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Summary

Around the world, areas with unique ecosystems are prone to harmful factors deteriorating their environ-
ment. Management of these areas are responsible for the protection of the �ora and fauna. To ful�ll this
task as best as possible they need knowledge on the ecological status of these areas. With this knowledge
decisions can be made for future problems regarding the area. To do this, they need easily accessible
information on indicators describing the conditions of these areas. Obtaining this information can be
done using numerical models. The use of models however will introduce uncertainty in the information,
which should be taken into account when using model output for the making of decisions. When model
output is known together with its uncertainty, it can be e�ciently visualized in a toolbox to make it
commonly available for users. In this way the use of uncertainty can be incorporated in management
purposes.

In this research, an uncertainty analysis is conducted and a visualization of model output together with
uncertainty is made for the Wadden Sea area. This area is regarded as a Protected Area (PA) by the
ECOPOTENTIAL project. In this area eutrophication and consequently algal bloom causes deterioration
of the water quality. Due to Suspended Particulate Matter (SPM) in the water column, the incoming light
is reduced, decreasing the amount of algal bloom. With a Delft3D-WAQ model, using the GEM/BLOOM
module, the chlorophyll-a concentration can be modelled, which is an indicator of the amount of algae
in the water column. The model Delft3D-WAQ Sediments is used to calculate the SPM concentrations,
which is used as a forcing for the GEM/BLOOM model. Therefore, they are a main driving force and
uncertainty source in the setup for this project. The main research question is formulated as: How can
uncertainty from a SPM model as a driving force for a GEM/BLOOM model be identi�ed, quanti�ed
and visualized to help decision makers?

The method to identify, quantify and visualize the uncertainty is described shortly. With the use of a
literature review the uncertainty sources within the input �les are identi�ed. To quantify the uncertainty,
�rst a sensitivity analysis and consequently an uncertainty analysis is used. This sensitivity analysis
is done by varying the values of certain input �les and assessing the variability it creates in the model
output, resulting in the most in�uential input. The uncertainty analysis is used to obtain the magnitude
of the uncertainty coming from this most in�uential input. This analysis is a Monte Carlo simulation,
where di�erent input is assessed by giving these a Probability Density Function (PDF) simulating the
uncertainty in the input. From these distributions, samples are drawn to create di�erent experiments
to assess the in�uence of the uncertainty. Using a Latin Hypercube Sampling with Dependence instead
of a random sampling, the amount of model runs is reduced from thousands to 188. The dependencies
between the input parameters are taken into account. Afterwards, the output is estimated with a PDF
from which the PDF characteristics mode and spreading are used to describe the SPM concentration and
its uncertainty for each segment in time and space. A toolbox is developed for a 3D visualization of the
model output and its uncertainty. A cubic shaped marker is placed in this environment for each segment
by its x-, y- and z-coordinates. The SPM concentrations are visualized by coloring the markers and the
uncertainty is incorporated using a white hue.

The parameters in the erosion and deposition �uxes in the model equations are identi�ed to be most
in�uential and are therefore assessed on uncertainty. The SPM results are validated by a comparison
against measurement data from Rijkswaterstaat and data used in earlier studies for this model. Concluded
is that the model gives a good approximation of the SPM concentrations. Some areas indicate a very high
uncertainty, mainly where the SPM values are unrealistically high. Overall, the values are within the
same order of magnitude as the validation data. The uncertainty in the model output is mainly present
in critical areas, where the in�uence of di�erent factors is signi�cant, such as the e�ect of a river out�ow,
strati�cation and tidal in�uence. Such as the part of the Wadden Sea area near the discharge simulating
the Lake IJssel. This indicates that either the bed load module of the model or the hydrodynamic input is
not completely optimized yet. For the quanti�cation of the uncertainty a log-normal distribution is used
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Summary iii

to estimate the output values at every location and time step. The characteristics of this distribution,
the mode and the spreading, are used to quantify the concentrations of SPM and the uncertainty into
values that can be used in the visualization.

To answer the research question: the uncertainties are identi�ed with a literature review resulting in the
sources of uncertainty, quanti�ed with the uncertainty analysis into a mode and a spreading and visualized
in a toolbox with a 3D environment using a marker for each segment and using color for displaying the
concentrations and a white hue to visualize the uncertainty. This toolbox than helps decision makers to
easily access the data and according uncertainty. The SPM model has some high uncertainties, but is a
good estimation to be used as a driving force for the GEM/BLOOM model.
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1 | Introduction

1.1 Background information

Earth exists out of many di�erent natural and ecologically valuable areas, with each their own unique
consistency and inhabitants and due to their uniqueness should be protected against threats. A well
known example of such an ecosystem are the coral reefs [Society MarineBio Conservation, 2015], which
can be found amongst other near Australia. Not only do coral reefs have a tremendous biodiversity,
their beauty attracts thousands of tourists. Coral reefs are extremely sensitive to changes in light,
temperature, over�shing, damaging �shing practices, pollution, and excess sediment from development
and erosion [Society MarineBio Conservation, 2015]. Without the help of human management for these
areas, these ecosystems could be destroyed. Another example of such an area is the Wadden Sea area
located in the North sea [Marencic, 2009], famous for the habitat of seals and birds. Here the ecosystem
is heavily in�uenced by the algal bloom. In order to oppose the problems in these areas, regulations
are set up by people monitoring and managing these areas. These regulations are for present and future
state of the area, where decision making is needed to preserve the present state. Information regarding
the indicators for status and the threats of the ecosystem is needed for knowledge-based decision making.
A generic decision making toolbox that incorporates a quanti�cation of ecological indicators and the
uncertainty could therefore be very useful to be applied.

One project that has the objective to improve and monitor ecosystems in di�erent Protected Areas
(PAs) all over the world, is the ECOPOTENTIAL project [Ecopotential, 2015a]. One of the main
goals of ECOPOTENTIAL is to create a framework for ecosystem studies and management of PAs by
integrating Earth Observations (EO) and Remote Sensing (RS) into the process of decision making.
EO is information about the Earth's physical, chemical and biological systems [El Serafy, 2013]. These
observations combined with numerical model output can predictions the ecological status of PAs. These
predictions are very useful for monitoring and governing the future state and help in making decisions
within a PA. A knowledge-based decision toolbox is needed to support the policy makers in their processes,
where they do not have the means to e�ciently diagnose and interpret model output or other data
regarding PAs.

Figure 1.1: The Wadden Sea area, protected area in blue [Waddenzee.nl, 2016].
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Chapter 1. Introduction 3

In this study a method is established to create such a toolbox by means of a study case, the turbidity
in the Wadden Sea area. This area is one of the PAs investigated in the ECOPOTENTIAL project
and is located in the south-eastern part of the North Sea, see Figure 1.1. The Wadden Sea ecosystem
is characterized by tidal �ats and a barrier island system with extensive salt marshes; its coastal zone
stretches from the Netherlands to Denmark. It is the largest unbroken system of intertidal sand and mud
�ats in the world [Marencic, 2009]. The Wadden Sea has both the UNESCO World Heritage and Natura
2000 status. This transitional environment between land and sea is characterized by the in�uence of
the tide, �uctuations in salinity, higher temperatures during summer, and occasional ice coverage during
winter. Such a diversity creates a wide number of ecological niches. These niches are inhabited by a large
variety of species which are adapted to the �uctuating environmental conditions. The area provides a
natural habitat for animals such as seals and a various number of birds. The water quality in this area is
in�uenced by pollution such as mainland runo� of pesticides, herbicides and agricultural nutrients.

One of the main problems in the Wadden sea area

Figure 1.2: Example of eutrophication
www.quora.nl.

is eutrophication. This is the phenomenon where
excessive amounts of nutrients are present in the
water, consequently causing a growth in algal bloom.
See Figure 1.2. Eutrophication and algal blooms
are serious problems occurring in the Wadden Sea
which deteriorate the water quality in many as-
pects, like oxygen depletion, odor and produc-
tion of foam, and toxins. Most types of algae are
not harmful themselves, however they can still a
harmful e�ect on the ecology in the area. The ex-
cessive amount of algae in the water column will
block the incoming sunlight, which therefore can-
not penetrate into the water and thus preventing
light from reaching the algae deeper in the water.
When the algae eventually die and decay, the de-
creased oxygen level in the water can cause mortality among the marine animals living in the area [Li
et al., 2013]. Chlorophyll-a is a good indicator of the amount of primary production (algal bloom) in
the water column. Turbidity is one of the main sources in�uencing the phytoplankton growth, due to
the blockage of light into the water column [Niu et al., 2015] and is therefore next to chlorophyll-a as
important to monitor.

Suspended Particulate Matter (SPM) is the indicator for turbidity and because of the major impact
on the chlorophyll-a concentrations, it is important to have a good understanding of this factor. SPM
concentrations are in general low in the o�shore parts of the North Sea. SPM varies strongly on a short
time scale due to tidal action and also on a seasonal scale [Blaas et al., 2012]. SPM is composed of
inorganic particles and material of organic origin that is suspended in the water column. Due to the
SPM in the water column the light under water is in�uenced in such a way that it has an impact on
the growth of phytoplankton [El Serafy et al., 2011]. Phytoplankton needs enough light and nutrients to
grow, therefore the more SPM in the water column the less phytoplankton growth there is. The particles
in the SPM can also be a source of nutrients for the phytoplankton.

Figure 1.3: Model structure, with the available models together with the years of which sets of input
�les are available.
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The water quality in the Wadden Sea needs to be monitored and modeled to get a good impression on
the current status and the future state of the area. The water quality is partly determined by the amount
of phytoplankton in the water, in other words the amount of algae. Numerical models are available for
the modeling of the water quality in the Wadden Sea area at Deltares. This modeling is done using a
combination of three models, see Figure 1.3. Using the Generic Ecological Model (GEM) [Deltares, 2014a]
and the phytoplankton module (BLOOM) of this model [Blauw et al., 2009] to calculate the chlorophyll-a
concentration in the water column, which is an indicator of the amount of phytoplankton in the water
column. The chlorophyll-a concentrations are strongly in�uenced by forcings, such as the hydrodynamics,
which in the GEM/BLOOM model comes from a Delft3D-FLOW model. Another forcing is the SPM
in the water column, indicating the turbidity and is calculated by another model, also using Delft3D-
WAQ.These models can give a good estimation of the chlorophyll-a concentrations, however, uncertainties
will always be present in numerical models. The uncertainties in the GEM/BLOOM model have been
topics for previous studies [Jiayuan, 2015]. The SPM model is already calibrated [El Serafy et al., 2013],
however in this study the model setup has changed and a numerical model is introduced for the input of
SPM. This newly introduced model should be assessed to see if the output gives a good estimation of the
SPM concentrations, and what the uncertainty of these values are.

To develop a toolbox for making knowledge-based decisions, not only model output should be taken into
account, but also information on the uncertainty in the model output should be given. This information
about the uncertainty needs to be quanti�ed �rst, using an uncertainty analysis. In this study the main
focus lies on two aspects, assessing the uncertainty in the model structure coming from the SPM model
and the visualization of model output together with uncertainties.

1.2 Problem de�nition

A problem, concerning the model setup is that at the moment the GEM/BLOOM model uses an SPM
forcing based on satellite data. This data, obtained using the MERIS satellite data (a description on
how this is done can be found in Eleveld et al. [2007]) is not available anymore since 2011, therefore a
new method for implementing the SPM is needed. The latest information on the SPM from di�erent
satellite information could be used, such as the Sentinel missions 
However for a more accurate estimation
of the SPM, especially in the deeper parts of the water column, this could also be implemented by using
a di�erent Delft3D-WAQ model for the calculation of the SPM. Numerical models however are prone
to give uncertainty, which needs to be assessed. Therefore an uncertainty analysis of the SPM model
is needed. The uncertainty in a numerical model has many di�erent origins, although in this study the
focus lies on input uncertainty for the SPM model.

The problem posed by the ECOPOTENTIAL project is that a toolbox is needed to support the decision
makers in their processes, by providing them with information about the area and the uncertainty of this
information. Thus visualizing these two aspects together is needed to provide decision makers with the
information they need for knowledge-based decisions regarding PAs. This toolbox should be a generic tool
in which di�erent model output can be displayed. Where in this study the turbidity in the Wadden Sea
is addressed, the toolbox can also be used to combine with other studies, such as the study by Meszaros
[2016] on the ensemble forecast of the chlorophyll-a concentrations in the Wadden Sea.

1.3 Project goal

For this project the goal is to construct a toolbox in which data in a 3D environment can be visualized
together with the uncertainty of this data. The toolbox should be a product that can be universally
applied in which di�erent data can be visualized. For testing the toolbox one study case is used. In
the Wadden Sea the water quality needs to be monitored and this is done by a water quality model
(GEM/BLOOM) that models the chlorophyll-a concentrations. SPM is one of the main parameters
in�uencing this model and is obtained by a numerical model which is prone to uncertainties. Therefore
the study case in this research is the data of the SPM model and its uncertainty coming from the model
input to see if this model can be used as an alternative input for the GEM/BLOOM model. Thereafter
it is tested if this uncertainty analysis can be used as a test case for the developed toolbox. This goal is
formulated into the following research question:

How can uncertainty from a SPM model as a driving force for a GEM/BLOOM model be identi�ed,
quanti�ed and visualized to help decision makers?
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Subquestions are formed from the steps to be taken to answer the main question. Firstly the framework
in which the toolbox is generated should be described, to get a clear overview what is needed from the
toolbox. The second step is looking at the model setup available from Deltares, understanding the models,
the processes, the input and most important investigate what the sources of uncertainty are within these
models. In the third step, when these uncertainties are identi�ed the uncertainties need to be assessed,
using a uncertainty analysis and to quantify them into a value that can be used in the toolbox. The
fourth step is to use the model output and the uncertainties from the previous step to combine these into
a visualization. And the last step is to make the toolbox complete and to describe the use of it to users
of the toolbox. From this, subquestions are as follows:

1. What information is useful to decision makers?
2. What are the important uncertainties within the regarded model structure and how can they be

identi�ed?
3. How can the uncertainties be quanti�ed into values that can be used in the toolbox?
4. How can the model output together with the quanti�ed uncertainties be visualized in a generic

toolbox?
5. How can the toolbox be used?

1.4 Thesis outline

In Chapter 2 di�erent literature is consulted to �nd useful background information. This chapter
is divided into �ve sections, in which information from literature is provided on the earlier uses of
GEM/BLOOM, the importance of SPM, why a model is needed for SPM, uncertainty analysis methods
and the methods on how to visualize uncertainty.

In Chapter 3 per subquestion the di�erent methods that are used to �nding the answer of the subquestion
are described. The methods are only described in general, these methods are applied on the case study
in the next �ve chapters.

In Chapter 4 a distinction between what the users of the toolbox, the decision makers, want from the
visualization on the one hand and on the other hand what information about this particular PA is
important.

In Chapter 5 an overview on general uncertainty in numerical models is given and per model used in
this project an overview is given with their processes, input and general uncertainties. Identi�ed are the
input �les that give uncertainty to the SPM model.

In Chapter 6 these identi�ed sources of uncertainty are analyzed. With a sensitivity analysis the most
in�uential input �les are identi�ed. From this result the uncertainty analysis is conducted.

In Chapter 7 the results are then assessed to get a quanti�cation that is usable for the visualization. This
chapter focuses on the Python script used to make a toolbox in which a 3D environment is shown of the
model results, together with the uncertainty.

In Chapter 8 this toolbox is further elaborated and a description is given on how to use and interpret the
toolbox and what additional information should be taken into account to use this tool in decision making
processes.

In Chapter 9 the methods used, results and �ndings are discussed. Points of interest, �ndings and other
observations to be taken into account in follow-up studies are presented here.

In Chapter 10 from the previous chapters and research a conclusion is drawn and the items that were
not taken into account in this study are described.



2 | Literature review

In this chapter the literature consulted and useful background information for this project is described.
The chapter is divided in di�erent sections, answering questions asked to formulate the background
information for this project:

1. Why does SPM need to be modeled numerically?
2. What are studies of the GEM/BLOOM model used in this project and what can we learn from

earlier studies
3. What are the methods used to assess uncertainty?
4. What are existing methods of visualizing model output together with the associated uncertainty?

2.1 Modelling SPM concentrations

Why does SPM need to be modeled numerically?

SPM has been monitored with remote sensing techniques, which have limitations when sampling a het-
erogeneous system. In situ samples are mostly sparse in space and time. The optical remote sensing
only measures the surface layer, whereas a large portion of the SPM is found near the sea bed. In these
instances, three-dimensional, process based modeling can provide complementary information about the
coastal transport system (Baumert et al. [2000], Delhez et al. [2004], El Serafy et al. [2011] ). A Delft3D-
WAQ model for calculating SPM in the considered area is already developed in previous research [El
Serafy et al., 2013]. In which a calibration was made for the model and a sensitivity analysis is con-
ducted, exploring the 71 parameters in the SPM model. From this study 10 parameters were identi�ed
to bring the most uncertainty into the model. Still this model gives a good estimation of the SPM in the
water column in the North Sea.

The SPM concentrations deteriorate the under water light, which has an in�uence on the phytoplankton.
A numerical model calculation for SPM can help by providing better and more complementary indications
of SPM in the water column, therefore reducing the uncertainty for the GEM/BLOOM model.

2.2 Previous studies on GEM/BLOOM

What are studies of the GEM/BLOOM model used in this project and what can we learn from earlier
studies?

The GEM/BLOOM model is a module of Delft3D-WAQ and has been calibrated, validated and used
in previous studies, which are described in this section. The GEM is regularly applied to assess the
ecological quality of Dutch coastal waters and the southern North Sea, the potential e�ects of e.g. new
coastal infrastructure projects and new national and international policies [Los, 2008].

The model has been applied and validated in several projects dealing with estuarine and coastal water
systems [Blauw et al., 2009]. An example is the case study of the North Sea, which is a coastal area
with relatively shallow waters, in which substantial river discharges result in large �uctuations in salinity,
SPM concentrations, nutrient concentrations and algal biomass. Di�erent studies applied GEM on this
area, for example in [Los, 2008] where a 3-dimensional GEM/BLOOM model was applied and validated
for the (southern) North Sea.

