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1. Introduction

In order to make predictions for the morphology of an alluvial
bottom a thorough knowledge of the flow pattern is needed. 1In tidal
channels, without a nett discharge over the tidal period,the main flow
effects on the morphology will, on an average,remain relatively small
because of the tidal variation. Therefore second order flow phenomena
become important. In particular the secondary flow is important,
because it gives rise to bottom slopes transverse to the main flow.

"This research, which is financially supported by the directorate
of the Deltadienst of Rijkswaterstaat, concerns the determination of the
secondary flow in tidal channels like estuaries as the Eastern Scheldt
based on a known depth averaged velocity field. The depth averaged velocities
must be computed with a high accuracy in order to make a reasonable
determination of the secondary flow. For the computation of depth averaged
velocities usually an implicit finite difference method of the ADI-type
is used.

In these methods the depth averaged equations of motion, together with
the depth averaged continuity equation, together called the shallow water
equations, are solved by means of an Alternating Direction Implicit
computation using a spatial staggered grid.

A simplification of the effective stress term in the shallow water
equations is made to economize the computation.

Although the velocity parameters andwater level parameter are treated
implicitly, the convective and diffusion terms are represented explicitly
in the difference equations, which can give rise to instability of the
numerical computatioh. The computation is executed with an imposed
diffusion coefficient in order to suppress this instability.

In this report an imvestigation is done concerning the diffusion
coefficient and its influence on the velocity distribution in a steady
or quasi-steady flow in rivers and estuaries.

Estimates of the physical Iateral viscosity for the same flows are made

and their influence on the velocity distribution is discussed.

In the overall research of which this report covers just a part,
the accuracy of the derived calculation of the secondary flow will be

verified with measurements of the flow in the curved flume of the Delft

Hydraulic Laboratory (de Vriend, 1978).



At the Laboratory of Fluid Mechanics a flume with a 180-degrees bend is
available in which also measurements are planned for the use of verification
of the secondary flow model.

It is found that the velocity distribution in these flume models
is severely influenced by the imposed diffusion coefficient corresponding
with a reasonable time step,so no accurate velocity field can be computed
using the implicit finite difference method in the current form without
requiring expensive computations

Some attention has been paid to the rectangular representation

of the curvilinear boundaries.
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2, Mathematical description

2.1, The shallow-water equations

In flow-problems in coastal waters, estuaries and rivers it is
usually fairly justified to assume a hydrostatic pressure distribution
along the vertical,i.e. the vertical accelerations are negligibly small.

Integration over depth of the Reynolds' equations fornturbulent
flow in three dimensions and assuming a hydrostatic pressure distribution
yields the differential equations for two dimensional horizontal flow,

the shallow water equations (Flokstra, 1976), which read:
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In these equations the following notation is tsed (see also definition

sketch, fig. 1):

X,y horizontal cgordinates;

u,v depth-averaged velocity-component in x-,y-direction;

T waterlevel above teference level;

g : accelgration due to gra§ity;

h ‘waterdepth;

p nass density;

Tbx’Tby components of bottom shear stress;

wa’Twy .components of surface shear stress;

Q - - Coriolis parameter:2 w sin ¢,where ¢ is the geographic
latitude and w is the angular velocity of the
rotation of the earth;

* T s Topnry L effective stresses in vertical planes.
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Usually the bottom shear stresses are assumed to act opposite

to the direction of the mean velocity vector and to vary with the mean

velocity squared:

- o - @
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in whi¢h C is the Chézy coefficient.

The complete expressions for the effective stresses (Flokstra, 1981) are:
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where: v is the kinematic coefficient of viscosity;

-~

4, V are the depth—dependent valyes of the velocities,

Each effective stress expression consists of three components with
different physical meaning. The first part is the vertical mean viscous

stress (at sufficiently high values of the Reynolds number this contribution

hay'be neglected). The second contribution concerns the turbulent .
stress acting in vertical planes. _ '

The third contribution represents the momentum flux due to the non-—
uniform vertical dlstrlbutlon of. the velocity. This third contribution,

its character and its effect on the flow are discussed further in

(2.2).

