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Abstract
Accurate and robust vehicle state estimation is important for proper operation of vehicle control systems.
For lateral stability control accurate estimation of the Vehicle Sideslip Angle (VSA) is of utmost impor­
tance. This thesis aims to develop an accurate and highly robust model to estimate the VSA. Common
vehicle sensors such as the Inertial Measurement Unit (IMU), Global Positioning System (GPS) and steer­
ing angle sensor are used to provide measurements of vehicle states that are relatively easy to directly
measure. Additionally, wheel bearing strains measurements are collected by the Load­Sensing Bearing
(LSB), which can be mapped to the tire forces that are measured by wheel force transducers. Insight
regarding the tire forces could be beneficial to VSA estimation. The focus lies upon neural network esti­
mators and hybrid structures, which combine the neural network estimator with an observer model.
A large­scale experimental dataset composed of standardised vehicle manoeuvres is used to develop and
evaluate different estimation architectures. The dataset consists of 216 manoeuvres, which corresponds
to approximately two hours of driving time.

Neural network estimators are data­driven and therefore rely on high quality data. Various neural net­
work architectures exist for the purpose of time series estimation. In this thesis the Feedforward Neural
Network (FFNN), Recurrent Neural Network (RNN) and Transformer are examined in detail. The FFNN
and RNN yield similar performance in terms of Root Mean Squared Error (RMSE) and Maximum Error
(ME) on the test set. The Transformer is unable to match this performance level due to the absence of
a proper positional encoding of the measurements. Due to the simpler structure and lower data require­
ment, the FFNN is selected for application in the hybrid structures.
To create a hybrid estimator, the uncertainty level of the VSA estimate from the neural network is required.
To obtain the uncertainty using a neural network, various methods exist such as Monte Carlo Dropout
(MCDO), Monte Carlo Batch Normalisation (MCBN) and the Uncertainty Deep Ensemble (UDE). These
methods are compared using three metrics, the RMSE, Predictive Loglikelihood (PLL) and Continuous
Ranked Probability Score (CRPS). A combination of these metrics does not only evaluate the estimation
accuracy, but also the quality of the corresponding estimated uncertainty level. The UDE consisting of
FFNNs provides the best performance and even outperforms the single FFNN in terms of RMSE by a
decrease of 8.6%. Therefore, the UDE is used to develop the different hybrid structures.

The Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are built on a nonlinear bicycle
model. Different sets of inputs for the observers, as well as constant or adaptive covariance matrices cre­
ate different variations. These observer variations are combined with the UDE to form hybrid estimation
models. The different variations show equal performance due to the high accuracy of the UDE on the test
set. The high performance of the UDE causes the measurement noise to be tuned to a very low level,
which results in the observer ’trusting’ the UDE estimations. Therefore, the performance of the different
hybrid structures is almost equal to that of the original UDE.

To investigate if the observer is actually able to correct neural network estimations, a suboptimal neural
network is created. This network is trained only on measurements with an absolute lateral acceleration
lower than 5 m/s2. This mimics sparse data of high sideslip angles, a common problem for data­driven
approaches in this setting. This causes the uncertainty of the neural network estimations to be higher
in these operating regions. A linear scaling of the uncertainty level to match the variance of the noise
on the other measurements does not yield satisfactory results. However, an exponential scaling of the
uncertainty level causes a higher differentiation between low and high confidence levels. This exponential
scaling decreases the RMSE of the hybrid structure with 11.4 %. Furthermore, a method for adapting the
process noise based on the quality of the observer model estimation is implemented. This equates to
similar performance in terms of RMSE, but introduces a number of additional parameters to tune.
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Acronyms
AD Adaptive.

ADAS Advanced Driver Assistance Systems.

CoG Centre of Gravity.

CRPS Continuous Ranked Probability Score.

DE Deep Ensemble.

DoF Degrees of Freedom.

EKF Extended Kalman Filter.

ESC Electronic Stability Control.

FFNN Feedforward Neural Network.

GPS Global Positioning System.

GRU Gated Recurrent Unit.

IMU Inertial Measurement Unit.

KF Kalman Filter.

LSB Load­Sensing Bearing.

LSTM Long Short­Term Memory.

MCBN Monte Carlo Batch Normalisation.

MCDO Monte Carlo Dropout.

ME Maximum Error.

NLP Natural Language Processing.

PLL Predictive Loglikelihood.

RMSE Root Mean Squared Error.

RNN Recurrent Neural Network.

ST Standard.

TF Tire forces.