In Jiayuan [2015] a study was done to assess uncertainty for ecological risk mapping, in which the same
GEM/BLOOM model for the Wadden Sea was used. This study was part of the ECOSTRESS project,

6



Chapter 2. Literature review 7

in which the focus lies on better-integrated strategies by improving the risk prevention and disaster
management cycle of the coastal zones [Ecostress, 2013]. Jiayuan's thesis describes areas that have
the most risk of having large amounts of nutrients and algae bloom occurrences. These risk maps are
important to make precautions, relocate �shery resources and interfere recreation activities. The risk is
de�ned by calculating the probability of breaching a certain threshold of clorophyll-a concentrations in
the North Sea. Also an uncertainty analysis was conducted using a Monte Carlo sampling and looking
into the water quality input parameters. In total there are 422 parameters in the model; of course it is
not feasible to investigate them all. In previous research done by Salacinska et al. [2010], a sensitivity
analysis was conducted on 71 of these parameters to determine those having the most in�uence on the
output concentrations. These were used by [Jiayuan, 2015] in her uncertainty analysis. These parameters
were the Speci�c Extinction of Inorganic Suspended Matter (ExtV1IM1), the maximum Growth Rate of
Diatoms type E (PPMaxMDI_E), the de-nitri�cation rate (RcDenWat) and the burial rate (VBurDMS1).
The uncertainty was represented with con�dence bounds around the 90% con�dence interval. This thesis
concluded that the inlets and coasts regions of the North Sea are the areas that are most at risk of the
chlorophyll-a concentration to exceed certain thresholds. The results are shown in Figure 2.1

Figure 2.1: Risk maps for chlorophyll-a concentration with a 100 simulations Monte Carlo and a
threshold of 7 mg/l [Jiayuan, 2015]. Left: Entire Southern North sea. Right: Zoomed in on the Dutch

coast and Wadden Sea area.

Concluded from these literature reviews is that the GEM/BLOOM model has proven to give a good
estimation of the chlorophyll-a concentrations in the North Sea and the Wadden Sea area. Di�erent
studies for improving the model has been conducted, which increases the accuracy of the model output.
Other studies have been conducted to analyze uncertainties in the model. However, it becomes clear that
additional research should be performed for looking into the uncertainty caused by the SPM forcing when
this forcing is modeled with model output instead of satellite data or a function describing this forcing
in the model.

2.3 Assessing uncertainty

What are methods used to assess uncertainty?

For the assessment of uncertainty, literature was consulted on the di�erent ways to make such an un-
certainty analysis and on the implementation of di�erent models. First of all the understanding on why
uncertainty is needed for decision making was investigated. According to Uusitalo et al. [2015] for decision
support models to be useful, the output data should also contain information about the uncertainties
related to this output, as the certainty of the desired outcome may be a central criterion on the selec-
tion of the management policy. All models are prone to errors coming from di�erent sources within the
model. This project looks into the uncertainty in a GEM/BLOOM model, therefore this section focuses
on methods to explore these uncertainties.

Li et al. [2013] mentioned four methods for assessing uncertainty: the probability theory method, Monte
Carlo analysis, Bayesian method and Generalized Likelihood Uncertainty Estimation (GLUE). These
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methods are described below in more detail together with their applicability for di�erent models.

Probability theory method - employs probability theory of moments of linear combinations of random
variables to �nd the statistical means and variances of randomly distributed functions. This is ap-
plicable for simple linear models, and therefore not feasible for nonlinear systems as GEM/BLOOM.

Monte Carlo analysis - computes output statistics by computing a large number of model simulations,
using randomly sampled variables for the input, to comply with probability density functions. This
method is generally applicable and is the easiest method for uncertainty analysis [Uusitalo et al.,
2015]. The output of all the simulations together is also a probability distribution, which gives
statistical information as the mean, the variance, etc. Drawbacks are that thousands of simulations
are needed; this sampling technique can result in the clustering of parameter values, as the drawing
of samples is done randomly and without correspondence with previous draws [Loucks et al., 2005].

Bayesian method - the key step in this method is to �nd the prior probability distributions of the model
parameters that needs to be investigated. This method assesses and quanti�es the uncertainty by
calculating probabilistic predictions. It is mainly used on predictive models, in which the parameters
can be calibrated in the same time as the uncertainty can be calculated [Li et al., 2013].

GLUE method - is based on the concept of equi�nality. This means that di�erent sets of input pa-
rameters may result in equally good and acceptable model outputs for a chosen model [Li et al.,
2013]. In other words, the parameters from which is randomly chosen are uniformly distributed.
This method searches for a set of input parameters that strives to �nd reliable simulations, rather
than looking for the optimal output. Unreasonable combinations of input variables are rejected,
while the reasonable and realistic combinations are assigned a posterior probability based upon a
likelihood measure that may re�ect several dimensions and characteristics of model performance
[Loucks et al., 2005].

For the assessment of the uncertainty many model runs need to be performed, in which the input pa-
rameters to be assessed are changed for each run. To reduce the computational power needed for these
simulations, di�erent sampling methods can be used to reduce to number of model runs. A sampling
technique can be applied to draw random values from the given distribution of the input parameters. The
Monte Carlo is the most simple sampling and uses random draws from distributions. Another method is
the strati�ed sampling in which a more balanced coverage of the range of input parameters is achieved.
This method divides the distribution in di�erent layers and from these layers the same number of param-
eters are drawn. An example of such a method is the Latin Hypercube Sampling (LHS) [McKay, 1992].
This sampling di�ers from the Monte Carlo sampling by the number of iterations that is needed to gain
a more or less reliable output. LHS forces drawn samples to correspond with the input distribution. The
probability distributions of the input parameters are divided into sections of equal probability. After this
it draws one observation randomly from each section. In Figure 2.2 an example of a LHS sampling on a
probability function is shown and the way the function is divided into di�erent sections.

Figure 2.2: LHS example, where the CDF (red) is divided into equally spaced intervals (horizontal blue
lines) and a single random sample drawn within each interval (green dashed line), corresponding to a

value within the region of the probability function (vertical green dashed line).
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In the article of Li et al. [2013], the GLUE method is used together with a LHS to analyze the uncertainties
within a GEM/BLOOM model. This ecological model describes such complex processes that a large
number of intercorrelated parameters are present. The con�dence interval of this uncertainty analysis was
obtained by calculating the cumulative distribution functions of model outputs based on the normalized
likelihood. The result from this estimation is that the 90% con�dence interval that they used on the
simulated results failed to enclose the peaks of the observed values in 2009 and 2011. This was due to the
inherent uncertainties from inputs, boundaries and the model structure. Also the observed values used
for the comparison were space averaged through arithmetic mean other than weighted mean, which could
explain any discrepancies. These monthly observation came from four monitoring sites in the Meiliang
Bay, including river discharges, water levels, irradiance, temperature, concentrations of ammonia, nitrate,
nitrite, phosphate, and biomass concentration of blue- and green algae, and diatom.

In conclusion; for the SPM model it is interesting to use a LHS method together with a method that
incorporates the dependencies between input parameters. When including this dependence it reduces the
post-processing and increases the e�ciency by only generating realistic input combinations. The forcing
input is varied and the model is run several times to create the statistical output needed to assess the
uncertainty. It should be stated that for assessing the rest of the GEM/BLOOM model, concerning the
input parameters, a di�erent approach can be more interesting, such as the GLUE method described
above, in which the correlation between the parameters is taken into account, however this falls outside
the scope of this project.

2.4 Visualizing uncertainty

What are existing methods of visualizing model output together with the oncoming uncertainty?

The visualization will be a combination of model output and the oncoming uncertainty. What the most
e�cient method is to visualize this combination was the research in a previous thesis [Vause, 2013]. In
this thesis di�erent methods are used to display the water level during a �ood in an area, along with the
uncertainty of that water level. The tested methods in that research were using color hue, color value,
color saturation, shape, size, orientation, texture, transparency and clarity. A survey among the English
population was conducted to see what kind of method is best to use for such a visualization. It was
concluded that the use of a multi-hue color spectrum is most clear to use in a visualization.

Described in Baart [2013], the way of visualizing values with their uncertainties is described. However
here the visualization is based on a one dimensional graph, and not on a two dimensional data. This
could be useful for visualizing certain time series on strategic points on the grid. Therefore this study is
also taken into account in this chapter. The visualization could be based on di�erent styles, namely: size,
color, blur, transparency, jitter, scribble, intervals, and bars. It is shown that the methods of visualizing
the uncertainty are similar to the methods used by Vause [2013]. This particular study was on the
con�dence in coastal forecasts, in which the variance had to be visualized.

From Pfa�elmoser and Westermann [2013] it can be concluded that the normal way to visualize the
uncertainty is to visualize by means of color and opacity. However it is also stated that it is di�cult to
use such methods, because you cannot make clear in what position and structure the speci�c features in
the data are a�ected by the uncertainties.

In Figure 2.3 di�erent methods of visualizing the uncertainty are shown. These methods are selected
from the literature described above as the methods that might be usable in a data visualization. These
di�erent methods could be applied in this study to visualize the uncertainty within the toolbox.
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Figure 2.3: Di�erent methods to visualize uncertainty, using characteristics of an object to indicate the
amount of uncertainty.



3 | Methodology

In this chapter the methods for answering the subquestions and consequently the main research question
are described. This chapter is divided into �ve sections according to the subquestions stated in the
introduction. The �rst section is about the framework in which the toolbox is created and selection of
models to be used. The second about the identifying of the uncertainties in the model structure. In the
third section the identi�ed uncertainties will undergo an analysis to quantify the uncertainties. After that
the method for the visualization of the uncertainties in the toolbox is described. In the last section a user
manual is presented that can help the users of the toolbox. The subquestions are listed below.

1. What information is useful to decision makers?
2. What are the important uncertainties within the regarded model structure and how can they be

identi�ed?
3. How can the uncertainties be quanti�ed into values that can be used in the toolbox?
4. How can the model output together with the quanti�ed uncertainties be visualized in a toolbox?
5. How can the toolbox be used?

3.1 Framework for the knowledge-based decision toolbox

One of the two objectives of this research is to provide a toolbox, that will be used to support policy
makers and managers by making knowledge-based decisions for PAs. For this project the focus will lie on
how to visualize the uncertainty together with information from a model, which will be the base of the
eventual toolbox. A toolbox needs to give meaningful and simpli�ed information through which these
stakeholders can utilize the data and understand the uncertainties within. This visualization will be made
in such a way that it can be used in general by all kinds of models with the associated uncertainty.

To �nd the answer to the �rst subquestion, information needs to be gained from di�erent sources (eg.
websites, papers) about who the users of the toolbox are and what information about the PA should be
represented. First of all one should understand who the decision makers are, for example by research on
the ECOPOTENTIAL project website [Ecopotential, 2015a] describes the managers and policy makers
of this area. This information is useful to understand the decision makers' needs. On the other hand it
is important to understand what information is critical for the Wadden Sea to understand its behavior.
Using information about the Wadden Sea, such as the Quality Status Report 2009 [Marencic, 2009] this
can be assessed.

3.2 Identifying uncertainties

It is important to have a good overview on the models used and what their general uncertainties, in order
to identify the most in�uential input. All models contain uncertainties, stemming from di�erent sources.
Within the scope of this project the uncertainty investigated comes from the input parameters of the
SPM model.

To �nd the answer to this subquestion, research will be done on the background, the setup, input and
uncertainties of the models, using literature and calibration reports from previous studies in which these
models were used. The in- and output will be assessed and the sources of the uncertainties per model will
be listed. Using literature and previous studies also gives insight on the already determined uncertainties
and the ones that are yet to be taken into account, narrowing done the input to be assessed.

11



Chapter 3. Methodology 12

3.3 Quantifying uncertainties

New uncertainties introduced by using a numerical model for the SPM concentrations needs to be identi-
�ed. Therefore the uncertainties identi�ed in this SPM model, coming from the input �les, are taken into
account. First a sensitivity analysis is done on the input �les that are identi�ed to contain uncertainty.
The most in�uential input �le will consequently undergo an uncertainty analysis. The steps for answering
this subquestion are shown in Figure 3.1 and are further elaborated in the section below.

Figure 3.1: Flowchart describing the methodology for conducting the uncertainty analysis.

Sensitivity analysis
Not all of the input �les can be assessed within this project as not all of them have a signi�cant in�uence
on the output and it would take up too much computational time. With a sensitivity analysis a selection is
made by identifying the most in�uential input �le. Di�erent experiments are performed for the sensitivity
considering a single input �le. The sensitivity analysis is done in di�erent experiments. In each experiment
one input �le is considered. The input �les are available from the year 2003 to 2011 (each year has a
set of �les, in total there are 9 sets). In one experiment the model will run 9 times, by changing the
speci�c input �le for each year available, and keeping the rest of the input constant. In that way, a
rapid assessment method of checking which input has the most in�uence is made. The actual uncertainty
analysis will be focused on the most important input.

Uncertainty in the input
To simulate the uncertainty in the input, a distribution needs to be given to all the input parameters.
This is dependent on the base values and the ranges in between which the actual parameter values lie.
Finding these distributions is done using previous studies [El Serafy et al., 2013].

Sampling technique
The in�uence of the uncertainty of the input on model results is investigated by running the model
multiple times, using a certain sampling technique. There are many methods to use in an uncertainty
analysis, however some disadvantages will limit the amount of methods to be used. In this study a
combination of methods is used, which are described below.

First it is generally explained how to obtain multivariate function from a normally distributed parameters
and how to get the input for di�erent model runs. It is shown that the steps and the links between the
steps can be used the other way around, which is used to include the dependencies (using a Copula).
Further on the dependencies and the reducing of the model runs is included in the method.

A Probability Density Function (PDF, notated with f(x)) describes the relative likelihood of a value
to represent a parameter. This likelihood is on the interval [0, 1], representing the change of being the
representation of the actual value. This distribution is used in this study to describe the parameters that
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have an uncertainty in a range around a base value. A normal distribution is used, which is described
by the characteristics average (µ) and a standard deviation (σ). Where the standard deviation is the
deviation from this average value [Pfa�elmoser and Westermann, 2013]. The Cumulative Distribution
Function (CDF, notated with F (x)) is a summation of the likelihood of the values, in total summing up
to 1. This CDF is obtained by using the integral of the PDF.

Monte Carlo is an strong method for doing an uncertainty analysis, in which randomly samples are chosen
from a probability distribution that describe the input parameters to be assessed. The disadvantages of
the Monte Carlo method is that thousands of runs are needed to get a good estimate of the input
distributions and the dependencies between input parameters can not be incorporated in this method.
Monte Carlo is based on n independent samples, where U are the random variables and X the set of
random samples [Gan et al., 2014].

The PDF and CDF of a normal distribution are visualized in Figure 3.2, in the top left and top right.
The random sampling of the Monte Carlo method is shown in the bottom left �gure, where it can be
seen how many samples are taken per interval. To get an uniform distribution, in which the entire PDF
is taken into account, many samples are required. The bottom right �gure shows the inverse CDF,
where the x-axis is taken as the randomly sampled axes. If f(x) is a probability density function, with
corresponding CDF F (x), then if U is a vector with random variables with an uniform distribution over
[0, 1] (see Figure 3.2 bottom left), it follows that f(x) can be estimated with F−1(U). Where F−1(U) is
the inverse CDF, or Percentile Point Function (PPF) (Figure 3.2, bottom right).

Figure 3.2: Relations between distribution functions (normal distribution), theoretical representation
(red) and sampling (blue). Top left: PDF (f(x)). Top right: CDF (F (x)). Bottom left: Distribution of

the samples corresponding with the CDF probability. Bottom right: Inverse CDF (F−1(x)).

When combining parameters with a distribution as viewed in Figure 3.2 (normally distributed) a multi-
variate distribution function can be created. This function is estimated with the scatter plot in the left
part of Figure 3.4. Two parameters are given a distribution (one with µ = 5 and σ = 1 and the other
µ = 10 and σ = 3, which are randomly chosen for this example), and for 5000 experiments, random
samples are chosen from both parameter distributions, creating 5000 combined points in the scatter plot.
The function that describes the behavior of the scatter plot is the multivariate function.

With the Latin Hypercube Sampling (LHS) the disadvantage of a high number of runs for accurate
assessment can be overcome. LHS strati�es the probability distributions of the input parameters into
sections of equal probability. After this it draws one observation randomly from each section. In Chapter
2 Literature review more information on the LHS is given and visualized in Figure 2.2.

An example of the LHS method is shown in Figure 3.3, where 5 intervals are chosen and per interval
randomly 20 samples. In total 100 samples are visualized in this �gure, which is not enough to have a
good representation of the distribution, as can be seen in the right panel of this �gure. In the left part



Chapter 3. Methodology 14

the distribution of the random variables on the interval [0, 1] are visualized, which is close to a uniform
distribution. In the middle panel, the values corresponding to the normal distribution of these variables
are shown in the inverse CDF. When transferring this back to a normal distribution, the right �gure is
obtained and so the normal distribution is estimated.

Figure 3.3: Example of LHS, 5 intervals of 20 samples (in total 100 samples), creating a uniform
distribution on [0, 1]. Left: chosen samples on interval [0, 1]. Middle: PPF from the random variables

U. Right: Transformed PPF to PDF, the 100 samples starts to resemble a normal distribution.

When two parameters are sampled with this method, the two can be converted into a multivariate
distribution function as well. This would result in a similar plot as for the Monte Carlo, Figure 3.4 left,
however this shape would be obtained with signi�cant lesser sampling points.

The dependencies between the parameters need to be incorporated in the method for this study as well.
This can be done using a Copula, which is a multivariate distribution function with uniform marginals
[Schmidt, 2006]. The Copula uses uniform random variables from a probability density function. These
random variables can be transformed back into the probability function, which is the important last step
of the process. In that way the dependencies are integrated into the probability function, and when a
sampling method is used these correlations stay intact.