In current numerical models the shallow water equations are
modified. The effective stress term is substituted bij a single diffusion
term with a constant diffusion coefficient., (Vreugdenhil - Wijbenga,

1982, Booij - de Boer, 1981). With this modification and the bottom stress

assumption the shallow water equations (4,5) can be rewritten into
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Usually the equations are further simplified by supposing ep
to be a constant throughout the flow.

These shallow water equations result in a system of equations
which can be solved in a numerical way, Most of the numerical
models for the integration of these equations are based on the implicit

finite difference scheme as proposedAby Leendertse (1967).

2:2s The momentum flux due to the non-uniform velocity distribution

The effective stresses (see equations 6, 7, 8) are combinations of
viscous stresses, Reynolds stresses, and momentum fluxes due to the non=
uniform distributions of the velocities over the depth. For the flow
problems considered in this report, the viscous stresses can be neglected
in comparison with the Reynolds stresses. The momentum fluxes due to
the velocity distribution can be large compared to the Reynolds stresses,
but some comments on their part in the equations of motion (1,2) are
appropriate. _ t

If the velocity ?rofiles in the x- and in the y-direction are
similar, which in general is approximately the case in shallow water
flow, then these momentum fluxes can be considered small corrections

on the momentum fluxes due to convection.
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with in case of a logarithmic vertical distribution of the velocity
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where k is Von Karman's constant.and o is a constant depending on the
shape of the velocity profile.

In the equations pf motions (1,2) the stresses give rise to the

terms
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These terms mean small corrections on the convection terms in the

equations of motion.
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For C = 50 mi/s expression (15) gives a = 1/40, so the corrections
on the convection terms are small and generally negligible.

In river or channel bends and suddenly expanding rivers and channeis,
where circulations develop, the velocity profiles in the x-direction and
the y-direction can differ as a result of secondary flow. An analogous
difference between the velocity profiles can appear in estuaries as a
result of secondary flow due to the Coriolis force (Booij and Kalkwijk,
1982). The difference is best recognized when one coordinate axis is chosen
in the main flow direction. An outward transport of the main flow in
river bends (Kalkwijk and de Vriend, 1980) is caused by the momentum
fluxes due to these non-uniform velocity distributions (In case of secondary
flow due to the Coriolis effect this term causes a transport of the main
flow to the right). This effect is not reproduced when these momentum
fluxes are accounted for by diffusion terms.

It can be concluded that the part of the momentum fluxes due to
the non-uniform vertical velocity profiles can generally be neglected
when secondary flow is not important. When secondary flow is important,
then these momentum fluxes can not be neglected, but they can certainly
not be replaced by diffusion terms.

Neglect of the share of the momentum fluxes due to non—uniform
velocity distribution in the equations of motion (1, 2) and use of the

eddy viscosity concept yields shallow water equations of the form:
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These equations are equal to equations(9, 10). Only the lateral eddy

viscosity Ve replaces the diffusion coefficient Ep. In equations

(19, 20) the current bottom stresses assumption (equations 4, 5) is used.
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3 Numerical method -

3.1. Computational description

The modified shallow water differential equations (9, 10, 11)
can be solved by an implicit finite difference method (Leendertse, 1967;
Booij - de Boer, 1981). This method is of an Alternating — Direction -
Implicit (ADI)-type. In an alternating way each half timestep the
equations in the x- and y-direction respectively are solved by means
of an implicit computation. The non-linear terms are represented in such
a way that a tridiagonal system of linear equations arises along each
row or column of grid points. Each system of equations can independently
be solved together with the corresponding boundary conditioms. The
convective terms and diffusion terms are treated explicitly. The
convective terms are represented by central differences using values
from the older time level and therefore can give rise to instability
in the ‘computation,
Vreugdenhil and Wijbenga(1982) note that to a certain extent the accuracy
of this numerical method can be judged by its truncation error. They
state that part of the truncation error has the form of a numerical

diffusion term with a negative value:

Z 2
_ 2 ou 3 V. ’
BUSAE (T > 5a2) a

in which U is the magnitude of the velocity, s is the local flow direction,
B is a constant and At is the numerical time increment used in the
computation. This effect (21) works only during the unsteady state,

in the steady state it is cancelled by other terms in the truncation

error.

