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Abstract

The Multi-Agent Path Finding (MAPF) problem is a problem in which a route must be found for
multiple agents such that they do not collide. The Multi-Agent PathFinding with Waypoints problem
extends this problem by adding waypoints that the agents must visit before travelling to their end
location. This paper compares five algorithms for MAPF that have been extended to incorporate way-
points. It also analyzes which influence map characteristics like corridors, chokepoints, overlapping
waypoints and the average degree have on the performance of these algorithms. It concludes that
EMLA and WM* perform best overall with some variations per characteristic.
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1 Introduction
The Multi-Agent Path Finding (MAPF) problem is a problem in which multiple agents must be assigned a route
from some unique starting location to some unique finish location in the least number of steps without colliding
with other agents. The MAPF problem is relevant because there are numerous important applications for the
MAPF problem such as robotics, self-driving cars and automation in warehouses (Stern et al., 2019).

An extension of MAPF is the Multi-Agent Path Finding with Waypoints problem (MAPFW). The main idea of
waypoints is that agents incorporate intermediate locations, called waypoints, in their route. Some examples of
MAPFW are scheduling a train that not only travels from start to end location but also stops at a maintenance
station (Mulderij, Huisman, Tonissen, van der Linden, & de Weerdt, 2020) and packet delivery services which
deliver multiple packets at different destinations while using a route that does not interfere with the route of
other delivery vehicles.

In previous work algorithms for MAPF have been compared using custom benchmark instances or a stan-
dardized set of benchmark instances proposed by Stern et al. (2019). These have been used in some papers to
compare new or improved algorithms to existing algorithms. While these benchmark instances represent a diverse
set of test cases, they do not give insight into what influence certain characteristics have on the performance of
algorithms.

The main contribution of this research is an analysis of these characteristics and an examination of the in-
fluence these have. This gives insight into which algorithm works best in which scenario and allows for a better
match between problem instances and the algorithms that solve them.

This paper is organized as follows. Section 2 gives a formal description of the MAPFW problem. Section
3 discusses the different characteristics of graphs that will be examined. Section 4 gives an overview of the
algorithms that exist for MAPF and the extensions that were made and discusses the expected performance on
each characteristic. Section 5 describes how the results were obtained. Section 6 shows, interprets and discusses
the results. Finally, Section 7 discusses the ethical aspects and reproducibility of the research and Section 8
concludes this paper and describes possible directions for future research.

2 Formal description of the MAPFW problem
This section gives a formal description of the input to MAPFW and the problem definition for MAPFW.

First the input to the problem will be defined, second the operations on this input will be described, third
some conditions will be defined and finally some final definitions will be given.

Note: The terms node and vertex will be used interchangeably, and they are used to denote the same thing;
an element of the set V. The input to a MAPFW problem is a tuple 〈G = (V,E), A, S, F,X,WP 〉. The Graph G
consists of vertices and edges. V is a set of l vertices v1, v2, ..., vl. E = {(vi, vj) | vi 6= vj ∈ V } is the set of edges.
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Each edge is undirected, which means that an edge (vi, vj) ∈ E implies another edge (vj , vi) ∈ E.1 This graph is
traversed by agents. A = a1, a2, ..., ak is a set of k Agents. These agents will serve as identifiers to indicate which
start location, end location and waypoints belong to which agent. These locations are denoted by the sets S,E
and F . S = {s1, s2, ..., sk | i = 1, 2, .., k : si ∈ V } is the set of start locations, where si ∈ S is the start location
for Agent ai. F = {f1, f2, ..., fk | i = 1, 2, ..., k : fi ∈ V } is the set of finish locations, where fi ∈ F is the finish
location for Agent ai. To encode how many waypoints each Agent has to visit the set X is used. X = x1, x2, ..., xk