TSBO Two­Stage Bayesian Optimisation.

UDE Uncertainty Deep Ensemble.

UKF Unscented Kalman Filter.

VSA Vehicle Sideslip Angle.

XM Extra measurements.
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1
Introduction

1.1. Motivation
Safety is a fundamental objective of the automotive industry, unfortunately complete safety will never be
reached with human drivers. Already, driving has become a lot safer over time due to many innovations
in physical systems, as well as in control systems, but the factor of human error will always be present.
Autonomous driving has the potential to guarantee a higher level of safety. Commercially sold automated
vehicles are coming closer every day, but a key factor pushing the technology back still is how to ensure
complete safety while driving. To achieve this Advanced Driver Assistance Systems (ADAS) have to be
designed that are very robust such that full automation can be reached. A requirement for proper opera­
tion of these is accurate and robust state estimation of the vehicle, only if the system is aware of the state
of the vehicle, it can be controlled properly.

A well­known assistance system is Electronic Stability Control (ESC), ensuring lateral stability by as­
sisting the driver when he or she threatens to lose control over the vehicle. For proper performance of
ESC, accurate and robust information about various vehicle states is required. For example, these vehicle
states include the longitudinal speed, yaw rate and lateral acceleration of the vehicle. The increase of re­
liance on ADAS due to automated driving raises the demand for reliable state estimation. Over time when
there is no driver to intervene anymore, it is essential that the state of the vehicle is estimated robustly
and accurately.
A vehicle state that is of particular interest for ESC is the Vehicle Sideslip Angle (VSA). The VSA along
with the yaw rate are important variables for verification of vehicle stability as well as its handling char­
acteristics such as understeer or oversteer (Keller et al., 2015; Rajamani, 2011). Also, the VSA can be
controlled directly to extend the limit of stable vehicle cornering (Lu et al., 2016). Accurate and robust
estimation of the VSA is required when controlling the state directly.

The VSA is defined as the angle between the longitudinal axis of the vehicle and the direction of the
velocity vector of the vehicle measured at the Centre of Gravity (CoG) of the vehicle. In other words,
it is the angle between the heading and moving direction of the vehicle. The VSA 𝛽 is mathematically
expressed in Equation 1.1 and can be visually interpreted from Figure 1.1. Here 𝑉𝑦 and 𝑉𝑥 denote the
respective lateral and longitudinal component of the vehicle velocity vector at the CoG.

𝛽 = 𝑎𝑡𝑎𝑛 (
𝑉𝑦
𝑉𝑥
) (1.1)

Tire force estimates available by the presence of the Load­Sensing Bearing (LSB) may be very useful
for the task of VSA estimation (Kerst et al., 2016). However, it remains difficult due to the highly nonlinear
relation between sideslip angle and tire forces. Unfortunately, it is also very difficult to measure this VSA
directly using sensors. Direct measurement is only possible via an optical sensor or advanced GPS­inertial
sensors combinations. These sensors are very expensive and not robust enough to apply in commercially
used vehicles. For example, the quality of the optical sensor estimate depends on good lighting and a
clear view. Additionally, operations such as calibration can further complicate the use of these sensors.

Differential braking via ESC is very useful when performing evasive manoeuvres or driving on low
friction surfaces (Chatrath et al., 2020; Chowdhri et al., 2021). During these manoeuvres the VSA can
become very large and the tires will start to operate in the saturation region. If so, it may be too late to
restore control of the vehicle (Chakraborty et al., 2011).

1
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Figure 1.1: Vehicle sideslip angle

1.2. Objective
Increasing the performance and reliability of active safety systems is an open challenge that becomes
more significant with the introduction of automated vehicles. The objective of the thesis report is to design
a data­driven and hybrid model that is able to estimate the VSA with high accuracy and robustness using
tire force information. To achieve this several subgoals, which are highlighted in this report, are identified.

• Neural network selection: Investigate what neural network architecture is best suited for the task of
VSA estimation.

• Uncertainty estimation: Identify the optimal method for approximating the confidence level of the
VSA estimations from the neural networks.

• Hybrid model selection: Find the optimal architecture for the hybrid model for the task of VSA esti­
mation.

• Robustness analysis: Develop a method to investigate how the hybrid architecture deals with inac­
curate predictions of the neural network.

