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Marian A. Trützschler von Falkenstein

Supervisor(s): Marcel J. T. Reinders, Niek Brouwer

1EEMCS, Intelligent Systems, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Marian A. Trützschler von Falkenstein
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An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Geneformer is a transformer which is pretrained
on Geneformer-30M, a dataset consisting of 29.9
million healthy cells. This paper focuses on how
Geneformer shifts its attention, when fine-tuned on
a dataset of cancer cells, whose gene expression is
expected to be distinct, and which genes are key
when making cell-state predictions within such an
environment. In this paper we compare the shift in
attention, and which genes receive the most atten-
tion, in a weight-based analysis.
The observed shift in attention was significant,
however the accuracy of the prediction increased
minimally. The attention weights were mapped
back to individual genes, which showed that while
Geneformer shifts its attention towards key genes,
largely it is still subject of a batch-effect, namely
the amount of expressed genes. Further research
into designing a data representation of consistent
size might be beneficial.

1 Introduction
Cancer was cause of nearly one out of six deaths globally
in the year 2020 [1]. According to the World Health Or-
ganisation, effective treatment of cancer starts with early
detection. Machine learning models could help to identify
potential therapeutic targets with increased throughput [2].
However, machine learning models are faced with the need
for diverse datasets for training. In this context, transfer
learning emerges as a powerful approach in computational
intelligence [3], an example is the so-called Geneformer
model [4].

Geneformer is pretrained on a large dataset of general
data, Genecorpus-30M, which is comprised of single-cell
transcriptomic data of 29.9 million cells across diverse cell
lines. During pretraining, the model acquires foundational
knowledge of gene network biology. While the knowledge
gathered during pretraining is retained, the model can then
be fine tuned for downstream tasks, using a narrow amount
of task-specific data.

The combined knowledge gained during pretraining and
fine-tuning allows the model to make cell-state predictions.
Since the model has learned which genes are correlated,
and possibly causally related during pretraining, the model
can potentially be used to study the effect on cell-state of a
perturbation, the alteration of a gene’s activity.

Within the model, the transciptome of a single cell is
encoded as a rank-value encoding, wherein genes are ranked
by their expressing within that cell, normalised by their
expression over the entire corpus. This encoding therefore
gives priority to genes that distinguish cell state, as om-
nipresent housekeeping genes are deprioritised.

The model is trained using a self-supervised learning

method wherein 15% of genes within a transcriptome are
masked and the model is tuned towards predicting a masked
gene in the specific cell state by using the other unmasked
genes as the context. The aim of this approach is to make
the model context-aware. In other words, the model learns
the interaction between genes. Genes of a single-cell
transcriptome are encoded as rank values. These encodings
then pass through six layers of transformer encoder units,
which then outputs the contextual gene embeddings, or a
prediction. The attention weights that the model uses to
make a prediction can also be inspected. The transformer
encoder unit consists of a self-attention layer, normalization
layers and a feed-forward neural network. See figure 2 and
section 3.1 for an overview of the architecture of the model.
A more in depth description of the architecture can be found
in section 3.1.

Since Geneformer is pretrained only with transcriptomic
data of healthy cells, it is reasonable to question whether
it is possible for the model to learn how to interpret the
embeddings of cancer cells, since the transcription factors
of such a cell may be vastly different. To address this, the
model was trained on data of the Sciplex-2 dataset. which
contains transciptomic data of cancer cells which have been
subjected to various drugs. The question has been formalised
by the aim of this research: ’How does Geneformer shift
its attention when fine-tuned on a dataset of cancer cells
and which genes are key when making cell-state predictions?’

Interpretation of the attention weights of the model re-
mains largely unexplored in the Geneformer paper [4]. Here,
we analysed the attention weights of the Geneformer model
to uncover which part of the input data is considered the
most important by the model when predicting cell states of
drug-treated cancer cells. Analysis of these attention weights
gives an insight on how the model adapts dynamically to
distinct inputs [5] [6] [7]. Furthermore an analysis of the
parts of the input data that is thoroughly attended by the
model could reveal key genes, which could help identify
target genes for perturbations. Additionally the analysis
could provide further evidence for the context-awareness of
the model, for example if the most attended genes correspond
to biological pathways of genes affected by the drug or the
disease. This evidence could be used as a foundation for
further research into the application of transformer-based
models in the field of cancer research.

2 Methodology
2.1 The sciplex-2 dataset
The sciplex-2 dataset [8] was used to finetune the model.
Sciplex-2 contains single-cell transcriptomic data of cancer
cells that have been subjected to the drugs Nutlin-3a, Dexam-
ethasone, SAHA, and BMS. The drugs have been applied in
the following dosages in µM [0; 0.25, 1.25, 2.5, 12.5, 25,
125, 250]. Since the dataset contains only diseased cells,
this data is dissimilar to Genecorpus-30M, which contains
only healthy cells, and can therefore be considered suitable
to asses how Geneformer adapts to thus far unseen data.