3.2, Stability criteria

From the numerical diffusion coefficient a stability criterion
can be derived. Noting that the local ‘diffusion coefficient
should at least be positive in order to get a stable computatiom, the

criterion becomes:

e — BU2At > 0 or At < 8—517 (22)
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where ¢ denotes the imposed diffusion coefficient used in the
numerical computation. In the steady state no imposed diffusion is
compensated by the negative numerical diffusion term arising from the
truncation error,because the effect of the negative numerical.diffusion
is cancelled by other terms with in the truncation error.
Nevertheless the amount of imposed diffusion is needed to prevent small
disturbances from growing. In the steady state or quasi-steady state
e.g. tidal channel flow, the total imposed diffusion will influence the
results of the computation.

In the publication of Vreugdenhil and Wijbenga(1982), the coefficient
B is set equal to %u According to Vreugdenhil this value is not exact;
it may vary with the used computational model. The exact value of B is
hard to determine. Nevertheless when the shallow water equations are
solved with use of an implicit finite difference:cheme based upon
Leendertse (1967) the part of the truncation error that has the form
of a diffusion term will have a diffusion coefficient of the form
BU2At.

With the inequality (22) an instability region in the At — € plane
is defined. For the diffusion equation,computed with an explicit method,

it can be shown that the stability criterion

2eA t < 1
Ax2

(23)
applies (Kuipers and Vreugdenhil, 1973). Usually the diffusion terms

are treated explicitely in the implicit finite difference methods under
discussion. Therefore the stability criterion (23) also holds for these
computations.

The two stability criteria (22, 23) outline a region in the e-At

plane in which the computation will be stable for a given spatial grid
distance Ax. Thus the Stability region for a certain Ax can be plotted

és shown below.
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This figure shows that for-a given spatial grid distance (Ax) the time

‘increment (At) reaches a maximum at a certain diffusioncoefficient. 1In

view of stability this can be considered as an optimum. For instance,
take for a tidal channel with a width of 1000 m and a maximum velocity of
1.5 m/s, a grid size of 50 or 75 m, then the timestep cannot exceed

47 and 70 s respectively (see fig. 2 ). These time steps can only result
in a stabile computation if the imposed diffusion coefficient is fixed

on 26.5 m?/s and 39.5 m?/s respectively.

3.3. Instability in different flow configurations

When the computation with an implicit finite difference method
of the ADI-type for a flow through a flume results in an instable compu-

tation for a certain time step,it can be shown that every other flow

with Froude-scaled dimensions similar to the flow will also show an jnstable

computation if a time step scaled according to the time scale is used,
Froude-scaling denotes that all the dimensions and flow parameters are
scaled in such a way that the second flow has the same Froude number
as the first flow.

The reason that instability will occur more easily in a certain
configuration than in another one is, that the magnitudes of the con-

vective terms in the basic equations (9, 10) are different.



. ¢ !

_]3_

4, Lateral Viscosity

In chapter 3 two stability criteria for numerical computations of °
shallow water flows with implicit-finite difference methods of the
ADI-type were introduced. One of the criteria, expression (22), requires
a lateral diffusion coefficient that is proportional to the time step
used and to the square of the flow velocity. Generally a constant . dif-
fusion coefficient is chosen that is sufficiently large to obtain stability
over the entire flow field.

'The choice of the lateral diffusion coefficient can, however,
severely influence the calculated velocity field. To examine the in-
fluence of the imposed lateral diffusion coefficient, it has to be com-
pared to the lateral eddy viscosity v, in equations (19) and (20), when
this latter mainly determines the velocities. When the flow is mainly
controlled by the bottom friction,then the influence of the lateral
diffusion coefficient on the velocity field has to be compared to the

influence of this bottom friction.

4.1. Estimation of the lateral eddy viscosity

The lateral eddy viscosity vt4can be estimated using the Reynolds
analogy between turbulent momentum transport and turbulent mass transport.
For wide straight channels the lateral diffusion coefficient for

contaminants mentioned by Fischer et al. (1979) yields

Ve = 0.15 uxh (24)

with u the shear stress velocity, defined by

_ (bt
u —(p) _ (25)

in which T is the bottom shear stress.

