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“Who has gathered the wind in his fists?“
— Agur (∼ 950 BC)





Abstract

Over the years, the installed capacity of offshore wind turbines is increasing rapidly. However, the
Levelized Costs Of Energy (LCOE) is still higher than the LCOE of traditional energy production
methods like nuclear power or energy from coals or gas. This research focuses on a further decrease of
the LCOE, by minimizing the mass of a monopile support structure of a wind turbine. This is done
in a so called integrated way: Optimizing the tower and the foundation together.
The design variables used in this research are the wall thickness and the diameter of every ±3 meter
section. These can even be cylindrical or conical. To simplify the problem, a parametrization of the
designs is used, which reduces the design variables from around 180 to 28. This is checked with existing
designs.
Due to the interaction between mostly the first eigenfrequency and eigenmode, the diameter and the
waves, it is expected that several local optima exist. Therefore, the proposed optimization strategy
is a Particle Swarm Optimization which can be used for a global search for an initial position for a
gradient based optimization to find a local optimum, which is possibly the global optimum. In this
research the focus is on the Particle Swarm Optimization.
The constraints of the optimization are Fatigue, Buckling, the maximum deflection of the monopile,
the angle of the conical parts and the D/t-ratio of the monopile. These are used in the initial design
of support structures, so that the optimized designs are realistic. To take the constraints into account,
the objective is taken as the mass extended by the penalized constraints.
To reduce the optimization time, the evaluations of the objective function are done by using load
estimations instead of extensive load calculations. Several methods are compared on a theoretical basis:
Response Surface Methodology, Radial Basis Functions, Kriging, Support Vector Regression, Multi-
adaptive Regression Splines and Non-Uniform Regression B-Splines. The performance of a selection
of methods is checked on the problem, to come up with reliable estimation methods. To improve the
accuracy of the estimations, interaction of Particle Swarm Optimization and the estimators is proposed
via estimator updating.
During this research, an optimization tool for monopile support structures is developed. This tool is
able to use calculations or estimations of the loads. In order to study the behaviour of the proposed
optimization approach and to compare it with the traditional design approach, several case studies
are formulated based on a realistic design problem. These are optimized with the optimization tool.
Using a constant tower diameter, the optimization tool is able to reduce the mass of the support
structure with 13%. Using the tower diameter also as design variable in the optimization gives a
further reduction of the mass with 4%. Several test runs are done, to check whether a global optimum
is found or not.

Master of Science Thesis Nico Maljaars



iv

Nico Maljaars Master of Science Thesis



Acknowledgements

As some people know, I like nice quotes. To thank my Siemens supervisors, I found one as well:
‘Succes is a science; if you have the conditions, you get the result’. A part of this project consists
of swarm intelligence, simply expressed in the saying: ‘Two heads are better than one’. During my
project ‘Three heads are better than one’ was better. Sven and Michiel, you both were the conditions
to finish this project by the many ‘weekly updates’ we have had. Michiel, thanks for your assistance
by teaching me the fundamentals of Object oriented programming and explaining me FUEL, PILS
and STIFT. Sven, thank you for often asking me: ’What do you want to do?’ and ’Do you like it,
what you’re doing?’.
I would like to thank Matthijs Langelaar from Delft University for his supervision. I really appreciated
the way in which you guided me through this process: You gave me the freedom to do the things I
wanted to do, while sometimes pointing me in a better direction by subtle hints, like ‘Ambitieus...’.
‘Many heads are better than one’ fits well to the sixth floor of the Siemens building in The Hague.
Thanks to all of you for the nice discussions about both the technical and the sales side of turbines,
but also the many other interesting topics during life. Colleague BOBs, thank you for all the ‘potjes’
we have played and off course all forms of other assistance and distraction! Stay thinking about your
children’s children...:)
Friends and family, thank you for being who you are! Especially, I want to thank my father and my
niece Hannah. My father for the many times you have brought me to Middelburg at Monday mornings
and Hannah for reducing the complexity of the design process of an offshore wind turbine, as shown
on the front page of this thesis.
Pedor, Seti, Arjoan, Geit, Willy and Corrie, thanks for accepting me as room mate! As I know you
have suffered from the last weeks before my graduation in the lack of meals prepared by myself. I will
compensate for this...:)
Last but not least, I would like to thank Marit. You joined the project in the final stage, but that
stage was giving the highest work load as well. I hope you haven’t suffered that much from the balance
between my thesis, you and the rest of the world.
During this project, many aspects of my master track Precision and Microsystems engineering came
along. As the track was studying processes on very small scale, wind turbines are some orders of
magnitude larger. But for both, often the same principles were valid. Years ago, someone wrote down:
‘As knowledge increases, wonder deepens.’ My wish is that this project will result in glory to God, the
creator of wind and waves, heaven and earth.

Den Haag, April 2017 Nico Maljaars

Master of Science Thesis Nico Maljaars



vi Acknowledgements

Nico Maljaars Master of Science Thesis



Table of Contents

Acknowledgements v

1 Introduction 3
1-1 Offshore wind energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1-2 Past research on OWT support structures . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1-3 Novel aspects of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1-4 Thesis objective and tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1-5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Optimization problem 11
2-1 Introduction design problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2-2 Defining optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2-2-1 Conflicts of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2-2-2 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2-2-3 Design variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2-2-4 Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2-2-5 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2-3 Optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2-3-1 First characterisation of the objective function . . . . . . . . . . . . . . . . . . . . 19
2-3-2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2-3-3 Penalization of the constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2-3-4 Algorithm dependent parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2-4 Overview computational steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2-4-1 Set-up model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2-4-2 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2-4-3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2-4-4 Computational time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Master of Science Thesis Nico Maljaars



viii Table of Contents

3 Theory of Approximation Methods 33
3-1 Terminology estimation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3-2 Explanation of several methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3-2-1 Polynomial fit (Response Surface Methodology (RSM)) . . . . . . . . . . . . . . . 35

3-2-2 Radial Basis Functions (RBF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3-2-3 Kriging (KRI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3-2-4 Support Vector Regression (SVR) . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3-2-5 Multi-Adaptive Regression Spline (MRS) . . . . . . . . . . . . . . . . . . . . . . . 42

3-2-6 Non-uniform Rational B(asis)-splines (NRB) . . . . . . . . . . . . . . . . . . . . . 43

3-2-7 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3-2-8 Methods compared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3-3 Multivariate output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Load estimation 49
4-1 Quantities to be estimated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4-2 Defining inputs of the estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4-2-1 Assessment of an estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4-2-2 Creating training, check and test data . . . . . . . . . . . . . . . . . . . . . . . . 52
4-2-3 Possible inputs of the estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4-2-4 Comparison of several input combinations . . . . . . . . . . . . . . . . . . . . . . 54
4-2-5 Comparison of several eigenmode input options . . . . . . . . . . . . . . . . . . . 56

4-3 Estimator choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4-3-1 First selection estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4-3-2 Methodology for choosing free parameters in estimators . . . . . . . . . . . . . . . 58
4-3-3 Comparison estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4-3-4 Improving vector estimations by Proper Orthogonal Decomposition . . . . . . . . . 60

4-4 Estimator updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Optimization results 65
5-1 Introduction case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5-2 Case study 1: FDB_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5-3 Case study 2: FD_P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5-4 Case study 3: FDB_LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5-5 Case study 4: FDB_LSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Conclusions 77
6-1 Load estimations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6-2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6-3 Optimization and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6-4 Bigger picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Nico Maljaars Master of Science Thesis



Table of Contents ix

7 Recommendations 81
7-1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7-2 Estimation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7-3 Optimization and estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A Introduction Optimization methods 85
A-1 Unconstrained optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A-1-1 Local optimization algorithms/Gradient based optimizers . . . . . . . . . . . . . . 85
A-1-2 Global optimization algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A-2 Constrained optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A-2-1 Penalty functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B Common terms in statistics 91

C Non-uniform Regression B-splines algorithm 95

D Damage Equivalent Load (DEL) 97

E DEL derivatives 101

Bibliography 105

Master of Science Thesis Nico Maljaars



x Table of Contents

Nico Maljaars Master of Science Thesis



NOMENCLATURE 1

List of Abbreviations

1P-frequency Frequency of the rotor
3P-frequency Blade passing (tower) frequency
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ALS Accidental Limit State
BHawC Bonus energy Horizontal-axis wind turbine Code
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KRI KRIging
LAT Lowest Astronomical Tide
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MRS Multi-adaptive Regression Splines
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NRB Non-Uniform Rational Basis Spline
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PSD Power Spectral Density
PSO Particle Swarm Optimization
RBF Radial Basis Function
RNA Rotor Nacelle Assembly
RSM Response Surface Modelling
SCF Stress Concentration Factor
SCOE Social Costs Of Energy
SLS Serviceability Limit State
SUS Support Structure
SVM Support Vector Machine
SVR Support Vector Regression
SWL Still Water Level
SWP Siemens Wind Power
ULS Ultimate Limit State
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Chapter 1

Introduction

These days most people are aware of the problems that can arise when the energy consumption and
energy production on planet earth stay at the same level as it is now. Mainly two sorts of problems
can be distinguished: Global warming by the emission of for example carbon dioxide and the exhaust of
non-sustainable energy sources like oil, coals and gas. Last years, renewable energy sources in general
have gained popularity, although (world) politics and natural disasters have influenced this in a postive
and negative way. Wind energy is one of the most important renewables.
This introduction chapter gives first a short overview of offshore wind energy and the design process of
offshore wind turbines. Then an overview of optimization projects on wind turbines is given and it is
shown how this optimization project distinguishes itself from previous projects. From this an objective
and the tasks belonging to this objective are derived. Finally an overview of the chapters is given.

1-1 Offshore wind energy

Using the power that is available by flowing air has a long history. Chinese and Egyptian people were
first in adding a sail to their vessels around 4000-3400 BC[45]. The initial idea of a wind mill was
described by Hero of Alexandria in the first century. He used a rotor with blades, to pump air in an
organ. It was in many ways less advanced than a state-of-the-art windturbine, but the concept of a
horizontal axis windmill with blades was there! When electricity was getting more and more popular,
the idea came up to create electricity from wind. From the second half of the 20th century, onshore wind
turbines became interesting for commercial purposes. Offshore wind turbines were first commissioned
around the start of the 21st century and the cumulative installed capacity is still increasing, as shown
in Figure 1-1 for Europe.

Foundation types
For offshore wind turbines, several foundation types are used or proposed. An overview of different
types is shown in Figure 1-2a. In the initial years of offshore wind turbines, it was expected that
monopiles were possible in water depths of at maximum 15 meter. But for several projects in the
North Sea, monopiles are already planned for water depths of around 40 meter with significantly
larger turbines! In 2016, 88% of the installed foundations was still the monopile foundation as shown
in Figure 1-2b.
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4 Introduction

Figure 1-1: Installed offshore capacity per year and the cumulative installed capacity in
Europe.[13]

(a) Foundation types. From left to right:
Monopile, jacket, gravity-based, tripile, tripod and floating.

(b) Installed foundations in 2016 (Europe).
[13]

Figure 1-2: Overview foundation types used for offshore wind.
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1-1 Offshore wind energy 5

Design process OWTs
For onshore wind turbines, there is little interaction between the design of the foundation and the
design of the turbine. This is because the wind loads on the blades, which are design-driving, are
almost independent of the foundation design. For this reason, a design of an onshore support structure
is done by two different parties: The first one is the wind turbine designer, which is responsible for
the tower. The second one is the foundation designer, which is responsible for the foundation. When
offshore turbines are designed, this design strategy is also used. So an optimized tower (Figure 1-3)
from the wind turbine designer and an optimized transition piece and a monopile from the foundation
designer together, form possibly an optimal design.

Figure 1-3: Definition of a support structure.

During this design process, some iterations with information about loads and displacement are done(Figure
1-4). The number of iterations is ideally unlimited until there is convergence in the designs. Although

Figure 1-4: Overview of the former design process.

in practice, this is mostly limited by time. And so the number of iterations is in most cases 2 or 3.
Besides some practical aspects during the design and looking to the ideal case, an important ques-
tion has risen: Is this way of designing an offshore wind turbine, leading to an optimal (light-weight)
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6 Introduction

design? For simplicity the weight of the design is assumed to have a linear relation with costs. Re-
search pointed out that integrated design of a tower, transition piece and the monopile (together called
support structure) can lead to significant material savings and in this way, cheaper turbines[11][12].
The design considerations of offshore wind support structures include 4 limit states:

– Fatigue Limit States (FLS) result from cyclic loading of the structure.
– Ultimate Limit States (ULS) are caused by extreme forces on the structure by extreme

waves and gusts.
– Accidental Limit States (ALS) corresponds to accidental events or failure.
– Serviceability Limit States (SLS) requires the functionality of the structure under routine

conditions.

This research uses just FLS and ULS because these are generally accepted to be design-driving.

1-2 Past research on OWT support structures
Because of the need for sustainable energy resources, research is done in many fields related to wind
energy. Most research is done in the field of wind farm layout design (mostly based on the wakes of the
turbines int he farm), the conversion from wind into electricity, structural optimization of the blades
and the distribution of fatigue in a wind farm by optimizing the turbine controller (driven by LCOE
via maintenance). Optimization of the final goal, minimization of the LCOE1, is really scarce because
cost models are difficult to make and to rely on [15][26][51].
Some studies focused on the optimization of the tower (sometimes the foundation included as well).
Muskulus and Schaffhirt[26] have formulated the most challenging issues of design and optimization
of a support structure:

– Many Nonlinearities due to wakes, waves, soil
– A Complex environment caused by the irregular nature of the conditions (causing the need

for long simulation times), scour, marine growth and sea ice.
– Fatigue as design-driving, so simulations representing the full lifetime are needed.
– Specialized analysis software is needed to combine aerodynamic, hydrodynamic and struc-

tural analysis.
– Tightly coupled and strongly interrelated systems make optimization a complex task.

Optimizing each system separately will probably result in a suboptimal configuration. Besides
this, installation, operation and maintenance is difficult to take into account.

– Many design variables and constraints are possible for the optimization of multi-member
support structures, such as jackets.

Now, the most important scientific contributions in the area of support structure optimization are
briefly reviewed:

– Malaawi and Negm[28] propose 5 methods (Light-weight design, high stiffness, high stiffness/mass-
ratio, frequency-placement criterion, maximum frequency criterion) for the optimization of the
structure. Maximizing the systems’ first natural frequency by a non-linear mathematical pro-
gramming model (Powell’s technique) using an interior penalty on the objective, gave the best
results. This research was done in 2000 and performed on a 100 kW turbine.

1Although the final goal is to maximize sustainability, minimization of the LCOE is a common way to reach
this.
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1-2 Past research on OWT support structures 7

– Uys et al.[49] show the optimization of a 1 MW turbine based on 3 tubular sections with a height
of 15 meter each. Production costs are minimized and buckling is taken as a constraint. The
design variables are the mean wall thickness of each 15 meter segment and a certain number
of ring stiffeners to prevent buckling. When using the mean wall thickness, it is assumed that
the dynamic behaviour and the resulting forces are independent of the distribution of this wall
thickness. Besides this, only one static load case is used, even so Chantharasenawong et al. uses
two static load cases[3].

– Perelmuter and Yurchenko [30] perform an optimization on the steel conical shell tower of an
onshore turbine. The weight is used as objective function. The top, bottom and one extra
diameter, the wall thickness for every section of the tower and the length of the tower are used
as design variables. In a straightforward, analytical way the stresses for two load cases are
calculated, which are used (beside some geometrical constraints) as a constraint. The algorithm
that is used to come up with the solution of their non-linear programming task is called the
improved gradient method.

– Pasamontes et al.[29] have done an optimization study on the jacket of the OC4 project. A
genetic algorithm is used to minimize the weight (fitness defined as Fi = mmax − mi) with
first, the diameter and wall thickness as design variables (16 design variables). In the end, the
number of bays of the jacket has become a design variable as well (20 design variables). They
used design dependent ULS and FLS constraints on each joint in the structure, both based on 1
load case of 30 seconds which is extrapolated to the full lifetime of the structure. For the jacket,
the ULS case was design-driving. 300 generations with 15 individuals for the first case and 30
individuals for the second case, are needed to come up with a solution.

– Although simulations in the time domain are most accurate, they are too time-consuming to use
in a fatigue assessment during an optimization. For this reason frequency domain calculations
are used by several researchers. For example: Thiry et al. [44] developed a methodology to
optimize monopile steel structures (5 MW turbine) with a genetic algorithm. The objective
is to minimize the weight of the support structure, while the constraints are implemented by
means of penalties in the fitness function. Constraints are taken both for FLS and ULS. FLS is
calculated based on structure independent damage from wind and structure dependent damage
from waves (calculated in frequency domain by linearly combining the PSD of the environment
and the PSD of the support structure). ULS is calculated as a result from the wind load on the
rotor, the pressure on the structure and a wave load (described by Hw = 10 m and Tw = 14 s).
Soil is not taken into account as the structure is clamped above mudline. This study shows a
weight reduction of 21%.

Integrated optimization (tower, transition piece and monopile)
For some years, research into integrated optimization of support structures is done. Both Godfroy[11]
and Haghi[12] did an optimization on the SWT-3.6-107 turbine. They used a constant overall geometry
by fixing the diameters of all plates. Several case studies were done by optimizing the wall-thickness.
These showed a mass reduction of around 25% [11] when using constraints on buckling and natural
frequency. A reduction of 12% [12] was found when using constraints on natural frequency, buckling
and fatigue. For the latter case, fatigue and the first natural frequency were design-driving.

According to Haghi, higher mass reductions could be obtained with an integrated optimization com-
pared to a strategy where the tower and monopile are optimized separately. This is explained by the
fact that the tower mass in the integrated optimization increased, while the total weight decreased,
compared to the separate optimized components. It is important to mention that these optimization
loops used one load calculation for all considered designs. The successive optimization algorithms
used, were built-in MATLAB-functions performed by the command ’fmincon’. First the Interior point
algorithm was used, followed by the SQP algorithm and third, the active-set algorithm was used. The
interior point algorithm caused the largest decrease in mass of around 90% of the total mass decrease,
while the SQP algorithm was just for sharpening this result by another 9.5% of the total decrease.
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8 Introduction

Most times the active set algorithm just concluded that the point found was an optimum. The gra-
dients were found by using (forward) finite differences. Haghi recommends to use an own written
algorithm for a higher flexibility during coding.

Calculation procedures
Most of these optimization studies used time domain simulations to calculate time series of deflections,
loads and stresses. These were used for calculating the maximum stresses for buckling and the time
series of stresses for the fatigue life state of the OWT. Because the calculation of these time series
requires large computational effort, just a very small number of load cases were taken into account or
the loads were kept constant during the optimization. Van der Tempel[50] and Ziegler [55] propose
to use another method for the calculation of fatigue life of OWTs using a frequency domain analysis
combined with Dirliks method[5] to come up with Damage Equivalent Loads. This gives much shorter
calculation times compared to time domain calculations while a relatively high accuracy is achieved.
Due to the relatively short calculation times, Seidel et al.[37] recommend this methodology to use in
the initial design processes.

1-3 Novel aspects of this thesis

Next, it is discussed on forehand how this research distinguishes itself from previous optimization
studies.

Realistic state-of-the-art design
Previous optimization studies did generally solve conceptual problems[44]. As a consequence, these
studies did not result in practically applicable designs. Besides this, previous studies were done on
relatively small turbines. As state-of-the-art turbines in 2017 have a capacity of around 7 ∼ 8 MW,
masses, eigenfrequencies and hydrodynamic loads are completely different and so are the challenges.

In this thesis, a tool is described which is developed to be used for the initial design of state-of-the-art
turbines.

Realistic constraints
Previous research projects used mostly not-realistic or a non-complete set of constraints. Non-realistic
constraints were due to neglecting the FLS[49]. A non-complete set of contraints was used when a
small number of sea states was interpolated to the full life-span for a fatigue analysis[29]. In this
thesis, the aim is to use all constraints which are possibly design-driving and therefore used in the
initial design, to result in a representative design of a turbine in the end.

Design variables
Previous, more realistic studies only used a limited number of design variables, to simplify the opti-
mization problem. Other studies did so, to keep realistic loads[12]. For example, when using design
independent loads, the eigenfrequency of a structure should not change that much. This was reached
by fixing the TW and MP diameters.

Wind turbine designers are also used to keep some important parameters constant. For example the
diameter of the tower is fixed to standardise the internals of the tower.

In this optimization, TW and MP diameters are both design variables. With the case studies, the
influence of fixing the TW diameter is assessed.
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1-4 Thesis objective and tasks

As previous sections have shown, there is still a gap between research and application in the wind
industry. This can also be derived from Muskulus and Schaffhirt when they state[26]: "... a convincing
demonstration of the potential for cost reduction with automatic wind turbine design and optimization
methods is lacking.".

In this thesis an approach is proposed which can be used in practice by designers of offshore wind
turbines. This is shown with a case study. To let the approach be useful, it is important that it has
capabilities to run an optimization in about 15 hours (overnight). From this follows the objective of
this thesis:

Develop an efficient approach for integrated optimization of monopile based Offshore Wind Turbine
support structures, which can be used in engineering practice.

From this objective, four main tasks are formulated:

1. Develop an optimization strategy for integrated optimization of a support structure.

2. Investigate estimation methods and develop an accurate way for the estimation of loads.

3. Combine Optimizer and Estimator into an efficient optimization routine.

4. Show the performance of this optimization approach on a representative case study.

1-5 Thesis outline

This chapter has introduced some background concerning wind energy, wind turbines and the opti-
mization of the design of a support structure of a wind turbine.

In Chapter 2, the optimization problem is introduced. After some explanation is given concerning
the characteristics of this problem, an optimization strategy is proposed (task 1). This includes the
objective and the algorithm to solve this optimization. The different computational methods that are
used in this thesis for the evaluation of the objective are explained, after which the chapter finishes
with an overview of the computational times for this evaluation. From this overview follows the need
for a cheaper evaluation of the objective.

