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Optimization of Tollmien-Schlichting waves control: comparison
between a deep reinforcement learning and particle swarm

optimization approach

B. Mohammadikalakoo∗, M. Kotsonis† and N. A. K. Doan‡

Department of Flow Physics and Technology, Section of Aerodynamics, Faculty of Aerospace Engineering, Delft
University of Technology, Kluyverweg 1, Delft 2629HS, The Netherlands

This work focuses on the suppression of Tollmien-Schlichting (TS) waves in a two-dimensional
laminar boundary layer using optimized unsteady suction and blowing jets as an Active Flow
Control (AFC) method. The suppression of TS waves via this AFC system is enabled through
two artificial intelligence-based optimization methodologies: Single-Step Deep Reinforcement
Learning (SDRL) and Particle Swarm Optimization (PSO). The primary aim of this research is
to assess the performance of these methods in optimizing the AFC parameters with respect to
convergence rate, computational efficiency, and ability to find an optimum control state. The
findings demonstrate the success of both methods in finding appropriate control parameters
resulting in TS wave attenuation by up to 40 dB in the maximum convective instability amplitude
for the linear and nonlinear stages of development. The comparative study in this paper presents
the effectiveness of the SDRL algorithm in optimizing the AFC system for TS waves’ suppression
and demonstrates that it can outperform PSO in terms of convergence rate and computational
efficiency alongside a better performance in finding an improved optimum for linear control
cases. However, the advantage of the SDRL-based controller over the PSO-based one diminishes
in multi-frequency nonlinear control cases where the controller is located downstream and
attempting to control highly amplified multi-modal TS waves.

I. Introduction
The control of complex, transitional, and turbulent flows holds a core role in improving the aerodynamic performance

of modern transport and energy systems, thus enabling the design of more efficient aircrafts and wind farms. There
is a wide range of applications for flow control especially active flow control (AFC) methods encompassing flow
manipulation for laminar-to-turbulent transition and drag reduction, wind energy, combustion systems, noise reduction,
etc. [1]. Transition is of particular importance as the aerodynamic drag is highly connected with the extent of laminar
flow over aerodynamic surfaces. A delay of transition by 50% of the chord length can provide up to 15% reduction
of the aerodynamic drag which translates into fuel (and cost) savings for future aircraft in addition to a reduction in
greenhouse gas emissions [2].

However, achieving significant transition delay in realistic flight regimes is challenging due to the complex and
nonlinear nature of the underlying flow dynamics. Receptivity as the first stage of the transitional process, describes the
effect of external disturbances on the creation of the instability waves inside the boundary layer [3]. Various instability
types, such as crossflow vortices, Tollmien-Schlichting waves, Kelvin-Helmholtz instabilities, and Rayleigh modes, can
arise through this process [3].

Tollmien-Schlichting (TS) waves are primary viscous instabilities, especially dominant in two-dimensional boundary
layers leading to laminar-to-turbulent transition in low-speed, low-disturbance flows where pressure gradients are
negligible or aligned with the flow direction (unswept geometries) [4]. As such, the suppression of these waves during
their early stages can delay the transition, extend laminar flow, and reduce skin friction drag, making them an attractive
target for both passive and active flow control methods [5–7]. However, the control and suppression of naturally
occurring TS waves in realistic flows is a challenging task due to their multi-frequency characteristics, often leading to a
nonlinear behavior.
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†Professor, Department of Flow Physics and Technology, Kluyverweg 1, Delft 2629HS, The Netherlands.
‡Assistant Professor, Department of Flow Physics and Technology, Kluyverweg 1, Delft 2629HS, The Netherlands.
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To control such instabilities based on the interaction of sensor and actuator, two approaches are utilized to establish
a model of the input-output dynamics [4]: (i) model-reduction techniques, which simplify the Navier-Stokes system and
extract the input-output dynamics, and (ii) system identification techniques, which directly develop a mathematical
model based on measurements, without explicitly accounting for the Navier-Stokes equations. Bagheri et al. [8] have
demonstrated that a simplified two-dimensional setup can effectively attenuate disturbances in spatially developing
flows. They designed a small optimal feedback controller based on a reduced order model, which successfully reduced
the energy of two-dimensional wave packets generated upstream by orders of magnitudes. Bagheri et al. [9] extended
this analysis by utilizing blowing/suction actuators instead of body forces. The model reduction approach can also be
applied to fully three-dimensional configurations [10, 11]. System identification techniques have been employed in
various experimental investigations, such as those conducted by Rathnasingham and Breuer [12]. They used a setup
consisting of shear-stress sensors and synthetic jet actuators to successfully explore transition delay in flow control.