For rivers Fischer et al. (1979) mention a somewhat larger value

13

(

is caused by the considerable change in the vertical concentration profiles

0.6 uxh) for the diffusion coefficient for contaminants. The increase

due to convection of the contaminant by the secondary flow in river bends.
The wvertical profiles of the longitudinal velocity are hardly influenced
by the secondary flow, so the value of the eddy viscosity in straight

channels (equation 24) seems to apply also for curved channels and rivers.
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The eddy viscosity can be expressed in the depth-averaged velocity, using

the expression

u, = i‘g (w2+v2)? (26)

This gives for C = 50 mi/s

v, = 0.01 h(u2+v2) (27)
To estimate the influence of the lateral eddy viscosity and the

influence of the bed shear stress on the velocity field, a stationary

flow, that is uniform in the longitudinal direction, in a straight channel

with constant depth, is considered. The x-coordinate is chosen in the

flow direction. In case of no surface shear stress and Coriolis effect

equation (19) now becomes

a2, By, gulul
& 3x * oy (vt ay) * C<h G (28)

with a lateral eddy viscosity (see equation 27)

v, = 0.0l hu (29)
In shallow water flow the bed shear stress is generally

predominant except near the sides of the channel. The region near the

sides,where the influence of the lateral viscosity on the flow field is

important, can be estimated in the following way. In this region the

second term of equation (28) has to be at least of the same order of

magnitude as the third term.
) du, 2 gu!ul o
55 (V¢ 3y) - oTh (30}

=z

5
2

For C = 50 © /s this amounts to

5 .
8yu=\l)__&|_u_|_: 2.5 3 (31)

3y~2 tC2h h2

, as can be seen by substituting equation (25), (26) and (29). So, the

width of the region in which the lateral viscosity is important can be



. . . L 4

_]5_

estimated at about 1.6 h for C = 50 mi/s. The lateral eddy viscosity
will in reality decrease near the channel sides, yielding somewhat smaller
side wall regions.

This characterization of the flow field compares well with
measurements and computations mentioned by Rodi (1980), and with
preliminary measurements in a straight section of a flume in. the
Laboratory of Fluid Mechanics of the Delft University of Technology
(called henceforth the LFM flume). The width of the LFM flume is 60 cm.
The water depth in the flume was 6 cm and the flow velocity was about
25 cm/s. The flow case mentioned by Rodi concerns measurements by
Gonsovski (unpublished) and a computation with a depth-averaged version
of the k-e-model by Rastogi (unpublished) for a straight channel with a

width to depth ratio of 30 (see figure 3).

In case of a depth variation in the direction normal to the flow,
the influence of the lateral viscosity is consequently only perceptible
near the place of variation. The considerations above apply also for

non-stationary or weak non-uniform flows.

4.2, Influence of an imposed = lateral diffusion coefficient

The lateral diffusion coefficient e, imposed in computations
of shallow water flow with an implicit finite difference method of the
ADI-type, can have important consequences for the calculated velocity
field, as is illustrated by the following example.

Vreugdenhil and Wijbenga (1982) computed the velocity field in
the Meuse near Venlo, where the Megse has a-main channel with a width
of 150 m, a depth of 9.5 m,C= 60 m?/s and - a mean velocity of about 1.5 m/s.
The eddy viscosity can be computed using expressions (24) and (26)

v, ® 0.11 m?/s (32)

V;eugdenhil and Wijbenga used two different diffusion coefficients in
their computation, viz. € -] m?2/s and € = 3 m?/s, and compared the
results to investigate the consequences of a difference in the value
of the diffusion coefficient (see fig.4 ).

The value of vt-in expression (32) yields sidewall layers, in
which the influence of the lateral eddy viscosity is important, with

a width of about 2 h = 18 m (see pagel4, with C = 60 mi/s). The values
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of € used by Vreugdenhil and Wijbenga (1982) yield much wider sidewall
layers (using equation 31 with € instead of vt), viz. about 70'm for
e = 1 m?/s, and about 120 m for € = 3 m?/s. (Compare with figure L).
The computations by Vreugdenhil and Wijbenga give even worse
results then the analysis above suggests. The large friction caused by
the large value of € is compensated for by a decreased bottom friction
(or higher Chézy coefficient). In this way the total resistance of the
flow and the surface slope are correct, but the influence of the lateral
viscosity is even increased.
Vreugdenhil and Wijbenga justify the large values of €, by
referring to an expression for the coefficient for the diffusion across

a shear layer as given by Rodi (1980)
e = 0,01 D Au (33)

in which D is the width of the shear layer and Au is the velocity

difference over the shear layer. Using for D half of the width of the

Meuse and for Au the mean velocity, € becomes indeed 1.5 m?/s.
Vreugdenhil refers also to a paper of Lean and Weare (1979), who use a
comparable expression. Lean and Weare, however, consider a channel,
where the main flow expands on the downstream side of a breakwater.

