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Simulation of atomic layer deposition on nanoparticle agglomerates

Wenjie Jin,a) Chris R. Kleijn, and J. Ruud van Ommen
Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft,
The Netherlands

(Received 12 September 2016; accepted 10 November 2016; published 29 November 2016)

Coated nanoparticles have many potential applications; production of large quantities is feasible by

atomic layer deposition (ALD) on nanoparticles in a fluidized bed reactor. However, due to the

cohesive interparticle forces, nanoparticles form large agglomerates, which influences the coating

process. In order to study this influence, the authors have developed a novel computational modeling

approach which incorporates (1) fully resolved agglomerates; (2) a self-limiting ALD half cycle reac-

tion; and (3) gas diffusion in the rarefied regime modeled by direct simulation Monte Carlo. In the

computational model, a preconstructed fractal agglomerate of up to 2048 spherical particles is

exposed to precursor molecules that are introduced from the boundaries of the computational domain

and react with the particle surfaces until these are fully saturated. With the computational model, the

overall coating time for the nanoparticle agglomerate has been studied as a function of pressure, frac-

tal dimension, and agglomerate size. Starting from the Gordon model for ALD coating within a cylin-

drical hole or trench [Gordon et al., Chem. Vap. Deposition 9, 73 (2003)], the authors also developed

an analytic model for ALD coating of nanoparticles in fractal agglomerates. The predicted coating

times from this analytic model agree well with the results from the computational model for Df¼ 2.5.

The analytic model predicts that realistic agglomerates of O(109) nanoparticles require coating times

that are 3–4 orders of magnitude larger than for a single particle. VC 2016 American Vacuum Society.

[http://dx.doi.org/10.1116/1.4968548]

I. INTRODUCTION

Modifying the surface of nano- and micron-sized particles

results in new functionalities that have applications in many

diverse fields, such as catalysis, medicine, and energy con-

version and storage.1–4 Atomic layer deposition (ALD) is

one such technique that can tune the particle surface by

depositing precisely controlled thin film layers. It relies on

two self-limiting surface reactions applied in an alternating

sequence, which allows for atomic control over the film

thickness and composition.5 ALD coating on nanoparticles

has been demonstrated in several experimental studies utiliz-

ing a fluidized bed.6,7 In fluidized bed ALD, an amount of

particles is suspended in an upward gas stream containing

the precursor molecules. It is a useful technique for large

scale processing of particles. However, when fluidizing

nanoparticles, they form agglomerates with sizes up to a few

hundred microns due to the cohesive interparticle forces.

These agglomerates are (highly) porous, and their complex

geometries have been commonly described as fractal for

their self-similarity under different length scales.8–10 Typical

fractal dimensions have been found to range from 1.8 to 2.7.

When applying ALD to such agglomerates of nanoparticles,

the precursor molecules need to be transported into the

porous agglomerates and then react with the particle surfa-

ces. This introduces a time scale for the gas transport which

may influence the overall coating time. A good understand-

ing of this phenomenon is important for the optimization of

the ALD process cycles and an efficient utilization of the

precursors.11

Reaction–diffusion problems in porous media, such as cata-

lyst particles, polymer networks, and particle assemblies, have

been studied for many decades following the seminal work by

Thiele.12 There now exists an extensive body of literature13–21

addressing reaction–diffusion in porous media for various

types of reactions (e.g., homogeneous and heterogeneous reac-

tions, first- and nonfirst order reactions), various treatments of

the porous structure geometry (e.g., by treating the porous

structure as a single material with an effective diffusivity, or

by explicitly taking into account the geometric details of the

pores) and various pore geometries (e.g., cylindrical pores,

packed beds). For gases, another distinction is that between the

molecular diffusion regime (when the typical length scale L of

the pores is much larger than the mean free path k of the gas

molecules, or the Knudsen number Kn ¼ k=L� 1), the free

molecular regime (Kn � 1) and the transitional or the

Knudsen diffusion regime (0:1 < Kn < 10). For ALD coating

of nanoparticle agglomerates, depending on the operating pres-

sure, it is generally necessary to account for gas rarefaction as

the mean free path can be comparable to or larger than that of

the particles and the pores (k � 10� 100 nm for atmospheric

pressure, and k � 10� 100 lm for 1 mbar).

