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Abstract

Self-Adaptive Physics-Informed Neural Networks
(SA-PINNS) are a variation of traditional Physics-
Informed Neural Networks (PINNs) designed to
solve the challenges of solving stiff” partial differ-
ential equations (PDEs). By using adaptive weight-
ing, SA-PINNs are able to focus their attention on
areas of the domain with higher errors, therefore
improving accuracy. This work investigates the
roles of individual loss components, namely resid-
uals, boundary conditions, and initial conditions, in
the performance of SA-PINNSs.

1 Introduction

Physics-Informed Neural Networks (PINNs) are a
big advancement in solving partial differential equa-
tions (PDEs) that at their core work by incorporating
physical laws into the neural network architecture [1;
2]. Proposed by [1], and therefore from now on referred to as
“baseline” PINNs, they aim to minimize the error of the PDE,
initial, and boundary conditions simultaneously, effectively
embedding domain knowledge into the learning process [3].
Although PINNs have proven useful in modeling a wide
variety of PDEs, they are known to struggle with equations
that are stiff”, that means, with solutions characterized by
sharp spatial transitions or fast time evolution [4].

Self-Adaptive Physics-Informed (SA-PINNs) introduced by
[3] have emerged as a significant advancement over baseline
PINNs aimed to solve the problem with convergence when
predicting stiff nonlinear equations. Such equations are often
encountered in fields such as fluid dynamics and material
science. An example of a stiff equation is an Allen-Cahn
equation that struggles to converge when traditional PINN is
used [5]. SA-PINNs address these challenges by applying
fully trainable adaptation weight mask to each training
point, which allows the network to autonomously focus on
challenging regions of the solution. The multiplicative soft
attention mask is the core innovation of SA-PINNs and it
works by introducing adaptation weights A\, Ay, Ao that
are learned for the residual, boundary, and initial condition
terms, respectively. These weights are updated alongside the
neural network parameters during training through gradient
descent/ascent, allowing the model to focus more on areas
with larger error. This approach has shown to improve
both convergence rates and accuracy when compared to
baseline PINNGs [3]. For example, when applied to nonlinear
equations such as the Allen-Cahn equation, SA-PINNs have
demonstrated superior performance in terms of both training
efficiency and solution accuracy [3].

Mathematically, the loss function for SA-PINNs is de-
fined as follows:
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Where:

* L.(w, ) corresponds to the error caused by not satis-
fying the PDE, weighted by A,

o Ly(w, \p) is the error caused by not satisfying the
boundary conditions, weighted by A,

* Lo(w, A\g) represents the error caused by not satisfying
the initial condition, weighted by Ag.

The self-adaptation weights are vectors with dimensions
equal to the number of points in the training set for each of
the components:

* Residue points weights: A\, = (AL, ..., AN")

* Boundary points weights: A, = (A}, ..., /\{)Vb)

+ Initial points weights: Ao = (A}, ..., \J'©)
They are trainable parameters that adjust based on the gradi-
ent of the loss with respect to the respective component. The
loss is minimized with respect to the network weights w, and
maximized with respect to the adaptation weights \,., \; and
Ao forming this problem:
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The gradients with respect to the adaptation weights are com-
puted during each iteration of training, as detailed by the gra-
dient update rules:
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Where n* > 0 and p¥ > 0 are learning rates for network
weights and the adaptation weights, respectively. The
adaptation weights \,., A\, and A are updated using gradient
ascent to maximize the loss with respect to the adaptive
weight, while the neural network weights w are updated
using standard gradient descent. This approach dynamically
adjusts the loss components during training, leading to
improved convergence rates with fewer epochs compared to
traditional PINNs.

The adaptation weights are initialized either randomly
on a specified interval, or based on prior knowledge of the
problem. For example, if initial conditions are known to be
particularly difficult to fit, the weight Ay could be initialized
larger than the others.

In contrast to traditional PINNs, which use fixed weights
across the solution domain, SA-PINNs enable dynamic
focusing on harder-to-train regions, offering a flexible and
adaptive learning process [3]. The adaptive masks allow
SA-PINNs to handle more challenging problems with better
efficiency [3]. This has been demonstrated in various exper-
iments, such as those conducted by [3], where SA-PINNs
outperformed traditional PINNs in terms of accuracy and
convergence speed on stiff problems.

theoretical SA-PINNs

In addition to improvements,



have demonstrated practical utility in real-world scenarios.
[6] applied SA-PINNs in a real-world scenario to model
seismic wave propagation in complex topography. They
demonstrated the effectiveness of the adaptive approach,
showing improved accuracy and scalability in comparison to
traditional methods.