Figure 3.4: Multivariate distributions estimate with a scatter plot from sampling two parameter
distributions. The histograms in the top and at the right describe two parameters in this example. Left:

No correlation. Middle: Negative correlation. Right: Positive correlation.

The Copula changes the shape of the multivariate distribution function to incorporate the correlation
between the parameters. This is visualized in the middle and right �gure of Figure 3.4. In these �gures
a negative correlation (ρ = −0.7) and a positive correlation (ρ = 0.7) are visualized for this example.
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As can be seen, with 5000 experiments a clear and good estimate of the normal distribution is created
(see histograms in the �gure). Although to reduce the amount of samples this method needs to be
incorporated with the Latin Hypercube Sampling technique.

Latin Hypercube Sampling with Dependence (LHSD) is the combination of the Copula method together
with the LHS. In that way both the dependencies are incorporated in the method as well as the reduction
of sampling needed. This method is adapted from Meszaros [2016] which uses the Copula method from
Jiayuan [2015] and the method for LHSD from Tene [2015].

Multiple model runs
In this step the samples taken from the input parameters are implemented into the model and for each
sample set the model is run. Each run will produce an outcome for the SPM concentration. The
aggregation of the spread of these deterministic runs considering the variations introduced to the input
variables of highest importance represent the uncertainty of the input.

Uncertainty analysis of results
For the visualization it is important that the outcome of this analysis will be quanti�ed into one value
for the uncertainty. The assessment of the outcome is to see what kind of distribution �ts the multiple
output of values of SPM. This assessment is done by regarding the PDF, CDF and the Quantile-Quantile
(QQ) plot of the outcome. From the histograms of one location in space and time it can be determined
what the PDF should be. From the QQ-plot this PDF can be con�rmed to be the correct distribution to
use to describe the multiple outcomes. From the distribution function a standard deviation is adopted
to be a value for the uncertainty. Each location in time and space will then be described in terms of a
value for the uncertainty.

Discussion
The last step is to check if the results from the uncertainty analysis on the physical background and if
the results are plausible. This is done in a discussion part, where the results are checked with literature
on the physical characteristics of the SPM concentrations throughout the year.

3.4 Visualizing uncertainties

The uncertainty found in the previous subquestion should be visualized in such a way that the users
of the toolbox can easily have a holistic understanding of the signi�cance of the �nal outputs from the
models being consulted. As deterministic runs can be misleading in the assertion that they represent the
truth, the introduction of the uncertainty component is needed to make decisions for future projects in
the Wadden Sea.

Using the programming language Python, a 3D environment is set-up to visualize the concentrations SPM
in the area of interest, together with the uncertainties. In one location both model output and a value
for uncertainty can be presented, using di�erent characteristics of markers. For example, the color values
for the model output and the color opacity for the uncertainty. Using Python gives a good opportunity
to build in di�erent aspects that can help by making a nice visualization, in which for example a cross
section can be made and time series of the entire year can be viewed for each location.

3.5 User manual for the toolbox

Knowledge about the physical character of the area of interest combined with the visualization will give
The visualization will provide the model output, in the �rst case the SPM concentration [mg/l], together
with the uncertainties of these values. However to take decisions based on these values is another step,
therefore it is important that knowledge of physical aspects in the area of interest is taken into account.
Therefore to answer this subquestion a kind of manual is made on how to interpret the visualization and
what aspect should be kept in mind when using it.

3.6 Overview

In Figure 3.5 a �owchart summarizing the methodology proposed in this chapter is shown. The squares
indicate the chapters and the circles the method and results from these chapters, corresponding with the
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same color.

Figure 3.5: Flow chart with chapters and methodology from starting point of describing the framework
posing the problem, towards the eventual toolbox. Each chapter is indicated by a color.



4 | Framework for the knowledge-based
decision toolbox

The toolbox for the Wadden Sea area should visualize information on both physical and biological objec-
tives, to give information needed for the decision makers. Within this project, it is important to make a
distinction between what the decision makers want from the visualization and what information about
this particular PA is important for them to have. Therefore an understanding of who the decision makers
are and characteristics of the Wadden Sea is necessary.

4.1 Decision makers

The decision makers considered are a combination of mainly policy makers, resource managers, scientists
and policy makers of the PA Wadden Sea, within the scope of this project. The PAs within ECOPO-
TENTIAL project are situated in di�erent countries, with each their own regulations, and thus, per PA,
the decision makers will di�er. Because this area is a stretch of coast bordering three di�erent countries,
the Netherlands, Germany and Denmark there is a trilateral cooperation between these countries for
the policy making [Ecopotential, 2015b]. The vision of the Trilateral Wadden Sea Cooperation (TWSC)
is a unique, natural and dynamic ecosystem with characteristic biodiversity, vast open landscapes and
rich cultural heritage, enjoyed by all, and delivering bene�ts in a sustainable way to present and future
generations [Common Wadden Sea Secretariat, 2010].

The Wadden Sea Plan (WSP) lists the objectives of the Trilateral Cooperation and implementations.
It is an agreement on how the di�erent countries involved in managing the Wadden Sea oversee the
coordination and integration of management of the Wadden Sea area and of the projects and actions that
must be carried out to achieve the commonly agreed targets. According to the Convention on BioDiversity
(CBD) the ecosystem approach �is a strategy for the integrated management of land, water and living
resources that promotes conservation and sustainable use in an equitable way [Common Wadden Sea
Secretariat, 2010]. The Habitats Directive state that The Trilateral Monitoring and Assessment Program
(TMAP) is a monitoring program for this PA. This program is carried out by the involved countries in
the framework of the Trilateral Wadden Sea Cooperation. Its purpose is to provide a scienti�c assessment
of the current state and further development of the Wadden Sea of the trilateral targets of the WSP. The
management goals of the Wadden Sea area are primarily at a national level, but agreements are made
between all three countries, which brings these goals to a trilateral level. The Trilateral Wadden Sea Plan
is an adaption of the WSP from 1997. This plan states that one of the main targets is: A Wadden Sea
which can be regarded as a eutrophication non-problem area. [Marencic, 2009].

The natural capital and environmental properties of the Wadden Sea are protected under a variety of
regulations. It is designated as a Natura2000 site, RAMSAR site, Water Framework Directive (WFD)
transitional water body, and UNESCO world heritage site [Ecopotential, 2015b]. Each protection frame-
work has its own management goals, assessment approaches, and monitoring requirements. To this end,
a Wadden Sea Management Council created, with the aim of improving the e�ciency and coordination
of all di�erent managers of the area.

17
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4.2 Wadden Sea

For this visualization it is important to have information about the process that causes the water quality
to deteriorate the water quality in the Wadden Sea area. Fifteen main problems in the Wadden Sea are
described in this report (Marencic [2009] and Ecopotential [2015b]), among which climate change, wind
farming, and the water quality problems take precedence.

Although all these factors should be assessed, the main focus of this project is on the eutrophication
processes calculated with a Delft3D-WAQ model and the parameters in�uencing this factor. This factor
not only has direct consequences on the the species living in the area which as a result, amongst others,
also a�ects the �shery industry. The water quality and the amount of algae bloom caused by excessive
nutrients in the water are linked to most of the problems described in the list above. It was found in earlier
studies that not in all the months of the year the same amount of chlorophyll-a concentration were present.
As found in Jiayuan [2015] are March and April are the months most likely to exceed a chlorophyll-a
concentration threshold [Blauw et al., 2009]. In the next section the phenomenon eutrophication is
explained in more detail.

4.2.1 Eutrophication

Figure 4.1 shows the processes of eutrophication in a freshwater lake. Eutrophication is the phenomonon
when an excessive amount of nutrients are present in the water body, stimulating the growth of algal
bloom. When the algae die and decay, they are decomposed and the nutrients contained in that organic
matter are then changed into an inorganic form through microorganisms. This can be seen in the
right part of Figure 4.1. The process of decomposition of algae consumes a lot of oxygen. Due to the
decrease in oxygen in the water, �sh and shell�sh die. The ecosystem in the area gets disrupted and the
water changes color due to the growth of phytoplankton and algal blooms. Moreover the water quality
decreases drastically and can cause health problems from contact with the water. The nutrient increase
can be caused by human activities, such as pollution. Through these activities the nutrients nitrogen and
phosphorus will dissolve into the water and enhances the phytoplankton growth over time. In freshwaters
the phosphorus increase is the main factor causing excessive phytoplankton growth, whereas in coastal
waters the nitrogen is the key limiting nutrient. In ocean waters the atmospheric �xed nitrogen can easily
enter the water.

Figure 4.1: Overview of the processes of Eutrophication [Sachin, 2016].

4.2.2 SPM

In the middle left of Figure 4.1 the process of sediments coming from land that block the sunlight is
depicted. SPM concentrations have an e�ect on the plankton growth [El Serafy et al., 2007]. The SPM
is composed of �ne-grained inorganic particles and material of organic origin that is suspended in the
water column [El Serafy et al., 2011] and blocks the light. Which consequently has an e�ect on the
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factors needed for the growth of algae that are needed in the process of photosynthesis. Negative e�ects
of this increase in nutrient concentrations are Phaeocystis-blooms, a decline in seagrass, increased bloom
of green macroalgae and anoxic sediments [Marencic, 2009]. The in�uence of the SPM on the algae bloom
is therefore signi�cantly important and therefore should be taken into account investigated. Especially
when looking at the possibilities regarding the models available at Deltares. The SPM is an external
forcing for the model calculating the chlorophyll-a concentrations, as an indicator of the amount of algal
bloom. Where the SPM model used is a new asset to the model structure and should be investigated if
this forcing is a good indication of the SPM values in the area.

4.3 Discussion

The decision makers for the Wadden Sea area are a wide combination of managers, policy makers, EU
directives and more. Because of regulations that are imposed by di�erent parties, there are di�erent
boards needed, such as the Wadden Sea Board, to comply for all these di�erent regulations. Therefore
the information they need is information about future scenarios and what their impact will be on the
area. This information can help decision makers make decisions on projects and impacts that will be
within the regulations imposed by the di�erent frameworks.

For this PA information on the eutrophication is important to give an indication of what the current state
of the water quality is. From the available models the chlorophyll-a concentration can be obtained, which
is a good indicator for the amount of phytoplankton. The SPM has great in�uence on the chlorophyll-a
concentrations and is therefore another important parameter to be assessed.



5 | Identifying uncertainties

This chapter describes the processes, setup, and sources of uncertainty of the numerical models used that
gives information about the water quality in the Wadden Sea area. Firstly the general uncertainties you
can �nd in all numerical models are described. After that the uncertainties per model are described in
more detail. However it is not feasible to cope with all the uncertainties within these kind of models only
the uncertainty coming from the input �les are described in more detail.

5.1 Sources of uncertainty in numerical models

Uncertainty comes from di�erent sources within the model, discernible in three categories as found in
Uusitalo et al. [2015] and Loucks et al. [2005]. In Figure 5.1 the di�erent sources that can occur are shown.
Knowledge uncertainty are the uncertainties that stem from the knowledge gaps when setting up the
models initial and boundary conditions, input parameters and forcings. Uncertainties from measurements
ranging from wrong measurements due to human �aws, or inaccuracy of the measurement equipment.
The second category are the model uncertainties, which occur within the model, such as the numerical
errors or uncertain model structures and parameter values. To reduce this category of uncertainties, the
model can be calibrated, which has been done in previous research, see Chapter 2 the Literature Study.
Therefore these uncertainties fall outside the scope of this project. The last category is the decision
uncertainty. These are the uncertainties that occur when interpreting data wrongly. This can be on
either end of the model, so model input could have errors because of this source, but also the output can
be wrongly interpreted.

Within the scope of this project the uncertainties coming from input �les are investigated. In the next
sections the three di�erent models which make up the model structure for modeling the water quality in
the Wadden Sea will be elaborated. Furthermore, the general uncertainty sources are described within
these models and also the uncertainties addressed within this project are discussed. First an overview of
the links between the models is given and also a short overview of the grid and the set up of the model
will be described.

Figure 5.1: Di�erent kinds of uncertainties that occur in numerical models.

20
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5.2 Model structure en setup

In Figure 5.2 below, the model structure of how the models are linked together is shown. A general
structure is shown below, for details see Appendix A. For the input of the waves, a Delft3D-WAVE
model [Deltares, 2014b] is needed. This model is the SWAN (Simulating WAves Nearshore) model,
which is a third generation wave model [SWAN team, 2016] and calculates the wave �eld for the entire
domain.

Figure 5.2: Entire model structure for the set up to calculate the water quality in the Wadden Sea area,
in purple the numerical models used, in yellow the input uncertainties and in green and blue the

post-processing steps towards the visualization.

From Figure 5.2 is it observed that the hydrodynamic model drives both the SPM model and the
GEM/BLOOM model. The SPM is thereafter an input forcing for the GEM/BLOOM model. Be-
cause the uncertainty of the GEM/BLOOM model needs to be assessed, the �rst section will explain in
more detail how the GEM/BLOOM model is set up and what the di�erent processes are for this model.
The following section will explain the SPM model, the processes, the in- and out-put of this model and
how the uncertainties are transferred from this model to the GEM/BLOOM model. The same will be
done in the last section, in which the hydrodynamic model is further explained.

5.2.1 ZUNO-DD

Figure 5.3: ZUNO-DD grid, coupled �ne,
intermediate and coarse grid.

The models used are for the ZUNO area (Zuideli-
jke Noordzee, translated into English: Southern
North Sea) and are made with Domain Decompo-
sition. This means that there is no uniform grid
for the entire area. The grid is split up in three
di�erent grids, the coarse, the intermediate, and
the �ne grid. In the open sea area the grid can be
coarser, because this larger mesh width can cap-
ture all the larger processes in that area. How-
ever, for the areas closer to land and in the ar-
eas of interest, the variability is higher because
this is where most of the processes takes place.
These process need to be determined on a smaller
scale and therefore the areas of the Dutch coastal
stretch have a �ne grid and on some places an in-
termediate grid. The grid is curvilinear and has
12 non-equidistant sigma layers, which provide a
good resolution to cope with the surface mixing
layer and the elevated near-bed SPM concentra-
tions [Stuparu, 2012]. Sigma layers divide the pro-
�le in di�erent layers, following the bathymetry. In
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Table 5.1 the dynamic sigma layers with the rela-
tive thickness, based on a percentage of the total
water column. Layer 1 is the surface layer and layer 12 is the bottom layer. In total there are approxi-
mately 160.000 cells in the grid, with 237 cells in the x-direction and 245 in the y-direction. Figure 5.3
shows the grid and its location in the North Sea. A space varying bathymetry is applied. The local depth
is de�ned relative to NAP (Normaal Amsterdams Peil [m]).

Table 5.1: The 12 di�erent sigma-layers in the grid, with the relative thickness [Blaas et al., 2012]

Layer 1 2 3 4 5 6 7 8 9 10 11 12 Total
Relative
thickness (%)

4.0 5.6 7.8 10.8 10.9 10.9 10.9 10.9 10.8 7.8 5.6 4.0 100.0

Figure 5.4: Left: Coarse grid. Middle: Intermediate grid. Right: Fine grid.

5.2.2 Coarse grid

As can be seen in the left part Figure 5.4 the coarse grid covers the main part of the North Sea.
Bathymetry data in this grid originates from the North West European Shelf Operational Oceanographic
System [NOOS, 2016]. The resolution of the coarse grid in the x-direction (∆x) varies between 6,000m
and 20,000 m and in the y-direction (∆y) between 5,000m and 30,000m. The coarse grid contains out of
62 cells in the x-direction, 134 in the y-direction and 12 in the z-direction.

An open boundary is implemented on the north part of the domain (see darker blue line) as well as
an open boundary in the channel at the south-western part. The water levels at these boundaries are
represented bu the astronomical tide.

5.2.3 Intermediate grid

The intermediate grid covers the main part of the Dutch coastal zone and the Wadden Sea. This re�ne-
ment of the coarse grid was chosen to cover the coast where the most important processes in the water
need to be covered. The Bathymetry of this grid originates from the same source as for the coarse grid,
the NOOS. The resolution of the coarse grid in the x-direction (∆x) varies between 1,000m and 2,500m
and in the y-direction (∆y) between 2,000m and 3,000m, which is a factor 9 smaller than the coarse grid.
The coarse grid contains out of 65 cells in the x-direction, 245 in the y-direction and 12 in the z-direction.
See the middle �gure in Figure 5.4.

5.2.4 Fine grid

The �ne grid is given in the right part of Figure 5.4. The coarse grid covered most of the Dutch coastal
zone, however there were the in�uence of the Meuse out�ow is greatest a new grid was formed, the
�ne grid. The bathymetry of the �ne grid originates from the most recent Kusstrook Fijn model which
contains a compilation of surveys by the Dutch Hydrographic Service and Rijkswaterstaat, the most
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recent of which was carried out in 2005 [Blaas et al., 2012]. The resolution of the coarse grid in the
x-direction (∆x) varies between 500m and 1,000m and in the y-direction (∆y) between 1,000m and
1,500m, which is a factor 36 smaller than the coarse grid. The �ne grid contains, out of 110 cells in the
x-direction, 214 in the y-direction and 12 in the z-direction.

For the Delft3D-WAQ models (SPM and GEM/BLOOM) another grid is used, however the setup of the
ZUNO-DD is still used, the �ne part is aggregated 2x2. Blocks of four cells (2x2) are aggregated into
one cell, see Figure 5.5. The output of the hydrodynamic model needs to be aggregated as well and
after that the model output should be coupled that the input matches the layout of the grid used in the
Delft3D-WAQ models. The aggregation was performed by using the DIDO module in the Graphical User
Interface (GUI) of Delft3D, creating an aggregation �le. With this �le, the information of the �ne grid
and the hydrodynamic components on this grid can be aggregated using Agrhyd.

Figure 5.5: 2x2 aggregation of the �ne grid.

