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I
1. Introduction

"

I In order to make predictions for the morphology of an alluvial

bottom a thorough knowledge of th~ flow pattern is needed. In tidal

channels,without a nett discharge over the tidal period,the main flow

effects on the morphology will, on an average,remain relatively small

because of the tidal variation. Therefore second order flow phenomena

become important. In particular the secondary flow is important,

because it gives rise to bottom slopes transverse to the main flow.

This research, which is financially supported by the directorate

of the Deltadienst of Rijkswaterstaat, concerns the determination of the

secondary flow in tidal èhannels like estuaries as the Eastern Scheldt

based on a known depth averaged velocity field. The depth averaged veloeities

must be computed with a high accuracy ~n order to make areasonabie

determination of the secondary flow. For the computation of depth averaged

velocities usually an implicit finite difference method of the ADI-type

is used.

In these methods the depth averaged equations of motion, together with

the depth averaged continuity equ~tion, together called the shallow water

equations, are solved by means of an.'Alternating Direction Implicit

computation using a spatial staggered grid.

A simplification of the effective stress term in the shallow water

equations is made to economize the computation.

Although the velocity parameters andwat~r level parameter are treated

implicitly~ the convective and diffusion terms are represented explicitly

in the difference equations, which can give rise to instability of the

numerical computation. The computation is executed with an imposed

diffusion coefficient in order to suppress this instability.

In this report an iuvestigation is done concerning the diffusion

coefficient and its influence on the veloc'ity distribution in a steady.

or quasi-steady flow iririvers and estuaries.

Estimates of the physical iater~l viscosity for the same flows are made

and their influence on the velocity distribution is discussed.

I
I
I
I
I
I
I
I
I

I
.1
I
I
I

In the overall research of which this report covers just a part,

the accuracy of the derived calculation of the secondary flow will be

verified with measurements of the flow in the curved flume of the Delft

Hydraulic Laboratory (de Vriend, 1978).

I
I
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At the Laboratory of Fluid Mechanics a flume with a 180-degrees bend is

available in which also measurements are planned for the use of verification

of the secondary flow model.

It is found that the velocity distribution in these flume models

is severely influenced by the imposed diffusion coefficient corresponding

with a reasonable time step,so no accurate velocity field can be computed

using the implicit finite difference method in the current form without

r2qu~r1ng expensive computations

Some attention has been paid to the rectangular representation

of the curvilinear boundaries.

I
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I
I 2. Mathematical description

I
I
I
I
I
I

2. I. The shallow-water equations

In flow-problems .in coastal waters, estuaries and rivers it is-,
usually fairly justified to assume a hydrostatic pressure distribution

along the vertical, i.e. the vertical accelerations are negligibly small.

Integration over depth of the Reynolds' equations for turbulent

flow in three dimensions and assuming a hydrostatic pressure distribution

yieldsthe differential equations for two dimensional horizontal flow,

the shallow water equations (Flokstra, 1976), which read:

I
I

b:+ au + au + ar;+ 1 (T - T ) - SN +u- v- gäX Phat ax ay bx wx

aChT ) aChT )
xx xy 0- -- -Ph =

ph ax ay

av av 2.Y.+ ar; 1
(Tby - T ) + nu +-+ u-+ V g äY + phat ax ay wy

t aChT ) I aChT ) , .-- xx. -- 'dy" = 0; I
ph ax ph

ar; ê(hu) + ê(hv) = 0._+
êx ayat

(1 )

(2)

I
~'1
I

(3)

In these equations the following notation is üsed (see also definition

sketch, fig. I):

p

I

horizontal coordinates;

depth-averaged velocity-component in x-,y-direction;

waterlevel above reference level;

acceleration due tó gravity;

waterdepth;

mass density;

components of bottom shear stress;

components of surface shear stress;

.Coriolis parameter:2 w sin ~,where ~ is the geographic

latitude and w is the angular velocity of the

rotation of the earth;

effective stresses in vertical planes.

x,y

u,v

·1
I
I
I
I

r;
g

h

I
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Usually the bottem shear stresses are assumed to act opposite

to the direction of the mean veloeity vector and to vary with the mean

velocity squared:

I
I
I
I
I
I

(4)

(5)

in whiéh C is the Chezy coefficient.