is the set that denotes the number of waypoints for each agent ai s.t. for i = 1, 2, ..., k : agent ai has xi waypoints.
Then there is a set of sets, denoted by WP , that contains for each agent the set of waypoints that it has to visit.
WP = W1,W2, ...,Wk s.t. for i = 1, 2, ..., k : Wi = {w1, w2, ..., wxi | j = 1, 2, ..., xi : wj ∈ V } is the set that
contains all the sets of waypoints, one set of waypoints per agent s.t. Wi is the set of waypoints for agent ai. The
path that each agent takes is denoted by P . Let Pi = {p1, p2, ..., pci | i = 1, 2, ..., ci : pi ∈ V } be the path for
agent ai of length ci. The cost of Pi is defined as the length of the path.2 A note about the labeling of the nodes
in a path: even if a wait action is performed the index of the element in Pi is increased. Thus, a path for agent ai

consisting of {si, si, fi} is labeled as {p0, p1, p2}.
A path is made by an agent that performs actions. An agent has two possible actions: wait and move. These

actions both add a node to the current path of that agent. For agent ai, initially path Pi = ∅. When the solving of
the problem begins, the start location of agent ai is added to path Pi, thus Pi = Pi ∪ {si} = {si}. At this moment
the cost ci of Pi = |Pi| = 1. Then agent ai can do two actions: wait and move. wait is defined as not moving. As
a result of this, the node that was most recently added to Pi is added again: Pi = Pi ∪ {si} = {si, si}. move is
defined as adding a node to Pi s.t. this node is not equal to the node that was most recently added to Pi. A move
action from node vi ∈ V to node vj ∈ V is only allowed if there is an edge (vi, vj) ∈ E.

A path is valid if it is complete and has no collisions. A path Pi is a complete path iff {si} ∪ {fi} ∪ {wj | j =
1, 2, ..., xi : wj ∈ Wi} ⊆ Pi. There are two types of collisions; a node collision and an edge collision.3 A node
collision occurs when two agents include the same node in their path at the same time. More formally, a node
collision occurs when, for two paths P and Q, the set C = {pi ⇔ qi | pi ∈ P, qi ∈ Q,n = min(|P |, |Q|), i =
1, 2, ..., n} 6= ∅. An edge collision occurs when two agents use the same edge from opposing nodes.4 More
formally: An edge collision occurs when, for two paths P and Q, the set C = {pi ⇔ qj ∧ pj ⇔ qi | pi, pj ∈
P ; qi, qj ∈ Q;n = min(|P |, |Q|); i = 1, 2, ..., n− 1; j = n + 1} 6= ∅.

Once an agent ai has added its finish location fi to its path Pi, Pi is complete and their are other agents that
do not yet have a complete path the agent performs the wait action until all other agents have a complete path.
A path is optimal if the path is of minimal cost.

Problem Definition5

Name: Multi-Agent Path Finding with Waypoints (Decision problem)
Input: A tuple 〈G = (V,E), A, S, F,X,WP 〉 and an integer k.
Question: Do there exist paths Pa, one for each agent a ∈ A, s.t. all paths are complete, no paths have node
collisions, no paths have edge collisions and the total cost Σa∈A(ca) ≤ k ?

The minimization variant of this problem is finding the minimum value for k for which the question can still
be answered affirmatively.

From now on the terms graph and map will be used interchangeably to denote a graph.

3 Analysis of characteristics of Graphs
This section describes the characteristics of graphs that are examined in this paper. This research is focused on
the characteristics of the structure of the maps and the placement of the waypoints. Thus, the size of the graphs,
number of agents and number of waypoints will be chosen in such a way that they facilitate the research.

The four characteristics that are examined in this paper are the number of corridors, the number of choke-
points, the number of overlapping waypoints and the average degree of the nodes in the graph. Examples of the
characteristics can be seen in Figure 1.

The first characteristic is the number of corridors. A corridor is a series of 2-connected nodes, i.e. multiple
nodes that form a narrow passage which only one agent can traverse at a time. Corridors are a source of edge

1This can easily be implemented by automatically adding the reverse edge when adding a normal edge. This way you actually
have two edges but they act as an undirected edge. You do have to be careful to check for edge collisions if you do this.

2The cost is calculated including the first node. Thus, a path consisting of {s1, v2, v3, f1} has cost 4.
3The term conflict is also used to denote a collision.
4When two agents use the same edge from the same side, there was a node conflict before already, so we will only define the

case where agents use the edge from opposing sides.
5Structure and word choice of this section is adapted from the document MAPF_problem_description.pdf that was provided

by Jesse Mulderij on May 5th, 2020.

