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Abstract—Verifiable Credential (VC) is a new standard pro-
posed by the W3C association to facilitate the expression and
verification of third-party-verified credentials on the Internet,
such as passports or diplomas. However, the current VC data
model lacks an explicit revocation design that guarantees the
secure operations of the system, which limits its application. In
this paper, we specify the requirements for a tamper-evident and
privacy-preserving revocation mechanism, based on which we
compare existing solutions and propose our revocation mecha-
nism that satisfies all the requirements. Our design combines a
cryptographic accumulator and a role-based blockchain. With
zero-knowledge proof, the verifier can operate off-chain compu-
tation of the revocation status while ensuring the correctness of
revocation information published on the blockchain. Our analysis
shows that the proposed revocation mechanism can prevent fraud
using forged and revoked credentials and relieve privacy concerns
caused by the correlation of digital data. Our proof-of-concept
implementation demonstrates that our revocation mechanism
adds only 42.86 ms overhead in the presentation and 31.36 ms
overhead in the verification of verifiable credentials. We also
provide scalability analysis, which illustrates that the throughput
of our blockchain can meet real-world needs.

Index Terms—verifiable credential, revocation, blockchain,
zero-knowledge proof, privacy

I. INTRODUCTION

Verified third-party credentials are a part of our everyday
lives. Driver licenses assert that someone can operate a vehicle,
diplomas represent the level of education, and passports enable
people to travel across countries. These credentials provide
convenience to us when used in the physical world. As the
Internet has become more indispensable, there is an increasing
need for users to use verified third-party information on the
Web. However, there lacks a uniform format, and a consistent
verification method makes it challenging to represent third-
party-verified credentials on the Web [1]. Besides, two factors
comprise a severe privacy concern when using the verified
third-party credential on the Internet: the persistence of digital
data and the ease with which disparate digital data sources can
be collected and correlated.

To ease using third-party-verified credentials on the Internet
and relieve privacy concerns, the W3C proposes the Verifiable
Credential data model. Verifiable credentials are designed to
represent the information of physical credentials in a tamper-
evident and privacy-preserving manner. Figure 1 shows the

Fig. 1. Ecosystem of verifiable credentials.

ecosystem of the verifiable credential data model. There are
four actors in a verifiable credential system: issuer, holder,
verifier, and verifiable data registry. The issuer issues the
verifiable credentials to the holder. The holder stores verifiable
credentials and uses them to generate verifiable presentations.
The verifier requests a verifiable presentation from the holder
and checks its validity when asked for service. The verifiable
data registry maintains the auxiliary information for issuance.

Verifiable credentials represent users’ attributes in a subject-
property-value way called claims. For example, if Bob is 22
years old, it shows “Bob-age-22” on the credential. The issuer
signs each claim on the verifiable credential and guarantees its
authenticity. In addition, the signature of verifiable credentials
allows the holder to selectively disclose the signed claims
when presenting the credential to verifiers. Thus, the presen-
tation of verifiable credentials is tamper-evident and privacy-
preserving. In other words, the attackers can not modify the
claims signed by the issuer. They can not track the usage
of holders’ verifiable credentials if the user chooses not to
disclose identifying claims.

Aside from issuance and presentation, revocation is impor-
tant in the credential system. Revocation allows the issuer to
rescind the validity of the issued credentials when the user
misbehaves or the credentials are broken. The employment of
revocation can significantly reduce the frauds caused by stolen
and lost credentials [2]. Meanwhile, the appropriate revocation
can relieve the concern that terrorists use stolen credentials to
commit cross-board crimes [3]. Thus, it is necessary to check
the revocation status of a given credential. The process of
checking revocation status is called revocation status.

Currently, the official verifiable credential data model does
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not provide a standard design for the revocation mechanism.
The lack of a revocation mechanism limits the application of
verifiable credentials in a scenario that needs a rigid validity
check, such as applying for a loan from banks or health
allowance). Some existing works [4]–[9] proposed a revocation
mechanism for verifiable credentials. Nevertheless, the existing
revocation mechanisms suffer from two types of threats:
privacy leakage caused by revocation status and the issue of
centralization. The designs of [4]–[6], [8], [9] leave a space for
the attackers to correlate verifiable credentials with revocation
status, which violates the selective disclosure for verifiable cre-
dential data models. The design of [7] suffers from the threat
of the central server’s breakdown. In conclusion, the existing
revocation mechanisms for verifiable credentials fail to achieve
privacy-preserving and tamper-evident simultaneously.

