
Master’s Thesis
Multi-camera video surveillance system

Maarten Somhorst

January 20, 2012

Man-Machine Interaction Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Multi-camera video surveillance system

by Maarten Somhorst

Abstract

Since the stone age the human race seeks for strategies to extend its viewing range. With
the rise of technology in the twentieth century, cameras are found to be a very useful tool to
survey a large area with limited resources. With an increasing numbers of cameras, it becomes
more di�cult to watch every monitor and prevent incidents in the surveillance area. For the last
decades, research seeks for possibilities to automatize the process of video surveillance.

For this thesis, we approach the surveillance task from the human perspective: we try to
emulate what human operators do when they watch the monitors. To perform this task, state-of-
the-art techniques from Computer Vision and Artificial Intelligence are applied. An object tracking
technique called P-N Learning is used that enables the tracker to learn from its mistakes. The
Java Agent Development Framework (JADE) is used to enable communication between agents in
the FIPA Agent Communication Language standard.

A surveillance system model is designed that detects suspicious behavior in a non-public area.
Its task is to alert the operators about suspicious events to give them the chance to investigate
and take action. Two prototype applications are implemented and experiments are conducted to
show the performance.

We showed the proof-of-concept of a system which is able to emulate operators and can
potentially outperform a human being. Once the system knows what is considered suspicious
behavior it can be automatically detected.

Master’s thesis
Name: Maarten Somhorst
Study number: 1263196
Programme: Media and Knowledge Engineering
Graduation date: January 20, 2012

Committee members
Prof. Drs. Dr. L.J.M. Rothkrantz
Dr. ir. P. Wiggers
Ir H.J.A.M. Geers
Ir. I. Lefter

Man-Machine Interaction Group
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

Preface

This thesis is the result of my graduate project that finalizes the master programme Media and
Knowledge Engineering. The project is titled Multi-camera video surveillance system and is per-
formed on the University of Technology Delft, The Netherlands. The enthusiasm of Prof. L.
Rothkrantz about video surveillance quickly infected me. Especially the reasoning and multi-
agent aspects of the idea sounded interesting to me.

I would like to thank prof. L. Rothkrantz and ir. I. Lefter for their help during this graduation
project. They have o↵ered me a lot of time, experience, knowledge and creativity, which helped
me through the project. Furthermore, I would like to thank my wife for her support and kind
assistance.

Delft, January 14, 2012
Maarten Somhorst

5

Contents

Preface . 5

1. Introduction . 11

1.1 Problem Description: Surveillance . 11
1.2 Problem Description: Human Observers . 11
1.3 Taken Approach . 12
1.4 Relevance . 13
1.5 Methodology . 13
1.6 Outline . 14

2. Related Work . 15

2.1 Smart Video Surveillance: Exploring the concept of multiscale spatiotemporal
tracking - Hampapur et al (2005) . 15

2.2 A multimodal car driver surveillance system in a military area - Lefter et al (2010) 16
2.3 TRECVID 2009 - Goals, Tasks, Data, Evaluation Mechanisms and Metrics - Over

et al (2009) . 16
2.4 Toshiba at TRECVID 2009: Surveillance Event Detection Task - Yokoi et al (2009) 17
2.5 Shanghai Jiao Tong University participation in high-level feature extraction and

surveillance event detection at TRECVID 2009 - X. Yang (2009) 17
2.6 A Survey on Visual Surveillance of Object Motion and Behaviors - Hu et al (2004) 18

2.6.1 Motion detection . 18
2.6.2 Object tracking . 19
2.6.3 Understanding and description of behaviors 19
2.6.4 Personal identification for visual surveillance 20
2.6.5 Fusion of data from multiple cameras 20

2.7 Survey on Contemporary Remote Surveillance Systems for Public Safety - T. Räty
(2010) . 20
2.7.1 First-generation surveillance systems . 21
2.7.2 Second-generation surveillance systems 21
2.7.3 Third-generation surveillance systems 21
2.7.4 Discussion on current dilemmas in the 3GSSs 23

2.8 Real-time Crowd Motion Analysis - N. Ihaddadene (2008) 25
2.9 Tracking many objects with many sensors - H. Pasula, S. Russell, M. Ostland and

Y. Ritov (1999) . 26
2.10 Conclusion . 26

3. Requirements . 29

3.1 Main Properties of the Model . 29
3.2 Area Assumptions . 30
3.3 Regions of Interest . 31
3.4 Applicability . 34

7

8 Contents

4. Design: Surveillance System Model . 35

4.1 Software architecture . 35

4.1.1 Software Architecture 1 . 35

4.1.2 Software Architecture 2 . 36

4.1.3 Final Software Architecture . 37

4.2 Physical Feasibility . 39

4.2.1 Requirements . 39

4.2.2 Central Processing . 40

4.2.3 Distributed Processing . 41

4.2.4 Discussion . 42

4.2.5 Other options . 43

5. Resources . 45

5.1 Object Tracking . 45

5.1.1 Introduction . 45

5.1.2 P-N Learning . 45

5.1.3 Predator . 46

5.2 Object Classification . 47

5.2.1 Introduction . 47

5.2.2 VLfeat . 47

5.3 Reasoning . 49

5.3.1 Expert Systems . 49

5.3.2 Bayesian Networks . 50

5.3.3 Noisy-OR . 51

5.3.4 Dynamic Bayesian Networks . 51

5.3.5 Bayes Net Toolbox . 52

5.4 Agents . 52

5.4.1 What is an Agent? . 52

5.4.2 Agent Communication Framework . 52

5.5 Simulation . 54

5.5.1 Introduction . 54

5.5.2 NetLogo . 55

5.6 Data . 56

5.6.1 Our Datasets . 56

5.6.2 Privacy . 57

6. Computational Reasoning . 59

6.1 Training the Object Classifier . 59

6.2 Dynamic Bayesian Networks . 59

6.2.1 Reasoning Agent DBNs . 59

6.2.2 Combining BNT and the Reasoning Agent 60

6.3 JADE . 61

6.4 NetLogo . 61

Contents 9

7. Design: Structure of the Agents . 65

7.1 Overview . 65
7.2 Observation Agent design . 66
7.3 Reasoning Agent design . 68

7.3.1 Whiteboard . 69
7.3.2 Readers and writers . 72

7.4 Alerting Agent details . 73
7.5 Summary . 74

8. Implementation . 79

8.1 Observation Agent . 79
8.1.1 Object Detector . 79
8.1.2 Determine Object Position . 80
8.1.3 Object Classifier . 81

8.2 Reasoning Agent . 81
8.3 Agent communication . 83
8.4 Testing . 83
8.5 Future Implementation . 83

9. Experiments . 85

9.1 Observation Agent . 85
9.1.1 Object Detector . 85
9.1.2 Object Tracker . 86
9.1.3 Object Classifier . 87
9.1.4 Conclusion . 89

9.2 Reasoning Agent . 89
9.2.1 Experiment 1: Calibration . 89
9.2.2 Experiment 2: Validation . 91
9.2.3 Conclusion . 92

10.Summary and Conclusion . 95

10.1 Proof-of-concept . 95
10.2 Implementation . 95
10.3 Experiment Results . 96
10.4 Project Results . 96
10.5 Future Work . 97

Bibliography . 103

1Introduction

1.1 Problem Description: Surveillance

Video surveillance systems traditionally consist of cameras attached to monitor screens. These
systems are installed to give an overview of a large area to a limited number of operators. The
goal is to detect abnormal situations. Depending on the seriousness of the situation, action can
be taken.

Operators often work in a room with lots of monitors like illustrated in figure 1.1. Their task
is to watch constantly the monitors. If incidents happen, they warn the security or police. Some
monitors show the video stream of a single camera and some show multiple streams on a single
monitor simultaneously or sequentially.

However, in some areas the monitors are not watched constantly. Video recorders record the
output of each camera. After an incident, the video footage can be used as evidence. One
obvious disadvantage of this approach is that operators are not able to prevent incidents or limit
their damage, since the videos are only watched afterwards. Another disadvantage is that it takes
a significant amount of time to search for the right video images, especially when the suspect
arrives at the scene hours before the incident and a large amount of cameras are involved.

1.2 Problem Description: Human Observers

The task of the human operator is not limited to watch the videos and react to abnormal situations.
After training and acquiring experience, a human operator is able to incorporate the area context
in order to judge the events on the monitor. Take for example a car that stops near a weapon
depot. The event of a car stopping might not be abnormal, but the fact that it happens near

Figure 1.1: Control room.

11

12 1. Introduction

Figure 1.2: An example of a suspicious act.

a weapon depot might trigger the operator to give it some more attention. Building upon this
example, an operator has a set of Regions of Interest (RIOs), that we define as: certain regions
in the surveillance area that are potential targets of incidents. Examples of ROIs are parking lots,
ATMs, the road to a nuclear reactor, and so on. For each of such ROIs, the operator has a list
of what is normal and suspicious behavior. For example, it is normal if a car stops near an ATM
and someone steps out. However, if a truck hits the ATM with a high speed, a robbery might be
going on. Another example of an ROI is a fence: if people climb over a fence such as illustrated
in figure 1.2, action should be taken. Besides incorporating context, human beings are very good
at recognizing moving objects [4]. Even small motions on a large screen are not a problem for
humans.

However, humans do make mistakes. Even more, it appears that they make a significant
amount of mistakes when they are watching to surveillance monitors [8]. The main reason is the
nature of the task: passively watching multiple monitor screens where nothing special happens
for a long period of time. Research has been done to help the operators with the task to keep an
overview [6]. However, if we could ease the task of the human operator by watching the monitor
screens for him, the chance of preventing incidents is expected to increase significantly. Another
problem is that hiring people is expensive, so the monitors are watched only when necessary. In
contrast, computers can work for 24 hours a day and 7 days a week without large expenses.

1.3 Taken Approach

For this thesis, we approach the surveillance task from the human perspective: we try to emulate
what human operators do when they watch the monitors. These activities include the following:

• Detecting objects: is something moving?

• Recognizing objects: is it a person or a car?

• Tracking objects: where is it going? which path does it take? at which speed?

• Reasoning about available data: is this object entering a forbidden area? is this car parking
on a non-parking area? is this suspicious behavior?

1.4. Relevance 13

To perform this task, state-of-the-art techniques from Computer Vision and Artificial Intelligence
are applied. An object tracking technique called P-N Learning is used that enables the tracker
to learn from its mistakes. The Java Agent Development Framework (JADE) is used to enable
communication between agents in the FIPA Agent Communication Language standard.

A surveillance system model is designed that detects suspicious behavior in a non-public area.
Its task is to alert the operators about suspicious events to give them the chance to investigate
and take action. We focus ourselves on an area from the Nederlands Defensie Academie (NLDA)
in Den Helder, The Netherlands. It is a military area surrounded by fences and authorized people
can enter the area by foot or car through gates using an access card. With small adjustments,
the proposed system is also applicable for other kinds of areas.

1.4 Relevance

Since the stone age the human race seeks for strategies to extend its viewing range [24]. With the
rise of technology in the twentieth century, cameras are found to be a very useful tool to survey
a large area with limited resources. Valera and Velastin [25] state that “Recent events, including
major terrorist attacks, have led to an increased demand for security in society”. Technological
development provides cheaper cameras and surveillance systems. These factors cause the number
of surveillance cameras to increase significantly. If we could ease the task of the human operator, or
in some cases replace him, the chance of preventing incidents is expected to increase significantly
[8].

Besides the societal relevance, this thesis is also scientifically relevant. In the project both
Computer Vision and Artificial Intelligence are combined into one system model. Second, part
of the model is implemented which shows the feasibility of a practical realization. Third, the
produced software is build in such a way that it is reusable for future research.

Potentially there are many advantages in using computers instead of human operators. For
one, computers are very scalable in terms of time. People tend to forget information that is
not used regularly. In the case of surveillance, this means that a human observer might forget
that he saw a certain car earlier today. In contrast, computers can be equipped with enough
disk space to remember this kind of information for weeks or months. Second, computers are
scalable in terms of the number of objects. Human observers might be able to understand and
remember the interaction between ten or twenty objects that are currently in the area, but when
a hundred or two thousand objects need to be monitored, people are not capable doing that.
Third, because of the human limitations, multiple human operators are watching the monitors,
but exchanging information is di�cult. Computers might not be able to process more video
streams than humans, but they can communicate constantly about what they see. Note that
computers are not necessarily scalable to monitor any number of objects: there are limits to the
processing power and disk space for a single unit. However, computers can be easily extended,
whereas hiring more human operators make knowledge sharing even more di�cult.

1.5 Methodology

The main goal of this graduation project is to design an automatic suspicious behavior detection
model using multiple cameras and implement part of it. The following two research questions
form the basis of this goal.

14 1. Introduction

Question 1: How can we use a video surveillance camera to replace the human eye?

Question 2: If reasoning is applied to the data from multiple cameras, to what extend can
we automatically detect suspicious behavior?

To answer these research questions, the following subgoals are identified and used as a basis for
this graduation project:

• Perform a short literature study on automatic video surveillance to find out what the state-
of-the-art is.

• Design a model of a system that is able to automatically detect suspicious behavior.

• Implement the video processing of a single video stream.

• Implement combining the information of multiple cameras to detect suspicious behavior.

• Perform experiments on both implementations and analyze the results.

• Give recommendations for future research.

During this graduation project two prototypes are implemented. The first prototype focuses
on the processing of a single video stream. The processing of a single camera is the basis for each
multi-camera surveillance system. The processing includes object detection, object classification
and object tracking. The second prototype focuses on the reasoning by a central entity. Informa-
tion from multiple cameras are combined to reason about events occurring in the surveillance area.
This method of software development is called Software Prototyping: incomplete applications are
created that shows the main purpose of the proposed system.

1.6 Outline

This report describes the graduation project that investigates multi-camera video surveillance sys-
tems. Chapter 2 includes a summary of research done in the area of automatic video surveillance.
Chapter 3 sums up the requirements of the model, while chapter 4 elaborates on the design of the
system model. Chapter 5 describes the resources that are used for the implementation and their
background theory. Chapter 6 shows how we used these tools in our implementation. Chapter 7
describes the design of the agents that are part of the model. The implementation is described
in chapter 8. Chapter 9 shows the performed experiments and their results. Finally, chapter 10
contains the conclusion and recommendation for future work.

2Related Work

The field of video surveillance is very broad. Active research is going on in subjects like face
recognition, 3D object modeling, multi-camera camera setups and human behavior analysis. This
chapter contains summaries of several papers that describe fields which are close to the subject of
this thesis. The set of papers include survey papers and papers that describe a particular system.
For every paper it is also mentioned why the paper is chosen and our personal opinion is given.

The rest of this report includes a number of other papers that are applied in this thesis. They
are not summarized in this chapter.

2.1 Smart Video Surveillance: Exploring the concept of multiscale
spatiotemporal tracking - Hampapur et al (2005)

Motivation This article is chosen because it seems to give a good overview of tracking in the
context of surveillance.

Summary This article [9] gives an overview of what aspects are important for large-scale video
surveillance systems. The challenges that are pointed out are: combining multiple sources of
information, automatic event detection and deploying systems with a large number of cameras
(cost-wise). The article also shows some basic techniques like object detection, 2-D and 3-D
object tracking, object classification and object structure analysis (specifically: head detection).
Moreover, the structure of two designed systems are presented:

• Face cataloger, which aims at doing high-resolution face detection using 3-D head detection
and a pan tilt zoom (PTZ) camera at the entrance of a restricted room.

• A system for long-term monitoring, which saves the surveillance video fragments in a
database in such a way that it can be queried later on. During this saving process, the
video fragments are analyzed by the Smart Surveillance Engine which detects, tracks and
classifies the objects. Examples of queries: “give all vehicles that drove through this partic-
ular part of the camera sight“ and ”show all vehicles that drove to the east“.

The last section includes a discussion of the errors such systems can make and how these systems
can be evaluated.

Personal Notes This article gives a good overview of the field of video surveillance. It makes
clear what are the basic techniques and mention di↵erent kind of implementations while not
going into detail. Also, it mentions several issues that have to be faced while designing a video
surveillance system.

15

16 2. Related Work

2.2 A multimodal car driver surveillance system in a military area
- Lefter et al (2010)

This paper [15] describes the surveillance system that the authors envision for the NLDA area
in Den Helder, The Netherlands. The system uses both video and audio signals to secure the
area. It consists of two subsystems: a car-driver identity recognition system at the entrance of
the restricted area and a car-driving behavior recognition system along the roads in the area. The
paper describes how they analyze the behavior of the drivers, fuse the video and audio data and
use an expert system to solve conflicts between audio and video. At the end they describe several
scenarios that help them developing this expert system.

Personal Notes The thesis project originated from the ideas in this paper. Therefore, this paper
gives a good idea of the context of this thesis.

2.3 TRECVID 2009 - Goals, Tasks, Data, Evaluation Mechanisms
and Metrics - Over et al (2009)

Motivation The TREC Video Retrieval Evaluation (TRECVID) is a conference series that started
in 2001. The goal is “to encourage research in information retrieval by providing a large test
collection, uniform scoring procedures, and a forum for organizations interested in comparing
their results” . This paper is chosen because TRECVID is often mentioned in video surveillance
literature and it is expected that we can use this paper to find other papers with good performing
surveillance systems.

Summary This paper [19] gives an overview of the TREC Video Retrieval Evaluation (TRECVID)
2009. The goal of this evaluation was “to promote progress in content-based exploitation of digital
video via open, metrics-based evaluation”. In 2009, sixty three research teams submitted a video
recognition system. There were four tasks: high-level feature extraction, search (fully automatic,
manually assisted, or interactive), copy detection and surveillance event detection. Each system
had to be able to do at least one of these tasks. During the evaluation, the submitted systems
are tested and the results are presented in this paper. For our graduation project, the last task
is interesting: surveillance event detection. The goal of this task is to recognize particular visual
events of people. Ten types of events were specified. The data that is used consists of multiple
synchronized camera views.

Personal Notes The most important page of this paper was the one with the Surveillance Event
Detection task result graph. This was the only way to see what implementation did well during
TRECVID 2009. The bar diagram was not very handy, because it is not made clear what parties
did well overall and which did not. The diagram showed per event how well each party did, but
each party was able to detect a di↵erent set of events. Nevertheless, we picked two papers on
basis of this diagram. Because the Toshiba team is responsible for the best run, their paper is
summarized next. Also, the paper of the Shanghai Jiao Tong University is reviewed below. They
did well for the events TakePicture and PersonRuns, which might be useful for our project.

2.4. Toshiba at TRECVID 2009: Surveillance Event Detection Task - Yokoi et al (2009) 17

2.4 Toshiba at TRECVID 2009: Surveillance Event Detection Task
- Yokoi et al (2009)

Motivation This paper is chosen because it is responsible for the best run in the TRECVID
2009 conference.

Summary This paper [31] presents the system Toshiba provided to the TRECVID 2009. It
explains how the following four components are implemented:

• Change detection.