Reaction–diffusion problems in particle agglomerates

have been studied for numerically generated agglomerates

constructed from an assembly of particles with predefined

assembling rules.22–25 However, some of these studies only

focus on the molecular diffusion regime (Kn� 1),22–24

whereas others do not address self-limiting reactions in frac-

tal geometries.22–25 On the other hand, self-limiting ALD

reactions and rarefied gas diffusion have been studied inside

very simple pore geometries such as narrow trenches and

cylindrical pores.26–28a)Electronic mail: W.Jin-1@tudelft.nl
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In the present paper, we develop and demonstrate a com-

putational model for the rarefied reaction–diffusion prob-

lem in ALD coating of agglomerated nanoparticles which,

in deviation from all previous studies, combines models for

(1) a fully resolved fractal agglomerate; (2) self-limiting

half cycle ALD reactions; and (3) diffusion in the transition

regime. Each of these aspects has been studied in literature,

but to the best of our knowledge, the combination of these

three is novel. With our computational model, the overall

coating time is studied, focusing on the influence of pres-

sure, agglomerate size, and agglomerate fractal dimension.

We also present an analytic model which predicts the

scaling of the coating time with agglomerate size, allowing

for the extrapolation of our results to realistically large

agglomerates.

A. Numerical construction of fractal agglomerates

It is commonly agreed in literature8,29 that a fractal

agglomerate can be characterized by its size and fractal

dimension as

N ¼ kf
Rg

a

� �Df

; (1)

where N is the total number of particles in an agglomerate,

kf is a constant prefactor, a is the radius of the primary parti-

cle, and Rg is the size of the agglomerate which is often rep-

resented by its gyration radius.

Filippov et al.30 first proposed a tunable algorithm to

numerically generate agglomerates which exactly fulfil Eq.

(1) for any given combination of N, kf and Df . Skorupski

et al.31 further improved this algorithm and developed a

fast computational implementation. In this work, we have

implemented the improved algorithm by following

Skorupski et al. Figure 1 gives examples of the constructed

fractal agglomerate with different Df . Note that an increase

in fractal dimension leads to a more dense structure of the

agglomerate.

B. Direct simulation Monte Carlo

Direct simulation Monte Carlo (DSMC)32 is a well-

developed and widely applied technique for simulating

rarefied gas flows, such as in aerodynamics in aerospace

applications33 and in microscale devices.34,35 In DSMC, the

gas molecules are represented by so called DSMC parcels,

with each parcel representing a large number Neq of real

molecules. These parcels move and collide with each other

in the simulated physical space. One essential feature of

DSMC is the decoupling between the parcel motion and par-

cel–parcel collisions over a sufficiently small time interval.

Upon collision, the parcels interchange momentum and

energy according to a given collision model. Earlier work

has extensively shown that DSMC gives a good representa-

tion of real rarefied gas flows.36 For our model, we have cho-

sen the variable soft sphere (VSS)32 collision model for its

accuracy in reproducing both the viscosity and diffusivity

for the gas mixture.

C. Modeling ALD surface reaction

In reality, the ALD surface chemistry is rather complex,

including nonideal ALD behaviors, such as the readsorp-

tion of gaseous products37 and non-self-limiting behavior

due to the decomposition of the surface species.5 However,

the aim of this work is to study the influence of fractal

structure and gas rarefaction on the overall coating time.

Therefore, here we adopt the ideal self-limiting ALD model

based on the widely used concept of sticking coefficient.