Despite the success of SA-PINNs in various applica-
tions, there is still a significant gap in understanding the
specific components that contribute to their improved per-
formance. Although the adaptive weighting mechanism
has been shown to enhance the training process [3], the
exact role of the individual loss components, such as the
violation of the PDE, the satisfaction of boundary conditions
as well as the satisfaction of starting conditions, remains
mostly unexplored. This is particularly relevant in real-world
scenarios where maximizing training efficiency is crucial for
practical applications of SA-PINNs.

The goal of this study is to investigate the role of adap-
tive weighting masks in SA-PINNs, with a question on how
these masks influence the accuracy of model, as well as
the time it takes to train. The main research question is:
Which loss components contribute most significantly to the
solution accuracy and how do the adaptive weights affect
this contribution? To find the answer to that question, this
study will systematically turn off the masks for different loss
components and evaluate their impact on the solution of the
Viscous Burgers equation, a well-known stiff nonlinear PDE
described as:
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By systematically examining the effects of these masks on
the performance of SA-PINNSs, this study will attempt to

identify key factors that could enhance the training efficiency
and overall accuracy.

Understanding the connection between the adaptive masks
and the loss components will provide deeper insights into the
mechanics of SA-PINNs and may lead to a discovery of a
more efficient and scalable training strategies. These insights
could be useful for both theoretical advancements in machine
learning and practical applications of SA-PINNS.

2 Methodology

This section details the experimental setup and methodology
used to analyze the performance of SA-PINNs in solving the
Viscous Burgers equation. The experiments are designed to
assess how adaptive weights influence accuracy and of the
model as well as training time efficiency. The network archi-
tecture is the same setup as [1] uses for the baseline PINN. It
has been done this way, so direct comparisons are possible, if
necessary. The SA-PINN hyperparameters and overall setup
is based on [3], since the main goal of this study is not to
optimize hyperparameters, a previously validated configura-
tion was chosen to ensure reliable results. Code used for this
research is a modified version of code from [3].

2.1 Neural Network Architecture

The neural network used in all experiments follows a feedfor-
ward structure with the following architecture:

¢ Input layer: 2 neurons corresponding to x and ¢ inputs

* Hidden layers: 8 fully connected layers each containing
20 neurons with the hyperbolic tangent (tanh) activation
function.

e Qutput layer: 1 neuron, representing the approximated
solution wu(z,t) without applying any activation func-
tion.

The hyperbolic tangent activation function (tanh) is used in
hidden layers because it can effectively capture nonlinear re-
lationships [7]. The output layer applies no activation func-
tion, making it a linear layer that outputs raw numerical val-
ues, corresponding to the solution of the equation we want to
predict. In the case of this study, it is the Viscous Burgers
equation.

2.2 Training process

Each model undergoes two stages of optimization first using
Adam [8] and then L-BFGS [9]:

e Adam optimizer: The model is trained for the specified
number of epochs using the Adam optimizer.

* L-BFGS Optimizer: The model is trained for an equal
number of epochs using the L-BFGS optimizer to fine
tune the network weights.

For example, in a scenario with 1000 epochs, the model is
trained with Adam for 1000 epochs followed by L-BFGS
for another 1000 epochs. The model is saved after the
completion of both stages. It is worth mentioning that
adaptive weights are only updated when training with Adam,
and they are held constant when training with L-BFGS, as
done in [3].

Both the network and adaptive weights are updated us-
ing a learning rate of 0.005, applied as described in equations
(3)-(6). The adaptive weights for all masks are initialized ran-
domly within the interval (0, 1) to ensure no prior knowledge
about the problem is introduced. This initialization approach
allows for a more generalized and unbiased analysis of the
adaptive weighting mechanisms.

2.3 Scenarios and Experimental Setup

To investigate the impact of adaptive weights on training, five
scenarios are evaluated for each epoch category (100, 1000,
and 10000 epochs). The scenarios are as follows:

* All Masks Off: Adaptive masks are disabled for all com-
ponents. This mimics the baseline PINN.

* All masks On: Adaptive masks are enabled for all com-
ponents. This is a regular SA-PINN implementation.