• Human detection.

• Human tracking.

• Event detection.

Their goal was to detect three events: PersonRuns, ElevatorNoEntr and OpposingFlow. Person-
Runs is the event of a running person. A system that detects an ElevatorNoEntr event, sees a
person waiting for an elevator, but he does not enter it when it arrives. The last event, Oppos-
ingFlow, is described as “someone moves through a controlled access door opposite to the normal
flow of tra�c”.

Personal Notes This is a detailed and mathematical paper. The components are well explained
and very straightforward. However, there is not enough information to reproduce each of the
components.

2.5 Shanghai Jiao Tong University participation in high-level fea-
ture extraction and surveillance event detection at TRECVID
2009 - X. Yang (2009)

Motivation This paper is chosen because the team manages to perform well at the events
TakePicture and PersonRuns.

Summary This paper [30] describes the system that the authors made for the TRECVID 2009
conference. They “explored several novel technologies to help detecting high-level concepts”.
There are four main steps in their high-level feature extraction framework:

• Low level feature extraction. Global, local and other features are extracted from the input
video with a total of eight features.

• Model. Support Vector Machines (SVMs) are used as classifiers. They train one SVM
classifier for each low-level feature based on TRECVID 2009 development data.

• Ranking. The results of trained models are combined by simple average fusion and linear
weighted fusion.

• Re-ranking. Textual information is extracted using automatic speech recognition and the
information bottle principle.

18 2. Related Work

The global low level features include features that characterize the image based on color, textures,
shape or a combination of those. The local low level features are extracted using Scale-invariant
feature transform (SIFT). Di↵erence of Gaussian is used to describe a keyframe as a bag-of-visual-
words. The main issue here is determining the size of the vocabulary. The other feature used is
called Space-Time Interest Points (STIP). It computes locations and descriptors for space-time
interest points in video. Besides these global, local and other features, two additional features
are used for some of the recognition tasks: extraction of Region of Interest (ROI) and the Face
feature. The ROI extraction aims at locating people’s body parts. It uses Conditional Random
Field and Pyramid Histogram of Oriented Gradients. The Face feature is created to detect female
faces. The first step in Face feature extraction is to detect a human face on the image. The
second step is implemented by using Local Binary Pattern features as input for a SVM classifier
in order to determine if a face is male or female.

The rest of this paper shortly describes how they detect each of the eight events they can
detect. At the end the experimental results are shown in the form of a table and a Detection Error
Tradeo↵ curve plot.

Personal Notes The paper describes the methods and techniques they used to build their system
and detect the events, but they do not give enough information to reproduce it.

2.6 A Survey on Visual Surveillance of Object Motion and Behav-
iors - Hu et al (2004)

Motivation This survey is chosen because it appears as a extensive survey of the video surveil-
lance research field. Also the topic of object motions and behaviors promises useful information
for this thesis.

Summary This survey [10] gives an overview of the developments in the field of visual surveil-
lance in dynamic scenes. The focus is on applications involving surveillance of people or vehicles.
Five stages are identified that are common for most surveillance systems. The following subsec-
tions summarize the topics discussed per stage.

2.6.1 Motion detection

This stage is divided into three processes: environment modeling, motion segmentation and object
classification.

A Environment modeling.
Environmental models can be classified into 2-D and 3-D models. Several problems are
discussed while using fixed, pure translation (PT) cameras and mobile cameras for 2-D.
Current work on 3-D models is still limited to indoor applications.

B Motion segmentation.
The following approaches for motion segmentation are explained:

• Background subtraction.

• Temporal di↵erencing.

• Optical flow.

2.6. A Survey on Visual Surveillance of Object Motion and Behaviors - Hu et al (2004) 19

C Object classification.
Two main categories of approaches are mentioned:

• Shape-based classification.

• Motion-based classification.

2.6.2 Object tracking

Tracking algorithms are divided into four main categories:

A Region-based tracking.
An object is tracked according to variations of the image regions corresponding to the moving
objects.

B Active contour-based tracking.
These algorithms track objects by representing their outlines as bounding contours and
updating these contours dynamically in successive frames.

C Feature-based tracking.
A distinction is made between global feature-based algorithms, local feature-based algo-
rithms and dependence-graph-based algorithms.

D Model-based tracking.
The following three main issues are extensively described:

• Construction of human body models.

• Representation of prior knowledge of motion models and motion constraints.

• Prediction and search strategies.

2.6.3 Understanding and description of behaviors

Behavior understanding involves the analysis and recognition of motion patterns and the production
of high-level descriptions of actions and interactions.

A Behavior understanding.
The following major existing methods for behavior understanding are described:

• Dynamic time warping.

• Finite-state machine.

• HMMs.

• Time-delay neural network.

• Syntactic techniques.

• Non-deterministic finite automaton.

• Self-organizing neural network.

B Natural language description of behaviors.
Two main categories of behavior description methods are explained: statistical models and
formalized reasoning.

20 2. Related Work

2.6.4 Personal identification for visual surveillance

Regarding visual surveillance it is important to identify people. Human face and gait detection is
used to accomplish that. The paper describes the following major methods for gait recognition in
recent research:

• Model-based methods.

• Statistical methods.

• Physical-parameter-based methods.

• Spatio-temporal motion-based methods.

• Fusion of gait with other biometrics.

2.6.5 Fusion of data from multiple cameras

This last stage is described by pointing out the following problems regarding multicamera surveil-
lance:

• Camera installation.

• Camera calibration.

• Object matching.

• Automated camera switching.

• Data fusion.

The last part of this survey paper mentions subjects that deserve future research.

Personal Notes This survey gives a nice overview of the field of video surveillance. It mentions
many basic techniques and discusses how several papers used these techniques. It makes clear
which issues arise when building multicamera surveillance systems. Furthermore, it gives insight
in what areas are well developed and which are not.

2.7 Survey on Contemporary Remote Surveillance Systems for Pub-
lic Safety - T. Räty (2010)

Motivation This paper is summarized because it gives an overview of the history of video
surveillance and mentions the current topics in research.

Summary This paper [22] reviews the historical development of video surveillance and describes
the three generations of surveillance systems. The focus is on generic surveillance, which is
applicable to public safety.

Public safety and homeland security are substantial concerns for governments worldwide. Re-
cent events like terrorist attacks have increased the demand for security. Therefore, there is a
growing interest for surveillance applications. The progress in technological development enable

2.7. Survey on Contemporary Remote Surveillance Systems for Public Safety - T. Räty (2010) 21

deploying surveillance systems at reasonable costs. Due to the growing number of cameras, surveil-
lance by humans become unfeasible and automatic intelligent surveillance systems are needed.

“A surveillance system can be defined as a technological tool that assists humans by o↵ering
an extended perception and reasoning capability about situations of interest that occur in the
monitored environments. Human perception and reasoning are restricted by the capabilities and
limits of human senses and mind to simultaneously collect, process, and store limited amount of
data.”

2.7.1 First-generation surveillance systems

The 1GSSs (1960-1980) uses analog technology to monitor the environment. Video data from a
collection of cameras were being transported to a control room where human operators observed
the environment using TV screens. The disadvantages of these systems are: significant miss rate of
events of interest due to the small attention span of operators and the di�culties of analog video
communication (high-bandwidth requirements, poor allocation flexibility and ine�cient image
distribution and storage).

2.7.2 Second-generation surveillance systems

2GSSs (1980-2000) has benefits over 1GSSs, as 2GSSs use techniques of the early progression of
digital video communications. “The majority of research e↵orts during the period of the 2GSSs
have been used in the development of automated real-time event detection techniques for video
surveillance. The availability of automated methods would significantly ease the monitoring of
large sites with multiple cameras as the automated event detection enables prefiltering and the
presentation of the main events.”

2.7.3 Third-generation surveillance systems

In 3GSSs (2000-present), the current generation, only digital components are used. Furthermore,
it focuses on handling large number of cameras to cover large areas, distribution of processing
capabilities and combining di↵erent types of sensors (microphones, thermal cameras, etc). The
main objective is to ease e�cient data communication, management and extraction of events in
real-time video from a large collection of sensors. “The main application areas for the 3GSSs are
in the region of public monitoring. This is required by the rapid growth of metropolitan localities
and by the increasing need to o↵er enhanced safety and security to the general public.”

The rest of this subsection describes the aspects of 3GSSs that the author finds notable.

Multiple sensor-enabled environments “Recently, there have been studies on data fusion
techniques to tolerate information sharing that results from di↵erent types of sensors.” Examples
of sensors are: microphones, thermal cameras, radar, automatic identification systems and global
position system receivers.

Junejo et al [12] state that a single camera is not su�cient in monitoring a large area and
propose a practical framework for an automatically configurable network of non-overlapping camera
that provides su�cient monitoring capabilities.

Video surveillance The primary goals of intelligent visual surveillance systems are to o↵er an
automatic interpretation of scenes and to understand and predict the actions and interactions of
the observed objects.

22 2. Related Work

“The automation of all or part of the process of manual monitoring would obviously o↵er
dramatic benefits, ranging from a capability to alert an operator of potential event of interest, to
a completely automatic detection and analysis system. However, the dependability of automated
detection systems is an essential issue, because frequent false alarms introduce skepticism in the
operators, who quickly learn to disregard the system.”

“Research interests have shifted from ordinary static image-based analysis to video-based
dynamic monitoring and analysis. Researchers have advanced in addressing illumination, color,
background, and perspective static aspects. They have advanced in tracking and analyzing shapes
related to moving human bodies and moving cameras. They have improved activity analysis and
control of multicamera systems.”

“When multiple tracked objects are placed into groups with miscellaneous complexities of
occlusion, tracking each individual object through crowds becomes a challenging task.”

“Li et al. [17] state that the aim of multitarget tracking is to infer the target trajectories
from image observations in a video. This poses a significant challenge in crowded environments
where there are frequent occlusions and multiple targets have a similar appearance and intersecting
trajectories.”

“Basically, the approach of the detection of moving objects is through background subtraction
that contains the model of the background and the detection of moving objects from those that
di↵er from such a model. In comparison to other approaches, such as optical flow, this approach
is computationally a↵ordable for real-time applications. The main dilemma is its sensitivity to
dynamic scene challenges and the subsequent need for background model adaptation through
background maintenance. This type of a problem is known to be essential and demanding.”

“A significant problem encountered in numerous surveillance systems are the changes in am-
bient light, particularly in an outdoor environment, where the lighting conditions varies. Thermal
cameras have been utilized for imaging objects in the dark.”

Audio Surveillance Several methods are presented for sound localization, detection, classifica-
tion and tracking in sensor networks. Event detection systems have been built that solely use
microphones.

Wireless sensor networks “Sensor networks usually are inexpensive wireless devices that are
distribute over a region of interest. They are often battery powered and have restricted computa-
tion and communication capabilities. Every node is equipped with di↵erent of sensing modalities,
such as acoustic, infrared and seismic. Networked sensors can collaborate to process and make
deductions from the collected data and provide the user with access to continuous or selective
observations of the environment.”

Distributed Intelligence and Awareness “The 3GSSs use distributed intelligence functionality.
An important design issue is to determine the granularity at which the tasks can be distributed
based on available computational resources, network bandwidth, and task requirements.”

Four tasks of surveillance are identified and shortly described:

• Event detection.

• Event representation.

• Event recognition.

2.7. Survey on Contemporary Remote Surveillance Systems for Public Safety - T. Räty (2010) 23

• Event query.

The important questions in security are: “who are the people and vehicles in a space” (iden-
tity tracking), “where are the people in a space” (location tracking), and “what are the peo-
ple/vehicles/objects in a space doing” (activity tracking) [9].

Bandini and Sartori [1] present the concept of a monitoring and control system (MCS) which
aims at helping humans in decision making regarding problems which can occur in critical domains.
This is done by gathering data of the monitored situation, detecting if abnormal events happen
and acting on it, often by alarming the operator.

Architecture and middleware “The field of automated video surveillance is quite novel and the
majority of contemporary approaches are engineered in an ad hoc manner. Recently, researchers
have begun to consider architectures for video surveillance. Middleware that provides general
support to video surveillance architectures is the logical next step.”

Utilization of mobile robots “Currently, the development of a completely automated surveil-
lance system based on mobile multifunctional robots is an active research area. Mobility and
multifunctionality are generically adopted to reduce the amount of sensors required to cover a
given region.”

2.7.4 Discussion on current dilemmas in the 3GSSs

The paper identifies several aspects that are discovered during literature review.

Real-time distributed architecture It is important to develop a framework or methodology for
designing wide-area surveillance systems. Furthermore, because of the high complexity of video
surveillance networks in general, middleware is needed to reduce that complexity. A distributed
multiagent approach maybe provide numerous benefits like:

• A large number of sensors might be deployed over a large area because of the low costs and
intelligent cooperation between agents.

• Such a system is robust, because it keeps working if some agents fail.

• Performance is more flexible, because agents can help each other.

A dilemma related with architecture is that vision systems engineers have no systematic way to
translate user system requirements to a detailed design. Now the design and analysis phases
usually follow each other in a cycle until the system requirements are met.

The advantage of distributed systems over central systems is that there is an improvement
in functionality, availability and autonomy of the surveillance systems. The disadvantage is that
systems become more complex. One way to deal with this complexity is to decompose systems
into component parts and functions.

Di�culties in video surveillance An issue that occur in crowded scenes is occlusion: objects
become occluded by buildings, trees or other objects. Tracking and classification is more di�cult
when occlusion occurs. The use of multiple cameras can improve the performance of tracking and
classification. Another method to gain better results is to use a human appearance model.

24 2. Related Work

One dilemma in background subtraction is caused by the detection of false objects called
ghosts. This occurs for example when a foreground object is stationary for a while and then
moves away, which causes the system to label a part of the background as the moving object.
This is undesirable and can be detected using a ghost detection algorithm.

Research is being done that focus on automatically extracting information from video data
in order to reduce the load on human operators. However, due to computational cost of these
systems, the usage in real-time is limited.

Furthermore, e↵ort is done by the computer vision and artificial intelligence community to
develop automated systems for monitoring people, vehicle and other objects. The aim is to build
systems that detect unusual activity and warn the human operator.

Awareness and intelligence “Context-aware applications are needed to support personalization
and adaptation based on context awareness.” These applications must be capable of explaining
their actions to the user.

There are two types of dilemmas regarding multi-sensor surveillance system: the fusion of data
in an optimal matter and the optimization of the global management using the individual sensors.

Wireless networks and their applicability In order to use wireless sensor networks, many tech-
nological issues need to be resolved. Real-time surveillance systems generate a lot of data, which
can cause network congestion, especially when there is a small amount of bandwidth available. In
order to have a system that can cope with that, error control mechanisms need to be implemented.

Energy e�ciency of remote sensors “Novel solutions are needed to handle demanding restric-
tions of video surveillance systems, both in terms of communication bandwidth and computing
power.”

Dilemmas in scalability “Implementing an intelligent, scalable, and distributed video surveil-
lance system remains a research problem. Researchers have not paid too much attention on
the scalability of video surveillance systems. They typically utilize a centralized architecture and
assume the availability of all the required system resources, such as computational power and
network bandwidth.”

“A substantial pitfall in incorporating intelligent functions into real-world systems is the lack
of robustness, the inability to test and validate these systems under a variety of use cases, and
the lack of quantification of the performance of the system.”

Location di�culties “Complementary information in the form of maps and live video streaming
can assist in locating the problematic zone and act quickly and with knowledge of the situation.”

Challenges in privacy Video surveillance opposes privacy problems. As many system nowadays
transmits networks open public networks, information protection is an important issue. Research
has been done to protect the privacy of people that are monitored by removing personally identi-
fiable information.

2.8. Real-time Crowd Motion Analysis - N. Ihaddadene (2008) 25

Personal Notes A nice feature of this paper is that it identifies distinct generations in the
development of video surveillance. However, the di↵erences between them are not made very
clear and the first two generations are not discussed extensively. For the third generation, many
useful aspects are explained. In our opinion, the downside of this number of aspects is that the
paper is not very coherent. The identification of the 3GGSs’ aspects suggests that the author
presents the material very structured, but the content of those aspects often seem to have nothing
in common. A lot of research is mentioned, but they are not linked to each other. Nevertheless,
many interesting subjects in the field of video surveillance are presented which gives a relatively
good overview of this field.

2.8 Real-time Crowd Motion Analysis - N. Ihaddadene (2008)

Motivation This paper is chosen because it tries to detect abnormal behavior.

Summary This paper [11] describes work that has been performed for the MIAUCE project.
This project “aims to investigate and develop techniques to analyze the multi-modal behavior of
users within the context of real applications”[7]. A part of this project has made an attempt
to automatically detect abnormal behavior at the exits of airport escalators using video cameras,
which is described in this paper. The aim is to automatically detect congestions at the escalator
exits.

The algorithm that is proposed has four steps:

1. Motion heat map creation.
A motion heat map is used to identify the regions on the camera image with a high motion
activity. It is a 2D histogram that is built from the accumulation of binary blobs of moving
objects, which are extracted using background subtraction.

2. Features detection and tracking.
During this step, a set of points of interest (POIs) are extracted from each input frame.
These points are tracked over the next frames using optical flow techniques. This results
in a set of vectors which contain the following properties of each feature: the X and Y
coordinates, the motion direction and the feature distance between of two consecutive
frames.

3. Direction map building.
For this step, a direction map is built which indicates the average motion direction for each
region of the camera image. This average motion detection is visualized by a vector for
every region.

4. Abnormality estimation.
A measure is defined that “describes how much the optical flow vectors are organized or
cluttered in the frame”. It is the scalar product of the normalized values of the following
four factors: motion area ratio, direction variance, motion magnitude variance and direction
histogram peaks. The resulting measure is compared to a specific threshold to determine if
the current situation is normal or abnormal. This threshold needs to be configured, because
it varies depending on camera position, escalator type and position.

The authors state that the results are very satisfactory, without mentioning them explicitly.

26 2. Related Work

Personal Notes This paper clearly describes the steps that the authors took to detect abnormal
behavior. Although the steps are not described in detail, it looks like it is feasible to reproduce
the algorithm. Unfortunately, no experiments are shown that show the performance. The paper
gives the impression that it is a good algorithm to detect abnormal movements (like congestion),
but since it is only applied to escalators, it might not be applicable directly on another domain
like detecting abnormal behavior on roads.

2.9 Tracking many objects with many sensors - H. Pasula, S. Rus-
sell, M. Ostland and Y. Ritov (1999)

Motivation This paper was referenced by the book Artificial Intelligence: A Modern Approach
by S. Russell and P. Norvig which described the possibility of tracking highway tra�c using multiple
cameras. The multi-camera aspect is interesting, because it is a challenge how to track one object
using several non-overlapping cameras and it is an important aspect of this thesis.