To the best of our knowledge, this is the first academic work
that proposes a privacy-preserving and tamper-evident revoca-
tion mechanism for verifiable credentials. Our contributions
can be summarized as follows:

• We specify the requirements for a temper-evident and
privacy-preserving revocation mechanism. Based on that,
we analyze and compare existing solutions. Also, we
propose a revocation mechanism that satisfies all the
requirements by combining a blockchain and an efficient
bilinear pairing-based accumulator. The revocation and
the revocation status check do not leak any identifying
information about verifiable credentials and the holder of
verifiable credentials. Adversaries can not pass the revo-
cation status check with forged or revoked credentials.

• We implement a proof of concept of our revocation
mechanism in Rust. Our results show that adding our
revocation mechanism to a verifiable credential system
without a revocation mechanism adds 40ms runtime
overhead to presentation and 30ms runtime overhead
to verification. Since the absolute figure of the runtime
overhead is limited to tens of milliseconds, our revocation
mechanism is practical in real use.

The rest of the paper is organized as follows: Section II
gives a brief description of the background knowledge for
the related works and our design. Section III introduces and
analyzes related works. Section IV describes our proposed
revocation mechanism. Section V analyzes the security prop-
erties and performance of the proposed system. Section VI
shows the experimental measurements of our design. The
discussion and conclusion are provided in section VII.

II. PRELIMINARIES

A verifiable credential is a set of claims that describes the
attributes of the holder. The user can use the verifiable creden-
tials he holds to generate a verifiable presentation and send
the verifiable presentation to the verifier for authentication.
Figure 2 shows the basic structure of the verifiable credential
and verifiable presentation. A Verifiable Credential (verifiable
credential) consists of credential metadata, claims, and proofs.
Credential metadata describes properties of the credential,
such as the issuer, the expiry date, and the public keys to

Fig. 2. Basic structure of Verifiable credentials and Verifiable presentations

verify proofs. Claims are subject-property-value relationships
(e.g.”Alice”-”is an alumnus of”-”Example University”). Proofs
are the signatures of the claims. A Verifiable Presentation (VP)
contains one or more verifiable credentials and has metadata
and proofs. The metadata describes its usage, and the proofs
are used to prove the verifiable credentials embedded in the VP
belong to the same holder. The verifiable credentials contained
in a VP may only have selective claims. For instance, if a
user generates a VP for his ID card to prove he is an adult,
the verifiable credential in the VP only shows the user’s age;
other claims are hidden to protect his privacy.

Signature Proof-of-Knowledge (SPK) is a non-interactive
Zero-Knowledge Proof (ZKP) technique. Traditional zero-
knowledge protocols like Σ-protocols [10] are interactive,
which means the prover needs to solve the challenge given by
the verifier to prove he knows specific knowledge. SPK applies
Fiat-Shamir transformation [11] to enable the prover can
generate the challenge herself. Therefore, the interactive proof
protocols become a non-interactive signature. The verifier can
check the validity of the proof by verifying the signature. SPK
can be utilized as proof of claims for verifiable credentials.

Pairing, also known as bilinear maps, indicates the oper-
ation that maps pairs of points on two elliptic curves into a
finite field. According to the elliptic curves used, Galbraith et
al. [12] distinguish three types of pairings: type-1, which use
two identical elliptic curves; type-2, which uses two different
curves and there exists an efficient isomorphism between the
two curves; and type-3, which uses two different curves, but
no isomorphism exists. Currently, type-3 pairings are the most
desirable choice to describe a cryptographic scheme as it
provides the most efficient operations on the curves [13].

BBS+ signature [13] is a type-3 pairing-based signa-
ture which support selectively disclosure of signed values.
BBS+ signature has two advantages over the RSA-based CL-
signature [14] used by most existing verifiable credential
implementations: the key generation and signing are faster,
and the size of keys and claims are smaller [15]. Combining
BBS+ signature and JSON-LD grants good interoperability to
verifiable credentials [15]. Therefore, the BBS+ signature is
now the most suitable signature for verifiable credentials.