* Residual Mask On: The adaptive mask is enabled for
the PDE residual component, the remaining components
have their adaptive weightings disabled.

* Boundary Condition Mask On: Adaptive mask is en-
abled for the boundary component, the remaining com-
ponents have their adaptive weightings disabled.



¢ Initial Condition Mask On: Adaptive mask is enabled
for initial component, the remaining components have
their adaptive weightings disabled.

For each scenario, five independent models are trained to en-
sure robustness and reduce variability. Then L2-error and
time are averaged and reported. Standard deviations are re-
ported as well.

2.4 Data

* Initial Condition Points (Np): 100 points are sampled so
50 per boundary.

 Boundary Points (N},) 200 points are sampled.

* Collocation Points (V,-): 10000 points are sampled uni-
formly from the dataset.

While other combinations of numbers of points could be ex-
plored, this is the setup used by [3] and it was proven to be
effective. The points for initial and boundary conditions were
sampled randomly. Collocation points were sampled using
Latin Hypercube Sampling (LHS) [10] to ensure more uni-
form coverage of the input points. The data used for training
the models was taken from [1].

2.5 Evaluation Metrics

The performance of each scenario is evaluated based on:

e L2-Error: The L2 normal of the difference between the
predicted and exact solution. It is defined as follows:

\/Z \u T, t;)
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where u(x,t) is the trained approximation, U(z,?) is a
reference solution obtained on a detailed grid {x;,t;}
consisting of Ny points.
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* Time: The training duration is recorded in seconds after
each training session.

L2-error directly translates to the accuracy of the model,
while the time it took to train it allows measure what config-
urations are the fastest ones to train. These two benchmarks
might help in finding the optimal balance between accuracy
and time to train depending on specific needs.

2.6 Tools and Implementation

The experiments are implemented using Python, with Ten-
sorFlow 2.3. The exact code can be found on GitHub under
this link: https://github.com/hope-I-can-change-it/research-
project

3 Results

As described in the previous section, the experiments were
split into five different scenarios. In the first scenario, all
adaptive masks were turned off, mimicking the baseline
PINN. In the next three scenarios, adaptive masks were
turned on for different loss components one by one. In
the last scenario all masks were turned on simultaneously.

Figures (1)-(3) illustrate the average L2-error for each con-
figuration across 100, 1000, and 10000 epochs of training.
The standard deviations of the L2-errors are also included
in the graphs to provide insights into the consistency of the
models across different configurations and training durations.
Additionally, Figure (4) illustrates the corresponding average
training times for the 10000-epoch experiments, as the
differences for shorter runs were not significant.

It was observed that sometimes the model failed to
train entirely. This was characterized by the loss stopping
to decline or even starting to rise after a number of epochs,
for the rest of the training. This was observed in both Adam
and L-BFGS training phases. Since the problem appeared
to happen randomly and was not connected to enabling or
disabling the adaptive masks, the affected runs were repeated
to ensure that each scenario included five runs for calculating
the average results.

3.1 PDE Residual Mask Performance

Turning only the PDE residual mask showed mixed results
depending on the number of training epochs. For short train-
ing durations (100 epochs), enabling the PDE residual mask
led to slightly improved performance compared to the tra-
ditional PINN. The performance gain was very small, and
it could change if the average from more runs was gath-
ered. However, for longer training durations (1000 and 10000
epochs), this mask significantly degraded performance.

* 1000 epochs: The average L2-error was over 16 times
higher than the traditional PINN.

* 10000 epochs: The error remained high, approximately
6 times greater than the traditional PINN.

This suggests that focusing only on residual errors without
incorporating adaptive weights for boundary and initial con-
ditions is not only insufficient to achieve good performance,
but it also gives worse performance than just leaving all of
the masks turned off. The average training time for the PDE
residual mask configuration was recorded as 617.26 + 3.34
seconds, making it 304.54 seconds more than the baseline
PINN, indicating a significant increase.

3.2 Initial Conditions Mask Performance

While having only initial conditions mask on turned on when
training for 100 epochs yielded the worst performance from
all 100 epoch scenarios, for 1000 and 10000 epochs turning it
on always resulted in a better performance than the baseline
PINN.

* 1000 epochs: The model achieved approximately 2.5
times better performance compared to the baseline
PINN.

* 10000 epochs: The improvement, while smaller, still
outperformed the baseline. The improvement was very
small however and this result could change if the average
from more runs would be gathered.