Summary This paper [20] builds on previous work from Huang and Russel which “provided
a probabilistic analysis and a threshold-based approximation algorithm for the case of multiple
objects detected by two spatially separated sensors”. This paper focuses on the case of many
sensors. For more than two observations, the objects’ intrinsic properties needs to be measured.
Also, this paper replaces “Huang and Russell’s threshold algorithm for object identification with
a polynomial-time approximation scheme based on a Markov Chain Monte Carlo (MCMC) simu-
lation”.

Two experiments are conducted using data from a freeway simulator. The first compares the
algorithm with the one from Huang and Russel. The network in this experiment contains three
cameras. The main conclusion here is that the previous algorithm cannot handle color noise, while
the current algorithm handles it very well. The second experiment deals with a more realistic
scenario with nine cameras that secure an area. “The aim is to estimate the origin-destination
counts between the two entry points and the three exit points”. The MCMC algorithm outperforms
that Huang-Russell algorithm. However, both algorithms are unable to accurately determine the
full trajectories for high levels of noise.

The authors mention in the Summary and Future Work section that they are working towards
applying the approach in the real world such as tra�c surveillance.

Personal Notes The approach in this paper looks very promising, but is not ready to use at
all. Firstly, the algorithm still lacks the ability to determine the full trajectories with high levels of
noise. Secondly, the algorithm is only applied at computer-generated data. Thirdly, the authors
mention a missing extension: handling realistic problems such as missing observations.

2.10 Conclusion

It is shown that the field of video surveillance is very broad: it has many aspects that have all
kinds of di�culties of their own. The papers describing surveillance systems often give not enough
details to reproduce it and also do not publish their software on the Internet.

According to Räty [22], researchers have begun to consider architectures for video surveillance
systems. In this thesis we propose an architecture for a multi-camera video surveillance system.

2.10. Conclusion 27

Furthermore, basic video surveillance techniques are combined with reasoning techniques and
a state-of-the-art tracking technique called P-N learning. This combination resulted in an im-
plementation and experiments are performed that show the performance of (a large part of) the
system.

3Requirements

This chapter describes what is to be expected from the surveillance system model. The main
properties of the model are described in section 3.1. Assumptions about the area can be found
in section 3.2. A Region of Interest analysis is given in section 3.3 and the chapter closes with a
few words about the applicability in section 3.4.

3.1 Main Properties of the Model

The purpose of the model is to detect suspicious behavior. Therefore, it is required to observe
the world and extract relevant information that can be used to draw conclusions. We would like
to be alerted if something suspicious happens. In other cases, the model should not give any
output. First we will describe the requirements if we would use a single camera. After that, the
requirements are extended to the situation where a network of cameras is used. Finally, general
requirements of the model will be mentioned.

Single Camera Situation First of all, we restrict ourselves to fixed cameras. Moving cameras
that are for example installed on cars or Pan-Tilt-Zoom cameras are not taken into account. They
would add extra complexity when determining the absolute position of the observable object(s).
Second, most cameras have a frame rate of 25-50 frames per second. However, our model is not
required to process every single frame, since objects are not expected to change significantly in
1/25 second. A frame rate of one frame per second should be enough to capture all relevant
events. Third, while processing the video, a small bu↵er is needed to save the frame. The
processing should be finished before the next frame arrives. Fourth, the processing unit is able to
detect movement and track the object as long as it is in sight.

Multiple Cameras Situation The model is extended to multiple cameras, because suspicious
events often take place in a space that a single camera cannot cover. Some communication
platform is needed between the units that process the video. Using the communicated information,
conclusions should be drawn about how suspicious an object is. This requires some matching
strategy, since an object must be tracked among multiple cameras. Because suspicious events
also take place over a certain amount of time, history has to be taken into account when drawing
conclusions. We feel that it is enough to take into account the last 30 minutes while determining
how suspicious a person or car is.

The Model in General As mentioned in section 1.2, humans are able to incorporate context
into the judgment of how suspicious an event is. We require the model to cope with context too.
A list of ROIs is supplied and for each ROI a list of suspicious events are identified. Using this list
it can for example be detected that it is suspicious for a car to park near a weapon depot.

29

30 3. Requirements

Table 3.1: Summary of the concrete model requirements.

Description Requirement

Camera location and orientation Fixed

Frame rate At least 1 frame per second

Bu↵er size The maximum size of 1 frame

History bu↵er size 30 minutes

When suspicious behavior is detected, the model should alert the security operator. Then the
security operator can observe the situation on its monitors and decide if (s)he should take action.
The model should not give too many false positives. However, it is even more important that the
system does not miss important events. For example, in the case that a bomb has been planted
in the surveillance area, the system should never ignore that or label it as ’lightly suspicious’.

During this project, a model of a complete system will be designed. Since it is impossible to
implement the whole system within the time schedule, some parts are selected to be implemented.

Table 3.1 summarizes the requirements mentioned above for which choices are made. The
following list summarizes the elements that are required for a complete multi-camera video surveil-
lance system, but for which no specific choices are made at this point:

• The video processing unit should be able to detect movement and track objects.

• A communication platform is needed.

• To track objects in space, some matching strategy is needed.

• Context is provided by a set of ROIs and the events that are suspicious there.

• The system should alert the operator when something suspicious happens and should not
give too much false positives.

• A complete surveillance system model is designed, but only parts are implemented.

3.2 Area Assumptions

Designing a surveillance model that suites every possible area is a di�cult task. Every area has
di↵erent properties and security threads. Therefore, as mentioned before, we focus on a military
area of the Nederlands Defensie Academie (NLDA) located in Den Helder, The Netherlands. A
map of the area can be seen in figure 3.1. The area is surrounded by fences and only authorized
people can enter the area using an access card. At the main entrance, security guards are able to
give guests access to the area. The other two entrances are solely secured by cameras.

The functions of the buildings on the area are not publicly available. Therefore, we randomly
labeled some buildings in order to define the ROIs. The blue labeled building on figure 3.1 is
chosen to be the weapon depot, and the orange labeled building is for working and sleeping.
Using this information we can for example state that the weapon depot is a Region of Interest
where it is suspicious if someone parks a car.

The current setup of the cameras is not shown on the map, as they are not known. Never-
theless, we assume that they do not have an overlapping field of view and that they do not cover

3.3. Regions of Interest 31

Figure 3.1: The NLDA area.

the whole area. Furthermore, the data is sparse in the sense that the number of objects observed
by one camera at one particular time instance is limited.

To summarize, these are the assumptions about the area:

• It is a military area that is surrounded by fences.

• Certain ROIs are identified, each with a list of events that are suspicious.

• The cameras do not have an overlapping field of view.

• The data is sparse: a limited number of objects are observable by one camera at one time
instance.

Note that although we focus on the military area in Den Helder, this system is applicable to a
broad variety of areas.

3.3 Regions of Interest

This section includes a list of Regions of Interest (ROIs) we constructed to illustrate how ROIs
can be defined. After this list, we select a subset of ROIs which will be used in the rest of this
report.

1. ROI entrance barrier (see figure 3.2).
Visitors by car are supposed to have an access card. Showing this access card to an electronic
reader opens the barrier automatically. Visitors without access card are supposed to push a
button and communicate with the Surveillance O�cer.

32 3. Requirements

Figure 3.2: Region of Interest 1: entrance barrier. From [15].

(a) As soon as a car stops in front of the barrier, a camera takes recordings. These
recordings are analyzed by a car template recognizer. This recognizer is using a special
Articial Neural Network using the Neocognitron architecture. In general the recognition
rate is 92 %, but given the fact that a limited number of cars are authorized to enter
the area the recognition rate approaches 100%. In case an unknown car wants to enter
the area, even if the driver has an access card, the driver gets a warning to visit the
O�cer of the Guard. See [15] for more information.
Technology : video/image analysis, car template recognizer (Neocognitron).

(b) It is not allowed to touch or move the barrier by human or by car. In case humans try
to lift the barrier or demolish it by car this is observed by the camera.
Technology : barrier touch sensors, video/image analysis.

(c) A car blocking the entrance or exit for a longer time is not allowed. This is also
observed by the camera.
Technology : video/image analysis.

(d) Humans jumping over the barrier or enter without using the access card is again
observed by the surveillance system.
Technology : video/image analysis.

(e) The military guard is protected by the system by detecting aggression against him.
The surveillance system observes visitors that (try to) kick, push or otherwise harm
the guard.
Technology : video/image analysis, audio processing.

(f) Only one car is allowed to pass the barrier every turn. In case two cars pass the barrier
at the same time, this is observed by the system.
Technology : video/image analysis.

2. ROI street.
Visitors in the military area have to take care of the tra�c rules.

(a) Entering a one-way street is not allowed.
Technology : video/image analysis.

(b) Exceeding the speed limit is not allowed.
Technology : video/image analysis.

3.3. Regions of Interest 33

(c) Driving with lights turned o↵ is not allowed during night.
Technology : video/image analysis, infrared camera.

(d) Crossing uninterrupted white lines or driving o↵-road is not allowed.
Technology : video/image analysis.

(e) Parking is only allowed at special places. Cars stopping for a long time are suspicious,
for except on a parking place.
Technology : video/image analysis.

3. ROI harbor or arsenal.

(a) Stopping is not allowed.
Technology : video/image analysis.

(b) Leaving the car is not allowed.
Technology : video/image analysis.

(c) Taking pictures or filming is not allowed.
Technology : video/image analysis.

4. ROI fence/gate.

(a) Climbing a gate is not allowed.
Technology : video/image analysis.

(b) Taking pictures from military objects is not allowed.
Technology : video/image analysis.

5. ROI Royal Naval College (KIM) area.

(a) Cars have to be tracked from entrance to exit, disappearing cars or cars parking for a
longer time is suspicious.
Technology : video/image analysis, car template recognizer, track matching, reasoning
in place and time.

(b) Identity of cars (and possible car-driver) can be assessed by license plate. Some parts
of the military are have limited access. Cars without license plate have no access.
Technology : video/image analysis, car template recognizer at entrance/exit, face
recognition, reasoning.

(c) Visitors asking for entrance permission are supposed to take the shortest route to their
destination.
Technology : video/image analysis, reasoning.

(d) Cars driving around for a longer time without clear destination are suspicious.
Technology : video/image analysis, track matching, reasoning in time and place.

(e) Based on recorded data, the most probable route for every car driver is known. The
probability of taking a turn at a crossing is known. Abnormal routes are considered
suspicious.
Technology : video/image analysis, track analysis, reasoning.

(f) Attempts to demolish cameras are suspicious behavior (climbing in lamppost, throwing
objects, explosions of cameras recorded by other cameras in overlapping areas.
Technology : video/image analysis.

34 3. Requirements

(g) Aggressive acts against personal or objects is suspicious, including gestures and shout-
ing.
Technology : video/image analysis.

(h) People hanging around (outside smoke areas) or walking around for a long time on
unexpected places (parking lot, around special buildings, looking into windows of cars
or buildings).
Technology : video/image analysis, crowd analysis.

(i) People or objects falling or laying on the ground.
Technology : video/image analysis, reasoning in place and time.

(j) People grouping together into crowds.
Technology : video/image analysis, crowd analysis.

In this thesis we consider automatic surveillance system using video and image analysis. We
focus on the NLDA area by taking a subset of the ROIs above. Actually, we take a subset of
the suspicious behaviors within these ROIs, which we call scenarios from now on. The following
scenarios are required to be detected by the proposed system.

A. Car exceeds speed limit.

B. Person runs.

C. Car drives where it is forbidden to drive.

D. Person walks where it is forbidden to walk.

E. Car or person stops where stopping is not allowed.

F. Car parks on a non-parking area.

To determine if it is forbidden to drive/walk, the information from the ROIs is used: if it is
forbidden to drive in a certain ROI and a car is driving around there, this is considered suspicious
behavior. For example, it might not be allowed to drive around on a tennis court or on the grass
that separates the road from the fences. In the same way, it is also not allowed to stop or park a
car at certain ROIs.

3.4 Applicability

Since the surveillance system model describes a security system, failures can have big consequences.
That means that if a component of the system brakes down, the rest of the system components
should continue their tasks as good as possible. This should be considered during the design of
the model.

We will have a quick look at the feasibility of a real implementation of the model in section
4.2. Therefore, we also take into account the consequences in the real world. It is not the main
focus to design an easy and cheap system that every company could implement, but we will avoid
designing a model that is impossible to realize.

4Design: Surveillance System Model

Now that we have described the requirements we can focus on the system model design. Section
4.1 describes the software architecture and section 4.2 handles the physical design.

4.1 Software architecture

This section describes the software architecture. Before the final version is shown, two other
architectures are described to illustrate why the final version is chosen.

4.1.1 Software Architecture 1

Figure 4.1 shows one possible architecture of the software. A group of cameras is connected to a

Figure 4.1: Software architecture number 1.

35

36 4. Design: Surveillance System Model

large central agent. This large agent processes all video streams, detects suspicious behavior and
sends alerts to the Surveillance Base Station. In other words, this agent performs all processing
tasks of the system. This approach has a few disadvantages. First of all, the agent is a single
point of failure: if this agent fails, the whole system stops working. Second, dividing the responsi-
bilities over multiple agents would make it easier to design, implement and maintain. Third, since
processing (potentially large amounts of) video requires much processing power, the system may
be unable to alert the Surveillance Base Station on time due to the lack of processing power for
reasoning. That is why the first version of the architecture is rejected.

4.1.2 Software Architecture 2

Figure 4.2 shows another possible architecture. This architecture shows an agent network of three
kinds of agents. Each of them is described below.

Observation Agent Receives the video signal, processes it and sends object information to the
Reasoning Agent. While processing it, it determines the track of the object, the class of the object
(Car/Person). Furthermore, it asks the Identification Agent for a unique identifier (ID) of this
object. Each Observation Agent knows which other Observation Agent processes a video stream
that is physically close. To take some load o↵ the Identification Agent, object descriptions are
sent to the closest Observation Agents, since the just-discovered objects are likely to be observed
by the neighbor Observation Agents too.

Identification Agent Handles requests from the Observation Agents. Internally, this agent has
a list of all objects it encountered. For each object, characteristics are known such as class, color,
shape, etc. These characteristics are concluded from the information from the Observation Agents.
For example, an Observation Agent could send a single image of an object to the Identification
Agent. Then the Identification Agent matches it with the known object to see if it is a new object
or not. Finally, it sends a unique identifier to the Observation Agent which can be used in the
system (for example to describe the object to the Reasoning Agent). The advantage of such an
agent is that there is only one entity that is responsible for matching objects. Knowledge about
the map is asked to the Reasoning Agent.

Reasoning Agent Receives the object descriptions and trajectories from the Observation Agent
and reasons about this. Mainly, it checks if the object has shown suspicious behavior using a
few predefined suspicious events. Depending on the repetition and seriousness of these events, an
alert is sent to the Surveillance Base Station.

This system still has a single point of failure: the Reasoning Agent. However, the system can
easily be extended so that for example the Observation Agents can send alerts by themselves in
certain situations. Imagine that the Identification Agent and the Reasoning Agent crashed and a
person enters the gate without permission. If one of the Observation Agents see this and alert
the Surveillance Base Station, the guards can still react to this situation. Another advantage
of this architecture is that responsibilities are separated among di↵erent software entities. The
Observation Agent is responsible for processing the video, the Identification Agent takes care of
the object identification and the Reasoning Agent puts together this information and alerts the

4.1. Software architecture 37

Figure 4.2: Software architecture number 2.

Surveillance Base Station when necessary.

4.1.3 Final Software Architecture

The final software architecture is shown in figure 4.3 on the next page. One di↵erence with the
second architecture is that the task of the Identification Agent is adopted by the Reasoning Agent.
This way the Reasoning Agent can reconsider the identity of objects based on new information.
Another di↵erence with the previous architecture is the introduction of the Alerting Agent. This

38 4. Design: Surveillance System Model

Figure 4.3: Architecture of the system

4.2. Physical Feasibility 39

agent has the task to alert the Surveillance Base Station and functions as an interface between
the system and the security guards. The main advantage is that the Alerting Agent can filter
events to prevent swamping the guards. This architecture is considered as the best architecture
because the agent have clear responsibilities, the Reasoning Agent has a complete overview and
the operators are not swamped with alerts.

One important consideration in the design is the intelligence of the Observation Agent. We
have chosen to make it reasonably intelligent: it extracts information and sends it, but it also
knows about its neighbors and the direction of the object. The agent could however be designed
to act even smarter. For example, the Observation Agents could bu↵er the trajectory information
of each object: it sends a short notification to the Reasoning Agent when it detects an object,
but sends nothing else until the object disappears or does something interesting. As long as the
object disappears at some moment in time, the Reasoning Agents receives the same information,
but the network is not transferring all these small messages with single observations. Another
advantage of this approach is that implementing self-alerting Observation Agents is more easy in
this case, because it has knowledge about what events are ’interesting’. However, when the set of
suspicious events in the Reasoning Agent changes, the set of ’interesting’ events in the Observation
Agents is very likely to change too, which is a disadvantage in terms of software maintainability.
Furthermore, the di↵erence and correspondence between ’interesting’ and ’suspicious’ events might
be vague and therefore may potentially cause errors. In other words, the taken approach is very
suitable, since it separates the responsibilities objectively observing the environment and detecting
suspicious events.

4.2 Physical Feasibility

The previous section elaborated on the architecture of the model. This section loses some words
about the physical placement of the agents, since the system operates over a wide area. To realize
the model that is described above, changes are needed at the NLDA. This section is aimed at
exploring the feasibility of implementing the system in the real world. The first subsection below
gives information about the existing equipment and what is required for the new system. The two
subsections thereafter elaborate on two possible configurations.

4.2.1 Requirements

We assume that a working security system is installed. Security guards monitor the camera images
and recorders save the video for later analysis. For the cost estimations in the following sections,
we assume that the following hardware is installed:

• Twenty five analog CCTV tube cameras.

• Coax cables from the cameras to the rest of the equipment.

• Monitors that show the camera output.

• Recorders that capture the video for later usage.

• Workstation for the security guard(s).

• Enough networking equipment (switches and UTP cables).

40 4. Design: Surveillance System Model

Furthermore, we assume that there is a way to receive the same video as the monitors and
recorders get.

The new system must provide processing power to all three di↵erent kinds of agents defined
in section 4.1. We assume that the Reasoning Agent and Alerting Agent each can run on a recent
quad-core server. The current implementation of the Observation Agent runs with about eight
frames per second on a 3 Ghz Dual Core processor from 2007 (using one core). It is assumed
that one recent quad-core server can handle four Observation Agent instances with eight frames
per second, which is higher than the requirement defined in section 3.1. Note that resolution and
image size greatly influence the performance, which means that extra processing power might be
needed to do video preprocessing. This is not taken into account.

4.2.2 Central Processing

One solution is to place several computers in the Surveillance Base Station and let them digitalize,
record and analyze the video streams. This solution is illustrated in figure 4.4.

Figure 4.4: Central processing.