The complete expressions for the effective stresses (Flokstra, 1981) are:

I
I
I
·1
I
-I"
I

{ 2pv aû
ax (6)

p (û-u) (v-v)}d.z (7)

]
lf·· =­YY h

/

PVl2·' p(v-v)2}dz (8)

where: v is the kinematic coefficient of viscosity;

û, vare the depth-dependent val~es of the velocities.

Each effective stress e~pression consists of three components with

different physical meaning. The first part is the vertical mean viscous

stress (at sufficiently high values of the Reynolds number this contribution

-may'be neglected) ~ The second contri.buti.ouconcerns the turbulent -----

stress acting in vertical planes.

The third contribution represents the momentum flux due to the·non­

uniform vertical distrLbutLon of.the velocity. TIlischird contribution,

I
I
I

its character and its effect on the flow are discussed further in

(2.2).
In current numerical models the shallow water equations are

modified. The effective stress term is substituted bij a single diffusion

term with a constant diffusion coeff ici.ent, (Vreugdenhil - Wijbenga.

1982, Booij - de Boer, 1981). With this modification and the bottom stress

assumption the shallow water equations (4,5) can be rewritten into

I
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I
I au au au aÇ g- + u- + v- + g- +at ax ay ax ë7

u~
h + ~ - nv

I
o (9)

I
I

av av vav gaç g v~ w_ät + ua;z + ay + ay + ë2 h. +·y + nu

I
I

.L(E av) + .L(E .av)
ax p ax ay p ay o (10)

~ + a (hu) +
at êx

a (hv) = 0
ay

(11)

I
Usually the equations are further simplified by SupposLng Ep

I to be a constant throughout the flow.

These shallow water equations result Ln a system of equations

which can be solved Ln a numerical way. Most of the numerical

models for the integration of these equations are based on the implicit

I
I

!

finite difference scheme as proposed by Leendertse (1967).

I

2.2. The momentum flux due to the non':"uniformvelocity distribution

The effective stresses (see equations 6, 7, 8) are combinations of·

viscous stresses, Reynolds stresses, and momentum fluxes due to the non~

uniform dis.tributions of the veloeities over the depth. For the flow

problems considered ~n this report, the viscous stresses can be neglected

in comparison with the Reynolds stresses. The momentum fluxes due to

the velocity distribution can be large compared to the Reynolds stresses,

but some comments on their part in the equations of motion (1,2) are

appropriate.

If the velocity profiles Ln the x- and in the y-direction are

similar, wh ich in ~eneral is approximately the case in shallow water

flow, then these momentum fluxes can be considered small corrections

on the momentum fluxes due to convection.

I
.1
I
I
I
I
I
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I

(12)
h

I
,I
I

I
h

Zb+h

J p(û-u) (v-v)dz = pauv
zb

(13)

I
1

h

zb+h

J p(v-v)2dz
zb

2pav (14)

I
I

with 1.ncase of a logarithmic vertical distribution of the velocity

(15)

I
I

where K 1.SVon Karman's constant.and a 1.Sa constant depending on the

shape of the velocity profile.

In the equations pf motions (1,2) the stresses give rise to the

terms

I
I

d 2 a- au + - auvdX dy
( dU êv dU) (dU dU)= a 2u dX + u dy + v dy '"a u dX + v dy (16)

I
I

and

(17).

I These terms mean small corrections on the convection terms 1.nthe

equations of motion.

I
I
I

dU dUu-+ v-dX dy
and

dV dVu-+ v-dX dy
(J 8).

I
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I
I For C = 50 mIls expression (15) gives a ~ 1/40, so the corrections

on the convection terms are small and generally negligible.

In river or channel bends and suddenly expanding rivers and channeis,

where circulations develop, the velocity profiles in the x-direction and

the y-direction can differ as a result of secondary flow. An analogous

difference between the velocity profiles can appear in estuaries as a

resul t of secondary f Iow due to the Coriolis force (Booij and Kalkwijk,

1982). The difference is best recognized when one coordinate axis ~s chosen

in the ma~n flow direct ion. An outward transport of the main flow in

river bends (Kalkwijk and de Vriend, 1980) is caused by the momentum

fluxes due to these non-uniform velocity distributions (In case of secondary

flow due to the Coriolis effect this term causes a transport of the main

flow to the right). This effect is not reproduced when these momentum

fluxes are accounted for by diffusion tèrms.