A cryptographic accumulator allows the user to represent
a large set of elements into one short, constant value. Each
element in the set has a corresponding value called the wit-
ness to prove its (non-)membership. Dynamic cryptographic
accumulators refer to accumulators that allow addition and
deletion from the given set. Known dynamic accumulators
can be categorized as Merkle-tree-based [16], RSA-based [14],
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[17], [18] and pairing-based [19]–[21]. Each time an element is
added (or removed), the accumulator should update witnesses
for other elements in a dynamic accumulator. Cryptographic
accumulators allow users to prove membership for an element
while keeping the value and associated witness hid using cryp-
tographic commitment. Among the proposed accumulators,
pairing-based accumulators are the most efficient. They can
reach the same level of security as RSA-based accumulators
with shorter key size and faster computation [22].

III. RELATED WORKS

In the past few years, several implementations of verifiable
credential data models have been proposed, but many of them
do not support revocation mechanisms [23]–[26]. In this paper,
we focus on verifiable credential implementations with revo-
cation mechanisms. We evaluate the existing works in three
dimensions: (1) privacy-preserving performance, (2) tamper-
evident performance, and (3) revocation information storage
cost. In this section, privacy-preserving means the revocation
mechanism should not leak identifying information about the
verifiable credential, and tamper-evident means the system
should resist the influence of the central server’s breakdown.

OpenAttestation (OA) [4] is an open-sourced framework
to endorse and verify verifiable credentials based on Ethereum
Smart Contracts. OpenAttestation provides two ways to revoke
a verifiable credential: using a document store or an Online
Certificate Status Protocol (OCSP). A document store is a
smart contract on the Ethereum network that records the
issuance and revocation status of OA documents. The issuer
can revoke an OA credential by operating the document store
of that credential. The revocation by the document store
requires the issuer to know the address of the credential’s
document store. OCSP checks the revocation status of a
verifiable credential by querying its certificate ID from an
OCSP responder. The appliance of smart contracts made the
revocation tamper-evident, but OA suffers privacy leakage
issues. Both the document store and OCSP require identifiers
to check the revocation status. The verifier can use the identi-
fiers used in the revocation status check to correlate different
presented verifiable credentials. For example, suppose a user
disclosed different claims in two presentations. The attacker
can use the identifiers to correlate the different claims to the
same credential, violating the verifiable credential data model’s
selective disclosure. Besides, the document store and OCSP
need to record the revocation status for each credential. Thus,
their storage cost is linear with the number of credentials.

Veramo [5] is the open-source version of uPort project [27].
Veramo aims to enable the user to create and manage verifiable
credentials without worrying about interactive operations and
vendor lock-in. Veramo is based on the Ethereum network and
uses a smart contract called ethr-status-registry to carry out the
revocation mechanism. Similar to OA, smart contracts ensure
the revocation is tamper-evident. The ethr-status-registry takes
the hash value of a credential as input for the revocation
status check. Since the hash value is static, attackers can
employ it to correlate verifiable credentials. Therefore, the

revocation mechanism can cause leakage of users’ personal
information, which is not privacy-preserving. Veramo also
needs to maintain revocation status for all credentials it issues,
so the storage cost is linear with the number of credentials.

Sorvin [28] is a Self-Sovereign Identity (SSI) [29] solu-
tion based on HyperLedger Indy [30] public permissioned
blockchain. Sorvin supports the user to use of verifiable
credentials as the authentication method. The revocation of
Sovrin is done using the CKS accumulator [20] and the Indy
blockchain. The CKS accumulator indexes the accumulated
values and publishes an index list that records the current valid
indices. Each time a new member joins or an old member
leaves, the accumulator needs to add/delete an index from
the index list. Thus, the CKS accumulator suffers from join-
revoke linkability [18], which means others can determine that
the revoked credential is the same credential that was issued
before. In particular, the verifier can compare the current index
list to stored previous index lists to determine whether the
credential revoked just now was issued at a certain previous
point. For that reason, the revocation mechanism of Sovrin
is not privacy-preserving. Sorvin’s revocation mechanism is
tamper-evident since CL-signature and blockchain guarantee
the authenticity of published information. As a result of using
the CKS accumulator, the revocation information of Sorvin
contains the valid index list and the accumulator value. The
storage cost is linear with valid credentials.