2.2 Preprocessing
Only cells subjected to the Nutlin-3a drug were used for train-
ing the model. The training objective was to identify the
dosage each individual cell was subjected to. Cells with a
dosage larger than, or equal to 50 µM were excluded from the
training and test set, since their presence within the dataset
was disproportionate to the rest of the classes. Additionally
dosage 0.25 µM was excluded from the training and test data,
since such a small dosage has very little effect. A UMAP of
the data into two-dimensional space is depicted in figure 1

Figure 1: UMAP into two-dimensional space of the data after pre-
possessing. On the left, the dosages have been labeled, while on the
right the dosages are clustered as follows: low dosage, [0 - 2,5] µM,
and high dosage [12,5 - 25] µM

.

2.3 Fine tuning geneformer for cell classification
The Geneformer model was fine-tuned to predict the dosage
of the Nutlin-3a drug to which the cell was subjected. Ap-
plication of the Wilcoxon test for differential gene expression
[9] showed which genes were most deferentially expressed
within cells of each distinct dosage. The fine-tuning strat-
egy allows us to assess whether Geneformer pays attention
to the same genes. Additionally the test showed that the data
mainly clustered in two groups: low dosage, [0 - 2,5] µM, and
high dosage [12,5 - 25] µM. The model was also fine-tuned
to distinguish between the two groups. For each of the sce-
narios, the model was trained once with the pretrained layers
frozen, which means that the weights within these layers do
not change. This setup allows us to asses which genes are
regarded as important based on Genecorpus-30M. Then, the
model was trained once with all layers unfrozen to observe
how Geneformer shifts its attention to adapt to thus far un-
seen input types in order to boost accuracy.

2.4 Interpreting the attention weights
The pretrained Geneformer model consists of 6 transformer
encoder layers, each with four attention heads. The attention
weights of each individual head were extracted and analysed
for both of the training settings. The shift in attention was
analysed by weight-based analysis, wherein was inspected
which part of the encoding received the most attention. The
significance of these changes were quantified by norm-based
analysis. These two methods were described in detail in sec-
tions 3.3 and 3.4, respectively. This method revealed which
parts of the input the model considers of importance across
different training schemes.

3 Background
3.1 The underlying architecture of the

Geneformer model
Single-cell transcriptomic is transformed into a rank-value
encoding of size 2048 wherein genes are ranked based
on their expression within a cell, divided by the median
expression within Genecorpus-30M. Each gene is embedded
as vector of size 256, which captures the context of the
surrounding genes. Initially, in the input data, the gene
expression is a sparce matrix containing 10,000 values,
however the largest count of genes expressed within the
dataset was only 1430. This means that a large portion of the
encoding is made up of padding.

The encoding passes through six layers of transformer
encoder units of the underlying model BERT [10]. The
encoder is depicted in detail in figure 2. Such an encoder
starts with a self-attention layer consisting of four attention-
heads which apply self-attention to the data in parallel.
The input embedding is then added to the output of the
self-attention layer via residual connection, and normalised.
The normalised output passes through a fully-connected feed
forward neural network (FFN), which connects the output
of the separate attention heads and adds non-linearity by
applying the GELU [11] activation function. Finally, the
input of the FFN is added to the output of the FFN, via a
second residual connection, and normalised. The output of
this last step is the hidden state, the input for the transformer
encoder unit of the next layer.

Figure 2: A detailed overview of the transformer encoder unit. A
single-cell transciptome is encoded as a rank-value. The transformer
encoder applies the attention mechanism and normalises the output
before passing it through a fully-connected feed-forward neural net-
work and normalising again. The encoder outputs a hidden state.

.

3.2 The attention mechanism
The self-attention mechanism is core to the transformer ar-
chitecture and thus Geneformer [4]. Through this mechanism
the model learns to attend to relevant information from the
input [5], in this case the rank value encoding. With the at-
tention mechanism, the input vector is transformed according
to the following formula, as proposed by [5]:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (1)



,
wherein Q, K, and V represent the Query, Key and Value
matrix, and dk the dimension of Q and K.

Since Geneformer makes use of self-attention, Q and
K represent a mapping of the input vector into query and key
space. In particular Q and K are a result of

Q := xWQ + bQ (2)

K := xWK + bK (3)
wherein x represents the input vector, W and b the weight
and bias term of the key, and query matrix. Through the
attention mechanism, Geneformer analyses the correlation
between the Q and K matrices, and thus aims to capture the
correlation between the genes in the input.

The V matrix represent the re-projection into the origi-
nal space, and is a result of

V := xWV + bV (4)
The attention weights are updated using gradient descent.
During fine-tuning the model uses cross-entropy loss.