These results highlight the effectiveness of the initial condi-
tions mask in ensuring stability and convergence, especially
for medium to long training periods. However, the training



time for this configuration was 392.194-29.90 seconds, which
is 79.47 seconds higher than the baseline PINN.

3.3 Boundary Conditions Mask Performance

Turning on the boundary conditions mask resulted in
marginal improvements, only noticeable during short train-
ing runs (100 epochs). The improvement was relatively small
compared to the initial conditions mask and could vary if av-
erage from more runs was collected.

* 100 epochs: Slightly better performance than the base-
line PINN.

* 1000 epochs: Slightly worse performance than the base-
line PINN.

* 10000 epochs: The model achieved approximately 2.5
times worse performance compared to the baseline
PINN.

The results show that turning on this mask alone for train-
ing is not worth it in most cases, although for very short
training periods it may result in better performance than the
baseline PINN. The training time for this configuration was
384.11 £ 12.32 seconds, so 79.47 seconds higher than the
baseline PINN.

3.4 Full SA-PINN Configuration

When all adaptive masks were enabled simultaneously, the
model consistently outperformed the baseline PINN across
all training durations. That aligns with findings in [3] and
clearly shows the positive impact adaptive masks have on
the training process. However, the training time increased
significantly to 635.94 £+ 9.42 seconds, making it 323.22
seconds higher than the baseline PINN.

Further analysis in the discussion section will explore the
trade-offs between accuracy and computational efficiency.

4 Responsible Research

This section discusses the ethical aspects and reproducibility
of the methods described in the paper. Responsible research
ensures that the results are not only scientifically valid but
also ethically sound and reproducible.

4.1 Ethical Aspects

The data used in this study is based on the Viscous Burgers
equation. This equation has been widely used in studies re-
lated to fluid dynamics and other physical processes. No per-
sonally identifiable information or sensitive data was included
in the dataset, and ethical considerations related to data pri-
vacy are not applicable.

4.2 Reproducibility

The code for training the models and analyzing the results
has been uploaded to https://github.com/hope-I-can-change-
it/research-project.  The repository contains a modified
version of the code from [3], with adaptations to suit the
specific needs of this study. Clear documentation has been
provided to ensure that others can easily reproduce the
experiments, including setup instructions, configuration
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Figure 1: Average L2-error when training for (top) 100, (middle)
1000, and (bottom) 10000 epochs.
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Figure 2: Average training time when training for 10000 epochs

details, and descriptions of the model parameters used.

However, challenges to reproducibility exist. The dataset
used in this study is based on the Viscous Burgers equation
and it is the same dataset used by [1], and while the code for
data preprocessing is available, the specific configurations
of the equation used for the experiments may not be easily
replicated without the exact setup provided in the repository.

Additionally, some parts of the experiments rely on
computational resources that may not be available to all
researchers. For example, the models were trained on
Intel i5-12600k processor, which may not be accessible to
everyone.

4.3 Conclusion

Efforts were made to ensure that the research is both responsi-
ble and reproducible. The code and methodology are publicly
available, and others are encouraged to replicate and build
upon this work.

5 Discussion

The results obtained from the experiments provide valuable
insights into the effectiveness of adaptive loss weighting
mechanisms in Physics-Informed Neural Networks (PINNs).
This section discusses key findings in comparison with ex-
isting literature and explores the trade-offs between accuracy
and computational cost.

5.1 Comparison with Existing Studies

The results from this study align with what has been found by
[3], who used a similar SA-PINN setup. Their recorded L2-
error after 10000 epochs of training was 4.08e-04+1.01e-04.,
which is slightly higher than the 2.66e-044-1.11e-04 obtained
in this study. A possible reason for this is that their implemen-
tation did not include the boundary condition mask, utilizing
only the PDE residual and initial conditions masks. They also
reported achieving the same accuracy with their setup in one
fifth of the epochs compared to the baseline PINN. While this
study did not track the exact number of epochs it takes to
reach a certain accuracy, it is important to note that although

SA-PINNs may require fewer epochs to converge, the train-
ing time is significantly longer. Figure 2 shows that the train-
ing time for the full SA-PINN configuration with all adaptive
masks enabled is more than twice that of the baseline PINN.
This highlights the trade-off between improved performance
and increased computational cost.