The sticking coefficient is defined as the reaction probabil-

ity of a single precursor molecule with a reactive site on the

surface. In order to mimic the self-limiting behavior, we

use a similar methodology as adopted in earlier publica-

tions,26–28 based on the surface book-keeping approach. In

this approach, the substrate surface is first divided into a

number of surface elements. If one DSMC parcel, which

represents Neq number of real molecules, has reacted with a

surface element, then the corresponding number of sites

will be marked as “reacted” and extracted from the list of

available sites of the element. Thus, for a parcel that hits a

surface element, the probability Prct of it reacting with the

element is

Prct ¼ fi � c; (2)

where c is the sticking coefficient and fi is the number frac-

tion of unoccupied sites among the total number of sites in

the i th surface element. Therefore, when fi ¼ 0, the surface

element is completely saturated and no more DSMC parcels

can react with the element. In the present study, the surface

of the spherical particle is divided into 160 surface elements

as shown in Fig. 2, such that each element has the same sur-

face area and thus the same number of sites.

FIG. 1. (Color online) Numerically constructed fractal agglomerate with kf ¼ 1:1, N ¼ 1024 for Df ¼ (a) 2:1, (b) 2:3, and (c) 2:5.
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II. COMPUTATIONAL SETUP

We have made the computational domain a cuboid box

large just enough to contain the constructed agglomerate.

Our simulation results proved to be insensitive to the precise

size of the box, with coating times increasing by less than

2% for a 20% larger box size. During the simulation, the pre-

cursor is released from the boundaries of the domain with a

fixed concentration and allowed to react with the agglomer-

ate surface. The gas phase in an ALD reactor is typically a

mixture of different gas species, such as the precursors, car-

rier gas, and gaseous products. Although it is possible to

include all these different gas species in a DSMC simulation,

the aim of the present study is not to model one particular

ALD process but rather to generically study the influence of

fractal structure and gas rarefaction on the coating time.

Therefore, we model the following generalized ALD half-

cycle reaction:

Aþ site ðfreeÞ ! site ðoccupiedÞ þ B; (3)

where A is the precursor which is transported with an inert

carrier gas C, and B is the gaseous product. We use identical

molecular properties (those of Argon32) for all three gas spe-

cies A, B, and C for the sake of the simplicity. The computa-

tional domain is initially filled with gas molecules of C, and

as the simulation starts, A is introduced from the domain

boundaries with a constant number fraction of 10%. The num-

ber density of surface sites is set to qsite ¼ 1:132� 1018=m2.

Precise values of sticking coefficients are rarely found in liter-

ature, in spite of the wide use of the concept. Moreover, the

sticking coefficient strongly depends on the substrate material

and the operating temperature, which makes it even harder to

obtain consistent data from literature. Rose et al.38 reported

that the sticking coefficient of tetrakis(ethylmethylamino)haf-

nium on hydroxyl groups depends exponentially on the sub-

strate temperature, rendering 0:56 at 270 �C. We adopt these

values for the sticking coefficient and temperature in our

modeling. For such a high sticking coefficient, reaction is fast

compared to diffusion for large N, and as a result, coating

times are rather insensitive to the precise value of c. This was

confirmed in our study by increasing c from 0.56 to 1.0, lead-

ing to small changes in coating time for large N.

The simulated spherical nanoparticles have a diameter of

2a ¼ 90 nm. With these particles, a series of fractal agglom-

erates are constructed by varying N from 4 to 2048, Df from

2:1 to 2:5, with kf ¼ 1:1. For each combination of N and Df,

one realization of the agglomerate was studied. To check the

sensitivity to geometrical differences between different real-

izations, we studied three different realizations for N¼ 128

and Df¼ 2.5. Once constructed, each agglomerate is embed-

ded in one computational domain using the DSMC cut-cell

method,39,40 which allows each and every single particle to

be fully resolved. In all the conducted simulations, we fulfil

the common DSMC criteria41,42 to ensure the accuracy of

the results.