2

MAPF_problem_description.pdf


Figure 1: Examples of a corridor, a chokepoint, overlapping waypoints and maps with a high and low average
degree. The X in the overlapping waypoints example represents a waypoint that needs to be visited before
traversing to the end location.

conflicts. An algorithm that plans a route such that two or more agents use the corridor at the same time will have
higher costs since the agents will have to wait for each other or backtrace and go around that corridor.

The second is the number of chokepoints. Chokepoints are narrow openings in a wall. A chokepoint reduces
the number of agents that can pass through at the same time. Because of this, chokepoints are a source of node
and edge conflicts. Chokepoints become a bigger problem with a higher number of agents, since more agents
want to pass the chokepoint at the same time. Algorithms that calculate paths that traverse the chokepoint at the
same time have to resolve more conflicts and will thus perform worse.

The third is the number of overlapping waypoints. Waypoints overlap when they are placed at the same node.
Overlapping Waypoints are a source of node conflicts, since multiple agents need to access the same location.
Thus, the performance of the algorithms in these maps comes down to their ability to avoid conflicts or resolve
them efficiently.

The fourth and final characteristic is the average degree of the graph. This is defined as the average number
of edges per node.6 This number will be high on a map with big open spaces and low on a map with lots of small
rooms and corridors. A decreasing average degree will cause more tight spaces and thus more chokepoints and
corridors. Thus, algorithms that handle a combination of corridors and chokepoints well will perform well when
the average degree becomes lower.

4 Overview of algorithms for MAPFW
Five existing MAPF algorithms have been extended to incorporate waypoints. This section briefly discusses the
baseline algorithms, how these algorithms have been extended and the expected performance on each character-
istic.

The first is the Conflict Based Search (CBS) algorithm, as described by Sharon, Stern, Felner, and Sturtevant
(2015). CBS is a two-level algorithm that first performs a high-level search on a Conflict Tree, in which each
node contains a certain number of constraints based on the conflicts between agents, and then tries to find a
path for each individual agent that satisfies these constraints (Sharon et al., 2015). CBS guarantees an optimal
solution. The extended version is called CBSW. The most important extensions Noah Jadoenathmisier made to
CBSW is the addition of support for waypoints using a solver for Traveling Salesperson (TSP) and a heuristic that
significantly improves performance on corridors of width 1 (?, ?). Because of this heuristic, CBSW will perform
well on corridors. Since chokepoints are short corridors, CBSW will also perform well on chokepoints. CBSW will
also perform well on maps with overlapping waypoints since CBSW is designed to handle conflicts well (Sharon et
al., 2015). The maps with lower average degree will form many corridors and chokepoints. Thus, CBSW will also
perform well on these maps. The weakness of CBSW lies in the fact that it requires exponential memory (Sharon
et al., 2015). This can hinder performance in larger problem instances.

The second is the M* algorithm, as described by Wagner and Choset (2011). M* first plans for each robot
individually and if some robots seem to have paths that are quite similar they are coupled, which minimizes the
size of the search space (Wagner & Choset, 2011). M* does not guarantee an optimal solution. The extended

6Since edges are undirected, the number of outgoing edges equals the number of incoming edges for each node.
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Algorithm Good performance Average performance Bad performance Extender
CBSW CD, CP, OW, AD None None Noah Jadoenathmisier
WM* OW AD CD, CP Jeroen van Dijk

A* + OD + ID None None CD, CP, OW, AD Stef Siekman
EMLA OW AD CD, CP Arjen Ferwerda

BCP-MAPFW None CD, CP, OW, AD None Andor Michels

Table 1: Overview of the expected performance of each algorithm and the names of the people that extended the
algorithms. CD stands for Corridors, CP stands for Chokepoints, OW stands for Overlapping Waypoints and AD
stands for Average Degree.

version is called WM*. The most important extension that Jeroen van Dijk made to M* is a policy which keeps
track of the optimal route to each waypoint and end location. This policy guides the algorithm towards the
next waypoint in an ordered list of waypoints that has been created by a subroutine which orders the waypoints
using a solver for TSP (Dijk, 2020). The Strength of WM* lies in its optimistic nature which assumes the optimal
route can be taken and only diverges from it when there is a collision, which results, in most cases, in a high
calculation speed (Dijk, 2020). Thus, WM* will perform well on overlapping waypoints since there will be much
room to manoeuvre. The downside of the optimistic approach is that instances with too many collisions cannot be
solved within reasonable time (Dijk, 2020). This will result in bad performance on the chokepoints and corridors
maps, since these are designed to cause many collisions. WM* will perform average on average degree since its
optimistic approach will cause much backtracking due to many collisions while the optimistic approach will result
in little recalculation time.

