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Abstract
A corrosion defect is recognized as one of the most severe phenomena for high-pressure pipelines, especially those served
for a long time. Finite-element method and empirical formulas are thereby used for the strength prediction of such pipes
with corrosion. However, it is time-consuming for finite-element method and there is a limited application range by using
empirical formulas. In order to improve the prediction of strength, this paper investigates the burst pressure of line
pipelines with a single corrosion defect subjected to internal pressure based on data-driven methods. Three supervised ML
(machine learning) algorithms, including the ANN (artificial neural network), the SVM (support vector machine) and the
LR (linear regression), are deployed to train models based on experimental data. Data analysis is first conducted to
determine proper pipe features for training. Hyperparameter tuning to control the learning process is then performed to fit
the best strength models for corroded pipelines. Among all the proposed data-driven models, the ANN model with three
neural layers has the highest training accuracy, but also presents the largest variance. The SVM model provides both high
training accuracy and high validation accuracy. The LR model has the best performance in terms of generalization ability.
These models can be served as surrogate models by transfer learning with new coming data in future research, facilitating
a sustainable and intelligent decision-making of corroded pipelines.

Keywords Pipelines; Corrosion; Burst strength; Internal pressure; Data-driven method; Machine learning

Nomenclature
α learning rate
ŷ predicted target
λ tuning parameter regularization in LR
σs material yield stress[MPa]
σu material ultimate tensile stress[MPa]
θn corrosion angle[deg]
ε the epsilon tube
A neuron value after activation
b training bias
C hyperparameter
D outer diameter of pipe [mm]
dn corrosion depth [mm]
J overall loss
L overall layers of neural network
l the layer of neural network (excluding input layer)
L1 projected length of corrosion [mm]
ln corrosion length [mm]
Lp pipe length [mm]
m the number of training samples
n[l-1] the number of features in the l-1 layer
nx the number of training features
ny the number of output targets
Pf pipe burst pressure [MPa]
Pflow the flow stress related to fracture mechanics

Article Highlights

• The burst pressure of corroded pipelines subjected to internal pres‐
sure is investigated through data-driven methods.

• Supervised machine learning algorithms are deployed for strength
predictions based on experimental data.

• Hyperparameter tuning to control data-driven learning process is
conducted to fit the best strength models for corroded pipelines
with limited data size.

• Compared with existing engineering standards, the proposed data-driven
models present an improved performance to predict the strength of
corroded pipelines.

• The research work has provided an alternative fashion on pipeline strength
prediction with a promising future, which needs to be further investigated.
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Q the effect of defect geometry
R2 coefficient of determination
Sy specified minimum yield strength
SSreg the sum squared regression error
SStotal the sum squared total error
t pipe thickness [mm]
W training weights
wn corrosion width [mm]
X training data
y training target
Z neuron value before activation

1 Introduction

Due to the advantages of high safety, high efficiency
and low cost, pipelines are widely applied in the transpor‐
tation of large quantities of oil and gas over long distances
(Xie and Tian, 2018). However, pipelines also face big
challenges with the exploitation of oil and gas into deep
and/or ultra-deep water (Cai et al., 2017; Chin et al., 2020).
One of the biggest challenges is the corrosion defect, which
may significantly compromise structural integrity and there‐
by bring severe consequences to the safety of structures
and environment (Macdonald and Cosham, 2005; Mohd et
al., 2015; Cai et al., 2018b, 2019). Therefore, it is neces‐
sary to find effective ways to evaluate the integrity of the
pipeline so that the risk of pipe leaking or rupture may be
reduced.

There have been large interests in the effect of corro‐
sion defects on line pipes subjected to internal pressure
since the late 1960s (ASME B31G, 2012). Researchers are
trying to find an exact relation between corrosion defects
and internal pressures. Thus, a large number of experi‐
ments on the burst pressure of corroded pipelines were
conducted. Cronin et al. (1996) evaluated assessment pro‐
cedures of pipeline corrosion defects from pipe experi‐
ments. Benjamin et al. (2000) carried out a burst test (9
specimens together) to investigate the behavior of a pipe‐
line with long corrosion defects. Choi et al. (2003) pro‐
posed limit load solutions for corroded pipelines of API
5L X65 material (Specification, 2004) through burst tests
with machined pits. Astanin et al. (2009) conducted a pipe
test to verify an empirical method for the burst pressure of
corroded pipelines. Cai et al. (2018b, 2019, 2018a) studied
the effect of a single corrosion defect on pipe strength
based on both experimental tests and numerical simula‐
tions.

As a result, a considerable number of empirical and semi-
empirical formulas (Cai et al., 2018b; ASME B31G, 2012;
DNV, 2017; Chen et al., 2015b; Amaya-Gómez et al., 2019)
are well-established. Choi et al. (2003) proposed a simple
formula for the burst prediction of X65 pipelines assuming
that the pipe burst strength only relies on factors such as
diameter to thickness ratio (D/t), corrosion depth to thickness

ratio (dn/t) and the normalized corrosion length (ln/ Rt).
Chen et al. (2015a) proposed a formula for the burst pre‐
diction of X80 and X90 pipelines through a small-size
dataset. An extra parameter about the corrosion width to
diameter (wn/D) has been considered. Cai et al. (2018b)
constructed a similar formula for corroded pipelines under
bending moments based on physical models and experi‐
mental data. The benefit of such empirical formulas is ob‐
vious, for instance, a rapid evaluation of corroded pipes
by hands.

Recently, the low price environment of oil and gas moti‐
vates industry to extend the useful productive life of cor‐
roded pipelines (Rosen et al., 2016). Therefore, improved
models and alternative methods for the prediction of resid‐
ual burst strength of pipes are needed. The past few years
have witnessed the booming of artificial intelligence (Xie
and Tian, 2018; Bishop, 2006; LeCun et al., 2015). The
successful applications of machine learning in different
fields are revolutionary (Ghaboussi and Sidarta, 1998;
Ling and Templeton, 2015; Fukami et al., 2020; Rafiei and
Adeli, 2017; Sen et al., 2019; De Masi et al., 2015; Gholami
et al., 2020; Cai et al., 2021). Tremendous improvements
in terms of training efficiency, learning accuracy and model
performance are made thanks to the increase of computa‐
tional capacity (LeCun et al., 2015). In the field of pipe‐
line, De Masi et al. (2015) proposed a neural network
model to assess the corrosion of subsea pipelines in terms
of corrosion rate, metal loss, the area of loss and the corro‐
sion numbers. Ossai (2020) built a corrosion growth model
based on the historical operation parameters through a feed-
forward multilayer neural network. Abbas and Shafiee
(2020) discussed the prediction method by using artificial
intelligence for corrosion models. Chin et al. (2020) ini‐
tially studied the burst pressure of corroded pipes based on
a two-layer neural network. Gholami et al. (2020) predicted
the burst pressure of high-strength carbon steel pipelines
with gouge flaws using artificial neural network based on
a dataset from finite-element analysis. Amaya-Gómez et al.
(2016) generated equivalent dimensions of grouped corro‐
sion defects accounting for defect interactions, using the
SVM and K-mean methods. Liu et al. (2019) adopted su‐
pervised machine leaning algorithms such as SVM and
Random Forest to match corrosion features. Mattioli et al.
(2019) stated that building pipeline digital twins with ma‐
chine learning algorithms is necessary for the future safety
of pipeline operations.