III. RESULTS AND DISCUSSION

A. Influence of pressure on coating time

ALD on particles can be carried out at low pressure6 as

well as at atmospheric pressure.43 The amount of rarefaction,

i.e., the ratio between the mean free path and pore size,

increases for decreasing pressure. Therefore, we first study the

influence of pressure. For a fixed agglomerate with kf ¼ 1:1,

N ¼ 1024, and Df ¼ 2:5, the pressure is varied from 0.22 to

2.0 bar (k ¼ 562 � 61:8 nm). The overall coating time is non-

dimensionalized with the time t0 in which a surface element

would be 99% coated when the precursor concentration at the

surface would be the same as that of the domain boundaries.

This reference time t0 can be computed by solving the follow-

ing differential equation:

�qsite

df

dt
¼ 1

4
utCAcf ; (4)

where qsite is the number density of surface sites, f is the

number fraction of active sites, ut is the molecular thermal

velocity, and CA is the precursor molecule number density.

Equation (4) leads to the following expression for t0:

t0 ¼
�qsite

1

4
utCAc

ln 0:01ð Þ; (5)

which is of the order of 100 ns for 0.1 bar partial pressure of

species A.

The choice of the length scale L in the definition of the

Knudsen number is not obvious: an agglomerate is a multi-

scale structure with its smallest length scale being of the order

of the particle radius a, and largest length scale being of the

order of the overall agglomerate size Rg. To the best of our

knowledge, it is not clear so far in literature what is the proper

length scale for this particular problem. Therefore, we have

simply chosen the particle radius a as the reference length

scale and the gas mean free path is nondimensionalized into a

Knudsen number by a. The molecular mean free path k is

computed from the variable soft sphere model as32

FIG. 2. (Color online) Surface of the nanoparticle is divided into 16� 10

surface elements, each having the same surface area.

01B116-3 Jin, Kleijn, and van Ommen: Simulation of ALD on nanoparticle agglomerates 01B116-3

JVST A - Vacuum, Surfaces, and Films



k ¼ a 5� 2xð Þ 7� 2xð Þ
5 aþ 1ð Þ aþ 2ð Þ ut

l
P
¼ k

P
; k ¼ 0:01236 kg=s2

� �
;

(6)

where a is the exponent in the VSS model determined by the

molecular properties, x is the temperature exponent of vis-

cosity, l is the viscosity, and P is the pressure. As can be

seen, k is inversely proportional to P, and for the given range

of P, it varies from 1:37a to 12:5a.

Figure 3 shows the surface coverage of each particle of

an agglomerate at time t ¼ 0:65 t0 for P ¼ 0:22 bar. It shows

that the surface is not coated uniformly throughout the

agglomerate. The outer particles are coated faster than the

inner particles as can be expected intuitively. Figure 4 shows

the overall surface coverage / against the time t. As a refer-

ence case, a free molecular simulation is conducted by

removing the molecular collisions from DSMC, i.e., k ¼ 1.

In general, when k decreases, the overall coating time, nor-

malized by that of a single particle, increases. The deviation

from the free molecular results is only observable when k
is less than about 10a. This suggests that for pressures

below 0:1 bar, diffusion is well in the free molecular regime.

Figure 5 shows the 99% overall saturation time t99% against

the different k. It again shows that the normalized coating

time decreases with increasing k, and for k ¼ 12:5a, the sat-

uration time is very close to that in the free molecular flow.

B. Influence of agglomerate size on coating time

In this section, the pressure is fixed at 1 bar (k ¼ 2:77a),

and agglomerates with different number of particles (1 	 N
	 2048) are simulated with kf ¼ 1:1 and Df ¼ 2:5.

Figure 6 shows the overall surface coverage / against

time t for agglomerates with different number of particles, in

comparison with the analytic expression for ALD coating in

the absence of diffusion limitations given in Eq. (4). The

simulation results for N ¼ 1 match very well with those ana-

lytic results, which indicates that for a single particle the sys-

tem is well in the reaction-limited regime and can be

accurately described by the analytic expression. As for the

agglomerates, the overall coating time increases for increas-

ing number of particles.