All cameras are attached to a server which runs multiple Observation Agents. A total number
of seven servers are needed, because each server can manage a maximum of four cameras as
mentioned in section 4.2.1. The rest of the servers run the other two agents. The Alerting Agent
delivers its Alerts via the Workstation to the security guards, so these machines are placed on the
same network.

Table 4.1 estimates the costs of this solution.

Each Observation Agent server needs a 4-channel PC card in order to read the camera output.

4.2. Physical Feasibility 41

Table 4.1: Estimated costs of central processing.

Description Model Price ($) Amount Total price ($)

Quad-core servers for
small businesses HP ProLiant ML110 G6 499.00 9 4,491.00

PC card for Protech 4ch 120 fps
video capture MPG DVR Board 399.95 7 2,799.65

Total $ 7,290.65

4.2.3 Distributed Processing

Another approach is to process the video near the cameras. Then each camera would be connected
to a processing unit which analyzes the signal and sends it to the Surveillance Base Station. Figure
4.5 illustrates this solution.

Figure 4.5: Distributed processing.

In this case, each camera is connected to a processing unit which is able to process one camera.
This processing unit (a HP desktop PC in the cost estimation below) connects to the network
in the Surveillance Base Station using the existing coax cables. To enable networking over coax,
adapters are needed on each end of the cable. The rest of the system is similar to the central
processing solution.

Table 4.2 estimates the costs of this solution.
Note that a solution has to be found to get the video from the processing unit to the monitors

and/or video recorder on the Surveillance Base Station. One solution might be to stream the
video via the network, which would require extra equipment to read the streams and supply it to
the monitors and/or video recorder.

42 4. Design: Surveillance System Model

Table 4.2: Estimated costs for the distributed processing.

Description Model Price ($) # Total price ($)

Video processing unit
for each camera HP 500B Microtower PC 344.00 25 8,600.00

PC card Elyssa Corporation EDV-XVAV 53.13 25 1,328.25
for each computer Home Video Capture Card

Cable from camera to PC 10.00 25 250.00

Ethernet over coax adapter Veracity VHW-HW 170.00 50 8,500.00

Quad-core servers for
the two other agents HP ProLiant ML110 G6 499.00 2 998.00

Total $ 19,676.25

4.2.4 Discussion

Comparing both solutions result in the following advantages of each solution. Note that these
advantages are disadvantages for the other solution.

Advantages of Central Processing:

• Only the Surveillance Base Station has to undergo installation activities.

• Its price: $7,789.65 instead of $20,175.25, which is 159% more expensive.

Advantages of Distributed Processing:

• No single point of failure: if for example the Surveillance Base Station has a power failure,
the Observation Agents will still work. To utilize this advantage, the Alerting Agent and
networking switches should be placed outside the Surveillance Base Station and it should
be able to reach the security guards other than using the workstation. Furthermore, the
Observation Agents should be able to communicate to the Alerting Agent directly.

The choice of which solution to use depends on the requirements: if placing equipment near
the cameras is no problem and sabotage is a big issue, distributed processing might be the best
solution. If not, central processing is. We can however conclude that the proposed system is
realistic and can be implemented for less than $8,000 of hardware costs.

The choice of which physical solution to use has an influence on the software design, although
the influence is limited. Imagine that the centralized approach is chosen. Then it does not
matter how our software is organized: distributed or centralized, because distributed software
can often run on a single machine. The limitation comes into play when a distributed solution
is chosen. Large investments are done to install video processing units across the surveillance
area, so it is expected that the software is distributed too. A centralized application would not
su�ce, because the video processing units will be useless and the central servers might not have
enough processing power to run the application. To conclude, the most flexible way of designing a
surveillance application is to make it a distributed application that can also run on a single system
with little e↵ort.

4.2. Physical Feasibility 43

4.2.5 Other options

To make this chapter complete, other possible options are listed below including the reasons why
they are not applied above.

• Make the video processing units wireless. A wireless PC card costs about $50, so it will
save ((2 ⇤ 170)� 50) ⇤ 25 = $7, 250 if a wireless network is already present. However, this
would make the system less stable since wireless networks are influenced by noise and make
sabotage easier.

• Avoid using the coax cable by using usual UTP cables for networking. However, this is very
expensive since these cables need to be put under the ground.

• Replace the CCTV cameras by IP cameras, which support networking over Ethernet by
default (wired or wireless) and have higher resolutions. This is a good option if the CCTV
cameras are not suitable any more. However, it is not needed for the system to work and
outdoor IP cameras cost about $300 - $500 per piece.

5Resources

In order to build a fully functional automatic surveillance system, several components are necessary.
This chapter gives an overview of the resources that are used for the system. Because implementing
the whole system is outside the scope of this thesis, several existing tools are used to be able to
create a working system. These existing tools will be described in the first five sections. Section
5.6 closes this chapter with a description of the datasets we use to test the Observation Agent.

5.1 Object Tracking

5.1.1 Introduction

For human operators it is important to see how objects move through the video. For example,
it is important to know how fast a person or a car is moving. As mentioned before, humans are
generally very capable of tracking objects, even if they move very fast. Our brain predicts where
the object is expected to be in the next moment in time. It is able to do that because we observe
the trajectory of the person and know the context, for example: a person cannot move through a
concrete wall. For a video surveillance system to work properly, it must be able to track objects
too.

For this tracking task we use a tool called Predator [14, 13], also known as OpenTLD. Section
5.1.2 explains the algorithm behind this tool and section 5.1.3 describes the tool itself.

5.1.2 P-N Learning

The software tool Predator uses a new technique called P-N learning [14]. The main idea is
that the tracker learns appearances of the object (positive examples) and its direct neighborhood
(negative examples). The algorithm is able to learn from its mistakes.

The task of the P-N learning algorithm is to learn a classifier that labels each unlabeled sample
from a feature set using an a priori labeled set. This task comes down to estimating the parameter
✓ which is learned from a training set, like with supervised learning. However, unlike supervised
learning, P-N learning iteratively augments the training set by examples from the constraints of
unlabeled data. During the training procedure, each iteration assigns labels to unlabeled examples
using the classifiers trained in the previous iteration. “The constraints are then used to verify if the
labels assigned by the classifier are in line with the assumptions made about the data. The example
labels that violate the constraints are corrected and added to the training set. The iteration is
finished by retraining the classifier with the updated training set. This procedure iterates until
convergence or other stopping criterion” [14]. The conclusion is that the imperfect positive and
negative examples cancel their errors under certain conditions.

This algorithm is applied to video object detection. The problem is stated as follows: “given a

45

46 5. Resources

single example of an object, learn an object detector on-line from unlabeled video sequence”[14].
An object detector is used which uses the scanning window strategy. A Lucas-Kanade tracker
is used to track the object from frame to frame. This tracker is evaluated using the confidence
determined by a normalized cross-correlation between the tracked patch and the patch selected in
the first frame.

Processing the video sequence is done as follows: for each frame, both the detector and the
tracker find the location(s) of the object. “The patches close to the trajectory given by the
tracker and detections far away from this trajectory are used as positive and negative examples,
respectively”[14]. If the trajectory is considered valid (the tracker has a 80% confidence in the
last frame), these examples are used to update the detector. However, if the trajectory is invalid,
the examples are discarded and the tracker is re-initialized.

The algorithm is applied to synthetic data and on real data. The former experiment shows
that using both P and N examples make that errors cancel out, whereas using either P or N give
worse results. The experiment on real data is performed on six video sequences that are all used
in experiments of five other papers. For five out of six video sequences, the algorithm manages to
keep track of the object longer than algorithms described in all other papers.

5.1.3 Predator

Predator is released under the GNU GPL version 3 in April 2011. It is a result of the PhD research
done by Z. Kalal at the University of Surrey Guildford, United Kingdom. It is written in MATLAB
and C++ and makes use of OpenCV [3].

As described above, the algorithm needs one sample before it can be initialized. For Predator
it means that the user needs to indicate where the target object is in the first frame of the image
sequence. The user can do this manually in the dialog window showed in figure 5.1. Here the car in
the foreground is selected by the user. After double clicking inside the rectangle, the algorithm will
start tracking playing the movie and tracking the car. The rectangle will be called the bounding

Figure 5.1: Predator: dialog window for manually defining the initial bounding box.

5.2. Object Classification 47

box from now on. This proces is automated in the implementation described in section 8.1.1.
A second way to provide the bounding box is via a text file. An example dataset that is included

with Predator includes such a text file. If this dataset is fed into Predator, it starts tracking without
asking user input. Figure 5.2 shows how tracking with Predator looks like. Screenshots of three
frames are taken. On the left of each frame the negative examples are shown and on the right
the positive. The number of examples grow through the tracking process, which indicates that
it is learning on the way. In the picture, the motor bike is surrounded by a bounding box. The
algorithm is able to track the motorbike most of the time, although the camera is shaking and
the object sometimes is not fully visible when it takes a jump. Note that the frame rate that
is indicated for each frame includes the time that is needed to create this screenshot. These
screenshots are taken on a 3 GHz dual core computer. The example dataset contains color image
frames, but Predator converts them to gray scale in the process.

The various options of Predator include an option to show the track of the object. Figure 5.3
shows the track of the motorbike until frame #40.

Predator contains 3062 lines of code1 of which 1702 is MATLAB code and 1253 is C++ code.
Before running Predator, a MATLAB script needs to be executed to compile the C++ code. An
example script is supplied which enables the user to run Predator with the motorbike example or
with the input from a webcam.

5.2 Object Classification

5.2.1 Introduction

A video surveillance system needs to be able to distinguish di↵erent kinds of objects in order to
do intelligent reasoning. Imagine that the system observes an object with a speed of 15 km/h. If
it is classified as a car, a cyclist or a bird, this is a normal speed. However, if a person without a
bike would travel with this speed, (s)he is running and something might be wrong. Furthermore,
classification might be useful to determine if the object is interesting. In most situations, animals
like birds or dogs are not interesting. A camera above a highway might only be interested in cars,
trucks and buses. And an airport security system might want to recognize bags to detect if they
are left unattended.

With classification we mean the algorithmic procedure often applied in pattern recognition.
During this procedure, a dataset is collected with a large amount of examples. These are labeled
with the ground truth. For example, if one would like to detect if the picture contains a face,
large amounts of pictures with a face are collected and they are labeled as ’face’. In order to learn
the classifier how non-face images look like, one also collects a large amount of images without
a face and label them ’non-face’. Then the classifier is fed with this dataset. The classifier uses
some algorithm to learn the di↵erence between ’face’ and ’non-face’ images. Often about 10% of
the dataset is not fed into the classifier, because it is used to test the classifier afterwards.

5.2.2 VLfeat

To implement an Object Classifier, an open source library VLfeat2 is used. This library contains
implementations of several computer vision algorithms. Since it is written in both C and MATLAB,
it is a good combination with the MATLAB tracker. The source comes with a sample script called

1 Calculated with CLOC 1.55, downloaded from http://cloc.sourceforge.net
2 http://www.vlfeat.org/

48 5. Resources

Caltech-101 classification that trains and tests a classifier on the Caltech-101 dataset3. This
dataset has pictures of objects in 101 di↵erent classes. Each class consist of 40-800 images. The

3 http://www.vision.caltech.edu/Image Datasets/Caltech101/

Figure 5.2: Predator: overview of tracking the motorbike example.

5.3. Reasoning 49

Figure 5.3: Predator: track of the motorbike until frame #40.

sample script downloads this dataset, trains a classifier with 5 classes and tests it. How we used
this sample application to implement the Object Classifier is described in section 8.1.3.

5.3 Reasoning

To make intelligent decisions, the Reasoning Agent needs some kind of reasoning mechanism.
This mechanism has some requirements. For one, time should be taken into account. If an object
acts suspicious for a period of 15 minutes, it is more suspicious than an object that acts the same
over a 48 hour period. Second, we would like to express a degree of how suspicious a person
is at a certain moment, since we want to avoid lots of false alerts. We introduce the principle
suspicious rate: a degree of how suspicious the object acted during a certain time window. Since
one action is less suspicious than another one, we need some kind of weighting to express that
di↵erence between actions. This section is structured as follows: section 5.3.1 describes how
expert systems are considered as reasoning mechanism. Section 5.3.2 explains why Bayesian
Networks are chosen and shows an example. Section 5.3.3 describes the noisy-OR gate. Section
5.3.4 describes Dynamic Bayesian Networks and shows an example. Section 5.3.5 closes with a
description of the Bayes Net Toolbox for MATLAB.

5.3.1 Expert Systems

A reasoning mechanism that is often used is an Expert System. Basic Expert Systems are con-
structed with the knowledge from field experts. This knowledge is encoded in rules that are
collected in a rule base. When input is fed to the Expert System, the conditions of some rules
might be true and conclusions are drawn. With these conclusions, other rules might fire, and so
on. A major advantage of Expert Systems is that it can explain why a specific conclusion is drawn.
In our case, it could tell us why it draws the conclusion why object X is suspicious. However,
standard Expert Systems can only cope with discrete values, which makes the output discrete.
Since we need a suspicious rate as output, Fuzzy Expert Systems could be seen as a solution. This

50 5. Resources

kind of system can cope with concepts like ’very’ or ’extremely’, so we could work with outputs
like ’a bit suspicious’ or ’very suspicious’. However, the threshold of what is suspicious and what
is very suspicious is defined within the system. We would like the Alerting Agent to determine
when an object is suspicious enough to alert the operators and not the Reasoning Agent.

5.3.2 Bayesian Networks

A good example of reasoning mechanisms where numbers are used is the field of Probabilistic
Reasoning. The Bayesian Network model is used for reasoning with uncertainty based on formal
rules of probability theory [26]. Figure 5.4 shows an example of a simple Bayesian Network (BN).
A BN is a directed acyclic graph which show the relation between random variables. In this case,

Figure 5.4: Example of a simple Bayesian Network.

Entering Forbidden Area and Speeding cause suspiciousness, which we express in the Suspicious
Rate. In this thesis we solely consider boolean nodes which means that each node can take the
value true (T) or false (F). A Condition Probability Distribution defines the probability that the
node is true or false given the state of its parents:

P (X1 = x1 ^ . . . ^Xn = xn) =

nY

i=1

P (xi | parents(Xi))

[23]. The probabilities P (xi | parents(Xi)) are defined by the Conditional Probability Table of
each node. Table 5.1 shows the probability tables for the nodes from figure 5.4.

Table 5.1: Conditional Probability Tables for the Bayesian Network example.

(a) Entering Forbidden Area (X1)

P(X1=T) P (X1 = F)

0.5 0.5

(b) Speeding (X2)

P(X2=T) P (X2 = F)

0.5 0.5

(c) Suspicous Rate (X3)

X1 X2 P (X3 = T)

T T 0.9
T F 0.2
F T 0.3
F F 0.0

Given the network and the CPTs it is defined that if both Entering Forbidden Area and
Speeding are true, P (X3 = T) = 0.9. In other words: if it is observed that the object is both
Entering Forbidden Area and Speeding, the Suspicious Rate is 0.9. Similarly, if only Entering
Forbidden Area is true, the Suspicious Rate is 0.2, etc.

During the reasoning process, evidence is allocated to nodes. Using a process called inference,
conclusions are drawn.

5.3. Reasoning 51

5.3.3 Noisy-OR

In this thesis, the CPT of the Suspicious Rate is determined by a noisy-OR model [21, 5]. Wiggers
et al [27] have used this model for reasoning in a decision support system. The noisy-OR model
simplifies defining the CPT: instead of defining 2

k conditional probabilities, a noisy-OR needs just
k probabilities, where k is the number of parent nodes. For each parent a linking probability is
defined:

Pi = P (Y = T |Xi = T, {Xj = F}nj=1,j 6=i).

Figure 5.5 shows an example with the linking probabilities.

Figure 5.5: Example of a simple Bayesian Network with a noisy-OR.

In the general case, imagine parent node Xi is set to T and the other parent nodes are set to
F . The probability that its child Y is set to T is equal to (1�P1). The disadvantage is that only
binary nodes can be used. To calculate the conditional probability of a general noisy-OR node
given the probabilities of their parents, the following formula is used :

P (Y = T |X1, ..., Xn) = 1�
Y

i:Xi=T

(1� Pi)

For the example of figure 5.5 it means that

P (X3 = T | X1, X2) = 1� (1� 0.3)(1� 0.6) = 0.72.

5.3.4 Dynamic Bayesian Networks

Since we have to take time into account during reasoning, Dynamic Bayesian Networks (DBNs)
are used [18]. A DBN can be defined by two BNs: a prior model and a transition model [26].
Figure 5.6 shows an example of such a DBN definition.

The Suspicious Rate node from time slice 2 has an extra parent: the Suspicious Rate from
slice 1. This way the Suspicious Rate is incorporated in the judgment of the next moment in
time. In other words, if the Entering Forbidden Area and Speeding nodes are true in both slices,
the Suspicious Rate of slice 2 is higher than the rate of slice 1. Using this definition, a DBN
inference algorithm can also reason about consecutive time slices, since the linking probabilities
are not assumed to change over time.

Note that the linking probabilities from figure 5.6 are illustrative: the probabilities used in our
system are defined in section 9.2.1.

52 5. Resources

Figure 5.6: Example of a simple Dynamic Bayesian Network with a noisy-OR.

5.3.5 Bayes Net Toolbox

BNT is an open source MATLAB tool written by Kevin Murphy. This particular tool is chosen
because it supports both Dynamic Bayesian Networks and noisy-OR gates, it is programmed in
MATLAB, the author has written multiple Bayesian Networks papers and the documentation
is clear. It does not come with a GUI, but the user can visualize his Bayesian Networks with
third-party tools or other MATLAB toolboxes.

5.4 Agents

5.4.1 What is an Agent?

Before we explain what agent framework is used, it is explained what we mean by an agent. An
agent in the context of artificial context can be defined as:

“anything that can be viewed as perceiving its environment through sensors and acting
upon that environment through actuators”[23].

An example of an agent is a robotic arm in a factory: it perceives its environment trough
cameras or pressure sensors and works on the product through its arm. A completely di↵erent
agent would be a virtual negotiation agent that perceives its environment (the bids and the virtual
attitude of the opponent) and acts upon its environment by placing bids or walking away. Also
human being and animals are agents, according to this definition.

The kind of agent we use is sometimes referred to as a software agent: it is a piece of software
that acts like an agent. In other words: it perceives its environment and acts upon it. However, we
require the agents to have another property that is common in agent theory: independency. After
configuration is done, the system (and therefore the agents) should be able to work independently
of a user. An exception is the Alerting Agent, which can be implemented such that it alerts the
user according to their current preferences.

5.4.2 Agent Communication Framework

Since the agents need to communicate and we want to implement it in a standarized way, an
agent framework needed to be chosen. For this the master’s thesis from M. Beelen is used [2].
Beelen compares di↵erent agent platforms. His thesis ”explores the possibilities of an application
on a handheld device, providing users of public transportation with an up-to-date advice based on

5.4. Agents 53

the current delay situation on the railroad network in The Netherlands.“ Four agent architectures
are described and compared:

• GALAXY.