I Reveal My Attributes (IRMA) [7] is a verifiable creden-
tial project developed and supported by the Dutch government.
IRMA project develops a mobile application to interact with
the credentials. All operations about verifiable credentials
(issuance, store, presentation) are carried out with the IRMA
app, which means the user can use one single app to control his
identity. The revocation of IRMA is done based on the CL-
RSA-B accumulator [18], which only requires updating the
accumulator value and witnesses for users when revocation
happens. It reaches the optimal communication complexity
of accumulators. In addition, updating witnesses of the CL-
RSA-B accumulator does not need knowledge about current
valid credentials, preventing the joint-revoke attack. However,
IRMA uses a central server to process and store the data. It
suffers from possible crashes, which could happen through
malicious censorship, hacking, or natural calamity. Although
IRMA employs Redis as the data storage, a single Redis
datastore still suffers from possible tampers.

Verifiable-Credential-Java (VCJ) [9] is an implementation
of the verifiable credential data model based on Java. VCJ
employs Revocation List 2020 as its revocation mechanism.
In Revocation List 2020, the issuer keeps a bitstring list of all
its issued verifiable credentials. Each verifiable credential is
associated with a position in the list, called the revocation list
index. If the binary value of the position in the list is 1, the
verifiable credential is revoked (and 0 if not revoked). A benefit
of Revocation List 2020 is the bitstring can be compressed to
save storage. However, the revocation list index is a kind of
identifier that can correlate verifiable credentials. Therefore,
the revocation mechanism of VCJ is not privacy-preserving.
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VCJ employs a blockchain to guarantee the proofs are tamper-
evident. The storage cost of VCJ is linear with the number of
credentials as it records all credentials in the revocation list.

Gravity [8] is a decentralized cloud platform where in-
dividuals can receive, store, and share verifiable credentials
in a secure wallet they fully control. With decentralization,
Gravity achieves tamper-evident for revocation, but it suffers
from correlation since Revocation List 2020 is used as the
revocation mechanism. The storage cost is linear with the
number of credentials with Revocation List 2020.

Table I lists the summary of the related works. In this
table, n means the number of issued credentials. v implies
the number of valid (unrevoked) credentials. From Table I,
the existing revocation mechanisms for verifiable credentials
fail to achieve privacy-preserving and tamper-evident simul-
taneously. It remains an open question of how to establish a
privacy-preserving and tamper-evident revocation mechanism.

IV. SYSTEM DESIGN

This section introduces the design of our revocation mech-
anism. Here “revocation handler” refers to the value accumu-
lated in the accumulator. “revocation information” represents
the auxiliary information required by the revocation mecha-
nism. “proof of unrevocation” indicates the proof generated
by the holder to state the verifiable credential is not revoked.

A. Trust model

Our revocation mechanism follows the trust model of the
verifiable credential data model, which means: that the verifier
trusts the issuer to issue the credential that it received; all
entities trust the verifiable data registry to be a tamper-evident
record of published data; the holder and verifier trust the issuer
to issue valid credentials; the holder trust the repository to
store credentials securely. Based on the trust model, we give
our definition of tamper-evident and privacy-preserving:

Definition IV.1 (Tamper-evident). A revocation mechanism is
tamper-evident if only the issuer can generate the verifiable
credentials’ revocation handler, and only the issuer can pub-
lish the revocation information. Furthermore, being tamper-
evident also requires the revocation mechanism can resist a
certain degree of hacking and disaster.

Definition IV.2 (Privacy-preserving). A revocation mechanism
is privacy-preserving if the revocation status check does not
leak any identifying information about the verifiable creden-
tials and verifiable credentials’ holders.

B. Requirements

For the definitions, we set the following requirements:
Requirements of tamper-evident:
(1) A verifiable credential’s proof of unrevocation should

include proof that the issuer generates the revocation
handler and the revocation handler is associated with this
verifiable credential. This is the unforgeability property.

(2) Only the Issuer can publish the revocation information to
the verifiable data registry.

Requirement (1) is to convince the verifier that the revo-
cation status of a given verifiable credential is trustworthy.
Requirement (2) ensure that revocation information publishing
and updating is correct. Combining requirements (1) and (2),
our revocation mechanism achieves tamper evidence.
Requirements of privacy-preserving:

(3) The proof of unrevocation should be unlinkable for the
verifier and untraceable for the issuer when the verifiable
credential is presented multiple times.

(4) The revocation information should be join-revoke unlink-
able.