Most of these conventional control strategies are effective in attenuating deterministically generated TS waves in
an early linear stage of development while failing to deal with the high dimensional and highly nonlinear stages of
naturally occurring TS waves. Therefore, modern and responsive flow control techniques able to handle the growing
complexity of the fluid dynamics problem are necessary. Towards this direction, Artificial Intelligence (AI) methods
including Genetic Programming (GP) and Deep Reinforcement Learning (DRL) algorithms form a promising route
for active flow control. For instance, GP-based control of the recirculation area of a backward-facing step was one of
the first attempts by Gautier et al. [13] leading to 80% reduction of the recirculation area. Mitigation of separation
by reattachment of the turbulent boundary layer to a sharp edge ramp is another application of successful GP-based
control [14]. There are also recent attempts of DRL applications for drag reduction on a cylinder in laminar channel
flow [15, 16] followed by a similar study in a turbulent regime [17]. These studies demonstrate the success of ML-based
AFC as an effective and efficient control strategy [18]. Given the notable advantages of ML-based approaches for
handling high nonlinearity and high dimensionality [18], the implementation of ML algorithms in the design of active
flow control for TS waves’ suppression has the potential to achieve improved performances compared to classical control.
This exploration constitutes the main purpose of this work.

Here, the actuator comprises unsteady suction and blowing jets featuring a variable spatial sinusoidal pattern. These
jets operate at the same frequency as the TS waves introduced at the inflow. Three parameters of this AFC system,
including spatial wavelength (width) (𝐽𝐿), amplitude (𝐽𝐴), and phase (𝐽𝑝ℎ), are optimized using both the Single-Step
Deep Reinforcement Learning (SDRL) algorithm [19] and the Particle Swarm Optimization (PSO) method [20]. The
main objective of this study is to evaluate the effectiveness of these two methods in optimizing the AFC parameters
by assessing their performance in terms of convergence rate, computational efficiency, and capability to identify an
optimum set of parameters for the AFC.

The paper is organized as follows. Section 2 presents the methodology employed for the study, outlining the solver
used for the numerical simulations and two optimization techniques. Building upon the methodology, section 3 delves
into the numerical simulation aspects, where there is a description of the computational domain and test cases. Moving
forward, section 4 presents the results obtained from numerical simulations, providing a comparative study between the
PSO and SDRL methods. Finally, the insights gained from this study are summarized in section 5.

II. Methodology
This section outlines the numerical method and optimization techniques used to simulate the TS instabilities in an

incompressible 2D laminar boundary layer and study their interaction with the AFC system. A non-linear Harmonic
Navier-Stokes (HNS) solver [21] is implemented for this purpose, motivated by its ability to provide fast feedback for the
optimization algorithms and also consider the TS waves in a frequency domain which facilitates the control strategy. A
brief description of the HNS solver and a summary of the two methods of optimization (SDRL and PSO) implemented
for the AFC are provided in this section.

A. Harmonic Navier-Stokes solver
A common approach for the study of boundary layer instabilities is to consider temporal and spatial harmonic behavior

for perturbations based on assumptions of periodicity. This allows opportune simplifications of the Navier-Stokes
equations via various assumptions. Employing the HNS solver represents a promising approach for solving Navier-Stokes
equations when dealing with the harmonic perturbations defined by the ansatz in equation (1).
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𝑞′ (𝑥, 𝑦, 𝑧, 𝑡) = 𝑞(𝑥, 𝑦)𝑒𝑖 (𝛽𝑧−𝜔𝑡 ) + 𝑐.𝑐 (1)

In this method, the perturbation is expanded harmonically in the spanwise 𝑧 direction and time. 𝑞(𝑥, 𝑦) is the
perturbation shape function in the 𝑥 − 𝑦 plane. The 𝑐.𝑐 refers to the complex conjugate due to the presence of a
complex field capturing growth and phase variations of the perturbation in the 𝑥 − 𝑦 plane. 𝛽 as the wavenumber is a
non-dimensional complex coefficient related to the growth (decay) and periodicity of the perturbations in 𝑧 direction and
𝜔 is the angular frequency. In this study, 𝛽 is always real due to the 𝑧 invariant base flow, and therefore the perturbation
is not growing in the spanwise direction.

After inserting equation (1) into the general Navier-Stokes equations, and omitting the exponential terms of the
harmonic perturbation, the Harmonic Navier-Stokes equations are derived. These equations possess inherent nonlinearity,
and they can be transformed into two distinct forms: the Nonlinear Harmonic Navier-Stokes (NLHNS) equations and
the Linear Harmonic Navier-Stokes (LHNS) equations. The details regarding the corresponding LHNS and NLHNS
equations are provided in [21] for the interested reader.