Therefore, Chapter 3 is introducing several estimation methods (task 2a), which can possibly be used
for the estimation of loads. These methods are explained so far, that an informed decision can be
made on the choice of the estimator.

Chapter 4 explains first which quantity needs to be estimated. After that, step by step, the inputs
of the estimator are defined. This is followed by the choice of the estimators (task 2b), based on the
implementation as explained in Chapter 3. Initial results showed a risk of combining estimator and
optimizer. Therefore a method is introduced to further improve the accuracy of the used estimations.

When the estimators are defined, they are implemented into the optimization (task 3). To show the
performance of the combination of estimator and optimizer, in Chapter 5 first some case studies are
defined. The results of the optimization of these case-studies are shown and further explained (task
4).

The most important conclusions that can be drawn, are given in Chapter 6. This thesis concludes with
Chapter 7 were several recommendations are given concerning modelling, optimization of monopile
support structures and estimations.
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Chapter 2

Optimization problem

The final goal of this thesis is to come up with an efficient approach for integrated optimization. To
show the context of the optimization, the design problem on which the approach is tested, is introduced
first. After this, the optimization problem is defined, by explaining the objective, the design variables
and the constraints. This is followed by the explanation of the optimization algorithm. This chapter
concludes with an overview of the computational steps.

2-1 Introduction design problem
The OWT optimization is performed for wind turbines that are planned to be built in the North Sea.
The farm consists a number of 7.0 MW Siemens OWTs. The water depth is around 40 metres and the
wind turbines are placed on monopiles. The hub height is about 100 metres above sea level Because
the soil is sand and so relatively strong, a penetration depth of the monopile into the soil of 30 metres
is needed. Adding up these lengths gives a support structure length of around 170 meters.
As mentioned in Section 1-2, minimization of the LCOE is the final goal. Because of the absence
of a direct formulation of the LCOE based on the geometry of the monopile, previous optimization
studies used the weight as objective to minimize. Because in engineering practise, this objective is also
commonly used, in this optimization minimization of the weight is done.
The weight of the new design is compared to the weight of a representative wind turbine designed for
that position (further referred to as ’current design’ or ’current support structure’). This design is
made by a tower designer and a foundation designer in the ’old’ way as described in Section 1-1. For
confidentiality reasons, masses, dimensions and frequencies are all normalized in this thesis. In the
normalization the weight of the current design is set to 1.
As mentioned in Section 1-2, optimization of support structures has to deal with many non-linear
effects. This is why it is expected that there will be many local optima when the weight of the support
structure is minimized.

*
Removing transition piece The current support structure has three parts which are assembled offshore:
a monopile, a transition piece and a tower. The connection between TP and TW is done with a flange,
while the connection between TP and MP is a grouted connection. Nowadays, flanged connections
between TP and MP, as it is done between TP and TW, are getting more common. For this reason,
in this optimization, a flanged connection is assumed. When weights are compared with the current
design, for a fair comparison, the weight of the structure without flanges and skirt is taken.
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Figure 2-1: Cross-section of a grouted connection at the left and a flanged one at the right.

2-2 Defining optimization problem

Before starting up an optimization, it is important that the problem is well defined. But before ob-
jective and constraints are defined, some conflicts of interest are discussed to give more understanding
of the problem.

2-2-1 Conflicts of interest

Most optimization problems show some conflicts of interest. These conflicts can transform the opti-
mization into a challenge. To give some more insights in direct and in indirect conflicts of interest
belonging to this optimization, the most important ones are mentioned below.

Stiffness versus weight Within the optimization, stiffness and weight are both dependent on the wall
thickness and the diameters. So low values for these parameters, give a low weight for the support
structure, which gives a good value for the objective function, when the mass is minimized. For the
stiffness this is more complicated. Because there is a ULS constraint on the maximum deflection and
rotation of the monopile, a certain minimum stiffness is needed. For the constraint on buckling the
same statement can be done, that a minimum stiffness is needed to prevent buckling under a certain
load.

Stresses versus weight To a certain extent, it is preferable to have small instead of high stresses. So
having a load, a large diameter and wall thickness creates a large cross sectional area, which causes
small stresses. This results in a conflict of interest between stresses and weight.

Stiffness versus loads The stiffness influences the loads in both the FLS and the ULS case. For the
FLS case this is caused by a typical increasing equivalent spectral energy for a decreasing first natural
eigenfrequency. A relative larger amplitude around SWL for the first modeshape, for an unchanged
first natural frequency, causes higher loads for the FLS case as well [37]. The stiffness influences the
loads in the ULS case also. A flexible support structure is deflected more by a large wave while a
stiffer support structure can withstand such a wave better.

Weight versus eigenfrequency A simple formula to calculate an eigenfrequency is given by:

ω =
√
k

m
. (2-1)
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Figure 2-2: Energy-frequency spectrum of waves, with indicated the 1P and 3P frequency ranges
and the eigenfrequency range of current OWTs with a monopile foundation.

It is directly clear that a higher mass causes a lower eigenfrequency, while a higher stiffness causes
a higher eigenfrequency. In the wind industry eigenfrequencies are mostly linked to the rotational
frequency of the rotor. This is shown in Figure 2-2.

The 1P frequency is the rotational frequency of the rotor. The 3P frequency is the blade-tower passing
frequency for an OWT with three blades. When the eigenfrequency is within one of these areas, the
support structure is often excited in the neighbourhood of this frequency during its lifetime. This
causes many vibrations, which can be harmful for the fatigue life of the structure. Besides this, typical
wave spectra contain most energy in waves with a frequency around the 1P frequency. So placing
the eigenfrequency of the structure close to these high energetic wave frequencies, causes many wave
induced vibrations. This can be harmful for the fatigue life of the support structure as well.

2-2-2 Objective function

When keeping in mind that fatigue is generally design-driving, an optimization strategy is to remove
material until the damage on every place along the support structure exceeds 1 during its lifetime
(when the fatigue damage is smaller than 1). This is the same way as when the optimization is done
manually. Although, when looking to the conflicts of interest as given in Section 2-2-1, it should be
realized that this does not by definition lead to the best optimum in terms of weight. The final goal
is to minimize the weight of the support structure msus. Therefore, this is taken directly as objective
function:

f(x) = msus(x) =
nplates(x)∑

i=1
mi(x). (2-2)

with mi the mass of plate i and nplates as the number of plates.

Master of Science Thesis Nico Maljaars



14 Optimization problem

2-2-3 Design variables

A support structure is an assembly of all different sections welded to each other as it is shown in
Figure 2-3a. A section is a circular plate of steel with a certain top diameter, bottom diameter and a
constant wall thickness, as shown in Figure 2-3b. So for this case study (Section 2-1), this gives about
170 design variables (assuming a constant tower length).

(a) Multiple sections. (b) 1 section with its design variables.

Figure 2-3: Section definition as used in this thesis.

2-2-4 Parametrization

While defining an optimization problem, a reduction of the design space is in most cases also a reduction
of the problems complexity. Although careful handling is needed to prevent that the results become
dependent on the design space reduction.

For the support structure some things are important to couple or parametrize when looking to the
current design, to the physics, to its environment and to its fabrication:

– The top of a plate and the bottom of the next plate need to coincide with each other for welding.
– Current production processes are arranged to handle a constant tower diameter with a conical

top part and a constant monopile diameter with a conical top part to connect to the tower
diameter. This is visible in Figure 2-4 as well.

– The top diameter of the tower is fixed and thus it is an input of the optimization.
– Just below the top, the wall thickness typically decreases in a more or less quadratic manner.
– Because the wind loads exerted on the support structure itself are small compared to the wave

loads on the support structure and wind loads on the rotor, the moment line over the height
looks quite linear.

– The door in the tower bottom adds a stress concentration factor (SCF) for the fatigue analy-
sis. For this reason the plates around the interface level have generally a deviating thickness
compared to overall development of the wall thickness.

– For both sides of the conical part between tower and monopile, the transition from straight to
conical causes design-driving SCFs. A linear development of the wall thickness of the conical
part is for this reason conservative.

– The soil can consist of different layers (sand or clay) with their own properties which can influence
the shape of the monopile below mudline due to ’flexible’ layers.

– Below mudline, the bending moment and the shear force are transferred to the soil, in such a
way that they are almost zero at pile tip

Based on this, a parametrization of the design variables is made. This is shown in Figure 2-4 and
gives a reduction to 28 possibly free variables. In the parametrization, the wall thickness’s are not
defined per section, but per part. Every part has a wall thickness at the top and at the bottom. The
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wall thickness for one section is the mean of a linear interpolation for part 1 till 6 and 8 till 10, and a
cubic interpolation for part 1 and part 7 (where 3 thickness’s are defined) of the wall thickness over
one section. Note that for the straight parts, the wall thickness at the bottom of part n is equal to
the wall thickness at the top of part n+ 1.

To verify this parametrization, it is compared with existing tower and foundation designs by doing a
Least-Squares fit of the parametrization. In Figure 2-5 the results are shown for the current design. It
is clear that the parametrization is able to come up with a comparable shape of a tower of an OWT.
For a foundation this can be done as well, although these results cannot be compared directly due to
the TP removal (as explained in Section 2-1).

Design space
To decrease the size of the design space certain bounds can be used. All common support structures
have a minimum diameter of 4 meters and a maximum diameter of 10 m for both tower and monopile.
This is driven by the production and the installation. That is why these diameters are used as bounds.
The lengths of the tower parts are chosen in such a way that the height of the towertop can be in
between 100 and 140 m above Still Water Level(SWL). The pile penetration depth (PPD, length of
the monopile below mudline) is in between 25 and 50 meter.1 The wall thickness of the lowest plate
is fixed a priori at 90 mm needed for driving the monopile into the seabed.

2-2-5 Constraints

Before a wind farm can be build, it has to be certified. For this purpose, the designs have to be checked
with guidelines. DNV-GL provides a guideline which requires checks on 4 limit states: Ultimate
Limit State(ULS), Fatigue Limit State (FLS), Accidental Limit State(ALS) and Serviceability Limit
State(SLS)[7]. Experience within SWP gives that ULS and FLS are generally design-driving. This
aligns with previous optimization studies (Section 1-2), which uses among other things, Fatigue or
Buckling or both as a constraint. Next, all constraints that can be used for the assessment of a
design during the optimization are shortly discussed. At the end of this chapter, the computational
implementation is discussed. For ULS, Buckling and Maximum deflection are discussed.

Fatigue
The FLS assessment requires that the fatigue damage should not exceed the admissible damage. This
can be calculated by the Palmgren-Miners rule, which states that the cumulative damage D of the
stress levels r during lifetime had to stay below a constant imax:

D =
l∑

r=1
Dr =

l∑
r=1

nr
Nr,max

< imax, (2-3)

with l the number of stress levels, nr the number of cycles, Nr,max the maximum number of cycles and
Dr the damage for stress level r. Nr,max can be derived from a Wohler-curve. An example of this is
given in Figure 2-6. The maximum damage imax is 1 for the tower and 0.9 for the monopile, due to
some extra damage caused by pile-driving.

Maximum deflection
A support structure can show large deflections when subjected to extreme load cases (extreme wave,
broken turbine). These large deflections can lead to the exceeding of the ultimate resistance of the
soil, which can lead to plastic deformation of the soil. This can possibly result in an inclination or
even a collapse of the support structure. For this reason, maximum deflection and rotation of the top
and the tip of the MP are used as constraint.

1These numbers are site-specific. In this case the soil conditions result in a relatively short monopile (Section
2-1). For weaker soil-conditions, it is possible that the upper bound has to be increased.
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Figure 2-4: Shape of a support structure used for the parametrization. Blue indicates wall thick-
ness variables(t1, ..., t16, tdoor). Orange indicates radius/diameter variables(rtower, rmonopile). l1
and l2 give length to the tower and monopile. w, s and p are ratings between two lengths. Black
indicates fixed heights and so, even rtop is fixed.
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Figure 2-5: Normalized thickness over height found by a Least-Square Error fit on the current
support structure design.

Figure 2-6: A typical Wohler(SN)-curve, with the indicated regions of Low Cycle Fatigue (LCF)
and High Cycle Fatigue (HCF).
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Buckling
Slender structures have a high probability to buckle under high loads. Buckling should be prevented
because post-buckling behaviour in most cases has a lower stiffness than pre-buckling behaviour. This
instability can cause a collapse of the OWT. From scaling perspective two sorts of buckling exists.
Applied on an OWT they are:

1. Global buckling
This is sometimes also called column buckling and shown in Figure 2-7. It is not known as a
failure mode on an OWT, as the bending loads resulting from wind and waves lead to significantly
higher normal stresses in the structure than the normal loads resulting from gravity. Due to
these stresses local buckling is often more critical and therefore global buckling is not taken into
account during the optimization.

Figure 2-7: A column exhibiting the characteristic deformation of buckling under a centric axial
load[42]

.

2. Local buckling
This is buckling on much smaller scale. For example, when the deflections of the tubular cross
section are showing large, non-symmetric deformations. Although the buckling effect is local, it
can cause a collapse of a full turbine (as shown in Figure 2-8). For this reason it is taken into
account in the optimization.

First natural frequency
In several optimization studies, the first natural frequency is taken as a constraint. It was used to
prevent high energy adsorption by the support structure when its first eigenfrequency shifted too
close to the wave frequency spectrum, 1P frequency or 3P frequency (Figure 2-2). Because they kept
loads on the structure constant, the effect of eigenfrequencies close to the fore-mentioned frequencies
was not represented in the loads, which could cause unrealistic results. In this optimization study,
the wave loads depend on the design (explained in Section 2-4). Because the 1P frequency range is
overlapping the wave frequency range with a relatively high amount of energy, this is not used as a
separate constraint. The 3P frequency is, for this size of turbines, often in between the first and second
well-separated eigenfrequencies and so generally not critical, but just checked in the end. For these
reasons no constraint on one of the eigenfrequencies of the support structure is used.

Geometrical constraints
Besides constraints that resulted from loads during its lifetime, also some constraints can be formulated
concerning the geometry of the support structure:
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Figure 2-8: A buckled wind turbine, caused by local buckling of the tower[Unknown].

1. Wall thickness monopile
During pile-driving, high forces are exerted on the monopile. The magnitudes of these forces
depend mainly on the soil properties. To prevent buckling during driving, a maximum diameter-
wall thickness ratio of 120 is assumed to be able to prevent this.

2. Angle conical parts
In the production process some restrictions are made on the angle of the conical parts. The
conical parts are located at the top of the SUS and in between the interface and mudline if they
are present. A minimum and a maximum angle of these parts are inputs of the optimization.
In the current design process these are taken as 1◦ and 3◦. In this research a maximum angle
of 6◦ and no minimum angle is used, to check whether broadening of this constraint can give
evident improvements of the design. This is checked in the end.

2-3 Optimization algorithm

This section explains an optimization strategy, by first having a closer look to the objective function.
After this an algorithm is proposed with a formulation to include design constraints.

2-3-1 First characterisation of the objective function

As written in Section 1-2, Section 2-2-1 and based on expectations and experiences of the engineers
at SWP, it is expected that several local optima exist. Other local optima are caused by the discrete
number of sections with a minimum and maximum length. When changing the length of one of the
parts of the support structure, when a plate is added or removed, there can be a discontinuity in
the response surface. Due to these local optima, gradient-based solvers will generally lead to a local
optimum, dependent on the starting point chosen.

Besides this, a property of the objective surface is known before the optimization starts, which can be
used during the optimization: The mass has a minimum when the design parameters, representing a
thickness or a diameter, are equal to zero. This results in a known gradient for these parameters if a
design is feasible.
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2-3-2 Algorithm

Based on this knowledge of the objective function, an optimization strategy has to be chosen. This
strategy should have the ability to do a global optimization. A short introduction into optimization and
an overview of several optimization methods and algorithms is given in Appendix A. The optimization
strategy used in this thesis, is split up in two parts. The output of the first optimization algorithm
is used as initial position for the second optimization algorithm as shown in Figure 2-9. So the first
algorithm has to come up with an initial position that has a high chance to result in a global optimum
after a local search by the Gradient Based Optimization (GBO) algorithm.

Figure 2-9: Overview of the two parts used by the algorithm (pictures by N. Castillon[2] and G.
Vanderplaats[52]).

Initial algorithm (global search)
Jones [14] makes a clear statement concerning global optimization:

"A well known theorem by Torn and Zilinskas (1987)[46] tells us that, in order to converge to the
global optimum for a general continuous function, the sequence of iterates must be dense. Of course,

this is a rather trivial method of convergence; in essence, it says that, in order to guarantee
convergence to the global optimum, we must converge to every point in the domain. The practical

lesson of the theorem is that any globally convergent method must have a feature that forces it to pay
attention to parts of the space that have been relatively unexplored and, from time to time, to go back

and sample in these regions."

Within the group of direct search methods, for global optimization, most attractive are the algorithms
which work according to Jones statement and claim to have a large chance to result in a global
optimum (or give a good starting position for GBO). Now 3 algorithms are left: Simulated Annealing
(SA) and, from the group of biologically inspired methods, Genetic Algorithm(GA) and Particle Swarm
Optimization(PSO). Some properties of the algorithms can play an important role in the optimization:

– Exploration full domain: To find possibly a global optimum, evaluations spread over the full
domain are needed.

– Creativity/Randomness: Having calculated certain positions, it can be needed to make large
changes in the design to escape from a local optimum.

– Insight in algorithm: After the optimization is done, it can give good insights when there is
a way to evaluate how the algorithm has come up with the optimum.

– Add knowledge: When knowledge about the optimum is available on forehand, it improves
the chances to come up with a global optimum if these can be added.
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Table 2-1: Comparison of three global optimization algorithms

Algorithm: Exploration
full domain

Creativity/
Randomness

Insight al-
gorithm

Add
knowledge

Parallel com-
puting

SA − +− +− +− +−
GA +− + − − +
PSO + +− + + +

– Parallel computing: Time is an important factor in optimization. A straightforward way to
decrease the time an optimization takes is to use parallel computing.

In Table 2-1 the algorithms are compared based on these properties. When comparing these three
possibilities, PSO seems to be most attractive for this study. This is caused by its global searching
nature and good capabilities to add information to the algorithm based on available knowledge (as
explained in Section 2-3-1).

Particle Swarm Optimization PSO is one of the swarm intelligence algorithms. It is based on a flock
of birds or a shoal of fish, collecting food to survive. During the optimization a population, consisting
a number of individuals ni, is evolving over time, which is expressed in a number of generations p,
with p = 1 till p = ng. Every time step (generation) p the position of every individual i is updated
with:

xp+1,i = xp,i + vp+1,i∆t. (2-4)
v is the velocity of an individual:

vp+1,i = Avvp,i + rlBv
(xb,l − xp,i)

∆t + rindCv
(xb,i − xp,i)

∆t

+ rgDv
(xb,g − xp,i)

∆t + rgEv
(xo − xp,i)

∆t + rgFv
(xb,nb − xp,i)

∆t + rlGvvb,l. (2-5)

In this equation, b stands for best position, nb for neighbour, o for origin, l for local (current) gener-
ation, and g for global, so for all 1 till p generations. rl, rg and ro are randomly chosen numbers in
between a rmin and 1 to reflect arbitrary behaviour of an individual. Av, Bv, Cv, Dv, Ev, Fv and Gv,
are constants to give weight to the different parts.
For the best individual of generation p, vp+1 is calculated in a different way:

vp+1,i = Avvp,i + rgIv
(xb,g − xp,i)

∆t + rgJv
(xo − xp,i)

∆t . (2-6)

Iv and Jv are again constants to indicate the importance of the different parts.
To prevent that particles cross the outer bounds of the design space, they bounce back with respect
to the outer bounds. To prevent cycling, the bounce is handled as a partially inelastic collision.

Second algorithm
After the PSO has been done, a straightforward GBO is started. It uses the steps as shown in Table 2-2
to come up with a better design. Because the GBO is just able to find the local optimum, dependent
on the starting point, the length ratios, w1, w2, w3, s1, s2 and p1 are fixed. In this way, the GBO
becomes more simple.

2-3-3 Penalization of the constraints

First some notes are made on the combination of PSO, global optimization, the objective and the
constraints:

Master of Science Thesis Nico Maljaars



22 Optimization problem

Table 2-2: Overview of the steps during the GBO

# Name Description

0 Start Get starting point from PSO
1 Gradient Calculate gradient using Finite Differences
2: Line search:

a Initial step Equation A-3
b Reduction Till maximum step size < 10% design space
c Decrease/increase step Using the Golden section ratio
d Repeat (2c) Till f(xn)− f(xn−1) < ∆fmin

3 Repeat (1) and (2) Till gradient ≈ 0 or niterations > nmax

– For PSO, it is needed to have a single objective or fitness without constraints.

– According to the statement of Jones, evaluations through the full design space are required to
be globally convergent.

– When using PSO, the objective surface has to exist over the full design space.

From these points, it is proposed to use the exterior penalty function method (Section A-2-1) to
implement the constraints into the optimization.

As mentioned in Section A-2-1, it is important to scale the penalty functions in such a way, that the
extra weight that is given to that design due to constraint violations is comparable with the real mass
of the design. The way the penalty functions are formulated is not unique. The chosen implementation
is based on efficient coding and is done in the following way:

– Fatigue can be checked by looking to the damage D or the utilisation ratio ur. The relation
between them is the SN-curve as shown in Figure 2-6. For the penalty calculation, the utilisation
ratio is taken, because this gives a smoother penalty surface:

pf,side =
∑
ur,side>ur,side,max

(ur,side − ur,side,max)
nur,side

, (2-7)

pf = pf,inside + pf,outside, (2-8)

with nur,side the number of fatigue checkpoints. For clarity, we will use the word ’damage’ instead
of ’utilisation ratio’ in the remainder of this thesis.