5.2 Performance Trade-offs

As mentioned in the section before, a notable observation
is the trade-off between accuracy and computational cost.
While the full SA-PINN configuration resulted in the lowest
L2-error across all training durations, it required more than
twice the training time compared to the baseline. This
finding suggests that, for real-world applications with limited
computational resources, using selective adaptive masks,
might be a more viable option.

The initial conditions mask consistently improved model
accuracy with a moderate increase in training time. This
supports the hypothesis that accurate initial condition
enforcement plays a critical role in PINN convergence
and stability, making it a promising choice for improving
performance without increasing the training time as much as
full SA-PINN implementation.

5.3 Contribution of Adaptive Components

The analysis of individual adaptive masks showed how
each mask contributes to the overall accuracy. The initial
conditions mask provided the most consistent improvements,
while the boundary conditions mask had a very small positive
effect in shorter runs, and degraded performance over long
ones. The PDE residual mask, when used alone, resulted in
significant performance degradation over prolonged training,
suggesting potential issues with overemphasizing residuals
without balancing other loss components. However, it is
worth noting that the PDE residual mask is crucial for the full
SA-PINN implementation. Although the boundary and initial
condition masks yield better results individually, they do not
surpass the performance of the full SA-PINN configuration.
Moreover, when an additional scenario was run, where
initial and boundary condition masks were turned on, and
the PDE residual was turned off, over 5 runs, it resulted in
an average error of 1.11e-03 + 8.18e-04. This error is still
higher than the full SA-PINN implementation with all 3
masks turned on. This indicates that even though the PDE
residual mask may substantially decrease performance when
used alone, it is crucial for the full SA-PINN implementation.

The interdependence of different adaptive masks can
also be seen when looking at the weight distributions after
the training on Figure 3. The top image illustrates the
scenario where only the PDE residual loss mask was enabled,
while the bottom image represents the full SA-PINN imple-
mentation with all masks turned on. A comparison of these
two figures reveals that the full SA-PINN implementation
produces a more structured and meaningful weight distri-
bution, closely resembling the original function depicted in
Figure 4. Notably, larger weights are concentrated in regions
of deep blue and yellow areas of the solution, indicating that
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Figure 3: Adaptive weights after training with only PDE residual
mask on (top) and full SA-PINN implementation (bottom) for 10000
epochs. Brighter colored points correspond to larger weights.

these are the areas where the model struggled to achieve
accurate predictions. A visible line can also be observed at
x = 0, that can also be seen on the reference solution graph.
It is also worth noting that the full implementation graph
was also included in [3] and it is a bit different than the one
obtained by this study. In their version, the line at z = 0 is
more visible, and the weights are not as high in the yellow
and blue regions.

6 Conclusions and Future Work

This study has explored the impact of adaptive weighting
in Self-Adaptive Physics-Informed Neural Networks (SA-
PINNGs) for solving stiff partial differential equations (PDEs),
with a focus on the individual roles of residual, boundary,
and initial condition components and adaptive masks applied
to them. The results align with the findings of [3], confirming
that SA-PINNs benefit from the self-adaptive weights and
demonstrate increased performance when tested on chal-
lenging problems like the Viscous Burgers Equation. The
experiments conducted in this study showed that enabling
adaptive weights can have different results depending on the
component they are enabled for. Enabling adaptive weights
for the boundary condition component improved accuracy
during the early stages of training (100 epochs) but led to
a decline in later stages (1000, 10000 epochs). Enabling
adaptive weights for the initial condition component resulted
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Figure 4: High-fidelity solution for Viscous Burgers equation.

in slightly worse performance in the early stages of training,
but better accuracy in the later stages. Enabling adaptive
weights for the PDE residual component led to worse model
performance across all tested scenarios. However, the full
SA-PINN implementation, with all adaptive masks enabled,
outperformed the traditional PINN in terms of accuracy
across all training epochs.

It has been found that the adaptive masks have a major
impact on the time it takes the model to train. Full SA-PINN
implementation training takes two times as much time as
the baseline PINN. While enabling singular masks does not
have such a big impact, the difference is still noticeable and
should be considered.

Future research could explore whether these results are
replicable for other PDEs, such as the Allen-Cahn or
Helmholtz equations, to assess the generalizability of the
findings. It may also provide further insights into how these
masks interact and contribute to optimizing model training
times. This study shows the importance of understanding
how each term in the loss function interacts with the adaptive
weighting mechanism, and how the masks interact with each
other.
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