The solution of the harmonic Navier-Stokes equations is obtained using an in-house solver developed at the TU
Delft Low-Speed Lab [22]. In the discretization process, a uniform grid is employed in the streamwise, 𝑥, direction. To
approximate derivatives in this direction, a fourth-order central differencing scheme is implemented. In the 𝑦 direction,
the equations are discretized using spectral collocation of Chebyshev polynomial basis functions. This choice of
discretization results in a non-uniform grid in the 𝑦 direction enabling enhanced resolution.

To initiate the flow, the Incompressible Linear Stability Theory (ILST) is utilized for the inflow conditions. However,
special attention is given to the outflow conditions to prevent the propagation of unphysical information from the
unknown outflow region. In both the Navier-Stokes equations and the perturbation equations systems, backward
propagation of information can occur due to the presence of viscous terms and pressure terms [23]. To address the
backward propagation problem, a buffering technique proposed by Joslin [24] is applied to the streamwise and spanwise
perturbation velocities. This damping mechanism effectively counteracts the amplification of perturbation pressure and
viscous terms from the outflow boundary. The buffer region is defined from 90% of the domain length to the end of the
domain. At the wall, the no-slip condition is enforced, while the perturbations are forced to decay to zero in the free
stream region. To transform the discretized equations, accounting for boundary conditions and derivative calculation
procedures, a matrix system is formulated as can be seen in equation (2).

[𝐴]𝑞 + [𝐵] 𝜕𝑞
𝜕𝑥

+ [𝐶] 𝜕
2𝑞

𝜕𝑥2 = 𝑟 (2)

It should be noted that equation (2) includes non-linear modal interactions through the right-hand-side term (𝑟).
Solving this system provides the desired perturbation velocity and pressure, enabling further analysis and investigation.
The explicit form of the matrices and equations of HNS is available in [21].

The LHNS is used for the first stage of the study to compare the performance of the SDRL and PSO in controlling
TS waves during their linear stage of development. Additionally, a nonlinear test case will be carried out with the help
of the NLHNS to investigate the effect of nonlinearity on the control performance.

B. Single-Step Deep Reinforcement Learning
SDRL as a policy-based optimization is a degenerative deep reinforcement learning algorithm in which single-step

episodes are enough due to the state-independent optimal policy of the neural networks. Usually, this condition is
satisfied in optimization cases. The agent in this method uses a policy network to represent the density function for the
next evaluations. It employs covariance estimation to guide the process of policy improvement in the correct direction
[19].

The agent at the first iteration tries a random policy based on an initial set of parameters (𝜃0) and defines the
corresponding actions. As can be seen in Figure 1, the agent samples a set of actions (𝑎𝑡 ) from the current policy (𝜋𝜃 )
and is motivated to adjust the policy parameters (𝜃𝑡+1) in a way that the subsequent set of actions generates greater
rewards (𝑟𝑡 ). A smaller policy network is the main feature of the SDRL compared to other DRL methods due to the fact
that the state is a constant single input (𝑠0), and therefore the state-action relation is not complex anymore.

Based on the schematic of the SDRL action loop, Figure 1, the input of the agent is always constant (𝑠0) and repeated
at each generation while the agent draws actions from a probability distribution function which is a 𝑑-dimensional
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𝑀𝑎𝑝𝑝𝑖𝑛𝑔 𝐻𝑁𝑆(𝑎𝑚) 
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𝑎𝑚 𝑟𝑡 

𝛳𝑡          𝛳𝑡+1 
𝑨𝒈𝒆𝒏𝒕 

Fig. 1 Schematic of action loop for single-step deep reinforcement learning - policy based optimization [19]

multivariate normal distribution N(𝜇, 𝐶). 𝜇 is the mean value and 𝐶 is the full covariance matrix defined in [19].
Three neural networks are implemented to adjust the mean, standard deviation, and also correlation information of that
distribution. Then, the actions are mapped (𝑎𝑚) to the actual range of the AFC parameters and fed into the harmonic
Navier-Stokes solver to simulate the TS waves in interaction with the specific AFC introduced by the agent. The reward
of each case is calculated based on the maximum amplitude of the TS waves and the energy expenditure of the unsteady
suction and blowing jets as will be described in equations 13 and 14. These reward values are fed back to the agent to
update the policy with the main aim of maximizing the cost function (reward). This action loop continues until the
convergence criterion, described in the results section, is reached.

More details regarding SDRL, its meta-parameters, and its formalism can be found in [19]. The implementation
used in the present work is derived from the one available on the GitHub repository [25] related to [19].

C. Particle Swarm Optimization
The other optimization technique used in this work is PSO which is an artificial intelligence technique based on

swarm intelligence introduced by Kenndy and Eberhart in 1995 [20]. There is a wide range of applications of this
method in various fields of machine learning, adaptive control, etc. [26–28].