– Maximum deflection. To demonstrate the ultimate stability of the support structure, 3 checks
have to be done. A stability check where the convergence of the non-linear solver is checked with
a high safety factor. A Characteristic deflection check where the deflection should not cross a
certain maximum deflection. And a check on the derivative of the characteristic deflection to
verify the stability of the deflection to the PPD. In the optimization, one check is used. This
characteristic deflection check is for most design cases leading. It has 4 values which should not
cross their maximum di,max: the deflection and rotation at mudline and pile tip (d1 till d4):

pd = 1
4

( 4∑
i=1

max
(

0, di − di,max

di,max

))
. (2-9)

If the iterative solver for calculation of the non-linear deflection is not converged to a solution,
pd = 1
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– Buckling is formulated in such a way, that the structure is expected to buckle if the buckling
ratio b exceeds 1 (further explained in Section 2-4-3). The penalty function is formulated as
follows:

pb =
∑
b>bmax

(b− bmax)
nb

, (2-10)

with nb the number of buckling checkpoints.

– The diameter-wall thickness ratio can be calculated with:

rtD = D

t
, (2-11)

so then a penalty function can be formulated as:

pt =
∑
rtD>rtD,max

rtD−rtD,max
rtD,max

nrtD

, (2-12)

with nrtD the number of wall thickness ratio checkpoints which is equal to the number of sections
of the monopile.

– Angle conical parts A penalty function for this can be calculated with:

pθ,i = max(0, αi − αmax

αmax
), (2-13)

pθ = pθ,TW + pθ,MP, (2-14)

with αi the angle of the conical part i and αmax the maximum angle.

Final note It is important to see that for a constraint violation, all of these penalty functions give
usually a value between 0 and 1. In this way, the effect of a constraint violation is easy to control. Just
when a design is far from the feasible domain the penalties can become larger than 1. This happens
for example, when the iterative solver on maximum deflection does not converge or when the fatigue
damage or the buckling ratio over the full height exceeds its maximum.

Extended objective function
Combining the original objective function (Equation 2-2) and the penalty functions for the constraints
(Equation 2-7 till Equation 2-13), the objective function becomes:

f̂ = msus +msus,cAc(Bcp̄f + Ccp̄d +Dcp̄b + Ecp̄t + Fcp̄θ +Gcp̄h). (2-15)

In this, msus,c is the mass of the support structure designed in the traditional way, as described in
Section 1-1, with which the optimized structure is compared. This is used instead of msus because this
is preferable when a derivative to f̂ is calculated. In this study, p̄i = (1 + pi)2 − 1 = p2

i + 2pi is used
to get a sharp transition in between feasible and infeasible designs (as show in Figure 2-10). Although
this function will result in a more difficult gradient based optimization part due to a discontinuous
derivative, this formulations is chosen because the accent will be on PSO. PSO has an advantage of
this because the split between the feasible domain and the infeasible domain is more clear.

Why the optimum itself does not depend on the magnitudes of the penalties
In general in a multi-disciplinary optimization, the objective consists of several physical domains
which are scaled by the weights of the penalties. This causes the final result of the optimization to be
dependent on the weights of the penalties. In the formulation of the objective function as it is used
in this thesis, the final goal of the optimization is to minimize the mass, while the design had to be
feasible at the optimum design position. Because it has to be feasible at its final position, the penalties
at that position should be equal to zero, which results in a design which is not directly dependent on
the magnitude of the penalties.
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Figure 2-10: Difference in using p and p̄ as penalty in the objective function.

Further characterization of the extended objective function
Using the extended objective function, two other sources of local optima arise compared to the objective
function without the penalties. These are not due to the physical processes, but due to the modelling
and the formulation of the penalties:

– A discrete number of sections is used per part. This number is calculated by rounding up
lpart

lmax,section
. In this way, while increasing or decreasing the length, points were the buckling of

or the fatigue ration is calculated are added or removed which can cause discontinuities in the
objective surface.

– When the iterative solver for the deflection cannot find an optimum, as mentioned pd = 1. This
causes at that point a discontinuity in pd as function from the design parameters.

– As mentioned before, the penalties are added to the objective with p̄i. This causes the first
derivative to be discontinuous.

2-3-4 Algorithm dependent parameters

In the algorithm, two groups of parameters need to be defined: The first group of parameters consists
the number of generations and the number of individuals. The second group consists of the weights of
the constraints, while the third group consists of the weights of the different fly directions. The latter
two are both dependent on the generation the PSO is in. There is no unambiguous way for defining
these parameters, therefore an iterative procedure was adopted. The approach is briefly explained in
this section and some considerations of this iterative process are discussed.

Weights constraints (Ac, ..., Gc)
Factor Ac in Equation 2-15 is chosen in such a way that at the start, when a constraint is violated,
the penalty is relatively small. Because the final design should not have any constraint violations, Ac
is increasing during the PSO, as shown in Figure 2-11. In this way a violation of some constraint in
the end causes a high penalty in the objective.
The other factors in Equation 2-15 are chosen in such a way, that the constraints on the conical parts,
the MP thickness ratio and the maximum deflection, are less important than the constraints on fatigue
and buckling. This is done because feasible designs for fatigue and buckling are more difficult to find
than a feasible design for the other constraints. To the end they made equal, which is shown in Figure
2-12.

Weights fly directions (Av, ..., Jv)
The weights of the fly directions as shown in Equation 2-5 and Equation 2-6, are very important and
cause the algorithm to succeed or to fail in finding an optimum. The problem with these weights is
that a fundamental reason how to choose them does not exist, because they are problem dependent.
For example on the number of local optima and the smoothness of the objective surface. So the only
way to choose for them is by trial and error, although some general statements can be made:
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Figure 2-11: Chosen general weight for the constraints Ac.
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Figure 2-12: Chosen weights for the different constraints.

Master of Science Thesis Nico Maljaars



26 Optimization problem

Local/global search (Av and ∆t) With ∆t the step size between generations can be tuned. From
start ∆t is relatively high, so that an exploration of the design space is done. During the optimization
it decreases so that it is below one at the end. This forces the individuals to converge in the direction
they are pointed to. This can be controlled with Av as well. Then ∆t can be set to 1 for more insight
in the progress, as explained in Chapter A Section A-1-2.

Neighbour/global focus (Dv and xb,g vs Fv and xb,nb) In the beginning of the optimization it
can be beneficially to do several more locally oriented searches. To do this, every individual uses the
best individual from a part 1

pind
of the total number of individuals which are the closest. In this way,

depending on the spread of individuals over the design space, up to pind more local searches are done.
Because the weight of the global best individual is increasing, these local searches go over to one global
search.

Random behaviour (rl, rg, rind) Individuals have a certain freedom to make own decisions. This is
represented in the random behaviour factors. As shown in Figure 2-13 the random behaviour factor
(Rbhv) is decreasing to the end of the optimization.
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Figure 2-13: Chosen weights for the fly directions.

The weights of the flying direction of the local best individual, the position of the local best individual
and the origin are set equal to zero. Investigation were pointing out that these did not necessarily
improve the convergence.

Local best individual The local best individual is given other weights than the other individuals of
its generation as shown in equation Equation 2-6. This is done to control its behaviour when it is in
a global optimum (so when it just found a new optimum). In the start of the optimization (when the
individuals are far away from each other), this individual takes a small step after finding an optimum,
so that there is a chance to find a new optimum. To the end of the optimization in general step sizes
become smaller. Because individuals are close to each other, it is more likely that an other individual
finds the next optimum. To prevent too fast convergence at that moment, more weight is given to
the local bests fly direction, so that it makes a relatively large step, which prevents unnecessary fast
convergence of individuals.

Number of individuals ni and number of generations ng
The PSO has to converge to an optimum to the end of the optimization. Although several options
exist to stop the PSO, it is chosen to use a maximum number of generations. Another common

Nico Maljaars Master of Science Thesis



2-4 Overview computational steps 27

0 10 20 30 40 50 60 70

Weight [-]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

G
en

er
at

io
n 

[-
]

Fly direction
Global optimum

Figure 2-14: Chosen weights for the fly directions for the local best individual.

option is to stop if the objective f has not changed more than a certain criterion during a number of
generations ncriterium: fbest(xn)− fbest(xn−ncriterion) < ∆fMin. Because GBO uses this criterion also
and can do this more effectively, it is not used for PSO. ng depends on the weights of the fly directions.
After the weights were defined, test runs were done until the influence of GBO on the final result was
become small. This means that the PSO found a position close to an optimum. In this optimization
65 generations are used. The number of individuals has to be set before the optimization starts. The
more individuals are used, the larger the chance on a global optimum. This optimization study uses
initially 90 individuals, but investigates the effect of the number of individuals for most optimization
cases.

2-4 Overview computational steps
Figure 2-15 gives an overview for all computational steps that are needed to evaluate the objective.
Now all important steps in Figure 2-15 are discussed. For brevity, just the basic idea is explained.
Sometimes some references are given, where the interested reader can find background information.
The computational steps can be split up in 3 parts which are discussed now consecutively: the set-up
of the model, the calculations and the analysis.

2-4-1 Set-up model
Dimensions
From the design variables x, all dimensions of the support structure are calculated. This is done with
the parametrization as explained in Section 2-2-4. The dimensions are used for the construction of the
structural model, the analytical analysis of fatigue and buckling and for evaluating the geometrical
constraints.

PY-curve
With the diameter below mudline, PY-curves can be constructed for a certain number of heights. A
PY-curve gives a relation between the deflection of the pile in the soil and the pressure on the pile.
The method that is described in the guideline [7] for the construction of the curves, was first published
by Matlock [24]. Some corrections are applied for specific soil types as clay and sand.

Master of Science Thesis Nico Maljaars



28 Optimization problem

Figure 2-15: Overview of the computational steps to calculate the objective f(x). An indication
of the calculation time is given by the intensity of the blue colour, as shown on the right. The
red triangles indicate where important (site specific) input is given into the optimization
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Structural model
The structural model constructs the numerical model from the support structure. It uses Timoshenko-
beam elements to build a FEM-model of the support structure. Besides this, it adds some additional
masses:

– A concentrated mass, representing the RNA.

– Several concentrated masses which result from smaller components (flanges, boat landings).

– It adds spring elements, derived from the PY-curves, to represent the soil. The soil damping is
kept constant and added via the structural (modal-)damping.

These additional masses are kept constant during the optimization. When its needed, the height is
made design dependent.

It gives as a result the structural matrices from the assembly. These are used for the load calculations in
both time and frequency domain. Besides this, the structural matrices are used for finding a non-linear
static solution for the deflection test.

With the structural model, the eigenmodes and eigenfrequencies are calculated which are used for the
load in frequency domain.

2-4-2 Calculations

In this phase, some calculations are done in a numerical way.

Wave generator
To calculate wave loads on a monopile-founded support structure, Morison equation is widely used. It
assumes that the movement of the structure does not influence the wave loads. Wave loads are needed
for both the ULS and the FLS case. The ULS loads are calculated in the time-domain, while the FLS
loads are calculated in the frequency domain.

Time domain Every iteration a new wave load is created which depends on the dimensions of the
structure. So the surface of the sea and the geometry of the structure are used as input, to come up
with a time series of a load distribution as output. These are used to calculate the response of the
structure in time.

Frequency domain To describe the waves in the frequency domain, a JONSWAP (Joint North Sea
Wave Observation Project) spectrum is used. Within this spectrum every sea state can be described
by a peak height Hs and a certain period of the wave Ts. Via measurements this is related to a certain
occurrence with a certain wind speed. The latter is used to relate aerodynamic damping to the weather
circumstances. With these energy density spectra of the waves, the load frequency spectra (over the
height) can be derived as well. When linearising the drag force, Morisons equation can be used in the
frequency domain. To take diffraction into account, MacCamy-Fuchs diffraction correction is applied.

Seidel [35][36] has described an accurate way to reduce the number of load cases that are necessary to
be evaluated. This is done by looking to the relative spectral energy at the first eigenfrequency.

Loads in frequency domain
From the structural properties, the frequency response of the structure can be calculated. This can
be combined with the wave loads in the frequency domain, to obtain a load response spectrum of
the structure. From this, the fatigue loads can be derived using Dirliks method[5] (more detailed
explanation of this method is given in Appendix D). This is an equivalent of rain-flow counting in the
time-domain. This results in Damage Equivalent Loads (DELs). The damage these DELs cause for a
pre-scribed number of cycles is equivalent to the damage resulting from all different load cases.
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Wind and wave loads can be superimposed using a representative misalignment[37][22]. The influence
of most design variables on the wind loads is assumed as small. An exception is made for the length of
the tower. Because the wind loads behave very linear, a simple scaling is used to predict the wind loads
of a tower with the length l based on the calculated wind loads from a tower with length lmin. The
moment line above SWL is linearly extrapolated, in such a way that the maximum bending moment
is increased with l

lmin
. The shear force for the length above lmin is kept equal to the shear force at

lmin. These scaling is based on rules of thumb used within SWP CoC.

Loads in time domain
With the extreme loads from the wave generator in time domain, the response of the structure can be
calculated. This is done with a Newmark time-integration scheme. It calculates time series for both
deformations and loads in the structure. To these extreme loads by an extreme wave, wind loads are
added up.

As for the loads in the frequency domain, the wind loads are assumed as constant except for the
length of the tower. Linear extrapolation for the length of the tower above lmin is used for both
bending moment and shear force to take increased wind loads into account due to a taller tower.

2-4-3 Analysis

In this phase, the numerical calculated results are used for some (analytical) analysis.

Fatigue
When the DELs are known, the fatigue life of the structure is checked according to the internal Design
Brief of SWP[54]. This is according to the guidelines provided by the certification body DNV-GL To
get a representative design, a design independent Stress Concentration Factor (SCF) for the door is
used. This is taken equal to the SCF as used in the initial design.

Buckling
With the extreme forces in the structure known, an analytical buckling check on the structure is
done according to the guidelines provided by DNV-GL[6] and EN[43]. To prevent overly conservative
designs, it is assumed that the maximum length between flanges is 30 meter.

Deflection
As explained in Section 2-3-3, the maximum deflection and rotation of pile head and pile tip are
criteria. These are calculated by Newton-Raphson iterations to find the non-linear static solution for
the extreme load resulting from the time-integration. The non-linearity is resulting from the non-linear
PY-curves. During the time integration these were linearized.

Calculation objective
As last step, the geometrical constraints are evaluated. Then the objective is calculated with Equation
2-15. Penalties are calculated with Equation 2-7 till Equation 2-13.

2-4-4 Computational time

The computational time for the evaluation of one individual is shown in Table 2-3.

Dependent on the way of lumping sea states during the calculation of the DEL, the time it takes
to evaluate one individual is in between 0.8 and 7 minutes. Early investigations showed that it is
needed to use around 120 individuals in 65 generations to find an optimum for a relatively easy OWT
optimization run (diameter and length of the tower are fixed). Then a full optimization takes about
120 · 65 · 0.8min/iteration ≈ 6240 minutes which is about 104 hours and about 4.3 days (with a fast
calculation of the DELs). During this time, the algorithm is about 83 hours in the calculation phase
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Table 2-3: Indication of the computational times, when the optimization is done using a single
core with a clock speed of 2.6 GHz.

Step: Domain: Calculation time
Minimum: Maximum:

Calculating DELs2 Frequency ± 30 s ± 420 s
Calculating Fextr 3 Time ± 10 s ± 10 s
Other calculations and evaluations - ± 10 s + ± 10 s +

Total - ± 50 s ± 440 s

and 21 hours in the set-up and analysis phase. Besides this, the quality of the found optimum by PSO
is up to a certain level dependent on the number of individuals and the number of generations that
are used. So using more individuals and generations can lead to a better optimum.

Summary

In this chapter an optimization strategy is given. PSO is proposed to be used as initial optimization
algorithm, followed by a gradient based optimizer to find a local optimum. A disadvantage of PSO is
that the result, to a certain extent, depends on the number of individuals and generations. An overview
of the computational steps is given, with an indication of the computational time an optimization
takes when using load calculations. To do a more time and computationally efficient optimization, the
following chapters are about the estimation of loads. Next chapter introduces the theory of several
estimation methods, while Chapter 4 uses these theories for load estimations.

2Depends on the chosen way of lumping, definition of the aerodynamic damping
3This is for one cases with zero initial conditions, which is assumed to give representative loads for the

initial design. To improve this, the mean of several simulations with the extreme wave added to a random sea
state has to be taken.
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Chapter 3

Theory of Approximation Methods

While running simulations in engineering practice, calculations leading to precise and accurate results
are most useful. For numerically computed results this can be improved, to a certain limit, by refining
the discretization. Drawback of this is a higher computation time. If a computation has to be done
once, this is not necessarily a problem. When it has to be done several times, this can become a prob-
lem. An example of this is optimization, when more design iteration can lead to better results. In such
cases it can be beneficial to prevent long calculations, by estimating their output. While using results
of an estimator it is important to be aware of losses in accuracy and precision.
To align with literature and explain some terms used in this thesis, this chapter gives first an introduc-
tion into some terminology used for estimation methods. Then several methods are introduced. Based
on these theories, the general properties, the computation and the inputs of the methods are compared.
The chapter concludes with a short review on multivariate output.

3-1 Terminology estimation methods

For models that try to reproduce values of expensive calculations, several names exists in literature.
For example:

– Metamodels
– Response surface models1

– Estimation methods
– Surrogate models
– Emulators
– Auxiliary models

In this thesis, the term ‘Estimation methods’ is chosen. The combination of outputs of the estimation
methods, is referred to as the ’Response Surface’. Besides these, some other important terms are used:

– Training points: These are the input points while constructing the estimator. Every point
consists of data on which the estimation is based and data that had to be estimated.

1It is important to distinguish this name from the estimation method called ’Response Surface Methodology’.
This method is explained in Section 3-2 in more detail.
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– Check points: These are used as a second set of input points while constructing the estimator.
Free input parameters needed for the construction of the estimator are chosen in such a way
that the cumulative error between the calculated values on the check points and the estimated
values on these points is minimal. So the estimator itself is not based on these points.

– Test points: These points are used to give a quantitative indication of the accuracy of the
estimator. The accuracy is expressed in terms of the performance or the correlation coefficient.
These are calculated by comparing the calculated values and the estimated values on the position
of the training points.

– Interpolating: Two sorts of estimation methods exist. Methods that pass through all training
points and methods that do not. In literature several names to classify this exist: Interpolating
and non-interpolating[14], strictly and non-strictly interpolating[18] and exact and non-exact
interpolating[40]. This thesis uses the names of Jones: Interpolating and non-interpolating.
An important property from non-interpolating methods for optimization is that adding a new
training point will not necessarily lead to a more accurate surface. Jones [14] gives an elaborate
explanation of this.

– Shape preserving: A shape preserving estimator will predict the shape of the response surface
very accurately, but does not necessarily go through the data points.

– Overfitting: This occurs when the model has too many free parameters and it fits the data at
too fine a scale. A result of this is that the estimator will predict noise which is superimposed
to the underlying behaviour[9].

– Basis-functions: In several estimation methods, basis-functions are used. These functions are
spread around a point to share information of that point with its surroundings. Several basis-
functions exists. In Table 3-1 the most common basis-functions are shown. Note that in all
functions one parameter θ or a vector with parameters θ is added. These are generally chosen
while constructing the estimator. When it is used, the basis-function is called a parametric
basis-function, when it is fixed the basis-function is called a fixed basis-function. Note that θ
is influencing the behaviour much more for the Gaussian, Multi-quadratic and Inverse Multi-
quadratic functions than for the other functions. For the Kriging basis-function a vector with
parameters p is added as well. These need to be defined before the construction of the estimator.

Table 3-1: Overview of several Basis-functions

Name Function Notes

Linear ψ(r, θ) = θr
Quadratic ψ(r, θ) = θr2

Cubic ψ(r, θ) = θr3 Minimizes 2∫ ∂2ŷ
∂x2

2
dx

Thin plate spline ψ(r, θ) = θr2 ln r
Gaussian ψ(r, θ) = e−

r2
2θ2 Intuitive statistical motivation

Kriging ψ(r,θ,p) = e−
∑n

i=1
θl|rl|pl Is related to the Kriging estimation

method
Multi-quadratic ψ(r, θ) =

√
r2 + θ2

Inverse Multi-quadratic ψ(r, θ) = 1√
r2+θ2

– Curse of dimensionality: When increasing the dimensions of a problem, generally the com-
plexity of the problem increases as well. This can cause problems during optimization, but
even for constructing an estimator method[19]. Wang and Shan[53] identify this as the most
prominent problem for Metamodel-Based Design Optimization.

2Compared to all other interpolating functions for which this integral exists and is finite.[14]
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Table 3-2: Notation of input and outputs of estimations as used in this thesis.

Description: Univariate: Multivariate:

Input: x(i) =
[
x

(i)
1 x

(i)
2 ... x

(i)
k

]T
X =

[
x(1) x(2) ... x(n) ]

Calculated function: f f(X) =
[
f(x(1)) f(x(2)) ... f(x(n))

]T
Calculated output: y y(X) =

[
y(x(1)) y(x(2)) ... y(x(n))

]T
Estimated function: f̂ f̂(X) =

[
f̂(x(1)) f̂(x(2)) ... f̂(x(n))

]T
Estimated output: ŷ ŷ(X) =

[
ŷ(x(1)) ŷ(x(2)) ... ŷ(x(n))

]T
3-2 Explanation of several methods
Classification of the estimation methods
Based on the underlying background, Turner[48] defines three classes of estimation methods:

– Geometric models: are used originally to fit a curve through a data set and to visualize geometric
models in 2D or 3D (in for example CAD packages).

� (Non-linear) Response Surface Models
� Multi-adaptive Regression Splines
� Non-uniform Rational B-splines

– Stochastic models: assume a stochastic component in the data.

� Radial Basis Functions
� Kriging

– Heuristic models: try to find underlying patterns in the data.

� Support Vector Machines
� Neural networks

Several studies have compared estimation methods. Turner [48] gives a good overview of many these
comparisons. In the end it can be concluded that the performance of a method is quite case specific and
therefore no approximation methods can be excluded on forehand. Now the theoretical backgrounds
of the estimation methods are explained. Multi-adaptive Regression Splines, Non-uniform Regression
B-Splines, Support Vector Machines and Neural Networks are not explained in full detail, but far
enough to understand why they are not used in this project. For the explanation of the methods the
notation as shown in Table 3-2 is used. Note that x(i) for i = 1, ..., n is representing n training points,
while x is representing a new position in k dimensions.