It can be concluded that the part of the momentum fluxes due to

the non-uniform vertical velocity profiles can generally be neglected

when secondary flow is not important. \fuen secondary flow is important,

then these momentum fluxes can not be neglected, but.they can certainly

not be replaced by diffusion terms..

Neglect of the share of the ~~mentum fluxes due to non-uniform

veloci ty distribution in the equations of motion (l, 2) and use of the

eddy viscosity concept yields shallow'water equations of the form:

I
I
I
I
'1
I
I
I
I
I

au. au- + u- +
ê t , ax

au az;; g uIu2+v2' Wv- + g- + ~ . +ay ax C h x

I
I

_ ~(\) au) ='0
ay t êy

(19)

.1
I
I These equations are equal to equations(9, 10). Only the lateral eddy

viscosity \)t replaces tbe diffusion coefficient €p' In equations

(19, 20) the current bottom stresses assumption (equations 4, 5) is used.I
I
I



I
-10-

I
I 3. Numerical method .

I Computational description

The modified shallow water differential equations (9, 10, 11)

can be solved by an implicit finite difference method (Leendertse, 1967;

Booij - de Boer, 1981). This method is of an Alternating - Direction

Implicit (ADI)-type. In an alternating way each half timestep the

3.1.

I
I equations in the x- and y-direction respectively are solved by means

of an implicit computation. The non-linear terms are represented in such

a way that a tridiagonal system of linear equations arises along each

row or column of grid points. Each system of equations can independently

~e solved together with the corresponding boundary conditions. The

convective terms and diffusion te rms. are treated exp Li.c i t l.y c The

convective terms are represented by central differences using valuès

from the older time'level and therefore can give rise to instability

in the 'computation~

Vreugdenhil and Hijbenga(1982) note that to a certain extent the accuracy

of this numerical method can be judged by its truncation error. They

state that part of the truncation error has the form of a numerical

diffusion term with a negative value:

I
I
I
I
I
I 2

2 . (Clu
I3U t.täSz ' (21)

I
I

~n whieh U is the magnitude of the velocity, s is the local flow direction,

13 is a constant and t.tis the numerical time increment used in the

eomputation. This effe:ct (2]) works only during the unsteady state,

in the steady state it is cancelled by other terms in the truneationI
error.

I
I

Stability criteria

From the numeric:al diffusion coefficient a stability criterion

ean be derived. Noting that the loeal 'ciiffusioncoefficient

3.2.

I
should at least be positive in order to get a stable eomputation, the

criterion becomes:

I or
. E

t.t< I3U2 (22)

I
I
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where E denotes the imposed diffusion coefficient used ~n the

numerical computation. In the steady state no imposed diffusion ~s

compensated by the negative numerical diffusion term arising from the

truncation error,because the effect of the negative numerical.diffusion

is cancelled by other terms with in the truncation error.

Nevertheless the amount of imposed diffusion is needed to prevent small

disturbances from growing. In the steady state or quasi-steady state

e.g. tidal channel flow, the total imposed diffusion will influence the

results of the computation.

In the publication of Vreugdenhil and Wijbenga(l982) , the coefficient

e is set equal to i. According to Vreugdenhil this value is not exact;

it may vary with the used computational model. The exact value of e is

hard to determine. Nevertheless when the shallow water equations are

solved with use of an implicit finite difference ~heme based upon

Leendertse (1967) the part of the truncation error that has the form

of a diffusion term will have a diffusion coefficient of the form

eu2ót.

I
·1
I
I
I
I
I with the inequality (22) an instability reg~on ~n the ót - E plane

is defined. For the diffusion equat~on,computed with an explicit method,

it can be shown that the stability ériterionI
I < (23)_

I applies (Kuipers and Vreugdenhil, 1973). Usually the diffusion terms

are treated explicitely in the implicit finite difference methods under

discussion. Therefore the stability criterion (23) also holds for these

computations.

The two stability criteria (22, 23) outline a region ~n the E~ót

plane ~n which the computation will be stable for a given spatial grid

distance Óx. Thus the stability region for a certain ~x can be plotted

as shown below.