The third is the A* algorithm, with the extension of Operator Decomposition and Independence Detection (A*
+ OD + ID). A* has been described by Goldenberg, Felner, Stern, Sharon, and Schaeffer (2012). Independence
detection groups agents that have an optimal solution that does not conflict with other agents from that group,
then solves the problem for the whole group. (Standley, 2012). Operator Decomposition decomposes the task of
calculating the next move of all agents from assigning a next state for all agents at the same time to assigning a
next state for each agent one at a time in a fixed order. (Standley, 2010). A* + OD + ID guarantees an optimal
solution. The most important extension that Stef Siekman made is the addition of conflict avoidance tables and
a dynamic solver for TSP which helps ordering the waypoints (Siekman, 2020). Because of the Independence
Detection A* + OD + ID is efficient when the number of agents increases while the number of conflicts stays low
(Goldenberg et al., 2012). Thus, A* + OD + ID will perform bad on the overlapping waypoints maps, since these
will result in many conflicts. The weakness of A* + OD + ID is that there is no clear distinction between high-
level and low-level search which makes the algorithm inefficient in graphs with lots of corridors and chokepoints
(Siekman, 2020). Thus, A* + OD + ID will perform bad on the chokepoints, corridors and average degree maps.

The fourth is the Multi-Label A* algorithm (MLA*), which extends the classic A* algorithm with the ability to
calculate routes with multiple ordered goals and adds a heuristic that assigns tasks to agents over the complete
time horizon (Grenouilleau, Hoeve, & Hooker, 2019). MLA* does not guarantee an optimal solution. The ex-
tended version is called EMLA. The most important extensions that Arjen Ferwerda made are a reservation table
which allows agents to reserve nodes that are critical to their path, the addition of a wait action and a dynamic
waypoint choice heuristic that dynamically chooses which waypoint an agent pursues (Ferwerda, 2020). The
strength of EMLA lies in the dynamic waypoint choice heuristic which makes the process of selecting the next
waypoint for each agent very fast (Ferwerda, 2020). Thus, EMLA will perform well on the overlapping waypoints
maps. The weakness of EMLA lies in graphs with many corridors, since these graphs require much effort to cal-
culate a path because there are a lot of walls to walk around (Ferwerda, 2020). Thus, EMLA will perform bad on
the corridors and chokepoints maps. Since waypoint selection is so efficient EMLA will perform average on the
average degree maps even when its weakness is corridors.

The fifth and final algorithm is the Branch & Cut & Price algorithm (BCP), which combines elements from
search-based methods and compilation-based solvers into an optimal algorithm that decomposes the problem for
mathematical optimization (Lam, Le Bodic, Harabor, & Stuckey, 2019). BCP guarantees an optimal solution. The
extended version is called BCP-MAPFW. The most important extensions that Andor Michels made are the support
for waypoints and the efficient ordering of them using a solver for TSP (Michels, 2020). Because BCP-MAPFW
is based on mathematical optimizations, its calculation speed is very high (Lam et al., 2019). This will result in
average performance on all maps, since BCP-MAPFW is not particularly effective or ineffective on each map.

A note about BCP-MAPFW: BCP-MAPFW is implemented in C++ while all other algorithms are implemented
in Python. Because these languages have large differences in runtime (Prechelt, 2000) (Fourment & Gillings,
2008) they cannot be directly compared. Thus, BCP-MAPFW will not be taken into account in the comparison. To
get some idea of the relative performance of the implementation against the other algorithms, its results will be
included in the graphs, denoted by a dotted line in the figures to make it stand out.