3-2-1 Polynomial fit (Response Surface Methodology (RSM))

When all inputs of a certain function f are known, the output y of this function can be expressed as:

y = f(x1, x2, ..., xk), (3-1)

in which x1 till xk are the inputs. For some region of interest, the output can be assumed as linear in
the variables (based on a Taylor series expansion) with:

f̂ = β0 + β1x1 + β2x2 + ...+ βkxk. (3-2)
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When more curvature is present in the function f , this can be extended to higher orders, although
orders higher than 5 should preferably not be used to prevent overfitting. For clarity, from now on the
Response Surface Methodology is shown in vector notation:

f̂ = pT (x)w + b. (3-3)

In which p(x) is the vector filled with inputs resulting from the polynomial order and cross-terms
chosen, w is the vector which gives weights to the input parameters and b is taken as a constant. In
general b is taken as the mean of all training input .

Myers[27] defined a few fundamental assumptions for this method:

1. A complicated or unknown function y = f(x1, x2, ..., xk) exists of which the input variables are
quantitative and continuous.

2. The function f can be approximated in the region of interest by a low-order polynomial.

3. The independent variables x1, x2, ..., xk are controlled in the observational process and
measured with negligible error.

Knowing this, when the dependencies are left away, the function f shows:

f = f̂ + ε = pTw + b+ ε. (3-4)

When ŷ is a vector with n estimations of the vector y:

y = ŷ + ε = P Tw + b1 + ε = P Tw + ε. (3-5)

In this equation P (x) =
[
p1(x) p2(x) ... pn(x)

]T and the mean b of all output data points y
is assumed to be equal to 0. Minimization of εTε for w gives:

w = (P TP )−1P Ty. (3-6)

Note that the number of known data points n, has to be higher than the order of the polynomial
including its cross-terms, to prevent free variables. This is mostly a problem when there is a large
number of inputs, when using most cross terms of a higher order polynomial.

Non-linear Response Surface Methodology (nRSM)
Instead of the polynomial functions with a degree ≤ 1 used for Response Surface Methodology, other
functions can be used also. An important point when creating an estimator with non-linear Response
Surface Methodology is that it is needed to know the non-linear function on forehand, including their
offset or phase-shift. Besides this, the optimization problem to find the coefficients in w is not linear
any more.

3-2-2 Radial Basis Functions (RBF)

A complicated function with unknown properties which represents some physical effects, can often
be expressed as a weighted superposition of several other functions, with known properties. When
having a certain value y on a point x in a space with dimension k, in the direct neighbourhood of the
sampling point two things can be assumed when there are no discontinuities:

– The value will be close to the known value y.
– The influence of the sampling point on its neighbourhood decreases with the distance r from

that point.
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As estimator, this method is called Radial Basis Functions. Mathematically this can be expressed as:

ŷ(x) =
n∑
i=1

ψ(f(x,x(i)))wi = ψT (x,X)w, (3-7)

in which f(x,x(i)) is a distance, in RBF generally taken as the Euclidean distance r = ||x − x(i)||,
n the number of training points so that x(i) represents the position of training point i and where X
represents the positions of all training points. The function ψ is called the basis-function and has two
variables: The shape of the basis-function and the free parameter(s) in it.

When a basis-function and its parameters are chosen, the next step is to come up with the unknown
w. A training data set containing n data points with the belonging values y can be put in Equation
3-7:

Ψ(X)w = y. (3-8)

This equation shows the linear relationship between Ψ(X) and y. In literature, Ψ(X) is better known
as the Gram-matrix and is defined as:

ψi,j(x(i),x(j)) = ψ(||x(i) − x(j)||). (3-9)

This system of equations can be solved for w:

w = Ψ(X)−1y. (3-10)

Calculation of Ψ−1 is needed. Whether this is possible of not, depends on the used basis-functions and
training points. For example when two points are close to each other, it is possible that Ψ becomes
ill-conditioned, which causes failure of the method during the Cholesky factorization[9].

When w is known, a new estimation is done by:

ŷ(x) = ψ(x)Tw, (3-11)

using the same basis-functions in ψ as they were used for the calculation of w. Instead of estimating
the full amplitude of y, it is also possible to use a constant or a low order polynomial as basis (µ̂).
Then w can be calculated with:

w = Ψ(X)−1(y − 1µ̂) (3-12)

where 1 is a 1×n column vector, so a vector with a size equal to the size of y. Now a new estimation
can be done via:

ŷ(x) = µ̂+ψ(x)Tw. (3-13)

In Equation 3-13, for a new estimation, just ψ(x) has to be calculated. µ̂ and w are calculated during
the construction of the estimator.

Radial Basis Functions and Noisy data
When having noisy data, the need to interpolate between data has gone. A method to distinguish
between the underlying response and noise is by the introduction of the regularization parameter λ
[31]. This is added to the main diagonal of the Gram-matrix. This results in:

w = (Ψ + λI)−1y. (3-14)

When the variance of the response data is known, λ should be set to this variance[9]. But since this
is generally not known, a good option is to add it to the list of parameters that need to be estimated
independent of building the estimator. With λ 6= 0, by definition ψ for the input of a training point
is not a column or row from Ψ any more. This causes the estimator to not be interpolating.
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3-2-3 Kriging (KRI)

Kriging is a method which is originally used for mining. The spatial distribution of a certain natural
resource can be modelled via a probability as if the samples were taken from a random process. This
concept was first introduced by Danie Krige [21] and further developed as method by the French
mathematician and founder of Geostatistics, Matheron. The standard work for Kriging as estimation
method is from Sacks et al[34].

For the explanation of Kriging, two derivations exists. Sacks et al. uses the most common derivation
which shows the predictor to be the Best Linear Unbiased predictor (BLUP). In this thesis, Kriging
is explained via a more intuitive approach which is used by Jones [14]. In the end, an analogy with
the Radial Basis Functions estimation method is shown.

Assume a set of training data points X with a response y, which is assumed to be the result of a
stochastic process with µ as mean of y(i).

Because the response is said to be result of a stochastic process, the correlation between the result of
two training points can be expressed as function of their inputs. For example, when using the Kriging
distribution function (looks like the Gaussian distribution function):

cor(Y (x(i)), Y (x(j))) = ψ(x(i),x(j)) = e−
∑n

l=1
θl|x(i)

l
−x(j)

l
|pl . (3-15)

So every dimension has its own distribution with parameters θl and pl (the meaning of these parameters
is explained later on). When x(i) = x(j) the correlation is 1 and the output will be equal as well. And
when ||x(i) − x(j)|| → ∞ the correlation will drop to zero and the output will be fully independent of
each other. Defining the correlation matrix Ψ as the correlation between all sample points, it can be
written as:

Ψ(y,y) =


cor(f(x(1)), f(x(1))) cor(f(x(1)), f(x(2))) ... cor(f(x(1)), f(x(n)))
cor(f(x(2)), f(x(1))) cor(f(x(2)), f(x(2))) ... cor(f(x(2)), f(x(n)))

... ... ... ...
cor(f(x(n)), f(x(1))) cor(f(x(n)), f(x(2))) ... cor(f(x(n)), f(x(n)))

 . (3-16)

From Equation B-14 in Appendix B can be derived that:

Cov(y,y) = σ2Ψ. (3-17)

Given X and y, the unknowns in Equation 3-17 are µ, σ, p and θ. θ and p are vectors with a length
equal to the number of dimensions in the input x(i). To estimate these it is assumed that y is the
results of a deterministic process and so no errors are in this data.

When assuming a Gaussian/normal distribution with mean µ and standard deviation σ, the likelihood
of a certain model can be expressed with:

L(y|µ, σ) = 1
(2πσ2)n2

e−

∑n

l=1
(yi−µ)2

2σ2 , (3-18)

using the sampled data gives the so called likelihood function:

L = 1
(2πσ2)n2 |Ψ| 12

e−
(y−1µ)TΨ−1(y−1µ)

2σ2 . (3-19)

This likelihood function can be maximized to come up with a model that is as likely as possible.
To simplify this maximization, the natural logarithm is taken. This is also called, the ln-likelihood
function:

lnL = −n2 ln(2πσ2)− 1
2 ln(σ2)− 1

2 ln |Ψ| − (y − 1µ)TΨ−1(y − 1µ)
2σ2 . (3-20)
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3-2 Explanation of several methods 39

To find the maximum, the derivatives of σ and µ can be set equal to 0, which gives the maximum
likelihood estimations (MLE) for µ and σ in terms of Ψ and y. Substitution of these in Equation 3-20
and leaving out constant terms, gives the concentrated ln-likelihood function:

ln(L) ≈ −n2 ln(σ̂2)− 1
2 ln |Ψ|. (3-21)

This function needs to be maximized for θ and p(when using the Kriging basis-function) which are
parameters in Ψ. p can cause the surface to be very smooth for a relatively high value of p (for example
p = 2) or can have sharp peaks for a relatively low value of p (for example p = 0.5) this is shown
in figure Figure 3-1. According to literature[18], pl can be set to 2 if the surface and its derivatives
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Figure 3-1: The Kriging basis-function ψ as function of rl for several values for parameter p[9].

are continuous. This has to be done before the optimization of the likelihood starts, because p is
influencing the general shape of the problem. As Equation 3-21 cannot be differentiated directly,
numerical optimization techniques are generally used to find θ.
When σ, µ, θ and p, and so the estimator is defined, the goal is to estimate a new value ŷ at a new
position x. This prediction is first added to the training data:

ŷ =
[
yT ŷ

]T
, (3-22)

ψ̂ =

 cor(f(x(1)), f̂(x))
...

cor(f(x(n)), f̂(x))

 =

 ψ1
...
ψn

 , (3-23)

Ψ̂ =
[

Ψ ψ̂

ψ̂T 1

]
. (3-24)

Now the ln-likelihood of the augmented data is:

lnL = −n2 ln(2πσ̂2)− n

2 ln(σ̂2)− 1
2 ln |Ψ̂| − (ŷ − 1µ̂)T Ψ̂−1(ŷ − 1µ̂)

2σ̂2 . (3-25)

For the maximization of the ln-likelihood with ŷ as variable, just the last term is contributing. So it
is enough to use just this term for the determination of ŷ. Substituting ŷ and the explicit expression
of Ψ̂−1, while removing terms without ŷ gives:

ln(L) ≈ −
(

1
2σ̂2(1−ψTΨ−1ψ)

)
(ŷ − µ̂)2 +

(
ψTΨ−1(y − 1µ̂)
σ̂2(1−ψTΨ−1ψ)

)
(ŷ − µ̂). (3-26)

Master of Science Thesis Nico Maljaars



40 Theory of Approximation Methods

For maximizing this function, it can be differentiated to the new estimation ŷ. Setting this equal to
zero, an explicit expression for ŷ(x) can be derived:

ŷ(x) = µ̂+ψ(x)TΨ(X)−1(y − 1µ̂). (3-27)

In Equation 3-27, for a new estimation, just ψ(x) has to be calculated. µ̂ and Ψ(X)−1(y − 1µ̂) are
calculated during the construction of the estimator together with the parameters θ and p in the basis
function.

Estimate of the standard error
When looking to Equation 3-26, a value for the new estimated point ŷ is more likely when the second
derivative of the likelihood has a high extreme value around ŷ. The absolute value of the second
derivative of the ln-likelihood is:

∂ ln(L)
∂ŷ

= 1
σ̂(1−ψTΨ−1ψ) . (3-28)

When this has to have a large extreme value around ŷ to be a good estimation, the closer the de-
numerator goes to zero, the better the prediction is. So the size of the error in ŷ can be related
to:

indicationerror = σ̂(1−ψTΨ−1ψ). (3-29)

The expression for the mean squared error for a predictor (s2 or σ2) is:

s2 = σ̂

(
1−ψTΨ−1ψ + (1−ψTΨ−1ψ)2

1TΨ−11

)
. (3-30)

Note that Equation 3-29 and Equation 3-30 are very close to each other. The added part in Equation
3-30 can be interpreted as the uncertainty in µ because it has to be estimated from data[14].

Co-kriging and Noisy data
As is explained in the previous section, close data points can cause problems during building the
estimator, even it can cause very local behaviour while this is not expected. This can be prevented by
the use of the regularization parameter introduced by Poggio [31]. It is implemented in the same way
as for RBF (Section 3-2-2). It is again added to the main diagonal of the correlation-matrix. This
results in:

w = (Ψ + λI)−1y, (3-31)

where λ is again representing the variance (σ2) in the response data. This is estimated during building
the estimator (σ̂), so this value can be used. Another option is to add it to the list of parameters
that need to be estimated independent of building the estimator. With λ 6= 0, by definition ψ is not
a column or row from Ψ any more This causes the estimator to not be interpolating.

Kriging basisfunctions
For Kriging, in some literature the basis function especially founded for Kriging is used [8][14]. This
basis-function looks like a Gaussian distribution. Some literature gives also room to other basis-
functions. Kleijnen[18] uses linear, exponential and Gaussian basis-functions. Simpson [39] is men-
tioning the possibility, but uses Kriging basis-functions. Koehler[20] comes up with the cubic(extended
version), exponential, Gaussian and Matérn basis-function. The standard work from Sacks [34] re-
stricts itself not to a specific basis-function but gives ’special interests’ to those with the standard
Kriging form.
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Kriging and Normalization
Some literature suggests that it is not necessary to normalize the input parameters of Kriging relative
to each other[14]. During the construction of the Kriging estimator the likelihood is maximized for
the parameter θ in every dimension. In this way, the dimensions are already scaled relative to each
other.
Other literature advises to scale the data always to ranges between zero and one, in order to have
comparable values for θ from problem to problem. Generally spoken θl will always be in between
θl,min ≈ 10−3 and θl,max ≈ 102[9]. This results in a more simple maximization problem, because
bounds for θl can be defined.

3-2-4 Support Vector Regression (SVR)

Support Vector Regression(SVR) is a particular implementation of Support Vector Machines(SVM).
SVM is about classification of data, while SVR is about function prediction.
The basic set-up of a linear estimation done with SVR is:

f̂ = µ+wTx. (3-32)

Now it is assumed that the complexity of the estimator depends on the norm of |w|2. Besides this, to
have some relation with the inputs y, a maximum error of ε is admissible at the training points which
the estimator is based on. Then the solution of w becomes an optimization problem:

min
w

1
2 |w|

2 s.t.

yi −wTx(i) − µ ≤ ε
wTx(i) + µ− yi ≤ ε

(3-33)

with i = 1...n (n is the number of training points). Using this, the assumption is done that there exist
a w that creates a function that is able to fit all yi within ε. If this is not the case, the optimization will
not be able to find a feasible solution. To give the optimization a possibility to handle these outliers,
slack variables are introduced: ξ+ and ξ− for respectively underestimating f(x)− ε or overestimating
f(x) + ε. Now the optimization problem becomes:

min
w

1
2 |w|

2 + C
1
n

n∑
i=1

(ξ+
i + ξ−i ) s.t.

yi −wTx(i) − µ ≤ ε+ ξ+
i

wTx(i) + µ− yi ≤ ε+ ξ−i

ξ+
i ≥ 0
ξ−i ≥ 0

(3-34)

The constant C controls the trade-off between a small |w|2 (so a simple estimator) and the violation
of the bounds ε. The method of tolerating an error is called the ε-insensitive loss function and gives
the possibility to use a sparse or reduced basis set of vectors to use in regression. This problem can
also be written as an unconstrained minimization problem by means of Lagrange multipliers (η+

i , η
−
i ,

α+
i , α

−
i ), with the Lagrangian:

L = 1
2 |w|

2 + C
1
n

n∑
i=1

(ξ+
i + ξ−i )−

n∑
i=1

(η+
i ξ

+
i )−

n∑
i=1

(η−i ξ
−
i )

−
n∑
i=1

α+
i (ε+ ξ+

i − yi +wTx(i) + µ)−
n∑
i=1

α−i (ε+ ξ−i + yi −wTx(i) − µ). (3-35)
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This should be minimized for w, µ, ξ+
i and ξ−i (primal variables) and maximized for η+

i , η
−
i , α

+
i and

α−i (dual variables). A combination of minimization and maximization means that the optimum is a
saddle point at which the derivatives with respect to the primal variables are equal to zero. Rewriting
the partial derivative with respect to w gives:

w =
n∑
i=1

(α+
i − α

−
i )x(i). (3-36)

Using this in Equation 3-32 and still assuming a linear regression relation, this gives:

f̂ = µ+wTx = µ+
n∑
i=1

(α+
i − α

−
i )x(i)Tx. (3-37)

To extend this, a projection of x to another space φ can be assumed. Assume that x(i)Tx(i) = φTi φi =
ψi. Then Equation 3-32 becomes:

f̂ = µ+
n∑
i=1

(α+
i − α

−
i )ψi. (3-38)

For ψi(x,x(i)), also other functions can be used, when they meet certain requirements[9].These basis-
function ψ are called Mercer kernels. Linear, (in)homogeneous polynomials, Gaussian and Kriging
basis-functions are possible. To find the values α+

i and α−i , the maximization of Equation 3-35 needs
to be done. Substituting explicit solutions from the primal variables in Equation 3-35 causes L to be
just dependent on α+

i and α−i .

L = 1
2

n∑
i,j=1

(α+
i − α

−
i )(α+

j − α
−
j )Ψ(x(i),xj)− ε

1
2

n∑
i=1

(α+
i − α

−
i ) +

n∑
i=1

yi(α+
i − α

−
i ), (3-39)

To find α+
i and α−i , the following optimization problem should be solved:

max
α+
i
,α−
i

L s.t.

n∑
i=1

(α+
i − α

−
i ) = 0,

α+
i ∈ [0, C

n
],

α−i ∈ [0, C
n

].

(3-40)

C and ε are free to choose. ε indicates how far new estimations on training points may deviate from
the calculated values at these training points without any consequences. This gives a region around
the estimation, which is sometimes referred to as a ’ε-tube’. C can be seen as the penalty on new
estimations which are placed out of the ε-tube. This penalty is used in the optimization as counterpart
of making w as flat as possible. So to say, ε can be used to eliminate the influence of noise within a
certain bandwidth, while C pushes the estimator to place all training-points within the ε-tube.

3-2-5 Multi-Adaptive Regression Spline (MRS)

MRS is based on coupling local, usually relatively simple, first or second order RSMs. The local
functions in corresponding regions overlap. In this way more continuous derivatives are available when
comparing this method with the Adaptive Regression Splines method (not dealt with in this thesis).
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The construction of this estimation model consists basically two phases: A forward stepwise phase to
create a certain number of local functions till a criterium is reached. Followed by a backwards stepwise
phase to remove functions in regions which are of low importance. The interested reader is referred
to the paper of Friedman [10] which is the basis for many other papers dealing with Multi-adaptive
Regression Splines.

3-2-6 Non-uniform Rational B(asis)-splines (NRB)

In literature this method is known as NURBS. It is mostly used for geometric representations in
imaging, for instance for medical or modelling purposes. Turner and Crawford [47] has proposed to
use this method for metamodeling as well. The basic set-up for a multi dimensional output f̂ based
on an input vector x in a normalized domain, done with NRB is:

f̂(x) =
∑nCP
i=1 biwiNi,k(x)∑nCP
i=1 wiNi,k(x)

. (3-41)

This is valid for xmin ≤ x ≤ xmax. In this equation nCP is the number of control points, bi is the
value at the position of the ith control point, wi its weight and Ni,k is the B-spline basis-function3 for
the ith control point for curve order k. They are explained shortly:

B-spline basis-function: Ni,k In NRB, the basis-function acts as a mapping from the true value
on a normalized spline. The basis-functions for a one dimensional input are defined by the following
recursive functions:

Ni,k(x) =
(

x− ui
ui+k−1 − ui

)
Ni,k−1(x) +

(
ui+k − x

ui+k − ui+1

)
Ni+1,k−1(x) (3-42)

Ni,1(x) =
{

1 if ui ≤ x < xi+1

0 otherwise.
(3-43)

In these the knot points ui are indicating which control points does have influence on the final result.
This depends on the order of the B-splines.

Control points: Control points is a term just used in NRB and should be compared with the training
points where the estimator is based on, although the control points are not necessarily on the same
positions as the training points used as input for the construction of the estimator. On the position
xi of control point i, bi can be calculated with:

N(tj)bi = f(tj), (3-44)

with tj representing the coordinates of the training points in the neighbourhood of xi and f(tj) the
calculated values on the position of these training points. The basisfunction matrix N(xi, tj) can be
calculated with Equation 3-42 and Equation 3-43.

Weights: wi The weight of a certain control point is influenced by the number of training points in
its neighbourhood. So the closer the data is to a certain point, the higher the reliability of that control
point is. The weights are calculated with:

wi =wmin + (wmax − wmin)rTi R−1ri, (3-45)
ri,j =ψ(tj ,xi) = e−θ|tj−xi|p , (3-46)
Rj,k =ψ(tj , tk) = e−θ|tj−tk|p . (3-47)

3Note that this basis-function cannot be chosen!
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Turner [48] found

θ = ln(wmin), (3-48)

p =ln(ln(C))
ln( 1

nC
)
, (3-49)

with wmin = 0.1, wmax = 1.0 and C = 2 to give satisfying results in his examples.

Fitting of a NRBs estimator
Setting up a new NRB estimator is sometimes called ’fitting’. When fitting a NRB estimator, it is
important to give attention to two important things:

1. Curse of dimensionality While fitting a NRB estimator, it is necessary to maintain at least a
rectangular mesh with hyper rectangles of control points. This is shown in Figure 3-2 for 2 dimensions.
Although, it is easier to use hyper squares [47]. This results in many control points when building the
estimator ("curse of dimensionality").

(a) Start with control points on
bounds domain.

(b) Control point added plus
some other to create a rectangular
mesh.

(c) Extra control point added to
maintain a square mesh.

Figure 3-2: Iterative control point addition scheme for a 2D-input problem[47]. ◦ indicates the
control points with which the construction starts. F is indicating the added control point. �
represents the added positions to maintain a rectangular mesh.