I
.1
I
I

I
I
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I
I
I

eriterion from truneation errorI
I
I
I

eriterion
STABLE

I
I This figure shows that for·a g~ven spatial grid distanee (~) the time

·inerement (~t) reaehes a maximum at a eertain diffusioneoeffieient. In

view of stability this ean be eonsidered as an optimum. For instanee,

take for a tidal ehannel with a width of 1000 mand a maximum veloeity of

1.5 mis, a grid size of 50 pr 75 m, then the timestep eannot exeeed

47.and 70 s respeetively (see fig. 2). These time steps ean only result

in a stabile eomputation if the imposed diffusion eoefficient is fixed

on 26.5 m2/s and 39.5 m2/s respectively.

I
I
I
I
I

I

3.3. Instability in different flow configurátiöns

When the computation with an iuplieit finite differenee method

of the ADI-type for a flow through a flume results in an instabie compu­

tation for a certain time step,it ean be shown that every other flow

with Froude-scaled dimensions similar to the.flow will also show an instabie

computation if a time step scaled according to the time scale is used.

Froude-sealing denotes that all the dimensions and flow parameters are

sealed in sueh a way that the seeond flow has the same Froude number

as the first flow.

The reason that instability will occur m~re easily ~n a certain

configuration than in another one is, that the magnitudes of the eQn­

veetive terms in the basic equations (9, JO) are different.

I
I
I

I
I
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I
I 4. Lateral Viscosity

I In chapter 3 two stability criteria for numerical computations of'

shallow water flows with implicit- finite difference methods of the

ADI-type were introduced. One of the criteria, expression (22), requires

a lateral diffusion coefficient that is proportional to the time step

used and to the square of the flow velocity. Generally a constant.dif­

fusion coefficient is chosen that is sufficiently large to obtain stability

over the entire flow field.

·The choice of the lateral diffusion coefficient can, however,

severely influence the calculated velocity field. To examine the in­

fluence of the imposed lateral diffusion coefficient, it has to be com­

pared to the lateral eddy viscosity vt in equations (19) and (20), when

this latter mainly determines the velocities. When the flow is mainly

controlled by the bottom friction,then the influence of the lateral

diffusion coefficient on the velocity field has to be compared to the

influence of this bottom friction.

I
I
I
I
I
I
I 4.1. Estimation of the lateral eddy viscosity

I
. ,

The lateral eddy viscosity '\ can be estimated using the Reynolds

analogy between turbulent momentum ·transport and turbulent mass transport.

For wide straight channels the lateral diffusion coefficient for

contaminants mentioned by Fischer et al. (1979) yieldsI
I 0.15 u h

*
(24)

I
-I

with u. the shear stress velocity, defined by
*
u
*

Lb !
= (-)

p
(25)

I 1n which Lb is the·bottom shear stress.

F'or rivers Eischer et al ~ (1979) mention a somewhat larger value

I

(~ 0.6 u h) for the diffusion coefficient for contaminants. The increase* ..
1S caused by the considerable change 1n the vertical concentration profiles

due to convection of the contaminant by the secondary flow in river bends.

The\~ertical profiles of the longitudinal velocity are hardly influenced

by the secondary flow, so the value of the eddy viscosity in straight

channels (equation 24) seems to apply also for curved channels and rivers.

I

I
I
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I
I The eddy viscosity can be expressed ~n the depth-averaged velocity, using

the expression

I
(26)

.1 This gives for C = 50 m~/s

I (27)

I
I

To estimate the influence of the lateral eddy viscosity and the

influence of the bed shear stress on the velocity field, a stationary

flow, that is uniform in the longitudinal direction, in a straight channel

with constant depth, is considered. The x-coordinate is chosen in the

flow direction. In case of no s~rface shear stress and Coriolis effect

equation (19) now becomesI
I .~ + ~ (v ~) + g ulul 0

g ax ay t ay ~
(28)

I
I

with a lateral eddy viscosity (see equation 27)

V :::0.01 hu
t

(29)

I
I
I

In shallow water flow the bed shear stress is generally

pred6minant except near the sides of the channel. The region near the

sides,where the influence of the lateral viscosity on the flow field is

important, can be estimated in the following way. In this region the

second term of equation (28) has to be at least of the same order of

magnitude as the third term.