• Open Agent Architecture.

• COUGAAR.

• Foundation for Intelligent Physical Agents (FIPA):
”FIPA tries to establish a common standard for agents and agent applications. FIPA does
not specify how the specifications should be implemented, but only specifies the functional
behaviour which the implementation should have.“

Three di↵erent FIPA implementations are described:

• Tryllian Agent Development Kit (Tryllian ADK).

• FIPA-OS.

• Java Agent DEvelopment framework (JADE).

The advantages of JADE are described as follows: ”The user base of JADE is very large,
among which companies like British Telecom, France Telecom, KPN and Philips and universities
like Imperial College of Londen, University of Helsinky and Parma. Several add-ons exists for the
JADE platform implementation. Most notably are the LEAP add-on, which combined with JADE
forms a platform for mobile devices, the Jadex add-on, which makes it possible to design agents
based on the Beliefs, Desires and Intentions (BDI) model, and the HTTP MTP add-on, which
allows agent communication over the HTTP protocol.“

The comparison of the agent architectures and their implementations can be summarized as
follows:

• The disadvantage of GALAXY is that it does not support distributed applications.

• The disadvantages of the Open Agent Architecture is that it is written in the C language,
it does not allow direct communication between agents and it has an unclear license for
commercial use.

• ”The main advantages of the FIPA standard are that it has di↵erent implementations with
their specific benefits and licenses and does not limit agent communications but rather
defines how agents should communicate with each other.“

• There are no restrictions on the use of JADE, LEAP or Jadex because of licenses.

• JADE has the largest user base and the most advanced documentation and development
tools among the described FIPA implementations.

• JADE has extensive possibilities for creating distributed platforms.

• COUGAAR is a very robust and scalable platform.

• COUGAAR lacks the advantages of a large user base like JADE has.

54 5. Resources

• JADE is better documented and easier to use compared to COUGAAR.

• COUGAAR does not comply with the FIPA standard, which makes it impossible to commu-
nicate with other FIPA agent platforms.

• ”COUGAAR o↵ers an interesting alternative architecture for the behaviour oriented or BDI
agent models.“

• ”One of the problems with JADE is how to share information between di↵erent agents.“

• ”An interesting option is to use JADE and COUGAAR simultaneously to combine the
strengths of both and reduce the disadvantages.“

Beelen has chosen JADE as agent framework. The video surveillance system from this thesis
has similarities with the application from Beelen: it is also a distributed agent network. Further-
more, JADE is still under development (last modification is very recent). Therefore, JADE is
chosen for this thesis as well.

5.5 Simulation

5.5.1 Introduction

One possible test setup to test the Reasoning Agent is making several simultaneous video record-
ings, feed it to the Observation Agents and observe how the Reasoning Agent handles it. However,
multiple cameras will be needed for simultaneous video recordings and for both simultaneous and
non-simultaneous recordings a lot of data is generated. Furthermore, when a new scenario needs
to be tested, new recordings have to be made, which is a very time consuming task. Finally, there
may arise other problems like bad tracking results which is caused by bad recordings or failing
Observation Agents, which have nothing to do with the Reasoning Agent itself.

To avoid the problems mentioned above, we designed a simulator with which we can simulate
cars and people moving through the area. By doing this, the input of the Reasoning Agent
is 100% correct and we can focus on the performance of the Reasoning Agent alone. Several
cameras (Observation Agents) are positioned in the area. The input of the dummy Observation
Agents is very simple: a car or person is seen at a certain position. This information is directly
communicated with the Reasoning Agent and this agent will reason about it, which we can check
afterwards.

An important consideration is what information is communicated exactly. The simulator knows
the identity of each object, but the Reasoning Agent does not receive this information. In the
real world, it also receives just the local information from the Observation Agents and it tries to
match the di↵erent observations to see which observations belongs to the same object. Therefore,
the dummy Observation Agents communicate three things to the Reasoning Agent: the class of
the object, the local identification number and the position of the object. The ’local identificaton
number’ is explained in section 7.2. This amount of information is also available in a ’real’
Observation Agent, for except that the class and the position of the object may not be accurate.

The path of the car and/or person has to be predefined by the user, just like the position and
orientation of the cameras. Afterwards, it can be checked if the Reasoning Agent alerted the user
as expected.

5.5. Simulation 55

Figure 5.7: NetLogo with an empty project file.

5.5.2 NetLogo

To implement a simulator, the tool NetLogo [29] is used. ”NetLogo is a multi-agent programmable
modeling environment“ [28]. Figure 5.7 shows the interface of NetLogo when it just started and
the Button dropdown menu is clicked. In the Interface tab (which is enabled in the figure) the
interface of the NetLogo model can be defined by the user. The dropdown menu shows that
di↵erent kinds of elements can be added to the interface: buttons, sliders, switches, etc. The
Code tab gives the user the chance to program the behavior of those buttons, sliders, switches,
etc. The black screen is called the World of the model. It shows the state of the model. In
NetLogo, an agent is called a turtle. They are able to move around in the World. The World
consist of square elements called patches. Section 6.4 shows how our project file looks like.

56 5. Resources

5.6 Data

5.6.1 Our Datasets

To test the Observation Agent we’ve captured several videos with cars and people. Figure 5.8
shows the first dataset.

Figure 5.8: Impression of dataset 1.

The car accelerates and drives away from the camera. This dataset is an exception because
the first frame already contains the object. To compensate for this, the background image is
constructed in such a way that the car is not visible at all.

Figure 5.9 shows the second dataset.

Figure 5.9: Impression of dataset 2.

This dataset shows how a person walks to his car.
The third dataset is shown in figure 5.10.

The frame sequence shows a car that drives towards the camera. In the first frame, the car is
behind trees and other car. So the object does not enter the frame via one of the borders, like
the other datasets.

5.6. Data 57

Figure 5.10: Impression of dataset 3.

Figure 5.11 shows dataset 4.

Figure 5.11: Impression of dataset 4.

This dataset shows a highway. For this thesis we focus on the car that appears on the right
lane in the second frame of figure 5.11.

The last dataset is shown in figure 5.12. It shows a person that walks from left to right.

5.6.2 Privacy

The datasets described above are created and chosen such that they do not reveal sensitive
information about the NLDA. Even more, none of these datasets are recorded on the NLDA area.
Furthermore, the privacy of the drivers and pedestrians are respected: they are not recognizable
or permission is provided if the license plate is readable.

58 5. Resources

Figure 5.12: Impression of dataset 5.

6Computational Reasoning

Chapter 5 described the resources we use for our implementation. Before the internal structure
of the agents will be described in the next chapter, this chapter will explain how we applied the
resources.

6.1 Training the Object Classifier

To enable the system to classify each object we have trained a classifier using VLfeat, a library
that is described in section 5.2. Three classes are defined: CARS, PEOPLE and OTHER. The
first two classes speak for themselves. The OTHER class is introduced to cope with photos of
potential backgrounds: roads, trees, walls, etc. To train the classifier, images are downloaded
from all kinds of scientific sources. The classes CARS and PEOPLE consist of about 830 images
each and the class OTHER has 380 images.

Before we could start training, the existing Caltech-101 classification application needed to be
adjusted. We will not go into detail how it is adjusted, but the coupling with the Observation
Agent will be described in section 8.1.3. It is interesting to mention that the script extracts PHOW
features from each image, that a k-means clustering algorithm is used and that the classifier is a
Support Vector Machine (SVM).

Since the smallest class contains 380 images, a classifier is trained on 342 images and tested on
38 (90% training data, 10% test data). The result was an accuracy of 70.18%. More tests show
that if the number of used images is lowered, the accuracy increased. That indicates overfitting
of the classifier. Eventually 60 training images are used and 10 test images which resulted in an
accuracy of 83.33%. The train/test ratio is changed in order to have a low number of training
image and a su�cient amount of test images. With more e↵ort a classifier with an accuracy
above 95% is feasible. However, with the limited amount of data and time, the current classifier
performance of 83.33% su�ces. Section 9.1.3 shows how the classifier performs on the object
pictures from our datasets.

6.2 Dynamic Bayesian Networks

Section 5.3.4 described Dynamic Bayesian Networks in general. This section elaborates on how
DBNs are applied in the Reasoning Agent. Section 6.2.1 explains the DBNs that are used and
section 6.2.2 describes how the Bayes Net Toolbox is used.

6.2.1 Reasoning Agent DBNs

Figure 6.1 shows the Dynamic Bayesian Network for a car. Two time slices are shown. Both
slices have four nodes, but only the Suspicious Rate node is shown from slice 2. All nodes are

59

60 6. Computational Reasoning

Figure 6.1: Dynamic Bayesian Network for a car.

binary nodes: they can either take the value true or false. The first node, Entering Forbidden Area
represents the action that a car has entered a forbidden area. Stopping on a non-stopping zone
means that the car has a speed of zero where this is not allowed. The node Speeding resembles
the act of driving faster than the speed limit. The last node, Parking on non-parking zone is true
if the car is standing still for a long period where this is not allowed.

Figure 6.2 shows the Dynamic Bayesian Network for a person. Only the nodes Running is
di↵erent from the car network. It represents the act of a person that is running.

6.2.2 Combining BNT and the Reasoning Agent

An attempt is made to implement the Reasoning Agent in such a way that we can easily replace
tools that are used. Regarding BNT it means that we should be able to replace BNT by another
MATLAB toolbox which can build Dynamic Bayesian Networks. Therefor, a small set of MATLAB
functions are created that are used by the (Java) Reasoning Agent. These MATLAB functions use
the BNT toolbox, but if another toolbox is introduce, only these functions need to be rewritten.
If a non-MATLAB tool is chosen for the Reasoning Agent, we cannot use these functions, but

Figure 6.2: Dynamic Bayesian Network for a person.

6.3. JADE 61

that is out of the scope of this section.
The following functions are written to combine the Reasoning Agent with BNT:

• [bnet, engine] = create reasoningagent dbn(inhibit): create a DBN for the Reasoning Agent
with the inhibit probabilities.

• [ev] = create evidence array(bnet): create an empty evidence array for the given DBN.

• [ev, engine] = add evidence(engine, ev, t, newEvidence): add new evidence to the evidence
array of the DBN.

• [s] = get suspiciousness of slide(engine, t): returns the suspiciousness rate of slide t given
the engine.

These functions are called in this order. The functions add evidence and get suspiciousness of slide
are often called multiple times to add more evidence and acquire the new suspiciousness rate.

6.3 JADE

Section 5.4.2 describes why JADE is chosen and provides some details. This section explains
how JADE agents are organized. Figure 6.3 illustrates how the JADE agents of this thesis are
organized. A JADE network can consist of one or more platforms. Each platform contains a Main
Container and zero or more regular containers. A container can contain one or multiple agents.
The Main Container always contains the Agent Management System (AMS) and the Directory
Facilitator (DF). In short, the AMS provides a naming service and is the authority of the platform
while the DF helps agents find each other. Each regular container within a platform is registered
with the Main Container.

The agent network in the example figure runs on three hosts. Host 1 contains the Main
Container and the other two hosts have a container with an Observation Agent. The agents
communicate via the network. New Observation Agents can be added to the regular containers
if they run on the same host. If a new host is introduced, it creates a new container for his
Observation Agent(s). The Alerting Agent is not shown in the figure.

As quickly mentioned above, JADE networks can contain multiple platforms. Agents can com-
municate with each other regardless of the platform they are a member of. The main advantage
of this feature is that a JADE platform can be connected to non-JADE platforms as long as they
obey the FIPA specification. In order to keep it simple we have used a single platform.

6.4 NetLogo

The simulator uses the tool NetLogo described in section 5.5.2. A NetLogo project is created that
performs and visualizes the simulation, shown in figure 6.4. This project file contains code that
loads the map properties, the object configuration and the camera configuration. Furthermore, it
contains code that move the objects through the world given its path. The object information is
passed on to a custom NetLogo extension that communicates the information to the Reasoning
Agent via the JADE framework.

The NetLogo simulator needs three configuration files: a map definition file, an object config-
uration file and a camera configuration file. These will be described below.

62 6. Computational Reasoning

Figure 6.3: Structure of the JADE network.

Map Definition File The area is modeled as a matrix in a text file. The matrix contains the
following integers:

• 0: building - cannot drive or walk here.

• 1: road - a person or car can drive or walk here.

The NetLogo project file loads this file and constructs the map accordingly. Zeros are mapped
to the color green (grass) and ones are mapped to the color black (asphalt).

Object Configuration File The paths of the objects are contained in a configuration file. The
best way to explain the structure of the file is to give an example. The definition of a car can look
like this:

[audi]

class=car

position=8 29

heading=N

path=LRRL9TLS

6.4. NetLogo 63

Figure 6.4: NetLogo project file with a simplified version of the NLDA map.

The first line includes the name of the object between square brackets. This name should be
unique in this file, but is not (yet) used in the implementation. The second line defines the class,
which can be ’car’ or ’person’. The starting position of the object is given in the third line. This
position is defined in world coordinates that originates in the lower left corner of the world. Finally,
the fourth line defines the path of this object. The following tokens can be used (where n is an
integer like ’1’ or ’12002’):

• L: turn left at the next crossing.

• R: turn right at the next crossing.

• G: go straight ahead at the next crossing.

64 6. Computational Reasoning

• S: stop.

• nW: stop and wait for n seconds.

• T: turn around.

• H: hide.

When an object stands still, a L, R or G makes it move again. If a number is used before a L,
R, G, S, T or H, it means that the action must be executed after that amount of meters. For
example, ’9L2S4W’ means: after 9 meters, turn left at the next crossing, then after 2 meters,
stop and wait for 4 seconds. The action hide means that the object is temporarily not observable
by the camera. With this action we simulate mistakes from the video processing and objects that
are hiding intentionally.

The World of the NLDA area is 18x30 patches, which corresponds to the real size of 180x300
meters1. This configuration file is expected to contain world coordinates, because it makes the
placing of the object much easier. Note that decimal numbers can be entered if an increased
precision is needed.

Camera Configuration File A definition of a camera can look like this:

[camera1]

position=8 29

patches=1 30 8 31

The first two lines speak for themselves. The last line defines the 1-D row of patches the camera
observes. Each path between those coordinates is added to a list and if an object moves over one
of those patches, the camera observes the object. For the coordinates the same holds as for the
object configuration file: using world coordinates make the configuration easier.

1 Measured using Google Earth http://earth.google.com/.

http://earth.google.com/

7Design: Structure of the Agents

Chapter 4 described the surveillance system model. This chapter will zoom in on the internal
structure of the agents themselves.

7.1 Overview

The system model described in figure 4.3 consists of several agents. Figure 7.1 repeats this model,
but here the agents are schematically displayed. The following sections zoom in on the structure
of each agent.


















Figure 7.1: System Model with schematically displayed agents.

65

66 7. Design: Structure of the Agents

7.2 Observation Agent design

An Observation Agent processes the video that it receives from one camera. Its main task is to
extract information about the objects that move around in sight of the camera. This information
consist of the position of the object at each time instance and the classification: is it a car or a
person? Figure 7.2 on the next page shows the structure of an Observation Agent. The following
paragraphs describe the elements from this figure.

Input The agent receives a video stream from its camera.

Object Detector The Object Detector searches for moving objects, determines a bounding box
and sends it to the Object Tracker.

Object Tracker The task of the Object Tracker is to follow the object in consecutive frames
and to give the trajectory to the Communicator. A trajectory consists of a list with timestamped
positions. In this example, a trajectory of three positions are shown. During the tracking process,
the Object Tracker has collected multiple pictures of the object which is passed to the Object
Classifier.

Object Classifier An Object Classifier determines what kind of object it is. In this example,
object A is classified two times as a car and then as a person, which is of course a mistake of the
classifier. This information is passed to the Communicator.

Communicator The Communicator combines the information and sends it to the Reasoning
Agent. With predefined knowledge, the agent is able to determine if an object is headed to one
of his neighbor Observation Agents. If that is the case, it sends the tracking information to its
neighbor. This tracking information is useful for the Object Tracker of the other Observation
Agent because it includes the di↵erent poses of the object that are observed by the first agent.
The Communicator is a special module in the sense that it has access to all information inside the
Observation Agent. For example, the tracking information which is sent to the neighbor agent is
coming from the Object Tracker.

The dashed lines and modules represent the parallel tracking of a second object. The Object
Detector is able to detect multiple objects in one frame. In this example two objects are detected:
object A and B. Furthermore, the Object Detector is able to determine which object is being
tracked by a tracker and which one is not. If not, a new tracker and a new classifier are initialized.

An aspect which is not shown in the figure is that the timestamped position and object
classification is labeled with an internal object ID, in this case object A or B. This internal ID is
useful for the Object Detector to keep track of which objects are present, but is also very useful
for the Reasoning Agent. If one Observation Agent labels two objects to be object A and B, the
Reasoning Agent trusts this judgment and will never conclude that object A and B are the same
objects. This is because the Observation Agent is able to di↵erentiate objects based on physical
features while the Reasoning Agent is not.

7.2. Observation Agent design 67



















































Figure 7.2: Structure of an Observation Agent.

68 7. Design: Structure of the Agents

7.3 Reasoning Agent design

The main task of the Reasoning Agent is to generate an alert in case of suspicious behavior.
From the observations received from the Observation Agents, conclusions can be drawn upon the
actions of the object. For example, the Reasoning Agent can determine if a car exceeds the speed
limit or drives on an area where it is forbidden to drive. In section 3.3 six scenarios are defined
which should be recognized by the system.

Most of the scenarios need predefined knowledge: it should be known where it is forbidden to
walk, to stop or to park. Furthermore, information is needed about the positions of the cameras.

Figure 7.3 schematically shows the structure of the Reasoning Agent. A Receiver receives the
object information from the Observation Agents and stores it in a central Event Database. Then
Interpreters interpret this data and draw conclusions from what events have taken place exactly.



 

















Figure 7.3: Structure of the Reasoning Agent.

7.3. Reasoning Agent design 69

For example: the object has been speeding or parked on a non-parking area. To draw these
conclusions, predefined knowledge is needed like the speed limit and the ROIs. The Reasoning
part reasons about the events and determines how suspicious each object is. When an alert needs
to be send, this is done via the Sender to the Alerting Agent.

In order to provide more details of the Reasoning Agent, the software design is described
here. The complete Reasoning Agent can be summarized by the UML diagram of figure 7.4.
The function of the Receiver is assigned to the ObservationWriter class. The observations are
written to the Whiteboard, which corresponds to the Event Database. The roles of the Interpreters
are filled by the IdentificationWriter and the ActionWriter. They add more information to the
Whiteboard. The ReasoningEngine, which encompasses the Reasoning part, reads the contents
of the Whiteboard and then reasons about it. Conclusions (alerts) are sent to the Alerting Agent
by the ReasoningEngine. The Sender is included in the ReasoningEngine for simplicity. The
BoardWiper is introduced to limit the memory that Whiteboard occupies. The Whiteboard is
required to have 30 minutes of data and the BoardWiper regularly cleans the old data. The rest
of this section describes the most important parts of the design and gives more details.