The PSO method is a computational method to find an optimal solution to a problem by improving a candidate
solution based on its measure of quality (reward or loss function) in an iterative procedure. At the beginning of the
algorithm, a population of the particles is initialized randomly in which each of the particles is a candidate solution to
the problem. Each of these particles has a specific velocity and position which will be updated in each iterative try based
on the local best of the particle itself and the global best of all the particles. So, particles are moving in the direction of
the best global position while being affected by their own best local position. Considering a specific number of particles
(𝑚) in the search space with 𝑑 dimensions while the position and velocity of each particle are described in equations (3)
and (4) [29]:

𝑥𝑖 (𝑡) = [𝑥𝑖1 (𝑡), 𝑥𝑖2 (𝑡), ...., 𝑥𝑖𝑑 (𝑡)]𝑇 (3)

𝑣𝑖 (𝑡) = [𝑣𝑖1 (𝑡), 𝑣𝑖2 (𝑡), ...., 𝑣𝑖𝑑 (𝑡)]𝑇 (4)
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the position and velocity of the particle 𝑖 can be updated based on equations (5)-(6) at iteration 𝑡 + 1:

𝑣𝑖 (𝑡 + 1) = 𝜔𝑣𝑖 (𝑡) + 𝑐1𝑟1 (𝑝𝑏𝑖 (𝑡) − 𝑥𝑖 (𝑡)) + 𝑐2𝑟2 (𝑔𝑏 (𝑡) − 𝑥𝑖 (𝑡)) (5)

𝑥𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡) + 𝑣𝑖 (𝑡 + 1) (6)

The 𝑝𝑏𝑖 and 𝑔𝑏 are the local best and global best of the population that are defined in equations (7) and (8).

𝑝𝑏𝑖 (𝑡) = [𝑝𝑖1 (𝑡), 𝑝𝑖2 (𝑡), ...., 𝑝𝑖𝑑 (𝑡)]𝑇 where 𝑝𝑖𝑑 (𝑡) = max [𝑐𝑖𝑑 (𝑡), 𝑐𝑖𝑑 (𝑡 − 1), 𝑐𝑖𝑑 (𝑡 − 2), ....., 𝑐𝑖𝑑 (0)] (7)

𝑔𝑏 (𝑡) = [𝑔1 (𝑡), 𝑔2 (𝑡), ...., 𝑔𝑑 (𝑡)]𝑇 where 𝑔𝑑 (𝑡) = max [𝑝1𝑑 (𝑡), 𝑝2𝑑 (𝑡), .., 𝑝𝑖𝑑 (𝑡), .., 𝑝𝑚𝑑 (𝑡)] (8)

The 𝑐𝑖𝑑 (𝑡) is the cost function in dimension (𝑑) for particle (𝑖) at iteration 𝑡. There are some hyperparameters for the
PSO algorithm in equation (5) including 𝜔 as the inertia weight coefficient, 𝑐1 and 𝑐2 as the personal learning and
global learning factors, respectively. 𝑟1and 𝑟2 are random variables distributed uniformly between zero and one. For the
current work, the set of hyperparameters obtained after a parametric study is set to (𝜔, 𝑐1, 𝑐2) = (0.9, 0.9, 1.2).

The PSO algorithm as a metaheuristic method does not guarantee arrival at the global best of the optimization
problem, but there is some specific set of hyperparameters that can ensure the convergence of the method and reach
one of the best local optimum regions of the exploration area [29]. The dependency of the PSO method on several
hyperparameters to achieve reliable and converged results is the main limitation of this method [30]. Due to the nature
of the metaheuristic methods, PSO makes few or no assumptions about the optimization problem and does not consider
the physics of the problem in the algorithm. Therefore, it is a convenient method of optimization for a wide range of
problems, and it can search a large exploration area for optimization as a stochastic method of optimization. Another
interesting feature of this method is that PSO does not require a differentiable problem since it does not use the gradient
of the problem in the algorithm. This is an advantage with respect to classical optimization techniques such as gradient
descent methods.

III. Numerical Simulation
Unsteady suction and blowing jets are chosen as actuation in the active flow control system. This actuation is

characterized by the boundary condition applied to the wall with a sinusoidal actuation pattern (𝐽𝐴 · sin(2𝜋𝑥𝑠)) and acts
in a wall-normal direction as shown in Figure 2. 𝐽𝐴 represents the peak amplitude of actuation set by the controller,
while 𝑥𝑠 corresponds to the local normalized streamwise coordinate determined by the spatial wavelength of the actuator.
The size of the computational domain and a typical configuration of the control components are shown in Figure 2. The
computational domain is nondimensionalized with the Blasius length scale at the inflow (𝛿0).
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Fig. 2 Schematic view of the computational domain, Ω = (0, 𝐿𝑥 = 2480) × (0, 𝐿𝑦 = 82) represented with gray
region. 𝜆𝐴𝐹𝐶 = 𝐿 × 𝜆𝑇𝑆 , 𝐿 ∈ [0.5, 2]: Width of AFC while 𝜆𝑇𝑆 is the wavelength of the TS wave above AFC. The
AFC center is located at (𝐽𝐶 = 660, 0). The inlet streamwise velocity 𝑈∞, has a value of 10𝑚

𝑠
corresponding to

Reynolds number 𝑅𝑒0 =
𝑈∞ 𝛿0
𝜈0

= 400.