An overview of the information given in this section is shown in Table 1.
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Item Frequency
Number of characteristics 4

Number of maps per characteristic 5
Number of runs per map 10

Table 2: Frequency of each item in the map creation and data collection phase

Map number Number of waypoints per agent
Map 1 2
Map 2 4
Map 3 6
Map 4 8
Map 5 10

Table 3: Number of waypoints per agent for each map that represents the overlapping waypoints characteristic

5 Method
This section describes the procedure that was followed to verify the expected performance of the algorithms.
There have been two types of experiments, one increasing the influence of the characteristics (5.1) and the other
increasing the number of agents (5.2). These experiments will be referred to as the Characteristics Experiment
and the Progressive Experiment, respectively. For both experiments the start, end and waypoint locations were
randomly selected. The algorithms ran on a linux server with a 14-core Intel(R) Xeon(R) Gold 6248 CPU @
2.50GHz per core and 8 GB ram. Runs that either exceeded 20 seconds or were unable to solve the benchmark
were marked as a failure and were assigned a runtime of 20 seconds.

5.1 Characteristics Experiment
The goal of the first experiment was to keep the number of agents and waypoints the same7 while increasing the
extent to which the characteristic was present in the map. For corridors this meant that the amount and length
of the corridors increased in each subsequent map. For chokepoint the amount of chokepoints increased. For
overlapping waypoints the waypoints were placed such that all agents had to visit the same waypoint locations
and the number of waypoints increased. For average degree the average degree decreased.

Per characteristic five graphs were designed to represent the characteristic in different intensities and varieties.
This number of graphs hits the sweet spot between enough data points to cover the full range of intensities of the
characteristics while not overflowing the research with data that is very similar because of the small differences.
These maps were designed by hand8 instead of with a random map generator because it is important to make
sure the different characteristics are well represented in the graphs.

Every map was solved ten times. The result for each map is the average runtime, calculated over the results
of these ten runs. All the frequencies and numbers are summarized in table 2 for convenient reference.

The maps that represent chokepoints, corridors and average degree contained five agents and five waypoints
per agent. These numbers were chosen in such a way because five agents and five waypoints gave enough of
a challenge to show differences in runtime per algorithm while still yielding reasonable runtimes on the final
maps which can be very challenging to solve. It was important to find the balance between too little differences
in results per map and too complicated instances that were too hard to solve. Five agents and five waypoints
achieved this balance. The maps that represent overlapping waypoints contained five agents and the number of
waypoints specified in table 3. The raw data is available online.9

5.2 Progressive Experiment
The goal of the second experiment was to keep the influence of the map characteristic constant while increasing
the number of agents that have to traverse the map. This gives insight into how well the algorithms are able to
handle increasing numbers of agents on a map with certain characteristics. This experiment was set up as follows;

for each of the four characteristics the third map was selected as the benchmark map, because this contains
the characteristic in an average amount. For each of the four map characteristics the algorithms were given a set
of fifty maps which contained a number of agents. The set of fifty maps was based on the benchmark map that

7This does not hold for the maps representing Overlapping Waypoints, since in these maps the structure of the map plays a
small role and the main focus is on the fact that the waypoints are at the same location. Thus, in these maps the number of
waypoints does increase.

8These maps were designed using the benchmark editor at https://mapfw.nl/benchmarks/create. Since the maps are
made by hand, no guarantees can be given about general graphs that include these characteristics.

9The maps and data can be viewed here: https://github.com/UltraTimon/MAPFW_research_data
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Item Value
Number of algorithms 5

Number of characteristics 4
Benchmark map for each characteristic Map 3

Timeout per problem 20 seconds
Number of maps per set of problems 50

Number of agents in the first problem set 2
Number of waypoints per agent 5

Number of extra agents in each subsequent problem set 1

Table 4: Overview of the numbers associated with the experiment that increases the number of agents

represented the characteristic. There were five waypoints per agent each run, since five waypoints gave a good
balance between a reasonable workload and enough complexity in the routes that had to be traversed.

The challenge for the algorithm was to try to solve each individual problem within a timeout that was set
at twenty seconds. This timeout gave a good balance between reasonable runtimes and allowing the algorithm
to show what it is capable of. If at least one of the fifty problems was solved within the timeout, a new set of
problems was given with one extra agent. This continued until none of the fifty maps could be solved within 20
seconds. Then the number of maps that could be solved was recorded for each number of agents, as well as the
cost of each solution. This was used to compare runtime to cost.