Figure 7.4: Reasoning Agent summary class diagram.

7.3.1 Whiteboard

This class gets it name from an element that is found in most o�ces: a white board. Occasionally,
people use it to write or draw their ideas. Adjustments can be made by adding more information
to it or removing some parts. This concept is used for the Reasoning Agent because we need a
central place to save the data. Note that this concept is similar to the Blackboard architectural
model used in the area of artificial intelligence.

Figure 7.5 shows an example of how information is added to the Whiteboard. Three stages

70 7. Design: Structure of the Agents

Figure 7.5: Illustration of the information flow on the Whiteboard.

are shown. The first stage illustrates the situation when the ObservationWriter has done its job.
Six time steps are shown. Each time step takes two seconds. For each object and each time
step, a TimeWindow object is created which holds all information for these two seconds for that
particular object. A time range of two seconds is taken instead of the individual observations from
the cameras, because it reduces the amount of information that has to be processed. For example
the average speed can be determined, which can not be done for an individual observation. Three
objects are shown, because the cameras identified three di↵erent objects. It is not shown which
object is observed by which camera, so it is possible that all objects are observed by a single
camera, by three di↵erent ones or something in between. At this point, the object ID for the
ReasoningEngine is determined by a combination of the camera ID and the local object ID from
the camera. In this case, all TimeWindows with a blue color have observations with the same
camera ID and local object ID from that camera (not shown in the figure). The red TimeWindows

7.3. Reasoning Agent design 71

either have a di↵erent camera ID or the same camera ID and a di↵erent local object ID compared
to the blue ones.

The second stage shows the situation after the IdentificationWriter analyzed the contents of
the Whiteboard and has written the right identification to it. In this example, IdentificationWriter
discovered that Object 1 and 3 actually are the same object and they are merged into object A.
Object B contains exactly the same TimeWindows as Object 2 in the first stage.

In the third stage, the result of the ActionWriter is shown. It analyzes each TimeWindow
and adds Actions to it if a violation is detected. In this example, two actions are attached to five
TimeWindows.

To make this process run smoothly, some mechanism is needed to tell classes that the White-
board has changed. The Observer Pattern is used [16] as a model for this mechanism. This
pattern describes the relationship between an Observer and Observable. The strength of the pat-
tern is that the Observable has no knowledge about the Observers. The only requirement is that
the Observers are added to the Observable and the Observers have a method that is called when
the Observable has changed.

In the case of the Reasoning Agent, the Whiteboard is of course the Observable and the writ-
ers and readers are Observers. The standard Java library contains interfaces which make it very
easy to implement this pattern. However, since the Whiteboard will be changed very frequently, it
should be avoided that every class receives all updates. Therefore, a customized implementation is
made. Every reader or writer is subscribed to a certain event. For example, if a new TimeWindow
is written to the Whiteboard, the Whiteboard will only notify the writers and readers that are
interested. This is illustrated in figure 7.6. It shows that the IdentificationWriter, ActionWriter
and ReasoningEngine can be subscribed to the MultiObservable class for di↵erent Events using
the method addObserver(Event, WhiteboardObserver). An Event is an enumeration which will
be explained in section 8.2. When the Whiteboard changes, the method notifyObservers(Event,
Object) is called and the three aforementioned classes receive the update via the update(Event,
Object) method they implemented. Note that the links between the three classes and the Mul-
tiObservable class are absent. This is because the classes are subscribed to the MultiObservable
by another class. This has been done to make the classes as decoupled as possible. Compared
to figure 7.4 it is noticeable that the ObservationWriter and BoardWiper are not shown. That
is because these two classes are not interested in any changes on the Whiteboard. Also the links
between the three classes and the Whiteboard are not shown, because this figure only illustrates
how the classes receive their updates. Their link with the Whiteboard is related to the changes
they make to that class and not the changes they receive.

Figure 7.6: Class diagram that illustrates the Observer Pattern.

72 7. Design: Structure of the Agents

This raises the question how the writers make changes to the Whiteboard. If we would
implement the Whiteboard like figure 7.4 suggests, the Whiteboard class would become a fat
class and all classes would depend on a lot of public methods. The Interface Segregation Principle
states that classes should not depend on fat interfaces . For our situation this means that
the Whiteboard will implement several interfaces and the classes which use the Whiteboard are
not given the complete Whiteboard with all the public methods, but instead a clean interface is
given. In this way, the classes depend on just the small number of methods they really need. The
interfaces are shown in figure 7.7.

Figure 7.7: Class diagram that illustrates the interfaces.

7.3.2 Readers and writers

The ActionWriter reads from the Whiteboard and interprets the data. For example, it checks if
the speed of the time window exceeds the speed limit. If so, it attaches an action to this time
window. The area-specific data like a speedlimit is contained in the AreaModel.

The ReasoningEngine does not write to the Whiteboard, but only reads from it. Its task is to
draw conclusions about the behavior of the objects. It builds upon the work of the Identification-
Writer and the ActionWriter. It reads the object information and list of actions and fills a DBN
for each di↵erent object. As described in 5.3.5, the Bayes Net Toolbox for MATLAB is used for
these DBNs. In order to connect to MATLAB the tool Matlabcontrol1 is chosen. This coupling
from Java to MATLAB is designed such that it is relatively easy to replace the Matlabcontrol tool
or the Bayes Net Toolbox. This design is shown in figure 7.8. The advantage of this design is

1
http://code.google.com/p/matlabcontrol/

http://code.google.com/p/matlabcontrol/

7.4. Alerting Agent details 73

Figure 7.8: Class diagram that illustrates the coupling with BNT.

that the BNTDynamicBayesianNetwork could be replaced by a class that uses another MATLAB
toolbox, as long as it implements the DynamicBayesianNetworkInterface. If in the future DBNs
will be controlled by a toolbox that is not written in MATLAB, the class Matlabcontrol can be
replaced by a class that controls this toolbox.

7.4 Alerting Agent details

The Alerting Agent receives alerts from the Reasoning Agent. The Alerting Agent is responsible
for bringing the right alerts to the attention of the security guards. A simple Alerting Agent would
just forward each alert to the Surveillance Base Station. Smarter Alerting Agents would sound an
alarm for critical alerts, send normal messages for less critical alerts and repeat them if users do
not respond.

’Sending messages’ can be interpreted very broadly. It could send e-mails or SMS messages.
Also the Alerting Agent can display messages using a web interface. Another useful output would

74 7. Design: Structure of the Agents





















Figure 7.9: Structure of the Alerting Agent.

be an audible alarm.
The structure of the Alerting Agent is illustrated in figure 7.9. A Receiver receives all messages

from the Reasoning Agent. They are entered in a central Alert Database. Then the module
Alerting Logic uses logic and the Alert Configuration to determine if an alert must be forwarded.
And if so, the Alerting Logic component decides if the alert is shown on the GUI or an Actuator
is enabled. Via these two modules, the alert reaches the user. The main advantage of the
Alerting Agent is that it knows about the alerts of the system via the Reasoning Agent and the
user preferences via the Alert Configuration. The system could for example send the same alert
multiple times per second, but the Alerting Agent can contain logic that makes sure that the user
will be alerted with a lower frequency. Furthermore, the GUI can be created as such that there
is a di↵erence between high-priority alerts and low-priority alerts. Examples of an Actuator would
be an alarm bell or a flashing light.

This agent is not implemented, so no class diagrams are made to design the Alerting Agent.

7.5 Summary

If one looks at the tasks that are prominent in the system, three main tasks can be identified as
shown in figure 7.10.

Feature Extraction encompasses the extraction of position and class from the frame image,

7.5. Summary 75

Figure 7.10: Main tasks in the surveillance system.

but also the speed and curvature that can be concluded from consecutive positions. Semantic
Interpretation is the task of interpreting this class, speed and curvature to recognize suspicious
behavior. The last task called Inference combines these recognized suspicious behavior over time
and draws conclusions about them. One could consider the tasks Semantic Interpretation and
Inference as the tasks that handle the reasoning.

Figure 7.11 shows how these tasks are distributed over the agents. The Observation Agents
are obviously the first step in Feature Extraction: they observe objects in the environment and
determine their position and class. When this object information reaches the Reasoning Agent,
the ObservationWriter creates TimeWindows which calculate the speed and curvature for their
Observations. Therefore, the first part of the Reasoning Agent is also colored green. The Semantic
Interpretation is done by the IdentificationWriter and ActionWriter. The IdentificationWriter
makes sure that the right observations are coupled to the right objects. The ActionWriter analyses
the speed and curvature from the TimeWindows and conclude if they are parking, speeding,
etc. If so, Actions are attached to the TimeWindow. Finally, the Inference is performed by the
ReasoningEngine: it reads the actions from the TimeWindows and adds evidence to the Dynamic
Bayesian Networks it possesses.

Table 7.1 gives a summary of the information flow throughout the system. It is shown how
the data of one Observation Agent is interpreted by the Reasoning Agent and it reveals the inner
workings of the agents.

The Observation Agent observes the camera images and sends a tuple to the Reasoning
Agent. This tuple consist of time ti, internal object ID oi, object position pi and class ci.
The ObservationWriter writes this information to the Whiteboard in the form of TimeWindows
wi for i = 1, 2, 3. Each TimeWindow calculates its speed and curvature. The IdentificationWriter
interprets this information and checks if the two objects that the Observation Agent identified
are really di↵erent objects. Then the ActionWriter applies its rules to determine the actions of a
TimeWindow. Three rules are shown. The ReasoningEngine reads those actions, feeds evidence
to the DBNs and reports the new suspicious rate of each object to the Alerting Agent. If this rate
exceeds a certain threshold, the Alerting Agent will alert the operators.

76 7. Design: Structure of the Agents

Figure 7.11: Distribution of the tasks among the surveillance system.

7.5. Summary 77

T
ab
le

7.
1:

S
um

m
ar
y
of

th
e
in
fo
rm

at
io
n
flo

w
in

th
e
sy
st
em

.

O
b
se
rv
at
io
n

R
ea

so
n
in
g
A
g
en

t
A
le
rt
in
g
A
g
en

t
A
g
en

t
O
bs
er
va
ti
on

W
ri
te
r

Id
en
ti
fic
at
io
nW

ri
te
r

A
ct
io
nW

ri
te
r

R
ea
so
ni
ng

E
ng

in
e

(
t

1
,
o

1
,
p

1
,
c

1
)

9 > > > = > > > ;

if
c

i
=
=

ca
r
an
d

sp
ee
d
>

lim
it
!

ev
id
en
ce

fo
r

D
B
N

!
su
sp
ic
io
us

ra
te

if
su
sp
ic
io
us

ra
te

>

th
re
sh
ol
d,

al
er
t

(
t

2
,
o

1
,
p

2
,
c

2
)

T
im

eW
in
do
w

w

1
S
P
E
E
D
IN
G

(
t

3
,
o

1
,
p

3
,
c

1
)

(
t

4
,
o

1
,
p

4
,
c

1
)

9 > = > ;
T
im

eW
in
do
w

w

2

if
9
p

i
2

fo
rb
id
de
n

ar
ea

!

(
t

5
,
o

1
,
p

5
,
c

1
)

E
N
T
E
R
IN
G

F
O
R
-

B
ID

D
E
N

A
R
E
A

(
t

6
,
o

2
,
p

6
,
c

1
)

)

T
im

eW
in
do
w

w

3
if
o

1
=
=

o

2
,
m
er
ge

w

2
an
d
w

3

if
c

i
=
=

ca
r
an
d

9
p

j
2

no
n-
pa
rk
in
g

ar
ea

an
d
sp
ee
d
⇡

0
fo
r
th
e
pr
ev
io
us

60
se
co
nd

s

F
or

ea
ch

T
im

eW
in
do
w
:

!
P
A
R
K
IN
G

O
N

N
O
N
-P
A
R
K
IN
G

Z
O
N
E

sp
ee
d
:
=

N
�
1

X i=
1

di
st
an
ce
(
p

i,
p

i+
1
)

t

N
�
t

1
cu
rv
at
ur
e
:=

..
.

..
.

8Implementation

As mentioned in section 1.5, the implementation is divided in a single camera part and a multi-
camera reasoning part. Section 8.1 describes the implementation details of the Observation
Agent, which represents the single camera part. Section 8.2 describes the implementation details
of the Reasoning Agent that belongs to the multi-camera reasoning part. Section 8.3 covers
the choices made regarding JADE. Section 8.4 described how tests are performed during the
implementation and section 8.5 closes with a list of features that would be a valuable addition to
the implementation.

8.1 Observation Agent

As described in section 7.2, the Observation Agent consists of four modules called Object Detector,
Object Tracker, Object Classifier and Communicator. The Object Tracker is taken as a basis of
the Observation Agent. It is extended with several functionalities we will describe the following
subsections. The module Communicator is not implemented.

8.1.1 Object Detector

For Object Detection we chose to implement Background Subtraction , because it quickly gives
reasonable results. For this technique, a picture of the scene background picture should be
available. This means that we assume the cameras are static. Furthermore, lighting variations
might cause problems in the future.

This is how the Background Subtraction is implemented:

function detect object
begin

while ¬end of video stream do
frame := get next frame(); // gets next frame of the video stream

bb := get bounding box(frame);
if bb not empty
return bb;

end
end

end

79

80 8. Implementation

function get bounding box(frame)
begin

bg := load background image(); // loads background image from disk

di↵erence image := bg � frame;
return bounding box around largest object in di↵erence image;

end

In essence, the function detect object waits for an object to appear and returns the bounding
box if it perceives the object.

The object detector currently does not support the detection of multiple objects, because the
Object Tracker (described below) does not support multiple objects either. When support will be
added in the future, it means that the algorithm needs to make bounding boxes for the largest n
blobs instead of just the largest, where n is the number of objects with su�cient size.

8.1.2 Determine Object Position

If the Object Tracker has determined the bounding box, we can use it to determine the position
of the object. With the position of the object we mean where the object is located in the real
world. Before this can be done, a map of the surveillance area is needed. To map a point on the
camera image to the real world, a perspective mapping is performed. The user has to define four
points on the camera image and supply the coordinates in the real world. These four points and
their real world coordinates are saved to a text file called perspective.txt.

This is how determining the object position is implemented. To initialize, the following code
is executed:

The field tld.source.input contains the path to the input video sequence. If the file
perspective.txt exists, the perspective transformation matrix is determined using the self-
written function get perspective matrix. This function uses the MATLAB function maketform
and is not interesting enough to show here. For each frame, code from figure 8.1 is executed.

This piece of code appends the position of the object in the current frame to the file
trajectory.txt in the output folder. The if-statement checks if the save-trajectory feature is
enabled. The variable tld is the global struct that is used throughout the Predator code. We
extract the bounding box from this variable, determine the center and determine the position
(x,y), which is defined as the point on the center of the lower bounding box edge. Then the real
world position (u,v) is determined using the MATLAB function tformfwd and the transformation
matrix. If no transformation matrix is initialized because perspective.txt was absent, only the
position on the image is taken. The position is appended to the trajectory file using the MATLAB
function dlmwrite. An example of the contents of trajectory.txt is shown below.

26 277.47 259.47 -1.3068 34.489

27 277.88 259.81 -1.2962 34.455

8.2. Reasoning Agent 81

Figure 8.1: Piece of MATLAB code that is executed for each frame.

One requirement is that the camera does not move during the frame sequence. This piece of
code saves the trajectory to disc, but with the same ease it can be saved to memory so that the
Communicator module can send it to the Reasoning Agent.

8.1.3 Object Classifier

In section 6.1 is described how the Object Classifier is trained. This classifier is coupled with the
Observation Agent by a single function called classify object, which is shown in figure 8.2.

A picture of the object is given as parameter. If the classifier (model) is not loaded yet, some
settings are loaded using the function load classifier settings and the model is loaded. Finally, the
class and score is determined by calling the function classify that is built into the classifier during
training. The meaning of the score variable is not found. It was expected that it would indicate
the classifier’s certainty, but occasionally the number is negative or NaN (Not a Number).

8.2 Reasoning Agent

The design of the Reasoning Agent is described in section 7.3. This section will summarize how
the Reasoning Agent is implemented and it will highlight the most important implementation
decisions.

The core of the Reasoning Agent is the Whiteboard: it contains all relevant data and most
components read from or write to this class. During the initialization of the Reasoning Agent, the
readers and writers are registered to the Whiteboard as shown in figure 8.3.
The first two lines create a Whiteboard and an ActionWriter. Note that the ActionWriter con-
structor expects an ActionInterface, which is implemented by the Whiteboard. The third line
adds the ActionWriter (that implements the WhiteboardObserver interface) to the Whiteboard as
observer for the OBJECT MUTATION event. This piece of code could be shorter if the Action-

82 8. Implementation

Figure 8.2: Source code of the MATLAB method classify object.

Figure 8.3: Registration with the Whiteboard.

Writer would add itself to the Whiteboard. However, it does not know about the Whiteboard,
because it received an ActionInterface via this constructor. That is exactly why we initialize the
ActionWriter in this way: it has no knowledge of the whole Whiteboard, but only about the limited
set of methods it uses.

The following piece of code shows a very simple method that shows how an Event is generated
inside the Whiteboard.

This method is called by the ObservationWriter if it constructed a new TimeWindow. The first
line registers that something has changed that needs to be updated to the observers. The second
line really notifies the observers about this new TimeWindow. Note that the Whiteboard does not
save the TimeWindow, although that might be a logical step. With the current implementation,
the Whiteboard does not need the TimeWindow in any point of time. Other Whiteboard methods
are more complicated in the sense that they have to perform some actions on the incoming object

8.3. Agent communication 83

before they notify the observers.

8.3 Agent communication

8.4 Testing

Several tests are done during the implementation. Because of the nature of each agent, tests are
done in di↵erent ways.

Before the Observation Agent existed, several tests are done with Predator. Datasets are
downloaded or captured and fed to the tracker. Because the Object Detection was not imple-
mented yet, the first frame had to contain the object and a bounding box must be defined. The
main purpose of those tests were to see how Predator works and to see if it performs well enough.

During the development of the Observation Agent, some tests are done using debug lines. For
example, when developing the Object Detector, a debug line printed how many di↵erent objects
were found in the image and what the size of the largest object is. Other debug lines produced an
image. These tests showed that a certain function works, but also helps in the configuration of the
function. Sometimes a small MATLAB file is created that tests a certain functionality separately
from the rest of the agent.

The most important tests with the Observation Agent is starting it and watch the result.
Several di↵erent datasets are given to the Observation Agent to see how they are handled. A
subset of those datasets is described in section 5.6.1 and the results are shown in section 9.1.

The Reasoning Agent is of course evaluated by the Simulator, but unit tests are created during
the development to assure that individual units work properly. All unit tests are created using
the JUnit testing framework1. Every relevant class has a unit test class which tests the relevant
methods. This results in 19 tests spread over 8 test classes.