I
a (v au) ~ gu lulaf t êy . ~ (30)

I
For C

,
m~= 50 Is this amounts to

I
a2u g ulul::: u
~ = C2 2.5 -h2ay vt h

(3J)

I
I , as can be seen by substituting equation (25), (26) and (29). So, the

width of the region in which the lateral viscosity is important can be

I
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I
I
I

estimated at about 1.6 h for C = 50 m!/s. The lateral eddy viscosity

will in reality decrease near the channel sides, yielding somewhat smaller

side wall regions.

This characterization of the flow field compares well with

measurements and computations mentioned by Rodi (1980), and with

preliminary measurements in a straight section of a flume in the

Laboratory of Fluid Mechanics of the Delft University of Technology

(called henceforth the LFM flume). The width of the LFH flume is 60 cm.

The water depth in the flume was 6 cm and the flow velocity was about

25 cm/s. The flow case mentioned by Rodi concerns measurements by

Gonsovski (unpublished) and a computation with a depth-averaged vers ion

of the k-E~model by Rastogi (unpublished) for a straight channel with a

width to depth ratio of 30 (see figure 3).
In case of a depth variation in 'the direction normal to the flow,

the influence of the lateral viscosity is consequently only perceptible

near the place of variation. The considerations above apply also for

non-stationary or weak non-uniform flows.

"

I
I
I
I
I
I
I 4.2. Influence of an imposed lateral d i.f fusion .coe f f ic î ent;

I
The lateral diffusion coeffi.ci.entE, imposed in computations

of shallow water flow with an implicit finite difference lllethodof the

ADI-type, can have important consequences for the calculated velocity

field, ·as is illustrated by the following example.

Vreugdenhil and Wijbenga (1982) computed the velocity field in

the Meuse near Venlo, where the Meuse has acma.i;n channe I with a width. ,
of 150 m, a depth of 9.5 m, C_"'~60-m2js anä": _a mean velocity of about 1.5 mis.
The eddy viscosity can be computed using expressions (24) and (26)

I
I
I
.1 (32)

I
Vreugdenhil and Wijbenga used two different diffusion coefficients in

their computation, viz. E = 1 m2/s and E = 3 m2/s, and compared the

results to investigate the consequences of a difference in the value

of the diffusion coefficient (see fig.4).

The value of \) in expression (32) yields sidewall layers, int .
which the influence of the lateral eddy viscosity is important, with

!
a width of about 2 h = 18 m (see page 14, with C '"60 m2 /s). The values

I
I
I
I
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I
I of E used by Vreugdenhil and Wijbenga (1982) yield much wider sidewall

layers (using equation 31 with E instead of v ), viz. about 70 m for. t
E = I m2/s, and about 120 m for E = 3 m2/s. (Compare with figure 4).

The computations by Vreugdenhil and Wijbenga give even worse

resul ts then the analysis above sugges ts. The large friction caused by

the large value of E is compensated for by a decreased bottom friction

(or higher Chezy coefficient). In this way the total resistance of the

flow and the surface slope are correct, but the influence of the lateral

viscosity is even increased.

Vreugdenhil and Wijbenga justify the large values of €, by

referring to an expression for the coefficient for the diffusion across

a shear layer as given by Rodi (1980)

I
I
I
I
I
I E '" 0.01 D lm (33)

I

in which D is the width of the shear layer and ~u is the velocity

difference over the shear layer. Using for D 4alf of. the width of the

Meuse and for ~u the mean velocity, € becomes indeed 1.5 m2/s.
Vreugdenhil refers also to a paper of Lean and Weare (1979),who use a

comparable expression. Lean and Weare, however, consider a channel,

where the main flow expands on the downstream side of a breakwater.

They use the expression only in a part of the'mixing zone emanating from

the breakwater tip. In the rest of the flow field they prefer expression

(24), as the turbulence generated at the bed predominates except for the

mixing region, where the turbulence generated by the horizontal velocity

gradient is important.

For three flow situations the lateral eddy viscosity is given 1n

table I.

a) An example of the flow in a tidal channel. A width of 1000 m, an

average depth of 20 mand a depth-averaged velocity of 1.5'mis are

used.

b) A flume 1n the Delft Hydraulics Laboratory with a width of 6 m, an

average depth of 21 cm and an average velocity of 0.5 mis (henceforth

called the DHL flume).

c) The LFM !lume (see page 15 J.