In order to analyze our results, and considering the resem-

blance between the gas diffusion in narrow holes and that in

the pores of a porous agglomerate, we utilize the Gordon

model,44 which was developed to predict ALD coating times

in narrow holes.

The Gordon model analyzes a self-limiting ALD surface

coating reaction in a long, narrow, cylindrical hole or trench.

FIG. 3. (Color online) Surface coverage of each particle of the agglomerate,

at t ¼ 0:65 t0 for P ¼ 0:22 bar. The cubic outline represents the computa-

tional domain.

FIG. 4. (Color online) Overall surface coverage / of the agglomerate against

time t normalized by t0. k ¼ 1 denotes a free molecular simulation where

the molecular collision is not taken into account.

FIG. 5. (Color online) Saturation time of 99% t99% normalized by t0, against

the particle radius a normalized by the gas mean free path k. The red dashed

line represents the normalized t99% in the free molecular regime, i.e.,

k ¼ 1.

FIG. 6. (Color online) Overall surface coverage / against time t normalized by

t0 for a single particle, in comparison with the analytic expression in Eq. (4).
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As time progresses, the length of the coated part of the hole

wall increases from the hole mouth downward. The incre-

ment of time dt needed for coating an additional length dl in

the hole is computed from the balance between the local flux

and consumption by the hole side walls, i.e.,

FðlÞA?ðlÞ � dt ¼ qsiteaVðlÞA?ðlÞ � dl: (7)

Here, F(l) is the molecular precursor net flux entering the

hole at depth l, A?ðlÞ is the cross sectional area of the hole,

qsite is the number of surface sites to be covered per unit

area, and aVðlÞ is the wall surface area to be coated per unit

volume of the hole. Thus, the total coating time T for the

side walls of a hole of depth L is obtained as

T ¼
ðT

0

dt ¼ qsite

ðL

0

1

FðlÞ aV lð Þdl: (8)

In the Gordon model for a cylindrical hole with radius rp,

aV is not a function of l and equal to av ¼ 2=rp, and the pre-

cursor flux FðlÞ inside the hole is expressed as a function of

depth l as

FðlÞ ¼ F0

1þ cCL
l

rp

; (9)

with F0 ¼ ð1=4ÞutCA the molecular flux at the mouth of the

hole. The denominator in Eq. (9) is called Clausing factor,45

and it indicates how much the flux is reduced at a given

depth l, compared to that at the entrance. The order 1 con-

stant cCL equals 3/8 for cylindrical holes, and varies for dif-

ferent hole cross sectional shapes.46

For quasispherical fractal agglomerates with Df> 2 and

radius of gyration Rg, we now consider the above model in

a spherical coordinate system, with its origin (r¼ 0) defined

at the center of mass of the agglomerate. Then, the coating

penetration depth l is replaced by ðRg � rÞ. In a fractal

agglomerate, the amount of reactive surface per unit vol-

ume aVðrÞ, as a function of radial position, is computed

from

aV rð Þ ¼ 4pa2dN

4pr2dr
¼

4pa2kf Df a
�1 r

a

� �Df�1

dr

4pr2dr

¼ kf Df a
2�Df rDf�3: (10)

This shows that in fractal agglomerates with Df< 3, aVðrÞ
decreases with increasing r, as the agglomerate becomes less

dense with increasing r.