They use the expression only in a part of the mixing zone emanating from

the breakwater tip. In the rest of the flow field they prefer expression

(24), as the turbulence generated at the bed predominates except for the

mixing region, where the turbulence generated by the horizontal velocity

gradient is important.
For three flow situations the lateral eddy viscosity is given in

table 1.

a) An example of the flow in a tidal channel. A width of 1000 m, an
average depth of 20 m and a depth—averaged velocity of 1.5 m/s are
used. .

5) A flume in the Delft Hydraulics Laboratory with a width of 6 m, an
average depth of 21 cm and an average velocity of 0.5 m/s (henceforth
called the DHL flume).

c) The LFM flume (see page 15).
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The lateral eddy viscosities in the three cases, using expression (29)
- .
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for C = 50 mé/s, are given in table 1,

h u vt
Tidel Channel 20 m 1.5 m/s 0,3 mz/s_
DHL Flume 0.2l m 0.5 m/s 0.001 m?/s
LFM Flume 0.06 m 0.25 m/s 0.00015 m?/s
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5. Boundary conditions

Two closed boundary conditions can be distinguished, the free-
slip and the no-slip closed boundary condition. In both conditions

'closed' implies that there is no mass flux across the boundary:

u =0 (34)

where u is the local velocity in n-direction, perpendicular to the

boundary.

In addition,for the free-slip closed boundary condition holds:

au -
228 =
¢ 0 (35)

where ug is the local velocity in s-direction, parallel to the boundary

‘and € is the lateral diffusion coefficient. Usually € is fixed at a

constant value everywhere throughout the flow. Equation (35) becomes

(Vreugdenhil and Wijnbenga, 1982):

— | =0 ' : : (36)

u =0 37)

When a boundary is represented in a riumerical model by a rectangular
grid the model boundaries are always parallel to the x—-axis or y-axis
of the grid,so n- and s-direction will always coincide with the
orientation of either x- and y-direction or y- and x-direction.

The numerical treatment of these specific conditions may differ

in the various models (Vreugdenhil 1973). .
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The no-slip condition will give rise to a boundary layer along
the boundary. This phenomenon can dominate the velocity distribution
along the width of the flume when a large lateral viscosity is used in
order to maintain a stable computation. Consequently a larger fall of
the energy head along the flow is needed because of the extra resistance
of the boundary due to large lateral viscosity.

Some results of computations for the DHL-flume (see page |6 with
the TIDES-package are plotted in fig. 5 . The TIDES-package (Booij -
de Boer, 1981) has a computational scheme based on the implicit finite
difference method, as discussed in 3.1, using an ADI-type computation.
The computations were executed for the first straight part of the DHL-
flume. At the upstream side of the flume a stationary velocity distribution
along the width was imposed and at the downstream side of the flume a
constant water level was maintained. Both these open boundary conditions,
velocity distribution and water level, agreed with the corresponding
measurements in the DHL-flume (de Vriend and Koch, 1978).

The theoretical velocity distribution in fig. 5 is based upon
a calculation in which side wall friction and lateral viscosity are .
omitted and the velocity distribution is only determined by bottom friction.
Neglect of the lateral viscosity in this case is justified according
to the considerations discussed in 4.1, This theoretical distribution
fits the measurements (de Vriend and Koch, 1978) very well as does the
the slope of the water level.

Although the stability criteria allow any imposed diffusion
coefficient with a sufficiently small time step to result in a stable
computation, the required small time step has economical limitationms.
Smaller imposed diffﬁsion coefficients will lead to more reliable results
but to more expensive computations.

A reasonable time step is 2 seconds,which requires an imposed
diffusion coefficient of 0.06 m?/s in order to obtain a stable computation.