Most tests of the JADE classes are very simple: an attempt is made to create a JADE network,
a message is sent and the receiver print this message.

8.5 Future Implementation

The previous sections described the performed implementations. This is a list of pieces that are
not implemented, but would be useful for the system in the future:

• Video saving/handling: the tracker (and therefore, the Observation Agent) reads still images,
while the cameras produce video streams. So software is needed to either enable the tracking
to read streams or convert the streams to single images. In the latter case, the tracker still
needs to be adjusted so it keeps checking the disk for new frames.

• Multiple object tracking: this requires the tracker to be extended. It uses one global variable
to save everything, so this variable needs to be able to hold information of multiple objects.
Furthermore, adding and removing objects should be implemented. Finally, the Object
Detector module and the IdentificationWriter class need to be adjusted.

• Pan-Tilt-Zoom support: to expand the area that is under video surveillance without installing
significantly more cameras, Pan-Tilt-Zoom cameras can be a great solution. However, the
background subtraction algorithm as well as the perspective transformation to determine

1 http://www.junit.org/

84 8. Implementation

the object’s position assume a fixed camera. However, if these two Observation Agent issues
are solved, the system is able to handle Pan-Title-Zoom cameras.

• Section 3.1 stated that we require the system to have a frame rate of at least one frame
per second. However, when something suspicious happens it might be interesting to tem-
porarily increase the frame rate in order to supply the Reasoning Agent with more detailed
information.

• Communication with the Observation Agent: currently, the simulator is able to communicate
with the Reasoning Agent via JADE. However, the Observation Agent itself is not able to
communicate at all. This is assumed to require little e↵ort, since the JADE Java classes are
already implemented for the Reasoning Agent and MATLAB supports calling Java classes.

• Alerting Agent: this agent is not implemented, as alerts are now just printed to the console.
An alerting agent can manage the way alerts are presented to the Surveillance Base Station.

• Smarter Reasoning: the Reasoning Agent has a basic reasoning network, but it can easily be
extended to do more complex reasoning. For example: more nodes can be added, continuous
nodes nodes can be introduced and more actions can be invented.

• Object matching in the Reasoning Agent: currently the Reasoning Agent only can identify
objects based on the naive assumptions that every observed object is already known, unless
it is proved otherwise. It would be very useful if it could receive the object information
from the Object Tracker and still images of the object. In this way, the agent can also
distinguish objects based on their visual properties. Furthermore, identifying non-physical
features would improve the system even more. To give an example: imagine two marines
walking down the street. They look very similar due to their uniforms. However, the style
of walking might be a feature that distinguishes the two. One significant advantage is that
this feature is not camera-specific.

9Experiments

This chapter describes the experiments that show the performance of the implemented prototypes.
Section 9.1 describes the experiments done with the modules of the Observation Agent and section
9.2 describes the Reason Agent performance. Both sections describe how the experiments are
executed and their results.

9.1 Observation Agent

As described in section 8.1, three modules are implemented: Object Detector, Object Tracker
and Object Classifier. These modules are tested separately, since they have distinct tasks and are
dependent on each other. The experiments are described below.

To test the modules of the Observation Agent, input is needed. Therefore, several videos are
recorded that function as input datasets, as described in section 5.6.1.

9.1.1 Object Detector

Setup An Object Detector performs well if it detects most objects that are visible on the video.
Since our implementation is based on background subtraction, we only consider ’new’ objects:
moving objects that were part of the background are avoided in the datasets. Furthermore, the
Object Detector is expected to focus on the largest objects if multiple objects appear in the frame.
Finally, given the implementation, we expect the Object Detector to detect objects that are at
least two pixels away from the boundary of the frame.

Now that we know the context, we can describe the experiment. Most datasets start with
at least the first frames without any objects. For those datasets, the first frame is labeled that
contains an object that is at least two pixels away from the frame border. Then the frame sequence
if fed to the Object Detector and it prints which frame is the first one that includes the full object.
The (absolute) di↵erence between the true and measured frame numbers is taken as performance
measure.

Another property that can be considered is the quality of the bounding box. The Object
Detector performs very good if the resulting bounding box is the smallest square around the
object without excluding parts of the object. If a bounding box is chosen too large or too small,
the performance is worse. However, we did not test this property because we limit ourselves to
basic tests in this thesis.

Results Table 9.1 shows the results of the Object Detector experiments performed on the five
datasets described in section 5.6.1. The result for dataset 3 is missing, because the object appeared
in the middle of the frame. Of course, the object was detected, but it is di�cult to define a ground
truth.

85

86 9. Experiments

Table 9.1: Results of the Object Detector experiments.

Dataset Ground truth frame # Detection frame # Absolute di↵erence

1 63 68 5

2 99 111 12

3 - - -

4 8 9 1

5 20 17 3

Mean 5.25

The di↵erence of dataset 2 seems large: 12 frames. But the camera used to record the datasets
had a frame rate of 25 frames per second. So in this case, the tracking started 12 / 25 = 0.48
seconds later than it should. This result is acceptable, especially when keeping in mind that the
frame rate is required to be 1 fps and a normal system can process about 8 fps. Considering this
analysis, the mean di↵erence of 5.25 is a good result.

9.1.2 Object Tracker

Setup Kalal et al [14] compared the performance of Predator to other algorithms “in terms of
the frame number after which the tracker doesn’t recover from failure”[14]. Their purpose of this
first experiment was to show that Predator outperforms other algorithms thanks to its learning
features. The second experiment in that paper shows the internal performance of Predator which
proves the advantage of the learning algorithm. In contrast, our purpose is to determine if Predator
is suitable for a surveillance system. A disadvantage of their approach for the first experiment is
that false positives are not taken into account: since each frame of the dataset includes the object,
Predator is not being tested on frames where the object is absent. Therefore we introduce another
way of measuring Predator’s performance: the number of frames that Predator is correct. We
define correct as: Predator tracks (part of) the target object. So incorrect would be if Predator
starts tracking another object or the background. For our application, we are mainly interested in
the position of the object. Therefore, we think it is not a problem if Predator tracks part of the
object. Nevertheless, it will be mentioned in the results when it happens, because it might cause
problems for the Object Classifier.

During this experiment, the Object Tracker receives a dataset with the object on the first
frame and a (correct) bounding box around the object. Then we count the number of wrong
frames and divide it by the total number of frames to calculate the error.

Results Table 9.2 shows the results of the Object Tracker experiments.
The error for dataset 1 is .0000, but about 61 frames show a bounding box that is significantly

larger than the object: less than 50% of the bounding box is filled by the car.
The large number of wrong frames for dataset 2 is caused by the fact that the tracker starts

tracking a part of the road when the person almost reaches its car. This phenomenon is observed
for dataset 5 too and also datasets not described in this report show this weakness of Predator.
A possible explanation is that Predator has learned too much about the background (road) that
causes it to track the background when the actual object is getting smaller. Note that the error of

9.1. Observation Agent 87

Table 9.2: Results of the Object Tracker experiments.

Dataset Wrong frame count Total frames Error

1 0 90 .0000

2 228 553 .4123

3 0 469 .0000

4 0 142 .0000

5 77 473 .1628

Mean .1150

datasets 2 and 5 most probably would be higher if the frame sequence is extended. Similarly, the
error would be lower if the tracker is stopped when the object is not tracked correctly any more.
Of course, Predator has its own mechanism to do that, but it might be possible to improve the
performance in the future by using the data from the Object Detector.

Furthermore, during several experiments, the tracker does not smoothly track the object:
sometimes it does not move, while the object does. Most of the times it recovers after a few
frames and continues tracking the moving object.

Note that the datasets are captured with a frame rate of 25 fps. For future experiments, it
would be useful to test Predator using frame rate used in the system, which would be between 1
and 8 fps. It is expected that Predator will not perform worse, because several demo movies on
the Internet show that Predator is able to cope with rapid movements and shaking cameras. We
might even observe a better performance when using a lower frame rate, because it is possible
that Predator does not learn too much about the background any more.

The result is reasonable good: three datasets are correctly tracked and two datasets perform
worse because of the background tracking problem. In the future this problem might be tackled
using a lower frame rate and the information from the Object Detector. The beginning of dataset
5 nicely showed that Predator is able to learn: the first couple frames only tracks the front part of
the person, but after a while Predator has learned how the full person looks like. Overall, Predator
is considered as a good tracker to determine the object position.

9.1.3 Object Classifier

Setup Testing the Object Classifier brings some challenges. Feeding it with the contents of the
bounding box of the tracker might give bad results if the tracker fails. Even more, imagine that
the Tracker tracks a part of a car. Then the Object Tracker succeeds, but the Object Classifier
most likely fails. A possible solution is to manually cut out the objects in case the Object Tracker
fails or tracks part of an object. However, this can potentially take a lot of time. Furthermore,
there might exist a di↵erence between the way the Object Tracker ’cuts’ the object from the frame
and the way humans do that, which will influence the results in a negative way.

Another approach would be to make a test set of images from all kinds of sources. Actually,
this is done to test the quality of the classifier, described in section 6.1. However, here we tested
the performance of the classifier on the images that are similar to to the training images. We could
download new images and see how the classifier performs, but that would indicate the performance
of the new images instead of the output from surveillance cameras.

88 9. Experiments

Therefore, another approach is taken. For each dataset, the contents of the bounding box is
(automatically) extracted, which gives a series of pictures of the object, as long as the Object
Tracker did a good job. Then only the right pictures are fed into the Object Classifier. ’Right
picture’ is defined as: a picture mainly consisting of a large portion of the current object. So a
picture of a person and a tree is incorrect, since it should mainly contain the person. And a picture
of the torso of a person is also incorrect, because a large portion of the person should be visible.
Most pictures will contain a low number of pixels, but this should not influence the judgment of
a ’right picture’, as we consider the performance of the Object Classifier in the context of video
surveillance.

Results Table 9.3 shows the results of the Object Classifier experiments.
The first observation is that the results are bad in general: on average, more than 61% of the

pictures are wrongly classified. That means that the performance would be better if we randomly
choose between cars and people.

The best result is gained with dataset 4 (about 7% wrongly classified). A close look to the
pictures reveals that the classifier was able to classify it as a car, although the pictures become
as small as 8x7 pixels. When looking at the results from this dataset, it appears that the last 63
classification scores are all NaNs. The meaning of these scores is not documented, but it might
give an indication that the classifier was unable to classify the picture. These 63 pictures are
23x21 pixels or smaller. Regardless of the NaN, the pictures are correctly classified as a car. That
is why the result with dataset 4 is very good. It is suspected that the classifier has a small bias
in favor of the cars. When examining the results of dataset 5, it is observed that all wrongly
classified frames have a score of NaN and are classified as cars. The only frame that has a valid
score is classified correctly. Furthermore, this picture is the largest one with a dimension of 22x56.
It is observed that all pictures of dataset 4 and 5 with a NaN score have a width or height lower
than 22 pixels. The other datasets contain zero NaNs. We assume that the classifier is not able
to classify pictures with a width or height lower than 22 pixels and that these pictures are always
classified as cars.

Section 6.1 described the training process of the classifier. An accuracy of 83.33% if gained
with the test set, which corresponds to an error of 0.1667. When using other data, an error of
0.25 or 0.3 is expected, so the mean error of 0.6113 is surprisingly large. We could have a look
at the datasets 1, 2 and 3 that did not have any NaN scores. The mean error of those datasets is
0.6627. So this still indicates that the classifier performs badly. However, we can not draw firm
conclusions, since we only looked at five datasets of which three have accurate results. Although

Table 9.3: Results of the Object Classifier experiments.

Dataset Class Wrong classification count Total pictures Error

1 Cars 69 89 .7753

2 People 97 163 .5951

3 Cars 257 416 .6178

4 Cars 10 141 .0709

5 People 382 383 .9974

Mean .6113

9.2. Reasoning Agent 89

the classifier has seen 1192 pictures in total, essentially it has seen five di↵erent images with small
variations.

9.1.4 Conclusion

The Observation Agent performs well with Object Detection and Object Tracking. The perspective
mapping described in section 8.1.2 is not tested, but the detection and tracking give a good basis
to deliver accurate position information. The Object Detector performance is bad and should be
improved by using a better dataset or another tool. Also more real data is needed to make firm
conclusions about the performance.

9.2 Reasoning Agent

This section describes the experiments performed with the Reasoning Agent using the simulator, as
shown in figure 9.1. The process of testing the Reasoning Agent actually also involves configuration
of the agent. In order to let configuration and testing not be intertwined, a calibration is described
in section 9.2.1 that performs a few tests and allows configuration and tweaking. Section 9.2.2
validates if the Reasoning Agent acts as expected in other situations, given that configuration.
Section 9.2.3 closes with a conclusion.

9.2.1 Experiment 1: Calibration

The parts of the Reasoning Agent that are being configured during the calibration are the weights of
the Dynamic Bayesian Network and the threshold at which we decide that the object is suspicious.
While configuring, the suspicious rate is monitored to speed up the process.
Before describing the calibration experiments, some parameters and properties are enumerated:

• The speed limit is 50 km/h (for cars).

• A person is considered running when its speed is higher than or equal to 9 km/h.

• An object is considered not moving if the speed of the object is equal to or below 0.5 km/h.

• A car is considered parking if it does not move for two minutes.

• The alert threshold is set to 0.5. So if an object has a suspicious rate of 0.5 or more, it is
considered as an alert. The Reasoning Agent continuously prints the probability so we can
monitor it.

• Another thing that we can monitor is the actions that are attached to the TimeWindow by
the ActionWriter. With this information we can conclude if the Reasoning Agent did a good
job interpreting the incoming information.

The calibration contains the following tests:

1. Car drives around for 30 minutes with 49 km/h. Expected result: no alerts.

2. Car is driving 60 km/h in sight of the cameras. Expected result: no results up till 30 seconds
after the start. After 30 seconds: at least one alert.

90 9. Experiments

Figure 9.1: NetLogo project file which is used to test the Reasoning Agent.

3. Car enters a forbidden area for 20 seconds. Five minutes later, the object stops at a non-
stopping area. Expected result: no alerts until 5:20 minutes. After that an alert should be
given.

4. Car stops on non-parking area and waits for 3 minutes before it starts driving again. Expected
results: after 2 minutes, the Reasoning Agent should know that the car is parking. After 2.5
minutes, alerts are given. After 3 minutes no actions are shown any more and the suspicious
rate slowly drops.

Notes:

• If we expect an alert, it does not matter how many alerts are displayed exactly. The reason

9.2. Reasoning Agent 91

for this is that the Alerting Agent will serve as a layer between the Reasoning Agent and
the user to allow or deny repeated messages.

• For the Reasoning Agent, there is no di↵erence between a speed of 51 km/h or 102 km/h,
because an object can be speeding within a time window or not. However, for the simulation
it matters because ’speeding for 30 seconds in sight of a camera’ requires the double amount
of road in sight of cameras when driving with 102 km/h compared to speeding with 51 km/h.

Results The most important result of the calibration are the DBN probabilities. The alerting
threshold is fixed at 0.5 and only the probabilities are tweaked in order to acquire the expected
results. The probabilities are shown in table 9.4. For an explanation of the node names see section
6.2.1.

Table 9.4: Results of experiment 1: calibration.

Node Inhibit probability

Suspicious rate .01

Entering forbidden area .93

Stopping on non-stopping zone .96

Speeding .951

Parking on non-parking zone .96

Since the calibration only contains experiments with cars, no probabilities for people are shown.
However, the nodes Suspicious rate, Enter forbidden area and Stopping on non-stopping zone are
also defined for a person, so the same probabilities can be used. Then there is one person-
specific node left, called Running. This probability is set to .96 because it is similar to speeding.
Note however that a security guard might disagree. A running person might be considered more
suspicious than a driver that exceeds the speed limit, since running is an active act and exceeding
the speed limit can be the result of a small mistake.

The purpose of test 3 was to calibrate the system such that objects do not lose the label
’suspicious’ very fast. In other words, if objects keep acting suspicious, the system should take
it all into account and give an alert at a certain time. After performing test 3 for the first time,
the suspicious rate dropped considerately during the first ten seconds. Therefore, the suspicious
rate probability was adjusted to the current value of .01. Now the car is still somewhat suspicious
after five minutes. When test 3 was done, test 2 needed to be redone in order to determine the
right probability for the Speeding and Running nodes.

9.2.2 Experiment 2: Validation

Setup Using the configuration from the calibration, one experiment is conducted and it is ex-
plained how the information of four observations run through the system. The following test is
defined:

Person runs for 20 seconds in a forbidden area. Expected result: at least one alert
within these 20 seconds.

92 9. Experiments

Results The test succeeded: an alert was given after 14 seconds. Figure 9.2 shows a small part
of the process of this test. On the left side of the figure, the object and its immediate environment
is shown. The upper two observations at t160 and t161 are observed by the camera north of the
object, while the lower two observations at t162 and t163 are done by the camera west of the object.
The vectors below the title Observation Agent represents the information that is acquired by the
(imaginary) Observation Agents in the NetLogo environment. This information is sent through
JADE to the Reasoning Agent.

In the Reasoning Agent, the ObservationWriter bundles the observations (as Observation
objects) in TimeWindows. When a TimeWindow is created, it automatically determines the
speed and curvature. This TimeWindow is ’written’ to the Whiteboard and the ActionWriter
picks it up for inspection. In this case, the person runs (since the speed is 10.0 km/h, which
is greater that 9 km/h) and it moves through a forbidden area. So for each TimeWindow, two
actions are attached. When the ReasoningEngine reads these TimeWindows, it determines the
evidence for all actions. Since the object is not stopping at a non-stopping area, the second value
of the evidence vector is false (’F’). This evidence is inserted into the Dynamic Bayesian Network
(DBN) at the right time slice number. After that, the marginal probability is requested from the
DBN. That probability is sent to the Alerting Agent for evaluation. Depending on the current
policy of this agent, an alert is given or not.

Note that this table is simplified: the current frame rate in NetLogo is set to 30 frames per
second, which means that an average TimeWindow consists of 2⇤30 = 60 observations. However,
since the object is observed by two di↵erent cameras, observations t160 and t161 must reside in
another TimeWindow than t162 and t163.

In order to illustrate the system even more detailed, figure 9.3 is created. It shows one time
slice of the DBN in this experiment. De red numbers are the marginal probabilities and the red
characters represent the evidence for a particular node. The blue numbers are the probabilities
that the evidence is not inhibited. In other words: it is equal to (1� inhibit probability).

9.2.3 Conclusion

The calibration experiment of the Reasoning Agent showed that the agent is flexible in the sense
that the weights can be adjusted in an intuitive way. Furthermore, the agent acts as we expected:
the suspicious rate increases if violations are detected and it decreases slowly if no violations are
detected any more.

In the validation experiment we observed that the suspicious rate increases significantly faster
if multiple violations are committed at the same time, which is a desired result. Furthermore, the
process of the whole system is made clear.