As discussed previously, a uniform grid is employed in the streamwise direction and Chebyshev polynomial
collocation points for the 𝑦 direction. Two different resolutions in the streamwise direction are considered for the
boundary layer solver (base flow) and the stability solver. The grid for the boundary layer solver consists of 5000
uniform divisions in the 𝑥-direction (1200 uniform divisions for the stability solver) and for the 𝑦-direction, Chebyshev
polynomials with a non-uniform grid of 100 divisions. The positioning of these divisions is such that half of the points
are located beneath 𝑦/𝐻 = 0.1, where 𝐻 represents the domain height. The actual computational domain is the gray
box since the boundary layer profile is implemented at the inflow based on Falkner-Skan-Cooke equations initiated at
(𝑥0 = −400𝛿0) to have a developed boundary layer at the inflow of the computational domain.

The numerical simulation of this work includes two different case studies of single-frequency linear and multi-
frequency nonlinear control cases. The main focus of the current paper is on the single-frequency linear control case to
compare the performance of the two optimization techniques. The study of the multi-frequency nonlinear control case
is a preliminary study for the feasibility study of the AI-based active flow control system for suppression of naturally
occurring TS waves.

It should be noted that the validation of the HNS has been done for linear and nonlinear TS waves and the results are
in good agreement with the reference works [31, 32]. The details of this study are not presented here for the sake of
brevity.

A. Test cases
A single-frequency linear control case of TS wave with frequency 𝜔1 = 0.0344 and an initial root mean square

amplitude of 0.25% at 𝑅𝑒0 = 400, is considered as the initial case study similar to the conditions described by Herbert
[31]. The reference length and velocity for all case studies are the same as described in Figure 2. The test cases
considered for the current stage of the work are divided into two categories based on the main optimization target of
the two algorithms. The first group comprises cases in which the main target of optimization is the reduction of TS
waves’ maximum amplitude, see equation (13). The optimization target for the second group is the same as the first one
with additional penalization regarding the energy expenditure of the unsteady suction and blowing jets. This energy
penalization can be seen in the reward calculation, equation (14). It should be noted that a weight of 10% is assigned to
the energy penalization term with the main aim of focusing on the suppression of TS waves as the primary goal.
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𝐸𝐴𝐹𝐶 =

∫ 𝐿𝑥

0
|𝐽𝐴 · sin(2𝜋𝑥) | 𝑑𝑥 (9)

𝐸𝐴𝐹𝐶𝑚𝑎𝑥
=

∫ 𝐿𝑥

0
|𝐽𝐴𝑚𝑎𝑥

· sin(2𝜋𝑥) | 𝑑𝑥 (10)

𝐸 ′ (%) =
(

𝐸AFC
𝐸𝐴𝐹𝐶𝑚𝑎𝑥

)
(11)

Δ𝐴TS (%) = max{𝐴TS}clean − max{𝐴TS}AFC
max{𝐴TS}clean

(12)

R1 = Δ𝐴TS (%) (13)

R2 = Δ𝐴TS (%) − 𝐸 ′ (%) × 0.1 (14)

Equation (9) represents the mass flow rate of the unsteady suction and blowing jets which indicates the energy
expenditure by the AFC. The same strategy has been implemented in equation (10) for the maximum possible mass flow
rate which is imposed by the exploration space of the SDRL and PSO. The non-dimensional energy coefficient of 𝐸 ′ is
defined based on equation (11) as a penalization factor for final reward calculation. The reward function is defined
as represented in equation (13) after computing the reduction of the TS maximum amplitude in equation (12). The
reduction of TS maximum amplitude is defined as the relative difference of the maximum amplitude of the TS waves
(based on maximum streamwise velocity 𝑢𝑚𝑎𝑥) in cases with and without active flow control (the latter being called the
clean case).

The optimizer can adjust four key parameters of the AFC: the location (𝐽𝐶), spatial wavelength (width) (𝐽𝐿),
amplitude (𝐽𝐴), and phase (𝐽𝑝ℎ) of the unsteady suction and blowing jets. However, for practical purposes in the current
study, the number of adjustable parameters has been limited to either three by fixing the location or two by fixing both
the location and width of the AFC. All the case studies are presented in Table 1. The code names for these cases follow
a specific format: the first two letters denote the optimization method, such as "SD" for SDRL and "PS" for PSO. The
initial number in the code signifies the number of parameters under optimization. If the letter "E" is present in the name,
it indicates that the reward function is penalized based on the energy expenditure of unsteady suction and blowing jets.
Additionally, the number of attempts for each case is denoted by t1, t2, and t3 in the event of three different trials. For
instance, SD3Et2 corresponds to the second trial of single-step deep reinforcement learning, focusing on optimizing
three parameters while penalizing the reward function with the energy consumption of the actuators.