5.2.5 River discharges

Within the domain many rivers are present, having an in�uence on the hydrodynamic model, but are
also extremely important forcings on the SPM and the nutrient concentrations. Rivers carry sediments
from upstream of agricultural run-o� and deposit it in the North Sea. In previous research, where these
models were implemented, for international monitoring programs, the time series for the discharge for
every river was used, coming from measurement stations. Because the rivers are situated in di�erent
countries (namely England, Belgium, France, the Netherlands, Germany and Denmark) di�erent sources
needed to be consulted, which can be found on page 19 of Blaas et al. [2012]. The locations of the rivers
are shown in Figure 5.6. For the study area the most relevant rivers are the ones in the Belgium, the
Netherlands and Germany.

Figure 5.6: Locations of the rivers in the ZUNO-DD grid (Blaas et al. [2012] and Meuwese [2007])
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5.2.6 Meteorological forcing

The meteorological forcings are the wind velocity (U10 in [m/s] at 10 m height from the water surface),
temperature, pressure �eld, cloud coverage among others. These are boundary conditions for the momen-
tum equations used in Delft3D-FLOW. The data for these forcings come from measurements, supplied
by the Royal Dutch Meteorological Institute from the KNMI.

5.2.7 Hydrodynamics

The hydrodynamic input comes from a Delft3D-FLOW model. This model can simulate coastal, river-
ine and estuarine areas. The �ow boundary conditions are coming from a di�erent model, a SWAN
(Simulating WAves Nearshore) model, which is a third generation wave model in the Delft3D-WAVE en-
vironment [SWAN team, 2016]. This means that wave data measured farther o�shore can be recalculated
to nearshore data.

Delft3D-FLOW can be applied, as well, on a two as a three dimensional grid. It is a hydrodynamic (and
transport) simulation program which calculates non-steady �ow and transport phenomena that result
from tidal and meteorological forcing on a rectilinear or a curvilinear, boundary �tted grid [Deltares,
2014c]. The numerical model solves the unsteady shallow water equations (Navier-Stokes) in two or three
dimensions, using Finite Di�erence Methods (FDM). These methods solve the di�erential equations
(in this case the shallow water equations) using �nite di�erences to approximate the derivatives of the
equation. The system of equations consists of the horizontal equations of motion, the continuity equation
and the transport equation for conservative constituents.The model can be applied to predict �ows in
shallow sea waters, coastal areas, estuaries, lagoons, rivers and/or lakes. It aims to model �ow phenomena
of which the horizontal length and timescales are signi�cantly larger than the vertical timescales [Blaas
et al., 2012]. Di�erent scales can be calculated with this model. The equations are capable of resolving
turbulent scales; large eddies. However, it should be taken into account that if these small scales are
modeled that the grid should also be adapted to this size to comply with all the processes on that scale,
usually the grid is too coarse.

The model calculates the water levels, salinity, temperature and transports. These output are needed for
the input of the SPM and the GEM/BLOOM model. The model was validated and calibrated in previous
projects, see the Literature Study in Chapter 2.

Figure 5.7: Input for the hydrodynamic model, complete structure in Appendix A

Figure 5.7 shows the input of the hydrodynamic model. On the left side the communication �les coming
from the SWAN model are shown. These �les are needed for all three the di�erent grids. Furthermore in
the left yellow squares the information on the meteorological data and discharge data are shown, which
come from measurement data. Measurements have uncertainties, referred to as knowledge uncertainties in
the introduction to this chapter, as knowledge uncertainties. This information comes from measurement
stations. The meteorological data is needed for the momentum equation. This data contains information
about wind velocities and air pressure at Mean Sea Level (MSL), cloud cover, air temperature (at 2
meters height above MSL) and relative humidity �elds. The data comes from the KNMI HIRLAM model
(http://hirlam.org and www.knmi.nl).
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5.3 GEM/BLOOM model

A water quality model has one or more state variables, pollutants or substances, which enter the modeled
area through model boundaries or lateral in�ows. They move with the currents through the modeled area.
At the same time they may show their own speci�c behavior in the aquatic environment. This can be a
simple decay, but also an interaction of transformation between di�erent state variables. [Deltares, 2014a].
The GEM model is part of the Delft3D-WAQ, which models the water quality and aquatic ecology. With
an advection-di�usion equation the sources and sinks of the variables are taken into account [Blauw et al.,
2009] and the transport processes are described. The advection and di�usion �uxes between the cells are
derived the hydrodynamic model described in 5.2.7. The simpli�ed advection-di�usion equation:
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in which:

C = Concentrations [g/m3]
u, v, w = Components of the velocity vector [m/s]
Dx, Dy, Dz = Components of the dispersion tensor [m2/s]
x, y, z = Coordinates in three spatial dimensions [m]
S = Sources and sinks of mass due to loads and boundaries
P = Sources and sinks of mass due to processes
t = Time [s]

In this section the water quality processes are described. GEM is the Generic Ecological Model GEM
simulates the nutrient cycles of nitrogen (N), phosphorus (P) and silicate (Si). In GEM there is a
phytoplankton module, BLOOM, which simulates primary production with competition between species,
respiration and mortality of phytoplankton [Blauw et al., 2009]. GEM links di�erent physical, chemical
and ecological model components into one generic and �exible modeling tool that allows for variable
sized, curvilinear grids to accommodate both the requirements for local accuracy and maintaining a
relatively short model run-time. Fifteen algae species can be modeled within BLOOM. Further processes,
transports and changes that are calculated in GEM/BLOOM are described in more detail in Figure
5.8. The main processes are: extinction of light, de-nitri�cation and nitri�cation, particulate organic
matter decomposition in water and sediment, settling, burial, �lter feeder processes (grazing, respiration,
excretion), and re-aeartion processes.

Figure 5.8: The processes on the model variables in the GEM/BLOOM model [Deltares, 2014d]
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For eutrophication the state variables are algae, inorganic nutrients (N-NH4, N-NO3, P-PO4, Si) and
particulate organic matter. The SPM forcing coming from the SPM model described in the next section.
The processes included in GEM are phytoplankton processes, extinction of light, decomposition or par-
ticulate organic matter in water and sediment, nitri�cation and dinitri�cation, reaeration, settling, burial
and �lterfeeder processes.

The GEM/BLOOM model is a good choice to model the Wadden Sea, because of the spatial resolution
of approximately 1 x 1 km. Other process-oriented ecological models usually perform well for area that
they are built for, however when they are applied to other systems, their performance tend to be poor in
comparison to the GEM/BLOOM model, even after re-parameterization [Blauw et al., 2009]. The model
outputs under consideration include information on chlorophyll-a concentrations, and other parameters
as the light climate, primary production and nutrients, which are not looked into in this study.

5.4 SPM model

SPM is composed of �ne grained particles of organic and inorganic origin that are suspended in the water
column [El Serafy et al., 2011]. Due to the SPM, the water gets turbid and the incoming light in the
water column will be blocked, decreasing the phytoplankton growth. However the organic fraction of the
SPM is one of the sources of nutrients, which to an extend enhances this growth.

The SPM model is used to recalculate the salinity, which has been calculated in the hydrodynamic
model, and the inorganic matter in di�erent layers throughout the entire year. The model was used to
simulate mostly surface values of SPM in the Dutch coastal zone, particularly in the �ne part of the
grid [Cronin, 2014]. It was developed in Delft3D-WAQ module, as was the GEM/BLOOM model, which
calculates the advection-di�usion equation for the transport of SPM. More information on the processes
in Delft3D-WAQ is given in section 5.3. In the Dutch coastal zone, SPM partly originates from the
rivers and erosion, local seabed resuspension and partly from sources outside the North Sea. The SPM
concentrations have a strong variability on the short time scale, due to the wave and tidal forcings, but
also on a seasonal scale [Stuparu, 2012]. The three important output from the SPM model are the three
fractions, namely the coarse (IM1, diameter 40µm), medium (IM2, diameter 15µm) and the �ne (IM3,
diameter 1µm)sediments (in [g]) [Tene, 2015]. Together they form the Total Inorganic Matter (TIM),
which is the total of the suspended inorganic matter in the water column, and is a good indicator of the
amount of SPM in the water, because the organic fraction is relatively small. Therefore, further in this
project, the TIM concentrations will be used when addressing the output of the SPM model, but will be
called SPM. The main driving forces of the SPM model are the discharges of the rivers coming out in the
North Sea, the meteorological input, and hydrodynamic model output.

The model was developed to simulate mostly surface values of SPM in the Dutch coastal zone, in particular
the area covered by the �ne grid [Cronin, 2014]. The model calculates the concentration of suspended
matter throughout the water column and near the bed on a tidal timescale and seasonal scale over the
entire model domain. The boundary conditions are prescribed at the English channel and the Northern
model boundaries, connecting the rest of the North sea, based on derived climatology. The grid used for
the SPM model di�ers from the Hydrodynamic grid, by aggregation of the intermediate and the �ne grid.
Forcings needed for this model is the salinity, the temperature and wind forcings that are calculated by
the Hydrodynamic model. The numerical scheme that is used in this model is the iteration solver with
backward di�erences (15) [Deltares, 2014a]. To simulate one year it takes approximately 11 hours.
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Figure 5.9: Bu�er mode as used in the SPM model (Adapted from Van Kessel et al. [2011]). Showing
the Erosion (E) and Deposition (D) �uxes between the water column and the two bed layers (d1 and

d2) and the concentration (C) of suspended matter in the water column.

The SPM model is described in two bed layers that interact with each other, see Figure 5.9. These two
layers are a thin �u�y layer (S1, indicated in Figure 5.9 with the layer thickness d1 [m]) which is formed
during slack tide and accounts for quick resuspension and settling. The total sediment mass in this layer
is rather small. The other layer is the sandy bu�er layer (S2, indicated in the Figure, layer thickness
d2 [m]), in which the more �ner material is stored and for a longer period. This layer is only disturbed
during extreme conditions, such as a storm. (El Serafy et al. [2013] and Van Kessel et al. [2011]). In the
Figure, D1 and D2 (both [mg/l]) represent the deposition �ux to both S1 and S2, and E1 and E2 (both
[mg/l]) indicate the erosion from both layers. These �uxes are described in the following equation, the
parameters are described in 5.2:
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= (1 − αIMi

)VSed,Im1
CIMi

(5.2)
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Table 5.2: Parameters in the erosion and deposition equations [El Serafy et al., 2013].

Parameter Meaning Unit
CIMi

Concentration of fraction Inorganic Matter (IMi) of the fraction class i [mg/l]
VSed,IMi

Settling velocity of the fraction class i [m/s]
αIMi Proportion of the deposited silt that is stored directly in the sandy layer (S2) [−]
Dj,IMi

Deposition �ux of SPM fraction IMi from layer Sj [g/m2d]
Ej,IMi

Resuspension �ux of SPM fraction IMi from layer Sj [g/m2d]
τ Bottom shear stress [Pa]
τcr,S1,IMi

Critical shear stress for silt resuspension fraction i from �u� layer (S1) [Pa]
τSh Critical Shields stress for sand mobilization in bu�er layer S2 [Pa]
ZRes,IMi Zero-order resuspension rate from layer S1 [g/m2d ]
VRes,IMi

First order resuspension rate from layer S1 [1/d]
Mi,j Mass of sediment fraction i in layer j per surface area [g/m2]
FResPup Van Rijn (1993) pickup factor from bu�er layer [-]

5.5 Uncertainties in regarded models

In this section the uncertainties in the GEM/BLOOM model and consequently the SPM model are
identi�ed and discussed.
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5.5.1 Uncertainties in GEM/BLOOM

Figure 5.10: Input for the GEM/BLOOM model, complete structure in Appendix A.

As mentioned before, within the scope of this research only uncertainties due to input forcings are taken
into account. In Figure 5.10 the input of the GEM/BLOOM model is shown. It can be seen that many
input �les can be a source for uncertainty in this model. The hydrodynamic model serves for the input of
many di�erent �les, as described in the top left yellow square, which are all correlated. The SPM input
is described in the bottom left yellow square, and is just one �le with the TIM concentrations coming
from the SPM model. The topmost right yellow square describes the other �les. The grid layout and the
boundary conditions are all the same, and are not a source of uncertainty that is addressed here.

From Chapter 2 it was concluded that the uncertainty of the model was already assessed in earlier studies.
The uncertainty caused by the water quality parameters are the subject of an ongoing study (Meszaros,
2016). The SPM forcing through another method, namely using an SPM transport model is yet to be
determined. The uncertainties in this model that are interesting for this project comes from the SPM
and hydrodynamic forcing. Therefore the oncoming uncertainties from these models will result in the
uncertainty of this model. The inherent uncertainties coming from the processes within the models etc
are not addressed in this project.

5.5.2 Uncertainties in a SPM model

Figure 5.11: Input for the SPM model, complete structure in Appendix A

In Figure 5.11 the input �les for the SPM model are shown, which is the focus area of the uncertainty
analysis in this project. The two top most yellow squares describe the input coming from the hydrody-
namic model. The left yellow square describes the other inputs of the SPM model. In which some are also
sources for uncertainty, such as the parameters, constants, waste loads, shear stresses and the initial �le.
The di�erent input �les of the SPM model are described in more detail below [Deltares, 2014e].
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Hydrodynamic input The hydrodynamic input is described in the previous section. It contains infor-
mation about the water temperature, the �ows, salinity, processes, exchanges between cells, etc.
Because these input �les come from a numerical model, there will be sources of uncertainty present.
However, assessment of these uncertainties fall outside the scope of this project, the hydrodynamic
would need to be run multiple times, which is technically and numerically too demanding (storage
of 300 GB and a computational time of 3 days).

Substance �le The substance �le describes the substances to be calculated in the SPM model, therefore
contains no knowledge uncertainty.

Constants This �le contains the parameters that are constant for each cell, but di�er in time. The �le
consists out of 71 parameters. These are a major source of uncertainty. Some parameters, such
as water density are the same globally in the model. However the model covers such a large area,
in which many di�erent conditions are taken into account, one value per parameter can not be
su�cient to represent the reality [El Serafy et al., 2013].

Boundary conditions (BC) This �le describes the locations of the boundary conditions and the im-
posed BC at those points, such as a water level BC in the northern boundary. These are the same
for each year.

Monitoring points These are the locations of the monitoring points, which are not a source of uncer-
tainty.

Waste loads These are the loads of SPM in the associated riverine discharges taken into account in the
model.

Parameters This �le contains the information on the surface and bottom depth. This parameter is dif-
ferent for each cell, but unchanged in time, in other words the bathymetry is unchanged throughout
the entire model. This however introduces an extra uncertainty in the model, because in reality the
bathymetry would di�er due to transport of sediments, this however falls outside the scope of this
study.

Shear stresses by ships These are the shear stresses induced by ships. Gathered from wave buoys and
recalculated by means of the SWAN model output, the yearly averaged wave �elds [Cronin, 2014].
This �le contains information about the τship for each segment in space and time. This input is
correlated to the hydrodynamics.

Initial �le This �le contains the SPM concentrations on the initial time step for each cell. Which can
come from the restart �le of the a previous model run, or measurements. This can also be a source
of uncertainty in the model.

The uncertainties of the SPM forcing stems from the propagation of uncertainties in the hydrodynamic
forcing, initial conditions and boundary conditions; in addition to uncertainties in parameterization of
processes such as water-bed exchanges of sand-mud mixtures [El Serafy et al., 2011]. Key parameters
are Critical Shields stress for sand mobilization in the bu�er layer (TauShields), Van Rijn Pickup factor
from the bu�er layer (FactResPup), Critical bed shear stress (per fraction) in the �u� layer (TcrS1, IMi)
the �rst order resuspension rate from the �u� layer (VResIMi) and the setting velocity (per fraction)
[Cronin, 2014]. The model was already calibrated for these parameters. Validation was also done with
a set of surface in-situ validation data from MWTL (Rijkswaterstaat), MUMM and CEFAS were used.
The model results were also plotted against MERIS data that was interpolated onto the model grid. The
bias and root mean square errors of the measurements against the model were assessed. From this it was
concluded that nearshore concentrations had a lower bias than o�shore concentrations.

5.6 Summary

In this chapter the setup and characteristics per model were described and from this uncertainties to be
assessed were identi�ed. Because in the model setup the SPM model is a new asset, the uncertainties
in this model are addressed. The model has been calibrated and validated in earlies studies, therefore
the sources of uncertainty to address are narrowed down to the uncertainties coming from input �les.
Regarding the setup and looking at what input is needed for this model, four �les are identi�ed of
containing uncertainty, the constants, waste loads, shear stresses induced by ships and the initial �le.
However input as bathymetry and hydrodynamics also introduce uncertainty, computational wise it is
not feasible to take these uncertainties into account in this study.
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In this chapter, the quanti�cation of uncertainties in the SPM model is elaborated. In the previous
chapter the sources of the uncertainty were identi�ed; the quanti�cation of the uncertainty in the model
output will be done using a sensitivity and uncertainty analysis as described in Chapter 3 Methodology.
The area of interest in this study is the Wadden Sea, therefor the grid is cropped to this area and some
surroundings. However as the PA includes the dutch part of the Wadden Sea, the area is extended
from the Rhine in�uence along the Dutch coast all the way to Denmark, to have a better overview of the
surrounding processes. The part of the grid that is used in this study is shown in red in Figure 6.1.

Figure 6.1: In black all the cells in the domain, in red the cells that are used in this study.

6.1 Sensitivity analysis

Figure 6.2: The identi�ed input �les for the SPM model containing uncertainty.

To see which of these input �les cause the main uncertainty in the SPM model a short sensitivity analysis
is done. From the previous chapter on identifying uncertainty, the sources of uncertainty in the SPM
model are found, see the �les in Figure 6.2. From previous projects, there is input data available from
the years 2003 to 2011 for the SPM model. This input are all the �les listed in the bottom left yellow
square in the �gure. To see which input has the most in�uence on the output of SPM concentrations,
the model is run multiple times with the same input that only di�ers for the one �le to be assessed. For
example, nine model runs are done using for each run the same input of the year 2009 (hydrodynamics,

30
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substances, constants, boundary conditions, monitoring points, parameters, shear stresses by ships and
initial �le) and varying the waste load �le for the years 2003 to 2011. This method can not be applied on
the constants �le, because these constants consist out of one value per parameter (in total 71 parameters),
which were the same for all the years between 2003 and 2011. Moreover, were these parameters to di�er
then it would not be a good assessment to see which individual parameter could have the most in�uence.
However in El Serafy et al. [2013] the sensitivity was already investigated and therefore the information
obtained from that report is used for the constants �le. Therefore the information from that report is
used for the constants �le. The parameters are discussed in the next section.