Requirement (3) guarantees the proof of unrevocation is
unlinkable. The holder repeatedly presents the verifiable cre-
dential, so he needs to generate multiple proofs of unrevoca-
tion for the same verifiable credential. Multi-show unlinkable
means the verifier can not use the proof of unrevocation to link
verifiable credentials. Given two different proofs of unrevoca-
tion, the verifier can not determine if they are generated from
the same or different verifiable credentials. Since there are
chances that the verifier collides with the issuer, the revocation
mechanism should also avoid the issuer distinguishing the
verifiable credential from the proofs of unrevocation. The
proof of unrevocation should be untraceable for the issuer.
Additionally, revocation information may suffer from join-
revoke linkability, so we set the requirement (4) against it.

C. Revocation mechanism

Our revocation mechanism has three building blocks: an
efficient type-3 pairing-based accumulator, the BBS+ signature
scheme, and a role-based blockchain. The accumulator is a
type-3 version of the accumulator described in [21]. It achieves
the same privacy guarantees as the CL-RSA-B accumulator but
has faster speed and a smaller key size. We incorporate the
accumulator with the BBS+ signature to make it interoperable
for different verifiable credentials formats. The role-based
blockchain is utilized as a tamper-evident ledger to record and
publish the revocation information. For the requirements of
tamper-evident and privacy-preserving, we achieve (1) and (3)
by incorporating the BBS+ signature and the efficient pairing-
based accumulator, (2) by the employment of a role-based
blockchain, and (4) by the pairing-based accumulator.

We assume four actor types in our revocation mechanism:
issuer, holder, verifier, and verifiable data registry. Only the
issuer can write to the verifiable data registry. The holder and
the verifier can only read the verifiable data registry. In this
section, the term “user” used in credential issuance is the same
as the “holder”. ”User” refers to the state that the holder has
not gotten the credential from the issuer. Since the verifiable
data registry is a blockchain, we use blockchain to refer to
it. The issuer generates blocks on the blockchain, whereas the
holder and verifier validate the blocks.

Due to the lack of space, we cannot present the details of our
protocols and algorithms. Instead, we will put the pseudo code
and reference to a detailed description of relevant algorithms.
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TABLE I
REVOCATION COMPARISON WITH RELATED WORKS

Project Methods Privacy-preserving Tamper-evident Storage complexity
OpenAttestation smart contracts and OCSP × ✓ O(n)
Veramo smart contracts × ✓ O(n)
Sorvin CKS accumulator × ✓ O(v)
IRMA CL-RSA-B accumulator ✓ × O(1)
Verifiable-Credential-Java Revocation List 2020 × ✓ O(n)
Gravity Revocation List 2020 × ✓ O(n)

Our work(section IV) Efficient bilinear pairing-
based accumulator ✓ ✓ O(1)

1) System initialization: Before the issuance, the issuer sets
up: the bilinear pairing-based accumulator, the BBS+ signature
and the Pedersen commitment scheme [31]. The accumulator
is used to accumulate the revocation handler and generate
a witness for the revocation handler. The BBS+ signature
is to sign the claims provided by the user, the revocation
handler generated by the issuer, and the revocation handler’s
witness. The Pedersen commitment is used to generate proof
of unrevocation. Algorithm 1 shows the pseudo-code of initial-
izing the system. The algorithm takes a pairing instance P =
(p,G1,G2,GT , e, g1, g2) and the number of claims Nclaims

as input. The pairing instance provides the elliptic curves
required by the cryptographic tools. The detailed description of
the BBS.KeyGen, Acc.Gen, Commitment.SetUp can be
found in [13], [21] and [31]. Note that BBS.KeyGen takes
Nclaims + 1 as the input because the issuer needs to sign the
revocation handler aside from the provided claims. Moreover,
Acc.Gen takes a type-3 pairing instance, which means the
initial accumulator value acc0 is generated using g2.

Algorithm 1 SetUp: Set up the cryptographic tools
Input: P = (p,G1,G2,GT , e, g1, g2), Nclaims

Output: (PKissuer, SKissuer), acc0
1: (PKBBS , SKBBS)← BBS.KeyGen(P, Nclaims + 1)
2: (PKAcc, SKAcc, acc||0)← Acc.Gen(P)
3: PKCom ← Commitment.SetUp(P)
4: PKissuer ← (PKBBS , PKAcc, PKCom)
5: SKissuer ← (SKBBS , SKAcc)
6: return (PKissuer, SKissuer, acc0)

2) Credential Issuance: Credential Issuance refers to how
the issuer signs the values obtained from the user. Before sign-
ing the values, the issuer generates a random value r from the
domain of the accumulator DAcc as the revocation handler and
accumulates r in the accumulator. The accumulator generates
a witness for the accumulated r. The issuer signs the given
claims and the revocation handler r together. Finally, the user
puts the signature and (r, witness) pair in the credential’s
proof part and sends it back to the user. When receiving the
credential, the user verifies the revocation handler r is signed
and accumulated in the accumulator. Protocol 1 shows the
credential issuance. Detailed descriptions of BBS+ signature
and the accumulator can be found in [13] and [21].