2. Data sets In Appendix C the algorithm for building a NRB estimator is shown. It shows that
during an iteration within the algorithm, a stopping criterium (correlation coefficient, RMS error) has
to be checked. To do this, a data set with calculated or tested values has to be available. Based on
the errors the estimator gives (compared to this dataset), new control points are added as described
above.

3-2-7 Neural networks

Neural networks can be used as another approximation technique. It is able to approximate complex
models very well, but they have some disadvantages[4]:

– Needs many positions to use as training data set
– Uses a black box approach
– Needs a computationally expensive training process

Based on these points, it is decided to leave Neural Networks out in the comparison of approximation
techniques.
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3-2-8 Methods compared

Now the different estimation methods that are explained above are compared to each other. A further
analysis is done on the differences between RBF and Kriging. Afterwards the methods are first
compared by some important properties and then based on the computational methods.

Overview methods
In Table 3-3 an overview is given for several properties of the methods that are explained in this
section.

Table 3-3: Overview of the properties of the estimation methods.

Method Valid region Interpolating
data

Noise
handling

Non-
linearities

Time to
build

Error pre-
diction

Multi-variate
output

RSM Global − + − ++ ε(X) +−
RBF Global + +− + + εRMS(x) −
KRI Global + +− + − εRMS(x) −
SVR Global +− + +− +− ε(X) +−
MRS Loc → Glob − +− +− − ε(X) +−
NRB Loc → Glob − +− +− − ε(X) +

Basically, every estimation for a certain scalar value, based on a vector input is a combination of the
product of two vectors with a low-order polynomial part or a constant b:

ŷ = f̂(x,X,y) = ψ(x,X)Tw(x,X,y) + b(x,X,y). (3-50)

In this, x is the new input vector, X = [x1,x2, ...,xn] are the input vectors from the known training
data points and y = [y1, y2, ..., yn]T are the outputs at the training data points. Every estimation
method, except NRB, has an own set-up of the constant weight vector w and the non-constant input-
vector ψ(x). When neglecting b, Table 3-4 shows an overview of the computational parts of all methods
except MRS (because the formulation is split up in a lot of small estimators, they are left away).

Table 3-4: Overview of the computational parts of the estimation methods.

Method w ψ(x,x1, ...xn) Φ(x1,x2, ...xn) or αi ψ(c)

RSM Φ+y ψ(x)
[
ψ(x1) ψ(x2) ... ψ(xn)

]T [
c1 c2 c2

1 c2
2 c1c2 ...

]
RBF Φ−1y ψi(r(x,x(i)), d) ψi,j(r(xj ,x(i)), d) Basis functions(1D)4(Table 3-1)
KRI Φ−1y ψi(r(x,x(i)),d) ψi,j(r(xj ,x(i)),d) Basis functions(nD)5(Table 3-1)
SVR α+

i − α
−
i ψi(x,x(i)) Equation 3-39 Mercer kernels

NRB N−1p
wiNi,k(x)∑nC

j=1
wjNj,k(x)

Ni,k:Equation 3-42 and Equation 3-43

From Table 3-4 it can become clear that RBF and Kriging have several things in common. The next
paragraph is explaining the differences in more detail.

RBF and Kriging RBF (Section 3-2-2) and Kriging (Section 3-2-3) have both a different derivation.
But in the end they have quite some things in common. In Table 3-5 an overview is given from the
most important properties of both methods.

4For every dimension the same free parameter is used, so non-parametric basis-functions are used
5For every dimension a specific parameter is used, so parametric basis-functions are used
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Table 3-5: Comparing Radial Basis Function and Kriging.

Method Radial Basis Function Kriging

Function ŷ(x) = µ̂+ψ(x)TΨ(X)−1(y − 1µ̂) ŷ(x) = µ̂+ψ(x)TΨ(X)−1(y − 1µ̂)
µ̂ Low order polynomial Low order polynomial
ψ(x) ψi(||x(i) − x||) ψi(|x(i) − x|)
Kriging basis-function e−θ||x

(i)−x||p e−
∑n

l=1
θl|xi,l−xi,l|pl

Ψi,j(x(i),xj) ψ(||x(i) − xj ||) ψ(|x(i) − xj |)

Table 3-6: Parameters estimation methods

Method Parameters

A priori In estimator
Discrete Continue Discrete Continue

RSM Order
RBF Order, basis-function d
KRI Order, basis-function p 7 d
SVR Kernel C, η, α+

i − α
−
i

MRS Self interactions, nfunctions Pnew var, ε Order
NRB Ordermax Order xKN, xCP

When looking to the calculation of ψ(x) and the example on the Kriging-basis-function, it can be
concluded that Radial Basis Functions uses the Euclidean distance (l2-norm) in a metric space as input
from the basis-function without any relative scaling of dimensions, while Kriging uses the Rectilinear-
distance6(l1-norm) while scaling the variables relative to each other with θl and pl. For this reason,
it should not be necessary to compare RBF and Kriging with each other as method, because Kriging
should always be able to reproduce the results of RBF. The question should be how the dimensions
can be scaled relatively to each other, which dimensions influence the results of the estimator most
and if it is worth to do an optimization within Kriging compared to directly calculating the estimator
with RBF. One thing is important to note for Kriging: The optimization problem to find θ can have
local optima, which can be difficult in the optimization when looking for a global optimum.

Besides this, a result from the comparison is that the expression for the approximation of the ln-
likelihood (Equation 3-26) used in Kriging can be applied on RBF also. From this follows that Equation
3-28 till Equation 3-30 can be used for RBF as well, which results in the same error prediction for
RBF as used in Kriging.

Parameters to choose, to calculate or to optimize to
In Table 3-6 an overview of the parameters that are needed to define an estimator is given. The
parameters can be split up in two groups: Parameters that had to be set before the construction of an
estimation starts and parameters that are tuned during the construction of the estimator. For both
groups, discrete and continuous parameters are possible. The continuous parameters that have to be
set before the construction of the estimator starts, are most difficult to decide on. Using this in a
continuous optimization, requires repeatedly construction of the estimator, which increases the overall
construction time heavily.

6Sometimes also called Manhattan-distance or taxicab-distance
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3-3 Multivariate output

The estimators introduced in Section 3-2, are based on the prediction of a scalar output. Only NRB8

offers the potential to fit an entire vector. For engineering applications, the property that has to be
estimated is in several cases multivariate. This can be solved for univariate estimators, by making an
estimator for each variable in the multivariate output separately, as shown in Figure 3-3. This is a

Figure 3-3: Multivariate output estimation bases on univariate estimators.

good approach, when the entries in the vector are independent of each other. But for related entries,
the estimator will be more complicated than needed. For example when the result of the estimation
is a load distribution over height, the load on node n+ 1 and on node n− 1 are in general in the same
order of magnitude than the load on node n.

As a solution for this it is proposed to estimate linear independent vectors which can be superimposed
to each other. This can be done by a decomposition method as Proper Orthogonal Decomposition for
example.

Proper Orthogonal Decomposition
Liang et al.[23] give a clear overview from several derivations of Proper Orthogonal Decomposition
(POD). Because it is not in the scope of this thesis to study this extensively, a short, practical summary
is given derived from this overview:

Assumed are m vectors with n entries, representing a response of a system:

Z =
[
z1 z2 ... zm

]
. (3-51)

When subtracting the mean µ from the response vectors(x(i) = zi−µ), the covariance matrix can be
defined as:

C = 1
m

m∑
i=1

E
[
(zi − µ) (zi − µ)T

]
= 1
m

m∑
i=1

x(i)Tx(i) = XXT . (3-52)

By solving the eigenvalue problem
Cφj = λjφj , (3-53)

for j = 1 : n, one can find the Proper Orthogonal Modes (POMs) φj and the Proper Orthogonal
Values (POVs) λj of the system. If Φ =

[
φ1 φ2 ... φm

]
every response can be projected on the

space or mapped from the space spanned by these orthogonal modes with:

x̂ = Φ−1 (x− µ) , (3-54)
x = µ+ Φx̂. (3-55)

7For continuous functions a straightforward choice is p = 2 because this gives continuous derivatives
8According to the experts opinion provided by Prof. T. Simpson, Professor of Mechanical & Industrial

Engineering, Engineering Design and Architecture at Pennsylvania State University.
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Chapter 4

Load estimation

Chapter 2 has given an introduction into the optimization problem. Then all iterations are done with
full load calculations, the optimization problem turns out to be rather computationally extensive. For
this reason, in this chapter a method is proposed using fast load estimations instead of extensive load
calculations. The background of the compared estimation methods is given in the previous chapter.
First, it is explained which quantities are to be estimated and why this is done. After this, a review
and some tests on possible inputs of the load estimation is given. Based on a comparison of several
estimators, choices for the methods are made. Then a comparison of methods for multivariate output
estimations is done. The chapter concludes with a proposal of interaction between the optimizer and
the estimator during the optimization.

4-1 Quantities to be estimated

When building an approximation, the first question is: What has to be approximated and in which
way can this be done? This section gives some options and it explains shortly why it is chosen to
approximate the loads with an estimation and not by means of a derivative.

Estimating damage and buckling ratio
As explained in Section 2-4-3, damage and buckling ratio are both calculated in an analytical way
by combining a numerical calculated load with geometrical properties. These geometrical properties
are represented in this optimization by 28 design variables as shown in Figure 2-4. The combination
of the load with local wall thickness’s and local stress concentration factors causes much more local
effects in the damage and buckling ratio than in the load itself. As described in Section 2-4-4, the
algorithm is in the calculation phase for approximately 90% of the computational time. In this phase,
no discontinuities other than the discretization in space and time (frequency) are present.

For these reasons, this chapter explains a method to estimate the results of the calculation phase:
Fatigue loads, expressed as Damage Equivalent Loads, and Extreme loads.

Damage Equivalent Loads (DEL) DELs consist of the bending moment and the shear force, for
both production life-time and idling life-time in the fore-aft direction (shown in Figure 4-1a) and the
side-side direction (shown in Figure 4-1b). This gives 8 vectors in total.

As explained in Section 1-2, the evaluation of the DELs is done by a frequency domain analysis. To
evaluate the accuracy of the frequency domain method, it can be compared to a time domain analysis

Master of Science Thesis Nico Maljaars



50 Load estimation

(a) Fore-aft direction. (b) Side-side direction.

Figure 4-1: Definitions of directions of a wind turbine as used in the wind industry.

done with the Siemens in-house developed tool BHawC1. For the wind farm used as design problem
for this research, the error in the DELs was about 0 ∼ 5%. So for the estimator to come up with a
representative DEL for the initial design, the error in the estimation should be smaller than 5%.

Extreme Load The extreme load can be expressed as an extreme bending moment and an extreme
shear force per evaluated sea state. For the initial design the time series of the extreme load are
calculated with constant structural and aerodynamic properties. A direct comparison between the
results as used for the initial design and the results calculated with BHawC for the final design,
cannot be done. This is, because the extreme loads are dependent on several parameters, as for
example the probability of the extreme wave and the extreme gust and the number of simulations
used for the average extreme load, which are not defined in the initial design phase. For this reason,
the estimation of the extreme load does not need a very high accuracy. The results of the estimations
are considered as representative when they have an error smaller than 10% when compared to the
calculated extreme loads.

The nodes for different support structures are not localized at the same position. To handle with this,
the estimations are done on a standard grid. A mapping is used to switch between the grids, as shown
in Figure 4-2. By using a sufficient number of nodes in this grid, it is assumed to be able to represent
all possible load distributions. For the support structures with a free tower length or free PPD, the
heights of the grid are ratios from the actual length.

Estimating loads with a derivative
Using a Taylor series expansion, it is possible to approximate a function when its value and its deriva-
tives on a certain point are known. Then the derivatives are needed:

Damage Equivalent Loads A derivative can be found for the DEL. As derived in Appendix E the
first derivative to 1 parameter takes 4 times more computational effort than a new calculation itself.
This is caused by the chain rule for calculating the derivative of the transfer function (Equation E-29).
Implementing this will lead to a reduced calculation time if the number of approximations that can
be used around the calculated point is larger than 5. Using this, it is important to know for which
space around the calculated point, the derivative is valid.

1A simulation tool, using a non-linear (aeroelastic) finite element formulation.
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Figure 4-2: Example set-up for the mapping of a load. It is first mapped from the discretization
of support structure 1 (black) to a grid used for the estimation. Then the estimation is done
(grey), where after the load is mapped back to the discretization of support structure 2 (black).

Extreme loads The extreme load is a result of a time-domain simulation. Methods exist to come up
with the derivative of a response over time to a variable. Using these will increase the computational
time and will result again in the question to what extent the derivative is applicable.

From the above mentioned points, it is concluded that it is a better way to estimate the damage
equivalent loads and the extreme loads directly, so without using any derivatives.

4-2 Defining inputs of the estimation

The inputs for the estimator are very important, because they should allow the estimator to distinguish
and characterize global and local effects. First several options for the inputs are given, then some
methods are given to indicate the quality of an estimator. Finally, this is used to come up with the
inputs used in the estimations.

All comparisons are done on designs with all the design variables (as shown in Figure 2-4) free. In
that way, the relative difference between the designs is the largest and so the variability within the
estimations and the difficulty of the estimations.

4-2-1 Assessment of an estimation

The overall goal of the estimation method is to estimate the loads, represented by a vector, as ac-
curate (shape-preserving) and precise (interpolating) as possible. The quality of one estimation, the
proportional error of vector i, q(i), can be expressed by a weighted mean of the error over the height:

q(i) = 1
n

(i)
p
∑np
k=1 wk

np∑
j=1

wj

(
f̂

(i)
j − f

(i)
j

)
f

(i)
j

. (4-1)
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In this equation, n(i)
p is the number of entries in that vector, f̂ (i)

j is the estimated and f
(i)
j is the

computed value for the jth entry of the vector and wj is the weight of the jth value.

For the quality of a load estimation, the weight is taken proportional to the magnitude of the computed
value, with a minimum of a half times the maximum weight. This is done to emphasize the accurate
estimation of the maximum loads around mudline, without fully neglecting the loads at the top and
the bottom of the structure.

During measurements on a physical test set-up, due to uncontrollable variables, repeatedly testing will
show different errors with a random nature. When repeatedly using a computer model with the same
input, due to the deterministic nature of the simulation, the outcome will give every time the same
value. For this reason, most statistical error estimations on results of computer experiments give a
bad representation for the quality of a simulation. Just the R2-test is an exception on this[40].

The quality of a series of estimations can be represented by the correlation coefficient R2 (Appendix
B) per entry of the vector or by a performance profile. A simple example of a performance profile is
shown in Figure 4-3. If the number of test points is sufficient and if the positions of both the test

Figure 4-3: Simple example of a performance profile (red line). The green line represents a good
performance, while the blue line shows a bad performance. An example: From the graph it can
be seen that for the red line, 50 % of the estimations have an error smaller than 10%, that 75%
have an error smaller than 30 % and that all estimations have a proportional error smaller than
qmin = 50%. The orange star indicates the minimum performance qmin.

points and training points are taken from a random set, then for a new estimation it can be assumed
that the error is equal or smaller than the minimum performance qmin.

As mentioned in Section 4-2-4, the errors in the load calculations for the initial design are around
0-10%. During the optimization it is important that all constraint assessments give an indication of
the feasibility from the design. But it is not needed that all results meet this criterion. Just the loads
for the end result should be smaller or equal to the error in the calculated result, to come up with a
realistic final design. This is checked for the end results of the different optimization cases.

4-2-2 Creating training, check and test data

For the selection of the inputs, many points are calculated. To come up with representative locations
of these points over the full design space, Latin-Hyper-Cube sampling[25] is used for the design pa-
rameters. It is assumed that this will give a comparable, evenly distributed sample plan in the input
domain. When the number of these points is taken large enough and when they are random, the
performance profiles are assumed to give a proper representation from the performance of all possible
designs. The number of check points, to find C, and test points are both set equal to 200, which

Nico Maljaars Master of Science Thesis



4-2 Defining inputs of the estimation 53

is assumed to give a good representation of the performance. The number of training points can be
set in two ways: Based on a minimum accuracy or based on the convergence of the accuracy. The
performance of different numbers of training points for FLS (production bending moment) and ULS
(bending moment) is shown in Figure 4-4. When looking to the improvement of the performance
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(a) Performance for the estimation of the production
bending moment(FLS).
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(b) Performance for the estimation of the extreme
bending moment(ULS).

Figure 4-4: Performance with different numbers of training points in the FDB_-case.

profile, it can be concluded that adding more points will improve the estimator, although the improve-
ment itself converges. In other words: More points improve the performance, but not in proportion
with the time needed to calculate these points. For this reason, it is assumed that using 800 points
gives a sufficient performance of the estimator considering the required calculation time.

4-2-3 Possible inputs of the estimation

DEL For the wave induced DELs, the following inputs are important because they are the only design
dependent parts used in the calculation (Appendix D Equation ??):

– For the structural response part:

� Eigenfrequencies structure: ωi and ω2
i .

� Eigenmodes structure: φi.
� Modal mass structure: µi.

– For the loads part:

� Diameter below SWL: D (used for the linearized drag force) and D2 (inertia force).

Extreme load For the Extreme loads resulting from an extreme wave, the following inputs are im-
portant because they are the only design dependent parts used in a time-domain simulation:

– For the structural response part:

� Eigenfrequencies structure: ω2
i .

� Eigenmodes structure: φi.
� Modal mass structure: µi.
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– For the loads part:

� Diameter below SWL: D (drag force) and D2 (inertia force).

Modal information Four important notes concerning the modal information are made before dis-
cussing the selection of inputs:

1. For both the DEL and extreme load input, the combination of eigenfrequency and modal mass
is also representing the modal stiffness µi, although it can be added separately as well.

2. For the extreme load, the constant aerodynamic damping does not cause interaction between
different modes, when Rayleigh damping is assumed.

3. Nearly all energy in the frequency spectrum for waves is present below 0.25 Hz. A typical
eigenfrequency of the first mode is below 0.25 Hz as well. The typical eigenfrequency of the
second mode is a number of times higher and therefore the first eigenmode dominates in the
contribution of the eigenmodes to the DEL. For the time series of the deflection, the modes with
a low eigenfrequency are most dominant as well.

4. An eigenmode can be expressed in several ways, depending on the discretization in space. It is
important to realize that for wave loads the part just at and below the Still Water Level (SWL)2

is most important because there the amplitude of the wave force is maximum.

4-2-4 Comparison of several input combinations

A high number of inputs can possibly produce better results, but makes the construction of an estimator
more difficult. To select which inputs are used, it is chosen to compare them, based on one estimator
which is able to take non-linear effects into account, but which does not need any continuous input
parameters. So the Radial Basis Functions-method is used. It is assumed that the effect of different
input parameters is the same for every estimation method. Now this is done for DELs and the Extreme
Loads. For DELs just the bending moment in fore-aft direction for the production and idling case is
shown because these are dominant in the total fatigue damage. The other forces show comparable
behaviour. For the extreme load both bending moment and shear force are discussed. Initially the
first eigenmode φ1 is represented with the deflection (mass normalized) of the top, at SWL, 5, 10
and 15 meter below SWL, at mudline and at the pile tip In Section 4-2-5 the approach of using the
eigenmode as input is discussed in more detail.

From Section 4-2, the following combinations of parameters are derived:

A: ω1.
B: ω2

1 .
C: [ω1 D].
D: [ω1 D

2].
E: [ω1 D φ1].
F: [ω1 D φ1 µ1].
G: [ω1 D φ1 γ1].
H: [ω1 D φ1 µ1 γ1].

Damage Equivalent Loads In Figure 4-5 the performance over the height, for the estimation of DELs,
is given for several input parameter combinations. It shows that using inputs related to structural
properties in combination with inputs related to the loads, give the best performance. The negligible
small difference between line A and B, shows that there is no significant difference in using ω1 instead
of ω2

1 . Likewise, the small difference between C and D, shows that there is no significant difference
2All calculations are done neglecting tidal effects.
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(a) Performance for the bending moment during pro-
duction.
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(b) Performance for the bending moment during
idling.

Figure 4-5: Performance of several combinations of input parameters for the Damage Equivalent
Loads in the FDB_-case.

in using D or D2. The difference in the options for the structural inputs, when using at least the
eigenfrequency and eigenmode, is small. The difference in calculation time for the construction of the
estimator for E, F, G and H is comparable and is negligible compared to the calculation of the training
points. When zooming in on both the correlation (not shown for brevity) and the performance, G is a
better than E, F and H. For this reason it is chosen to use the input combination G for the estimation
of DELs.

Extreme Loads In Figure 4-6, the results for several input combinations are shown for estimating
the extreme loads. It shows, as for the estimation of DELs, that both inputs related to structural
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(a) Performance for the bending moment.
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(b) Performance for the shear force.

Figure 4-6: Performance of several combinations of input parameters for the extreme loads

properties as well as inputs related to the properties of the loads are needed to come up with reliable
estimations. The same considerations as for the DEL can be taken, to choose for input parameter
combination G.
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4-2-5 Comparison of several eigenmode input options

As mentioned in Section 4-2, the way of using the eigenmode φ1 as input is not unique. For all loads,
it is important to note that a high deflection at SWL and below SWL enables the waves to transfer
more energy into the structure compared to a structure with a low deflection at the same heights.
Generally the wave amplitude is the highest at SWL and decreasing to mudline, so a more dense grid
just below SWL is preferred. It is chosen to use two grids: SWL +

[
0 2 4 6

]
meter (grid I)

and SWL +
[

0 5 10 15
]
meter (grid II). Although there are many other possibilities, these are

chosen in such a way that grid I puts more emphasis on the surface itself while grid II takes deeper
deflections into account. Six input combinations are defined:

A: Deflections at 4 points distributed over the height.
B: Deflections at 64 points (almost equal to the number of elements used to model the support

structure) distributed over the height.
C: Deflections at Grid II, mudline and pile tip
D: Deflections at towertop, Grid I, mudline and pile tip
E: Deflections at towertop, Grid II, mudline and pile tip
F: Deflections at towertop, halfway towertop and SWL, Grid I, mudline, halfway mudline and pile

tip and the pile tip itself.
G: Deflections at towertop, halfway towertop and SWL, Grid II, mudline, halfway mudline and pile

tip and the pile tip itself.