As can be seen in Table 1, three different trials have been done for each case to have a first assessment of the
robustness of the final results to the random initialization of these two stochastic optimization algorithms. It should
be noted that the cases with two optimization parameters are not repeated three times due to the lower sensitivity to
stochastic initialization.

IV. Results
The test cases introduced in Table 1 are studied to find the optimized AFC system and to compare the performance

of single-step DRL with the PSO technique. It is worth recalling that the hyperparameters of the SDRL and PSO are
kept fixed for all case studies as explained in the methodology section to have a general baseline for comparison of
the optimization techniques. A typical example of the suppression of TS wave with optimized unsteady suction and
blowing jet is presented in Figure 3 and then the case studies are considered to have a comparative study.

The suppression of the TS waves can be observed in the reduction of the maximum amplitude of the TS waves in
Figure 3 which is the definition of the reward for the optimization algorithms, see equation (13).
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Fig. 3 Normalized amplitude evolution of the TS wave’s maximum streamwise velocity (𝑢𝑚𝑎𝑥) for the clean case
(gray), the case with upstream control (SD3t2) (black). 𝑥𝑠 is the streamwise coordinate nondimensionalized using

the blasius length scale.

Fig. 4 Contours of streamwise (𝑢) disturbance velocity for the linear single-frequency control case, (a) velocity
field in the presence of TS waves triggered at the inflow, (b) velocity field with only control implemented

upstream, (c) velocity field of the controlled TS waves. The position of the AFC is illustrated with a red rectangle
(𝑥𝑠 = 660). Nondimensionalized data using Blasius length scale
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Figure 4 shows the perturbation velocity field in the 𝑥 − 𝑦 plane for three different situations. The amplitude of the
oscillation for the velocity field corresponding to the uncontrolled TS wave reduces after interaction with the AFC wave
leading to the suppressed TS wave. The opposition control strategy can be observed by comparing the velocity field of
the TS wave in Figure 4 -(a) and the waves generated by the unsteady suction and blowing jets in Figure 4 -(b). The
same amplitude and opposite phase of these waves lead to the suppression of the TS wave as illustrated in Figure 4 -(c).

Considering the 16 different case studies defined in section III, it is possible to have a flexible and general enough
baseline to compare the performance of a machine learning algorithm with a metaheuristic algorithm in terms of
convergence rate, computational efficiency, and ability to find the optimum parameters for the AFC system. The general
control law extracted from all the obtained results of the SDRL and PSO shows that these two methods reach opposition
control-like law as an effective method of suppressing TS waves similar to the results observed in Figure 4. The optimum
parameters for AFC found by the SDRL and PSO algorithms are summarized in Table 1.

Table 1 Active control of TS waves, 𝐽 is referring to unsteady suction and blowing jets and indices of 𝐴, 𝑝ℎ, 𝐶,
and 𝐿 are referring to amplitude, phase, center’s location, and relative width, respectively. 𝐿 =

𝜆𝐴𝐹𝐶

𝜆𝑇𝑆
, 𝐴𝑇𝑆𝑚𝑎𝑥

is
the maximum amplitude of controlled TS waves leading to amplitude reduction of 𝐴𝑟𝑒𝑑.. 𝑅 is also the final

reward value of the algorithm after reaching convergence at 𝐸𝑝𝑖𝑠𝑜𝑑𝑒.

Dataset AFC TS Convergence
Case 𝐽𝐴 𝐽𝑝ℎ (𝑟𝑎𝑑) 𝐽𝐶 (𝛿0) 𝐽𝐿 𝐴𝑇𝑆𝑚𝑎𝑥

𝑅(%) 𝐴𝑟𝑒𝑑. (%) Episode
SD3t1 0.000313 2.866719 660 0.618 0.000490 98.23 98.23 348
SD3t2 0.000245 2.747440 660 1.476 0.000010 99.96 99.96 553
SD3t3 0.000303 2.874470 660 0.625 0.000473 98.30 98.29 494
PS3t1 0.000189 1.110100 660 1.252 0.000467 98.32 98.31 824
PS3t2 0.000353 0.980320 660 1.628 0.000835 96.99 96.99 728
PS3t3 0.000430 1.162200 660 0.501 0.000478 98.28 98.28 727