All the computaﬁions Qere executed until a steady flow was reached.
Velocity distributions in case of free-slip condition and in case of no-slip
condition at the closed boundaries are plotted in figz.5. In both cases

the imposed diffusion coefficient was 0,06 m2/s.

Figure 5 shows that the imposed diffusion coefficient influences

the velocity distribution severely.
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In the computed steady flow with no-slip closed boundary conditions
the water level slope amounted to about four times the measured water level
slope. In this case the imposed diffusion is responsible for a considerable
energy dissipation as the no-slip conditions results in larger velocity
gradients,especially near the side-walls, moreover the imposed diffusion
coefficient has a constant value whereas the physical lateral viscosity
decreases towards the side walls. The velocity distribution in the
prototype shows large gradients in the regions with decreasing
lateral viscosity. In case of free-slip closed boundary conditions only
a slightly steeper water level slope,compared with the measured value,was
found. Here the imposed diffusion flattens the velocity distribution,
which provides higher velocities near the side walls of the flow. Near
the side walls the water depth becomes smaller, the Chézy coefficient
decreases,so the total bottom friction on the flow is larger that the
measured value. Neither of the velocity distributions fits the measured
values.

The velocity distribution of a computed steady flow with free-slip
closed boundary conditions and with a lateral viscosity of 0.02 m2/s
is also represented in fig. 5. The maximum time step possible in this
case, 0.5s,was used. This velocity distribution corresponds better with
the measured distribution than the velocity distribution from the first
computation using 0.06 m2/s for the imposed diffusion coefficient (See 3.1).
To investigate the influence of the grid size on the velocity
distribution, especially near the boundaries,computations were executed
with half the grid distance. of the former computations. Hardly
any influence of the grid size was found. An example of these computations
with an imposed diffusion coefficient of 0.06 m2/s is represented in
fig. 6 compared with the corresponding steady situation of the computation
with the former grid size. The deviations of the velocity distribution
near the boundaries are caused by the imposed free-slip closed’ boundary
condition .given bij Eq. 36. The mathematical description ( 36 )
is not equivalent with the-physical free-slip condition,because the lateral
eddy viscosity decreases rapidly near the boundary whereas the imposed

diffusion coefficient is maintained at a constant value in the mathematical

description.
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6. Numerical representation of a curvilinear configuration by a

rectangular grid

When in a numerical model for the simulation of a flow through
a bend, the bend configuration is represented by a rectangular grid,
it will be impossible to match the grid points everywhere with the
physical wall boundary. The boundaries can only be approximated very
roughly by a rectangular grid. This ill-matching of the numerical
boundaries with the real boundaries gives rise to an additional flow
resistance (Kuipers and Vreugdenhil, 1973). When a computation is set
up for a stationary flow through a straight flume with a grid, correctly
chosen, parallel to the flume axis, the results e.g. water level slope
and velocity, will be the same as those of an analytical computation
with corresponding Chézy coefficient values and lateral diffusion
coefficient. When the computation for the flume is executed but now
represented by a rectangular grid with another orientation with respect
to the flume axis the value of the total resistance will increase with
a considerable factor, so a steeper water level slope is needed.to obtain
the same discharge. The degree in which this numerical wall representation
influences the main flow is dependené on the ratio of the width of the
flow and the grid size. Smaller grid sizes in relation to a wider flow
will result in smaller influence of the numerical wall representation.
Kuipers and Vreugdenhil (1973) have tried to reduce the influence
of the wall representation by special treatments of the boundaries and
modifications in the equations of motion. These treatments and modifications
were artificial and although some final results,like friction and discharge,
corresponded with the theoretical values the impact on other characteristics
of the flow, for instance curvature of the streamlines, velocity distribution

over the width, is not clear. No satisfactory treatment for the wall

representation was found.
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L Economical aspects of the computation with an implicit finite