I
I

I
I
I
I
I
I
I
I
I
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I
I The lateral eddy viscosities in the three cases, using expression (29),

for C ~ 50 m2js, are given in table 1.

I
h u \)t

Tidel Cpannel 20 m l.5 mis 0,3 m2/s

DHL Flume 0.21 m 0.5 mis 0.001 m2/s

LFM Flume 0.06 m 0.25 mis 0.00015 m2/s

I
I
I
I
I
I
I
I
I
I
I
·1
I
I
I
I
I
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I
I 5. Boundary conditions

I Two closed boundary conditions can be distinguished, the free­

slip and the no-slip closed boundary condition. In both conditions

'closed' implies that there is no mass flux across the boundary:I
I u

n
o (34)

b

I
I
I

where u ~s the local velocity in n-direction, perpendicular to the
n

boundary.

In addition,for the free-slip closed boundary condition holds:

e ~ I = 0 (35)an
b

I where u is the local velocity in s-direction, parallel to the boundary
s

'and e: is the lateral diffusion coefficient. Usually e: is fixed at a

constant value everywhere throughout the flow. Equation (35) becomes

(Vreugdenhil and Wijnbenga~ 1982):
I
I au s

äÏl
b

= 0 (36)

I
I
I

For the no-slip closed bQundary condition holds:

u = 0s
(37)

b

I
I

When a boundary is represented in a numerical model by ~ rect3ngular

grid the model boundar~es are always parallel to the x-ax~s or y-axis

of the grid,so n- and s-direction will always coincide with the

orientation of either x- and y-direction or y- and x-direction.

The numerical treatment of these specific conditions may differ

in the various models (Vreugdenhil 1973).I
I
I
I
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I
I The no-slip condition will give r~se to a boundary layer along

the boundary. This phenomenon can dominate the velocity distribution

along the width of the flume when a large lateral viscosity is used in

order to maintain a stable computation. Consequently a Larger fall of

the energy head along thé flow is needed because of the extra resistance

of the boundary due to large lateral viscosity.

Some resul ts of computations for the DHL-flume (see page 16) with

the TIDES-package are plotted in fig. 5 The TIDES-package (Booij -

de Boer, 1981) has a computational scheme based on the implicit finite

difference method, as discussed in 3.1, using an ADI-type computation.

The computations were executed for the first straight part of the DHL­

flume. At the upstream side of the flume a stationary velocity distribution

along the width was imposed and at the downstream side of the flume a

constant water level was maintained. Bóth these open boundary conditions~

velocity distribution and water level, agreed with the corresponding

measurements in the DHL-flume (de Vriend and Koch, 1978).

The theoretical velocity distribution in fig. 5 is based upon

a calculation in which side wall friction and lateral viscosity are

omitted and the velocity distribution is only determined by bottom friction.

Neglect of the lateral viscosity in this case is justified according

to the cons i.der-atLons discussed in 4.1. This theoretical dis tribution

fits the measurements (de Vriend and Koch, 1978) very weIl as does the

the slope of the water level.

Although the stability criteria allow any imposed diffusion

coefficient with a sufficiently small time step to result in a stabie

computation, the required small time step has economical limitations.

Smaller imposed diffusion coefficients will lead to more reliable results

but to more expensive computations.

A reasonable time step is 2 seconds,which requires an imposed

diffusion coefficient of 0.06 m2/s in order to obtain a stabie computation.

All the computations were executed ûntil a steady flow was reached.

Velocity distributions in case qf free-slip condition arid in case of no-slip

condition at the closed boundaries are plotted in fig.5. In both cases

the impoged diffUsion coefficient was 0.06 m2/s.

I
I
I
I
I
I
I
I
I
I
I
I
·1
I
I
,I Figure 5 shows that the imposed diffusion coefficient influences

the velocity distribution severely.