The benchmark maps for Corridors, Chokepoints and Average Degree did not have any special requirement
on the placement of the waypoints. The benchmark map for Overlapping Waypoints were configured such that
for each location that contains a waypoint, all agents have one of their waypoints on that location. This way
the waypoints overlap and all agents have to visit the same five waypoint locations. All numbers that have been
mentioned in this section are listed in Table 4.

The previously described process resulted in a number that represents the number of maps that the algorithm
was able to solve within the timeout for each algorithm for each characteristic for each number of agents. These
results and their implications are discussed in the next section.

6 Discussion of results and evaluation of expected performance
This section discusses the results and compares them to the expected performance. The results are discussed per
characteristic.

6.1 Chokepoints
The expectation was that A* + OD + ID and EMLA would perform worst, WM* would perform average and CBSW
would be the clear winner.

Both for the characteristics experiment and the progressive experiment the expectation was correct for A* +
OD + ID; It performed worst. An explanation for this could be that A* + OD + ID orders the waypoints again every
time step instead of once at the beginning (Siekman, 2020). This creates a lot of calculation overhead because
the solver for TSP that orders the waypoints takes quite some time to calculate the best order of waypoints. If
the number of agents is small this is not that much of a problem, but as the number of agents on the map grows,
the number of times that the solver for TSP has to recalculate the optimal order of waypoints grows because
every agent has to calculate its own order of waypoints. If the A* + OD + ID algorithm could be modified to
precompute the ordering of the waypoints and cache this in memory the performance of the algorithm would
probably improve significantly on maps with higher numbers of agents.

EMLA performed best overall on the progressive experiments and relatively well on the characteristics exper-
iment in terms of runtime. The good performance on the progressive experiment is probably due to the dynamic
waypoint choice heuristic which makes selecting the next waypoint for each agent very efficient (Ferwerda, 2020).
This helped EMLA to keep on solving problems within reasonable time even when the amount of agents becomes
quite large. For the characteristics experiment the expectation was that EMLA would perform worst together with
A* + OD + ID. The motivation for this expected performance was that EMLA has difficulties handling corridors
(Ferwerda, 2020) and chokepoints are very short corridors, so the expectation was that EMLA would perform bad.
The results show that these difficulties are either not that severe or that the dynamic waypoint choice heuristic is
so powerful that it compensates for the difficulties that corridors pose to EMLA.

Another interesting difference between the expected performance and the results is the bad performance of
CBSW. Since CBSW is optimized for corridors (and thus chokepoints) with its heuristic that significantly improves
performance on corridors of width 1 (?, ?) the expectation was that CBSW would shine on the chokepoint maps.
However, the results show that CBSW performed average on the characteristics experiment. An explanation for
this could be that the optimal solution for these maps took more time to be calculated, and once the requirement
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of an optimal solution is let go the maps can be solved quicker. This is shown by the good performance of the
non-optimal algorithms EMLA and WM*. CBSW performed best of all the optimal algorithms. WM* performed
average, as expected. The results are shown in figures 2 and 3.

Figure 2: Graph representing runtimes for the five algorithms for each map that represents the chokepoints
characteristic. Each map gets increasingly complicated. Runtimes are in milliseconds, but the runtime axis is
represented in seconds. Lower runtime is better.

Figure 3: Graph representing the number of randomized problems the algorithms were able to solve, given
a number of agents with random start and end locations and five waypoints. The third map that represents
chokepoints is used as the layout for the map. Higher number of problems solved is better.

6.2 Corridors
The expectation was that CBSW would perform best, WM* would perform average and A* + OD + ID and EMLA
would perform worst.

While average performance was expected from WM*, WM* actually performed quite well in terms of runtime.
WM* solved each map in the characteristic experiment with the lowest average runtime and came in second in the
progressive experiment. Since WM* is designed to be optimistic and assume each agent can take its optimal route
it wastes little processing time during execution on checking for and resolving conflicts. If a conflict happens, it
backtracks until the conflict is resolved and tries the optimal route again (Dijk, 2020). This could be the reason
for the good performance on the corridors maps, which are designed to create lots of conflicts.