Figure 6.3: Segment 9687, at M = 115, N = 195 and K = 1, the location of the cell that is used as an
example in this chapter.

In this chapter the method conducted is shown in �gures by time series or data at a certain time step.
These �gures are posed as an example and for reference the location is always taken on segment 9687,
see Figure 6.3. For the sensitivity analysis it is chosen to visualize the time series of the concentrations
with a representation of once a week, this is done to better support the explanation of the �gures in
the sections. Later for the uncertainty analysis it is chosen to use a time step of a day, so there is more
detailed information describing the SPM concentrations.

There are two pathways to indicate the variability of the model output, by using the standard deviation
and by using the di�erence from the average to the reference scenario. The �gures in this chapter all
show in the top image the time series of the di�erent experiments (the grey lines) and the reference case
in which all the input �les are from the same year, 2009 (the dashed red line). In the bottom image the
average of these time series is given (the dashed black line), together with its standard deviation (the
grey area) and the reference case (the dashed red line). The average of these time series is calculated
by:

µ =
1

N

N∑
i=1

xi (6.1)

The standard deviation is calculated with:

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (6.2)

x = The SPM value at one location in both space and time for the i-th experiment
µ = Average value of x
σ = Standard deviation of x
N = Number of elements in x

With the standard deviation, as calculated with equation (6.2), the spreading of the output time series is
calculated. In the �gures this is visualized with the gray area surrounding the average values. Another
method is to look at the di�erence between the mean of the output �les (dashed black line) and the
reference line (red dashed line), indicating the deviation of the average. These two methods are discussed
per case in the sensitivity analysis.
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6.1.1 Initial map�le

The initialization conditions of the SPM concentrations in the model are inserted using a map�le. A
map�le is s a static set of conditions used to initialize the model runs, this �xes all variables to a singular
value at the start of each run. Information of all the calculated substances in every segment is available
in this �le. In Figure 6.4 the sensitivity analysis on the initial �le is shown. It can be seen that the initial
and last value di�er extremely. The variability of the �les is also quite high, the standard deviation is
continually present in order of 10 mg/l, however the deviation from the reference case is only in the spring
and early summer somewhat di�erent from the reference scenario. Therefore it is chosen to re-use the
last values from the reference scenario (where all the input stems from 2009) and rerun the model until a
stable SPM �eld is obtained. This is done in Figure 6.5, where the model is run 6 times in a row, reusing
the Restart map�le from the previous run, in which the last values of the runs are stored. The black line
in the �gure indicates the stable situation which will be further used in this study.

Figure 6.4: Time series of the year 2009 with di�erent Initial map �les, the reference situation with
initial �le from 2009 (red dashed line). Top �gure: time series of the 9 representations. Bottom: Time
series averaged (black dashed line) and given an uncertainty band by a standard deviation (grey).

Figure 6.5: Time series re-using the restart �le (di�erent colored lines) of the previous model run until
an initial SPM value is obtained which is a realistic representation for the entire temporal domain.
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6.1.2 Waste loads

Using the initial �le discussed in the previous section, the next �le to be assessed is the Waste load �le, in
which the SPM loads from the 91 discharges in the domain are represented. Waste loads are an external
forcing to the system in the form of added (or withdrawn) masses per unit of time [Deltares, 2014e]. The
loads of suspended sediments from the riverine systems in conjunction from that which is re-suspended
from the sea-bed are the sources of inorganic matter in the water column. In Figure 6.6 the sensitivity
of the Waste loads are shown. The variability between the reference and the average is within natural
variational limits. Furthermore is shown the range of the standard deviation is small, order 1. From
these �gures it can be concluded that the variability caused by the waste load input is negligible.

Figure 6.6: Time series of the year 2009 with di�erent Waste load �les, the reference situation with
waste load �le from 2009 (red dashed line). Top �gure: time series of the 8 representations. Bottom:

Time series averaged (black dashed line) and given an uncertainty band by a standard deviation (grey).

6.1.3 Shear stresses induced by ships

The shear stresses induced by ships, which are calculated using the wave �eld from SWAN [SWAN team,
2016]. In SWAN, the data for the signi�cant wave height (Hs) and averaged which come from data of
wave buoys and are recalculated with SWAN for the entire domain are analyzed for sensitivity. Ships are
not singular sources for these stresses, in spite what the name might suggest. Hydrodynamical conditions
such as waves, storms and currents all have e�ect in some extend to the magnitude of these shear stresses.
The outcome of this analysis is shown in Figure 6.7. Because the shear stresses are recalculated with
SWAN, a link is established with the hydrodynamic forcing in the model. Because of this dependency
it is to be expected that the variability of this �le will be quite large, when using the data for the shear
stresses of di�erent years, where di�erent hydrodynamic conditions are applicable. Taking the �gures
into account, it can be seen that even with the dependency problem kept in mind that the variability
generated by the change of this �le is not that signi�cant. Therefore this input �le is also not taken into
account in the uncertainty analysis.
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Figure 6.7: Time series of the year 2009 with di�erent shear stresses induced by ships, the reference
situation from 2009 (red dashed line). Top �gure: time series of the 7 representations. Bottom: Time
series averaged (black dashed line) and given an uncertainty band by a standard deviation (grey).

6.2 Uncertainty analysis

The constants �le could not be evaluated the same as the waste load �le or the shear stresses induced
by ships, therefore the results from a previous sensitivity analysis are used. There are 71 parameters
in the <constants.txt> �le, which are the same for every location throughout the domain. In El Serafy
et al. [2013] a sensitivity analysis is already conducted and from this, 10 parameters which have the most
in�uence on the model results are the result of this analysis, listed in Table 6.1. These parameters are
used in the equations describing the processes in the model, see section 5.4 of the Literature review on
the SPM model. The parameters between brackets are corresponding to the equations 5.2. In this section
the correlation between the parameters become clear when looking at the equations given to calculate the
deposition and erosion �uxes of the particles and a further explanation is given in section 5.5.2.

Table 6.1: The 10 most in�uential parameters in SPM model (Adapted from El Serafy et al. [2013])

Parameter Explanation
1. TauShields (τSh) Critical shear stress for resuspension
2. FactResPup (FResPup) Overall factor for resuspension pickup from the sandy layer (S2)
3. VSedIM1 (VSed,IM1) Sedimentation velocity of IM1
4. FrIM1SedS2 (αIM1) Fraction (α) of total settling �ux IM1 directly into the sandy layer (S2)
5. VResIM1 (VRes,IM1

) First-order resuspension rate
6. TauRS1IM1 (τcr,S1,IM1) Critical resuspension stress for �u� layer (S1)
7. VSedIM2 (VSed,IM2) Sedimentation velocity of IM2
8. FrIM2SedS2 (αIM2

) Fraction (α) of total settling �ux IM2 directly into the sandy layer (S2)
9. VSedIM3 (VSed,IM3

) Sedimentation velocity of IM3
10. FrIM3SedS2 (αIM3) Fraction (α) of total settling �ux IM3 directly into the sandy layer (S2)

The uncertainty analysis on the in�uence of the parameters on SPM with a Monte Carlo simulation is
combined with a Latin Hypercube Sampling technique which incorporates the dependencies between the
parameters. This method is explained in detail in chapter 3. The parameters to be assessed are to be
given a probability distribution, to simulate the variability of the input. With a Copula the dependencies
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of the parameters are caught and with the sampling technique the amount of model runs is reduced. In
this section the di�erent steps together with the results are elaborated.

6.2.1 Distributions of input parameters

The �rst step of the process is to give a probability distribution to the input parameters, in order to
simulate the uncertainty of the parameter. The in�uence of a constant parameter is di�erent than
varying forcings, therefore, any error therein will introduce a permanent error continuously throughout
the model run. It is for this reason that the impact can not be neglected. From the study of El Serafy
et al. [2013] the ranges between which the di�erent parameters can vary are given in Table 6.2.

Table 6.2: Ranges and base values of the 10 parameters (Adapted from El Serafy et al. [2013])

Parameter Base value Range from Range until
1. TauShields 0.8 0.4 1.2
2. FactResPup 3.00E-08 8.00E-09 8.00E-08
3. VSedIM1 10.8 5.04 43.2
4. FrIM1SedS2 0.15 0.05 0.4
5. VresIM1 0.2 0.05 0.5
6. TaucRS1IM1 0.1 0.01 0.35
7. VSedIM2 86.4 43.2 172.8
8. FrIM2SedS2 0.15 0.05 0.4
9. VSedIM3 0.1 0.1 5.04
10. FrIM3SedS2 0.15 0.05 0.4

From the study in El Serafy et al. [2013] it was found that the parameters described in Table 6.1 are
correlated in pairs. This correlation is taken into account for the uncertainty analysis. The pairs are
described in Table 6.3 with a Spearman's rho correlation factor, this concept is explained in section 6.2.4
where the dependencies are taken into account in the sampling method. This factor is taken into account
during the sampling for the uncertainty analysis. For the Latin Hypercube Sampling with Dependence
this factor is crucial, see next section. The parameters can be described with a multivariate normal
distributions, which is used in this study. Together with the information on the ranges and the base
value the distributions of the parameters was made, this is visualized in Figure 6.8.

Table 6.3: Correlation pairs and their correlation factor

Pair Correlation Factor of correlation
(rho)

Index of
importance

1. TauShields - 2. FactResPup positive 0.7 1
3. VSedIM1 - 4. FrIM1Sed2 negative -0.7 2
5. VResIM1 - 6. TaucRS1IM1 positive 0.7 5
7. VSedIM2 - 8. FrIM2Sed2 negative -0.7 4
9. VSedIM1 - 9. FrIM1Sed2 negative -0.7 3
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Figure 6.8: Representation of the PDFs of the input parameters, with on the x-axis the values of the
parameters (x) and on the y-axis the PDF (f(x)).

6.2.2 Random sampling without dependence

The Monte Carlo method, as described in Chapter 3, for assessing uncertainty uses a random sampling,
without incorporating the dependencies between parameters. When using this method, it would take
thousands of samples to come close to a represention of the probability distribution of the parameter.
This is shown in �gure 6.9, where the parameter TauShields is taken as an example. With the histogram
showing the samples taken from the distribution and the red line the distribution. This example demon-
strate that Monte Carlo would become a good representation of the system after using a few thousand
samples.

Figure 6.9: Distribution of TauShields with Random sampling, for 25, 200 and 5000 samples.

This method has two disadvantages. First, the amount of model runs needed, secondly it is not able
to incorporate dependencies between the parameters. This can be seen in Figure 6.10. The amounts of
samples needed is shown in the amount of blue dots in the joint scatter plot. It can be seen that there is
no dependency whatsoever in the shape of the cloud, this problem needs be addressed as well. To reduce
the amount of samples, an other sampling technique is used, the Latin Hypercube Sampling. To cope
with the dependencies between the parameters a Copula is applied.
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Figure 6.10: The joint scatter plot of the �rst dependency pair, TauShields and FactResPup, with 5000
samples and no dependency.

6.2.3 Latin Hypercube Sampling without dependence

The same experiment as for the Monte Carlo was done with the LHS technique, to reduce the amount
of samples needed for a proper representation of the normal distribution. This can be seen in Figure
6.11. In contrast to the Monte Carlo, where a few thousand samples were needed is the LHS method
already quite accurate with a few hundred samples. From the study of Jiayuan [2015] it was proven that
between 150 and 200 samples give a good estimation. Therefore the amount of samples at the beginning
of the uncertainty analysis in this study is set to 200. Which will be decreased in a later stadium, when
the sampling actually takes place, to �lter out the non-existing values (negative values for one of the
parameters).

Figure 6.11: Distribution of TauShields with Latin Hypercube Sampling, for 25, 100 and 200 samples.

6.2.4 Random sampling with dependence

Using a Copula the dependencies between the parameters, as described in Table 6.3,are taken into account.
The Copula uses a dependency matrix to include the dependencies, see Table 6.4. In this matrix the
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correlation coe�cients are shown, the pairs all had a correlation magnitude of ρ = ±0.7, as well negatively
or positively correlated. This correlation is the Spearmans's rho, which is a ranking for the dependence
between two parameters on the interval [-1, 1]. Where -1 is completely negatively correlated, 1 completely
postive correlated and 0 is no correlation [Davis and Sampson, 1986]. The correlation of the pairs are
known [El Serafy et al., 2013], the other relations between parameters is assumed to be 0. In this way
the dependency pairs are taken into account. This matrix is included into the creation of a multivariate
probability distribution of the Copula, in which the distributions for each parameter is generated.

Table 6.4: Dependency matrix for the 10 parameters.

A Gaussian Copula is used in this case, because the parameters are normally distributed. This Copula
uses the correlation matrix as given in the table above, which is the same as the covariance matrix of the
multivariate distribution for these parameters. The Copula is made with Copula vectors, which are taken
randomly from a uniformly distribution on [1, 0]. For the �rst correlation pair this method is visualized in
Figure 6.12. It can be seen that the distributions of both parameters (blue and purple histograms) are not
a good representation of the normal distribution (red lines), due to the low amount of samples. However
the joint scatter plot shows a distinct pattern of a positive correlation. As has been mentioned before
the amount of samples has been reduced from 200 to 188, discarding of a few non-existing values.

Figure 6.12: The joint scatter plot of the �rst dependency pair, TauShields and FactResPup, with 188
samples and dependencies incorporated with a Copula.

6.2.5 Latin Hypercube Sampling with Dependence

For this uncertainty analysis a combination of the Copula and the LHS is needed to cope with both the
dependencies and to reduce the amount of model runs needed. LHSD transforms samples, such that they
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are not chosen randomly, but that the marginals U are spread uniformly over [0, 1] and at the same time
preserves the Copula made for the dependency links between the parameters. This uniform spreading of
the marginals after using the LHSD method is shown in Figure 6.13 for each input parameter.

These marginals are used to create the inverse CDF and from this making a histogram to estimate the
PDF for each parameter. This is shown in Figure 6.14, which illustrates the density distribution function
of actual samples used in the uncertainty analysis in this project. The red line in the �gure indicates the
continuous function of the normal distribution. The histogram with the chosen samples of the parameters
gives a good estimation of this function. In total, 188 samples are taken from the di�erent parameter
input. At the start of the sampling there were 200 samples, but the sample sets with impossible values
(negative values) were �ltered out.

Figure 6.13: Copula vectors chosen with LHSD, forming an almost uniform distribution. On the y-axis
the amount of samples within the interval and on the x-axis the intervals that divide the domain [0, 1].

Figure 6.14: Using the vectors made with LHSD to create an inverse CDF into a PDF. On the x-axis
the values of the parameters (x) and on the y-axis the PDF (f(x))

From Figures 6.13 and 6.14 above it can be seen that the method reduces the amount of samples, however
it has yet to be analyzed whether the correlation is still in tact. In Figure 6.15 the �ve pairs are set
out to each other, showing a histogram for each parameter and their joint scatter plot resembling the
multivariate probability function. It can be seen that the correlation is still in tact. The scatter plots
that show a downward slope of the correlation �t is negatively correlated, where a upward slope is a
positively correlation. The �gure in the bottom right shows a joint scatter of the parameters TauShields
and FrIM2SedS2, which are not correlated.
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Figure 6.15: The joint scatter plots of the 5 dependent pairs, corresponding to Table 6.3 and one plot of
two not correlated parameters (Bottom right), between TauShields and FrIM3SedS2.

6.3 Results

After the LHSD method was applied 188 sets of parameter input was found, which were used to run the
SPM model and obtain as much outputs of SPM concentrations for the year 2009 at every location in
time and space. The result of the uncertainty analysis are the 188 generated SPM output. In Figure 6.16
in the top �gure all time series of SPM output is given at the same location as has been used throughout
this entire chapter. It should be noted that this SPM time series does not look similar to the ones in the
�gures of the sensitivity analysis, as the used time step is 1 day for the visualization of the year. The red
line indicates the reference scenario where the base values are taken. In the bottom �gure the variability
as has been used in the previous section on sensitivity is visualized. In this �gure the spreading of the
output data, the mean and the reference scenario is shown. In the next section 6.4 Discussion it will
be further elaborated what the physical meaning of these graphs is at what this means on the realistic
representation of the values for SPM concentrations.

In this section the output will be assessed in such a way that the uncertainty is quanti�ed into a value
which can be used in the toolbox in the next chapter. The time series in Figure 6.16 are divided into 12
transects to show as an example in this section what happens on every location at every timestep for the
SPM concentrations. Figure 6.17 shows the histograms at these 12 transects, together with the average
value (black dashed line), the spreading from the average with 1 standard deviation (blue vertical lines),
the median value of the output (yellow dashed line) and the reference scenario (red dashed line).
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Figure 6.16: Time series of the SPM concentrations of the 188 runs, on the y-label SPM [mg/l] against
the reference scenario with the base values as input (red dashed line). Top: 188 realizations (blue lines).

Bottom: Average value of these runs (black dashed), with a con�dence band (grey area) and the
transects chosen at the �rst day in each month (purple dash-dotted line).

Figure 6.17: Histograms at transects as de�ned in Figure 6.16 of SPM results.

Using the information from the histograms, the distribution function that best describes the output is
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found using Quantile-Quantile plots (QQ-plots). A quantile is the percent points of a distribution. A
QQ-plot is a probability plot in which the quantiles of the theoretical probability density function are
plotted against the quantiles of the SPM output [Scott, 2007]. The QQ-plot calculates the coe�cient of
determination R2. This value indicates proportion of the variance in the dependent variable. In this case,
when the R2 goes to 1 it means that the distribution is well �tted. For the example only 1 histogram is
chosen to show the method of �nding the correct distribution to describe the SPM concentrations, the
histogram of December. Later in the section this method is applied on all the locations in the domain.
On this histogram the normal and log normal distributions are �tted. In the middle and right �gure
the QQ-plots for the normal and log normal distributions are shown, with on the x-axis the quantiles of
the functions and the y-axis the quantiles of the calculated values. For this example it can be seen that
the R2 of the log normal QQ-plot is higher than of the normal QQ-plot, meaning that the �t of the log
normal distribution is a better estimate of describing the SPM output.