However, the application range of existing empirical
models are limited, and the performance is not high due
to a lack of generalization ability. For instance, a fitted
model for pipelines with X65 material and a random
shape corrosion can be hardly applied to X80 pipelines
with a rectangular shape corrosion. In a foreseeable fu‐
ture of digitalization for pipeline service, such empirical
formulas from traditional methods may not serve this pur‐
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pose well. Alternatively, the finite-element method based
on traditional physical mechanism is normally adopted
for prediction, but it is too time-consuming. Therefore,
the objective of this paper is to explore a novel data-driv‐
en methodology for the prediction of the burst strength
of corroded pipelines without too much domain knowl‐
edge needed, which can overcome such drawbacks. In
this research, only an external corrosion defect is consid‐
ered. The supervised machine learning algorithms, in‐
cluding ANN, SVM and LR, are deployed. All the data
are found from literature and are properly arranged for
utilisation. Note that one big problem for data-driven
methods is the limited size of dataset in pipeline engi‐
neering, which affects the generalization ability of pro‐
posed models. In other words, the proposed models may
still not be accurately used for unseen case predictions,
which is an unavoidable drawback and will introduce bi‐
as. Thanks to the transfer learning (Weiss et al., 2016),
which is able to account for previous learned knowledge,
the latest development and the successful results in the
field of artificial intelligence are made. Thus, the current
research work is meaningful and can be further served as
surrogate models by transfer learning. Further work on
the application of transfer learning on pipelines will be
done based on the results of current research.

The structure of this paper is arranged as follows. In
Section 2, we introduce the internal mechanism of differ‐
ent data-driven algorithms. How to properly evaluate the
trained models is described as well. In Section 3, the exist‐
ing experimental data of corroded pipes found from litera‐
ture are described. The characteristics of pipe corrosion
and pipe experiments are illustrated. In Section 4, empiri‐
cal formulas for corroded pipelines from DNV and ASME
B31G are discussed. Afterwards, pipe data exploration is
conducted in Section 5 so as to properly choose pipe fea‐
tures for model training. In Section 6, prediction models
are proposed through typical machine learning algorithms
and comparison results are discussed. Possible intelligent
application of the improved models in digital operation/
monitoring of pipelines is analysed. Conclusions are drawn
in Section 7.

2 Data-driven methodologies

Data-driven methodologies in terms of machine learn‐
ing algorithms are generally used to construct prediction
models. The typical algorithms, including ANN, SVM and
LR, are deployed. These three models are chosen because
of the popularity and widely used for regression problems
in machine learning. Their strengths and weaknesses are
introduced for a better application in practice. Evaluation
strategies and how to improve trained models are discussed
in order to obtain better performance.

2.1 Artificial neural network

ANN belongs to the category of DL (deep learning). Its
successful application in practical engineering field has
been revolutionary over the past years, which is motivated
by the structure of biological neural circuits of human brains.
This concept is commonly referred to MNN (multi-layer
neural network), MLP (multi-layer perceptron) or DNN
(deep neural network). ANN is constructed through connect‐
ing of perceptrons in layers. As can be seen in Figure 1, a
perceptron (Rumelhart et al., 1986) is defined as the mini‐
mum unit of an entire neural network. Each perceptron is
made up of many neurons, receiving and activating signal
among different neurons. The weaknesses of applying ANN
include complex training models, careful preprocessing of
data and low-efficiency of training, whereas the strengths
are high accuracy under limited dataset and demonstrated
successful application in various engineering fields.

Given a set of training data X and labelled target y: X∈
R(nx,m ), y∈ R(m,ny ), the output prediction (ŷ) can be trained
into a L-layer neural network based on their inner relation.
In ANN, the values of units (Z) and their activation values
(A) are computed based on a feed-FP (forward propaga‐
tion), as expressed by Eq.(1). The W is the training weight
and the b is the training bias. The superscript l denotes the
layers of neural network (excluding the input layer, which
is considered as the layer zero).

Z[ l ] = W [ l ]A[ l - 1] + b[ l ], l = 1,..., L

A[ l ] = g[ l ] ( Z[ l ] )
(1)

Figure 1 Basic architectures of neural networks
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Note that the using of an activation function in hidden
layers of neural network is crucial, which brings nonlinear
effects for model training. Otherwise, the architecture of
deep learning would be meaningless, making no differ‐
ence with training by algorithms like linear regression. As
seen in Figure 2, three basic types of activation functions
are adopted in ANN (Haykin, 2007), including Sigmoid (g
(Z)=(1+e−Z)−1), ReLU (Rectified Linear Unit, g(Z)=max(0,
Z)), and Tanh (hyperbolic tangent, g(Z)=(eZ−e−Z)(eZ+e−Z)−1).
e is the Euler’s number. In general, the ReLU works better
than the Sigmoid function for deep neural network (Nair
and Hinton, 2010). However, it sometimes produces poor
performance due to the discontinuous derivatives (Haghighat
et al., 2020). The Tanh activation function can be then used
accordingly. In this paper, only ReLU function is adopted
in pipeline models.

In order to evaluate the trained model with respect to
target (burst pressure in this paper), a loss function (J) is
customized for objective optimization, as seen in Eq. (2).
The BP (backward propagation) (Nair and Hinton, 2010)
is deployed to calculate the derivatives in Eq. (3). The pro‐
cess procedure is denoted in Eq. (4), which provides de‐

tailed expressions of all necessary derivatives. In order to
break the symmetry of neural network architecture during
training, the Xavier initialization (Glorot and Bengio, 2010)
strategy is deployed.

J (W [1],b[1],...,W [ l ],b[ l ] ) =
1
m∑i = 1

m

L ( ŷ, y ) (2)

W [ l ]: = W [ l ] − α dJ
dW [ l ]

b[ l ]: = b[ l ] − α dJ
db[ l ]

(3)

Figure 3 illustrates an example of a three-layers neural
network in a pipeline model with two hidden layers and
one output layer. The computation procedure of a neural
network with FP and BP is explicitly explained for each
layer. The ReLU function is used for the activation of hid‐
den layers. Note that, in the output layer, there is no need
to do an extra activation any more for regression problems
since we only have one target (burst pressure).

dZ[ l ] = dA[ l ]*g[ l ] ' ( Z[ l ] ), l = 1,..., L

dW [ l ] =
1
m

dZ[ l ]A[ l − 1] T

db[ l ] =
1
m ∑axis = 1

dZ[ l ]

dA[ l − 1] = W [ l ] TdZ[ l ]

(4)

2.2 Support vector regression

SVM is considered to be one of the most powerful
“black box” learning algorithms in conventional ML field
(Bennett and Mangasarian, 1992; Cortes and Vapnik, 1995).
By utilizing a cleverly-chosen optimization objective, it’s
one of the most widely used machine learning methods
nowadays (Fukami et al., 2020; Smola and Schölkopf,

Figure 3 Flowchart of the basic computation procedure of ANN using FP and BP for the training of pipe burst strength

Figure 2 Three typical activation functions (Haykin, 2007) including
ReLU, Tanh, and Sigmoid
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2004). The algorithm works well with sparse data but may
provide a lower generalization performance for low-dimen‐
sional data. SVR (Support Vector Regression) is an exten‐
sion of SVM for regression problems with the same inter‐
nal mechanism (Bishop, 2006). The mathematical theory
of SVM is first described, which will be used for the train‐
ing of pipe models in Section 6.