difference method of the ADI-type

The stability criteria discussed in Chapter 3 impose strict limitations
on the maximum time increment (At) that can be used in order to obtain
a stable computation. In the next discussion some attention will be paid
to the economical aspects of the use of an implicit finite difference
method of the ADI-type, for the computation of tidal flows in estuaries.
The specific implications of the introduction of a constant diffusion
coefficient based on the consideration of stability are discussed in
chapter 4.2.
As already pointed out in chapter 3 reasonable spatial grid-sizes Ax
for. tidal channel configurations are e.g. 50 or 75 m. Combined with
a maximum velocity of 1.5 m/s the maximum time step At in the stability
region for Ax = 50 m is 47 s and for Ax = 75 m, At is 70 s. The required
imposed diffusion coefficient in these cases are 26.5 m?/s and 39.5 m?/s
respectively. This means that a tidal period of 12 hours has to be
simulated with approximately 920 steps for the first case and 620 steps
for the second case, which is acceptable from an economical point of
view. Up to now only considerations concerning stability are used to
determine the numerical parameters. Based on the experience from the
steady state computations with large imposed diffusion coefficients
(Chapter5),where was found that the imposed diffusion was not cancelled,
the use of a smaller diffusion coefficient not exceeding some times the
lateral eddy viscosity (Chapter .4) must be preferred, based upon the
consideration of accuracy. The lateral eddy viscosity for a tidal channel
is about 0.3 mz/s. Computations with the use of an imposed diffusion
coefficient in the order of magnitude of five times the lateral eddy
‘viscosity will require a time step not exceeding 3s. Of course the
computation for an entire tidal period will than become excessively’
expensive. '
' A way of reducing the amount of c omputations without loosing
stability and accuracy is the use of an implicit finite difference
method in which also the convective terms are treated implicitly. More-
over the accuracy of the results may improve whén the computational scheme
will be set up with finite differences of a higher order. Such methods

will be more expensive than the method with explicit treatment of the

convective terms.
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Conclusions

For the simulation of shallow-water flow an implicit finite
difference method of the ADI-type-is often used. Such a method can be used
for flows for which the restrictions for the use of the shallow water
equations hold e.g. flows in coastal water, in tidal channels and in
rivers. In the computation instability can occur. One important
instability originates from the explicit treatment of the convective
terms in the computational scheme. The possibility of instability
increases with the importance of the convective terms with respect to the
other terms in the shallow-water equations. From the truncation error
a stability criterion can be derived which states that an imposed diffusion
coefficient dependent on the time increment size is needed in order to
obtain a stable computation.A suitable time increment from an economical
point of view requires a large imposed diffusion coefficient. In a steady
or quasi-steaddy flow the effect of the imposed diffusion is not eliminated
in the numerical computation. Therefore the imposed diffusion will

influence the results of the computation severely. This influence has

no relation with the influence .of the physical lateral viscosity.

Experiments in flumes show that the: effect of the physical lateral
viscosity on the flow pattern is limited to a horizontal distance near
the walls of some times the depth.

For the simulation of flows in tidal channels the numerical methods
have to be improved. In view of stability a modification such as an
imﬁlicit treatment of the convective terms seems appropriate. Maybe
a higher order scheme will improve the results.

The rectangular representation of curvilinear physical wall
boundaries gives rise to numerical deviations when the grid size is
large compared to the flow width. In the literature some attempts to treat
the boundaries or flow parameters near the boundaries can be found in
order to minimize the numerical deviation. No satisfactory treatment

has been found.so far.
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Notation

c Chézy coefficient

g acceleration due to gravity

h depth of flow

n local flow coordinate perpendicular to the direction of the flow
s local flow coordinate in the direction of the flow
Txx’Txy’Tyy effective stresses in vertical planes

t time

At ‘numerical time increment

u depth averaged velocity in x-direction

u, bottom shear stress velocity

4,9 depth dependent values of the velocity components in x- and

y-direction respectively '

v depth averaged velocity in y-direction

W#,Wy acceleration terms representing the surface shear stress

x horizontal coordinate

Ax distance between grid points

y horizontal coordinate /

z vertical coordinate ‘9/ .

Zy ‘bottom level with respect to a horizontal reference level
a constant depending on the shape of the yelocity profile

B constant .

ep diffusion coefficient o -
€ imposed diffusion cgefficient

g water level with respect to a horizontal reference level
. k hVéﬁ“Karﬁgﬁ;sicoﬁséanﬁ-‘ o

v kinematic viscosity

Vs lateral eddy viscosity

p mass density

pu'4,pu'v', pv'4 Reynolds stresses

Tbx* Tby* b

O & © A
3

bottom shear stress
surface shear stress

latitude

angular rotation of the earth

Coriolis parameter
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