Figure 6.18: Left: histogram of December transect, with a �tted normal distribution (red) and a
log-normal distribution (green), bins = 30. Middle: QQ-plot for a normal distribution, R2 = 0.9130.

Right: QQ-plot for log normal distribution R2 = 0.9642.

This method is applied over the entire domain, on each segment in each layer and over the entire year
with a time step of 1 week, to see which distribution �ts in most locations. Conclusion from this test was
that the log normal function is the best distribution to use to describe the SPM concentrations, because
in almost all locations and time steps this distribution had the best R2 value.

Concluded is that the log normal distribution the

Figure 6.19: Histogram of the December transect,
with the mode, median and mean values, showing

that the mode represents the data best.

best �t is for the concentration of SPM in the seg-
ments. This distribution has an µ which indicates
the location parameter and a σ for the scale pa-
rameter. These parameters are the average and
standard deviation (equations 6.1 and 6.2) of the
logarithm of the distribution. Figure 6.19 shows
the mean and the median of the normal distribu-
tion, where the mode is the value that is most of-
ten represented by the data. When the logarithm
of the data is used this value would represent the
mean. Therefore the mode is used in this study
for the indication of the SPM values, where the
uncertainty is represented by the scale parameter.
The di�erence with the normal distribution is that
the log normal distribution will not take any neg-
ative values into account. Which is also realistic
for this outcome, because the SPM concentrations
can not be below 0. For a normal distribution the
average value would be su�cient to use as the con-
centration value in the visualization to represent
the most likely value, for the log normal function
this would be the mode.
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6.4 Discussion

In this section the physical meaning and background of the results will be discussed and a validation is
made comparing the obtained model output with three types of data. The concentrations of SPM coming
from the SPM model are plotted against the originally used SPM concentrations, data from measurement
stations and data processed from the MERIS missions. These data sources are �rst explained in the next
sections and in the last sections the observations of these validation steps are discussed. Furthermore the
areas of high uncertainty in the model are pointed out and elaborated. From Figure 6.16 it is noted that
the reference scenario and the average outcome are not in line. The average scenario overestimates the
output in almost all locations. This is explained when looking at table 6.2, where the base value of the 10
parameters is given. These values di�er from the mean value of the ranges, and in all cases it is a lower
value. When looking at the equations that are solved in the SPM model (equation 5.2 to 5.6) it can be
seen that when these parameters decrease it will have a decreasing e�ect on the equation outcome. This
is the case for all the parameters, except the TaucRS1IM1. Furthermore from the last section the SPM
concentrations is estimated with a log-normal distribution and the mean value is changed to the mode
value of this distribution, decreasing the di�erences between the reference and the mode. This can be
seen in �gure 6.21 where the mode is shown in a black dashed line and the reference as a red dashed line
for four di�erent locations.

6.4.1 Validation of SPM model output

The originally used SPM concentrations are given by a segment function, which means that the SPM
concentrations are needed for each segment and for each time step [Deltares, 2014e]. In earlier models only
the IM1 fraction could be used and therefore the original data only contains this IM1 fraction. Because
this is only part of the total SPM values, these IM1 values will always be lower. This �le has a time
step of one day in which the IM1 values are represented. The data is plotted by the blue dashed line in
Figure 6.21. This IM1 data comes from two models, the PACE (DELWAQ-SPM_Waddenzee-PACE_j09
_v01) model for the slib concentrations in the Wadden Sea area and DELWAQ-SPM_Noordzee-ZUNO-
DD_j03-11_v02 for the rest of the North Sea [Arentz et al., 2012]. The input for GEM/BLOOM is
an combination of these models together with satellite data obtained from the MERIS missions [Perez,
2015].

Figure 6.20: Locations of 4 stations from Rijkswaterstaat (red) and the nearest found locations of the
MERIS data (green) and the nearest segment within the SPM model (blue).
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Using the ocean color retrieved by MERIS (MEdium-spectral Resolution, Imaging Spectrometer) pro-
vided SPM data in previous projects [El Serafy et al., 2007]. Where IVM's HYDROPT algorithm (van der
Woerd and Pasterkamp [2008] and for SPM explained in [Eleveld et al., 2007]) to estimate SPM con-
centrations from MERIS re�ectance. This data has already been calculated in previous study and could
therefore easily be used as a validation data [El Serafy et al., 2007]. It should be noted that from satellite
images only one value for SPM is calculated for the entire water column, because the image is in a 2D
space and therefore per location only one SPM value will be available. This means that the processes in
the vertical water column are merged into one value. However more realistic is that in the lower parts of
the water column more SPM is available (due to gravity and settling forces) and less in the upper parts,
however this and other processes can not be taken into account.

The measured data comes from the measurement stations of the waterbase from Rijkswaterstaat (Rijk-
swaterstaat [2016], Deltares [2013]). These measurements are from the Monitoring Waterstaatkundige
Toestand des Lands (MWTL). In Figure 6.20 the locations of the measurement stations used in this
section to validate the SPM concentrations are shown. There are many more measurement stations,
however the choice was made to use only these four stations, due to two reasons. Firstly, it was chosen to
have a station on all three parts of the domain: the rottmpt3 (Rottumerplaat 3 km from the coast) and
bochtvwtnd (bocht van Wattum north) both are situated on the coarse grid, while marsdnd (Marsdiep
north) is on the inter grid and the noordwk20 (Noordwijk 20 km from the coast) is on the aggregated
�ne grid. The second reason for this choice was that only a few stations contained data from the year
2009. Further more they all lie on interesting points in the area, where marsdnd is in an inlet where ebb
and tide are of great importance and will cause a continuous disturbance in water column regarding the
SPM concentrations. The noordwk20 station lies 20 km outside the coast, which, regarding the other
stations lies in a more stable o�shore position. bochtvwtnd lies in the estuary, which has a great in�uence
from the incoming tide and is therefore also highly dynamic. In Figure 6.21 the cyan colored squares
indicate the measured data on the dates available for that year. The data represents the concentration
of suspended matter in the water, this means all the organic and inorganic fractions present in the water
column, measured at the surface in mg/l [Deltares, 2013]. The comparison is made with the top most
layer of the SPM model.

In Figure 6.16 the SPM results of the uncertainty analysis are plotted against multiple validation data.
The black line indicates the mode of the 188 model outputs together, plotted with an uncertainty band
indicating the 95% con�dence interval of this data. The validation data is used to check is this black
line and its con�dence interval are approximating this data. The red line is the reference scenario where
the base values of that year were implemented to see if this reference case as has been used in previous
studies is within the con�dence bands, which it is. This was already expected because the base values
never represented an extreme value for the input parameters. The blue dashed line indicates the original
data from the sgf �le. This data does not follow the calculated data, underestimating the values at most
times. Concerning that the IM1 if only a fraction of the SPM data this is also as expected. Furthermore
the data does show a somewhat similar pattern, having peaks at the same locations. The data from
Rijkswaterstaat and the MERIS data are not continuous throughout the year and are therefore only
good for an indication of what the order of magnitude of the data should be. It should be noted that this
data also contains uncertainty (in the measurements) and is not taken into account in this validation,
because it is used for a general validation of the correctness. The MERIS data is missing for the Bocht van
Wattum. Conclusions that can be drawn on this validation is that in general the order of magnitude in
all locations are correct. Most data points lie within the con�dence interval, indicating that the estimate
of the SPM is correct. It should be noted that the model output has a time step of one day (starting from
01-01-09 at 00:00). Due to this the data points from either Rijkswaterstaat or MERIS will never be in line
with the model data and therefore a really accurate comparison can not be done. The in�uence of factors
changing on a smaller scale than diurnally are not completely taken into account. For further validation
of the model, the same method could be redone on a smaller period of time with a much smaller time
step.
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Figure 6.21: Validation for the SPM concentrations from the model, using the mode (black) and the
spreading (grey area), compared with reference from 2009 (red dashed), original data (blue dashed),
MERIS data (magenta squares) and Rijkswaterstaat data (cyan squares) at four locations within the

domain.
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Figure 6.22: Risk map visualizing high uncertainty regions.
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6.4.2 Locations of uncertainty

Using the quanti�ed uncertainties, a risk map can be made, by averaging the uncertainty of the entire
year and visualizing this on a 2D map. This is done for each layer and is shown in Figure 6.22. From
this information it can be concluded that uncertainty is very high in areas where the concentrations are
very high and where the processes are highly dynamic and dependent on multiple factors. For example
in the Wadden Sea area, where the tidal in�uence and local processes are very dynamic in time. In
Chapter 8 the physical background of the area is discussed in more detail, and here the link between
the high uncertainty and the physical processes are further described. However from Figure 6.22 it can
be concluded that in general the model has a low uncertainty in the o�shore areas. But in the complex
areas the model has some exceptions and these areas might need to be assessed again. One reason why
these areas contain more uncertainty might be because the bed load module (as described in Section
5.4) is not entirely complete. It is possible that the many factors in�uencing the SPM mechanisms at a
critical area are not correctly or completely taken into account. The dutch coastal region is in�uenced
by storm impact, eroding the coast. The waves in�uencing the hydrodynamic aspects could be another
source for the high uncertainty in these critical areas. From this study the critical areas can be pointed
out, however extensive research is needed to further validate and optimize the model.

To summarize this chapter: The SPM model gives a good estimation for the SPM concentrations in most
locations within the domain. However in critical areas where the uncertainty is very high, such as out�ows
of rivers and parts were the SPM processes are very dynamic. For the quanti�cation of the outcome of the
uncertainty analysis a log-normal distribution is used to estimate the 188 outputs. The characteristics
of this distribution, the mode and the spreading is used to quantify the concentrations of SPM and the
uncertainty into a value that can be used in the visualization in the next chapter. The SPM values with
this range of uncertainty is validated against measurements from Rijkswaterstaat, which is in all cases in
the same order of magnitude and mostly follows the pattern throughout the year. Another validation is
against the previously used IM1 data for the GEM/BLOOM model input. The same pattern throughout
the year is shown, however the SPM overestimates these values. This is explained to an extend by the
fact that IM1 is only a fraction of the SPM, however a big fraction and therefore it is also an indication
that the SPM concentrations are plausible and realistic. A last validation was done using SPM values
converted from satellite data. This gave a similar result as the measurements. Where a comparison is
very tricky, because the time instances do not overlap. For the general assessment of the model it can be
said that the model gives a reasonable estimation for the SPM values. The regions of high uncertainty
can be identi�ed using a top view projection per layer. From this map it is observed that the highest
uncertainty occurs in regions of highly dynamic and in�uenced by many factors, such as the out�ow from
a river or the tidal �ats of the Wadden Sea.



7 | Visualizing uncertainties

The toolbox developed in this study is used to visualize both data and uncertainty in a 3D environment.
In this chapter this visualization is presented and the di�erent functionalities are described. To explain the
method used for creating the toolbox, a case study is used: SPM concentrations in the Wadden Sea with
uncertainties coming from the parameters, as quanti�ed in the previous chapter. Section one describes
the aspects of visualizing SPM (or other model output) in a 2D and 3D environment. The second section
describes the visualization in the developed toolbox. The di�erent aspects are: visualizing uncertainty,
the cutplane, selection of a marker, time implementation and other features are described.

7.1 Visualization of SPM in the Wadden Sea

The SPM concentrations are calculated with the Delft-3D WAQ model for SPM (see Chapter 5 for more
details of this model) and are represented in Figure 7.1. The Total Inorganic Matter (TIM) [mg/l] in the
water column is calculated with the SPM model and gives a indication of the SPM in the di�erent layers.
The TIM is the total suspended inorganic matter in the water column, whereas SPM also includes organic
matter. However this organic fraction is very small, therefore the TIM is used as the indicator of the
amount of SPM in the water column. In this chapter TIM and SPM can therefore be interchanged.

Figure 7.1: Plan view of TIM [mg/l] in the Wadden Sea area at January 1, 2009 in the topmost layer
visualized, X- and Y-coordinates in RD [m].

The entire domain in the Delft3D-WAQ model is 3 dimensional and therefore, the data is best visualized
in a 3D environment, making the data for all segments available in one interface. The concentrations of
TIM are calculated in all 12 layers at every time step.

It was chosen to develop the toolbox using the programming language Python. With Mayavi ([Ra-
machandran and Varoquaux, 2011b]) an easy interaction and visualization of 3D data is made. This data
visualizer can be used within the Python environment. This visualization creates an interface in which
the 3D data is plotted. Figure 7.2 shows the visualization of the same data represented as in Figure
7.1. Per segment in the model output a marker on that location represents the segment, where the color
is the indication of the concentration of SPM at that point in [mg/l]. Further details on the technical
requirements to use this toolbox are described in Chapter 8.
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Figure 7.2: 3D environment of the TIM in the Wadden Sea area at a time step in February 2009, in all
segments visualized with mayavi.

7.2 Toolbox aspects

A still of the developed toolbox is presented in Figure 7.3, visualizing the SPM concentrations in the
Wadden Sea area. In this �gure the di�erent functionalities of the toolbox are shown, which are explained
in more detail in the next sections. The SPM concentrations are represented in the 3D environment (pane
A) by markers with colors indicating the amount of SPM. The colors indicate the amount of SPM and
corresponds with the colorbar. The white tint of the markers indicates the uncertainty of the calculated
concentrations. The red outline is the cutplane which makes it possible to make a cross section of the
area. Bar B shows the di�erent buttons, by which the animation can be started and stopped and the time
step is indicated. The last button draws the cross section at the location of the cutplane. When selecting
a marker in the 3D environment (by means of a mouse click), the bottom image changes and gives the
time series of the SPM concentrations at the location corresponding to the selected marker.

Figure 7.3: A still of the toolbox visualizing SPM concentrations in the Wadden Sea area. Top pane (A)
the 3D environment. Bar (B) containing buttons. Bottom pane (C) Time series of one selected location

(segment 6951).
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7.2.1 Visualization of uncertainty

As the representation of the concentrations without implementing uncertainty (Figure 7.1) can give a
biased representation of the system, it is also important to present data along with its uncertainty to make
knowledge-based decisions. In the previous section model output was visualized in a 3D environment.
From the literature study it was found that a combination of displaying both data and uncertainty is
possible by using di�erent properties of the markers indicating the data in a location. Therefore, several
methods such as: changing the size, shape, opacity, color hue, transparency, orientation or texture are
tested. Because of the limitations of the programs used, not all these options could be applied to visualize
the uncertainty and eventually it was chosen to use a combination of the characteristic of opacity and hue
to visualize uncertainty. Objects made in Mayavi are limited to only apply one scalar per object, therefore,
in the visualization one object with markers is used for the color according to the concentrations. Another
object to indicate uncertainty is also an object with markers, which are placed on the exact same location
as the other markers, is used to apply opacity over the markers. This object contains completely white
markers that are slightly larger than the markers of the �rst object, surrounding these markers entirely.
When applying an opacity to these second markers, the marker within (containing the concentrations
color) is visible with a white hue. The whiter the marker, the more uncertain the concentration value in
that location at that time step. This concept is illustrated in Figure 7.4, where only one color is used for
5 markers (blue), and the opacity of the surrounding marker is changed. The opacity is indicated by an
α, where 0 is complete opaque (only the blue marker is visible) and 1 is no opaqueness (only the white
marker is visible).

Figure 7.4: Example of the implementation of uncertainty in the toolbox. The color indicating a value
for the marker and the white hue indicates the uncertainty. From left (completely white) the

uncertainty is 100% to right (completely blue) where the uncertainty is 0%.

7.2.2 Cutplane

Within the visualization a cutplane is available, which is a plane that can be dragged through the
visualization. The cutplane clips the data, so only the data on one side of the plane is still visible. This
cutplane makes it possible to get more information on the inside of the 3D area. For projects that need
information on really speci�c locations it can be a very useful tool. The cross section is made by moving
the cutplane and clicking the button to create a plane corresponding to the cutplane. With this vertical
plane the layers from surface to bottom are displayed. On a wanted location it can make a cut of the
3D environment and after a cross-section of the area is displayed. The coordinates of the normal and
the origin of the cutplane object are used to calculate which markers are on which side. On one side
the markers are than cropped out from the entire domain, leaving the markers on the other side of the
plane.

Figure 7.5: Left: Placing the cutplane over the visualization by the user. Right: Close-up of the cross
section made.
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7.2.3 Marker selection for time series

Another aspect is the marker selection in the 3D environment. When clicking on one of the locations in
the domain, information on that location is displayed in the window in the bottom pane. This clicking
shows a time series of that location, together with the mean and the uncertainty through time, displayed
in a 2D graph. An example is shown in Figure 7.6, in which the selection of the marker and the time
series is shown. In the quanti�cation of the uncertainty just a value for the average and the uncertainty
are saved to the input �le for the visualization. Therefore the time series is a graph based on these values.
It is not feasible to store all the time series of the di�erent model runs, the toolbox would get very slow
if all these data needs to be processed every time a selection is made. Therefore just visualizing the
concentrations with the uncertainty in the time series is chosen.

Figure 7.6: The selection of a marker in the 3D environment in the top part of the �gure and the time
series belonging to that marker in the bottom part. At time step 20 (one time step is 2 days), in the

time series indicated by the blue vertical line.

7.2.4 Time implementation

An animation function is implemented to view the sequential time steps. In that way the visualization can
show the movement of SPM in the water column. With this time lapse the user can view the information
on SPM movement and see the connection with the surrounding cells. Normally a 2D visualization is
made for model output, such as the plan view shown in Figure 7.1 in the Quickplot tool of the Delft3D
GUI (Graphical User Interface) it is also possible to make a time lapse of the 2D plot. However in that way
the connection with di�erent layers is lost. Shortly, previous methods were limited in its representation
of a 3D environment in a 2D representation, which is incorporated in this method.