3.3 Weight-based analysis
We extracted the attention weights directly from the underly-
ing model BERT. Specifically this means A (from equation
1) is extracted and analysed. This analysis shows how the at-
tention shifts in the trained genes and which genes receive the
most attention.

3.4 Analysis using vector norms
While a weight-based analysis of the attention weights can
reveal which parts of the input the model are most heavily at-
tended by the model when making a prediction [7]. However,
Kobayashi et al. [6] showed that a weight-based approach
does not account for the scale difference between individual
vectors. A larger attention-output will have a larger effect on
the prediction outcome, therefore the observed changes were
quantified by analysis of ||xA||.

4 Experimental Setup and Analysis
4.1 Training and validation
The model was trained twice on the sciplex-2 dataset which
was preprocessed as described in section 2.2. Both times the
model was trained for 5 epochs, validated with one fold, and
evaluated with an independent test set. First, the model was
trained once using linear probing, meaning that all 6 layers
of the pretrained Geneformer model were frozen and their
weights were not updated. Then the model was trained once
without freezing any layers. This approach aimed to compare
attention weights of an untrained layer to a trained model,
while also a measure of the accuracy of each model could be
provided.

The training objective was to classify the dosage of the
drug. The confusion matrices of the respective trained and

untrained model are shown in figure 3. Comparing the
predictions of the model trained by linear probing against the
model in which the layers were also trained. The linearly-
probed model was already able to distinguish between high
[12.5, 25] and low [0, 1.25, 2.5] dosage of the drug, as most
of the confusion is within these groups. After the layers were
trained the model does not improve upon this. The accuracy
of both models is 0.5..

However, when the models were fine-tuned to predict
the relative dosage, high or low, both models performed with
increased accuracy. Without training the layers, Geneformer
reached an accuracy of 0.85, while training the layers
resulted in an accuracy of 0.91.

Figure 3: A comparison of the confusion matrix of the fully trained
model (left) against the model trained with linear probing (right).
Both models were trained and tested on the same respective train
and test sets. Both models reached an accuracy of 0.5 only.

4.2 Attention weight comparison

The attention weights were extracted directly from the under-
lying BERT model [12] for comparison. We computed cosine
similarity between the attention weights of each head of each
layer, a visualisation is available in figure 4. This compari-
son showed that the largest differences between the attention
weights are within the middle, and the last layer, presum-
ably because the changes of the preceding layers propagate
towards the subsequent layers. To verify this last assumption
the model was fine-tuned once more with the first five layers
frozen, meaning only the last layer was trained. When com-
paring the last layer of this model to the frozen layers, only a
very small change was observed.



Figure 4: Heatmap showing the cosine similarity between the frozen
layers against the fine-tuned layers, and below between the last layer
of the model with the first five layers frozen between the correspond-
ing frozen layer.

.

4.3 Norm-based analysis
To quantify the significance of the changes, ||

∑
xA|| of each

layer was compared. This analysis showed that the changes in
the first layer had a smaller impact to the prediction outcome
compared to the subsequent layers. As the embeddings move
through the layers of the model, they take in more meaning
from the context and have become more distinct. In par-
ticular, ||A|| within layer 1 is the largest, which causes the
changes in the subsequent layers to be more significant.

.

4.4 Overall weight-change comparison
To uncover in which area of the encoding the largest changes
occur, for each model, the attentions matrices of all heads
were summed together, then the column-wise sum of the
resulting matrix was calculated, which produced a one
dimensional array, containing the total attention each rank of
the encoding received.

Figure 6 shows the percentage difference between the
frozen layers and the trained layers. The largest changes in
attention occur within the rank 210. Genes ranked below the
median lowest ranked gene of a single cell in the dataset,
received less attention on average. However noticeable is
a small peak in increased attention just below the median.
Possibly the model is observing the length of the genome.

.

4.5 Evaluation of key genes
In order to evaluate which genes are key, the attentions were
mapped back to the corresponding gene within one rank of
a single transcriptome. This method shows the attention the

Figure 5: Overall percentage difference in attention over all heads
and layers between the frozen and trained layers. The largest
changes occur within rank 200. The median amount of expressed
genes of a single cell within the dataset was 683, ranks after this on
average receive less attention after fine-tuning the layer, except in
the ranks just below the median.

Figure 6: Overall percentage difference in attention over all heads
and layers between the frozen and trained layers. The largest
changes occur around within rank 210. The median amount of ex-
pressed genes of a single cell within the dataset was 683, ranks after
this on average receive less attention after fine-tuning the layer, ex-
cept in the ranks just below the median.