SD3Et1 0.000290 2.711142 660 1.560 0.000011 97.70 97.69 477
SD3Et2 0.000196 2.855238 660 0.930 0.000015 99.04 99.03 456
SD3Et3 0.000183 2.823958 660 1.152 0.000073 98.68 98.68 485
PS3Et1 0.000248 1.0336 660 1.484 0.0000095 98.13 99.96 801
PS3Et2 0.000430 0.90951 660 1.695 0.000015 96.31 99.95 748
PS3Et3 0.000429 0.90955 660 1.695 0.000148 96.20 99.95 748
SD2Et1 0.000188 2.846498 660 1.000 0.000051 98.88 98.87 286
PS2Et1 0.000188 1.1343 660 1.000 0.000050 98.88 99.82 808
SD2t1 0.000186 2.853509 660 1.000 0.000458 98.35 98.35 256
PS2t1 0.000188 1.1343 660 1.000 0.000050 98.88 99.82 748

The overall suppression of TS waves of up to 99.96% (40 dB) based on results of Table 1 show the success of both
the PSO and SDRL algorithms in finding a proper control strategy to suppress TS waves. The results reveal some
noteworthy trends. Specifically, the selection of SDRL (case: SD3Et2) for having a narrower actuator (relative width:
0.93) with enhanced amplitude, deviates from the principles of opposition control applied to TS waves in some cases.

Comparing the convergence episodes in Table 1, it becomes evident that SDRL consistently outperforms PSO
in terms of speed when searching for optimal parameters. A better perception can be achieved by observing the
convergence behavior of these two methods in Figure 5. The convergence criterion for these methods is considered by
defining ±0.2% bandwidth for the rate of variation of the reward’s moving average. The Observing window for the
moving average is over 20 episodes. Figure 6 shows this criterion and corresponding results.
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Fig. 5 Convergence of SDRL and PSO algorithm towards optimum control (SD3Et1 vs PS3Et3), a) Reward
function, b) Amplitude of unsteady suction and blowing jets (AFC), c) Phase of AFC, d) Relative Width of AFC
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By comparing the convergence trends of different optimization parameters in Figure 5 for SDRL and PSO, two
different strategies of optimization can be seen which finally leads to a similar control strategy. In the PSO, all the
parameters to be optimized are converging at almost the same rate and pass the convergence criterion after a similar
number of episodes while in SDRL the rate of convergence is different for the three parameters of the AFC. For instance,
in case SD3Et1 shown in Figure 5, the phase is the first parameter that is converged while amplitude and width of AFC
are the next parameters with a slower convergence rate. It appears that the SDRL narrows down the exploration space
dimension as it approaches convergence. This potential reduction in dimensionality might be the underlying factor
behind SDRL’s faster overall convergence when compared to the PSO. Nevertheless, more extensive investigations into
SDRL’s optimization strategy are necessary to gain a comprehensive understanding of the primary mechanism behind
its faster convergence.

0 100 200 300 400 500 600 700 800 900

-100

0

100

0 200 400 600 800
-0.5

0

0.5

0 200 400 600 800
-0.5

0

0.5

Fig. 6 Evolution of reward function for SDRL and PSO algorithm (SD3Et1 vs PS3Et3) a) Moving average of
reward function, b) Rate of variation for reward function based on episodes

The dashed vertical lines indicated in Figure 6 are representing the minimum number of episodes required to reach
convergence for both the SDRL and PSO algorithms. The number of episodes for SDRL and PSO is 477, and 748
episodes, respectively which shows a 57% faster performance of SDRL compared to the PSO algorithm. This difference
was observed to be even higher for the cases with only two optimization parameters where SDRL was 3 times faster than
PSO. The fast convergence of SDRL compared to PSO is a noticeable advantage of this machine-learning algorithm,
especially for fluid dynamic problems with high computational cost per episode. For example, in the case of Figure 6,
SDRL requires almost 270 fewer episodes than PSO for equal performance. This difference can be translated to the
saving of 135 CPU hours for linear control cases which can increase for nonlinear cases assuming that SDRL maintains
its performance in a nonlinear context. The test cases are all simulated on a workstation with 16 cores Intel Xeon(R)
W-2245 processor and 128 GB of RAM, and half a CPU hour is the cost of running the LHNS solver for each episode
on this machine.

The ability of SDRL in finding an improved optimum is also evidence of SDRL outperforming the PSO method:
when comparing the maximum suppression of TS waves in the different test cases presented in Table 1, SDRL shows an
increased suppression. Although the suppression of the TS waves in all case studies is high, slightly different results can
still be seen by comparing the SDRL and PSO algorithms. For instance, the maximum amplitude suppression for the
PSO method (case: PS3t1) is 38 dB compared to the 40 dB in the SDRL method (case: SD3t2).