More scenarios need to be tested in order to give firm conclusions. Nevertheless, the first
experiences with the Reasoning Agent suggest that it can e↵ectively reason about suspicious
behavior.

9.2. Reasoning Agent 93

F
ig
ur
e
9.
2:

T
he

pr
oc
es
si
ng

of
fo
ur

ob
se
rv
at
io
ns

fr
om

ex
p
er
im

en
t
2:

va
lid
at
io
n.

94 9. Experiments

Figure 9.3: Slice 7 of the DBN from experiment 2: validation.

10Summary and Conclusion

During this graduation project a so called proof-of-concept is created for a video surveillance
system. Parts of that concept are implemented and tested. Section 10.1 describes the proof-of-
concept that is designed. Section 10.2 shows what parts are implemented and its performance
is summarized in section 10.3. Section 10.4 describes the project results and section 10.5 closes
with recommendations for future work.

10.1 Proof-of-concept

A proof-of-concept is designed for a surveillance system that detects suspicious behavior. The
system is designed as a distributed system so that it is suitable for both centralized and distributed
video surveillance setups. Two alternative designs are described and arguments are given why the
current design is most preferable.

The system is organized as an agent network. Each agent has its own responsibilities. Three
agents are defined: the Observation Agent, the Reasoning Agent and the Alerting Agent. The
Observation Agent is the only agent that can have multiple instances. In other words: multiple
Observation Agents are present in the agent network, one Reasoning Agent and one Alerting
Agent. The responsibility of the Observation Agents is to observe the world, extract information
and send it to the Reasoning Agent and each other. The Reasoning Agent has an overview of
the whole surveillance area, reasons about it and sends alerts to the Alerting Agent. This agent
decides which alerts are passed on to the operators in the Surveillance Base Station and how
many.

10.2 Implementation

Two prototype applications are implemented, namely:

• The Observation Agent which analyses a video stream by detecting, tracking and classifying
objects.

• The Reasoning Agent which reasons about the data received from the Observation Agents
and reports how suspicious each object is.

State-of-the-art techniques are used for realizing the prototypes. The tracker from the Observation
Agent uses the P-N Learning technique to learn from its mistakes. Dynamic Bayesian Networks
are created to reason about the data that the Reasoning Agent receives. Furthermore, the agent
is able to communicate in the FIPA Agent Communication Language using JADE which makes
it easy to communicate with other agents.

95

96 10. Summary and Conclusion

One of the advantages of the system is that it can work independently once it is calibrated
and configured. It is feasible to replace tools if necessary without braking the system. Automated
unit tests are constructed to help the developer keeping the software reliable.

10.3 Experiment Results

Experiments are conducted on the three di↵erent tasks of the Observation Agent mentioned above.
When detecting objects, the object was on average being detected 5.25 frames too early or too
late with a frame rate of 25 frames per second. The tracker performed perfectly for three out
of five datasets and eventually failed for the other two datasets because it started to track the
background. The average error rate of all five datasets is .1150. Finally, the classification of the
objects resulted in an error rate of .6113. The results of the tracker and detector are considered
good, while the classification still needs improvement.

Also the second prototype is tested: the Reasoning Agent. Experiment 1 calibrated the internal
weights of the agent by performing di↵erent suspicious acts using a simulator. This calibration
experiment successfully calibrated the agent to our predefined needs, but it also shows that the
agent is flexible. Experiment 2 validated the Reasoning Agent by performing yet another suspicious
act using the simulator, but it also illustrated the operation of the complete surveillance system.

Because of the limitation in time, the experiments are not extensive enough to make firm
conclusions. However, the results suggest that this prototype potentially can be the basis of a
successful automatic video surveillance system that detects suspicious behavior and notifies the
operators.

10.4 Project Results

In section section 1.5 project goals were defined. Below, we explained what our opinion is about
the results of those goals.

• Perform a short literature study on automatic video surveillance to find out what the state-
of-the-art is. This short literature study gave a good overview of the field of video surveil-
lance. During the project, lots of other papers are found to help with specific problems
and the survey papers helped to get grip on the basics and possibilities of automatic video
surveillance.

• Design a model of a system that is able to automatically detect suspicious behavior. The
strength of the current model lies in the clear responsibilities for each agent. This makes
designing and implementing the agent details a lot easier. The scalability of the central
Reasoning Agent is yet to be tested, but the experience with the implementation suggests
that it is an elegant model for this purpose.

• Implement the video processing of a single video stream. The results of the video processing
are good, keeping in mind that a basic object detection technique is chosen, the tracker is
not yet tweaked in an attempt to improve results and the object classifier is expected to
improve significantly with better data or another tool.

• Implement combining the information of multiple cameras to detect suspicious behavior.
The Reasoning Agent prototype is able to have an good overview of what the current state
of the surveillance area is. Information from multiple cameras are combined such that the

10.5. Future Work 97

Reasoning Agent can reason about it. Furthermore, the agent is designed such that tools
can be easily replaced.

• Perform experiments on both implementations and analyze the results. The analysis shows
the strengths and weaknesses of the prototypes and suggests that they have a great potential.

• Give recommendations for future research. When more research is conducted on this model
and these prototypes, it is expected to evaluate into a very useful automatic video surveillance
system. Therefore, section 10.5 gives suggestions about topics that need attention.

Based on this information about the project goals, we can proceed with answering the research
questions. Section 1.5 formulated the following two research questions:

Question 1: How can we use a video surveillance camera to replace the human eye?

Question 2: If reasoning is applied to the data from multiple cameras, to what extend can
we automatically detect suspicious behavior?

Part of the answer to question 1 lies in the Observation Agent. This agent is able to detect an
object and observe its trajectory. The experiments show that the agent is not able to classify the
object reliably yet. It does a good job at mimicking what a human being would do, but the agent
shows situations where a person would have no problem in outperforming the agent. However, it is
assumed that lots of improvements are possible. Apart from detection, tracking and recognition,
humans also incorporates context and knowledge. This is captured by the Reasoning Agent. This
smart agent can successfully incorporate context and knowledge in the judgment of how suspicious
an object is. To conclude, we are able to emulate operators with a system which can potentially
outperform a human being.

Question 2 targets the performance of the detection when data from di↵erent cameras is
combined. This combining process is done in the Reasoning Agent. It has an overview of the
situation and is able to reason about how suspicious an object is. One limitation is that the
suspicious behavior must be predefined. If the agent does not know about a certain suspicious or
dangerous act, it cannot detect it. But if the Reasoning Agent has been told what is suspicious
and how it can be measured, it is able to detect it although it is observed by multiple cameras.
To conclude, the answer to question 2 is: if we define what is considered suspicious behavior, we
can automatically detect it.

The prototype applications have shown that an automatic video surveillance system can be
built that detects suspicious behavior. The distributed nature of the system makes it easy to
develop and maintain. The combination of rules based reasoning and probabilistic reasoning has
proven a very viable and flexible solution.

10.5 Future Work

Due to the limitation in time and resources, this research does not provide a read-to-use system.
Future research can focus on developing the system and proving its performance. The following
items are recommended:

• Multi-object support: since the system currently can track only one object, it would be
a great addition to allow multi-object tracking. This primarily a↵ects the Object Detector

98 10. Summary and Conclusion

module, the Object Tracker module and the IdentificationWriter class. The ReasoningAgent
in general is prepared for handling multiple objects.

• Expert knowledge: experts are needed to give their opinion on what is suspicious and what
is not.

• Solving single point of failure: currently, the system has two agents that are critical for the
system to work: the Reasoning Agent and the Alerting Agent. It is recommended to consider
system designs that do not have a single point of failure. However, this most probably will
increase the complexity of the system and the Observation Agent specifically.

• Communication with the Observation Agent: currently, the simulator is able to communicate
with the Reasoning Agent via JADE. However, the Observation Agent itself is not able to
communicate yet.

• Pan-Tilt-Zoom camera support: to expand the area that is under video surveillance with-
out installing significantly more cameras, Pan-Tilt-Zoom cameras can be a great solution.
However, the background subtraction algorithm as well as the perspective transformation to
determine the object’s position assume a fixed camera. However, if these two Observation
Agent issues are solved, the system is able to handle Pan-Title-Zoom cameras.

• Variable frame rate support: section 3.1 stated that we require the system to have a frame
rate of at least one frame per second. However, when something suspicious happens it
might be interesting to temporarily increase the frame rate in order to supply the Reasoning
Agent with more detailed information.

• Smarter Reasoning: the Reasoning Agent has a basic reasoning network, but it can easily be
extended to do more complex reasoning. For example: continuous nodes can be introduced
and more actions can be invented. See section 3.3 for inspiration.

• An Alerting Agent needs to be implemented to present the alerts to the operator.

• Extensive tests and calibration is needed to make the system work reliable enough. Especially
the Object Classification needs attention. Furthermore, the scalability should be tested: how
many data can the Reasoning Agent handle?

• Object matching in the Reasoning Agent: currently the Reasoning Agent only can identify
objects based on the naive assumptions that every observed object is the same. It would
be very useful if it could receive the object information from the Object Tracker and still
images of the object. In this way, the agent can also distinguish objects based on their
visual properties. Furthermore, identifying non-physical features would improve the system
even more. To give an example: imagine two marines walking down the street. They look
very similar due to their uniforms. However, the style of walking might be a feature that
distinguishes the two. One significant advantage is that this feature is not camera-specific.
Finally, reasoning about place and time can improve this process. For example, a red car
is seen at location A. Twenty seconds later, a red car is observed at location B which is
2.4 km away from location A. Whatever matching function matches these red cars, we can
reject this matching based on the time and place of these (distinct) objects.

10.5. Future Work 99

We showed the proof-of-concept of a system which is able to emulate operators and can
potentially outperform a human being. Once the system knows what is considered suspicious
behavior it can be automatically detected. This brings us one step closer to an automatic video
surveillance system that can be used to prevent incidents and keeping us safe.

Bibliography

[1] S. Bandini and F. Sartori. Improving the E↵ectiveness of Monitoring and Control Systems
Exploiting Knowledge-Based Approaches. Personal and Ubiquitous Computing, 9(5):301–
311, June 2005. 23

[2] M. Beelen. Personal Intelligent Travel Assistant. Master’s thesis, Delft University of Tech-
nology, 2004. 52

[3] G. Bradski. OpenCV Home Page. http://opencv.willowgarage.com/. Date accessed:
March 11, 2011. 46

[4] C. Chen and G. Fan. What Can We Learn from Biological Vision Studies for Human Motion
Segmentation? Proc. International Symposium on Visual Computing, 2006. 12

[5] F. G. Cozman. Axiomatizing Noisy-OR. pages 1–13, 2004. 51

[6] G. de Haan, J. Scheuer, R. de Vries, and F. H. Post. Egocentric navigation for video
surveillance in 3D Virtual Environments. 2009 IEEE Symposium on 3D User Interfaces,
pages 103–110, 2009. 12

[7] C. Djeraba. MIAUCE Home Page. http://www.miauce.org/. Date accessed: April 14,
2011. 25

[8] M. W. Green. The appropriate and e↵ective use of security technologies in U.S. schools: a
guide for schools and law enforcement agencies. National Institute of Justice, 1999. 12, 13

[9] S. Hampapur, A.; Brown, L.; Connell, J.; Ekin, A.; Haas, N.; Lu, M.; Merkl, H.; Pankanti.
Smart Video Surveillance: Exploring the Concept of Multiscale Spatiotemporal Tracking.
IEEE Signal Processing Magazine, 22(2):38–51, 2005. 15, 23

[10] W. Hu, T. Tan, L. Wang, and S. Maybank. A Survey on Visual Surveillance of Object Motion
and Behaviors. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications
and Reviews, 34(3):334–352, Aug. 2004. 18

[11] N. Ihaddadene and C. Djeraba. Real-time crowd motion analysis. 2008 19th International
Conference on Pattern Recognition, pages 1–4, Dec. 2008. 25

[12] I. N. Junejo, X. Cao, and H. Foroosh. Autoconfiguration of a Dynamic Nonoverlapping
Camera Network. IEEE transactions on systems, man, and cybernetics - Part B: Cybernetics:
a publication of the IEEE Systems, Man, and Cybernetics Society, 37(4):803–816, Aug. 2007.
21

[13] Z. Kalal. TLD Zdenek Kalal. http://info.ee.surrey.ac.uk/Personal/Z.Kalal/tld.
html. Date accessed: April 26, 2011. 45

[14] Z. Kalal, J. Matas, and K. Mikolajczyk. P-N Learning: Bootstrapping Binary Classifiers by
Structural Constraints. IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 49–56, June 2010. 45, 46, 86

101

http://opencv.willowgarage.com/
http://www.miauce.org/
http://info.ee.surrey.ac.uk/Personal/Z.Kalal/tld.html
http://info.ee.surrey.ac.uk/Personal/Z.Kalal/tld.html

102 Bibliography

[15] I. Lefter, L. Rothkrantz, P. Bouchner, G. Burghouts, and P. Wiggers. A Multimodal Car
Driver Surveillance System in a Military Area. 2010. 16, 32

[16] T. Lethbridge and R. Laganiere. Object-Oriented Software Engineering: Practical Software
Development using UML and Java. McGraw-Hill, 2002. 71

[17] Y. Li, C. Huang, and R. Nevatia. Learning to Associate: HybridBoosted Multi-Target Tracker
for Crowded Scene. IEEE Conference on Computer Vision and Pattern Recognition, 0:2953–
2960, 2009. 22

[18] K. P. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD
thesis, 2002. 51

[19] P. Over, G. Awad, and J. Fiscus. TRECVID 2009 – Goals , Tasks , Data , Evaluation
Mechanisms and Metrics. In Proceedings of TRECVID 2009. NIST, USA, 2010. 16

[20] H. Pasula, S. Russell, M. Ostland, and Y. Ritov. Tracking many objects with many sensors.
Proceedings of the International Joint Conferences on Artificial Intelligence 1999 (IJCAI-99),
(1), 1999. 26

[21] J. Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible inference.
Morgan Kaufmann Publishers (San Mateo, Calif.), 1988. 51

[22] T. D. Räty. Survey on Contemporary Remote Surveillance Systems for Public Safety.
IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews,
40(5):493–515, Sept. 2010. 20, 26

[23] S. J. Russel and P. Norvig. Artificial Intelligence - A Modern Approach. Pearson Education,
2010. 50, 52

[24] W. M. Thames. From Eye to Electron - Management Problems of the Combat Surveillance
Research and Development Field. IRE Transactions on Military Electronics, MIL-4(4):548–
551, Oct. 1960. 13

[25] M. Valera and S. A. Velastin. Intelligent distributed surveillance systems: a review. Image
(Rochester, N.Y.), (20041147), 2005. 13

[26] P. Wiggers. Modelling Context in Automatic Speech Recognition. PhD thesis, Delft University
of Technology, 2008. 50, 51

[27] P. Wiggers, B. Mertens, and L. Rothkrantz. Dynamic Bayesian Networks for Situational
Awareness in the Presence of Noisy Data. International Conference on Computer Systems
and Technologies - CompSysTech, pages 411–416, 2011. 51

[28] U. Wilensky. NetLogo Home Page. http://ccl.northwestern.edu/netlogo/. Date ac-
cessed: January 5, 2012. 55

[29] U. Wilensky. NetLogo, 1999. 55

[30] X. Yang, Y. Xu, R. Zhang, E. Chen, Q. Yan, B. Xiao, Z. Yu, N. Li, Z. Huang, C. Zhang,
X. Chen, A. Liu, Z. Chu, K. Guo, and J. Huang. Shanghai Jiao Tong University Participation
in High-Level Feature Extraction and Surveillance Event Detection at TRECVID 2009, 2009.
17

http://ccl.northwestern.edu/netlogo/

Bibliography 103

[31] K. Yokoi, T. Watanabe, and S. Ito. Toshiba at TRECVID 2009 : Surveillance Event Detection
Task, 2009. 17

	Preface
	Introduction
	Problem Description: Surveillance
	Problem Description: Human Observers
	Taken Approach
	Relevance
	Methodology
	Outline

	Related Work
	Smart Video Surveillance: Exploring the concept of multiscale spatiotemporal tracking - Hampapur et al (2005)
	A multimodal car driver surveillance system in a military area - Lefter et al (2010)
	TRECVID 2009 - Goals, Tasks, Data, Evaluation Mechanisms and Metrics - Over et al (2009)
	Toshiba at TRECVID 2009: Surveillance Event Detection Task - Yokoi et al (2009)
	Shanghai Jiao Tong University participation in high-level feature extraction and surveillance event detection at TRECVID 2009 - X. Yang (2009)
	A Survey on Visual Surveillance of Object Motion and Behaviors - Hu et al (2004)
	Motion detection
	Object tracking
	Understanding and description of behaviors
	Personal identification for visual surveillance
	Fusion of data from multiple cameras

	Survey on Contemporary Remote Surveillance Systems for Public Safety - T. Räty (2010)
	First-generation surveillance systems
	Second-generation surveillance systems
	Third-generation surveillance systems
	Discussion on current dilemmas in the 3GSSs

	Real-time Crowd Motion Analysis - N. Ihaddadene (2008)
	Tracking many objects with many sensors - H. Pasula, S. Russell, M. Ostland and Y. Ritov (1999)
	Conclusion

	Requirements
	Main Properties of the Model
	Area Assumptions
	Regions of Interest
	Applicability

	Design: Surveillance System Model
	Software architecture
	Software Architecture 1
	Software Architecture 2
	Final Software Architecture

	Physical Feasibility
	Requirements
	Central Processing
	Distributed Processing
	Discussion
	Other options

	Resources
	Object Tracking
	Introduction
	P-N Learning
	Predator

	Object Classification
	Introduction
	VLfeat

	Reasoning
	Expert Systems
	Bayesian Networks
	Noisy-OR
	Dynamic Bayesian Networks
	Bayes Net Toolbox

	Agents
	What is an Agent?
	Agent Communication Framework

	Simulation
	Introduction
	NetLogo

	Data
	Our Datasets
	Privacy

	Computational Reasoning
	Training the Object Classifier
	Dynamic Bayesian Networks
	Reasoning Agent DBNs
	Combining BNT and the Reasoning Agent

	JADE
	NetLogo

	Design: Structure of the Agents
	Overview
	Observation Agent design
	Reasoning Agent design
	Whiteboard
	Readers and writers

	Alerting Agent details
	Summary

	Implementation
	Observation Agent
	Object Detector
	Determine Object Position
	Object Classifier

	Reasoning Agent
	Agent communication
	Testing
	Future Implementation

	Experiments
	Observation Agent
	Object Detector
	Object Tracker
	Object Classifier
	Conclusion

	Reasoning Agent
	Experiment 1: Calibration
	Experiment 2: Validation
	Conclusion

	Summary and Conclusion
	Proof-of-concept
	Implementation
	Experiment Results
	Project Results
	Future Work

	Bibliography