3) Credential presentation and presentation verification:
Credential presentation notices the operation of using one

Holder: {Claims} Issuer: skIssuer
{Claims}−−−−−−−−−−−−−−−−−−→

r ∈ DAcc

witness← Acc.add(r)
(A, e, s)←
BBS.Sign({Claims}, r)

(A,e,s),(witness,r)←−−−−−−−−−−−−−−−−−−−−
if BBS.V erify(A, e, s)
and Acc.V erify(r, witness):

Accept

Protocol 1. Protocol of credential issuance.

or more verifiable credentials to generate a presentation that
meets the requirements. During the credential presentation,
the holder does not reveal the (r, witness) for each verifiable
credential included in the presentation. Instead, the holder gen-
erates proof of unrevocation to assert the presented credential
is not revoked. The proof of unrevocation is a zero-knowledge
statement about the (r, witness). We can describe the ZK
statement as follows (using Camenisch-Stadler notation [32]):

ZKP = [(r, witness) : Commit.V erify(r)

∧Acc.V erMem(r, witness)

∧BBS.verify(r)](acc, PKissuer, Cr)

(1)

The zero-knowledge statement indicates the prover can
prove that the committed revocation handler Cr is signed by
the issuer and r is accumulated in the accumulator without
revealing (r, witness) to the verifier. To verify the given zero-
knowledge statement, the verifier only needs to know the cur-
rent accumulator value acc, the issuer’s public key PKissuer,
and the Pedersen commitment of r Cr to finish the verification.
For more details about individual protocols in this proof,
please refer to [33], [21] and [13]. Running the above zero-
knowledge proof protocols, the holder will generate two SPKs:
SPKBBS , the SPK for the BBS+ signature and SPKACC ,
the SPK for the accumulator. SPKBBS is the zero-knowledge
proof for the claims, whereas SPKACC function as the proof
of unrevocation. By verifying the two SPKs, the verifier can
check the revocation status of a presented credential.

4) Revocation: The revocation of a verifiable credential is
a two-step process. Firstly, the issuer removes the verifiable
credential’s revocation handler and updates the accumulator
value. Secondly, the issuer publishes the revoked revocation
handler and the newest accumulator value, which are required
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to update the witnesses for unrevoked verifiable credentials.
Note that the holder should always use the latest revocation
to update his verifiable credentials’ witnesses. Otherwise, he
can not generate valid proof of unrevocation. To ensure the
user always gets the latest revocation information, we add
a version number to the revocation information. The issuer
writes the revocation information to the blockchain in the
format of (acc, rh, v) where acc is the accumulator value. rh
is the revocation handler of the recently revoked verifiable
credential. v is the version number of the revocation handler.
The holder stores the last used revocation information. Each
time the issuer revokes a verifiable credential, it will make a
transaction on the blockchain, and the transaction will generate
a new block that documents the newest revocation information.
When the holder needs to generate a revocation handler, he
compares the version number of stored revocation information
and the latest revocation information on the data registry. If
two version numbers are the same, the holder does not need
to update the witness for the verifiable credential. Algorithm
2 shows the process of using revocation information to update
the witness. RIlocal, RIlatest, {RIblockchain} refer to the local
revocation information, the latest revocation information, and
the set of revocation information stored on the blockchain. The
detail of Acc.WitUp can be found in [21].

Algorithm 2 Update: Update the witness for a VC
Input: RIlocal, RIlatest, witnessold, {RIblockchain}
Output: witnessnew

1: vlocal ← RIlocal
2: Vlatest ← RIlatest
3: if vlocal == vlatest then
4: witnessnew = witnessold
5: else
6: for v = vlocal + 1..vlatest do
7: Find RI with version v in {RIblockchain}
8: (acc, rh)← RI
9: witnessnew = Acc.WitUp(witnessold, acc, rh)

10: end for
11: end if
12: return witnessnew

V. ANALYSIS

A. Security and privacy analysis

Theorem V.1 (Unforgeability). Our revocation mechanism
provides unforgeability: a probabilistic polynomial time (PPT)
adversary A can not derive a proof of unrevocation for
revoked credentials or use other credentials’ proof of unre-
vocation to pass the revocation status check.