In order to demonstrate how SVM works, a linear bina‐
ry classification problem is considered here. As seen in
Figure 4 (a), it illustrates a training set with two classes,
indicated by circles and crosses. The target of this prob‐
lem is to find a boundary line (or a hyperplane for high di‐
mensional problems) to properly separate all samples. The
decision boundary should be evenly distributed between
the two classes of data with the maximum margin, ex‐
pressed as F(X)=WTX+b. Likewise, the learning process is
to establish the function F(X) between input data and out‐
put target through mapping the training data into a high-di‐
mensional feature space. The margin is defined as the dis‐
tance between the decision boundary and the closest sam‐
ples, expressed as (WTxi+b)/‖W‖ based on the distance
formula from a point to a plane in the Euclidean space.
All the xi are called support vectors which are samples to
determine margins. Note that the numerator (WTxi+b) is
always a constant which does not affect optimization re‐
sults. Hence, a constant value of 1 could be used for sim‐
plification in the distance formula.

Therefore, the task is to learn the best W and b in a deci‐
sion boundary so that the margin in Figure 4 (a) is maxi‐
mum when subject to yi(W

TXi+b)≥margin, ∀i, as shown in
Eq. (5). Xi here indicates the matrix of training sample i, yi

is the signed values of +1 or − 1, representing different
classes. Due to a reciprocal relationship, such optimiza‐
tion problem is further simplified as a minimum problem
when subject to yi(W

TXi+b)≥1, ∀i, as seen in Eq. (6). The
concept of soft margin (Bennett and Mangasarian, 1992;
Cortes and Vapnik, 1995) is used so that an extra term is
added into the objective function of Eq. (6) for penalty, as
shown in Eq. (7).

As an extension of the SVM algorithm, SVR has been
introduced to handle the regression problems. Instead of

predicting the category label of an input as the SVM does,
SVR is used to predict some discrete values. Following
the same idea of the SVM, SVR introduces an ε -insensi‐
tive region around the function, called the ε -tube. Then,
the regression problem is reformulated to find such ε-tube
that it best approximates the continuous-valued function.
More specifically, SVR first defines a convex ε-insensitive
loss function (subject to the constraint h(yi−WTf(xi))=max
(0, |yi−WTf(xi)|−ε)) to be minimized and then searches for
the flattest tube that contains most of the training instances,
as shown in Figure 4 (b). The f(x) is the mapping function,
h() is the ε -insensitive hypothesis function (or extra loss)
of predicted values and true values. Similar to the SVM,
SVR can be used to regress a non-linear function, or a
curve, through the use of kernel functions, the so-called
“kernel trick” (Boser et al., 1992). Three kernels are used
for the pipe model training in Section 6, including Linear,
RBF, and Polynomial. SVR has great generalization capa‐
bility and excellent prediction accuracy (Awad and Khanna,
2015).

argmax
{ W,b }

(margin =
1

‖W‖ ) (5)

argmin
{ W,b }

1
2
‖W‖2 (6)

argmin
{ W,b }

C∑
i = 1

N

h ( yi − W T f ( xi ) ) +
1
2
‖W‖2 (7)

2.3 Linear regression

In statistics (Downey, 2011), linear regression is a linear
approach to describe the relationship between one set of
variables (or target) and one or more explanatory variables
(or features). As seen in Eq. (8), it indicates a linear rela‐
tionship between true value y and feature xi, where 􀆠 is the
residual, w0...wn are the weights of features. The objective
function is, therefore, to minimize the loss function ( MSE
(mean square error)) in the form of the least squares so as
to find the best weight W and bias b, as seen in Eq. (9).

Figure 4 SVM illustration
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One of the biggest weaknesses to apply regression is that a
strong assumption is needed in advance based on data
structure and physical theory, largely reducing the training
accuracy. For instance, the corrosion width along pipe length
is often assumed to have little effect on burst strength. The
major factors, including corrosion size and material rough‐
ness, determine the resistance to material fracture failure
and thereby the bust strength of pipes. With the increase
of feature numbers, it is getting harder and harder to con‐
struct a model in advance with reasonable assumptions.
Note that non-linear approaches (e.g., polynomial regres‐
sion) can be also used for the fitting of models. However,
more features are needed when no reasonable assumptions
can be made. As a consequence, more data are needed for
better accuracy, which is not practical to use in this paper.
Therefore, only the linear regression models by using
least-squares approach are adopted.

y = w0 x0 + w1 x1 + ...wn xn + b + 􀆠 (8)

J (W,b ) =
1
n∑i = 1

m

( yi − (W·Xi + b ) )2 (9)

JRidge (W,b ) =
1
n∑i = 1

m

( yi − (W·Xi + b ) )2 + λ∑
j = 1

p

w2
j (10)

JLasso (W,b ) =
1
n∑i = 1

m

( yi − (W·Xi + b ) )2 + λ∑
j = 1

p

|wj| (11)

In order to avoid overfitting, regularization penalty should
be introduced with extra penality. For the linear regres‐
sion with the penalized version of least-squares (L2-norm
penalty), it is called Ridge regression (Hoerl and Kennard,
1970), as seen in Eq. (10). With the increase of tuning pa‐
rameter λ, the overfitting of model decreases. When using
the Ridge algorithm, λ is not sensitive and may be set to
large value between 1 and 100. For Lasso regression (Tib‐
shirani, 1996), it uses the L1-norm penalty, as seen in Eq.
(11). With L1 penalty, the weight in W is possible set to be
zero. Hence, Lasso takes care of model selection by re‐
moving the least influential features. The λ in Lasso is sen‐
sitive so that it normally set to be small, ranging between
0 and 1. Besides, the ElasticNet algorithm (Zou and Has‐
tie, 2005) is used, which is a convex combination of the
Ridge and the Lasso. It can reduce the error over Lasso
method.

2.4 Evaluation and improvement strategies

The training models by supervised machine learning al‐
gorithms generally face the bias-variance trade-off (De
Masi et al., 2015; Haykin, 2007). The definition of vari‐
ance is the variability of model prediction for a given data‐
set, indicating the spreading of data. Bias is the difference
between the predictions of trained models and the true val‐

ues. In general, models with high variance pay much atten‐
tion to training data. The generalization ability on the test/
validation data which it has not seen before is not suffi‐
cient. In other words, such models may perform very well
on a training set but have high errors on a test set (overfit‐
ting). For models with high bias, instead, little attention to
the training set is paid. High errors occur on both training
set and test/validation set. As a result, high bias causes the
miss of relevant relations between features and target out‐
puts, which is called underfitting. This evaluation criterion
will be utilized for discussions among the trained pipe
models in Section 6.