Figure 7: Most differentially expressed genes by result of the
wilcoxon test compared to the most attended genes by Geneformer.
MDM2 received the sixth most attention out of all genes.

model spends in total on a single gene. The result can be
found in table 8 in the appendix A. Curiously, the model pays
a large part of it’s attention towards various mitochondrial
genes, which are not directly affected by the p53 pathway
which the Nutlin-3a drug is targeting, nor its downstream ef-
fect [13] [14].

At first glance, Geneformer pays significant attention to
housekeeping genes. These genes often occupy the lowest
ranks within the encoding. Possibly Geneformer is assessing
the amount of genes expressed, just as shown in figure 6.
It is also possible that Geneformer pays a lot of attention
towards these genes as there is serious variance within the
gene embedding in this area.

In figure 7 the genes which receive the most attention
by Geneformer have been compared to the top 5 genes of
the differential gene as found by the Wilcoxon signed-rank
test. This analysis shows that the most attended genes do not
show differential gene expression across the groups.

5 Discussion
5.1 Interpretation of the results
Analysis of the attention weights showed that when fine-
tuning the layers caused a shift in attention, with the most
significant changes being in layer 2. The largest shift atten-
tion was measured around rank 210, which corresponds to the
average rank of the MDM2 gene, the target of the Nutlin-3a
drug [13], within the encoding. This shows an aptitude of
Geneformer to identify the most important gene within the
encoding. However, a significant change was also observed
towards the median end of the non-padding sequence of the
encoding, which could indicate that Geneformer, is looking
at the amount of expressed genes as well. This could also
indicate a batch-effect, contrary to what is proposed by [4].

Possibly another way of encoding the expressed genes
which ensures a consistent length of the non-padding
sequence, would help Geneformer focus on more rele-
vant genes, which could boost accuracy in perturbation

experiments. For example, PCA could be used to map
the expression into consistent feature space such that the
input length of each encoding stays the same. Geneformer
was able to identify genes which are key for predictions,
however there may still be some improvement to be made:
Geneformer was unable to outperform the statistical test in
terms of finding genes which were differentially expressed.

5.2 Limitations
Inspection into the attention weights of the model revealed
which part of the input vector the model attends to when
making predictions. However Jain and Wallace [15] showed
that the relationship between the attention weights and the
model output is unclear for NLP models. In their study they
also found that attention does not necessarily correlate to fea-
ture importance, another measure such as attribution score, as
proposed by [16] is an alternative. This score indicates how
much a given input feature contributes to the output.

6 Responsible Research
6.1 Data Usage
Such that no persons privacy may come to harm, only pub-
licly accessible data has been used for the purpose of this re-
search. The data was extracted from the Sciplex-2 dataset
which is publicly available online [8].

6.2 Bias
In this research we aim to assess how the Geneformer model
adapts dynamically to new inputs by shifting it’s attention to
the important aspects of the input. The model has been fed
with real-world data and thus simulates a life setting, but a
very small dataset, which contained only a single cell-line.
However, when implementing the model in practice it is im-
portant to understand when and why the model is failing and
adjust accordingly, especially within limited-data conditions,
as algorithmic bias is a result of non-diversity within the train-
ing data [17]. In order to combat this bias, characteristics that
are legally or ethically protected, such as ethnicity, sex and
age, can be safeguarded using auditing algorithms or fairness
constraints [18].

6.3 Reproducibility and Open Science Principles
A detailed description of the methodology is available in sec-
tion 2, while the experimental setup is presented in section 4.
Data input and code is available, see apppendix C. This paper,
which contains detailed information on the research has been
made publicly available.

7 Conclusions and Future Work
Weight-based analysis showed that Geneformer is able to
adapt to thus far unseen input through fine-tuning and shift
its attention to potentially relevant genes. This was done by
training the model on the sciplex-2 dataset which contained
cancer cells subjected to various drugs. Norm-based analysis
showed that although the changes were significant, the
accuracy of the fine-tuned model remained largely the same.



After the attentions were ampeed back to the input
genes, observable was a noticeable portion of the attention
which went to genes that might not be significant for the
prediction outcome. This could be destructive for pertubation
experiments, as the model does not focus largely on the
differentially expressed genes across the classes. This
neglect of differentially expressed genes could be attributed
to the amount of genes expressed of the input single-cell
transciptomic data, or the input size. Future work should fo-
cus on researching methods which combat variance in input
size in a smart way. Possible option include subsampling the
genes or applying PCA.
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A Tables

Figure 8: Genes ranked by the amount of attention received, min-
max scaled. The genes are sorted by the total amount of attention
received. Genes that were included by Fischer in the census p53
target genes [14], were marked in green.

B Figures

Figure 9: Heatmap plot of the min-max scaled attention norm, by
far the second layer attention weights heave the largest norm.

C Code and Data Availability
Code and input data is availible. Please check out the Github
repository.
The link to the repository will become available as the paper
is uploaded to the Github repo.
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