By comparing two different optimization scenarios with and without energy penalization (SD3Et2, and SD3t2) in
Table 1, one can say that SDRL tries to find a smaller AFC with smaller amplitude while performing a trade-off between
energy expenditure of unsteady jets and TS wave amplitude reduction. Therefore, the suppression of TS wave is slightly
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Table 2 Outcome of multi-frequency nonlinear control cases, 𝑁𝐿1: upstream control, 𝑁𝐿2: downstream
control

Cases Modes Δ𝑢𝑚𝑎𝑥 (%)
# 𝑃𝑆𝑂 𝑆𝐷𝑅𝐿

𝑁𝐿1
M1 99.93 99.22
M2 98.67 92.12
M3 95.3 98.97

𝑁𝐿2
M1 86.43 82.17
M2 98.89 77.64
M3 95.07 97.02

lower when defining the target of optimization with energy penalization.

A. Nonlinearity effects on controller performance
Two additional test cases are considered in this part to study the effect of nonlinear modal interactions on the control

performance of SDRL and PSO methods. A nonlinear multi-frequency control case with a combination of the first three
harmonics of the TS wave is considered while the frequency of the third harmonic is the same as the previous case
studies (𝜔1 = 0.0344). The initial amplitude of the first two modes is the root mean square amplitude of 0.5% while
the third mode is kept at 0.25% ([31]). The spatial wavelength of the unsteady suction and blowing jets is fixed for
both cases (𝜆𝐴𝐹𝐶 = 𝜆𝑇𝑆). The fixed upstream (𝐶𝑥 = 660𝛿0) and downstream (𝐶𝑥 = 1653𝛿0) locations of the actuator
are selected for cases 𝑁𝐿1 and 𝑁𝐿2, respectively. This positioning will help to assess the link between the controller
performance and the nonlinear evolution of the TS wave.

The outcome of these control cases is provided in Table 2 which indicates similar control performance of SDRL
and PSO methods when the actuator is positioned upstream (𝑁𝐿1). However, when the actuator is placed downstream
(𝑁𝐿2), the SDRL-based controller is outperformed by the PSO-based. Specifically, the SDRL-based controller is not
able to effectively mitigate the second harmonic of the TS wave when compared to the PSO-based controller.

These findings indicate that the extended exploration space in multi-frequency nonlinear control cases adversely
affects the convergence rate of the SDRL-based controller, causing it to converge at a slower pace similar to that of the
PSO-based controller. Moreover, the higher complexity of the optimization problem due to the presence of developed
nonlinear interactions downstream poses a challenge for the SDRL-based controller resulting in decreased performance.

It should be noted that the results presented in this part are based on a small subset of nonlinear case studies.
Drawing a definitive conclusion regarding the controllers’ performance in nonlinear control cases requires conducting
additional control cases and sensitivity analyses to evaluate how the SDRL-based controller’s initial randomization
affects its performance.

V. Conclusion
The application of single-step deep reinforcement learning and particle swarm optimization algorithms to find an

optimum unsteady suction and blowing jets as active flow control is studied with the main aim of Tollmien-Schlichting
waves’ suppression. The utilization of SDRL and PSO-based controllers can suppress linearly developed Tollmien-
Schlichting waves by up to 99.96% (40 dB). This indicates the effectiveness of these methods in devising suitable
control strategies. The strategy identified by the SDRL and PSO involves an opposition control method, which generates
an active flow control wave of the same amplitude but in the opposite phase to the TS wave.

The comparative analysis of SDRL and PSO methods has also been done across 16 different test cases. These
cases vary in the number of optimization parameters and the definition of the reward function, which either includes
or excludes the penalization of performance based on the energy expenditure of the actuator. Faster convergence of
SDRL by up to 3 times when compared to the PSO method was observed in single-frequency linear control cases
resulting in notable computational power savings. The SDRL-based controller demonstrated superior performance
in identifying improved optima compared to PSO. These findings underscore the effectiveness of the SDRL-based
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controller in suppressing linearly developed TS waves.
Two additional nonlinear test cases were conducted in a multi-frequency nonlinear control scenario to investigate if

the compelling features of SDRL-based controller still exist when dealing with the nonlinearly developed TS waves.
The findings reveal that the expanded exploration space in multi-frequency nonlinear control cases adversely affects
the convergence rate of the SDRL-based controller, making it converge at a slower pace similar to the convergence
rate of the PSO-based controller. The increased complexity resulting from downstream nonlinear interactions poses
additional challenges for the SDRL-based controller, resulting in a decline in its performance. Based on the initial
investigation into multi-frequency nonlinear control cases, it becomes apparent that the SDRL-based controller no
longer demonstrates an advantage over the PSO-based controller in highly nonlinear control scenarios. To fully assess
the SDRL-based controller’s capabilities in suppressing nonlinearly developed TS waves, more comprehensive studies
involving a greater variety of test cases with different levels of nonlinearity are necessary. This will be studied in future
works.
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