For regression problems, the coefficient of determina‐
tion (R2) (Tabachnick et al., 2007) is used for the evalua‐
tion of model accuracy, expressed as R2= 1-SSreg/SStotal. The
ratio of the sum squared regression error (SSreg) against the
sum squared total error (SStotal) tells us how much of the
total error remains in trained models. As a result, a R2 of
1.0 indicates no error in the model, while a R2 of 0 means
that the model is no better than taking the mean value of
data. A negative R2 is also possible, indicating that the SSreg

is greater than SStotal and the prediction performance is even
worse than using the mean value. The MSE can also be
used as an indication of model accuracy.

In order to improve prediction models, strategies such
as ensemble strategy (Naftaly et al., 1997) and transfer
learning (Taylor and Stone, 2009) can be used. The ensem‐
ble strategy is to combine several improved models togeth‐
er so as to produce a better prediction performance. The
framework of transfer learning will accelerate the conver‐
gence of machine learning using the current models as sur‐
rogate models, especially for problems with large-size da‐
taset. The utilization of transfer learning is crucial in engi‐
neering fields where new samples are constantly added into.

3 Experiments data of corroded pipes

The pipeline corrosion is a natural process that happens
when pipe materials interact with the working environ‐
ment such as water and carbon dioxide. In this section,
typical experimental tests of pipe burst strength are intro‐
duced. The definitions of corrosion characteristics in terms
of shape, orientation and fabrication workmanship are given.
Recorded pipe data from tests are categorized and discussed.

Figure 5 shows a typical failure mode of corroded pipes
in experiments (Astanin et al., 2009). The failure in terms
of a crack-like rupture occurs along the pipe longitudinal
direction in the corroded region. This is due to the plastic
collapse that occurred locally in the corrosion ligament
when the von Mises stress exceeds the ultimate tensile
strength of the material through this region. For pipelines
without significant defects, plastic collapse may occur by
a global geometric instability of the specimen. As a result
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of the decreasing wall thickness and the increasing of
pipe ovalization, the structure suffers an increasing of
stress (Cai et al., 2017). For pipe test in laboratories, the
length of each specimen is varied, generally ranging be‐
tween 1.0 m to 2.3 m as observed from existing data. The
specimens ends are sealed with very thick steel plate so
that the boundary effects could be eliminated. Nozzles are
deployed on end plates which are used for pressure pump‐
ing.

Corrosion defects are usually fabricated by two ways in
a pipe test. One way is the machining method (such as
spark erosion (Freire et al., 2006)), the other way is purely
natural processes. Figure 6 shows the definition of corro‐
sion geometry. The maximum corrosion depth through a
real nature process is simplified as the depth of defect (dn),
while the maximum length of corrosion is simplified as
the length of defect (ln). The corrosion angle (θn) is de‐
fined as the angle between the pipe longitudinal axis and
the corrosion length, ranging from 0° to 90° . For θn in 0
deg, the defect is considered as longitudinal corrosion,
while for θ in 90 deg, the defect is considered as hoop cor‐
rosion. For other angles between 0 deg and 90 deg, the
defects are all defined as angled corrosion in this study.
Multiple corrosions normally appear on the pipe surface.
Under this circumstance, scanning is conducted and then
combining them into one patch automatically with soft‐
ware unless the corrosions are separated by a distance
greater than six time of full pipe thickness as described by
Cronin and Pick (2000). L1 and L2 in Figure 6 are parame‐
ters that would be only used for the burst pressure estima‐
tion by DNV-RP-F101 (DNV, 2017) in Section 4.

Tables 1 and 2 present the two types of features record‐
ed in a pipe burst experiment including numeric feature
and categorical feature from literature (Cronin et al., 1996;
Benjamin et al., 2000; Choi et al., 2003; Mok et al., 1991;
Freire et al., 2006; Cronin and Pick, 2000). Not all origi‐
nal data and their features are listed here for the sake of
clarity. Overall, 115 tests are obtained. Nine different line
pipe materials are adopted based on API 5L (Specifica‐
tion, 2004), including the grades of A25, B, X42, X46,
X52, X56, X60, X65, and X80. The numeric feature con‐
sists of the geometry of specimens, the geometry of corro‐
sion defects and the material properties of specimen.
Based on physical theory, failure stress is normally ex‐

pressed as the function of such numeric features. Besides,
the categorical feature includes corrosion shape, orienta‐
tion, fabrication method, location, the grade of material
and pipe type. For the corrosion shape which is not rectan‐
gular, it is defined as “Irregular”. Only two types of corro‐
sion defect method are defined: “Machined” and “Nature”.
Properly selection and investigation of all these pipeline
features are very important in developing a reliable, risk-
free and cost-effective prediction method, which will be
discussed in Section 5.

4 Corrosion assessment in engineering standards

In this section, the estimation methods from engineer‐
ing standards (DNVGL-RP-F101 (DNV, 2017), ASME
B31G (ASME B31G, 1991) and the Modified B31G
(ASME B31G, 2012)) for corroded pipelines are intro‐
duced. Note that there are some limitations of using these
empirical formulas. For instance, ASME B31G does not
apply to the crack-like corrosion defects or mechanical
surface damage with a coarse surface. The corrosion
damage should be located at the pipe center, not affecting
by the pipe seams or girth welds. These limitations may
introduce possible discrepancies of the prediction in Sec‐
tion 6.

4.1 Barlow’s formula for intact pipes

Barlow’s formula is widely used in the piping industry
to compute the burst pressure (Pf) of intact pipelines with‐
out corrosion subjected to internal pressure, as seen in
Eq. (12).

Pf = 2Syt/ ( D − 2t ) (12)

Figure 5 The failure mode of the burst experiment of a corroded
pipe specimen from Astanin et al. (2009)

Figure 6 Geometry of the simplified corrosion defect in the shape
of rectangular profile in rotational angle (θ) in this paper
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4.2 Empirical formulas in DNV

In DNVGL-RP-F101 (DNV, 2017), the formula for the
failure pressure of pipes with a single rectangular longitu‐
dinally oriented defect subjected to internal pressure is
proposed based on a large number of FE analyses, as seen
in Eq. (13). The formulas may be applied to pipes with
diameters ranging from 291.1 mm to 914.4 mm and the
grades of pipeline material ranging from API 5L X42 to
X65. For pipes with grades up to X80, however, these for‐
mulas may not be used due to model limitation. Note that
the formula cannot be applied to corrosion shapes other
than a single rectangular shape in pipe longitudinal direc‐
tion. The measured defect depths should be less than 85%
of the wall thickness.

Pf = 1.05
2tσu (1 − dn

t
)

( D − t ) (1 − dn

tQ
)

(13)

where:

Q = 1 + 0.31
l 2

n

Dt
(14)

4.3 Empirical formulas in ASME B31G

Empirical formulas are also proposed in ASME B31G
standard and its further modified version. The Pf of line
pipes with medium strength and high material toughness
can be expressed as Eqs. (15) and (16). The corrosion fea‐
tures in terms of longitudinal length (ln) and depth (dn) are
accounted for. Note that when the rotational angle is less
than 45 deg, as seen in Figure 6, the corresponding corro‐
sion length (ln) is changed to L1 for calculation, otherwise,
the most severe longitudinal section (L2) should be consid‐

ered. As we have noticed, an extra relation ln= 20Dt is
roughly deployed to imply the severity of corrosion. M is
the bulging stress magnification factor, as seen in Eq. (17).
For plain carbon steel operated at temperatures below
120 ℃, the flow stress (Pflow) may be defined as Eq. (18).

For ln<= 20Dt ,

Pf = Pflow
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(15)

For ln> 20Dt ,

Table 1 Numeric data recorded from pipe burst strength experiments

S.N.

1 (Benjamin et al., 2000)

9 (Cronin et al., 1996)

15 (Cronin et al., 1996)

33 (Mok et al., 1991)

52 (Freire et al., 2006)

53 (Freire et al., 2006)

61 (Freire et al., 2006)

89 (Choi et al., 2003)

105 (Cronin and Pick, 2000)

D (mm)

323.9

610

762

508

457

76.2

76.2

273.3

508

t (mm)

9.66

9.3

9.4

6.35

8.1

2

17.5

4.95

5.64

Lp (mm)

2 000

-

-

-

1 700

2 000

2 300

-

-

ln (mm)

305.6

381

914.4

10

39.6

75

200

182.88

170.18

dn (mm)

6.67

6.99

3.3

2.984 5

5.39

1.4

4.4

3.3

2.46

wn (mm)

95.3

-

-

102.235

32

16

50

-

-

YS (σs)(MPa)

452

371.9

409.9

540

556.3

391

475

350.61

462.33

UTS (σu)(MPa)

542

445.3

537.8

637.5

697.6

458

675

453.85

587.32

Pf (MPa)

14.07

10.2

12.7

12.5

22.7

9.4

24.11

13.75

11.52

Table 2 Categorical data recorded from pipe burst strength experiments

S.N.

1 (Benjamin et al., 2000)

9 (Cronin et al., 1996)

15 (Cronin et al., 1996)

33 (Mok et al., 1991)

52 (Freire et al., 2006)

53 (Freire et al., 2006)

61 (Freire et al., 2006)

89 (Choi et al., 2003)

105 (Cronin and Pick, 2000)

θn(deg)

0

0

0

90

0

0

0

0

0

Shape

Rectangular

Irregular

Irregular

Rectangular

Rectangular

Rectangular

Rectangular

Irregular

Irregular

Defect method

Machined

Nature

Nature

Machined

Machined

Machined

Machined

Nature

Nature

Location

Center

Center

Center

Center

Center

Center

Center

random

random

pipeType

Line Pipe

Line Pipe

Line Pipe

Line Pipe

Line Pipe

Line Pipe

Line Pipe

Line Pipe

Line Pipe

Mat.

X60

B

X52

X60

X80

X46

X65

X42

X56
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Pf = Pflow

é

ë
êêêê1 − dn

t
ù

û
úúúú (16)

where:

M = (1 + 0.8
l 2

n

Dt
) (17)

Pflow = 1.1Sy (18)

In the modified ASME B31G (Kiefner and Vieth, 1989;
Kiefiier and Vieth, 1990), the roughly relationship used to
indicate the severity of corrosion is updated, expressed as

ln= 50Dt . The Pf is shown in Eq. (19). Different bulging
stress magnification factor M is adopted within different
corrosion severity regions.

Pf = Pflow
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(19)

For ln<= 50Dt ,

M = 1 + 0.627 5
l 2

n

Dt
− 0.003 375( )l 2

n

Dt

2

(20)

For ln> 50Dt ,

M = 0.032
l 2

n

Dt
+ 3.3 (21)

5 Data exploration for model training

In this section, the pipe experimental data described in
Section 3 are statistically analyzed. All the data are split,

cleaned and aggregated after careful investigation so as to
choose proper pipe features for model training. A cross-
validation generator (Bishop, 2006) is used to randomly
shuffle the pipe data, and to split the data into independent
subsets for model training. Thus, the data are categorized
into three different sets, including a training set (80% of
all data), a validation set (10% of all data) and an extra
test set (10% of all data). Note that, due to the limited size
of dataset, only training dataset and validation dataset will
be used for model performance evaluations in Section 6 to
avoid bias. The accuracy from test dataset will be still pre‐
sented as a reference.

5.1 Data exploration for the training by ANN

Data exploration is essential for the proper training of a
machine learning model. As seen in Tables 1 and 2, the
numeric features, such as pipe thickness and pipe outer
diameter, can be directly applied on training after data clean‐
ing. However, the categorical features such as pipe materi‐
al grade need to be transformed before applying. Strate‐
gies including label encoding and one-hot encoding (Bish‐
op, 2006) are used for the categorical features processing.

Feature importance should be determined so that we can
properly keep and/or discard existing features for models.
One of the strategies is to check the correlation coeffi‐
cients between independent variables and the output target
(pipe burst pressure (Pf)). It is defined as the covariance of
two variables divided by the product of their standard
deviations. The highly correlated features should be first
selected. As seen from the heatmap in Figure 7, all the cor‐
relations among features are visualized. The legend of col‐
or denotes the level of correlation. The value close to 1 im‐
plies a strong positive correlation between two features,
while the value close to −1 implies a strong negative corre‐
lation. The value of 0 indicates no correlation relation. We
found that the parameters such as corrosion length (ln),

Figure 7 Correlation coefficients among pipe burst pressure and pipe test features
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corrosion depth (dn) and pipe outer diameter (D) have a
large negative correlation to the burst pressure, while the
pipe thickness has a large positive correlation to the burst
pressure. The specimen length (Lp) and the corrosion width
(wn) have a very small correlation value to the burst pres‐
sure. These findings coincide with the former assumptions
about the insignificant effect of corrosion width on the
burst pressure of pipelines (Cai et al., 2018b; Choi et al.,
2003). Therefore, these two features (Lp and wn) are inten‐
tionally removed, and are not used for model training in
Section 6 due to the limitation of data size.

The one-hot transformation is performed to convert the
categorical variables into numeric indicators. Either 1 or 0
is used to specify the presence of the variable attribute.
For instance, the material type attribute of a pipe specimen
with X60 material is designated as 1, whereas all the other
material type attributes are assigned 0. Three categorical
features, namely, corrosion defect method, material type
and corrosion orientation, are selected for utilizing. Among
these features, the corrosion defect method is categorized
as machined corrosion, nature corrosion and intact without
corrosion. The corrosion orientation is categorized as four
types, including long type, hoop type, angled type and
intact type. Other categorical features such as shape, notch
location, pipe type are not considered due to the limitation
of data size. Moreover, we noticed that there is a single
sample with the material grade of A25, which has been
intentionally removed. Note that the intact specimens are
also added for training.

For the model training by ANN in this paper, we have
obtained 21 features after a meticulous data analysis, in‐
cluding material yield stress YS (σy), material ultimate ten‐
sile stress UTS (σu), outer diameter (D), pipe thickness (t),
corrosion length (ln), corrosion depth (ld), corrosion defect
method (intact type, machined type, and nature type), cor‐
rosion orientation (angled type, hoop type, intact type and
long type), and material categories (B, X42, X46, X52,
X56, X60, X65 and X80).

5.2 Data exploration for the training by SVM and linear
regression

In order to improve the accuracy of learned models by
SVM and linear regression algorithms, a data transforma‐
tion is conducted in this section. Figure 8 shows the densi‐
ty distribution of burst pressure and its KDE (kernel densi‐
ty estimation). In this way, we can check the skewness of
data, which is a measurement of the asymmetry of the
probability distribution of features/target about their mean
values. A right-skewed distribution which is concentrated
on the left side of the histogram is observed, as seen in
Figure 8 (a). A skewness of 0.543 is computed for the pipe
pressure. Hence, a logarithm transformation is performed
to transform the data distribution into a normalized distri‐

bution. Note that the corresponding inverse transformation
is needed for the predicted burst pressure when using the
learned model.

With the same data analysis and visualization strategies,
other features of pipe tests are explored. It is found that
the features such as pipe thickness (t), outer diameter (D),
corrosion depth (dn) and corrosion length (ln) have large
skewness (larger than 1.0). Thus, the Box-Cox (Box and
Cox, 1964) power transformation is applied such that the
non-normalized distributed data are all transformed into a
normalized-like distribution. Figure 9 shows an example
of the feature distribution under the situation before and
after transformation, respectively. For clarity reason, only
one example of the corrosion depth is illustrated.

6 Results and discussions

In this section, different models for the prediction of
burst pressure of corroded pipelines are trained by the
three algorithms, as discussed in Section 2. Hyperparam‐
eter tuning is first conducted to find the best learning pa‐
rameters. Meanwhile, a parametric study is performed to
study the effect of critical learning parameters on model
accuracy. Prediction results of all the experimental speci‐
mens are computed and then compared through both
standards and proposed numerical models. The accuracy
of each learned model is discussed based on bias-vari‐
ance trade-off. Note that all the numerical calculations,
data analyses and model training in this paper are per‐
formed based on open-source Python libraries, including
NumPy, Pandas, Matplotlib, SciPy, Scikit-learn, Keras
and Tensorflow modules.

6.1 Prediction results through engineering standards

The engineering standards, as discussed in Section 4,
are first adopted for the prediction of test specimens. Only
the data in training and validation set are deployed. Eleven
intact specimens without corrosion are removed for results
comparison. Note that there is no need to differentiate the
prediction results in training set and validation set since
the formulas in standards are not intentionally fitted by
any of these dataset.

Figure 10 (a) shows the comparison results of pipe burst
pressure between predictions and experiments. It shows
that there are 37 out of 90 non-conservative predictions
based on DNVGL-RP-F101 (DNV, 2017). Here, the non-
conservative means that the prediction values by the em‐
pirical formulas are larger than the real values from experi‐
mental tests, which may cause unsafe consequence in prac‐
tice. The largest discrepancy reaches as much as 33.09%
for the specimen S.N.42 (X60) in Mok et al. (1991) (among
all specimens with longitudinal corrosion). The estimation
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of specimens with angled corrosion has a larger discrepancy,
as shown from S.N.34 in Mok et al. (1991) with an error
of 72.22%. For the predictions in ASME B31G (ASME
B31G, 2012), only 5 out 90 specimens are non-conserva‐
tive. The largest discrepancy reaches 39.1% for the speci‐
men S.N.109 (X80) in Chauhan et al. (2009) (among all
specimens with longitudinal corrosion). In the modified
ASME B31G, 19 out of 90 specimens are non-conserva‐
tive. The largest discrepancy reaches 30.01% for the speci‐
men S. N. 8 (X60) in Benjamin et al. (2000) (among all
specimens with longitudinal corrosion).

The empirical formulas also present different perfor‐

mance in terms of different material grades. As seen in
Figure 11, it graphically compares the distributions of pre‐
dicted burst pressure of pipes with different material grades
using box plots. Each category of pipes is displayed in a
statistical way, including the minimum, the first quartile,
the median, the third quartile and the maximum. Outliers
are displayed. We found that the prediction discrepancies
are relative large for pipes with material grades in lower
strength (e.g., B and X42) when comparing with the stan‐
dards results (P_DNV, P_B31G, and P_B31G_M) and the
test results (P_EXP).

A more refined comparison in terms of R2 and MSE is

Figure 8 The distribution of burst pressure

Figure 9 The distribution of the corrosion depth before and after transformation, respectively
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conducted to quantify the estimation accuracy of empiri‐
cal formulas in standards. The corresponding prediction
accuracy through empirical formulas is presented in Tables 3
and 4, respectively. As we can see, the overall R2 are
0.765, 0.46, and 0.612 for DNV, B31G and B31GM, re‐
spectively. The corresponding MSEs are 5.62, 12.92 and
9.28, respectively. The errors vary when it comes to indi‐
vidual sets with different material grades. Negative R2 val‐
ue occurs for the predictions of pipes with material grades
of B and X42. Such poor performance implies the limited
generalization ability of empirical formulas to new cases.
The reason is mainly due to the small number of features
when the formulas were proposed for practical use. Al‐
though conservatism rather than accuracy is more con‐
cerned in engineering practice for safety reason, these re‐
sults imply that there is a space for existing engineering
formulas to be improved.

6.2 Prediction results through ANN

In this section, the best prediction model is learned
through an exhaustive grid search based on hyperparame‐
ter tuning. A cross-validation generator is used to randomly
shuffle the pipe dataset, splitting the data into 10 indepen‐
dent subsets, including 9 sets for model training and 1 set
for model validation. As a result, for every set of hyperpa‐
rameter, it produces 10 training models with 10 different
validation results. In order to improve the accuracy, the
robust scaling method to normalize feature values is used
before model training. Note that the test/validation dataset
must use the identical scaling as the training set for predic‐
tions. A parametric study about the effect of neural layers
on model accuracy is conducted for the burst pressure pre‐
diction with ANN.

Figure 10 Comparison of pipe burst pressure between predictions and experimental tests

Figure 11 Distribution of predicted dataset of pipe burst pressure with respect to different material type (the labels of X ticks are shared)
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The hyperparameter tuning is conducted on the model
parameters in terms of optimizer types, initialization strat‐
egies for weigh matrix, the number of epochs and the num‐
ber of mini-batches. An overall of 960 fitting models are
simulated in order to obtain the best tuned hyperparame‐
ter. In addition, 50 models are trained based on a grid
search in terms of the number of neural layers when fixing
other hyperparameters. It is found that the best hyperpa‐
rameters consist of three neural layers, 450 epochs (an
epoch represents one iteration over the entire dataset), 2
mini-batches (the number of batches the dataset splitted),
“normal” strategy for the initialization of kernel weights
and “Adam” optimization algorithm. The corresponding
best model for pipe burst strength prediction by ANN is
trained accordingly. As shown in Table 5, the R2 of three
layers NN is 0.969, with the highest validation accuracy
of 0.545.

For the parametric study on neural layers, five models
are considered here, including a two-layer model (16, 1), a
three-layer model (16, 8, 1), a four-layer model (16, 12, 8,
1), a five-layer model (16, 12, 8, 4, 1) and a six-layer model
(16, 12, 8, 4, 2, 1). The numbers inside parentheses are the
corresponding number of neurons in each layer. As a result,
each model contains the number of model features of 369,
497, 669, 701 and 709, respectively. Figure 121 presents
the diagram of loss values in terms of MSE with respect to
the number of epochs during training, which indicates a
good convergence for all the trained models by ANN. All
the trained accuracy in terms of R2 and MSE is listed in
Table 5 for comparison. With the increase of neural layers
(from L2 to L6), the accuracy in training set (R2_train)
increases as expected. However, the validation accuracy
first increases, and then decreases with the increase of
model complexity. It implies a high variance occurs. The
best learned model with three neural layers (L3) for the
prediction of pipe burst pressure has the best general per‐
formance.

6.3 Prediction results through linear regression

In this section, three types of regression methods ac‐
counting for various regularization strategies including Ridge,
Lasso and ElasticNet are utilized for the model training.

The learned linear regression model by Ridge algorithm

1Note that the legend Val_loss_L3 denotes the loss of validation set
with 3 layers, while the Loss_L2 denotes the loss of training set. Others
are similar.

Table 4 Mean square error (MSE) of prediction results through standards

Mat. grades

#Specimen

DNV (DNV, 2017)

B31G (ASME B31G, 2012)

B31GM (ASME B31G, 2012)

B

(5)

13.71

30.70

19.13

X42

(8)

6.26

13.60

11.12

X46

(10)

3.29

8.32

10.69

X52

(15)

4.29

19.67

11.44

X56

(7)

4.50

11.62

7.26

X60

(26)

3.47

13.17

6.26

X65

(7)

12.65

2.91

6.68

X80

(12)

1.82

5.73

7.89

All

(90)

5.62

12.92

9.28

Table 3 Coefficient of determination (R2) of prediction results through standards

Mat. grades

#Specimen

DNV (DNV, 2017)

B31G (ASME B31G, 2012)

B31GM (ASME B31G, 2012)

B

(5)

-1.51

-4.621

-2.502

X42

(8)

-8.572

-19.786

-15.994

X46

(10)

0.927

0.816

0.764

X52

(15)

0.719

-0.287

0.21

X56

(7)

0.388

-0.581

0.011

X60

(26)

0.197

-2.045

-0.447

X65

(7)

0.657

0.921

0.819

X80

(12)

0.939

0.808

0.735

All

(90)

0.765

0.46

0.612

Figure 12 The diagram of loss value in terms of MSE with respect
to the number of epochs during ANN traning

Table 5 Accuracy of learned models through ANN with different
layers

ANN Layers

R2_train

R2_val

R2_test

MSE_train

MSE_val

MSE_test

L2

0.958

0.005

0.708

1.201

33.143

11.834

L3

0.969

0.545

0.695

0.897

15.171

12.339

L4

0.968

0.517

0.719

0.911

16.016

11.396

L5

0.970

0.440

0.809

0.857

18.664

7.713

L6

0.974

0.166

0.664

0.739

27.781

13.601
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is showed in Eq. (22), where the parameters with “Id”
symbol are the categorical features after one-hot transfor‐
mation (details are described in Section 5.1). When using
this equation to predict a corroded pipe with X42 material
type, for instance, the one-hot parameter IdX42 will be set
to 1 and all the other parameters within the material cate‐
gorical feature (e. g., IdX46) are set to 0. Other categorical
features are similar. The best hyperparameter λ for L2 regu‐
larization in the training model is 1.0. For the Lasso algo‐
rithm, the corresponding learned weights are −0.050, 0.324,
−0.459, 0.469, −0.136, −0.339, −0.349, 0, 0, 0.308, −0.032,
−0.061, 0.001, 0, 0.012, −0.066, 0, −0.043, −0.212, 0.009
and 0.002 with the bias of 2.745. The parameter sequence
is the same as Eq. (22). The best hyperparameter λ for L1

regularization is 0.001 6. Likewise, for the ElasticNet
algorithm, the corresponding learned weights are −0.069,
0.341, −0.462, 0.480, −0.149, −0.357, −0.403, 0, 0, 0.332,
−0.077, −0.056, 0.001 4, 0, 0.006, −0.086, 0, −0.050, −0.206,
0.016 and 0.021 with the bias of 2.747. The best hyperpa‐
rameters of regularization are 1.0 and 0.000 9. As we have
noticed, some features are automatically set to zero when
adopting the L1 regularization strategy in both Lasso and
ElasticNet. Table 6 lists the different accuracy of learned
models by applying different regularization penalty. The
learned model by ElasticNet algorithm has the highest train‐
ing accuracy with a high validation accuracy as well. The
comparison results indicate a good performance of the pipe
burst prediction models by just using a linear regression.

Pf =− 0.079σy + 0.248σu − 0.377D
+0.412t − 0.154ln − 0.313ld− 0.152Idintact + 0.101Idmachined + 0.051 2Idnature

+0.265IdangledRo − 0.105IdhoopRo − 0.152IdintactRo− 0.008IdlongRo − 0.040IdB + 0.024IdX42− 0.053IdX46 + 0.038IdX52 − 0.025IdX56− 0.138IdX60 + 0.087IdX65 + 0.107IdX80 + 2.63

(22)

6.4 Prediction results through SVR

Three tuning hyperparameters in SVR, including regu‐
larization coefficient (C), kernel width coefficient (γ) and
the types of kernels, are used for grid search. Similar with
the way in Section 6.2, a cross-validation generator is used

to randomly shuffle and split data. As a result, an overall
of 1 470 training models are trained in order to learn the
best hyperparameters. The simulation results show that the
best combined hyperparameters consist of C=50, γ =0.01
and the RBF kernel (Gaussian transformation). The estima‐
tion accuracy of models with different kernels is listed in
Table 7. It is observed that the best model with RBF kernel
has a good general performance accounting for both the
validation and test performance.

6.5 Model comparisons and discussions

In this section, a comprehensive comparison of each
learned model for the pipe burst strength prediction is per‐
formed. The possible intelligent application of the improved
models is explained. Discussions are presented in terms of
model limitations.

Figure 10 (b) shows the comparison results of pipe burst
pressure between the predictions and the experiments. The
corresponding predicted strength is listed in Table 8. Only
nine specimens are presented for clarity reason. It is obvi‐
ous that the prediction scatter has been largely improved
compared with the results from empirical formulas. For
instance, B31GM provides a prediction with −68.67% dis‐
crepancy for sample S.N.9, whereas the SVR method gives
a more accurate prediction with discrepancy of −10.54%.
Figure 13 explicitly illustrates the comparison results be‐
tween predicted values through all the best learned models
and the true values of experimental test. All the test speci‐
mens are sorted with respect to their series numbers (S.N.).
The experimental values of all specimens are connected
by a black line so as to have a clear visualization. Predic‐
tion results match very well with the experimental tests in
general. As observed, there are outliers on specimen S.N.
61 with material grade X65, with the relative prediction
errors (|Predicted value-True value|/True value) of 26.1%,
16.35% and 7.22% for the trained models by ElasticNet,
SVR and ANN, respectively. The largest relative error
occurs on the specimen of S.N. 11 with material grade B
for all the learned models. The errors are 65.7% for the
learned model by ElasticNet, 76.2% by SVR and 43.4%
by ANN, respectively. The reason is due to the limited
number of training pipes with grade B, which will be im‐
proved in further research by transfer learning.

Table 6 Accuracy of learned models through linear regression with
different regularization strategies

Linear_Kernels

R2_train

R2_val

R2_test

MSE_train

MSE_val

MSE_test

Ridge

0.871

0.865

0.528

2.843

5.267

13.869

Lasso

0.879

0.864

0.472

2.701

5.156

16.881

ElasticNet

0.884

0.858

0.438

2.641

5.448

18.154

Table 7 Accuracy of learned models through SVR with different
kernels

SVR_Kernels

R2_train

R2_val

R2_test

MSE_train

MSE_val

MSE_test

Linear

0.880

0.820

0.235

2.862

6.811

29.563

Polynomial

0.938

0.870

-0.151

1.685

3.707

75.091

RBF

0.914

0.844

0.074

1.985

5.961

35.874
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Figure 142 shows the comparison diagram of learning
accuracy in terms of R2 and MSE for both the learned
models and the empirical formulas in standards. It is found
that the learned models by the ANN algorithm have the
highest training accuracy, but with a relative low valida‐
tion accuracy. This phenomenon indicates that overfitting
appears. Compared with the ANN models, the training
accuracy of models by SVR and LR slightly decreases but
with a relative high validation accuracy. As a result, the

generalization of these training models has been improved.
In addition, accounting for the accuracy results from test set,
as seen in Tables 5, 6 and 7, the trained models by linear
regression provide the best prediction performance among
all the proposed models. Note that, due to limited data

2Note that L6 denotes the ANN model with six neural layers, while It
should be Li_R represents the Ridge model. Besides, it should be SVR_P
denotes the SVR model using a polynomial kernel. Other signs are similar.

Table 8 Predicted values of pipe burst pressure from learned models

S.N.

1 (Benjamin et al., 2000)

9 (Cronin et al., 1996)

15 (Cronin et al., 1996)

33 (Mok et al., 1991)

52 (Freire et al., 2006)

53 (Freire et al., 2006)

61 (Freire et al., 2006)

89 (Choi et al., 2003)

105 (Cronin and Pick, 2000)

Experiments(MPa)

14.608

10.2

12.7

12.5

22.7

9.4

24.11

13.75

11.51

DNV(%)

-5.48

-52.9

-23.52

35.00

4.07

3.22

26.31

-44.9

-13.64

B31G(%)

-33.17

-68.67

-41.72

21.17

-10.68

-23.96

-4.52

-64.86

-21.36

B31GM(%)

4.13

-45.39

-34.2

21.07

-13.44

18.62

-6.08

-46.31

-26.57

ElaticNet(%)

-3.39

-20.51

-14.67

-7.73

-14.67

-1.37

26.11

-17.21

-1.12

ANN_3L(%)

-5.46

-20.38

-1.2

-10.08

-5.7

-0.81

7.22

-12.1

4.64

SVR_RBF(%)

-5.72

-10.54

-10.27

-10.31

-9.94

11.68

16.35

-11.69

-6.09

Mat.

X60

B

X52

X60

X80

X46

X65

X42

X56

Figure 13 The comparison diagram between predicted values through learned models by supervised machine learning (three-layer ANN,
SVR with RBF kernel and ElasticNet) and the experimental results

Figure 14 The diagram of learning accuracy for learned models with different machine learning algorithms
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size, the test set has not been used in this work for model
performance evaluation. The generalization ability of models
should be further improved.

Compared with the improved models by machine learn‐
ing algorithms, it cannot be denied that these empirical
formulas from standards are easier to apply by hand due to
less features and simpler formulas structures. However,
these empirical models present a relative low performance
in terms of accuracy and generalization. The DNV stan‐
dard for corroded pipelines has a better performance than
the ASME B31G. Meanwhile, the Modified B31G formu‐
las have further improved the prediction ability of burst
strength of corroded pipelines compared with the formulas
in B31G. The developed models by machine learning algo‐
rithms imply a promising utilization of intelligent predic‐
tion in future, which provides a solid foundation for our
further work.

The improved prediction models by data-driven method
in this paper can facilitate an intelligent decision-making
of corroded pipelines accounting for all the measured da‐
ta. In the foreseeable future of digital operation in pipeline
domain, these models can be easily integrated into soft‐
ware for the burst strength prediction and real-time moni‐
toring. A brief procedure of such potential applications is
listed as follows.
• Integrate the prediction models into pipe monitoring

software (ensemble strategy is used when necessary);
• Collect all the static pipeline features such as pipe di‐

ameter, thickness and material level;
• Collect all the real-time corrosion features (angle and

length, etc.) on pipelines by sensors or cameras;
• Automatically calculate the burst pressure and set an

alarm when violating the prescribed safety factors.
The models in this paper have been initially demonstrat‐

ed to be effective with good generalization ability. Howev‐
er, it should be noted that model limitations still exist due
to the limited number of training data. More cases are
needed to further validate the accuracy of these models. In
the future research, the transfer learning should be applied
to improve current models when more data are found. Note
that the yield stress and UTS of pipes in reality are not
easy to obtain rapidly. Thus, these features could be re‐
placed by parameters such as the SMYS (Specified Mini‐
mum Yield Strength) from pipe material standards instead.
Further research is needed to be done in order to introduce
proper correction coefficients for such replacement.

7 Conclusions and future work

In this paper, a novel research on the burst strength pre‐
diction of corroded pipelines has been conducted based on
data-driven methodologies including three typical machine
learning algorithms. Compared with the conventional meth‐

ods, the work has provided an alternative research fashion
on pipeline strength investigation. A single rectangular
corrosion defect located on the specimen center was con‐
sidered. Pipe data were obtained from existing experimen‐
tal test of corroded pipe specimens and were explored care‐
fully based on various data analysis techniques. Improved
prediction data-driven models with high performance were
proposed. Parametric studies on ML training parameters
were performed. The prediction results from existing engi‐
neering standards were compared to the proposed models.
The conclusions of this paper are drawn as follows:

1) The ANN with three neural layers has the highest
training accuracy for pipe burst strength based on limited
dataset, but also with the highest variance.

2) The SVR provides a slightly lower training accuracy
than the ANN with limited dataset. However, the high vari‐
ance is largely improved.

3) The proposed pipe models based on limited dataset
by LR present the best performance in terms of generaliza‐
tion ability among the three algorithms.

4) Compared to the trained models by machine learning
algorithms, empirical models from engineering standards
show a relative low performance. Despite the fact that the
empirical formulas are simple and easy to use by hands,
there is still some space to be improved with respect to ac‐
curacy and generalization ability.

Due to the limited number of data in engineering prac‐
tice, the performance of trained models by data-driven
methods will be inevitably affected. One way is to further
collect effective data either from literature or conducting
more pipe tests. Then, a re-training process is needed but
is cumbersome and impractical. The other option is, instead
of doing model re-training, to apply transfer learning for
the improvement of the model performance. The improved
models in this research can be therefore used as the surro‐
gate models for transfer learning. Further research in this
aspect is needed to be done.

Data availability statement

The original training data of corroded pipe experimental
test and all the trained models are available from https://
github.com/jiejie168/pipeBurstPressure_prediction_dataDriven
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