These input combinations are tested for both the DELs and the extreme loads separately. The eigen-
modes are used in the chosen input combination G with [ω1 D φ1 γ1].

Damage Equivalent Loads In Figure 4-7 the results for the defined options of eigenmode inputs
are shown for estimating the damage equivalent loads. It shows a small dependency on the way of
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(a) Performance for the bending moment for the
production case.
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Figure 4-7: Performance for the estimation of DELs, for eigenmode implementations A-G.

implementing the eigenmode. The following conclusions are drawn:

– Comparing combination D and E and combination F and G, using the deflections at grid I is
better than using the deflections at grid II.

– Comparing combination C and E, using the deflection at towertop gives better results than
without using the deflection at towertop.
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– When looking to the performance of combination B, it can be concluded that just using more
nodes does not necessarily give better results.
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Figure 4-8: Correlation coefficients for the estimation of DELs, for eigenmode implementations
A-G.

From Figure 4-7, it can be concluded that input combination A gives the best results for the estimation.
This is remarkable, because it is the input combination with the smallest reference to fixed places on
the support structure. When looking to the correlation coefficients over the height in Figure 4-8, for
the heights between 0.05 and 0.015 A gives almost the highest correlation, while for the other heights
F and G are performing better. The absolute value of the DEL for the part just below mudline is
the highest and gives therefore the highest weights in the performance as well. This causes the high
performance for a despite the relatively low correlation coefficient. Based on the performance for case
with the tower length, tower diameter and PPD fixed, it is chosen to use eigenmode implementation
F in the optimization.

Extreme Loads In Figure 4-9 the results of several input combinations are shown for estimating the
extreme loads. The following conclusions can be drawn:

– For the bending moment, the parameter combination B is clearly outperforming the other com-
binations. For the shear force, for errors smaller than 14%, B is not better than the other input
combinations

– For the shear force, combination A gives clearly worse results than the other combinations.
– The other results are too close to each other to base conclusions on.

For an easy implementation and because there is no eigenmode implementation which performs best
on all points (neither for the case with the fixed length and size of the tower and the fixed PPD), it
is chosen to use the same eigenmode implementation as for the DELs.

4-3 Estimator choice

As explained in Section 4-1, 2 sorts of vectors need to be estimated. It is possible to use a different
estimation method for every entry in all vectors. In this research it is chosen to use one estimation
method for the DELs and one estimation method for the extreme loads, independent of each other.
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(a) Performance for the bending moment.
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(b) Performance for the shear force.

Figure 4-9: Performance for eigenmode implementations A-G for estimating the extreme load.

The choice for the estimation methods is based on the most important direction of the load, according
to Section 4-2-4.

4-3-1 First selection estimators

In Table 3-6 it is shown which parameters are needed to be chosen before the construction of the
estimator can start. This table is most important when constructing an estimator for an unknown
response surface. It is shown that Kriging, SVR, MRS and NRB have continuous parameters which
are needed to be defined a priori. These parameters are dependent on the non-linearity of the surface.
Investigations show that it is difficult to find values for these parameters and for this reason it is difficult
to come up with good estimation models for Kriging, SVR and MRS. Therefore, SVR and MRS are not
used in the comparison of estimation methods. Kriging has one continuous parameter p. According to
literature[18], this can be set to p = 2 if the surface and its derivatives are continuous. This is expected
to be valid for the load surfaces. For the construction of NRB, it is mentioned in Section 3-2-6 that a
rectangular mesh is required. Because the relation of design variables and the inputs of the estimator
is not analytical and not unique3, there is no straightforward way to create this rectangular mesh.
Moreover, for a rectangular grid in higher dimensions, many training points are required (‘curse of
dimensionality’). Lastly, adding new control points is based on a known response surface or a number
of a priori calculated points. This causes a need for more training points or checkpoints, in comparison
with the other estimators. For these reasons, NRB is left out the comparison as well.

First, a methodology is proposed to give the estimators a possibility to optimize themselves, after this,
the estimators are compared to each other using this construction strategy.

4-3-2 Methodology for choosing free parameters in estimators

In Section 3-2-8 it is explained that all estimators need discrete input parameters p1...pn defined a
priori, to use during the construction of the estimator. The choice for the discrete parameters is done

3As explained in Section 4-2, the inputs into the estimator are not the same as the design variables used in
the optimization. The steps in between are the set-up of a structural model (including the calculation of the
eigensolution) which represents the designs.
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Figure 4-10: Overview for calculating the Error E as function from the input parameters (p1...pn)
from the estimator.

according to the scheme shown in Figure 4-10. The Error E is calculated with:

E(p1...pn) =
ntd∑
itd=1

εitd(p1...pn). (4-2)

In this equation ntd denotes the number of test data points and εitd is the difference between the
calculated value and the estimated value. After calculating the errors of all parameter combinations,
the best combination of input parameters, with the smallest value for E is chosen. Note that RSM,
RBF and Kriging can just create univariate estimators, so this optimization is used for every entry of
the load vectors.

4-3-3 Comparison estimators
Estimator choice for FLS
In Figure 4-11 the results are shown for estimating the DELs. It is clear that RBF performs best for
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Figure 4-11: Performance of the different estimators for estimating DELs.

both production and idling cases. As explained in Section 3-2-8, it can be concluded that Kriging
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is not able to find a global optimum. It is clear that the performance of the RSM is much worse
than the performance from the non-linear estimators RBF and Kriging. This is an indication of the
non-linearity of the surface.

Estimator choice for ULS
In Figure 4-12 the results of estimating the extreme loads are shown. For the bending moment, the
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(a) Performance for the bending moment.
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(b) Performance for the shear force.

Figure 4-12: Performance of the different estimators for estimating extreme loads.

results for RBF and Kriging are comparable. For the shear force, again RBF is outperforming the
other two estimators.

4-3-4 Improving vector estimations by Proper Orthogonal Decomposition

As discussed in Section 3-3, the estimation of multivariate output is possible in several ways. Until
now, it is done by the construction of several 1D-estimators. The inputs are known and the estimation
method is known, so the next step is to compare this with estimating the loads in a subspace created
with POD. The results for this are shown in Figure 4-13. For brevity, just the results for the damage
equivalent bending moment for production and the extreme bending moment are given. The results
for the other damage equivalent loads and extreme loads are comparable.

From Figure 4-13a it is clear that the use of POD for estimating DELs does not improve the results.
The same behaviour can be seen in the extreme loads.

From this it can also be derived that the input parameters have a more local effect on the loads, than
global effects. Although a common shape in the loads can be easily recognized (for this reason there
is a large distinction in the POVs belonging to the first POMs), it is difficult to estimate a magnitude
of this shape based on the input parameters. More local effects are added up to this via subsequent
modes with magnitudes that are as difficult to estimate.

4-4 Estimator updating

From the figures follows that the estimations for the loads are not accurate enough to estimate all
possible designs. Off course, in the optimization, just the end result has to be estimated in an accurate
way. In Figure 4-14a a preview of an optimization run is given. In this optimization all constraints
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(a) Performance for the damage equivalent bending
moment during production.
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(b) Performance for the extreme bending moment.

Figure 4-13: Performance with and without using Proper Orthogonal Decomposition.
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are used and the tower length, tower diameter and pile penetration depth are free. From this figure,
it seems that the optimization results in a promising design. It shows a decrease in mass of about
9%. In Figure 4-14b the utilization and buckling ratio for the calculated and the estimated loads are
compared. When using same weighting as for calculating the performance, the utilization ratio shows
a weighted mean error of about 11%. The extreme load shows a weighted mean error of about 13
%. This shows that the optimization algorithm has found an optimum on a place where there is a
relatively large error between the estimated and the calculated loads.
To prevent this phenomena during the optimization, the interaction between PSO and the estimators is
changed in the following way: After every generation in the PSO, the training data for the construction
of the estimator is extended with a calculated result on the place of the best individual. This is shown
in Figure 4-15.

Figure 4-15: Overview of the interaction between PSO and the estimator. p1 till pn are constant.

It is assumed that the added point will not change the characteristics of the response surface itself.
Therefore the previously defined parameters p1 till pn can be re-used. Because during this research,
PSO is responsible for the definition of the most important dimensions, during Gradient Based Opti-
mization(GBO) the estimators are not updated. Because GBO is generally using just a few iterations
and does little adjustments to the design, the estimations will stay close to the estimation in the
final step of PSO and therefore the errors in the estimation will stay small. This is verified with the
weighted error of both the utilization and the buckling ratios.

Summary
This chapter started with explaining the choice to estimate the loads. After looking to different input
options and eigenmode implementations it is chosen to use as input for both the DEL and the extreme
load, x =

[
ω1 D φ1 γ1

]
. For φ1 the deflections at towertop, halfway towertop and SWL, a grid

around SWL (SWL +
[

0 2 4 6
]
meter), mudline, halfway mudline and pile tip and the pile tip

itself are used. Using this input, RBF gives in all cases the best performance. For the estimation of
the loads for structures with a free tower length and a free PPD, for the DELs, about 30% of the
designs can be estimated with errors smaller than the maximum error, for the extreme loads this is
about 60%.
The estimation of the loads with less degrees of freedom gives better results. This is shown in Figure
4-16. For the DELs, RBF gives the best results, although Kriging comes close to it. For the extreme
loads, the three methods have a comparable performance. It is remarkable that even RSM comes close
to the other estimators!
Investigations showed that even a relatively high performance, as shown in Figure 4-16, can cause
problems in the optimization. For this reason, an estimator updating method is proposed. This can
be used the optimization for continuously improvement of the accuracy of the estimations.
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(a) Performance for the damage equivalent bending
moment during production.
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Figure 4-16: Performance for several estimators for the estimations of loads of structures with
fixed tower length and fixed PPD.
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Chapter 5

Optimization results

As formulated in the objective of this thesis, this research has as goal to "develop an efficient approach
for the optimization". Previous chapters have explained the optimization and the estimation of loads.
To show the performance, qualities and drawbacks of the combined optimization and load estimation,
it is used on 4 case studies. These are defined first, whereafter they are optimized using the proposed
optimization stategy in combination with the estimator updating. At the end, a summary of the results
is shown from which some conclusions are drawn.

5-1 Introduction case studies

The case studies that are used in this thesis serve several purposes. At one hand they have to show
the value of the proposed optimization strategies and at the other hand they had to show options for
further reducing the mass of the support structure. To do this, several combinations of constraints
and free variables. In Table 5-1 it is shown which constraints are used and which variables are fixed
for the different case studies. From now on, referring to a case is done with the abbreviation as given
in the table. The constraints and free variables are used or fixed for the following reasons:

FDB_ This is the case with all common constraints, while having maximum freedom in design during
the optimization. The results of this case are most interesting for the research in OWT optimization,
to see if large mass reductions are possible by introducing possibly large deviations of the current

Table 5-1: Overview of the case-studies which are used in this thesis. It is indicated whether
constraints are used and if parameters are fixed. The abbreviations are chosen in such a way that
the used constraints (before the ‘_’) and the fixed variables (after the ‘_’) can be derived.

Constraints Fixed variables
Abbreviation
case: Fatigue Deflection Buckling Length

tower
Diameter
tower

Penetration depth
monopile

FDB_ Yes Yes Yes Free Free Free
FD_P Yes Yes No Free Free Fix
FDB_LSP Yes Yes Yes Fix Fix Fix
FDB_LP Yes Yes Yes Fix Free Fix

Master of Science Thesis Nico Maljaars



66 Optimization results

standard design of an OWT. Besides, this case is used to conclude that the tower length can be fixed
on forehand to simplify the optimization problem.

FD_P The FDB_-case is used to fix the length of the tower on forehand. To reinforce and explain
this conclusion further this case is used.

FDB_LSP This is the case which is closest to the current design process. Therefore, the length of
the tower, the diameter of the monopile and the PPD are defined a priori. So a fair comparison can
be made by looking to these results with respect to the current support structure.

FDB_LP The diameter is kept constant in the current design process. In this optimization case, it
is free. By comparing the results of this case with the FDB_LSP-case, it can become clear how far
the design can be improved when this diameter can change.

5-2 Case study 1: FDB_
Results
In Figure 5-1 the history of the mass is shown for the FDB_-case optimized with 90 individuals in
PSO. The final result shows a mass reduction of about 3.34%. The GBO did three iterations resulting
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Figure 5-1: History of the objective and the mass for the FDB_-case.

in a decrease of the mass of about 1%. At that position, the GBO stopped because the last decrease
in mass was smaller than the criteria set.

In Figure 5-2 the resulting design is shown. When looking to the constraint ratios, the buckling ratio
and the D/t ratio both stay far below 1. The angle of the conical parts is feasible as well. The fatigue
ratio is going to 1 on several places over the height. From the maximum deflection constraint, the
constraint ratios for the rotations at mudline and at pile tip where both almost one as well. From
this, it can be concluded that fatigue in combination with the maximum deflection constraint where
design-driven.

Computing FLS and ULS without estimator
In Figure 5-3 the difference is shown in the utilization and buckling ratio for the calculated and the
estimated loads. The fatigue ratio shows a weighted mean error of about 0 %. The buckling ratio
shows a weighted mean error of about 3 %. This error can have two reasons (these are valid for the
errors in the results of the other cases as well):
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Figure 5-2: Final design for the FDB_-case.
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Figure 5-3: Comparison of utilization and buckling ratio for estimated and calculated FLS and
ULS for the FDB_-case. The fatigue ratio has a weighted error of about 0% and the buckling
ratio a weighted error of about 3%.
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– Because in the GBO phase, no error updating is applied, as mentioned in Section 4-4, the final
result is not part of the training data points used for the construction of the estimator.

– As shown in Figure 4-2, there is a mapping back and from the estimation grid. This can
introduce errors as well.

Because the error stays below the bounds as specified in Section 4-1, the assumption that the GBO,
due to its local nature, will have small influence on the loads is justified. Therefore, estimator updating
in the GBO phase is not needed. Because the following optimization runs show comparable results, for
brevity just the weighted error of those cases is mentioned, without presenting the results in a figure.

Tower length
In Figure 5-4 the history of the length of the tower and the PPD are shown for all individuals as
well as for the global best individual. The swarm is converging to a tower length of about 1 which
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Figure 5-4: History of the length of the tower. It is normalized with respect to the minimum
length.

is the minimum value for the length. First investigations without the wind load scaling, as explained
in Section 2-4-2, gave for this optimization tall towers as result. This resulted in soft-soft designs for
the support structure, as explained in Figure 2-2. The use of the more conservative wind load scaling
gives, in all optimization runs for the FDB_-case, a length of the tower about equal to the minimum
tower length. From this it can be concluded that a shorter tower is always preferable for comparable
monopile founded support structures, when the benefit from a higher RNA, a higher Annual Energy
Production (AEP), is neglected. Therefore, to simplify the optimization, the length of the tower can
be fixed before the optimization starts.

5-3 Case study 2: FD_P

In Figure 5-5 and Figure 5-6 the results are shown for the FD_P case. The PSO used 120 individuals.
The mass saving compared to the current design is about 11%, although this design is not necessarily
realistic because the buckling constraint is not taken into account. The utilization ratio shows a
weighted mean error of about 2%, so the design is feasible for the fatigue constraint.
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(b) History of the length of the tower.

Figure 5-5: History of some properties during the optimization of the FD_P-case.
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Figure 5-6: Final design for the FD_P-case.
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In Figure 5-5b, from generation 1 till 20, no convergence to a specific length is visible. This is caused
by the weights of the fly directions as explained in Section 2-3-4, which forces the exploration of the
full design domain. From generation 20, the optimization starts converging.

Tower length
Initial investigations without wind load scaling done without buckling constraint showed tall soft-soft
designs as for the FDB_-case. While using wind load scaling, the length of the tower is decreasing
during the optimization till it reaches the minimum tower length, as shown in Figure 5-5b. This
minimum tower length is equal to the length of the tower of the current design. From this, it can be
concluded that the length of the tower is not driven by buckling. Besides this, the same statements
can be made concerning fixing the tower length as for the FDB_-case.

5-4 Case study 3: FDB_LP
In Figure 5-7 and Figure 5-8 the results are shown for the FDB_LP case. The results show a decrease
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Figure 5-7: History of the objective and mass for the FDB_LP-case.

in the mass of about 17.0% compared to the current design. GBO made 9 steps, although these steps
all result in a very small mass decrement of about 0.2%. As visible in Figure 5-8, the final design has
no constraint violations for fatigue and buckling. Fatigue and the maximum rotation of the monopile
are, as for the FDB_-case, driving the design because they have normalized ratios of about 1.
In Figure 5-7, it is visible that during the optimization, the mass and objective are not always de-
creasing. This is caused for two reasons:

– As mentioned in Section 2-3-4, the weight of the constraints is increasing during the optimization.
For this reason, the best design position in generation n can have a smaller objective than the
best design positions in generation n+ 1.

– When a new optimum is found, that design position is calculated and added to the estimator.
Even though the design seems to be feasible when evaluating it using the estimator, the next
generation it can become infeasible due to the updated estimator.

When comparing the current design and the design found by the optimizer, some things can become
clear:
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Figure 5-8: Final design for the FDB_LP-case.

– The diameter of the tower found by the optimizer is much smaller than the current tower design.
– The diameter of the monopile found by the optimizer is much smaller than the monopile diameter

in the current design.
– The conical part starts at a lower level (about equal to SWL) than the conical part of the current

design.
– The wall thickness of the monopile of the optimized structure around mudline is comparable

with the wall thickness of the current design, although it stays increasing below mudline.
– The t/D-ratio just above pile tip is not driving the wall thickness of the monopile any more.

The utilization ratio based on load estimations shows a weighted mean error of about 0%. The buckling
ratio, a weighted mean error of about 0%.

As mentioned in Section 2-2-5, the eigenfrequency constraints for the 1P and 3P frequency and the
angle of the conical parts are not used. When checking these constraints, the first eigenfrequency of
the structure is above the 1P frequency region. As expected, the 3P frequency region is in between
the first and the second eigenfrequency of the structure. The angle of the conical part is around 2◦.
From this, it can be concluded that the relaxation on these constraints have not given any problems.

5-5 Case study 4: FDB_LSP

This case is done to compare it directly with the current design. Therefore, the diameter and the
length of the tower as well as the PPD are fixed from the beginning.

Results
In Figure 5-9 and Figure 5-10 the results are shown for the FDB_LSP case. It takes a long time, to
find new optima after the first two generations. This shows a clear difference between PSO and GBO:
GBO is always be able to find a better position if the gradient on a certain position, which is not an
optimum, is known. For PSO, this is not necessarily true because of the randomness in the behaviour
and the emphasis on the own fly direction of the individuals. From the start of the optimization,
these are relatively high to explore the full design space. After they are decreasing, the individuals
are forced to converge and generally new optima are found. This is clearly visible in this case.
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Figure 5-9: History of the objective and mass for the FDB_LSP-case.
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Figure 5-10: Final design for the FDB_LSP-case.
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The utilization ratio shows a weighted mean error of about 3%. The buckling ratio shows a weighted
mean error of about 0%. It is remarkable that in this design and even in the designs found for the
other optimization cases, the wall thickness below mudline is not rapidly decreasing as it is for the
current design.

The designs found for this case and the design found for the FDB_LP-case are both feasible designs
in the FDB_- and the FD_P-case. So it can be concluded that the FDB_- and the FD_P-case were
not able to find a global optimum. Because of the free PPD and tower length in the FDB_-case and
the free tower length in the FD_P-case, it can have a larger variability in the eigenfrequency and as
result from this, in the loads as well. Therefore, the FDB_-case and the FD_P-case are expected
to have more local optima than the FDB_LP- and the FDB_LSP-case have, which substantiate the
choice for fixing the tower length.

Sensitivities to design variables
For the result as shown in Figure 5-10, the sensitivities to some design variables are calculated. These
are shown in Figure 5-11. From this, it can become clear that the stopping criterion stops the GBO
relatively early. The actual exit condition of the GBO is the improvement of the objective during the
last gradient-base step. Refining this criterion will possibly lead to a further improved design. When
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Figure 5-11: Objective around the found positions of several design variables for the FDB_LSP-
case. They are obtained by calculating the objective with load estimations for small deviations
(marked with a star) from the found position (marked with an encircled star). This is done for
every variable separately.

looking to the results of all cases, the wall thickness’s of the conical part at the top of the turbine
show an unexpected development over the height. Combining this with the found sensitivities, it can
be concluded that the optimizer did not find an optimum for these variables.

Master of Science Thesis Nico Maljaars



74 Optimization results

Summary

In this summary, some conclusions and remarks are shown regarding all optimization cases.

Decrease of mass
In Table 5-2, the results for all optimization cases are shown. As explained before, the FDB_-case
and the FD_P-case were not able to find a global optimum. For these cases, GBO has a relatively
large contribution of about 1% to the mass decrease in the final result. For the FDB_LP-case and
the FDB_LSP-case this is respectively 0.2 and 0.3%. For the case which is the closest to the current
design process, a mass reduction of about 12% was found. When the diameter of the tower was a
design variable as well, a reduction of about 17% was obtained.

Table 5-2: Summary optimizations

PSO GBO
nind [-] ngen [-] wend [-] nsteps [-] wend [-]

FDB_ 90 65 0.981 3 0.970
FD_P 120 65 0.890 6 0.879
FDB_LP 150 65 0.832 9 0.830
FDB_LSP 150 65 0.881 8 0.878

Reduction of wave loads
When looking to the optimized designs, it is the question: Why is it possible to decrease the mass while
they are still feasible. A part of the reduced mass is in the reduction of the loads. Some important
properties that influence the wave loads on the structure are given in Table 5-3 (the diameter is
also visible in the figures with the results). The eigenfrequency, the diameter at SWL and the

Table 5-3: Some properties of the resulting designs compared to the current support structure.