Every update of the time step changes the color and opacity according to that time step. In the time
series in the bottom pane a blue vertical line is used to also indicate the time step in this plot. There is a
start button to start the animation, where the time step increases 1 at the time. Consequently with the
stop button the animation can be stopped at all times. In a text box the time step is tracked. A time
step can be displayed manually by inserting a time step of choice in this textbox. This time animation is
visualized in Figure 7.7, where four timesteps are displayed, changing the markers accordingly.
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Figure 7.7: Part of the animation of the toolbox, four follow-up time steps of the 3D environment.

7.2.5 Other features

In the toolbox it is possible to change the observation angle in multiple directions. It is possible to pan
and zoom through the interface. Furthermore it is possible to translate, rotate, enlarge and move the
created objects (such as the markers, which are stored in one object, or the cutplane). This makes the
visualization very adjustable and easy to interact with. The area of interest can be looked from di�erent
angles which makes it possible to get much more information from this visualization than from the normal
2D visualization. Another feature of the toolbox is the colorbar, representing the amount of SPM per cell
in [mg/l]. It should be noted that this colorbar is set to have a range of [0, 250], and as a consequence
it does not scale to the values in time.

Figure 7.8: Built-in toolbar of the mayavi scene.

The Mayavi scene in which the 3D environment is created has an built-in tool bar, where more functions
are available to use for the toolbox. This tool bar is shown in Figure 7.8, where the numbers are an
indication for the buttons. Button 1 is an option to open the more advanced Mayavi pipeline, in which
the layout of the interface can be adjusted. More objects, �lters and other options are available from
there. For creating and editing the toolbox this is a useful tool, however this is not the case for users of
the toolbox. The buttons indicated by 2 are the ones to set the camera to a certain view along a certain
axis. Button 3 toggles the parallel projection. Button number 4 displays the axes on the environment.
Button 5 toggles the window to full screen and reverse this when clicked again. With button 6 a still can
be made and saved of the view and number 7 opens an extra setting menu.

7.3 Discussion

It is possible to create an interface where both model output in space and time can be combined together
with uncertainty, using color for displaying the concentrations and a white hue to visualize the uncertainty.
In this toolbox the entire 3D domain is visualized in one interface and using an animation the fourth
dimension of time is also taken into account. Di�erent tools are needed to help make the toolbox more
intuitive and easy to use, such as the cutplane for more in depth information on a certain location and
the selection of a marker to display time series per location.



8 | Physical background

Some physical background information on the behavior of SPM concentrations is needed to interpret the
toolbox. This is the main focus of this chapter to discuss the physical interpretation and to discuss how
this toolbox can be interpreted, using the study case of SPM in the Wadden Sea area. The interpretation
of the changing in the SPM concentrations in space and time can only be explained by the physical
background. The equations solved in the SPM model that give the outcome of the magnitude of the
di�erent fractions of inorganic matter in the domain are dependent on many di�erent variables, such as
the bathymetry, waves, �ows and discharges.

8.0.1 General behavior of SPM

SPM are the small solid particles in the water column that remain in suspension [El Serafy et al., 2007].
A distinction can be made between �ne sediments and coarse sediments, which correspond to the particle
fractions within the model. They are stirred up from the bottom by waves, which creates shear stresses
onto the sea bed. Oscillatory motion and turbulence created near the bed bring the particles into the
water column and oppose the settling velocity, resulting in the particles to remain in suspension [Bosboom
and Stive, 2015]. Due to advection the particles are transported with currents. When the particles are
lifted from the sea bed into the water column it is called resuspension, while the sedimentation occurs
when the particles settle back to the seabed from the water column. When the water movement is slow
enough the gravity forces (settling velocity) will take over and give the matter chance to sink back to
the bottom of the water column. The top layer of the seabed is very dynamic and sedimentation and
resuspension occur often, creating an interaction between water column and seabed. Higher waves cause
stronger forces on the bed, resulting to cause more erosion, while bioturbation (the reworking of the
particles by animals and plants on the bed) let the particles stay permanently at a location [Gayer, 2009].
With this basic behavior of the SPM the general behavior in the research domain can be explained.

In Figure 5.9 the processes of erosion (E) and deposition (D) are shown as they are integrated in the
numerical model. These processes are simulated with the equations 5.2 and 5.6.

8.0.2 Location speci�c behavior of SPM

From the previous section it became clear that all the transport mechanisms of SPM are induced by
water movement. When looking in the water column the concentrations of SPM will be highest near the
bed, because of gravity and thus the settling of the particles. Due to the water movement towards and
along the coast, the in�uence of salinity gradients (strati�cation) and the tide, the SPM concentrations
increase drastically, coming closer to the coast [Arentz et al., 2012]. Looking at the toolbox, this behavior
is clearly visible, where o�shore the concentrations are very low (blue) while the two areas in the circles
have very high values, these are the Dutch coast and the Wadden Sea area. In Figure 8.1 a still of the
toolbox is shown with SPM concentrations. It can be noted that further o�shore the amount of SPM is
low, and going almost to zero at most locations. As mentioned is SPM transported by processes in the
water column. Further o�shore the waves do not a�ect the bed signi�cantly and the particles are not
suspended into the water column. The behavior in the two areas are explained shortly below, combining
the behavior of SPM to the speci�c location.

53



Chapter 8. Physical background 54

Figure 8.1: Highlighted are the areas with high SPM concentrations. The area in the red circle is the
dutch coast. The area in the orange circle is the Wadden Sea area (Dutch and German part).

The Dutch coast is the area within the red circle, see Figure 8.1. Due to an alongshore current near the
Dutch coast keeps the SPM in suspension, and transports it along the coast. However a source is needed
to keep enough SPM in the system. The main source of SPM comes from the Rhine ROFI (Region
Of Fresh Water In�uence). SPM can also come into the water column due to erosion of the shoreline
and transport mechanisms created by waves or winds. SPM disappears from this part of the system
towards the Wadden Sea, when transported with the longshore current northwards. Furthermore, SPM
can disappears from the water column and be deposited at the shore or at other coastal structures, or
when it is transported with an undertow o�shore. Sediments are furthermore extracted to be used in
nourishments elsewhere, and therefore human activities could also be a sink for the SPM [Bosboom and
Stive, 2015]. From the plume of suspended matter created by the Rhine ROFI into the North Sea, the
SPM is transported along the Dutch coast by a long shore current, which is created due to the Coriolis
e�ect. This e�ect de�ects the out�ow in a anti-clock wise direction (in the Northern hemisphere), resulting
in the longshore current along the Dutch coast in the Northwards direction [van der Hout et al., 2015].
This creates high concentrations of SPM near the coast. When looking at the vertical water pro�le, SPM
concentration tend to be higher in the lower parts, near the bed, due to gravity . The movements stirring
up the sediments are greatly in�uenced by the strati�cation of the fresh river water from the Rhine and
the ocean water. A pycnocline is established when the more dense river water �ows underneath the less
dense ocean water. Due to this strati�cation the turbulent motion near the bed is trapped underneath
this pycnocline and therefore the suspended matter is shut down to the lower regions [Pietrzak et al.,
2011].
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Figure 8.2: A cross section near the Dutch coast, to the left (o�shore) very low concentrations of SPM
are visible, near the shore the concentrations are high, in that part a very clear distinction is seen in the

surface layers (low concentrations) and the bottom layers (high concentrations).

The hydrodynamic forces are not constant through time, but change in direction and magnitude, in�u-
encing the behavior of the SPM through time. For example the spring and neap tide cycle changes the
in�uence of the SPM plume from the river on the long shore current. The extend to which the underlying
fresh water �ow is present is larger in the neap tide cycle, than in the spring tide. In this toolbox it is
di�cult to see this in�uence, because of the time steps chosen (1 day) however when looking at the �gure
of the locations of uncertainty, it can be seen that a large plume near the out�ow of the river has a larger
uncertainty, indicating that the processes occurring there are more di�cult to calculate. From this it can
be concluded that the processes of the spring and neap tide are taken into account in the model, however
other data sets are needed to investigate these and other processes further.

The Wadden Sea area is a large tidal �at in the northern parts of the Netherlands. The Wadden islands
create multiple tidal inlets in the system. This area is highly in�uenced by the tide, during high tide
the water �oods the area and during ebb the water �ows out again. These constant �ows transport
the sediments around in the Wadden Sea and in the inlets. Therefore, the SPM in the water column is
constantly relatively high (from Figure 8.1, the entire area has a concentration of 75 mg/l or higher, also
around the outsides of the Wadden islands). In the time between ebb and �ood, called slack tide, the
water is more or less stationary, giving the sediments suspended time to settle. Sources of SPM are the
SPM coming from the long shore current along the Dutch Coast, and the river out�ows near the Wadden
Sea (see locations of rivers in Figure 5.6). The in- and out�owing currents create a distinct bathymetry
in the area, creating gullies with strong currents. In Figure 8.3 the area is shown on January 1st 2009.
In this �gure it can be seen that the gullies indeed visible and have a low concentration of SPM, due to
the strong current.

Figure 8.3: Wadden Sea area on January 1st 2009.
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8.1 Summary

In this chapter the basic processes of SPM are discussed, in order to validate if the processes known to
happen are captured by the model. From this it can be seen that the expected processes are indeed visible.
Processes that are time dependent, such as spring and neap tide di�erences are harder to di�erentiate and
could be interesting as a topic for further studies. The regions where the model create the most uncertain
values can be related back to the physical background. Areas with low concentrations (o�shore) have a
very low uncertainty, where areas near the coast have a much higher uncertainty. Especially near the
out�ow of a river or on the tidal �ats of the Wadden Sea. The relation between the uncertainty and these
critical areas, where the SPM concentrations are in�uenced by many di�erent factors can be related back
to possible sources of inaccuracy. First of all it could be possible that the equations 5.2 and 5.6 for the
deposition and erosion �uxes, describing the bed load module [Van Kessel et al., 2011] do not completely
incorporate all processes. Secondly it is possible that the main driving force, the hydrodynamics are
not completely correct. Where SWAN is used to recalculate the wave �eld for the entire domain, using
data from buoys, it can very well be that due to measurement uncertainty or gaps, not all processes are
incorporated. Where the erosion of the Dutch Coast is heavily in�uenced by the storm surges, and wind
driven waves, it can not be guaranteed that these processes are incorporated when using non-continuous
data from wave buoys.



9 | Discussion

In this study it has been shown that by quantifying the output and uncertainty from a numerical model,
this information can be combined into a generic toolbox to be easily accessed for management purposes
concerning ecosystems. Model output can give information on speci�c indicators for an area of interest,
such as ecological valuable areas. Where the uncertainty gives extra information on how to interpret
these result and to what extent a numerical model is useful.

The Wadden Sea is used as a case study in this research to develop this generic toolbox and to assess
the uncertainty of a numerical model describing the turbidity in the area. The turbidity is modeled in
the concentrations of Suspended Particulate Matter (SPM), using an existing Delft3D-WAQ model [El
Serafy et al., 2013]. The SPM blocks the underwater light and thus in�uences the algal bloom, which
is one of the determining factors for the water quality in the area [Marencic, 2009]. A GEM/BLOOM
model exists for calculating the indicator for algal bloom, chlorophyll-a concentrations, which has been
calibrated and validated (Los [2008] and Blauw et al. [2009]). The SPM model is already calibrated
[El Serafy et al., 2013], however in this study the model setup has changed and a numerical model is
introduced for the input of SPM. To assess what the new uncertainties are that this model brings into
the system, a sensitivity analysis showed that the initial �le (�le including the initial conditions of the
substances in the model for each segment), the waste loads (SPM discharges from the rivers for each
time step) and the bottom shear stresses induced by ships did not have a signi�cant in�uence on the
SPM values. From another sensitivity analysis [El Serafy et al., 2013], it was found that the parameters
did have a major in�uence. In total there are 71 parameters present within the model, however from
this study 10 parameters were identi�ed to have the most in�uence. These 10 parameters are present in
the erosion and deposition �uxes describing the behavior of SPM. It was chosen to use these parameters
in an analysis to quantify the uncertainty in the model.The SPM is calculated with equations for the
erosion and deposition �uxes from the bed load module, as described by [Van Kessel et al., 2011]. The
parameters in these equations introduce uncertainty within the model.

The uncertainty analysis is done using a Latin Hypercube Sampling with Dependence [Meszaros, 2016], to
include the dependencies between parameters and to reduce the amount of model runs needed. It should
be kept in mind that in this way the amount of runs is reduced drastically and that the outcome will be
an estimation of the reality. From this analysis the results were validated and conclusions could be drawn.
The model gives a reasonable estimation for the SPM concentrations in most locations within the domain.
However in critical areas where the uncertainty is very high, such as out�ows of rivers and parts were
the SPM processes are very dynamic. For the quanti�cation of the outcome of the uncertainty analysis a
log-normal distribution is used to estimate the 188 outputs. The characteristics of this distribution, the
mode and the spreading is used to quantify the concentrations of SPM and the uncertainty into a value
that can be used for the toolbox. The SPM values with this range of uncertainty are validated against
measurements from Rijkswaterstaat, which is in all cases in the same order of magnitude and mostly
follows the pattern throughout the year. Another validation is against the previously used IM1 data for
the GEM/BLOOM model input [Blauw et al., 2009]. The same pattern throughout the year is shown,
however the SPM overestimates these values. This is explained to an extent by the fact that IM1 is only
a fraction of the SPM. Though it is a major fraction of the SPM and therefore it is also an indication
that the SPM concentrations are plausible and realistic. A second validation is done with a comparison
of SPM values obtained from satellite images from the MERIS missions. Conclusions that can be drawn
on this validation is that in general the order of magnitude in all locations are correct. Most data points
lie within the con�dence interval, indicating that the estimate of the SPM is correct. It should be noted
that the model output has a time step of one day (starting from 01-01-09 at 00:00). Due to this the data
points from either Rijkswaterstaat or MERIS will never be in line with the model data and therefore a
really accurate comparison can not be done. The in�uence of factors changing on a smaller scale than
diurnally are not completely taken into account. A last validation was done using previously. The regions
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of high uncertainty can be identi�ed using a top view projection per layer. From this map it is observed
that the highest uncertainty occurs in regions of highly dynamic and in�uenced by many factors, such as
the out�ow from a river or the tidal �ats of the Wadden Sea.

Data for concentrations and for uncertainty need to be merged together in the toolbox. This means that
there are two distinct characteristics needed to cope with both data sets. The method used to visualize
uncertainty in this study is using the color values for the concentrations and white hue values to display
uncertainty. From the literature study it was found that there are more ways to display the uncertainty,
such as opacity, shape, size, texture, orientation or a blur [Baart, 2013]. By using the programming
language Python and in this study markers to visualize the concentrations in the water column, some
restrictions are encountered. A blur can not be coped with in the Mayavi objects. Furthermore, things
as shape or texture are discrete, and not every distinct value of uncertainty can be shown in the toolbox,
due to the limitations of the amount of shapes and textures. The orientation could show the continuously
distributed uncertainties, however this gave a very chaotic e�ect on the visualization. The size of the
markers was another option, however the markers are not evenly spread over the area, due to the di�erent
grids, and in the z-directions there is already overlap with the next marker. When changing the size the
visualization got really messy and could not provide a clear overview of the uncertainty. The opacity
was tested with discrete values, which made it clear that using this option that if the markers got too
opaque, the markers behind it would be seen through them and the real value of the markers got distorted.
However this method was by far the most useful, but the restrictions in Python for the markers do not
allow to give the markers separate values for both color and for opacity, because these two parameters are
linked to each other in a Look-Up Table (LUT) where Red, Green, Blue, Alpha (RGBA) values are de�ned
in a specif range. Therefore the marker can only cope with one scalar. A solution was to make a new
LUT, where for every marker the concentration and according uncertainty are saved for a value for color
and opacity. However this was so devious and made the toolbox very slow. Therefore a similar solution
was found using color for the concentrations and the opacity for uncertainty. The original markers are
given a color for their concentrations, without opacity. Using a second marker, slightly larger than the
original marker and completely white, and giving an opacity value accordingly to the uncertainty. In that
way the two problems are solved, the devious solution is bypassed and furthermore the marker itself is
not opaque, blocking the colors of the marker behind it.

Figure 9.1: Still from the 3D environment in the toolbox, visualizing SPM concentrations [mg/l] and
uncertainty.

Using the methods described a toolbox is developed in which the model output and uncertainty is visu-
alized together. The turbidity and its uncertainty are visualized in one interface, see Figure 9.1. When
combining the knowledge gained from the uncertainty analysis with the information on the SPM values
di�erent results are visible. Expected hydrodynamic processes in�uencing the SPM concentrations are
visible in the toolbox. Processes that are time dependent, such as spring and neap tide di�erences are
harder to di�erentiate and could be interesting as a topic for further studies. The regions where the
model create the most uncertain values can be related back to the physical background. Areas with low
concentrations (o�shore) have a very low uncertainty, where areas near the coast have a much higher
uncertainty. Especially near the out�ow of a river or on the tidal �ats of the Wadden Sea. The relation
between the uncertainty and these critical areas, where the SPM concentrations are in�uenced by many
di�erent factors can be related back to possible sources of inaccuracy. First of all it could be possible
that the equation describing the bed load module [Van Kessel et al., 2011] do not completely incorporate
all processes. Secondly it is possible that the main driving force, the hydrodynamics are not completely
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correct. Where SWAN is used to recalculate the wave �eld for the entire domain, using data from buoys,
it can very well be that due to measurement uncertainty or gaps, not all processes are incorporated.
Where the erosion of the Dutch Coast is heavily in�uenced by the storm surges, and wind driven waves,
it can not be guaranteed that these processes are incorporated when using non-continuous data from
wave buoys.



10 | Conclusions and recommendations

10.1 Conclusions

In this section the conclusions of this research are summarized and the main question will be answered.
This will be done by summarizing the answers to the subquestions which were found throughout the
chapters and connecting them with the discussion points described in the previous chapter.