This thesis is unique in current literature since it uses the measurements of a LSB as an input to the
data­driven model. These bearing strains can be used to compute the tire forces, which can be very ben­
eficial for the estimation. Additionally, more widely available sensors are used to measure other vehicle
states. The availability of the bearing strain measurements eliminates the need for complex tire models.
If the performance of the sideslip angle estimation is greatly improved by the availability of tire forces, this
would indicate the value of load sensing bearings. What neural network architecture is best for estimation
using tire force information needs to be evaluated.

Within current literature the proposed estimation architectures are only evaluated on a small selection
of manoeuvres. The used datasets are small and less than ten tests are used to compare the performance
of the different models. In this thesis the goal is to develop and compare the performance of different mod­
els on a large experimental dataset where numerous different driving dynamics are present.

In addition to the use of purely data­driven models, different observer models have been developed to
contribute in the task of VSA estimation. Hybrid models, constructed from the combination of observers
and data­driven estimators, are developed in an attempt to achieve accurate and robust estimation. Hybrid
architectures require uncertainty estimates from the data­drivenmodel. Different methods based on neural
networks are available to compute such estimates. It needs to be evaluated which of those methods
achieves the highest performance. Furthermore, various hybrid model structures exist in literature, the
structure that is optimal for the task at hand needs to be determined. Also, the added robustness of the
hybrid models must be evaluated to make conclusions regarding the added value of these structures, such
results have not been published yet.
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1.3. Outline
The thesis is structured in the following manner, in Chapter 2 the related work in the field of VSA estimation
is summarized. In Chapter 3 the data collection and methodology of the research are discussed. Follow­
ing, Chapter 4 introduces the used VSA estimation models along with their characteristics. Subsequently,
these models are tuned and their performance is analysed in Chapter 5. At last, the conclusion of the
research and future work follows in Chapter 6.



2
Related work

This chapter discusses the related work regarding VSA estimation. Within literature there are three main
approaches, observer­based estimation, data­driven estimation and a combination of the two called hybrid
estimation. These different approaches are divided into respective sections.

2.1. Observer­based approach
In some applications it is not possible to directly measure states of interest, if so the state observer may
be a solution. The general structure of an observer is shown in Figure 2.1. The input to the plant, in this
case the vehicle, is also presented to an observer model, here a vehicle model. The output of the plant
can be measured directly using sensors, but not the hidden states, which may be of interest. However, the
hidden states can be observed from the observer model. To make sure that the hidden states of the plant
and the observer are approximately equal, the output is measured. When the plant and observer model
diverge, the output error grows and there is corrected for this by an observer specific error weighting via
a feedback loop.
There are different observers with slight variations from this structure. Additionally, the error weighting is
different between observers. To achieve high performance of an observer, the used vehicle model must
be accurate. This section discusses what vehicle models and types of observers are used in literature.

Figure 2.1: General observer structure

2.1.1. Vehicle model
Vehicle models can be divided into kinematic and dynamic models. Whenmodelling in a kinematic manner
there is relied on the geometry of the system. The motions are described without the consideration of the
forces or torques. In the current application the vehicle motions are the motions in the system.
Dynamic modelling requires knowledge of the forces in the system. In these models, the vehicle dynamics
are based on the equilibrium equations. Different models rely on different assumptions, which in turn affect
the estimation accuracy of the model. To be able to use the equilibrium equations for the vehicle, tire forces
must be accurately estimated. Due to tire forces being highly nonlinear, complex tire models need to be
introduced. Also, the tire model must accurately represent the actual conditions, which may be difficult to
achieve.

4
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Figure 2.2: Planar single­track (bicycle) model Figure 2.3: Planar two­track vehicle model

Vehicle models are clearly simplifications of reality, the respective disadvantage is that certain as­
sumptions are introduced. When these assumptions are not fulfilled, the quality of the estimation can
drop severely. Figure 2.2 and 2.3 show two different vehicle models, the bicycle model, developed by
Segel (1956), and the two track model. In these figures the slip angles are denoted by 𝛼, the steering
angle by 𝛿, the tire forces of the different wheels by 𝐹 and the vehicle velocity vector by 𝑉. Additionally,
the distance from the CoG to both axles is defined by 𝐿𝑓 and 𝐿𝑟. These are planar vehicle models to de­
scribe the dynamics of the chassis in the horizontal plane. These models are described in three Degrees
of Freedom (DoF), namely longitudinal velocity, lateral velocity and yaw rate.