Proof. To derive a proof of unrevocation for a revoked cre-
dential, A needs to prove a revoked revocation handler is
accumulated in the accumulator. This is infeasible under the
strong Diffie-Hellman assumption [18]. To pass the authentica-
tion with the proof of unrevocation for other valid credentials,

A needs to prove the commitment of other credentials’ revo-
cation handler C ′

r is signed with the claims contained in this
verifiable credential. The unforgeability of the BBS+ signature
ensures this is impossible under the strong Diffie-Hellman
assumption. For complete proof, please refer to [13].

Theorem V.2 (Multi-show Unlinkability). Our revocation
mechanism provides multi-show unlinkability: a probabilistic
polynomial time (PPT) adversary A is unable to determine if
two given proof of unrevocation are generated from the same
or different verifiable credentials.

Proof. The multi-show unlinkability is achieved by the zero-
knowledge proof of the BBS+ signature, the efficient pairing-
based accumulator, and the Pedersen commitment. Since the
zero-knowledge proofs do not leak any knowledge about the
identifying signature, revocation handler, and revocation han-
dler’s witness, the adversary can not use proofs of unrevocation
to link the verifiable credentials.

Theorem V.3 (Issuer Untraceability). Our revocation mecha-
nism provides issuer untraceability: given a verifiable creden-
tial and a proof of unrevocation, a probabilistic polynomial
time (PPT) adversary A can not determine if the given
verifiable credential generates the proof of unrevocation.

Proof. Similar to the proof of multi-show unlinkability, the
zero-knowledge property guarantees no identifying informa-
tion leakage under the strong Diffie-Hellman assumption.
As a result, the issuer cannot use proof of unrevocation to
distinguish verifiable credentials.

Theorem V.4 (Join-revoke Unlinkability). Our revocation
mechanism provides join-revoke unlinkability: given a veri-
fiable credential and proof of unrevocation, a probabilistic
polynomial time (PPT) adversary A is unable to determine
when the given credential is issued.

Proof. The efficient pairing-based accumulator achieves the
join-revoke unlinkability successfully. For the detailed descrip-
tion, we refer the readers to read the appendix of [18].

B. Performance analysis

Here we analyze the impact of adding our revocation
mechanism to a verifiable credential system. Figure 3 shows
the lifecycle of a verifiable credential. There are repeatable
operations such as the presentation of a verifiable credential,
the verification of presented verifiable credentials, and the
revocation status check. In the verifiable credential system, the
revocation status check and the verification of presented verifi-
able credentials can be merged. The performance of the system
(with revocation) is dominated by two operations: verifiable
credential presentation and verifiable credential verification.

The verifiable credential presentation includes generating
SPKBBS and SPKACC . Compared to the system without
a revocation mechanism, our design adds the generation of
SPKACC . Thus, the runtime overhead equals to the gen-
eration time of the SPKACC . [21] shows that generating
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Fig. 3. The lifecycle of a verifiable credential [1].
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Fig. 4. Runtime measurements of verifiable credential presentation

the SPKACC takes a fixed number of parameters, which
means the computation complexity is linear with the size of
the parameters. In our design, the size of the parameters is
fixed. Therefore, the runtime overhead caused by adding our
revocation mechanism is under constant complexity O(1).

The verifiable credential verification is to verify the
SPKACC . Similar to the analysis of the presentation, we
can conclude that the computation complexity of the runtime
overhead for the status check is also O(1). Besides, since the
computation complexity of verifying SPKBBS is constant
if we use parameters of fixed size, the overall computation
complexity of verifiable credential presentation is also O(1).

C. Storage

The revocation information of our revocation mechanism
contains three parts: accumulator value, revoked revocation
handler, and version number. The storage cost is a constant
value lacc + lrh + lv where lacc, lrh, lv represents the length
respectively for accumulator value, revoked revocation handler
and version number. The storage complexity is O(1).