10.1.1 Subquestions

What information is useful to decision makers?
A combination of two aspects are important and useful to decision makers and for creating the toolbox.
Firstly the information on what a decision maker wants from such a toolbox is needed. This is the
information on the water quality in the Wadden Sea through time. Secondly, the information on the
problems within an PA is important. The water quality (regarding eutrophication) in the Wadden Sea
is described by the indicator of chlorophyll-a concentrations in the water column. One of the main
factors in�uencing the chlorophyll-a is the Suspended Particulate Matter (SPM), which in�uences the
light intrusion in the water column and therefore reduces eutrophication. Chlorophyll-a and SPM are
therefore important concentrations, which are calculated using numerical models. For this study the
focus lies on SPM, because the in the model structure used to calculate the water quality th

What are the important uncertainties within the regarded model structure and how can
they be identi�ed?
The chlorophyll-a concentrations are calculated with a Delft3D-WAQ GEM/BLOOM model, where the
SPM input is calculated with an Delft3D-WAQ SPMmodel and the hydrodynamical input with a Delft3D-
FLOW model. These models are built and calibrated in previous studies, therefore many sources of
uncertainty are already addressed. In previous studies the SPM input came from satellite images, in
this study it is investigated to see if this SPM model can be used for the input of the GEM/BLOOM
model. Therefore the uncertainty of this SPM model is yet to be addressed. Throughout the entire
model structure many di�erent uncertainty sources can be found, coming for example from: model input
and inherent uncertainties. A selection is made to narrow the uncertainty sources to the ones that have
yet to be assessed. The used SPM model has been the topic of many di�erent studies, and is already
calibrated to reduce inherent uncertainty, thus the remaining uncertainty sources are the ones originating
from the input. This includes: hydrodynamical input, the parameters in the constants �le, waste loads
(substances in the river discharges), shear stresses induced by ships and the initial map �le (initial value
of the substances).

How can the uncertainties be quanti�ed into values that can be used in the toolbox?
To do an uncertainty analysis identi�ed sources need to be further reduced to only cope with one source,
this is done using a sensitivity analysis on the identi�ed input �les. Not all �les can be coped with,
otherwise the amount of computational time needed would be too much for only one project. The
hydrodynamical input was not taken into account, because the hydrodynamic model has a computational
time of a few days. The sensitivity analysis is used to investigate the in�uence of the Waste loads, the
stresses induced by ships and the initial map �le. Neither the Waste loads nor the shear stresses induced
by ships introduced many uncertainties. Even if the stresses induced by ships did have a great in�uence,
it would not be realistic to use this parameter for the uncertainty analysis, due to its correlation with
the hydrodynamics. The initial map �le introduced a large variability in the output. To cope with this
variability a stable SPM �eld is needed. By rerunning the model using the restart �le of the model output
as the initial �le. The remaining �le is the constants �le, on which a sensitivity analysis was already
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done in a previous study [El Serafy et al., 2013], in which the separate parameters were assessed. From
this study 10 most in�uential parameters were found: TauShields, FactResPup, VSedIM1, FrIM1Sed2,
VResIM1, TaucRS1IM1, VSedIM2, FrIM2Sed2, VSedIM1 and FrIM1Sed2.

The uncertainty analysis on these parameters is performed using a Latin Hypercube Sampling with
Dependence. This method includes the correlation between the parameters and reduces the amount
of model runs needed for an accurate uncertainty assessment. Where a random sampling would need
thousands of runs, the LHSD eventually 188 runs are done for calculating the SPM concentrations in the
entire domain for an entire year. The results of these concentrations resembled a log normal distribution.
From this distribution the location parameter (the mode, the value that is represented most often) is
used to indicate the estimate of the SPM concentrations and the scale parameter is used as an indication
for the certainty of this concentration. The output is validated with in-situ measurement data from
Rijkswaterstaat, SPM data used as input for the GEM/BLOOM model in previous studies [Blauw et al.,
2009] and SPM obtained from MERIS satellite images [Eleveld et al., 2007]. From this validation it
could be observed that the data resembles the measurements in most cases and were always in the same
order of magnitude. The input �le for the GEM/BLOOM model consisted of only the IM1 fraction of the
particulate matter and therefore is an underestimation for the SPM, however from this �le it could also be
observed that the order of magnitude was in all cases the same. Concluded is that the SPM model gives
a good estimation and can be used as an input for the GEM/BLOOM model in future studies.

How can the model output together with the quanti�ed uncertainties be visualized in a
toolbox?
To answer this question, two variables, model output and its the uncertainty need to be displayed together
in one toolbox. At every location in time a grid cell changes value for concentration and uncertainty.
Chosen was to use a marker per grid cell to visualize the data for every grid cell, which enables it to
the incorporation of the 3D character of the model domain. The characteristics for these markers can be
used to display the two variables, concentration and uncertainty. In the developed toolbox color is used
to display the concentrations and a white hue indicates the uncertainty of this value. In that way all the
desired values can be displayed in one interface, at every location in the 3D grid. Using an animation the
values can change through time and therefore this fourth dimension is also coped with.

How can the toolbox be used?
The toolbox is a tool that is easy to use with certain background on technical requirements and physical
processes. With some understanding of the basic processes in which the deposition and erosion of SPM
works the toolbox can be interpreted. Depending on the data used in the toolbox, the physical interpre-
tation changes. In Appendix B B, the User manual more details on the technical background is explained
and how the toolbox can be opened, and used.

10.1.2 Main question

How can uncertainty from a SPM model as a driving force for a GEM/BLOOM model be
identi�ed, quanti�ed and visualized to help decision makers?
The identi�cation of uncertainties comes from literature studies on calibration reports for the regarded
model. The quanti�cation is done by using an uncertainty analysis, in which dependencies are integrated
and a sampling technique is used to reduce the amount of model runs needed. This analysis results in an
ensemble of multiple values for SPM per location per time step. With a log normal distribution function
this output can be estimated. The mode of this function results in a value for SPM concentrations and
its standard deviation for uncertainty. The visualization is done by developing an interface in which
per segment an object, such as a marker, is placed. The characteristics of this marker can be used to
display the di�erent values, color for the SPM value and a white hue for the uncertainty as found in the
quanti�cation. The validation of the SPM output shows that this SPM values van further be used as an
input for the GEM/BLOOM model.

10.2 Recommendations

This research combines an uncertainty analysis (on a SPM model) and the development of a toolbox.
However a method is found and conducted, some aspects of this method could be a good base for further
research. These points are addressed in this section.
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In this study a generic toolbox is developed that can be used for di�erent data, dependent on the area of
interest of a project. For example, when more detailed information of the SPM processes are required.
The SPM concentrations are dependent on the ebb and tide cyclus, therefore it would be very interesting
to investigate the model on a smaller time step. Now the spring en neap tide are neatly captured within
the model output, because this simulation was for an entire year it was not feasible to use a smaller time
step, because of computational intensity and storage problems. However when using a smaller time step,
one can also reduce the total model time and only assess a part of the year. Another study case could
be to use the work done in Meszaros [2016], where a ensemble forecast was done on the GEM/BLOOM
model. Calculating the chlorophyll-a concentrations in the Wadden Sea area. Using this data could help
the decision makers for the protected area to make knowledge-based decisions.

For further optimizing the SPM calculations in the numerical model, the sources contributing to the
extreme uncertainties can be further investigated. From this study it was concluded that either the bed
load module or the hydrodynamic input are not yet optimized in critical areas. And further studies could
show what is missing in these regions.

In some cases it might be more interesting to visualize the di�erent layers of the model in the z-direction,
creating top views. This is done using the cutplane, but enabling the cut in the z-direction. Using this
method the visualization creates a 2D top view of the model. This view can also be used to not only
display a risk map of the area, where colors are used as an index of the risk in the area for example three
colors (green = low risk , yellow = neutral, red = high risk). This risk can be linked to the concentrations
of SPM or chlorophyll-a, where a certain threshold is exceeded. This might be a nice extension of the
toolbox.

Certainly the output gives a good representation of the spreading of the SPM in the area, however decision
makers need to make decisions for future scenarios based on these results. Therefore it could be interested
to use this toolbox to visualize information from a forecasting study. Or use the model set up to model
a certain human intervention, such as an extra discharge with a large amount of SPM into the water,
simulating a deposition of a company into the area. This could help in the process of decision making
for speci�c projects.

Instead of using markers for every segment, another option is to use a grid, where the nodes per cell are
connected to each other. In that way every cell will have its own shape, but the total grid would be
continuously divided, creating a more intuitive �eld. However this would require a lot more calculation
for �nding the nodes and connecting these into a grid for the visualization. This combined with the fact
that it was not proven that this representation would improve the toolbox were reasons not to test it in
this thesis.



List of Concepts

Concept Description
Arghyd Program in Delft-3D for the aggregation of a grid.
CDF Cumulative Density Function, a summation of the likelihood of a certain value.
Copula A multivariate distribution function with uniform marginals [Schmidt, 2006], which can in-

corporate the correlation between the parameters described in the multivariate distribution.
Delft-3D FLOW 3D/2D modeling suite for integral water solutions. Simulation of multi-dimensional hydro-

dynamic �ows and transport phenomena, including sediments [Deltares, 2014c].
Delft-3D WAQ Water quality and aquatic ecology modeling suite [Deltares, 2014a].
Delft-3D WAVE See SWAN.
DDcouple Program in Delft-3D for the domain decomposition of di�erent grids.
GEM/BLOOM The Generic Ecological Model (GEM) [Deltares, 2014a] and the phytoplankton module

(BLOOM) of the Delft-3D WAQ model [Blauw et al., 2009].
IM Inorganic Matter, which is denoted with a fraction number (IM1, IM2 or IM3) describing a

fraction of the Total Inorganic Matter, namely the coarse (IM1, diameter 40µm), medium
(IM2, diameter 15µm) and the �ne (IM3, diameter 1µm)sediments (in [g]).

LHS Latin Hypercube Sampling, strati�cation of a CDF to a nearly random sampling of a input
parameter.

LHSD Latin Hypercube Sampling with Dependence [Meszaros, 2016], name of the method used to
include the LHS into the Monte Carlo simulation and the dependencies between the input
parameters.

Meris MEdium-spectral Resolution, Imaging Spectrometer, satellite mission used for obtaining
SPM values.

Monte Carlo Method to do an uncertainty analysis, simulating physical possible input multiple times.
PDF Probability Density Function, a function describing the likelihood of a value describing a

parameter.
PPF Percentile Point Function, is the inverse of a CDF.
Sentinel Satellite missions of ESA (Europian Space Agency) used to obtain for example SPM data.
Segment Computational volume in the Delft3D models.
SPM Suspended Particalute Matter is the total of suspended particles, organic and inorganic in

the water column, causing the turbidity.
SWAN Simulating WAves Nearshore, which is a third generation wave model in the Delft3D-WAVE

environment [SWAN team, 2016].
TIM Total Inorganic Matter present in the water column.
ZUNO-DD ZUdelijke NOordzee with Domain Decomposition, indicating the total grid, including the

coarse, intermediate and �ne grid for the Southern Northsea, as is used in the numerical
models.
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A | Project structure

This appendix gives detailed information about the structure of the model set up. In Figure A.1 the
model structure is visualized.

Figure A.1: Structure of the di�erent models, �les and processes.
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Figure A.2: Legend by the model
structure in Figure A.1.

In the �ow chart a distinction is made between di�erent steps in the
process. The legend in Figure A.2 shows what these di�erent boxes
represent. The circles are programs used for the di�erent steps, the
squares indicate all the �les that are output from these programs
and input for next models. For more information on the processes
and the output of the di�erent models see Chapter 5.

Hydrodynamic model
First of all the hydrodynamic model, which is a component of
Delft3D-FLOW, needs to be run to get the information on the hy-
drodynamic processes, which is a driving force for the SPM and
GEM/BLOOM models. This model uses the meteo-input, dis-
charges and input data (such as depths, boundaries, dry points etc) for each of the underlying grids (the
coarse, intermediate and the �ne grid). From this model the output was data on hydrodynamics.

Agrhyd
To use the data �les obtained from the hydrodynamic model for the next step, the SPM model in Delft3D-
WAQ, some adjustments needed to be made. The SPM model uses measurement input data (such as
the initial conditions �le) which is de�ned on a di�erent grid. This grid consists out of the same coarse
and intermediate grid as is used in the hydrodynamic grid. But the �ne grid is aggregated 2x2. In other
words in the �ne grid 4 cells in each layer is combined into 1 cell, see Figure A.3. This aggregation is
done by using the program Agrhyd on the �ne grid.

Figure A.3: 2x2 aggregation of the �ne grid.

DDcouple
Another step that has to be taken before the SPM model can run with the hydrodynamic output is the
coupling part. The hydrodynamic model has a domain decomposition between three di�erent grids and
therefore also the output will be in three di�erent groups of �les. With the program DDcouple these �les
are coupled together and only one set of hydrodynamic output becomes available, which corresponds to
the grid in the SPM model.

SPM model
This model is set up in the Delft3D-WAQ environment. It requires a di�erent di�erent set of inputs,
mainly on the forcings coming from the hydrodynamic processes. Also the initial �le on the inorganic
matter and the shear stresses by ships is needed. From this model the data on Total Inorganic Matter
(TIM) is calculated, which is used as one of data values to test the visualization.

GEM/BLOOM
The model to calculate the other substance that is used for the visualization, is the GEM/BLOOM model
which is set up in the Delft3D-WAQ environment. Similar to the SPM model, this model needs input
from the hydrodynamic model, but also information on the meteo data, boundary conditions, grid layout
and an initial conditions. Special of this model is the input of SPM concentrations, which comes from
the SPM model. The output is the chlorophyll-a concentration, which is the second data set used for the
visualization in this thesis.

Conversion SPM
Before the output of the SPM model can be used in the GEM/BLOOM model, the data needs to be
converted to the correct �le format to be accepted by the GEM/BLOOM model. GEM/BLOOM expects
an include �le (*.inc) to describe the forcing. Therefore a program is needed to convert the SPM data to
this format.

Output data to netcdf �le
For the visualization the outputted data needs to be easily accessible. However the .map �le created by
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the Delft3D models is a binary �le which does not have a structure that can be easily used without the
Delft3D-QUICKPLOT environment. Therefore it is chosen to convert this �le to a netcdf (*.nc) format in
which the information on longitude, latitude, depth and the required substances is stored. This program
was already existing in form of Python code, but is was just a basis program. Much adaption was needed
to get all the information on the segments in all layers, in multiple time steps and multiple substances
from the map �le.

Assessing variability and uncertainty
When the data is gathered and can be used in the Python environment a new program is written in
Python to assess the variability and uncertainty. Because many model runs are required to give an
indication of the uncertainty and the variability there are lots of output �les, and after conversion a lot
of netcdf �les. However for the visualization only a mean value of the values in these �les is needed to
give an indication of the SPM and the uncertainty is therefore given by just one value in time and space
for every location in th domain. This conversion step is needed to only have one �le that will be used for
the input of the visualization in the next step.

Visualization
This last step is to actually visualize the data together with the uncertainty in a 3D environment using
Python. By means of the previous steps all data is neatly stored and can be accessed in the interactive
visualization.



B | User manual

This appendix is a short user manual for the setup of the toolbox. The technical background is elaborated
in which the requirements for using this toolbox are explained. The toolbox is created with the program-
ming language Python, combining many di�erent packages and methods, which are described shortly in
this section. Technical requirements to use the code are given, as are the requirements for input and the
data �les. Furthermore explanations are given on the di�erent event handles in the interface and how to
use the toolbox.

B.1 Technical requirements

As mentioned, the code for the toolbox is written in a Python �le <*.py>. This code can be run in
any Python environment, for example Spyder (Scienti�c PYthon Development EnviRonment). In this
code many standard installed libraries are used, as Numpy and Matplotlib. However for the interactive
parts, the 3D environment and the graphical objects some extra libraries are needed. In table B.1 a short
overview of the needed libraries is given.

Table B.1: Software and libraries used for the visualization together with their functionalities and links
to their website for more information (adapted from Ramachandran and Varoquaux [2011a]).

Function Link
Python Open-source fast and easy to use programming lan-

guage.
https://www.python.org/

Mayavi 3D scienti�c data visualization and plotting in
Python. Used to create the 3D environment and in-
terface.

http://docs.enthought.com/

mayavi/mayavi/#

VTK Visualization ToolKit: general-purpose, open-
source, visualization and graphics library for Python.
A pipeline architecture used by Mayavi, where the
output of one element is the input for the next, where
the elements are connected in serie. In this toolbox
it visualizes the data.

http://www.vtk.org/

Traits The Traits library extends Python object attributes
and give them extra characteristics: initialization,
validation, delegation, noti�cation and visualization.
With these Traits interaction is enabled in the tool-
box, e.g. when a change in a Trait is noti�ed, it
enables another element to initiate.

http://code.enthought.com/

projects/traits

TVTK Traited TVTK provides a traits enabled version of
VTK, which wraps around VTK objects and provide
a convenient Pythonic API.

http://docs.enthought.com/

mayavi/tvtk/README.html

B.2 Input

The toolbox is based on two input �les, one for the information on the x-, y-, and z-coordinates of the grid
and the other on the information of the concentration and the uncertainty. Both �les are stored as NetCDF
�les (*.nc). The depth �e should contain three variables: 'lon' (for longitudinal information), 'lat' (for
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latitudinal information) and 'LocalDepth', representing the x-, y-, and z-coordinates of all the segments
in the domain. These coordinates do not change through time. The �le with the concentrations should
contain the variables 'mean' representing the average values of the concentrations from the uncertainty
analysis and the 'var', representing the variance of spreading in the output, which will be used as the
range of uncertainty in the visualization. This variance is stored as one standard deviation from the
average value. The shape of the arrays in which the values are stored should be equal. For the �le with
concentrations another dimension is implemented for the time.

B.3 User keys

The interface that is created has many functionalities, which can be used with certain proceedings of the
mouse. The functionalities are all described in Table B.2. In Chapter ?? more information is given on
what these functions mean and where they can be used for.

Table B.2: Important user keys and functions of the toolbox.
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