The bicycle model is clearly simpler, but also less accurate due to its simplification of only having two
wheels. Thus, it is assumed that both wheels on an axle and the axle characteristics itself can be de­
scribed by a single point located on the centre of the axles. There are also other assumptions that need to
hold when working with the bicycle model, these include: constant forward velocity, no load transfer, linear
tire ranges, no roll, pitch or vertical motion, ’ideal’ steering dynamics, no suspension and no compliance
effects. The two track vehicle model is also a simplification of the true system and several assumptions still
need to holds such as no pitch and roll and that there is no suspension or compliance effects. However,
the presence of 4 wheels can be very useful for dynamic modelling purposes.

The much simpler geometry of the kinematic vehicle model allows a simple analysis of how the motions
in the model are related. It is substantially more difficult to derive these motions for a model with four
wheels, as is the case for the two track model.
For dynamic modelling an analysis is made based on the forces present on the vehicle. The bicycle
model makes a rigorous assumption that all front wheel forces can be described by a single point force.
The same holds for the rear wheels. In contrast, the two track model can achieve a higher accuracy since
the forces are applied at the true distance of the centre of the vehicle at the locations of the tires. This
allows a more accurate calculation of the moments acting on the vehicle.

2.1.2. Kalman filter variations
The Kalman Filter (KF) is a well­known stochastic observer, it is an optimal filter that minimizes the vari­
ance around the estimate (Durbin and Koopman, 2012). It computes the state estimated via the modelled
dynamic evolution of the system and the state inverted from the actual measurement. Via the reliability
of both estimates a weighted average is computed, which is a compromise between the model and mea­
surement accuracy. The regular KF is based on the assumption that the system is linear. Unfortunately,
many vehicle models rely on nonlinear tire models since linear tire models are very inaccurate at higher
slip angles. When high sideslip angles are reached, tire slip angles are also high and therefore linear tire
models cannot be used. This also implies that the linear KF cannot be used in this case.

Extensions of the KF exist that are able to deal with nonlinear systems, namely the Extended Kalman
Filter (EKF) and the Unscented Kalman Filter (UKF). The EKF uses a first­order Taylor expansion to
linearize around the estimate of the current mean and covariance. Unfortunately, the first order approxi­
mation can cause significant linearisation errors. Another drawback of the EKF is that computation of the
Jacobian matrix can be computationally expensive.
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In contrast, the UKF uses the unscented transform which shows less linearisation error. The unscented
transform works via representing the state distribution by a Gaussian random variable via a minimal set
of sample points (Wan and Van Der Merwe, 2000). These sample points capture the true mean and
covariance of the Gaussian random variable. When propagated through the true non­linear system, the
posterior mean and covariance are captured accurately. This accuracy is up to that of a third­order Taylor
expansion. The disadvantage of the UKF is that when the state dimension of system is high, a large num­
ber of sample points have to be propagated through the system. Additionally, all Kalman filter variations
rely on the assumption that the distribution of the state to estimate is Gaussian.

In literature different implementations of the EKF for sideslip angle estimation have been presented
(Naets et al., 2017; Sen et al., 2015). Chen and Hsieh use the EKF for sideslip angle estimation based on
a kinematic model (B.­C. Chen and Hsieh, 2008). They evaluate the approach on different surfaces with
different friction coefficients. A disadvantage of the approach is that the system becomes nearly unobserv­
able when the yaw rate is low. When this occurs it is not possible to compute the estimation gain anymore.

Doumiati et al. (2010) apply the EKF and the UKF observer with a four­wheel vehicle model. The tire
forces are estimated by the Dugoff tire model. The authors compare the performance of both observers
and find that the UKF is better performing when the demands on the vehicle are high. They argue this
is caused by the fact that tire behaviour and vehicle dynamics become extremely nonlinear under high
loads. The EKF is based on first­order linearisation and thus the linearisation errors grow for highly non­
linear relations. In contrast, the UKF is able to deal better with this since it is able to capture higher order
nonlinearities. They state that another advantage of the UKF is that is does not rely on the availability of
the Jacobian matrix. The derivation of this matrix is nontrivial, especially when implementing complex tire
models. Other UKF implementations for the goal of sideslip angle estimation are evaluated by Chen et al.
and Van Aalst (J. Chen et al., 2016; van Aalst, 2020).

In this study bearing strain measurements are added for the purpose of estimation. There is already
literature where the tire forces are used directly for the purpose of VSA estimation. Cheli et al. (2015)
implement the smart tire measurements in an EKF based on a bicycle model. They conclude that no
improvements are made by the addition of tire forces when the surface friction coefficient stays constant.
However, when there is a jump of the surface friction coefficient, the addition of the tire forces is valuable
since this can be recognized earlier.
Mazzilli et al. (2021) use the measurements from a smart tire system to determine the tire contact forces.
These measurements are used as inputs to an UKF based on a nonlinear dynamic (7­DOF) double­track
model. The availability of tire contact forces reduced the Normalised RMSE with 49% and 26% with dif­
ferent initialisations of the surface friction coefficient.
A limitation of both papers is that only a small number of tests is evaluated, for the case of Cheli and
Mazzilli respectively three and six tests are evaluated. It is interesting to evaluate the performance of the
estimation methods over a larger number of tests.