VI. EXPERIMENTAL RESULTS

A. Runtime of off-chain zero-knowledge proof

This section measures the experimental runtime of our
revocation mechanism by comparing the credential system
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Fig. 5. Runtime measurements of verifiable credential verification.

with our revocation mechanism (noted as “w” in the figures)
against the credential system without a revocation mechanism
(noted as“w/o” in the figures). Similar to the performance
analysis in Section V, we compare the runtime for verifiable
credential presentation and verifiable credential verification.
We use credentials with 5, 10, 15, and 20 attributes for the
evaluation. The proof-of-concept implementation is written in
Rust. The pairing-friendly curve is Bls12-381. The random
generator is thread rng(). The measurements were performed
with macOS 12.2.1, Apple M1 chip, and 8GB memory.

Figure 4 shows the runtime of verifiable credential pre-
sentation. For the system without a revocation mechanism,
the runtime only involves the generation of SPKBBS . When
our revocation mechanism is embedded, both SPKBBS and
SPKACC are considered. The average runtime overhead by
our revocation mechanism on verifiable credential presentation
is 42.86 ms. Our analysis in Section V shows the runtime over-
head has a constant computation complexity. Thus, the runtime
overhead will not fluctuate significantly when the number of
claims changes in a credential. The generation of SPKBBS

is linear with the number of claims in the credentials [13].
When the number of claims in the credential increases, the
generation of SPKBBS gradually dominates the runtime of
verifiable credential presentation. In other words, the impact of
our revocation mechanism on verifiable credential presentation
decreases with an increasing number of claims contained in a
verifiable credential, which is probably the case in the future
with more complex scenarios for verifiable credentials.

Figure 5 shows the runtime of verifiable credential veri-
fication. Without a revocation mechanism, the runtime is the
verification of SPKBBS . With our revocation mechanism, the
runtime is the overall measurement of verifying SPKBBS

and SPKACC . Our revocation mechanism brings 31.36 ms
average runtime overhead, and the average overall verification
runtime is 45.84 ms. Section V indicates the computation
complexity of verifiable credential verification is O(1). There-
fore, the runtime of verifiable credentials verification does not
change significantly with an increasing number of claims.

Overall, the overhead brought by the revocation mechanism
is around tens of milliseconds, and the overhead is (near)
constant with the number of claims in a verifiable credential.
Considering the density and number of verifiable credentials
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being verified per day, the addition of the revocation mecha-
nism is practical in most scenarios.

B. On-chain scalability

We combine our proof of concept implementation with
Hyperledger Iroha [34] to test the scalability of our system. We
evaluate the transaction per second (TPS) of our mechanism
using the tools provided by Iroha. The test is run on the same
machine we employ in the runtime measurements of off-chain
computation. The TPS of our revocation mechanism with four
nodes is 70 transactions/second, so our system can support
6,048,000 revocations per day. We believe the TPS is sufficient
for practical use since revocation is an infrequent operation.
From 2015 to 2016, in the American state with the highest
number of revoked driver’s licenses, the annual revocation rate
was only 7.57%, and the actual number was only 41,263 [35].
In other words, there are only, on average, 113 revoked cre-
dentials per day. The throughput of our revocation mechanism
is far more extensive than 113 transactions/day. Therefore, our
revocation mechanism is scalable in the real world.

VII. DISCUSSION AND CONCLUSION

In this paper, we specify the requirements for a tamper-
evident and privacy-preserving revocation mechanism. Among
existing revocation mechanisms, smart contracts, OCSP, and
revocation list 2020 are used to manipulate identifiers to check
the revocation status, which violates the verifiable credential’s
requirement of being privacy-preserving. Sorvin uses the CKS
accumulator as the revocation mechanism, which avoids the
use of identifiers, but adversaries can correlate the credentials
through a join-revoke attack. The appliance of CL-RSA-B
makes IRMA outperforms other works on the enhancement
of privacy. However, the central server makes it lose in the
performance of tamper-evident. There is no work achieving
both tamper-evident and privacy-preserving revocation.

Based on the definition of tamper-evident and privacy-
preserving, we propose a revocation mechanism satisfying all
the requirements. Table I compares our revocation mechanism
with the existing works. Our design combines zero-knowledge
proofs of accumulators and BBS+ signature to ensure the revo-
cation status check does not leak identifying information about
the presented credential. We apply blockchain to guarantee the
published revocation information is trustworthy. Experimental
results show the performance is feasible for real-world use. We
consider our method the first privacy-preserving and tamper-
evident revocation mechanism for verifiable credentials.
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