I
I
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I
I In the computed steady flow with no-slip closed boundary conditions

the water level slope amounted to about four times the measured water level

slope. In this case the imposed diffusion is responsible for a considerable

energy dissipation as the no-slip conditions results in larger velocity

gradients,especially near the side-walls, moreover the imposed diffusion

coefficient has a constant value whereas the physical lateral viscosity

decreases towards the side walls. The velocity distribution in the

prototype shows large gradients in the regions with decreasing

lateral viscosity. In case of free-slip closed boundary conditions only

a slightly steeper water level slope,compared with the measured value,was

found. Here the imposed diffusion flattens the velocity distribution,

which provides higher velocities near the side walls of the flow. Near

the side walls the·water depth becomes smaller, the Chézy coefficient

decreases,so the total bottom friction on the flow is larger that the

measured value. Neither of the velocity distributions fits the measured

values.

I
I
I
I
I
I
I The velocity distribution of a computed steady flow with free-slip

closed boundary conditions and with a lateral viscosity of 0.02 m2/s

is also represented in fig. 5. The maXLmum time step possible in this

case, 0.5s,was used. This velocity distribution corresponds better with

the measured distribution than the velocity distribution from the first

computation using 0.06 m2/s for the imposed diffusion coefficient (See 3.1).

To investigate the influence of the grid size on the velocity

distribution,especially near the boundaries,computations were executed

I
I
I
I
I

with half the grid -distance . of the former computations. Hardly

I

any influence of the grid size was found. An example of these computations

with an imposed diffusion coefficient of 0.06 m2/s is represented in

fig. 6 compared with the corresponding steady situation of the computation

with the former grid size. The deviations o~ the velocity distribution

near the boundaries are caused by the imposed free-slip closed'boundàry

condition .given bij Eq. 36. The mathematical description ( 36 )

is not equivalent with the physical free-slip condition,because the lateral

eddy viscosity decreases rapidly near the boundary whereas the imposed

diffusion coefficient is maintained at a constant value in the mathematical

description.

I
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I
I 6. Numerical representation of a curvilinear configuration by a

~ectangular grid

I .When in a numerical model for the simulation of a flow. through

a bend, the bend configuration is represented by a rectangular grid,

it will be impossible to match the grid points everywhere with the

physical wall boundary. The boundaries can only be approximated very

roughly by a rectangular grid. This ill-matching of the numerical

boundaries with the real boundaries gives risè to an additional flow

resistànce (Kuipers and Vreugdenhil, 1973). When a computation is set

up for a stationary flow through a straight flume with a grid, correctly

chosen, parallel to the flume axis, the results e.g. water level slope

and velocity, will be the same as those of an analytical computation

with corresponding Chezy coefficient values and lateral diffusion

coefficient. When the computation for the flume is executed but now

represented by a rectangular grid with another orientation with respect

to the flume axis the value of the t.ota'lresistance will increase with

a considerable factor,so a steeper water level slope. is needed.to obtain

the same discharge. The degree in which this numerical wall representation
f

influences the main flow is dependent on the ratio of the width of the

flow and the grid size. Smaller grid sizes in relation to a wider flow

will result in smaller influence of the numerical wall representation.

Kuipers and Vreugdenhil (1973) have tried to reduce the influence

of the wall representation by special treatments of the boundaries and

modifications in the equations of motion. These treatments and modifications

were artificial and although some final results,like friction and discharge,

corresponded with the theoretical values the impact on other characteristics

of the flow, for instance curvature of.the streamlines, velocity distribution

over the width, is not clear. No satisfactory treatment for the wall

representation was found.
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I
I 7. Economical aspects of the computation with an implicit finite

difference method of the ADI-type

I
The stability criteria discussed ~n Chapter 3 impose strict limitations

on the maximum time increment (~t) that can be used in order to obtain

a stabie computation. In the next discussion some attention will be paid

to the economical aspects of the use of an implicit finite difference

method of the ADI-type, for the computation of tidal flows in estuaries.

The specific implications of the introduction of a constant diffusion

coefficient based on the consideration of stability are discussed in

chapter 4.2.