ω1 [-] DSWL [-] φSWL [-]1

Current design 1 1 1
FDB_LP 0.852 0.898 0.805
FDB_LSP 0.757 0.753 0.761

amplitude of the first (mass normalized) modeshape, have decreased for the optimized designs. For
the eigenfrequency, this means that it is closer to the high energetic part of the wave spectrum, which
increases the loads. A decreased diameter causes decreased wave loads, as Morisons equation tells that
the diameter is linearly related to the drag forces and quadratic in the inertia forces. For the current
design, below mudline, the wall thickness is decreasing rapidly to the pile tip. Therefore, the D/t-ratio
is driving the design of the monopile. For the optimized designs, the wall thickness decreases much
less below mudline. For the FDB_LSP-case, it is even increasing. This will cause a stiffer monopile,
which results in a decreased modal amplitude. A decreased modal amplitude at SWL will decrease
the wave loads, as less wave energy is transferred to the structure.

Fixed variables
As explained, to reduce the design space, the tower length can be fixed. In the current design process,
the PPD is fixed in an early stage as well. For this reason this variable was fixed in the FDB_LP-
and the FDB_LSP-cases as well. In Figure 5-12, the history of the PPD for two optimization runs is
shown. This shows two different PPD’s, which means that the PPD is design specific. For this reason
it is not a good choice to fix the PPD on forehand.

1Mass normalized eigenmode.
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Figure 5-12: History of the PPD for two optimization runs of the FDB_-case. They are normal-
ized with respect to the PPD of the current design.

Convergence
In Figure 5-13 the results of several optimization runs are given. From this figure, it can be concluded
that even with the highest number of individuals the PSO does not find a global optimum.
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Figure 5-13: Overview of all results obtained with the proposed optimization approach. On the
right axis, the computational time of an optimization run is shown.

Estimator updating
As shown in Figure 5-13, for the FDB_- and the FDB_-LSP-case, some optimized designs were
infeasible. A design is marked as infeasible if is has an error in the estimated loads larger than the
criteria as given in Section 4-1. When using estimator updating, this error was not always reduced.
It is out of the scope of this research to study this phenomena, although first investigations showed
that for the infeasible designs, one of the structural inputs of the estimators was close to bounds of
the domain. Updating of the estimator close to the bounds has just local effects. Therefore, the next
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iteration in the optimization, the new design was just shifting closer to the bound. Where these step
were repeated.
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Chapter 6

Conclusions

This chapter shows the most important conclusions of this research. They are split up in three
parts, according to the tasks defined in Chapter 1. First some conclusions are made regarding the load
estimations. After this, some conclusions are drawn regarding the optimization. Then the combination
of optimization and estimation is discussed. The chapter is finished with an overall conclusion by
placing the results of the optimization into the perspective of offshore wind industry.

6-1 Load estimations

2. Investigate estimation methods and develop an accurate way for estimation of loads.

Accuracy of the load estimations
From Chapter 4 follows that it is possible to compute an estimator for a fast estimation of both
DELs and extreme loads. In the estimator the input vector, x =

[
ω1 D φ1 γ1

]
is used, within

the eigenmode φ1, the deflections at towertop, halfway towertop and LAT, Grid I, mudline, halfway
mudline and pile tip and the pile tip itself. Because the optimization found results with mean errors
larger than the criteria as given in Section 4-1, estimator updating was used.

Estimator updating
For updating the estimator, the input parameters p1 till pn were taken equal to the parameters that
were already found. The results of the updated estimator confirm the validity of this assumption. The
updating process itself shows a large difference in the construction of the estimator. While updating of
the RBF estimator requires just one matrix multiplication, updating of the Kriging estimator requires
a new optimization run which takes much more time, despite the fact that a reasonable starting point
can be chosen.

An advantage of estimator updating is that the initial estimator has less impact on the end result. As
explained in Section 4-2-2, in this research the number of training points was fixed at 800. With the
estimator updating this number becomes less critical. So for future use, a smaller number of training
points is apparently sufficient.
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6-2 Optimization

1. Develop an optimization strategy for integrated optimization of a support structure.
4. Show the performance of this optimization approach on a representative case study.

Influence of constraints and free parameters on optimization
Design-driving constraints Fatigue and the maximum rotation constraint were in all cases design-
driving. Buckling and the angle of the conical parts were not found to be design-driving. Although
the D/t-ratio was design-driving for the current support structure, it was not design-driving in the
optimized cases. This was caused by the relatively large wall thickness of the monopile, from fatigue
perspective, for the optimized designs. The larger wall thickness is possibly a cause of the decreased
modal amplitude on SWL, which reduces the wave loads for both DELs and extreme loads.

Free tower length Before the wind load scaling was applied, optimization runs on the FDB_-case
resulted in designs with a tower length higher than the current tower length. The eigenfrequencies
of these structures were shifted to the soft-soft region. Via this way, relatively low DELs were found
which resulted in feasible designs, with very low masses. Using the wind load scaling, the results for
the FDB_- and the FD_P-case give a tower length of about equal to the current tower length. This
is shown in Section 5-2. Therefore it can be concluded that the wind loads are driving the length of
the tower. From these cases, it can be concluded that the optimization will always lead to the shortest
tower length as possible within the bounds. For this reason, the tower length can be fixed before the
optimization starts, which reduces the complexity of the optimization.

Free tower diameter The current design process uses a constant tower diameter to standardize pro-
cesses. When comparing the results from the FDB_LSP- and the FDB_LP-case, it can be concluded
that leaving this diameter free, can lead to a further decrease in mass of about 5% in this case study.

Loads in optimization
As explained in Section 2-2-1, several structural properties have influence on the loads. The results in
the previous chapter show that during the optimization, these properties are adjusted in such a way
that the loads decreases. In this way, the mass can decrease. Therefore, during the optimization, it is
important to take the loads into account.

Optimization algorithm
a. Optimization strategy The strategy by using PSO on an objective extended with penalty func-
tions, shows the ability to reduce the mass of the support structure. Because of the results without
wind load scaling did give soft-soft designs, it can be concluded that the algorithm is able to escape
from local optima.

b. Global optimum During the optimization project several optimization runs are done on the same
cases. The initial positions of the designs in PSO are taken from a set of samples calculated with
Latin Hypercube Sampling for an even distribution over the design space[25]. Comparing the results
of the FDB_-, the FDB_LP- and the FDB_LSP-case, it can be concluded that for the FDB_- and
the FDB_LP-case, for the used number of individuals, the global optimum is not always found.

Tool for initial design
This research has resulted in a tool for the initial design of support structures for wind turbines based
on monopile foundations. The time an optimization takes, is dependent on the number of individuals
chosen and will decrease when doing multiple optimization with the updated load estimator. When
using a reasonable number of 120 individuals on one 2.6 GHz core, it will take about 35 hours. This
is too long for an overnight run.
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6-3 Optimization and Estimation

3. Combine Optimizer and Estimator into an efficient optimization routine.

Efficiency of using load estimations during optimization
For the FDB_LSP- and the FDB_LP-case, during PSO, 9750 design positions are evaluated. When
using load calculations, this needs the same number of calculations. As shown in Section 4-2-2,
800 load calculations are done to construct the estimator, before the optimization starts. Besides
these load calculations, for updating the estimator, a maximum number of design positions equal
to the number of generations is calculated as well. This gives a maximum of 865 load calculations
for 5850 design positions. For PSO using more generations with more individuals will increase the
probability of finding the global optimum. This points out that the use of an estimator during PSO, is
a very efficient combination, especially with the improved accuracy of the estimations when estimator
updating is applied.

Improvement optimization time
From time perspective, during the optimization, the evaluation of the objective for one design position
takes about 30 seconds. As shown in Table 2-3, using load calculations, takes about 50 to 440 seconds
dependent on the use of sea states and aerodynamic damping. From this can be derived that the
estimations decrease the optimization time by at minimum a half.

6-4 Bigger picture

For confidentiality reasons no precise numbers of the weights of the support structures used as case
study are given. But some number can be give as an indication. As explained before, the optimization
shows mass savings of around 17%. The weight of the support structure of a 7 MW turbine for the
described position is typically in the order of 106 kg. With a steel price of 1 ∼ 3 Euro per kg steel and
assuming a linear relation in between these, cost savings in the order of 170 ∼ 510 kEuro are possible
per turbine.
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Chapter 7

Recommendations

During this project, some drawbacks of methods, lacks in knowledge or challenges are found to be
important, but too time consuming to solve as part of this research. In this chapter they are shared
and can be used for possible follow-up projects. They are split up in three sections according to the
set-up of this thesis: The optimization, the estimation methods and the combination of optimization
and load estimation.

7-1 Optimization
Repeatedly building the structural model
During the optimization, every iteration, a new structural model is assembled. In Table 2-3 this belongs
to ‘Other calculations and evaluations’. As explained in Section 2-4-1, several element matrices stay
constant during the optimization. In this optimization they are redefined every time, while this can
be done more effectively by using constant parts of the structural matrices.

Wind loads scaling
In this research, the wind loads for the fatigue assessment are scaled as a function of the height. This
method is based on practical knowledge from engineers within SWP. As mentioned in Section 6-2, the
wind load and so the assumption concerning load scaling, is driving the design. For this reason, it is
needed to do a verification of the wind load scaling after the optimization but it would be even better
to take the wind loads into account during the optimization with more realistic wind load calculations.
In these wind load calculations, 1P and 3P frequency effects are possibly taken into account, so that
all important constraints are used in a reliable way.

Modelling of costs of a support structure
In this study, the length of the tower was a variable as well. It was assumed that a taller support
structure, gives the same Annual Energy Production (AEP) as the support structure with the minimum
length. This is not correct because a higher height of the RNA will give better wind conditions. In
this optimization, this can be implemented by giving this a negative penalty, but this can give strange
comparisons. For example, when a slightly too high fatigue damage is compensated by a higher AEP
production. When using a cost model of the support structure these considerations can be taken into
account. For example, a high fatigue damage can be translated into a decreased lifetime and a higher
AEP in increased earnings during its lifetime.
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Optimization based on estimation models
In the field of estimation methods, research is already done into the direct combination of estimators
and optimization algorithms. A requirement for this is that the design variables, which have to be
optimized, are an input of the estimation model and the output should represent directly the objective.
In this thesis, there is a complicated, non-recursive function in between the design variables and the
inputs of the approximation model. Furthermore, the output of the estimation model is not directly
the objective function, as explained in Section 4-1. Therefore theories concerning optimization based
on estimation models are not applicable. To improve the calculation time of one optimization run,
an option for further research is to explore if it is possible to estimate the objective or the penalties
directly.

Balance between PSO and GBO
Generally spoken GBO is computationally more efficient than PSO. For this reason there is a certain
balance between PSO and GBO. In this research the emphasis is on the use of PSO, in the attempt to
escape from local optima. For this reason no investigations are done to find a more efficient interaction
between PSO and GBO. To get better calculation times, this can lead to a valuable improvement.

Verification results
As explained in Section 1-2, the FLS assessment is done based on frequency domain calculations.
These frequency domain calculations are computationally less involved than time domain calculations
but less accurate and therefore used for the initial design. To validate the fatigue life of the support
structure, load calculations in time domain has to be used. This is a good way to verify the results of
the optimization as well.

Decreasing the calculation time of the design tool
a. Decrease design space During this research, the bounds of the design space were taken very
wide. For example, as mentioned in Section 2-2-4, the bounds on the tower and monopile diameter
were taken as 4 and 10 meter. This gives the algorithm the possibility to come up with ingenious
designs, but makes the optimization more difficult due to the large variability in the possible designs.
For further use as optimization tool, the bounds can be taken much narrower. This will give the
possibility to reduce the number of individuals used in PSO and will decrease the calculation time.

b. Parallel computing During this project all computations are done with MATLAB using just
a single core (2.6 GHz). The chosen optimization algorithm, PSO, shows very good capabilities for
parallel computing, because all individuals in a certain generation are independent of each other. From
time perspective, this will have a significant influence. Because the algorithm is most of the time in
the phase of evaluating the individuals, the computational time will be decreased by approximately a
half when using two cores in parallel.

Extend this optimization project to full a wind farm
Current state-of-the-art turbines have mostly a unique, optimized monopile, while the tower is in most
cases just designed for 1 till 3 design positions. With the optimization tool developed during this
thesis, possibilities arise for the unique design of more combinations of tower and monopile in a wind
farm. An advantage of using load estimations is that these are just dependent on the sea states and
not on soil conditions. Therefore it is possible to use these estimators, also the updated ones, for the
full wind farm, which is quite efficient.

7-2 Estimation methods
Relationship RBF and Kriging
When looking to the mathematical formulation of RBF and Kriging, the basis is the same. The
difference is in the relative scaling of the dimensions. This has some important consequences:
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– When comparing Kriging and RBF, it is needed to realize that Kriging should always be able
to have the same or an increased performance compared to RBF. When this is not the case,
during the construction of the Kriging-estimator, a local optimum is found.

– Choosing between RBF and Kriging can be done by comparing the performance as it is done in
this research. Another way to choose between them is by looking to the available computational
power.

– Due to the similarities, the error prediction (or likelihood of the estimated value) used in Kriging
can be used for RBF as well, as explained in Section 3-2-8.

– For Kriging, the Kriging basis-function is not necessarily giving the best results. In this research,
the Kriging basis-function was never chosen, as other basis-function gave better results.

– For future research it is good to deal with Kriging as an extended version of RBF instead of
dealing with it as an estimation method on its own. In this way, Kriging can benefit from the
developments of RBF and the other way around.

NURBS
In this research, NURBS was known as the only estimation method which was able to do multi-variate
output estimations. Nowadays, NURBS used estimation method is still under development. Practical
applications of this estimation model are lacking. This study shows some problems with the practical
implementation of NURBS which will not arise when using this method just on scientific problems.
For example, because most scientific problems are cheap to evaluate, positioning a new control point
can be done just by looking at the error when evaluating many points.

As mentioned in Section 3-2-6, the NURBS method needs a rectangular grid to construct the estima-
tor. When the known training points are not on a rectangular grid, an estimation, for example an
interpolation, needs to be done to evaluate the values at control points. This can lead to inaccurate
results. In other scientific fields, unstructured grids are becoming more common. Possibly this can be
used for the creation of NURBS models as well.

7-3 Optimization and estimation

Infeasible designs
The optimization algorithm found positions in the design space, where the estimator was not able
to do reliable estimations. Even with estimator updating this could not be solved. As mentioned, a
possible reason of this is that these positions are close to the bounds of the estimation inputs. Further
research is needed to verify this.

Optimization based on load calculations
It is possible that load estimations deceive the optimizer. For example, when the loads for a part of
the domain are underestimated due to inaccurate load estimations. This can be checked by comparing
optimization runs with and without load estimators.

Using the estimators for gradients
In this research a gradient based optimizer is used after the use of PSO. The gradients are found by
finite differences. This is done because the evaluation of the objective function is relatively cheap
because of the use of estimators. Improving the calculations of the gradients can be done by using
information which can be derived from the estimators. These can give direct derivatives of the loads
to the input parameters.
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Updating estimator
As explained in Section 4-4, the estimator is updated after the evaluation of every generation within
PSO. This is based on the assumption that the results from the estimation has to fit the results from
the calculation exactly. The computation of the DELs and extreme loads used in this research for the
initial design, have a slight deviation from the more accurate results used for the final design. Therefore,
a better criterion to update the estimator, is when the estimated value on a certain position is out
of the trust region around the calculated value. This can be based on the likelihood of the estimated
value (when using RBF or Kriging) or the error when comparing the estimated with the calculated
value.
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Appendix A

Introduction Optimization methods

Optimization is a topic with ongoing research in several fields like structural optimization, shape opti-
mization and topology optimization. Due to continuously improving computational power, optimization
gets available in more and more fields of research and industries.
This appendix is just to introduce some basic concepts of optimization that are used in this work. Be-
cause this thesis has as goal to apply optimization on wind turbines, it does not directly contribute to
the theoretical field of optimization.
The appendix starts with the general expression of an unconstrained optimization problem, followed by
algorithms that are able to find a solution for this by local or global optimization. Then constraints
are added to the unconstrained problem so that a constrained problem appears. To come up with an
unconstrained optimization problem penalty functions are introduced.

A-1 Unconstrained optimization

The most basic expression of an unconstrained minimization problem is:

General formulation of an unconstrained minimization problem

min
x

f(x) s.t. Thisandthisalso...
xmin ≤ x ≤ xmax

Generally spoken, unconstrained problems are more simple to solve then constrained optimization
problems. Several methods to come up with a solution of the problem exist. They can be split up in
Local optimization algorithms (or Gradient Based Optimizers) and Global optimization algorithms.

A-1-1 Local optimization algorithms/Gradient based optimizers

These can be further itemized in 3 categories: 0th-order methods, 1th-order methods and 2th-order
methods. The difference between the categories is how they use information about the gradient. The
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0th-order methods uses no derivatives, the 1th-order methods uses the first derivative, while the 2th-
order methods uses the first and the second derivative. In general, using a gradient simplifies the search
for an optimum, although the optimum found is not necessarily a global optimum. This is because the
algorithm starts with a limited number of designs and it does not allow an increased objective, which
clashes with the statement of Jones as given in Section 2-3-2.

0th-order methods (direct-search methods)
Cyclic coordinate search/Powell’s conjugate directions These methods uses line searches in one
direction, which changes per iteration step. In Cyclic coordinate search the direction is just formed
by a dimension defined by one design variable. For Powell’s conjugate directions, the search direction
is spanned by the previous two search directions including their optimum.

Nelder-Mead simplex method In this method steps are made to an optimum by starting with n+1
points and their objectives, in a n-dimensional design space. During every iteration, the worst point
is replaced by a reflection through the centroid of the other points.

1st-order methods (descent methods)
When the derivative on a certain point is known, it is easy to choose a direction to look into when the
goal is to decrease the objective. Methods which use this information are called 1st order methods or
descent methods.

When the objective is a result of a simulation and the derivative is not exactly known or very difficult
to calculate, a way to estimate the derivative at that position is to use the finite difference method:

∂f(x)
∂x

= lim
h→∞

f(x+ h)− f(x)
h

. (A-1)

If the design space is larger than 1-dimensional, the objective change (assuming linear behaviour) by
a step α is:

∆f
x+α ∂f(x)

∂x

= α
∑
i

∂f(x)
∂xi

. (A-2)

So when a certain change in the objective (∆fw) is wanted, this can be reached by making a step α
in the direction of the objective:

α = ∆fw∑
i
∂f(x)
∂xi

. (A-3)

When searching in one direction, one of the options to find an optimum on that line is to use Golden
ratio stepping.

Golden ratio stepping The idea of the golden ratio is thinking the other way around. Based on
a Fibonacci series, the golden section ratio φ can be calculated as φ =

√
5−1
2 ≈ 0.618. Using the

objectives at 0, φ, φ2 = 1−φ and 1, where 0 and 1 are the outer bounds, and assuming a fully convex
domain, it is easy to step in the directions of the minimum.

A-1-2 Global optimization algorithms

Some methods use the principles which can be derived from Jones statement as given in Section 2-3-2,
to find a possible global optimum:

Random methods
The first category uses random numbers in several ways:
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Full random method A full random method picks recursively a random position in the design space
and calculates the objective on this place. The design position is saved when the new objective is
smaller than the old one.

Random walk method A derivation of full random method is the random walk method. Instead of
choosing random a new position, a unit direction vector in a random direction is taken. When the
new position has a better objective than the old one, a step is made. The step size is decreased during
the ’walk’.

Simulated annealing This algorithm is inspired by the cooling down of a metal to arrive at the
arrangement of minimum internal energy. Steps are taken as in the random walk method. But instead
of neglecting all designs with a higher objective as the old one, a ’bad’ design is accepted if

raccept < P = e
f(xold)−f(xnew)

T , (A-4)

with raccept a random number chosen, f(xold) the objective at the old position, f(xnew) the objective
at the new position and T the temperature (analogy with the annealing process). T is decreased
during the optimization.

Random methods concluded Because ’bad’ designs are sometimes accepted during the optimization
and due to the random (big) stepsizes, these algorithms have possibilities to find a global optimum.
But the randomness causes these algorithms to be inefficient. This can be a problem when high
computational effort is needed to come up with the objective.

Biologically inspired methods
A biologically inspired method is based on a natural phenomena, which is translated into an algorithm.
In these group of methods, the design is judged by looking to its fitness function. This is the same
as the objective function in non-biologically inspired methods, although often the fitness should be
maximized, while, in general, an objective function is minimized. Several methods exist which basically
can be split up in 2 categories: Genetic algorithms and Swarm intelligence algorithms:

Genetic algorithms In 1859, Charles Darwin presented his most famous work: "On the origin of
species by means of natural selection, or the preservation of favoured races in the struggle for life." In
his work he describes a theory about the evolution of races and species. His theory describes the micro
and macro evolution of a population in which the most fittest individuals can stay. Translating this into
an optimization method gives the genetic algorithm. Instead of a description of the design domain in
a continuous way, the design is represented by a genetic representation with strings containing binary
or discrete numbers or genes.

During the optimization a certain population is ’simulated’ containing a certain number of individuals
nind, during a certain number of generations np. When a new generation is created some phenomena
are visible:

– Reproduction: Exact copies of the old generation go into the new generation.

– Cross-over: Two or more individuals create one or more new individuals by combining the
genes of all parents.

– Mutation: In the new generation some genes changes randomly.

The following things are needed to come up with new designs which can contain an optimum:

1. Create initial generation, by taking random strings of a certain length, dependent on the number
of design parameters.

2. Follow the population in time for a certain number of cycles np:
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(a) Create a new generation (based on fittest individuals) by:
– Reproduction,
– Cross-over,
– Mutation.

(b) Calculate the fitness for every individual.
(c) Order the individuals based on fitness.
(d) Repeat (a) till (c) until the number of generation is equal to np.