Next to the Kalman filter variations there is also literature available about other observers being used.
These include the Luenberger observer (Cherouat et al., 2005; Ding et al., 2014) and the sliding mode
observer (Y. Chen et al., 2014; Liu et al., 2012; Stephant et al., 2007), these will not be further discussed
since they lie outside the scope of this thesis.

2.2. Data­driven approach
Since observer­based methods rely on vehicle models, they are restricted by the model assumptions.
The neural network estimators are purely data­driven and are therefore model free. The most straight­
forward neural network architecture is the feedforward network with an input layer, a couple of hidden
layers and an output layer. Xu et al. (2021) use that type of an architecture that consists of three hid­
den layers with respectively 12, 5 and 3 neurons. They use the logistic activation function in the hidden
layers in combination with the backpropagation algorithm for learning the weights. A disadvantage of
the use of a feedforward network is that transient effects cannot be modelled. To counter this problem
the authors proposed to transform the inputs of the neural network to the frequency domain. The inputs
consisted of the vertical accelerations of the accelerometers placed on the inner line of the tire. It is not
clear how well this method is at dealing with transient behaviour due to the low number of evaluation tests.

Since previous measurements can possess predictive power, these earlier measurements can be used
for prediction by RNNs. For VSA estimation multiple past measurements may have an influence on the
current sideslip angle. Sieberg et al. (2021) make use of a network with recurrent layers containing the
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Gated Recurrent Unit (GRU). The number of layers and the size of the layers is determined via sequential­
based global optimization. The output layer of the network is a fully connected dense layer. The inputs
of the neural network include the counter roll torques of both axes as well as the damping factors of the
semi­active dampers. Unwanted oscillations that could not be explained appeared during estimation with
the proposed model. This indicates the low robustness of the data­driven approach when low quality
training data or no data is available. Ghosh et al. propose a RNN that uses the Long Short­Term Memory
cell (2018). They use a network with 8 hidden layers consisting each of between 40 and 100 LSTM cells.
A time window of 0.5 seconds for the input measurements provides the best results. The wheel speeds
of all four wheels are included as inputs to the neural network estimator. This model needs to be trained
for a full day before use and may be severely overfitting to the training data because of the large size of
the estimator.

Bonfitto et al. (2020) propose the use of four different neural networks, three regression networks and
a classification network. To deal with different road surfaces they use a parallel classification network for
identifying the road conditions. The classification network tries to classify if the vehicle is located on a dry,
wet or icy surface. Namely, the surface friction coefficient is very important for calculation of the VSA. The
three regression networks are specifically trained for these different surface friction levels and use equal
inputs. The final estimate of the network is the outcome of the regression network that corresponds to the
classified road condition. The architecture, displayed in Figure 2.4, does require the availability of a large
amount of data points in all surface friction conditions. The measurements of the wheel speeds are con­
verted to longitudinal slips before use as input to the different neural network estimators. The regression
networks are based on a Nonlinear Auto­Regressive with Exogenous input (NARX) architecture. These
models use current and past values of input data along with past estimates of the output.

Figure 2.4: Estimation architecture proposed by Bonfitto et al. (2020)

Data­driven approaches are very useful since they do not rely on models and are therefore free from
assumptions. However, for a data­driven model to behave correctly a large number of high quality data
points has to be available. Furthermore, it is almost impossible to gain insight into the dynamics of the
trained estimator.

2.3. Hybrid approach
Hybrid approaches aim to combine the advantages of both model­based and learning­based approaches.
Using a neural network in combination with an observer can help with the robustness of the prediction
task. Most hybrid approaches are constructed in a way such that the neural network estimates the tire
forces or sideslip angle. These estimates are then fed in to the observer that provides a smoothed and
corrected estimate of the VSA.
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Acosta and Kanarachos (2018) propose a hybrid structure where different regression neural networks
are combined with an EKF to estimate the lateral tire forces, longitudinal speed, lateral speed and yaw
rate. The hybrid observer structure consists of three different neural networks for different levels of the
surface friction coefficient. