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Abstract

Background

Reinforcement Learning (RL) is a learning paradigm where an agent learns a task by trial and error. The agent
needs to explore its environment and by simultaneously receiving rewards it learns what is appropriate behaviour.
Even though it has roots in machine learning, RL is essentially different from other machine learning methods. In
contrast to others, RL agent has to generate its own data to learn from.

Thesis goal

In this thesis, we aim to train an RL agent to fly a quadcopter to track any target position (way-point) in three
dimensional space. Where conventional control strategies for quadcopters involve a separate attitude and position
controller and most RL solutions focus on one of the two controllers, our goal is to design a low level RL controller
capable of computing motor commands directly from sensor input, therefore replacing both attitude and position
controller with one RL policy’.

Method

The agent learns in simulation, for which a simulation model is needed. This simulation model consists of the
quadcopter dynamics model using the parameters resulting from a proposed two-step parameter estimation. The
first step of the two-step parameter estimation consists of measuring the measurable parameters of the quadcopter
and estimation of the inertia matrix by a summation of multiple point masses and a central cylindrical mass. The
second step is recreating a physical model including a controller in Simulink and using the Simulink parameter
estimation toolbox to fine-tune the estimated parameters to fit real flight data.

The policies we develop utilize the algorithm 'Twin Delayed Deep Deterministic Policy Gradient’ (TD3) for learning.
TD3 is a variant of the Deep Deterministic Policy Gradient (DDPG) algorithm but incorporates three modifications,
making it advantageous with respect to DDPG. The modifications are target policy smoothing, clipped double Q-
Learning and delayed policy updates. TD3 is capable of handling large state spaces and continuous actions. We
develop policies for two main tasks: Attitude 2 control and position control. Both tasks make use of a dense reward
structure.

Results

The policy for attitude control trained for 3500 episodes 3, around 6.1e5 time steps. The learned policy is able to
stabilize the attitude of the quadcopter (in simulation) with a success rate of 94 % and a rise time of 1.58 s. For
position control, two policies are generated with a different dense reward type:

* type 1 policy is trained with a negative reward on both attitude error as well as position error.
* type 2 policy is trained with only a negative reward on the position error.

Type 1 produces a working policy after a training period of 7500 (around 3e6 time steps) episodes with an average
reward over 100 episodes of 7580. The resulting policy has high fluctuations in motor commands and therefore
oscillating attitude and position values. In none of the evaluation trajectories a steady state value is reached.
The type 2 produces a working policy after a shorter training time of 1200 episodes, 1.1e6 time steps. For all
trajectories, this policy achieves steady state for almost each way-point. Steady state error has a maximum value
of 0.1 m. An advantage of just using a negative reward on the position error is the freedom of the agent to solve
the problem. We only tell the agent what goal to reach, not how to reach it. Therefore, policy type 2 is favoured
over the type 1 policy.

Conclusion

This thesis proves that TD3 can be used for low-level quadcopter control, replacing both inner and outer loops of
the quadcopter control. Using the dense reward function and applying negative reward on position control only
results in a stable policy that can track way-points all throughout the 3D space. Future work requires the two-
step parameter estimation to be tested on a real life quadcopter, as well as enrolling the policy onto a real life
quadcopter.

"the decision-maker of the agent
2orientation
3simulation loop with a terminal state
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Introduction

Reinforcement Learning (RL) is an agent-oriented learning paradigm which sprouted from Atrtificial In-
telligence (Al) [11][12]. In RL a subject (agent) learns by interacting with the environment and receiving
rewards for good behaviour or penalties for bad behaviour [30]. RL is used to solve challenging tasks,
including learning intelligent behaviour in complex dynamic environments. RL has proven itself to be
able to handle difficult tasks: In 2015, Google DeepMinds AlphaGo used RL to beat 18-time world
champion Lee Sedol in a five round match of ‘"GO’ by winning four out of five games [33]. Where IBM’s
computer 'DeepBlue’ used a brute force computation method to beat Kasparov in a game of chess
in 1997 [4], this brute force method would not have been sufficient for beating the game of GO, due
to the much larger game dimensions. Other games have been solved using RL: DeepMind used RL
to achieve superhuman performance on 49 classic Atari games [26]. Because of the ability to handle
difficult environments, RL has been deployed in real world settings, for instance in robotics [6] and self
driving cars.

Reinforcement Learning is based on an agent. The agent is the subject of learning, the one who
needs to perform a certain task. In a game of chess it could be thought of to be one of the two players.
In the case of a self driving car, the agent could be thought of as the car. The agent needs to explore
its environment and by simultaneously receiving rewards it learns what is appropriate behaviour. All
key parts of Reinforcement learning come together in the following description:

In reinforcement learning an agent needs to take actions in an environment to maximize a cumu-
lative reward.

To determine whether the action was good or bad, the environment gives back a reinforcement to
the agent. This reinforcements is com known as the reward. The agent will try to maximize this reward
over the course of learning. It will adapt its behaviour, its decision making, to do so. The decision
maker is known as the policy.

1.1. Unmanned Aerial Vehicles

An Unmanned Aerial Vehicle (UAV) is an aircraft not carrying a human operator. The UAV is controlled
either by remote control or by autonomous control. UAV’s can take many shapes, from controlled
balloons [19], to the more (in)famous General Atomics MQ-9 Reaper used for military purposes [5].
Thanks to improvement in electronics and control, the consumer market now has access to UAV’s in
the form of multicopter vehicles, commonly known as ’drones’ or 'quadcopters’ (in case of four rotors),
see figure 1.1. These type of consumer UAV’s are relatively small and their employability ranges from
amusement racing to visual offshore wind turbine inspection. Open-source platforms such as PX4 and
ArduPilot have helped the community to develop the technology and create easy access for everyone
to enjoy flying drones.

An increased interest has risen to develop RL controllers for this platform. Developing controllers is not

1



2 1. Introduction

an easy task and different objectives might need a different type of control. Low level RL control might
be suited for this task: If an agent is given a certain objective, the RL agent will develop its own con-
troller for that task. The engineer only needs to specify the objective. The objective can be way-point
tracking, package delivery, or flying with low power consumption. The agent aims to find an optimal
solution itself. Boundaries can be implemented as forbidden states, which the agent then will stay away
from. This can be avoiding dangerous areas, obstacles, or going back to a home-base when batteries
are too low, depending on the state. The high adaptability of RL agents make this alternative attractive.

The research conducted last couple of years focus mostly on either outer or inner-loop control: The
outer-loop controller is the high level position controller of the quadcopter, determining where to fly next.
The inner-loop controller is the control loop that stabilizes the quadcopter. Developing an outer-loop RL
controller is similar to developing a path planning algorithm. The quadcopter is already a self-stabilizing
vehicle, that can be controlled. Developing an inner-loop controller is similar to developing a stabilizer
for a vehicle. Replacing both inner and outer-loop by an RL agent might give the quadcopter more
freedom and more options regarding optimization for different tasks.

Thesis relevance

The tasks this thesis focuses on are also achievable using regular control theory. However, by proving
this learning framework is effective in applying RL to a quadcopter platform, doors to more difficult tasks
will open. Adding sensors for obstacle detection could help an agent to easily learn avoiding obstacles
during way-point tracking. Also highly non-linear acrobatic manoeuvres could be learned using this
learning framework. Multi agent co6peration and object manipulation can be experimented with.

Figure 1.1: DJI quadcopter

1.2. research question

The goal of this thesis is to create a Reinforcement Learning agent for a quadcopter, replacing both
inner and outer control loops, that is able to lift off and track way-points in three dimensional space.
Furthermore a framework for sim-to-real transfer by means of parameter identification is proposed. The
research questions therefore are:

1. What are the dominant system dynamics?

2. How are quadcopters controlled?

3. What RL algorithm is best suitable for quadcopter control implementation?
4. How can the sim-to-real gap be bridged?

To answer these questions, multiple RL algorithms are analysed in chapter 2. This chapter explains
the concept of Q-learning and the following algorithms DDPG and TD3. TD3 is eventually used to
train the agent. Quadcopter dynamics and control is reviewed in chapter 3. From these dynamics, a
model will be created for training the RL agent. Chapters 4 and 5 review the build of a quad and the
identification parameters for sim-to-real transfer. This sim-to-real transfer method consists of a two-
step parameter estimation framework that has been tested in simulation. Chapter 6 implements the RL
controller for a quadcopter, using the algorithm as explained in chapter 2 and the model from chapters
3. The results are discussed in chapter 7 and the conclusion follows in chapter 8.



Reinforcement Learning

In this chapter a summary of Reinforcement Learning (RL) is given. The Actor-Critic (AC) methods are
dissected with mathematical background, in order to understand the final algorithm (TD3) used to train
the quadcopter agent. In this overview of methods, first Q-learning will be discussed: one of the most
used and simple RL algorithms. After that, Actor-Critic methods such as AC, DDPG and finally TD3 will
be discussed. A short summary of deep neural networks will be presented, as this will play a big roll
in RL. RL combined with deep neural networks is also commonly referred to as Deep Reinforcement
Learning (DRL).

2.1. RL introduction

Reinforcement Learning (RL) is a branch of machine learning and is an agent-oriented learning paradigm
that learns by interacting with the environment [30]. The term ’agent’ in this sentence refers to your
subject in the system: this can be a real life robot, or a virtual spaceship in an Atari game. The environ-
ment is everything outside of the agent, with which it interacts. All key parts of Reinforcement learning
come together in the following description:

In reinforcement learning an agent needs to take actions in an environment to maximize a cumu-
lative reward.

Other branches of machine learning, such as supervised learning, rely on labelled data sets to ac-
complish tasks capable of speech or image recognition. [35]. In contrast with those methods, RL has
to generate its own data: The agent needs to explore its environment in order to acquire the data to
gather information about its surroundings. The agent needs to explore. During exploration, the agent
will receive feedback of its actions in the form of a reward. From the obtained reward, the agent deter-
mines what is a good action to take and/or what is a good position in the environment to be in.

The reinforcement learning framework is depicted in figure 2.1. The agent at time-step ¢ is in state
s¢ and acts on the environment with an action a,. The environment receives the action and returns the
new state s, ., at time-step t + 1 together with a reward R;,,. From the reward the agent can judge
the quality of its move. By exploring the environment, the agent can learn how to interact with the
environment and receive higher rewards.

A favored analogy is that of a small child that is learning how to take the first steps: At first the child
will try some movements (actions) and fall. This process of trial and error will continue, until the baby
makes a successful first step, followed by an overwhelming applause from the parents (this resembles
the reward). The baby will then try to remember what it did to take the successful step and try to
go even further. The baby learns by collecting data about its environment and learning by ftrial and
error. Obviously a grown person walks better than a baby. If the baby would stop learning the minute
it reaches the point of 'not falling’, it would never learn to walk with the souplesse of an adult. So still
new types of actions need to be tried (explored) in order to improve the walking skills. This is called the

3



4 2. Reinforcement Learning
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Figure 2.1: Schematic representation of the reinforcement learning framework
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exploration vs. exploitation dilemma. This dilemma talks about the decision of an agent to stick to the
actions from which it knows will yield a good reward (exploitation), or improving their skill set by trying
out new actions and see where it leads them (exploration). Exploitation is also called taking a 'greedy’
action. These are the key components of Reinforcement Learning.

2.1.1. Markov Decision Process
The type of agent/environment interaction as described by states, actions, rewards and discounts is
called a Markov Decision Process or MDP [15]. An MDP is a discrete time stochastic control process
and is used in decision making processes where a goal is achieved by learning from interactions. The
MDP takes in the current state and takes an action accordingly: no memory of past states are used in
this type of problem.

By definition, an MDP exists out of 5 tuples:

c A
L)
. T
°r
°Y

Where A is the action space containing all possible actions and § is the state space containing all
possible states. T is the transition function that describes what the next state s;,; will be, when taking
action a; in state s;. In a probabilistic environment, this transition function describes the probability that
taking action a, in state s; will lead to the next state s, in time ¢t + 1:

T = Pr(s¢41|s = sp,a = ap) (2.1)

r is the reward the agent receives after taking an action a; in state s;. y is called the discount factor.
This discount factor discounts future rewards and is thus used to determine whether an agent should
focus on the short or long term rewards.

The agent needs to decide what action to take, given a certain state and reward. The decision maker
of the agent is called the policy =. Given a stochastic system, this policy is denoted by m(a|s), while the
policy given a deterministic system is given by a = n(s), where a is an output command of the agent
(action) and s is the current state of the agent.

In the new state t + 1, the policy will create a new action a;,, according to m(a|s). Repeating this
process will result in a trajectory 7, consisting of state and action pairs.

T = (Sg, Ay, S1, A1, eeeeer Sy Q) (2.2)

2.1.2. States and actions

As is also the case in classic control theory, states give you information about the system. In the in-
verted pendulum problem useful states are the position of the cart and the angle of the pendulum with
respect to vertical [7], see figure 2.2. In a more difficult system, for instance a quadcopter, more states
can be included to provide a more useful summary of states. Sensors can be added to the system to



2.1. RL introduction 5
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Figure 2.2: the cartpole problem described with states x and 6

provide state information on for instance velocity, location and accelerations. The state in reinforcement
learning can also be a bit more flexible and abstract: they can be as high or as low level as you want.
States can include raw sensor data (low level) or shapes of objects in a room (high level). Also the
actions are less conventional. In classic control situations actions can for instance be a low level value
motor voltage. In reinforcement learning actions can be low level, just as the classic control situation,
but they can also be more high level: ’open the door’, 'walk to point A’ or ’have lunch’. These actions
are described by the book 'Reinforcement Learning: an introduction’ by Sutton and Barto [37]. Video
games like PacMan have discrete action spaces: the number of different actions that can be taken are
finite. In the game of PacMan, you control a yellow agent that has to escape the ghosts and collect
round reward balls in the process. You control the PacMan through a maze using one of four actions:
"up,down,left,right” (figure 2.3). Real life robotics tend to have a continuous action space. The choice

Score: 1110 Lives: 2

Figure 2.3: PacMan is an example of a discrete action space, with four actions to choose from

of action space has consequence for the type of algorithm applied in a later stage.

The book by Sutton and Barto also talks about the boundary between agent and environment. In
robotics it is easy to assume that the boundary between agent and environment is the physical bound-
ary. In the case of a drone, the agent would be the entire drone and the environment would be the rest.
However, the agent-environment boundary could be placed somewhere else. Everything that can’t be
changed or influenced by the agent is outside of it and thus part of the environment.

2.1.3. Rewards
To analyze the performance of the agent, the agent receives a reward r after each state transition. For a
whole trajectory 7, each time step the agent will receive a reward 13,744, 742, -y 13, - The @accumulation
of all those rewards is:

Gt‘ = Rt’+1 + Rt’+2 + Rt’+3 ....... (23)

Where G, is called the return: the summed reward over all the time steps from t = 0 until t = o
in case of infinite time horizon or t = 7 in case of a finite trajectory. This value of return can be used
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recursively:
Gt = Rpy1 + Geyq (2.4)

Future rewards can also be discounted by a factor y and is called the discount factor, where y = [0, 1),
see equation 2.5.

Gt = Reyq +¥Geys (2.5)

This discount factor determines how important the immediate reward is with respect to the rewards
in a later time-step. Intuitively this can be explained by: Do i want my reward right now, or later?
Mathematically this y is important because non discounted reward functions might not converge to
a finite value. The goal of the agent is to maximize this cumulative reward. The formulation of this
reward function is essentially determining the actual goal of the agent. The implementation of this
reward function is an essential and distinctive feature of reinforcement learning. This reward makes
sure that the agent learns what actions are good and what actions are bad. Similar to the baby that
learns how to crawl, the reward is what makes the baby learn good behavior.

The reward functions are highly flexible and can be as simple or as difficult as the developer wants
it. One of the most simple reinforcement learning problems is the cart-pole problem as described in
previous section. In this problem, a reward of +1 could be given for not falling. Not falling would be
defined as x and 6 being lower than a certain threshold value. In a robot navigation task, the robot
would score +1 for arriving at the goal, but -1 for each time step: the robot is punished with time so
it will try to reach the goal as fast as possible. In the games Go or chess, sometimes seemingly bad
states (or sacrifices) need to be made in order to later on win the game. There are different road that
lead to Rome, and multiple tactics could be used to achieve the goal. This makes it important to tell the
agent via the reward function what you want to achieve, but not how you want to achieve it. Putting
too much of the how into the reward function leads to bias.

2.1.4. Bellman equation and value functions

In RL, the agent will try to maximize the cumulative reward, or the return (equation 2.5). The notion of
’how good’ a state is, is the expected return. This value is calculated with means of a value function.
The value of a state s is the expected return of an agent when in state s and following the policy =. For
an MDP, this captured in the state-value function V, equation 2.6.

k=00

Ve(s) = ExlGelse] = Exl ) ¥13,Is] (26)
k=0

The reward for a terminal state is always zero. Aside from the state-value function V. (s), we also
have the action-value function Q. This action-value function defines the value of being in a certain state
s, taking an action a and then following the policy m thereafter, see equation 2.7.

k=00
0n(5,@) = ExlGelses el = Exl ) Y1 lst,a] @7
k=0

Solving an MDP problem this way means finding a policy that is better than other policies: the
optimal policy *. It is possible to have multiple optimal policies, but they all share the same optimal
state-value function V*(s), defined as:

V*(s) = max V,(s) (2.8)
VA
The optimal policies also share the same action-value function Q*(s, a):

Q*(s,a) = max Qx(s,a) (2.9)

The optimal action-value function Q* is taking an action a while being in state s, and following the
optimal policy n* thereafter. Writing Q* in terms of V* results in:

Q*(s,a) = E[Re1 + YV (Se41lSt, ap)] (2.10)
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2.1.5. Q-Learning
Q-learning is an off-policy temporal difference algorithm designed to find the optimal Q-function (and
with it, an optimal policy). The difference between an off-policy and on-policy strategy is that an off-
policy strategy updates its Q-values using the next state s’ and greedy action a’, even though the
policy is not taking the greedy action. An on-policy strategy would update the Q-values according to
the exploration action a”

Q-learning starts with chosen values for Q, but is updated using an algorithm with at the heart a
Bellman equation. The Q-learning algorithm as described by Sutton and Barto [37] is depicted in figure
2.4,

Q-learning (off-policy TD control) for estimating = ~ .

Algorithm parameters: step size a € (0, 1], small £ > 0
Initialize (?(s. a). for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:
Choose A from S using policy derived from (@ (e.g.. e-greedy)
Take action A, observe R, S'
Q(S, A) — (S, A) + a[R+ymax, Q(S',a) — Q(S, A)]
S+ &

until 5 is terminal

\ v

Figure 2.4: Q-learning algorithm

At first the Q values are initialized. A main loop is started. An action is chosen under current policy.
The Q value is then updated via the update rule. The update rule uses temporal difference learning
and bootstrapping: it is updating itself each time-step using the difference between a target Q value
and the real Q value, see figure 2.5. The learning rate is comparable to a step size in regular control

temporal difference
@vna) < Qo)+ o (ot - mEQEuna - Q)
P e,
old valne learning rate reward  discount factor — old value

estimate of optimal future value

~
new value (temporal difference target)

Figure 2.5: Q-learning update rule

theory. This learning rate is usually chosen in the order of magnitude of 1e — 5. The discount factor is
the same as we know from the reward function. A discount factor of 0 will make the agent short sighted
and will only look at the current reward. Using a value of 1 will cause the history to be infinitely long.
Often used value of the discount factor usually are between 0.9 and 0.99.

The target Q value in the update rule contains a maximization over the actions, which causes a signifi-
cant positive bias of the target Q value. This problem of overestimation can partially be solved by using
Double Q-learning. This algorithm uses a second Q-function. The second Q-function will be used as
a target for updating the first one. Each update, either the first Q-function is updated using the second
one as target, or vice versa: the second Q-function is updated using the first Q-function as target. At
each time-step, the change of updating the first or second Q-function is 0.5. This algorithm is depicted
in figure 2.6.

2.1.6. Experience replay and frozen target network in Q-learning

Deep Q-learning, or DQL is the implementation of neural networks as universal approximators of the Q-
functions. A disadvantage of using this structure in Q-learning is the correlation in temporal difference
learning that tends to overfit the networks during training. A widely used solution for this is experience
replay [27]. The experience replay method saves the agents experiences e = s;, a;, 13, S¢41 In a replay
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Double Q-learning, for estimating y = ) = g,

Algorithm parameters: step size o £ (0, 1], small £ > 0
Initialize Q1 (s, a) and Q2(s, a), for all s € 7, a € A(s), arbitrarily except that Q.(terminal,-) =0
Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using the policy e-greedy in @y + Q2
Take action A, observe R, §'
With 0.5 probabilility:
QLS. 4) + Q1(S8. 4) + a R +7Q2 (8" argmax, Q1(S', a)) — Qu(S, .q})
else:
Q2(S, A) + Q2(5, A) + a (n +4Q1 (S, argmax, Q2(S', a)) — Q2(S, A})
S8
until 5 is terminal

Figure 2.6: Double Q-learning algorithm

buffer. During the application of the Q-value updates, a minibatch is randomly sampled from this replay
buffer. This has two advantages:

1. No temporal correlation in training
2. Higher data efficiency

Because the data is randomly sampled from many different episodes, the temporal correlation that
tends to overfit the neural networks is no longer an issue. The method is also more data efficient since
one experience can potentially be used in many weight updates.

Freezing the target network means that the target network is not updates as frequently as the actual
Q-function. Every k episodes (where k is a user defined parameters) the network parameters from
the actual Q-function are copied to the target network. This helps stabilizing training since the actual
Q-value has more time-steps to approximate the target network value. DQL has a discrete output and
cannot be used on continuous action spaces [14].

2.1.7. Policy gradient algorithms

Q-learning (and its derivative methods) are a proper method to solve reinforcement learning problems.
By learning values of the possible actions Q-learning makes it possible to select the actions with the
highest value, and thus find the best possible policy. Policy gradient methods are different: they learn a
parameterized policy that does not need to consult a value function. A value function can still be used
to update the parameter (DDPG and TD3 algorithms, to be discussed later), but the policy will not use
the value function to choose an action.

The policy now is dependent on its parameters 6, for which the notation is n(a|s, 8). The performance
of the policy is measured by some value J(8). Updating the policy parameters is done via the parameter
update rule (equation 2.11.

Orr1 = 0, +aVJ(6) (2.11)

Where V] (6;) is the gradient of the performance with respect to the parameter vector § and « is again
the learning rate. The policy can be parameterized in any way as long as the policy is differentiable
with respect to its parameters, that is if the gradient of the policy with respect to its parameters exists
and is finite.

2.2. Actor-critic methods

Actor-critic (AC)methods use both value functions as well as policy gradient methods to obtain a policy.
The actor refers to the policy: the one taking the actions. The critic refers to the value function that
judges the actions and states of the policy. The advantage of using an actor rather than pure policy
gradient methods is that the policy gradient methods use sampling of the true gradient, which could
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cause gradients to point in a wrong direction. Actor-Critic methods use the critic to reduce the variance
of the gradient of the actor. A vanilla AC algorithm is depicted in figure 2.7 [8].

Algorithm ° Vanilla Actor Critic

while not converged do
take action a ~ gy (als), get (s, a, s, 7)
fit U (s) using target r + yV (s")
evaluate A™(s,a) = r(s,a) + ]/V;(s’} - Vg (s)
Vg)(0) = X; Vg Inmg (a;|s)A™ (s, ar)
6«8+ aVyj(8)
end while

Figure 2.7: Vanilla Actor-Critic algorithm

In this algorithm it is visible that the value function is used to judge the action and to calculate the
estimation of the gradient of the cost V4/(8). AC methods have shown promising result. Due to their
applicability on continuous actions spaces they are widely used in the field of robotics, where the nature
of the platform often has a continuous action-space rather than a discrete one.

2.2.1. DDPG

Deep Deterministic Policy Gradient fuses the success of DQL with deterministic policy gradient to create
a model free algorithm which can be used on continuous action and state-spaces [21] [27]. DDPG is a
widely used method to solve continuous problems such as continuous lunar lander and other open-Al
gym environments '. In previous policy gradient method, the policy is always modeled as a distribution
over possible actions depending on a certain state and is thus stochastic in nature. This method is
favored over discretizing continuous action and state spaces because of the curse of dimensionality:
"the number of possible actions increases exponentially with the number of degrees of freedom” [21].
DDPG uses an Actor and a Critic network, as well as a target Actor and target Critic network (in total four
networks). The actor network u(s|6#) determinalisticly maps states to actions. The actor is updated
using the critic for gradient calculation, just as in regular AC methods. However, this method still has
some of the same issues as normal DQL methods: Temporal correlation is still an issue. Therefore
DDPG also makes use of the Replay Buffer. Also the instability due to the use of nonlinear function
approximators (deep neural networks) is an issue. The solution is the use of the target networks (first
introduced by Mnih et al. [26]) to stabilize learning.

Because the nature of the actor is deterministic, the exploration-exploitation dilemma needs a solution.
This is solved by creating an exploration policy u' which is the actor policy, but with added noise. This
noise can be chosen to suit the environment.

1 (se) = p(se) + v (2.12)
The complete DDPG algorithm is depicted in figure 2.8.

2.2.2. TD3

Twin Delayed Deep Deterministic Policy Gradient (TD3) is an upgraded version of the DDPG algorithm
developed in the paper Addressing Function Approximation Error in Actor-Critic Methods by Fujimoto
et al. [9]. The paper proposed methods to decrease overestimation of value functions due to function
approximation errors using three tricks:

1) Clipped Double Q-learning: This trick is similar to Double Q-learning, explored in subsection 2.1.5.
TD3 learns a second Q-function. In the Bellman loss function, the value of both Q-functions is com-
pared, and the lowest of the two is chosen.

2) Delayed policy updates: The actor (policy) and the target networks are updated less frequently
then the Q-function. This gives the Q-function more time to reduce estimation error thus decreasing
variance by having more time to converge.

3) Target policy smoothing: TD3 adds noise to the target action. This causes a certain amount of

Topen-Al gym is a widely used RL environments library: gym.openai.com
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Algorithm DDPG algorithm

Randomly initialize critic network Q(s. a|#?) and actor ji(s|0*) with weights % and 6+,
Initialize target network (' and ;1 with weights #9' « 69, g1 « g~
Initialize replay buffer &
for episode = 1, M do
Initialize a random process A for action exploration
Receive initial observation state 34
fort=1,Tdo
Select action a; = pi(5;]|8") + N according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s;
Store transition (s, a;,ry, 8,,1) in R
Sample a random minibatch of N transitions (s;, a;, i, $;41) from R
Sety; =1 +7Q' (531, ' (504110409
Update critic by minimizing the loss: L = & 5" (y; — Q(s;,;]69))?
Update the actor policy using the sampled policy gradient:

1 ;
v[-h“ J o= E Z va(g(s'- “|9L’? )l.‘f:ﬁi, TN ]vﬂ“ F‘(""mﬂJ |sJ

Update the target networks:
g9 769 + (1 — 7)8?
0 T+ (1 — 1)

end for
end for

Figure 2.8: DDPG algorithm

randomness in the action, preventing overestimation of the Q-function values to accumulate.

The full algorithm of TD3 is depicted in figure 2.9.

Algorithm 1 TD3

Initialize critic networks (g, , (g, and actor network 7
with random parameters 61, fa, ¢
Initialize target networks 0] < 01, 05 < 02, ¢’ < ¢
Initialize replay buffer 5
fort =1to T do
Select action with exploration noise a ~ 74(s) + €,
€ ~ N(0,) and observe reward r and new state s’
Store transition tuple (s, a,r,s’) in B

Sample mini-batch of N transitions (s, a,r, s") from B
i wy(s')+e e~ clip(N(0,5),—cc)
Y7+ ymini—; o Qp (s, @)
Update critics ; «— argming, N~ 3" (y—Qg, (s, a))?
if t mod d then
Update ¢ by the deterministic policy gradient:
V() = N1 3 VaQo, (5.0)|lamr, (s) Vors(s)
Update target networks:
0, —70; + (1 —7)8;
¢ 1o+ (1—1)¢
end if
end for

Figure 2.9: TD3 algorithm
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Figure 2.10: schematic of a simple DNN with 2 hidden layers

2.3. Deep Neural Networks

Deep Neural Networks (DNN) play a big roll in Reinforcement Learning. DNN and RL combined is often
called Deep Reinforcement Learning (DRL). A deep neural network is a non-linear function approxi-
mator. DNN have a variety of uses, including speech recognition, image recognition and robot control
[8]. Via backpropagation, DNN’s can adjust the weights of the network to adjust the network output to
copy the intended output. This is used in image recognition for example. Labelled datasets with known
output are used to train the neural networks to give the correct output when the image is given as input.
A DNN consists of at least (but not limited to) an input layer, two or more hidden layers, one output
layer. These layers consist of one or more nodes. All of the nodes in one layer are connected to all the
nodes in the next layer with arrows called 'weights’. The architecture of simple DNN depicted in figure
2.10 [2].

2.3.1. Forward propagation

Forward propagation is the process of computing the output of a neural network by a series of matrix
multiplications. To compute the next layer in figure 2.10 is equivalent to a linear matrix multiplication:
Hidden layer 1 is a dot product of the input layer with the weights. If the input was a 1x3 vector [i;i,i3]
and the weights are depicted as a 3x4 matrix w;;, the nodes of the first hidden layer can be computed
by:

W11 Wiz Wiz Wiy
W31 W3z W3z Wiy

This process can be repeated until the output layer is calculated. These linear matrix multiplications
are not yet capable of approximating non-linear functions. To add the non-linear functionality to the
DNN'’s, activation layers can be added.

2.3.2. Activation layers

Activation layers are non-linear operations performed on the values of the nodes. Any non-linear func-
tion can be used as activation layer. In current DNN’s, the most used activation functions are the ReLu
(rectified linear unit), Sigmoid and Tanh (hyperbolic tangent). A ReLu layer will bound the output to
have positive values. Tanh layers are used when an output needs to be bounded between (-1,1).

2.3.3. Backpropagation

Backpropagation is essential in computing the weights of a network. Backpropagation computes the
gradients of the weights and biases using stochastic gradient descent to update the parameters in a
direction that minimizes a loss function:

0 =0—aVyL(0) (2.14)

Where L is the loss function to be minimized. In current algorithms a variant of stochastic gra-
dient descent is used, called ADAM optimizer. ADAM varies the step size a depending on the data
distribution.






guadcopter dynamics and classic control

This chapter will explain the basic working principle of a quadcopter. The dynamic and kinematic
equations of the quadcopter are analysed using the Newton Euler equations for a rigid body. Pixhawk',
Ardupilot and most on the market flight controllers use a cascaded loop PID controller for attitude and
position control. This type of controller will be explained and dissected to understand the current most
used version of quadcopter control.

3.1. Basic principles

A quadcopter (or quadrotor, drone) is an unmanned aerial vehicle (UAV) that generates lift and thrust
using four rotors. The body holds the electronics of the quadcopter and is usually placed in the centre.
The four motors are attached to the body on arms. The brains of the quadcopter is called the flight
controller. The flight controller accepts all the sensor data present. These sensors usually include a
gyroscope and accelerometer, but can be extended by for instance GPS, optical flow sensors, Lidar
range sensors, barometer and many more. The type and amount of sensors depend on the function-
ality of the drone. If a drone is flown manually, a pilot uses a controller to give input to the drone.
Autonomous drones use more information about the surroundings to determine its path. This informa-
tion can be gathered by distance sensors , but might also be achieved by using some sort of vision
system (camera). Depending on the level of autonomy, the amount of sensors will vary. The flight
controller uses the information given by the sensors (and if flown manually: the control stick input) to
determine the output it will send to the motors. This output is routed to an electronic speed controller
(ESC). The ESC will translate the output from the flight controller to a usable signal used by the brush-
less DC voltage motors commonly used in quadcopter flight. More information about the anatomy of a
drone is discussed in chapter 4.

3.1.1. Coordinate frames
Two codrdinate frames are used when talking about quadcopter systems. First, there is the inertial
frame (or world coérdinate frame). This codrdinate frame lives in Euclidean space where the Newtons
laws are valid. The inertial frame is a right handed codérdinate system, with the option of one of two
conventions. One option is the “east-north-up” (ENU) convention, where the positive x axis points to
the right (east), the positive y axis points forward (north) and the positive z axis points upward (up), see
figure 3.1. The second option is with “north-east-down” (NED) convention, where the positive x axis
points forward (north), positive y axis points right (east) and positive z axis points down (down), see
figure 3.2

The other codrdinate frame used is the body-fixed frame (or body frame). This coérdinate frame is
assumed to have its origin in the centre of mass of the quadcopter and follows the NED convention.
Forward direction is aligned with the x axis, y axis points to the right side of the quadcopter and positive z
axis points down, see figure 3.3 In mechanical engineering the ENU convention is most used. However,

"widely used open source flight controller (www.pixhawk.org)

13
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Figure 3.1: ENU coérdinate system

Figure 3.2: NED codrdinate system

in aerospace engineering the NED convention is most widely used. Therefore the NED convention is
used throughout the rest of the thesis.
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Figure 3.3: Body frame codrdinate system

In this body frame also the motions roll, pitch and yaw are defined according to aerospace conven-
tions. Roll (¢) is the rotation around the x-axis, pitch () is the rotation around the y-axis and yaw (y)
is the rotation around the z-axis. Note that this codrdinate system is a right handed system and the
positive directions of the rotations are also the right handed rotations.

3.1.2. Airframes

A quadcopter can have different airframes. An airframe is the configuration of components, for instance
the length of the motor arms to the center of gravity, the direction of the x-axis with respect to the rotors
and the angle of the motor arms with respect to the x and y axes. The Pixhawk website lists multiple
supported airframes. We assume for this thesis a symmetric quadcopter, where all the motors are
evenly spaced out and with the same distance to the origin. With that assumption, there are two main
types of quadcopter airframes: the '+ and ’'x’ configurations. These configurations are depicted in
figure 3.4a and 3.4b. In these figures, the red arrow points in the forward direction aligned with the x
axis. The numbers on the rotors indicate the convention for rotor numbering in the two airframes. The
arrows on the rotors indicate the rotation of the rotors.
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3.2. Flying the drone

The drone flies by the spinning rotors like a helicopter, generating lift. The total lift is the summation
of the lift generated by each rotor. Hover is achieved if the attitude of the quadcopter is zero for pitch
and roll and if the total amount of generated lift is equal to the gravitational force pulling the drone
down. Increase in altitude is achieved by generating a total lift more than the gravitational force, while
a decrease in altitude is achieved by generating a total lift less than the gravitational force. The pitch,
roll and yaw movements are achieved by differences in force generated on each side of the respective
axis. Depending on the airframe this will result in different motor behavior.

3.2.1. x configuration

Pitch is achieved by increasing the difference in thrust of rotor set (1 3) with respect to rotor set (2
4). Roll is achieved by creating a difference in of rotor set (1 4) with respect to rotor set (2 3). Yaw
is achieved by creating a difference in thrust between the rotors rotating in clockwise and the rotors
rotating in counter-clockwise direction, so a difference between thrust of rotor set (1 2) with respect to
rotor set (3 4).

3.2.2. + configuration

Positive pitch is achieved by increasing the difference in thrust of rotor 3 with respect to rotor 4. Roll
is achieved by creating a difference in of rotor 1with respect to rotor 2. Yaw is achieved by creating a
difference in thrust between the rotors rotating in clockwise and the rotors rotating in counter-clockwise
direction, so a difference between thrust of rotor set (1 2) with respect to rotor set (3 4).

3.3. Rotation and Transformation

The transformation from body frame to inertial frame is expressed as the ‘rotation matrix’ R, (¢, 8,9) €
503. The rotation matrix R,,,(¢,6,1) € SO3 (equation 3.1) is computed by multiplying the rotation
matrices of each of the individual axis [34] where to rotations to each axes correspond with the matrices
in equations B.1, B.2, B.3, see appendix B.

cosOcos¢p sinpsinfcos¢p — cosypsing cosypsinbcosg + sinypsing
R = |cosOsing sinypsinfsing + cospcos¢p cosypsinfsing — sinypcosg (3.1)
—sinf sinycosf cosycosl

A rotation from body to inertial frame is described by the rotation matrix R. A translation from body
to inertial frame is described by the linear transformation matrix T (equation 3.2)[20].

1 singtan8 cosptand

T=|0 cosp —sing (3.2)
0 sing cos¢
cos6 cos6

To rotate or translate in the opposite direction, from inertial to body frame, the transpose of the
rotation and translation matrices are used: R and T7.
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3.4. Mathematics and Dynamics model
Assumptions made while developing this dynamics model are [3]:

» The quadcopter is a rigid body

» Centre of mass and centre of gravity coincide with the geometrical centre
» Moments of inertia of the propellers are neglected

* No sideslip during flight

» No bladeflapping

* No aerodynamic interaction between blades

» No ground effect

» Low flight speeds of under 10 [m/s]

This section will explain more about the underlying principles of these movement in body and inertial
frame after which the dynamics equations of these motions are set up. The general Newton-Euler
equations are set up [10] [39]. The different subsections within these general equations are then further
specified.

First of all, we define the linear and angular position in inertial frame as vector [x y z ¢ 6 ¥]7. The
linear velocity and angular velocities are defined in the body frame as vector [u v w p q r]7. u, v and
w correspond to respectively forward, sideways and downward motion of the rigid body. p, q and r
correspond to respectively roll, pitch and yaw speeds. Switching between speeds in inertial and body
frame uses the rotation matrix R from equation 3.1.

v =Ry, (3.32)
w = Tw, (3.3b)

Where the underscore b in v, and w), stands for the speeds in body frame. v = [x y z]T,
w=[ 0 YT, v, =[u v wllandw, = [p q r]’. Equations 3.3 combined make up the
kinematic equations of the quadcopter.

3.4.1. Newton-Euler equations
Given the codrdinate systems described in the beginning of this section, the full generalized non-linear
Newton-Euler description of the quadcopter is given in equation 3.4 [1].

Fb = m((l)b X Vp + Ub) (348)

Mb = I(l)b + wp X (I(l)b) (34b)

In this equation, F, = [F, F, 1,17 represents all forces on the rigid body quadcopter. m is the
mass of the quadcopter.
My = [M, M, M,]" are all the moments acting on the quadcopter, where I is the diagonal inertia
matrix
L, 0
I=]0 0 (3.5)
0

o o
]

z

The total forces and moments can be further specified by adding prior knowledge to the equations.
Together, these equations make up the dynamic equations of the quadcopter, see equation B.4.
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3.4.2. Forces and moments

In previous subsection, the general Newton-Euler equations are specified, resulting in general dynam-
ics equations B.4. The right hand side of these equations consist of system states and system inherent
properties mass and inertia. The left hand side of these equations are all the forces and moments act-
ing on the rigid body. These forces and moments exist due to gravity, thrust and aerodynamic effects
[17]. In this subsection, the influence of each of these factors is determined and added to the dynamics
equation. The total force can be rewritten in its components, see equation 3.6.

E=F+FK+F (3.6)

Where F; is the force induced by gravity, F; is the force generated by thrust, and F, incorporates the
aerodynamic drag effects on the quadcopter. In the same way, the moments acting on the body can
be split up, see equation 3.7.

My, =M.+ Mg + M, (3.7)

Where M, = [z, 1, T1,] are the generated control torques by the difference in rotor speeds, M, =
[twx Twy Twz] are the torques caused by aerodynamic drag forces and M, are torques induced by
gyroscopic effects of the rotor blades.

Gravity only has an effect in the z-direction of the inertia frame. This results in equation 3.8.

F, = mgRe, (3.8)

Where m is the mass, g is the gravity constant, and é, is the unit vector in the inertial z-direction. F,
is the force acting on the rigid body caused by the thrust (or thrust) of the rotors. Thrust acts on the
centre of gravity in the direction of the negative z-direction in body frame, é;.

Equation 3.6 can be elaborated to equation 3.9.

F, =mgRé, + Fé; + F, (3.9)

Adding the forces and moments to the dynamics equations by substituting the equations of the
forces into the dynamics equations B.4, equation B.5 is obtained.

3.4.3. Actuator dynamics

Equation B.5 is already a more detailed formula regarding the system dynamics. In the introduction
of this chapter is described that a drone flies because of thrust generated by spinning the rotors. Dif-
ferences in rotor speeds of the four rotors cause torques to act on the body. This thrust force and
these torques are described by actuator dynamics. After identifying these dynamics, they can be im-
plemented in the system dynamics equations.

The thrust is the summation of the individual thrusts generated by each of the rotors. A rotor generates
force proportional to the square of the rotor speed, with some thrust coefficient. The sum of all the four
rotor forces make up the thrust force F; (equation 3.10).

F = Z .02 (3.10)

In this equation c; is the thrust coefficient of the rotor (which is assumed to be equal for each rotor)
and Q is the rotor speed (in rad/s) for each of the rotors. The part of the actuator dynamics that is
responsible for the generated torques is the part where quadcopter configuration makes an important
difference. For a + configuration, the roll, pitch and yaw torques are depicted in equation 3.11.

T = ¢ l(QF — 0F)
T, = ¢ 1(QF — Q) (3.11)
T, = 1(—Q2 — Q% + Q% + 02)
Where c; is the thrust coefficient of the rotor and c; is the torque coefficient of the rotor. The length
of the rotors to the axis is depicted as [. Since the quadcopter configuration is assumed to have

symmetry in both x and y axis, and the all distances are equal, [ is the same for each of the rotors. For
x configuration, the roll, pitch and yaw torques are depicted in equation 3.12.
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T =10 + 0 - 0 - Q)
7, = ¢ 1(Qf + Q3 — QF — Q) (3.12)
T, = ¢ 1(—QF — Q% + Q% + Q%)
If chosenastatevectorx=[x y z u v w ¢ 6 Y p q r]7,fromequationsB.5and 3.3,
the system can be represented as equation 3.13:

[w(singsiny + cos¢pcosysind) — v(cospsinyg — cosypsingsing) + u(cosypcost)]
v(cospcosy + singsinysing) — w(cosysing — cospsinpsing) + u(sinycost)
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This equation can be captured in simplified form (equation 3.14).
x=f(x,u) (3.14)

Where f is a (nonlinear) function of the state and the inputs.

3.4.4. Linearized model
Linearization is often used to develop controllers (PID control) for Linear Time Invariant (LTI) systems
[16]. LTI systems are linear. Since the dynamics equations of the quadcopter are highly nonlinear,
linearization is used to develop controllers for LTI systems [32] [31] [29]. Linearization of a system
creates the opportunity to analyse a non-linear system around one operation point. A linear approxi-
mation is made around that operation point. Angles are assumed small around this operation point, so
that according to the small-angle approximation sinf = 6, cos@ = 1,tan6 = 6 [40]. This small angle
assumption applied to equation 3.13 results in equation B.6.

As operation point for linearization, usually hover state is used [32]. Applying both the small angle
assumptions and the hover state, the linear model is given [25], see figure B.7.

3.5. Quadcopter control

Since linear control imposes the linear boundaries to the system, and therefore limits the movements of
the quadcopter, the model used throughout the rest of the thesis is the non-linear model as described
in equation 3.13.

In existing flight controllers multiple flight control modes exist, each using their own control diagram.
The PX4 documentation shows a list of their supported flight modes 2, as of early 2020 including man-
ual/stabilized mode and acro mode in the ‘'manual flight’ subsection, attitude mode and position mode
in the 'assisted flight’ subsection and various totally autonomous flight modes in the ’autonomous flight’
subsection. The manual flight modes translate the control stick input to either roll, pitch and yaw set-
points for the controller, or roll, pitch and yaw rate set-points. This type of control is more low level than
the one used in autonomous flight, where via a pre-planned mission (or in real time updated) location
set-points, or even higher level mission targets are put into the controller.

In this thesis a totally autonomous quadcopter accepting 3D position target is assumed. This au-
tonomous quadcopter accepts multiple way-points in the form of a trajectory as input. The used control

2https://dev.px4.io/master/en/concept/flight_modes.html
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Figure 3.5: Block schematic of quadcopter PID control loop

method for a position control system is a PID control loop, existing of an attitude control block and a
block for position control, see figure 3.5.

A position set-point 7, is compared to the actual position of the drone #. The difference Ar enters
the position controller block. This block computes the desired acceleration and the desired attitude
using Proportional Derivative Integral (PID) control, see equations 3.15 and 3.17.

Accges = Kp(zsp — 2) + Kq(Zsp — 2) (3.15)

Of which Accy,s is vector with three columns: x, y and z acceleration. The desired z acceleration is
used to calculate the desired thrust (equation 3.16), while the desired x and y acceleration are used to
calculate the desired pitch and roll angle. The desired thrust is computed by taking the difference in
desired thrust with and gravity and multiplying by the mass m.

Fipruse =m* (g — Z) (3.16)
1

Daes = E(jCISin(lpdes) + ycos(Wges)) (3.17a)
1

Oges = E(_x‘cos(lpdes) + Vsin(Pges)) (3.17Db)

In these equations, g is the gravitational constant. The desired roll and pitch angle enter the attitude
control block. The desired torques are calculated via PD control, as seen in equation 3.18.

Txdes = pr(¢des —-¢) + Kdr((i)des - ¢) (3.18a)
Tydes = p‘r(gdes -0)+ Kd‘r(édes - 9) (3.18b)

From the actuator dynamics equations 3.10 and 3.12, the relations between forces moments and
motor outputs is evident. Extracting the motor speeds from these equations and putting the desired
thrust force and the desired torques in a joint vector (equation B.8), the motor speeds can be extracted
by simple matrix multiplication, see equation 3.19:

-1
Q% kt kt kt kt Fthrust

Q% _ _lkt lkt lkt _lkt Tx
Q% - lkt _lkt lkt _lkt Ty (3.19)
Q421- —k; —k: ke ke Tz

3.6. Conclusion

This chapter discusses the working principles of a quadcopter and analyses the non-linear dynamics.
Understanding these two items is essential in creating a simulation model. This simulation model is
used by the RL environment to compute the states of the agent, given a certain state and input. The
accuracy of this simulation model is an important factor in the sim-to-real transfer. The controller is
used in testing the two-step parameter estimation procedure in chapter 5.
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4.1. Introduction

Chapter 3 discusses the working principles of a quadcopter, as well as reviewing its dynamics. For
this research a custom quadcopter is built. This quadcopter is the platform that will be controlled
by the Agent and will function as the testing platform for this thesis. Off the shelf quadcopters are
closed platforms: It is difficult (or impossible) to alter anything about the software or hardware. For
experimental platforms therefore often is chosen for a modular building platform, with an alterable flight
controller. PX4 and Arducopter (amongst other brands) provide flight controllers that can interact with
third party hardware (motors, ESC’s and such). Adaptability with these flight controllers is higher than
off the shelf quadcopters. Where off the shelf total quadcopters don’t allow for any modifications, these
flight controllers are open source: the source code is found online and can be adapted. This allows for
modifications regarding the sensors, the frame and electronics used. The code can also be altered,
so different modules can be added or removed from the flight controller. For the system identification
of this quadcopter, we will use an RC controlled platform, with sensors that can capture the state of
the drone. PixHawk does provide these options. The first build will therefore use a PixHawk flight
controller, running PX4’s latest build px4_v5 to gather data for identification of parameters and to verify
the feasibility of the rest of the components. However, as of today, these flight controllers don’t offer
the option of running python code. The eventual RL agent will run as a python file. A second build will
be created, running on a Raspberri Pi 3B+ '. The Raspberry Pi (RPi) is a small linux based computer
and will run the python script that will obtain sensory data and send motor command to the hardware.
Also a third build will be implemented, using a three axis free rotation setup. This setup is used for
save testing of attitude control algorithms. The drone is hung into this setup, bounding it position wise,
but enabling rotation around all three axes.

4.2. Design requirements

To create a quadcopter from scratch, a list of requirements is needed. This quadcopter will be used as a
platform to test flight control algorithms, in collaboration with engineering company Fusion Engineering
2. The experimental nature of this platform does not guarantee safe flight performance and is likely
to endure crashes. Therefore the first design requirement is that the quadcopter needs to be crash
proof. The drone also might be used as platform for testing different sensor sets, for instance multiple
GPS sensors, Lidar range sensors, a camera and optical flow sensors. To make sure all of these
sensors can be mounted, the quadcopter has a maximum mass of maximum 3 kg. The motors need to
produce High thrust. Quadcopters are inherently unstable platforms. When no control input is given to
the system, the state values will grow out of bounds. To minimize the instability of the system, a high
inertia is needed. This will slow down the rotational motion of the quadcopter. Since the research is

"Raspberri Pi is a small computer: www.raspberrypi.org
2www.fusion.engineering
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about a quadcopter, the platform should at least support four motors.
To summarize, the quadcopter will need to:

1. be crash proof
2. high thrust motor
3. have high inertia

4.3. Components

The basis of each quadcopter consists of multiple components: The frame, the flight controller, the
sensors, the motors and the electronic speed controllers (ESC). The frame is the component that func-
tions as the skeleton on which all other components are mounted. The flight controller is the brain of
the quadcopter. It receives information from the sensors and computes the signal send to the ESC'’s.
The ESC translates this signal to a three phase AC power that drives the brushless DC motors. A LiPo
battery is mounted to power the electronics. The list of components is:

* Frame

Frame rods

Connection pieces
Motor mounts
Legs

Flight controller
» Sensors

— Accelerometer
— Gyroscope
— Vicon Optitrack
— Barometer

+ ESC’s
» Motor assembly

— Motors
— Rotors

+ Battery

4.3.1. Frame

The frame of the quadcopter is the skeleton that holds together all the components. To make the frame
as light as possible, the frame is made from square carbon fiber rods with 10 mm sides. A central
mounting pad is used in the design to house the components. This central mounting pad consists of
a hexagonal laser cut piece of plexiglass. The frame rods are positioned in a square layout, with the
diagonals also connected. The diagonal rods are held together by the central mounting pad and an
identical piece of plexiglass, where the frame rods are held in between. The corners of the square
frame are connected by corner pieces also laser cut from plexiglass. The frame size is chosen so that
the motors can fit within the outer square. The anatomy of the frame enables the drone to crash without
damaging the motors or the propellers. The motors are placed on the diagonal rods of the frame. A
schematic of the drone frame layout can be seen in figure 4.1. In this schematic, the light blue circles
represent the rotors, the darker blue circles represent the motors. The motors are connected to the
frame rods using 3d printed motor mounts. These motor mounts are created so the distance from the
centre can be varied if needed.The frame rods with the motors mounts, motors, rotors and plexiglass
connection pieces can be seen in figure 4.2.

The frame should also incorporate legs of any form for the drone to land on.
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Figure 4.1: Quadcopter design schematic

Figure 4.2: Frame rods with plexiglass connections pieces, motor mounts, motors and rotors

4.3.2. Flight Controller

The first build will use a Pixhawk 4 flight controller. The Pixhawk 4 flight controller is bought as is, and
is after installation of the other components ready to use. It is shipped with working firmware. Pixhawk
4 flies with a cascaded PID control loop as described in section 3.5. The sensors provide information
to the flight control unit. This sensor data is then fused using a Kalman filter. The default Kalman filter
used by the pixhawk 4 is their own developed EKF?2 filter. 3.

The second build will not use an off the shelf flight controller, but will use a Raspberry Pi 3b+ to directly
map sensor data to an output signal for the ESC'’s.

4.3.3. Sensors

For the first build, the accelerometer and gyroscope used are the built-in accelerometer and gyroscope
of the PixHawk. The accelerometer measures linear accelerations. The gyroscope measures rota-
tional velocity. The accelerometer and gyroscope are used for attitude control within the Pixhawk flight
controller. GPS is not used since flights only occur indoors. Pixhawk 4 also uses a barometer for al-
titude measurements. In the first build, external positioning is used to gather visual odometry data for
position measurement. The system used is the Vicon # system available in the TU Delft cyberzoo 5.
The Vicon system is a motion capture system capable of accurate location tracking. The Vicon system
in the cyberzoo uses twelve infrared camera’s mounted on the ceiling. Infrared reflecting markers will
be positioned on the object of tracking. The motion capture software creates a rigid body from these
markers and is then able to determine sub-millimeter precision position and attitude measurements.
Where the first build relies on multiple sensors for attitude control and only uses Vicon for position

3https://github.com/PX4/Firmware/tree/master/src/modules/ekf2
4www.vicon.com
Shttps://nl.wikipedia.org/wiki/Cyber_Zoo
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Figure 4.3: Pixhawk 4 flight controller

Figure 4.4: Raspberry Pi 3B+ computer

measurement, the second build uses only the information of the Vicon tracking system (position and
orientation) to determine its state and uses this information for control.

4.3.4.ESC

The ESC is responsible for translating the input signal from the flight controller to a three phase AC
voltage to send to the brushless DC motors. ESC’s are off the shelf components. Multiple protocols
exist for communication. The most common one is Pulse Width Modulation, also used by the Pixhawk
flight controller. The standard PWM signal is a 50 HZ signal and has a high state duration between 1
and 2 milliseconds. The duration of this high state proportional to the RPM of the motor: a high state
duration of 2 milliseconds corresponds to the maximum RPM of the motor, where a high state duration
of 1 milliseconds corresponds to the minimum RPM of the motor. A high state duration of 1.5 millisecond
will then correspond to half of the maximum RPM of the motor, see figure 4.5. A drawback of using
this protocol is the limited refresh rate. The 50 HZ signal is the limit of refreshing motor commands.
This protocol is also an analog signal, which makes it vulnerable for interference. Almost all ESC’s are
capable of accepting PWM signals.

Other than PWM, newer digital protocols are now also used. DShot is one of these newer protocols that
is gaining market value nowadays. DShot is the first digital protocol available for quadcopter ESC’s.
Being a digital protocol, DShot solves the problems that analog protocols have due to interference
and communication issues. Also this protocol is faster than its analog counterparts, with the number
behind the DShot stating the communication speed: DShot150 can send up to 150.000 bits per second,
DShot1200 up to 1.200.000 bits per second. An alternative (or upgrade) to the standard DShot protocol
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is the Bidirection DShot protocol . Bidirection DShot allows for communicating the motor speed back
to the flight controller, without any extra wires at very high speed. This high frequency feedback is
needed for advanced flight controllers in order to react quickly to changes in the environment (eg. wind
gusts) or to actively detect faults in the rotors.

The Holybro Tekko32 series ESC’s support both Bidirectional DShot as well as PWM and are therefore
chosen as an affordable ESC for this quadcopter.

20ms

ns - Pulse Width
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1] )3
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2ms

Figure 4.5: PWM signal, varying from 1 ms high (lowest RPM), to 2 ms high (highest RPM)

4.3.5. Motors and rotors

The type of motors is related to the characteristics of the drone. Small drones buiilt for racing require
small motors with high KV values. Large drones for lifting require larger motors with low KV values.
The KV value of the motor is the rotational speed of a motor per Volt supplied to it under no load.
The amount of voltage supplied with brushless DC motors is the output of the battery and is always
constant. For our purpose we use a 4S LiPo battery supplying 14.8 V. The DYS d4215-650KV motor
is rated to lift 1.5 kg at full speed with a 12”, 3.8 pitch propeller (the type of propeller used).

4.3.6. Legs

The legs will often be the first object of impact in case of a crash. The legs can be chosen to be either
stiff or elastic. In case of strong and stiff legs, the forces of impact will be passed on to the frame. We
want the frame to survive the crash, so the forces to be lower. Therefore a cheap elastic type of leg is
used. In case of a crash where the legs break off, the legs will be easy to replace. The legs are made
of semi circular PVC tubing, width a width of around 5 cm and a radius of 10 cm.

4.4. Assembly and schematic

4.4.1. First Build: Pixhawk controlled quad

This first build uses a Pixhawk 4 as flightcontroller, see figure 4.6. The pixhawk uses its internal ac-
celerometer, gyroscope and barometer as internal sensors. The sensor data is fused using the Pixhawk
extended kalman filter. The Pixhawk sends commands to the ESC’s. The raspberry pi is used to wire
communication from the Pixhawk to the ground control station (GCS). In our case, the GCS is a laptop.
The flight controller sends telemetry data via UART connection to the RPi, which transfers the data
over WiFi via MavLink Protocol’.This telemetry data consists of (but not only) battery voltage, drone
position, drone attitude, motor input values, and debugging/logging messages. The Vicon Positioning
system is directly logged into the ground control station. All information that is sent back to the GCS
can also be captured by the Pixhawk on a local micro SD card. The total build can be seen in figure
4.7.

6https://fusion.engineering/tech/bidirectional-dshot/
"https://ardupilot.org/dev/docs/mavlink-basics.html
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Figure 4.6: Schematic of first build

Figure 4.7: Drone build with Pixhawk controller

Figure 4.8: Bottom half detail showing the battery and the RPi

4.4.2. Second Build: RPi controlled quad

In the second build, the Pixhawk flight controller is removed from the setup. The purpose of this build
is to have Reinforcement Learned agent perform waypoint tracking within the cyberzoo environment.
The absence of the internal sensors of the Pixhawk is compensated by using the Vicon Motion capture
system. This system can measure quadcopter position with sub-millimeter precision as well as attitude
measurements with the same precision. The Vicon system sends the position to the ground control
station. The GCS then sends this information via WiFi to the RPi flight controller. The RPi can also
send telemetry data back via WiFi, but can also log onto the RPi SD card.
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Figure 4.9: Schematic of the second build

4.4.3. Third build: RPi controlled quad in gyro setup

For safety and simplicity, also an attitude control policy is developed. This attitude control policy is
tested in the Fusion Engineering gyroscope test setup, see figure 4.11. The gyro setup bounds the
position of the quadcopter. Since the policy developed does not contain a separate loop for attitude
and position control, a trained policy for position waypoint tracking will not function in the confined
test setup of the gyro setup. Therefore a separate attitude control policy is created. The test-gyro
setup cannot use the Vicon tracking system for attitude measurements. Instead, each ring of the gyro
test setup contains two rotary encoders, capable of measuring up 0.0004 degrees precision. The two
encoders of each ring can be averaged to account for non-planar deflections of the drone to non-perfect
stiffness of the gyro structure.

Gyrotestsetup =~ ~ ~ - — - - o s s s s s s s s s s
| Quadcopter

| Frame
Battery
SphaseAC

1
1
1
1
1
1 ESC
1
1
1
1

Flight Control
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Angle sensors

Ground Control Station

Figure 4.10: Schematic of the second build
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Figure 4.11:

Fusion Engineering gyro test setup
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5.1. Method

The challenge of transferring a policy from simulation to real world is called sim-to-real transfer. For
the sim-to-real transfer, the model that the agent uses to train should ideally be an identical copy of
the real world. If the simulation model and the real world are identical, the behaviour of the quadcopter
will be identical to its behaviour in simulation. If the simulation model differs from the real world, the
behaviour will also differ from simulation. Different methods exist to solve this problem of transferring a
policy from simulation to reality. Often used is training with "domain randomization’, where per episode
environment parameters are randomized within a certain range [38] [28]. The advantage of this method
is that the agent will view the real life situation as just one other variant of the environment. A disad-
vantage however is that performance in different compositions of parameters can heavily vary. In the
situation of flying the drone the parameters are fixed and experiments can be conducted in supervised
environments with steady conditions. Therefore we try to solve the problem of sim-to-real transfer by
creating an accurate model by means of parameter estimation. The method consists of two steps:

1. Initial parameter estimation

2. Fine tune parameters using Simulink parameter estimation

First the model structure of the system dynamics is chosen. The model structure will implicitly
determine the parameters that need identifying. After initial parameter estimation, these values are
fine tuned using the Matlab parameter estimation toolbox. The first step is performed on the real life
drone. The second step is done in simulation, to verify if the method could work on the actual drone.
The steps to make this work on the real quadcopter are discussed in the 'Future Work’ section in chapter
8.

5.2. Two-step identification process

5.2.1. Initial parameter estimation

System identification and parameter estimation is used to create an accurate simulation of the real sys-
tem. The first step is choosing the model structure after which a list of parameters to estimate is set up.
In the case of the quadcopter, some parameters are more easily measured than others. Parameters
such as mass can just be determined [40]. Inertia properties are more difficult to measure and have to
be estimated [24].

From the dynamics equations in chapter 3 the necessary parameters can be distilled. A few assump-
tions are made regarding the identification of parameters:

1. Low flight speeds resulting in negligible air drag
2. The quadcopter is symmetric about both x and y axis

3. Parameters don’t change during flight
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4. CoM and CoG coincide with geometrical centre
5. Mass moment of inertia matrix is diagonal

Because the test flights are performed with low speeds, the air drag is neglected. This is in accordance
to Sun’s paper on Identification of quadcopter Aerodynamic Model from High Speed Flight Data: If flight
speeds are below approximately 11m/s, drag is negligible [36]. The parameters to identify are:

» mass 'm'’ [kg] (equation 3.13)

« distance of motor to axis 'I'[m] (equation 3.12)
« thrust coéfficient 'c{ (equation 3.12)

» torque coéfficient 'c; (equation 3.12)

« diagonal inertia matrix 'I' [kgm?] (equation 3.13)

Mass

Mass of the system is identified by putting the quadcopter on a scale. The scale used is a portable
electronic scale with an accuracy of 5 grams. The measurement of the quadcopter is a mass of
m = 2.545kg.
Distance motor to axis

The distance of the motors to the x and y axis are measured by ruler and measure
l=0.170m.
Thrust and torque coéfficient

Thrust and torque coéfficients cannot be measured directly, but instead need to be estimated. Equa-
tion 3.10 describes the relation between the thrust force, the thrust coéfficient and the rotor speeds of
a rotor. Rewriting this equation shows that the thrust coéfficient is proportional to the thrust generated
divided by the square of the rotor speed (equation 5.1):

F

== (5.1)

Ce
Similarly, the torque coéfficient is proportional to the torque generated divided by the square of the rotor
speed (equation 5.2):

== (5.2)

In order to determine these coéfficients, the thrust force, torque
and rotor speeds need to be measured. For this a testbench setup is
used. This setup uses two load cells are used: one to measure the
force in the thrust direction and one to measure the force perpendicu-
lar to the thrust direction, to calculate the torque from. The testbench
is depicted in figure 5.1. The testbench holds the motor and load cells
in a 3D printed mount, as well as the sensor used for rotor speed
measurements. The side of the motor is equipped with 4 reflective
tape markers. The rest of the side is covered in non-reflective black
tape. The reflective tape reflects the wave from the emitter back to its
receiver, while the non-reflective tape does not. Every 4 reflections
will count as one revolution. The measurements will take place at a
frequency of 50Hz.

Measurement input:

A PWM signal ranging from 1100 to 2000 is given as input, with steps
in between of 1000, and a duration of 1 second per step.

The rotor speeds and forces in both load cells are measured as output.

When plotting the rotor speed on the x-axis and thrust force on the
y axis, a clear second order relation is visible between the two. The

Figure 5.1: Rotor testbench setup
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Figure 5.3: PWM signal vs. rotational speed
figures from the rotor speed vs. thrust and rotor speed vs. torque are
depicted in figure 5.2. The relation between PWM signal and rotational
speed is visible in figure 5.3
A linear regression is used to compute the thrust coéfficient c;.
The error term used for this regression is equation 5.3, where y(k) is
the measured output and y(k, 0) is the output of the proposed model,
with index k and parameter 6.
e(k,0) = y(k) — y(k,0) (5.3)
Minimizing this error is done using a linear least square method [22].
1 N
V(k0) =+ Z e(k, 0) (5.4)
k=1
The resulting model parameters are then
6 = min(V) (5.5)

Where V is called the cost function, 6 is the parameter vector, N is the number of data points, k is the

indexand ¢ is the error vector.

Our proposed model is § = ¢, where ¢ is the input (vector), y is the output (vector) and 6 is a

parameter. The error term is then

e=y—y=y—¢0o
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The substituting this value for the error term in the cost function gives

1 1 1
V() = NSTS =50- P (v — ¢0) = N(yty —20T¢pTy + 6T p0)

The best model parameters are then solved by minimizing V, as in equation 5.5. The analytical solution
is derived by differentiating V with respect to 8

av

—=0- l(—2¢>T +2¢T¢0) =0 (5.6)
a6 N Y '

Which results in
0=(¢"¢) 9"y (5.7)
Applying the linear least square on the data, a thrust coéfficient and torque coéfficient of

N Nm
ce = 1804e — 5[], ¢ = 4.907¢ — 8[ "]
are found.

Moment of Inertia

Sun’s paper on Identification of Quadrotor Aerodynamic model from High Speed Flight Data[36]
uses a method proposed by Mendes et al. in the paper Determining moments of inertia of small UAVs:
A comparative analysis of an experimental method versus theoretical approaches[24], which uses the
masses and simple inertia estimates of the individual components to compute a total inertia matrix of
the system. Their method supposedly has an accuracy of 5%. Their method is preferred over other
methods, since it requires no additional test setups.
The centre pad is modelled as a flat cylinder, with radius r = 0.085m, length [ = 0.10m and mass
M = 1.545kg. The motor assemblies that include the motor mount, motor, rotor, ESC and the bolts and
nuts are modelled as a point mass of m1 = 0.130kg. The corner pieces that include the plexi-glass
corners, the legs and the bolts and nuts are also modelled as a point mass of m2 = 0.120kg. In total
this results in one centre pad with cylindrical shape and eight point masses. The model is depicted in
figure 5.4

Figure 5.4: Inertia model with cylindrical mass M in the centre and point masses m1 and m2 as motor assembly and corner
assembly

The inertia around x and y axis of the cylinder (where the inertia around x and y axes are identical)
and inertia around the z axis are calculated with equation 5.8.

_ MR?  MI?

I i
x 4+12

(5.8a)
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MR?
I = —
For the point masses, the inertia around the respective axis is a function of their mass and the
square of the distance, see equation 5.9.

(5.8b)

I = mR? (5.9)

The total inertia around x, y and z axes are the sum of each of the components: the cylinder, the
four inner point masses of the motor assembly and the four outer point masses of the corner pieces,
see equation 5.10.

Ixtot = Ixcyl + 41xmotor + 4Ixcorner (5-103)
Iytot = chyl + 4'Iymotor + 4chorner (510b)
Iztot = Ichl + 4'Izmotor + 4'Izcorner (5-100)

Using these equations, the resulting inertia numbers are depicted in table 5.1.

{3 |_{y} |_{z}
Center cylinder 0.004078 0.004078 0.005581
Inner point mass (motor assembly) | 0.003757 0.003757 0.007414
Outer point mass (corner assembly) | 0.008748 0.008748 0.01745

Table 5.1: Table of inertia values for the individual components

Plugging these values in the equations 5.10 give total inertia values of:
Letor = 0.054098  kgm?
Lytor = 0.054098  kgm?
Litor = 0.104037 kgm?
The gyro test setup also adds inertia to the system. The inetia of these parts is taken from the
analysis of the 3D CAD files provided by the designer.

5.2.2. Tune the parameters
This step of is tested in simulation only. Read the section on future work 8.2 for the steps needed to
implement this on the real quadcopter.

To fine-tune the parameters found in the previous section, a parameter optimization is developed
in simulation. The Matlab toolbox parameter estimation will be used in combination with Simulink. The
dynamics model of equation 3.13 is implement into a Simulink block, as well as the controller proposed
in section 3.5. The Matlab parameter estimation toolbox compares the output data of the Simulink
model ys;,, to reference data y,.r. The estimation error is formulated as:

e(t) = Yref ) = Ysim(®) (5.11)

The parameter optimization minimizes this error function by minizing the cost functions, which in
this case is the sum of the squared error:

tn

Flx) = Z e2(t) (5.12)

to

Because no real flight data is yet used, simulation is used for generating data as well. The same
Simulink model is used, but with different initial parameters. This model will be called the data gener-
ation model. The model that needs identifying of parameters will be called the transition model. This
name is chosen because the transition model term is also used in Reinforcement Learning as the dy-
namics model that transitions the environment from one state to the next after an action is taken. A
trajectory generator generates position set-points. The controller takes in these set-points and the
current position of the quadcopter to generate inputs for the quad. These inputs enter both the data
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Figure 5.5: Diagram of the parameter optimization finetune method

generation model and the transition model. The difference in the output is the error term used for
parameter optimization. This method is captured in the block diagram of figure 5.5.

Trajectory
For estimation a 3D step input is chosen. The 3D step input ensures that all important dynamics of the
quadcopter are excited. The starting position is p, = (0, 0,0). The target position is p; = (1,1,1).

5.3. Test in simulation

The data generation model is responsible for generating the motor inputs u, that will be used as input
for the transition model in order to estimate the parameters. The controller in the block diagram 5.5 is
identical to the controller discussed in section 3.5.The PD values of this controller consist of position
gain K, position damping Ky, attitude gain K,,, attitude damping K;, with values:

Ky =[15 15 15]
Kn=[2 2 2]
K,1 = [160 160 160]
Kg1 = [40 40 4]

The parameter values used to generate the data correspond with the initial parameters discussed
in section 5.2.1:

mass[kg] 2.545
armlength[m] | 0.17
N
Ct[(ral\f]iw] 1.804e-5
m
CT[W] 4.907e-8
Iy 0.054098
L, 0.054098
I, 0.104037

Table 5.2: Initial estimation of parameters

The parameters mass, arm length, thrust and torque coéfficient are measurable with good accuracy.
The inertia however is more difficult to measure and has to be calculated. Mendes et. al [24] claims
that a multibody approach is able to yield errors of lower than 5%. To allow for higher faults in inertia
estimations, we will test if the parameter estimation technique will be able to estimate the right inertia
values, when starting from inertia values multiplied by a factor 10:

Iyo = 101, = 0.540980
I, = 101, = 0.540980
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Where I,, and I, are the inertia values of the transition model.
The parameter estimation results after 11 iterations in values of:

I, = 0.05371750

1y, = 0.05375963

Which is close to the original value.

Figures 5.6 to 5.8 show the x,y,z position of three lines: the test data, generated by the data gen-
eration model, the output of the simulated model before parameter estimation and the output of the
simulated model after parameter estimation. The figures show that after estimation, the simulation
data closely resembles the original data and thus estimation of inertia is possible using this method.
The plots of the other outputs: u,v,w velocities, roll, pitch, yaw attitude p,q,r rotational velocities can
be found in appendix C.
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Figure 5.6: x position of actual data, the simulated output pre-estimation, the simulated output post-estimation

5.4. Conclusion

This chapter shows the two-step parameter estimation process of a quadcopter. The first step mea-
sures mass, length of arms, thrust and torque coéfficients. The mass and length of arms were measur-
able easily. For the two coéfficients, a testbench setup was used. The testbench measures rotational
speed of the rotor, as well as thrust force and torque. From the resulting data the coéfficients can be
estimated. The inertia values are first estimated using a composite model of a centre cylindrical disk
and multiple point masses. To test if a mis-estimation of inertia can be corrected in the second estima-
tion step, the inertia’s I, and I, are multiplied with a factor 10. The Simulink parameter estimation then
shows to be able to correct the parameters back to their original values.
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Implementation of the Reinforcement
Learning Based Controller

This chapter will focus on the design and implementation of a Reinforcement Learning algorithm in
order to make a quadcopter fly autonomously. A simulation will be created as training environment.
The RL algorithm is chosen and the Neural Network architecture and hyperparameters are set, after
which training starts. After training, the simulation results will be analyzed.

The target of this thesis is to develop an RL agent that directly maps observations to low level motor
commands. This means that the generated policy should take in the states (observations) and output

four motor values, see figure 6.1.
The algorithm used will be TD3, as discussed in chapter 2 [9].

Motor speeds

| —®

Deep Neural Network

- @

Figure 6.1: General overview of the target goal: Direct mapping from observations to low level motor commands

6.1. Simulation states and boundaries

The simulation environment takes in the current states and actions, and returns the next states and the
reward function. It also should keep track of the scores and whether or not an episode is terminated.
The dynamics model of chapter 3 is used, with the identified parameters from chapter 4.

The states (or observations) are defined as in chapter 3, with some addition. To be able to know the
desired position, the difference between x,y,z and the target x,y,z coérdinates is added to the state.
The total state vector therefore is:

s=[x ¥y z u v w ¢ 6 Y p q r Ax Ay A (6.1)

Where states x,y,z, ¢, 6,1, Ax, Ay, Az are in inertia frame, and states u, v, w, p, g, are in body fixed
frame. The desired attitude is always assumed to be zero for all three angles and therefore the error
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term of the angles is equal to the angle itself.
The states themselves are not bounded. However, a termination statement marking the end of an
episode does indirectly bound the states: The termination of an episode is defined if:

. ¢>i§

- 0>+
'l/)>i§

s xory>+3[m]
e z<0orz>3[m

The four motor outputs are bounded to the actual output range of the motors. From the experimental
data of chapter 4 the maximum and minimum output of the motors can be determined. The maximum
rotational speed of the motors is Q,,,, = 750rad/s, while the minimum rotational speed is Q,,;, =
100rad/s

6.2. Neural Network architecture

TD3 uses in total six deep neural networks: An actor and a target actor network. The actor network
is also known as the policy. This is what will make the decisions. Two critic networks are being used,
which both have their own target critic network. In accordance to Fujimoto et al. [9], the neural network
structure of all six neural nets has one input layer (15 nodes), two hidden layers (400 and 300 nodes)
and one output layer, which is depicted in a schematic in figure 6.2. The critic networks have one output
node in the last layer. The actor networks have four outputs in the last layer. Both hidden layers have
a RelLu activation layer.

Input layer: 15 nodes Output layer: 4 nodes

(000000 |
(0000000000
(0000000000

(0000 )

HL1: 400 nodes HL2: 300 nodes

Figure 6.2: Schematic of the neural network architecture for the actor and target actor network

Input layer (15 nodes) —> Hidden layer 1 (400 nodes) —> RelLu activation layer —> Hidden layer 2
(300 nodes) —> ReLu activation layer —> Output layer (4 nodes for the actor(s), 1 for the critic(s)).

The output of the actions should be bounded between -1 and 1. These values are scaled to the real
values of rotational speed of the motors so that the -1 bound corresponds to ,,,;, = 100 and the +1
bound corresponds to Q,,,, = 750rad/s. All speeds in between are linearly interpolated.
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6.3. TD3 hyperparameters

The learning rate is set at @ = 7e — 4 for both the critic and actor networks. The original paper of
Fujimoto et al. uses a learning rate of 7e — 3 for the critic and 7e — 4 for the actor networks, but
hyperparameter tuning showed that a smaller learning rate for the critic networks resulted in better
performance. The discount factor y is set to be 0.99. The noise NV (0, ) that is added to the actions for
exploration purposes has zero mean and a variance of ¢ = 0.2. The noise is clipped to a maximum of
half the action range so that the target update y equals:

y=1+yQg (s, n(s") +¢€¢€=rclip(nW(0,0),—c,c) (6.2)

Where ¢ = 0.5.

A batch size of 256 is used, with a Replay Buffer size of 1e6. This size can be increased if compu-
tational capacity of the user computer allows it. Larger batch sizes tend to decrease performance, as
measured by the ability to generalize. This is due to sharp minimizers in the test and training functions.
Smaller batch sizes tend to have flatter minimizers, which is due to noise in the gradient estimation
[18]. The maximum time of an episode is 500 time steps. With a project step time of t; = 0.02s, or 50
Hz, results in a maximum episode time of t,,,, = 10s.

6.4. Simulation target, initial conditions and reward functions (task

specific)

In RL, two major types of reward functions are possible: Sparse reward functions and dense reward
functions. Sparse reward functions are rewards only given in certain states and are generally high
in nature. In the case of the lunar lander, a small negative reward is given on actions, and a high
reward of 200 is given for landing within the target. Landing outside the target yields a reward of 100.
Crashing the lander yields a reward of -100. These rewards/penalties are have a large value but are
given sparsely. Sparse rewards focus on the oufcome of an episode. Dense reward functions give
smaller rewards more often. This can be a reward for smaller sub-tasks, or a reward depending on a
distance to a point. This last version is how we will implement the reward function. The advantage of
sparse rewards is that they are relatively free of choice: No information in how the reward is reached
is given. However, in a situation where rewards are to scarce, the agent will never reach a reward 'by
coincidence’. Also it might be difficult to define good behaviour. In the case of position tracking, what
is defined as a good position? The risk of using a dense reward function however, is that the designer
of the function imposes too much of knowledge of how to solve a problem into the system. The way to
the solution should be free to be developed by the agent, not superimposed. The reward function for
all tasks has the same form, but different parameters:

9 2
r= Z (tanh [1 - plA(X, Y, Z)Z - pZA((l)! 9! 110)2]) —Ps3 6_1: - p4(u - ulzJase) (63)

For stability in training, a positive definite function is desired. Therefore, the reward function is multiplied
with a ReLu function. This function is also as activation layer in neural network and makes sure the
output is positive definite:

f(x) = max(0, x) (6.4)

2
- { g(tanlz)[l — 18,3, 2)? =A@, 0,)%]) — P — pa(t — udgse) i 7> 0 (6.5)
r<

Where p4, p,, 3, ps are the parameters that define the weight of each term. The two delta terms in the
equation are the difference between target x and x, target y and y, target z and z, and target angles.
It results in three hyperbolic tangent values that will be added together. This value will diminished by
the derivative of the action with respect to the time squared. This method is described by Martinsen
[23] to reduce oscillations in the actions. The parameter corresponding with the derivative of the action
is usually small. The last term is the difference between the input and a set base value. In normal
3D flight, this base value is irrelevant because the policy will adjust it's rotor speeds to increase or
reduce throttle. However in hover, only a difference in rotor sets is of importance. The hover tests
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will be performed in an indoor environment. To reduce noise levels and wind gusts produced by the
quadcopter, the base level is chosen conservatively with respect to normal rotational speeds for hover.

6.4.1. Hover

The hover policy is trained so that the resulting policy can be used in the gyro test setup. This means
that the position of the quadcopter is stationary. The states of the quadcopter are hardcoded to always
have the same position and the target position is hardcoded to coincide with the current position. No
position changes happen, so the linear velocities are also zero.

Target pose is an angle of O degrees for all angles. The altered state vector is:

s=[0 0 -1 000 ¢ 6 ¢ p qgr 0 0 0] (6.6)

The initial attitude is randomized per episode. Roll, pitch and yaw angles are randomly chosen
between -80 and 80 degrees. The randomization of the initial angle increases generalization of the
policy.

The hover policy is trained in the gyro test setup. This test setup consists of multiple rings with large
diameter. The inertia of the rings is added to the inertia of the quadcopter in simulation, so that the sim
to real transfer stays accurate.

Since we are not interested in any position error, the parameter corresponding to the position error is 0:
p1 =[0,0,0]. The angular error is the important factor in this case so parameters corresponding to the
angular error is p, = [20, 20, 10], where the order of angles is ¢, 8,1. The negative reward on change
in rotor speeds is p; = 0.8. The base level for hover is chosen to be at half of hover thrust (based
on the mass of the quadcopter and the thrust coefficient of the motors). Corresponding parameter is
chosen at p, = 0.03. Concluded, the four parameters for the reward function are:

p1 =1[0,0,0],p, = [20,20,10],p3 = 0.8,p, = 0.03

6.4.2. Position tracking

The position tracking policy’s target is to always reach the point (x;arget) Yeargets Ztarget)- 10 keep this
policy generalizable from any starting point, the initial x,y position of the quadcopter varies between
(-1,1). The initial z position is -0.02. To assure that the quadcopter can also take of from non-ideal flat
surfaces, the initial attitude varies between angles from (-8.0,8.0) degrees, for all three ¢, 8,y angles.
The target position is changed every 500 time steps. This way the agent learns to track different
positions. The target positions are randomized values between (-1,1) for x and y position and (-2,-1)
for z position. In contrast to the reward function parameters for hover, now also the position error should
play a role in the policy.

Two different types of reward parameters are implemented:

1. negative reward on both attitude and position error
2. negative reward on position error only

The first type still penalizes errors of the attitude by the same amount as in the case of hover, so
p2 = [20,20,10]. It also has an added negative reward for position error, parameter p; = [3,3,3]. The
parameter for position error is chosen by trial and error. Choosing values that are too high results in
unstable training: The policy will not converge to anywhere close to optimal performance. Choosing
values that are too low make the agent ignore the position and just focuses on the attitude error of the
quadcopter.

The second type does not involve a negative reward for attitude error. The parameter correspond-
ing to the attitude is zero: p, = [0,0,0]. This reward function does have a high negative reward on
position control: p; = [10,10,20]. This reward function imposes less restriction on the policy, since all
knowledge about stabilizing the attitude is left out.

The small negative reward for changes in rotational speed seemed to be working with the hover
case, so it is kept at p; = 0.8. Experimentation with this parameter also revealed that increasing
this value to high results in a ’lazy’ policy: The agent would rather have a stable action output than
changing its attitude or position. The final parameter corresponding to the base level is not needed in
the non-hover case, so p, = 0.



Results

This chapter training and testing results of the simulation of both the hover and the position policies.
Training is performed on an HP z-book studio g5, with an intel i7 CPU. Training the neural networks is
done with the use of NVIDIA CUDA, on an Nvidia Quadro P-1000 GPU. Implementation is done using
the python package Torch. Torch has a build in CUDA implementation, where selecting the device is
relatively straight-forward.

We train for two different tasks: The first task is hover. The position of the quad is fixed. The second task
is position control (or way-point tracking). For this task we train two policies, each with their own type of
reward: Type 1 has a negative reward for both position and attitude error. Type 2 only has a negative
reward for position error. The reward structure, hyperparameters and algorithm are implemented as
explained in chapter 6. The simulation uses a global time-step of 0.02[s].

7.1. Hover training

As visible from the this figure, it took quite some episodes before the agents learns to not flip: only after
around 2000 episodes, the quad is improving stability.
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Figure 7.1: Hover training result: reward per episode
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On the x-axis the number of episodes is plotted. On the y-axis the reward for that episode is plotted.
The blue dots in the graph are all the measured scores for each episode. The red line is the average
reward over hundred episodes. When looking at the red line, the agent shows clear signs of learning
behaviour. From figure 7.1, it seems that it takes a long time before the agent starts learning. However,
looking at the same data differently, a different insight can be gained: Figure 7.2 shows the rewards
not per episode, but per total amount of time steps. The time steps of the early episodes are very
limited because of episode termination. When improving the policy, the episodes will last long (while
still learning). Plotting reward vs. total time steps shows a steady increase of reward per time step.
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Figure 7.2: Hover training result: reward per time step

7.2. Hover testing

While training the policy, the TD3 method requires exploration by adding noise to the actions. In testing
however, that noise is unwanted. For testing, the noise is removed, but the target attitude and initial
conditions remain the same. In figure 7.3 an overview of testing results are visible. The testing length is
1200 time steps. The test is a collection of 100 episodes. The lightest color in plots is the area between
the maximum and the minimum position per time step. This shows an area of all possible trajectories,
when starting from randomized initial conditions. The area with the darker color shows the standard
deviation of each time step: This depicts a spread of all 100 episodes. The dark line is the plot of one
of the episodes, to show what an individual trajectory of angles would look like.

Figure 7.3 shows converging behaviour for all angles. To define converging/stabilizing, a metric
from conventional control theory is used: rise-time. Stabilizing is defined as achieving a roll and pitch
angle of under 0.05 %. Figure 7.4 shows a close up of the first five seconds of testings. The rise
time boundaries are shown as the black dotted lines in pitch and roll plots. The max-min spread at
the starting point is equal to the spread of the initial angles (as expected). Since initial conditions are
chosen at random between -1 and 1, the standard deviation spread is seen to be coinciding with the
68% confidence interval (also as expected). Convergence of the minimum and maximum values of the
angles show a stable policy, always converging to zero.

Looking at the standard deviation plot, the rise time is 1.58 [s] seconds.