A* + OD + ID performed worst, as expected.
CBSW performed quite bad in this progressive experiment, just staying above A* + OD + ID. An explanation

for the relatively bad performance is that CBSW requires exponential memory (Sharon et al., 2015), which is a
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problem that takes its toll when the number of agents on the map grows. This high memory usage may create
processing time overhead when there are more agents to keep track of, thus making it less likely that the problem
is solved within 20 seconds. The performance of CBSW on maps with more agents could probably be improved
significantly if the amount of memory that is used during execution could be reduced.

The results are visible in Figures 4 and 5.

Figure 4: Graph representing runtimes for the five algorithms for each map that represents the corridors charac-
teristic. Each map gets increasingly complicated. Runtimes are in milliseconds, but the runtime axis is represented
in seconds. Lower runtime is better.

Figure 5: Graph representing the number of randomized problems the algorithms were able to solve, given
a number of agents with random start and end locations and five waypoints. The third map that represents
corridors is used as the layout for the map. Higher number of problems solved is better.

6.3 Overlapping waypoints
The expectation was that CBSW, EMLA and WM* would perform well and A* + OD + ID would perform worse.

A* + OD + ID did perform quite bad on both the characteristic and the progressive experiment. CBSW per-
formed quite bad as well on both experiments. EMLA performed relatively well on the characteristics experiment
and exceptionally well on the progressive experiment. The performance of these algorithms corresponds to the
previously given explanations. The results are visible in Figures 6 and 7.
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Map number Average Degree
1 3.51
2 3.09
3 2.25
4 1.30
5 0.71

Table 5: Overview of the average degree of each map that represents the average degree characteristic.

Figure 6: Graph representing runtimes for the five algorithms for each map that represents the overlapping
waypoints characteristic. Each map gets increasingly complicated. Runtimes are in milliseconds, but the runtime
axis is represented in seconds. Lower runtime is better.

Figure 7: Graph representing the number of randomized problems the algorithms were able to solve, given
a number of agents with random start and end locations and five waypoints. The third map that represents
overlapping waypoints is used as the layout for the map. Higher number of problems solved is better.

6.4 Average degree
The expectation stated that all algorithms would perform well in the first few maps. Furthermore, CBSW would
perform best in the later maps because of its corridor heuristic and WM* would keep on performing quite well in
the later maps as well. A* + OD + ID would slack behind.

The runtimes for the characteristic experiment are quite close. The most interesting feature of the data is the
significant bump in runtime between map 3 and map 4. To get a more accurate comparison of the algorithms and
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how well they compare with an increasing average degree, maps that have an average degree between the values
of map 3 (2.25) and map 4 (1.30) would be good test cases. An overview of the average degree of each map for
the average degree characteristic is given in Table 5.

In the progressive experiment the expectation is quite off for CBSW and especially EMLA, which performed
quite bad and quite good respectively. An explanation for the performance of both these algorithms has been
given earlier.

The results are visible in Figures 8 and 9.

Figure 8: Graph representing runtimes for the five algorithms for each map that represents the average degree
characteristic. Each map gets increasingly complicated. Runtimes are in milliseconds, but the runtime axis is
represented in seconds. Lower runtime is better.

Figure 9: Graph representing the number of randomized problems the algorithms were able to solve, given a
number of agents with random start and end locations and five waypoints. The third map that represents average
degree is used as the layout for the map. Higher number of problems solved is better.

6.5 Analysis of the cost overhead of the non-optimal algorithms
WM* and EMLA have no guarantee of optimality which can result in higher costs than the optimal solutions.
Overall these algorithms perform better in terms of runtime than the optimal algorithms. This section compares
the cost of the solutions of WM* and EMLA from the progressive experiment and compares them to the cost of
the optimal solution to find out at what cost the faster runtimes were achieved. The results show that WM* on
average manages to stay within 1% extra costs on top of the optimal cost, while EMLA produces solutions with on
average 19% overhead. Thus, EMLA has good runtimes but pays for it with a high overhead on costs, while WM*
manages to achieve relatively good runtimes for relatively little overhead.
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6.6 Comparison of the runtime of C++ and Python
Previous work has shown that C++ is about 8-20 times faster than Python in problems in bioinformatics prob-
lems (Fourment & Gillings, 2008) and about two times faster in a problem where telephone numbers had to be
converted into word strings (Prechelt, 2000).

