.

D.7. Experiment Sequence Samples
From the experiments in section 6.2, a few 3 second samples of the execute sequence are displayed here,
for which the optical flow and the cerebellar models’ output are shown for all the motors active. For the
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rotational disturbance experiments in section 6.2.1, the sample sequence for the adaptive filter can be
found in Fig. D.8 and for the information filter in Fig. D.9. For the rotational disturbance experiments
in section 6.2.2, the sample sequence for the adaptive filter can be found in Fig. D.10 and for the
information filter in Fig. D.11.
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3 second sample from experiment data: Adaptive filter with Rotational Disturbance
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Optical flow (right)
Cereb. Output (left)
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Figure D.8: The 3 second experiment sample of the adaptive filter during a rotational disturbance of the neck. This
plot displays the average horizontal optical flow, calculated from both the left and right camera, and the output or the
cerebellar models for both cameras.
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3 second sample from experiment data: Information filter with Rotational Disturbance
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Figure D.9: The 3 second experiment sample of the information filter during a rotational disturbance of the neck. This
plot displays the average horizontal optical flow, calculated from both the left and right camera, and the output or the
cerebellar models for both cameras.
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3 second sample from experiment data: Adaptive filter with Sideways Disturbance
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Figure D.10: The 3 second experiment sample of the adaptive filter during a linear disturbance with the cart and a
variable marker position. This plot displays the average horizontal optical flow, calculated from both the left and right
camera, and the output or the cerebellar models for both cameras.
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3 second sample from experiment data: Information filter with Sideways Disturbance

Optical flow (left)
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Figure D.11: The 3 second experiment sample of the information filter during a linear disturbance with the cart and a
variable marker position. This plot displays the average horizontal optical flow, calculated from both the left and right
camera, and the output or the cerebellar models for both cameras.

D.8. Neural Networks Weights
During the training phase of the experiment, both the adaptive and information filter adapt their weights
by resilient back propagation on a given training set, with their inputs and the predicted optical flow 120
ms ahead. For the rotational disturbance experiments in section 6.2.1, the trained neural weights in the
first layer for the input values for the adaptive filter can be found in Fig. D.12 and for the information
filter in Fig. D.13. For the experiments with the sideways disturbance with a variable marker position,
discussed in section 6.2.2, the trained neural weights for the input values for the adaptive filter can be
found in Fig. D.14 and for the information filter in Fig. D.15.
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Figure D.12: The trained neural weights of the input value layer from the adaptive filter. ut,left, ut,right and ut,left

stand for the motor input for the robot for the left camera, right camera and tilt motors. This is equivalent to the goal
speed meant for the 3Mxl modules. These weights were obtained during a rotational disturbance with the neck. The
neuron values which do not fall within the plot range of [-1,1], have been clipped and their real value have been displayed
next to the bars.
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Figure D.13: The trained neural weights of the input value layer from the information filter. The input values can be
found in table 4.1 in section 4.3. This is equivalent to the goal speed meant for the 3Mxl modules. These weights were
obtained during a rotational disturbance with the neck. The neuron values which do not fall within the plot range of
[-1,1], have been clipped and their real value have been displayed next to the bars.
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Figure D.14: The trained neural weights of the input value layer from the adaptive filter. ut,left, ut,right and ut,left

stand for the motor input for the robot for the left camera, right camera and tilt motors. This is equivalent to the goal
speed meant for the 3Mxl modules. These weights were obtained during a sideways disturbance with the cart with a
variable marker position. The neuron values which do not fall within the plot range of [-1,1], have been clipped and their
real value have been displayed next to the bars.
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Figure D.15: The trained neural weights of the input value layer from the information filter. The input values can be
found in table 4.1 in section 4.3. This is equivalent to the goal speed meant for the 3Mxl modules. These weights were
obtained during a sideways disturbance with the cart with a variable marker position. The neuron values which do not
fall within the plot range of [-1,1], have been clipped and their real value have been displayed next to the bars.
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