As already pointed out ~n chapter 3 reasonable spatial grid-sizes ÀX

for.tidal channel configurations are e.g. 50 or 75 m. C.ombinedwith

a maximum velocity of 1.5 mis the maximum time step ~t in the stability

region for ~x = 50 m is 47 s and for ~x = 75 m, ~t is 70 s. The required

imposed diffusion coefficient in these cases are 26.5 rrf.ls and 39.5 uiL/s
respectively. This means that a tidal period of 12 hours has to be

simulated with approximately 920 steps for the first case and 620 steps

for the second case, which is acceptable from an economical point of

v~ew. Up to now only considerations concerning stability are used to

determine the numerical parameters. Based on the experience from the

steady state computations with large imposed diffusion coefficients

(Chapter5),where was found that the imposed diffusion was not cancelled,

the use of a smaller diffusion coefficient not exceeding some times the

lateral eddy viscosity (Chapter.4) must be preferred, based upon the

consideration of accuracy. The lateral eddy viscosity for a tidal channel

is about 0.3 m2/s. Computations with the use of an imposed diffusion

coefficient in the order of magnitude of five times the lateral eddy

'viscosity will reqáire a time step not exce~ding 3 s. Of course the

computation for an entire tidal period will' than become excessLvel.y"

expensive.

A way of reducing the amount of C omputations without loosing

stability and accuracy is the use of an implicit finite difference

method in which also the convective terms are treated implicitly~ More­

over the accuracy of the results may improve whën the computational scheme

will be set up with finite differences of a higher order. Such methods

will be more expensive than the method with explicit treatment of the

convective terms.
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I
I Conclusions

I For the simulation of shallow-water flow an implicit finite

difference method of the ADI-type·is often used. Such a method can be used

for flows for which the restrietions for the use of the shallow water

equations hold e.g. flows in coastal water, in tidal channels and in

rivers. In the computation instability can occur. One important

instability originates from the explicit treatment of the convective

terms in the computational scheme. The possibility of instability

increases with the importance of the convective terms with respect to the

other terms 1n the shallow-water equations. From the truncation error

a stability criterion ean be derived which states that an imposed diffusion

coefficient dependent on the time increment size is needed in order to

obtain a stabie computation.A suitable time increment from an economical

point of view requires a large imposed diffusion coefficient. In a steady

or quasi-steaddy flow the effect of the imposed diffusion is not eliminated

in the numerical computation. Therefore the imposed diffusion will -

influence the results of the computation severely. This influence has

no relation with the·influence .of the physical lateral viscosity.

I
I
I
I
I
I
I
I

i

Experiments in flumes show that thè:effect of the physical lateral

viscosity on the flow pattern is .limited to a horizontal distance near

the walls of some times the depth.

For the simulation of flows in tidal channels the numerical methods

have to be improved. In view of stability a modification such as an

implici t treatment of the convective terms seems appropri.ate,:M~ybe-_.·

a higher order scheme will improve the results.

The rectangular representation of curvilinear physical wall

boundaries gives rise to numerical deviations when the grid size is

large compared to the flow width. In the literature sóme att~pts to treat

the boundaries or flow parameters near the boundaries can be found in

order to minimize rhe numerical deviation. No satisfactory treatment

has been found.so faro
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C Chezy coefficient

g ..acceleration due to gravity

I h

n

depth of flow

local flow coordinate perpendicular to the direction of the flow

s local flow coordinate in the direction of the flow

effective stresses in vertical planesI
I

T T Txx' xy' yy
t time

fit ·numerical time increment

I
I
I
I

u

U
K

Û,V

v
W ,Wx y
x

I
I
.·1
--·1··· .

z

a

B
.e:

p

r;
K

depth averaged velocity in x-direction

bottom shear stress velocity

depth dependent values of the velocity components in x- and

y-direction respectively

depth averaged velocity in y-direction

acceleration terms representing the surface shear stress

horizontal coordinate

distance between grid points

horizontal coordinate

vertical coordinate
. I.
1.,

:bottom level with respect to a horizontal reference level

constant depending·on the shape of the velocity profile

constant

diffusion coefficient

imposed diffu.sionc?efficient
water level with respect to a hori.zont.al,reference level

Von Karman's constant

.1
I

v kinematic viscosity

v lateral eddy viscosityt .
p mass densi~y

puïl,pu'v', pVï'Z" ReynoLds stres·ses

bottom shear stress

I Tbx,Tby,Tb
T surface shear stress
w

lP latitude

I angular rotation of the earth

n Coriolis parameter·

I
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open channel flow. (According to: R9di. ]980}
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