The aspect ratio l/rp of an agglomerate pore is estimated as

1

rp
l ¼ aV

2
Rg � rð Þ ¼

4pa2kf
Rg

a

� �Df

2
4

3
pRg

3

Rg � rð Þ

¼ 3

2
kf a

2�Df Rg
Df�3 Rg � rð Þ: (11)

By substituting Eqs. (10) and (11) into Eq. (8), and integrat-

ing from 0 to Rg, we get

t ¼
ðt

0

dt0 ¼ qsite

F0

ðRg

0

�
kf Df a

2�Df rDf�3

þ 3

2
cCLk2

f Df a
4�2Df Rg

Df�2rDf�3 � Rg
Df�3rDf�2

� ��
dr

¼ qsitekf Df

F0

1

Df � 2

Rg

a

� �Df�2
 

þ 3

2
cCL

kf

Df � 1ð Þ Df � 2ð Þ
Rg

a

� �2Df�4
!
; (12)

with Eq. (1), this can be rewritten as

t ¼ qsite

F0

Df

Df � 2
kf

2=Df NDf�2=Dfþ 3

2
cCL

�

� Df

Df � 2ð Þ Df � 1ð Þ
kf

4=Df N2Df�4=Df

�
¼ k1NDf�2=Dfþk2N2Df�4=Df : (13)

In the Gordon model for a hole, the coating time for the bot-

tom wall is added to Eq. (8) as a separate term, which gives

the asymptotic value of t ¼ t0 when l ¼ 0, i.e., when the

hole depth is zero and deposition takes place on a flat sur-

face. Similarly, in our model for deposition on a fractal

agglomerate, this asymptotic value of t ¼ t0 should hold for

N ¼ 1. Therefore, we add a similar additional term to Eq.

(13) to fulfil this requirement as

t=t0 ¼ k1NDf�2=Dfþk2N2Df�4=Df þ 1� k1 � k2ð Þ; (14)

with

k1 ¼
qsite

F0

1

Df � 2
kf

2=Df Df
1

t0

¼ c

ln 100ð Þ
1

Df � 2
kf

2=Df Df ;

(15)

and

k2 ¼
3

2
cCL

qsite

F0

1

Df � 2ð Þ Df � 1ð Þ
kf

4=Df Df
1

t0

¼ 3

2
cCL

c

ln 100ð Þ
1

Df � 2ð Þ Df � 1ð Þ
kf

4=Df Df : (16)

The ratio k1=k2 depends on the geometrical properties of the

agglomerate only, as

k1

k2

¼ 2

3

1

cCL
Df � 1ð Þkf

�2=Df : (17)

Our model predicts that for fractal agglomerates with

2<Df < 3 and large N [when the last term in Eq. (12)

dominates] the coating time t scales less than quadratically

with the size of the agglomerate Rg (for example, for

Df¼ 2.5, t scales linearly with Rg). For nonfractal agglomerates
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(i.e., Df¼ 3) and large N, our model predicts that the coating

time t scales quadratically with the size of the agglomerate Rg.

This difference is due to the fact that for fractal agglomerates

with Df < 3 the porosity increases when moving away from

the center, while for Df¼ 3 the porosity is independent of

radial position. It should be noted that for Df¼ 3, our model is

identical to the original Gordon model for a hole, which pre-

dicts a coating time proportional to the square of the hole

depth.

For Df¼ 2.5, Eq. (14) predicts t=t0 ¼ k1N1=5þk2N2=5

þð1� k1 � k2Þ. We fitted the constants k1 and k2 to simu-

lated 99% saturation times t99% for agglomerates with differ-

ent number of particles (1 	 N 	 2048), kf ¼ 1:1 and

Df ¼ 2:5, as shown in Fig. 7. As can be seen, the fitted curve

matches the simulation data very well. It indicates that our

generalized form of the Gordon model accurately predicts

the scaling of the coating time of fractal agglomerates with

increasing particle number. From our fitting to the data in

Fig. 7, we find k1=k2¼ 2.16, suggesting [with Eq. (17)] a

value cCL ¼ 0:43 in the Clausing factor for Df¼ 2.5, which

appears to be a very reasonable value for our highly irregular

pores.