Not all episodes result in successful behaviour. An episode is successful if the maximum amount
of time steps is reached without terminating the episode (t = t;,4,). When an episodes terminates
prematurely, this is counted as a fail. The success rate of 100 episodes is 94%.
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Figure 7.3: Hover test
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Figure 7.4: Hover test (close up)
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7.3. Position tracking training

Figure 7.5 and figure 7.6 show the reward per episode and the reward per time steps of the type 1
reward function: negative reward on both attitude and position error, as well as the type 2 reward
function: negative reward on only position error. The dots of the scatter plot in both figures represent
the data points. The dark lines represent the average of the last 100 data points.

For type 1 (the orange line) the agent improves over time with a peak at 7500 episodes (approximately
2.9e6 time-steps), with a maximum average score of 7580. However, after the peak, performance
declines fast. The performance drop might be causes by discontinuities in the Q function. As was
also the case for training the hover policy, the agent seems not to learn anything for the first 6800
episodes. However, the maximum time for an episode in case of the position tracking agent is 5000
time steps. When plotting reward vs. time steps, it is clear that the agent does indeed learn almost
from the start. The type 2 (the red line) reward function results in a working policy in around 1200
episodes (approximately 1.1e6 time steps), with a maximum average score of 9700. Some decrease
is then visible, though is less extreme as is the case with the type 7 reward function. Penalizing only the
position results in quicker learning curve, a higher average score and more stable learning behaviour.
Remark: The higher average score is less relevant, since a different reward function will yield different
values of reward for same performance.
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Figure 7.5: Comparison of two reward functions: type 1 (orange) and type 2 (red)

Using the type 2 reward function in combination with the DDPG algorithm shows that this algorithm
is not capable of learning way-point tracking behaviour. After a small amount of time-steps, the agent
learns how to get a reward of 30. However it does not learn anymore after that. It's behaviour results
in the same rewards for the next 4e5 time-steps, see figures 7.7 and 7.8.
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Figure 7.6: Comparison of two reward functions: type 1 (orange) and type 2 (red)
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Figure 7.7: DDPG algorithm with type 1 reward function, reward per episode

7.4. Position tracking testing

The Actors neural network values from the peak performance of both reward types type 1: attitude and
position error negative reward and type 2: position error negative reward are used to perform way-point
tracking. Four different trajectories are used to analyse flight behaviour:

1. liftoff
2.z
3. square

4. square+z

The first test performed is a z-varying trajectory called trajectory liftoff: The quadcopter starts at
the origin. This trajectory has only one target way-point
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Figure 7.8: DDPG algorithm with type 1 reward function, reward per episode

wp; = (0,0, —1).

The second trajectory is called z. The target x and y location remain at coérdinates (0,0). Target Z
position increments with -0.5 m every 1000 time steps to generate six way-points:

wp; = (0,0,0),wp, = (0,0,—0.5),wp; = (0,0,—1),wp, = (0,0,—1.5),wps = (0,0,—2),wpg =
(0,0,—-2.5).

The third trajectory is called square. The target position changes every 1000 time steps to follow
the form of a square with five way-points:

wp; = (0.8,0.8,—1.5),wp, = (—0.8,0.8,—1.5), wps = (—0.8, —0.8, —1.5), wp, = (0.8, —0.8, —1.5), wps
(0.8,0.8,—1.5).

To also test the ability to fly in a square pattern with different altitudes, the trajectory square+z is
created: The target position changes again each 1000 time steps, with same x and y positions as tra-
jectory square, but with different z positions.

wp, = (0.8,0.8,—1.8),wp, = (—0.8,0.8,—1.5),wp; = (—0.8,—-0.8,—0.4), wp, = (0.8, —0.8,—0.8), wps
(0.8,0.8,—1).

The trajectories for both reward types can be seen in figures 7.9 to 7.12. All gathered measurements
including isolated x,y,z plots, motor commands, attitude values and position error plots can be found in
appendix A. Both policies track the way-points. However, as can be seen by the trajectory figures, the
type 1 policy never reaches a steady state. Instead it keeps oscillating around the way-point, no matter
where the way-point is in three-dimensional space. The motor commands keep fluctuating between
maximum and minimum motor value. This makes the policy highly unusable for real life implementation.
The type 2 policy however, reaches a steady state more often, even if there is a steady state offset.
The offset has a maximum of 0.1 m. The oscillation vs. steady state behaviour can be observed also
when looking at the isolated x,y,z behaviour and the motor commands in appendix A.
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3D position plot, trajectory liftoff, reward type 1

Figure 7.9: Liftoff trajectory

3D position plot, trajectory z, reward type 1

Figure 7.10: z trajectory

Z position [m]

Z position [m]

2.00

175

150

125

100

0.75

0.50

0.25

175

150

125

100

0.75

0.50

0.25
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3D position plot, trajectory z, reward type 2
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7. Results

3D position plot, trajectory square, reward type 1

Figure 7.11: square trajectory

3D position plot, trajectery square+z, reward type 1
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3D position plot, trajectery square+z, reward type 2

Z position [m]

Z position [m]

0.8

0.6

0.4

0.2

175

150

125

1.00

0.75

0.50

0.25



Conclusion

8.1. Conclusion

Reinforcement Learning has great potential in the field of games as well as the field of robotics. Google’s
DeepMind shows the applicability towards games and Hwbango et al. [13] show the applicability on
real life robot platforms. This thesis investigates the possibility of achieving full low-level quadcopter
control using RL. The goal was to replace both inner and outer control loop, so that the policy computes
motor commands directly from sensor input.

The thesis investigates different Reinforcement Learning algorithms, and finds an RL algorithm
suited for this task. The action space of the problem is continuous, since all four motor commands are
continuous. Where Q-Learning is not capable of handling continuous action spaces, DDPG and its
variant algorithm TD3 are capable of handling these action spaces. TD3 is a more advanced version
of DDPG with three extra features with respect to DDPG:

1. Clipped double Q-Learning
2. Delayed policy updates
3. Target policy smoothing

The first trick prevents over estimations in the Q-function. The second trick helps stability in training.
The third trick makes exploitation of errors in the Q-function harder by adding noise to the actions.

The structure of the reward function is chosen to be dense of nature rather than sparse. The con-
tinuous nature of the tasks at hand (way-point tracking) makes this option preferable. Also, when
training for tasks for which the target states are not likely to happen ’by accident’, sparse rewards are
not preferable. For the hover task, the reward function penalizes the attitude error heavily, and adds
a small negative reward for the time derivative of the motor commands. For the position control task,
two types of reward function are implemented: type 1 penalizes both attitude and position error, while
type 2 only penalizes position error.

The hover task is successfully accomplished, with in total 3500 training episodes (around 6e5 time
steps). Training is stable and performance does not decrease after longer amounts of time. Testing
the hover capabilities is done by initializing a random attitude between -80 and 80 degrees for all three
angles roll, pitch and yaw. The metric for stabilizing is lend from classic control theory and is in the
form of ’rise time’. Rise time is 1.58 seconds, with a success rate of 94%.

The two types of reward function implemented for position control both generate a working policy.
Type 1 (both attitude and position error negative reward) yields a working policy after a training period
of 7500 (around 3e6 time steps) episodes with an average reward over 100 episodes of 7580. After
reaching the peak, performance declines rapidly. This is most likely the result of errors in function ap-
proximation, and might be solvable by hyperparameter tuning, or changing the reward function. The
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resulting policy has high fluctuations in motor commands and therefore oscillating attitude and position
values. In none of the trajectories a steady state value is reached.

The type 2 (only position error negative reward) yields a working policy after a shorter training time of
1200 episodes (1.1e6 time steps). For all trajectories, this policy achieves steady state for almost each
way-point. Steady state error occurs with a maximum deviation of 0.1 m. The steady state error might
be solved by incorporating an integrator term into the position error in the state.

To bridge the sim-to-real gap, a framework is developed to create an accurate quadcopter model.
The framework consists of a two-step parameter estimation: The first step is measuring the measurable
parameters such as mass, geometry, thrust and torque coéfficients and estimating the inertia using the
summation of a combination of point masses and a central cylindrical disk. This method has proven to
be able to converge inertia parameters with a deviation of a factor 10 in simulation.

This thesis proves that TD3 can be used for low-level quadcopter control, replacing both inner and
outer loops of the quadcopter control. Using the dense reward function penalizing position control only,
results in a stable policy that can track way-points all throughout the 3D space.

8.2. Future Work

This thesis leaves two main parts to be researched in future works. The first part of future work is im-
plementing the hover and position control policies on the real life quadcopter. The hover control policy
can be tested in the gyro test setup, as described in chapter 4. The position control policy should be
tested in the cyberzoo test setup of the TU Delft, also described in chapter 4. The states of the policy
are chosen to be measurable in the cyberzoo test setup.

The second is the implementation of the two-step parameter estimation on real flight data. In this
thesis, the second step of the two-step parameter estimation has been performed by generating flight
data in simulation. In future work, flight data can be generated by flying a real life physical quadcopter.
A copy of the flight controller used to fly the real quadcopter needs to be recreated in simulation, to
facilitate the same actuator inputs in simulation with respect to the real flight controller. The output of
the real flight data and the simulated flight data can be compared for the second step of the two-step
parameter estimation.

Implementing the proposed framework and the use of TD3 algorithm might be basis for further ex-
perimentation regarding other tasks for quadcopters. The tasks now trained for are also achievable
using regular control theory. However, by proving this learning framework is effective in applying RL
to a quadcopter platform, doors to more difficult tasks have opened: By adding sensors for obstacle
detection, an agent might easily learn to avoid obstacles during way-point tracking. Also highly non-
linear acrobatic manoeuvres could be learned using this learning framework. Multi agent codperation
and object manipulation can now be experimented with.

By proving low-level motor control is possible, a little piece of the puzzle of ’self learning drones’ is
solved.



A.1. XYZ position plots
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Figure A.2: XYZ positions, z trajectory
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Measurements
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A. Measurements

X. Y and Z positions, trajectory square, reward type 1
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Figure A.3: XYZ positions, square trajectory

X, Y and Z positions, trajectory square+z, reward type 1

X
3
24
E E
o o
c 04 c
Jii Ji]
1} ]
= o
x5 >
—3.0
24 Lo
—%.54
=3 = T ™3 -7 T 4.0 - T T
0 50 100 0 50 100 o0 50 100
time [s] time [s] time [s]

Figure A.4: XYZ positions, square+z trajectory

A.2. Attitude plots

Roll, pitch and yaw angles, trajectory liftoff, reward type 1
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Roll, pitch and yaw angles, trajectory z, reward type 1
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Figure A.6: Attitude, z trajectory

Roll, pitch and yaw angles, trajectory square, reward type 1
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Figure A.7: Attitude, square trajectory

Roll, pitch and yaw angles, trajectory square+z, reward type 1
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Figure A.8: Attitude, square+z trajectory
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A.3. Motor command plots

The figures showing the motor commands of the type 1 policy are all red. This is because extreme
oscillations occur between minimum and maximum motor speeds.
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Figure A.11: Motor commands, square trajectory
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A.4. Position error plots
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A. Measurements

Position error, trajectory square, reward type 1
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Figure A.15: XYZ position error, square trajectory
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Figure A.16: XYZ position error, square+z trajectory
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Equations

Rotation matrix

(1 0 0

R,(¥) =0 cosy —siny
[0 siny  cosy

(B.1)

[ cos6 0 sind

R,(0) = 0 1 0 ‘ (B.2)
—sinf 0 cos@
cos¢p —sing 0

R,(¢) = |sing cos¢p O (B.3)
0 0 1

Quadcopter dynamics

FE,=m(@+qw—r1v)

F, =m(® —pw +1ru)

) F, = m(Ww + pv — qu) (B.4)
M, = pl, + qrl, + qrl,

M, = ql, + prl, —prl,

M, =71, —pql, + pqly

—mg(sinb) + fy,, = m(u + qw — rv)

mg(cosOsing) + fy, = m(v — pw + ru)

) mg(cosOcosp) + f,, — F, = m(Ww + pv — qu) (B.5)
Ty + Twx = DIy = qrly, —pri,

Ty + Ty = qly, + prl, —prl,

T, + Twz = Tl — pqly + pqly,
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B. Equations
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Parameter estimation plots
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Figure C.3: p, g and r angular velocities
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