To get some insight into the difference in runtime between C++ and Python in the MAPFW problem WM*
was implemented both in C++ and Python by Jeroen van Dijk. WM* then solved most of the benchmarks10 at
https://mapfw.nl/benchmarks/ in both the C++ and Python version. Comparing the runtimes of the C++
and the Python implementation shows that the C++ implementation was on average 2.25 times faster than the
Python implementation. This shows that the C++ algorithm BCP-MAPFW cannot be directly compared to the
other algorithms that were implemented in Python. For the characteristics and progressive experiment the Python
implementation of WM* was used.

7 Responsible Research
This section reflects on the ethical aspects of the research and discusses the reproducibility of the methods that
were used.

This research has very little ethical implications, since it compares computer algorithms which operate on
mathematical structures. This research contributes insights which help the improvement of train planning, which
is also ethically sound. There have been conducted no human interviews, human or animal tests and no user data
has been collected. Thus, this research is very ethically responsible.

The main issue with this research is that the maps were created by hand, which makes them prone to design
flaws and the possibility of creating maps that inadvertently favored one algorithm over the other. Hand cre-
ation also decreases the reproducibility of the research, since the maps were not created according to some rigid
method. There are two reasons why, with this in mind, the maps were still designed by hand.

First, for the maps representing corridors and chokepoints it was important for the research that these ele-
ments would be part of the map. Due to time limitations it was not feasible to develop a random map generator
that still incorporates these design elements.

Second, for the maps representing average degree the focus of the research is on the effect of the average
degree on the performance, which is exercised by the increased number of conflicts the agents have in the in-
creasingly narrow spaces. With random map generation there is a high chance of creating small rooms in which
an agent is stuck on its own, which would result in a trivial path for that agent because there are little conflicts.
To make sure that there are no small rooms the maps were designed by hand.

To offset the fact that the maps were made by hand the locations of the start, end and waypoint for each agent
and each run were randomly chosen and the results are the average of multiple runs. This way the influence of
certain design choices is reduced.

8 Conclusions and Future Work
This paper compares five algorithms for MAPF which have been extended to incorporate waypoints and analyzes
what influence certain characteristics of graphs have on the runtime of these algorithms.

Chokepoints, narrow openings in a wall which permit only one agent through at a time, cause conflicts
between multiple agents who want to pass the chokepoint at the same time. WM* and especially EMLA handle
increasing numbers of chokepoints relatively well while other algorithms have more difficulty.

Corridors, long narrow passages which permit only one agent at a time, cause collisions and require long
paths when occupied corridors have to be circumvented. Corridors do not pose much of a challenge for WM* and
EMLA, while A* + OD + ID and CBSW have a hard time with it.

Overlapping waypoints cause conflicts between multiple agents which need to access the same locations but
cannot do that simultaneously. EMLA is able to handle maps with more than 50 agents and CBSW was able to
stay close to the good performance of EMLA and WM*.

The average degree determines the average number of edges per node. A low average degree causes many
collisions between agents because of the many narrow passages and chokepoints. Results of the algorithms were
quite similar, however EMLA did show that it is capable of handling many agents at a time.

While EMLA and WM* did perform well in terms of runtime, they do not guarantee optimal solutions in terms
of cost. The average costs over all runs in the progressive experiment shows that on average EMLA has a cost
overhead of 19% while WM* has a cost overhead of 1%.

A comparison of the runtime of a C++ and a Python implementation of the WM* algorithm shows that the
C++ implementation is on average 2.5 times faster than the Python implementation, which shows that algorithms
that are implemented in C++ and Python cannot be directly compared.

10Benchmarks 21, 54 and 58 were not solved because WM* was unable to solve them.
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Future research could look into creating (pseudo)random map generators which incorporate map characteris-
tics in such a way that the characteristics do not get lost in the map generation. Furthermore, research could
be performed on the subject of the performance of MAPFW algorithms on maps with average degrees that fall
between 2.25 and 1.30. This could result in a more accurate analysis of the influence of a decreasing average
degree on algorithm performance.
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