With our above model, we can now estimate that for real-

istic fractal agglomerates with N � 109 and Df¼ 2.5, the

coating time would exceed that of a single particle by a fac-

tor of around 4000, as opposed to a factor 106 for a nonfrac-

tal agglomerate. This estimate, obviously, is highly sensitive

to the precise value of the exponent in the second term on

the rhs of Eq. (14), which we could not validate for very

large N. Nevertheless, it is clear that the coating time for

fractal agglomerates is orders of magnitude smaller than that

of nonfractal agglomerates.

C. Influence of fractal dimension on coating time

In this section, the pressure is fixed at 1 bar, with

k ¼ 2:77a, and the fractal dimension Df is varied from 2.1 to

2.5 with kf ¼ 1:1 and N ¼ 1024.

Figure 8 shows the overall surface coverage / against

time t for different fractal dimensions. In general, the coating

time increases for increasing fractal dimension. We compare

the simulated 99% saturation time t99% with the analytic

expression in Eq. (14). For Df< 2.5, the values of k1 and k2

have been computed from the fitted values of k1 and k2 for

Df¼ 2.5, using Eqs. (15) and (16) in which CCL was kept

constant for all Df. This comparison is shown in Fig. 9. As

can be seen, the simulation results agree very well with our

model for Df 
 2:3, while some deviations are observable

for Df < 2:3. This indicates that values of k1 and k2 obtained

for large Df are inaccurate for smaller Df, probably due to (1)

changes in pore shape, leading to different CCL, (2) break

down of the assumption of a quasispherical agglomerate

shape with an average pore size depending on radial position

only, rather than a fully three dimensional pore size

distribution.

IV. SUMMARY AND CONCLUSIONS

We have developed a computational model for simulating

atomic layer deposition on fractal nanoparticle agglomerates

with fractal dimension 2<Df< 3. This model accounts for a

self-limiting ALD half cycle reaction and gas diffusion in

FIG. 7. (Color online) Saturation time of 99% t99% normalized by t0 against

the number of particles N in an agglomerate. For N¼ 128, the saturation

times for three different realizations of the agglomerates are shown, which

are virtually identical. For all other N, only one realization is included. The

red line represents a fitting according to Eq. (14) with k1 ¼ 0:1414 and

k2 ¼ 0:0655.

FIG. 8. (Color online) Overall surface coverage / against time t normalized

by t0 for agglomerates with kf ¼ 1:1, N ¼ 1024.

FIG. 9. (Color online) Saturation time of 99% t99% normalized by t0 against

the fractal dimension Df , for kf ¼ 1:1 and N ¼ 1024. The red line represents

the expression in Eq. (14), with the fitted k1 and k2 from Fig. 7.
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the rarefied regime within a fully resolved fractal agglomer-

ate of spherical nanoparticles. We also derived a generalized

form of the Gordon model for ALD coating within a cylin-

drical hole or trench, which we extended to ALD coating

within fractal geometries. Based on the present study with

our model, we draw the following conclusions:

(1) The overall coating time of an agglomerate, normalized

by that of a single particle, decreases for decreasing pres-

sure, i.e., increasing gas mean free path k, up to k� 10a,

whereas it becomes independent of pressure for k> 10a,

with a the nanoparticle radius. This indicates that a is the

proper length scale for calculating the Knudsen number.

For pressures below 0:1 bar, diffusion in the simulated

agglomerates is well in the free molecular regime, and

further reduction of the pressure has a little influence on

the normalized coating time.

(2) The overall coating time increases as the number of par-

ticles of an agglomerate increases. Our generalization of

the Gordon model predicts the required coating time of a

large agglomerate to scale with the number of particles

to the power ð2� 4=Df Þ, in excellent agreement with

simulation results for Df ¼ 2:5, This model predicts that

realistic agglomerates of O(109) nanoparticles require

coating times that are 3–4 orders of magnitude larger

than for a single particle.

(3) The overall coating time increases for increasing fractal

dimension Df in agreement with our generalized Gordon

model. The two model constants in our model were

found to slightly depend on the fractal dimension.
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