3. Translate the strings into a design.

Swarm intelligence algorithms In Dutch, a well-known saying is ’Twee weten meer dan een’, some-
times translated in ‘Two heads are better than one’. It says that the combined knowledge of two people
together, can reach further than their knowledge on its own1. The group of biologically inspired meth-
ods are based on this principle as well. Several comparable methods are developed, while each is given
its own name [38]:

– Particle swarm optimization
– Ants Colony Optimization Algorithm
– Cat swarm optimization
– Artificial Bee Colony Algorithm
– Bees algorithm
– Imperialist competitive Algorithm
– Competitive Optimization Algorithm
– Intelligent water drops Algorithm
– Gravitational search Algorithm
– Cuttlefish optimization Algorithm
– Cuckoo Search
– Bat Algorithm
– Flower pollination Algorithm
– Etcetera...

Most recent algorithms (all except Particle Swarm Optimization and Ants colony Optimization) started
to attract criticism in the research community. This is due to the fact that finding a new name for a
slightly different algorithm, does not by definition change the basic principles of the algorithm[1][41].
It is not in the scope of this research to judge about this. What they clearly have in common is
that they all use a population during a number of ’timesteps’ or generations. The difference between
these algorithms is that they all use another strategy to create a new generation. Most important
is that they create the new generation based on one or more previous generations or a part of it. It
is not possible to say on forehand which of these swarm intelligence algorithms fits the best for an
optimization problem, because this is depends on the nature of the problem and the shape of the
fitness-surface. Besides this, the strategies for the different algorithms can be adjusted easily and
extended with parts of the strategy of other algorithms. For these reasons, one of these strategies is
chosen to explain in more detail.

The particle swarm optimization is the most basic one and one of the best-developed techniques [32].
Besides this, it has many extensions and applications [32][17]. PSO is inspired by flocks of birds or
shoals of fish. During their life, they collect food to survive. The individuals with the easiest/best
access to food are most likely the most fit individuals. During a joint flight, individuals have own

1Although experts opinions does not point in one direction as the titles of these books explain: "Extraordi-
nary Popular Delusions and the Madness of Crowds." by Charles Mackay (1841) vs. "The Wisdom of Crowds"
by James Surowiecki (2004).
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knowledge, based on own history, and they have shared knowledge in the form of a group norm or
standard[16].

Every time step, the position of each individual can be updated with

xn+1,i = xn,i + vn+1,i∆t, (A-5)

with ∆t the size of the time step (which can be any factor, dependent on the chosen v) and v as the
velocity of the individual. In its most basic form:

vn+1,i = Avn,i + r1B
(xbest,global − xn,i)

∆t + r2C
(xbest,i − xn,i)

∆t . (A-6)

A, B and C are constants to give weight to the different parts, r1 and r2 are randomly chosen numbers
to reflect the arbitrary will of an individual, xbest,global is the position of the best individual since
the start of the optimization (although some researchers use the position of the best individual of the
current generation[52]) and xbest,i is the best position individual i has ever been. In Equation A-6,
vn,i can be seen as the inertia an individual has during flight. This inertia prevents the individual to
go in a straight line to the best position the swarm knows. xbest,global is the ’shared knowledge’ of the
group while xbest,i can be seen as individual knowledge. It is important to notice that this formulation
of the optimization problem has no need to scale dimensions relative to each other because of the
uncoupled ’time’-stepping.

With the constants A, B and C, the behaviour of the swarm can be changed. For example, a relatively
high value for A gives a high accent on own direction. In this way the path the individual follows is
difficult to disturb by other ’attractive’ positions.

A, B and C are chosen manually based on the knowledge of the problem. When A, B and C are
time dependent, the behaviour of the swarm can change during flight. In this way the goal of the
flying swarm can be changed. When choosing a high value for A during the start of the optimization,
a (brute force) global search is done, which becomes more intelligent when some promising positions
are located. When A is decreased when going to the end of the optimization, the optimization gets
a more local character. In this way the algorithm can be forced to converge towards the end of the
optimization. It is important to realize that the use of ∆t can be misleading when changing this
together with A, B and C. It is more easy to use ∆t = 1 during the optimization while just changing
the parameters A, B and C.

So on, by using multiple generations the best position to find ’food’, or in other words, the position
with the highest fitness can be explored.

This method can be extended easily by adding up other places that can have influence on vn+1,i such
as neighbours, best individual of a generation, fly directions, origin, etc.

As mentioned, a certain generation has a ’shared knowledge’. This is not just in the way of an objective
at the position of each particle, but also in the derivatives of the objective (in a finite difference way)
if they are close to each other.

A-2 Constrained optimization

Most optimization problems have constraints. Constraints are additional equations which should be
satisfied, which makes the optimization problem not fully free and in general more complicated. These
additional equations can be formulated as an equality constraint, marked with h(x), or an inequality
constraint, marked by g(x). Now the optimization problem can be formulated in the following way:

General formulation of a constrained problem
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min
x
f(x) s.t. Thileandthisalso...

g(x) ≤ 0
h(x) = 0
xmin ≤ x ≤ xmax

Note that the outer bounds of the design variables are not handled as constraints.

A-2-1 Penalty functions

To prevent using explicit formulated constraints in the optimization, an option is to use penalization
functions. Via this group of functions, constraints can be added to the objective which gives a pseudo-
objective:

f̂(x) = f(x) +Afpenalty(Bg(x) + Ch(x)) (A-7)

In this function g and h are generally normalized, fpenalty is a multiplier which brings the second term
to a comparable order of magnitude than the first term, B and C are mostly constant values which
give weight to the constraints in comparison with each other, while A is in general dependent on the
progress of the optimization. Now this pseudo-objective f̂(x) gives a new optimization problem which
is now an unconstrained problem:

General formulation of a constrained problem using a penalty function

min
x
f̂(x) s.t. Thileandthisalso...

xmin ≤ x ≤ xmax

It is possible to formulate these penalization in several ways. These can generally be split up in two
classes dependent on the feasibility of the design positions that are evaluated (and the feasibility of
their optimum): With an interior optimum (barrier functions/interior penalty function methods) or
with an exterior optimum (penalty function). Based on this several extended methods exists, for
example the Augmented Langrange Multiplier Method, the Variable penalty function method and
the Quadratic extended interior penalty function method. The main problem with the basic penalty
functions (interior and exterior) in combination with gradient based optimization is that they cause
numerical ill-conditioning due to definition dependent (non-)existing derivatives[52].
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Appendix B

Common terms in statistics

In this appendix, some common terms that are used in statistics are explained. This is done to give
the interested reader some insights as well as to align with literature.

Normalization of data
Input data can exist in different domains. This can result in different orders of magnitude for different
dimensions. To give the estimators better chance to make use of all dimensions in a comparable way, a
normalization function f can be used. Two common normalization functions are a projection on [0, 1]
and using mean and standard deviation:

1. Projection on [0, 1] A data set x =
[
x1 x2 ... xn

]
can be projected into another dimension

with
f(x) = x− xmin

xmax − xmin
, (B-1)

where xmin and xmax are respectively the minimum and maximum of the data.

2. Using mean µ and standard deviation σ Another option for the projection is

f(x) = x− µ
σ

, (B-2)

where µ and σ are respectively the mean and standard deviation of the data.
Note that using a normalization is not necessarily improving an estimation! If some data has a larger
influence on the output, it can be beneficially to have higher values for this data. The specific parameter
in Kriging which optimizes a parameter for every basis-function can be seen as a normalization as well
to get comparable values for all dimensions.

Maximum Likelihood Estimation
For a data set that consists n data points, if the errors ε1 till εn are randomly distributed according
to a normal distribution with the standard deviation σ, the probability is[9]:

P = 1
(2πσ2) 1

2n

n∏
i=1
{e
− 1

2

(
y(i)−ŷ(x,w)

σ

)2

ε}. (B-3)

Maximizing this or minimizing the negative of its natural logarithm for a constant σ and ε gives:

min
w

n∑
i=1

[
y(i) − ŷ(x,w)

]2
, (B-4)

which is known as the least squares criterion.
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Variance
The variance in a data set is defined as (corrected sample variance):

var(y) = nt

nt∑
i=0

x2
i −

(
nt∑
i=0

xi

)2

(B-5)

= 1
nt − 1

nt∑
i=1

(xi − µ)2 (B-6)

= 1
nt − 1

nt∑
i=1

(x2
i )− µ2. (B-7)

Standard deviation
Following from the variance, the standard deviation is defined as (corrected sample standard deviation):

σ(y) =
√
var(y). (B-8)

Covariance
The covariance between two data sets y and ŷ is defined as:

cov(y, ŷ) = nt

nt∑
i=0

y(i)ŷ(i) −
nt∑
i=0

y(i)
nt∑
i=0

ŷ(i) (B-9)

= 1
n− 1

nt∑
i=1

(y(i) − µy)(ŷ(i) − µŷ) (B-10)

= 1
n− 1

nt∑
i=1

(y(i)ŷ(i))− ntµyµŷ. (B-11)

Or, in another way:

cov(y, ŷ) = E[(x− µx)(y −muy)] (B-12)
= E[xy]− µxµy. (B-13)

Now the correlation can be derived as:

cor(y, ŷ) = cov(y, ŷ)
σxσy

. (B-14)

Correlation coefficient
A correlation coefficient is a number to show how several datasets are related to each other. It tries
to give a quantitative number to that. It can be calculated by:

r2 =
(

cov(y, ŷ)√
var(y)var(ŷ)

)2

. (B-15)

Root Mean Square Error(RMSQ)
The Root Mean Square Error is defined as:

RMSE =

√∑nt
i=0(y(i) − ŷ(i))2

nt
. (B-16)
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Cross-validation
Splitting the data in q roughly equal subsets, then removing each of these subsets in turn and fitting
the model to the remaining, aggregated, q − 1 subsets. More formally, if a mapping 1, ..., n → 1, ..., q
describes the allocation of the n training points to one of the q subsets and ŷ−ζ(i)(x) is the value
(at x) of the predictor obtained by removing the subset ζ(i), the cross-validation measure, which is
employed here as an estimate of the prediction error is

ε = 1
n

n∑
i=1

L
(
y(i), ŷ−ζ(i)(x(i),w)

)
. (B-17)

When the loss function L(a, b) is defined as the squared error, this becomes:

εcv(w) = 1
n

n∑
i=1

[
y(i) − ŷ−ζ(i)

(
x(i),w

)]2
. (B-18)
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Non-uniform Regression B-splines
algorithm
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96 Non-uniform Regression B-splines algorithm

Figure C-1: The basic fitting algorithm used in HyPerMaps to define a HyPerModel iteratively
adds control points to the control net to reduce the maximum error in the metamodel. The model
is refined until a stopping criterion is achieved[47].
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Appendix D

Damage Equivalent Load (DEL)

The following information has to be known to come up with the damage equivalent load of the support
structure as result of several environmental conditions[35][55]:

– Frequency response structure

� Modal analysis
� Modal damping ratios
� Mechanical transferfunctions (mode dependent)
� Hydrodynamic transferfunction

– Loads in frequency domain

This frequency domain information can be combined to get the response spectrum of the structure
dependent on the load spectrum. To derive fatigue damage from this, Dirliks method can be used.
Next, a brief overview of this method is given[5]:

Application of Dirliks method
Dirliks method is comparable with rainflow counting in time-domain. It combines fatigue damage at
different load levels and with a different number of cycles. This method is needed because the loads in
frequency domain Sl,k dependent of the frequency f show a broad-band spectrum. The steps needed
are:

1. Calculate spectral moments:

mn =
∫ ∞

0
fnSl,k(f)df ≈

nf∑
j=1

∆fjf
n
j Sl,k(fj), (D-1)

∆fj = fj,2 − fj,1, (D-2)

fj = fj,2 + fj,1
2 . (D-3)

with nf as the number of frequency bins, f the frequency ans Sl,k the power spectral density.
The number of frequency bins is strongly correlated to the total calculation time from this
method.
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2. Calculate irregularity factor:

γ = m2√
m0m4

. (D-4)

3. Calculate Dirliks constants:

α = m1

m0

√
m2

m4
, (D-5)

D1 = 2(α− γ2)
1 + γ2 , (D-6)

R = γ − α−D2
1

1− γ −D1 +D2
1
, (D-7)

D2 = 1− γ −D1 +D2
1

1−R , (D-8)

D3 = 1−D1 −D2, (D-9)

Q = 1.25(γ −D3 −D2R)
D1

. (D-10)

4. Calculate Probability Density Function (PDF) (core Dirliks method):

p(L) = 1
2√m0

[A1 +A2 +A3] , (D-11)

A1 = D1

Q
e

−Z
Q , (D-12)

A2 = D2Z

R2 e−
Z2

2R2 , (D-13)

A3 = D3Ze
−Z2

2 , (D-14)

Z = L

2√m0
. (D-15)

L is the magnitude of a load level belonging to a certain load bin.

5. Calculate DEL:

(a) Calculate expected number of cycles

E[n] = T

√
m4

m2
. (D-16)

T is the expected (design) lifetime from the structure.
(b) Calculate damage D

∆Lk = Lk,2 − Lk,1, (D-17)

D = E[n]
nl∑
k=1

p(Lk)∆LkLmk . (D-18)

(D-19)

nl is the number of bins for the load levels.
(c) Calculate DEL

DEL =
(
D

nr

) 1
m

. (D-20)
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nr is an on forehand defined number of cycles which is equal for all sea states and m is the slope
in the SN-curve (Figure 2-6).

6. Combine DEL of all sea states:

DELtotal =
∑

all Hs,Tp-combinations
DEL. (D-21)
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Appendix E

DEL derivatives

The final goal is to calculate:

∂DELtotal

∂x
=

∑
all Hs,Tp-combinations

∂DELh
∂x

=
∑

h:all Hs,Tp-combinations

∂d

∂x
, (E-1)

∂d

∂x
= ∂DEL

∂x
= ∂DELk

∂xl
= ∂dk
∂xl

, (E-2)

with d ≡ DEL as the vector with DELs as result of all sea states so that dk is the kth entry in that
vector. x is a vector with all design parameters as be described in Section 2-2-4. In this Appendix,
the same symbols are used as in Appendix D.

Derivative Dirliks method

Now the derivative to Dirliks method is given. Because the purpose is just to show the mathematical
derivation, no explanation to the equations is given.

dk =
(
E[nk]E[Lk]m

nr

) 1
m

=
(

1
nr

) 1
m

E[nk]
1
mE[Lk], (E-3)

∂dk
∂xl

=
(

1
nr

) 1
m
(

1
m
E[Lk]E[nk]−

m−1
m

∂E[nk]
∂xl

+ E[nk]
1
m
∂E[Lk]
∂xl

)
, (E-4)

∂E[nk]
∂xl

= T

2√m2m4

(
∂m4

∂xl
− m4

m2

∂m2

∂xl

)
(E-5)

∂E[Lk]
∂xl

≈ 1
m

[
nl∑
k=1

∆Lkp(Lk)Lmk

]−m−1
m
(

nl∑
k=1

∆Lk

∂p(Lk)
∂xl

Lmk

)
, (E-6)

∂mn

∂xl
≈

nf∑
j=1

∆fjfj,m
∂Sl,k(fj,m)

∂xl
. (E-7)
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The derivatives to the probability density function is:

∂p(Lk)
∂xl

= − 1
4m0
√
m0

∂m0

∂xl
[A1 +A2 +A3] + 1

2√m0

[
∂A1

∂xl
+ ∂A2

∂xl
+ ∂A3

∂xl

]
, (E-8)

∂A1

∂xm
= 1
Q

(
∂D1

∂xm
− D1

Q

∂Q

∂xm
+ D1Z

Q

(
1
Q

∂Z

∂xm
− Z

Q2
∂Q

∂xm

))
e

−Z
Q , (E-9)

∂A2

∂xm
= 1
R2

(
Z
∂D2

∂xm
− 2D2Z

R

∂R

∂xm
+D2

∂Z

∂xm
+ D2Z

3

2R2

(
Z

R2
∂Z

∂xm
+ Z2

R3
∂R

∂xm

))
e

−Z2

2R2 , (E-10)

∂A3

∂xm
=
(
Z
∂D3

∂xm
+D3

(
1 + Z4

2

)
∂Z

∂xm

)
e−

Z2
2 , (E-11)

∂Z

∂xm
= L

2m0
√
m0

∂m0

∂xm
. (E-12)

The derivatives to the irregularity factor and the Dirliks constants are:

∂α

∂xm
= − m1

m02

√
m2

m4

∂m0

∂xm
+ 1
m0

√
m2

m4

∂m1

∂xm
+ 1

2
m1

m0

√
1

m2m4

∂m2

∂xm
− 1

2
m1

m0m4

√
m2

m4

∂m4

∂xm
, (E-13)

∂γ

∂xm
= 1
√
m0m4

∂m2

∂xm
− 1

2
m2

m0
√
m0m4

∂m0

∂xm
− 1

2
m2

m4
√
m0m4

∂m4

∂xm
, (E-14)

∂D1

∂xm
= 2

(
∂α

∂xm
− 2γ ∂γ

∂xm

)
1

1 + γ2 −
(

2γ ∂γ

∂xm

)
2(α− γ2)
(1 + γ2)2 , (E-15)

∂D2

∂xm
=
(
− ∂γ

∂xm
− ∂D1

∂xm
+ 2D1

∂D1

∂xm

)
1

1−R +
(
∂R

∂xm

)
1− γ −D1 +D2

1

(1−R)2 , (E-16)

∂D3

∂xm
= −∂D1

∂xm
− ∂D2

∂xm
, (E-17)

∂Q

∂xm
= 1.25

(
∂γ

∂xm
− ∂D3

∂xm
−D2

∂R

∂xm
−R∂D2

∂xm

)
1
D1
−
(
∂D1

∂xm

)
1.25 (γ −D3 −D2R)

D2
1

, (E-18)

∂R

∂xm
=
(
∂γ

∂xm
− ∂α

∂xm
− 2D1

∂D1

∂xm

)
1

1− γ −D1 +D2
1

+
(
∂γ

∂xm
+ ∂D1

∂xm
− 2D1

∂D1

∂xm

)
γ − α−D2

1

(1− γ −D1 +D2
1)2 . (E-19)

Derivative of the Power spectrum Sss
k

If l indicates the DOF for which the PSD is written and ss indicates a certain combination of Hs and
Tp:

Sssk (ω) =
n∑
l=1

∣∣∣Hf→f
k,l

∣∣∣2 Sssl (ω). (E-20)

Next step is to calculate ∂S
∂xm

:

∂Sssk
∂xm

=
n∑
l=1

∣∣∣Hf→f
k,l

∣∣∣2 ∂Sssl (ω)
∂xm

+ 2Sssl (ω)
∣∣∣Hf→f

k,l

∣∣∣ ∂
∣∣∣Hf→f

k,l

∣∣∣
∂xm

. (E-21)
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Note that the first term within the sum,
∣∣∣Hf→f

k,l

∣∣∣2 ∂Sssl (ω)
∂xm

is not equal to zero just for the dimensions
xm in the design space which influences the diameters below SWL. So for all other dimensions:

∂Sssk
∂xm

=
n∑
l=1

2Sssl (ω)
∣∣∣Hf→f

k,l

∣∣∣ ∂
∣∣∣Hf→f

k,l

∣∣∣
∂xm

. (E-22)

In this equations, Hk,l are the structural transfer functions and Sl the power spectra of node l.

The derivatives of the structural properties to the design variables can be found in literature, for
example in [33].
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Summary: Equations to come up with derivative to DEL
Derivative to DEL

∂dk
∂xl

=
(

1
nr

) 1
m
(

1
m
E[Lk]E[nk]−

m−1
m

∂E[nk]
∂xl

+ E[nk]
1
m
∂E[Lk]
∂xl

)
(E-23)

Derivatives to expected load and number of cycles

∂E[nk]
∂xl

= T

2√m2m4

(
∂m4

∂xl
− m4

m2

∂m2

∂xl

)
(E-24)

∂E[Lk]
∂xl

≈ 1
m

[nbins,L∑
k=1

∆Lkp(Lk)Lmk

]−m−1
m
(nbins,L∑

k=1
∆Lk

∂p(Lk)
∂xl

Lmk

)
(E-25)

Derivative to load probability density function
∂p(Lk)
∂xl

= − 1
4m0
√
m0

[A1 +A2 +A3] + 1
2√m0

[
∂A1

∂xl
+ ∂A2

∂xl
+ ∂A3

∂xl

]
(E-26)

with ∂A1a
∂xm

as described in ?? till E-19.

Derivative to spectral moment
∂mn

∂xl
≈
nbins,f∑
j=1

∆fjfj,m
∂Sl,k(fj,m)

∂xl
(E-27)

Derivative to power spectrum

∂Sssk
∂xm

=
n∑
l=1

∣∣∣Hf→f
k,l

∣∣∣2 ∂Sssl (ω)
∂xm

+ 2Sssl (ω)
∣∣∣Hf→f

k,l

∣∣∣ ∂
∣∣∣Hf→f

k,l

∣∣∣
∂xm

(E-28)

Derivative to transfer function
∂
∣∣Hf→f

∣∣
∂xm

=
(
∂K

∂xm
Φ |A|+ 2K ∂Φ

∂xm
|A|+KΦ∂ |A|

∂xm

)
ΦT (E-29)

Derivative to damping factor

∂ |A|
∂xm

≡ ∂ |Aii|
∂xm

= 4λi
µiω2

λ2
i
∂λi
∂xm

+ (1 + 2ζi) ∂λi∂xm

(λ4
i + 2(1 + 2ζi)λ2

i + 1)
√
λ4
i + 2(1 + 2ζi)λ2

i + 1
(E-30)

∂λi
∂xm

= 1
ω

∂ωi
∂xm

(E-31)

Derivative to eigenfrequency
∂ω2

i

∂xm
=
xTi

(
∂K
∂xm
− ω2

i
∂M
∂xm

)
xi

µi
(E-32)

Derivative to eigenmodes
x̃i = (K − ω2

iM)+
(
− ∂K
∂xm

+ ω2
i

∂M

∂xm
+ ∂ω2

i

∂p
M

)
xi (E-33)

∂xi
∂xm

= x̃i −
xi
µi

(
1
2x

T
i

∂M

∂xm
xi + xTi Mx̃i

)
(E-34)
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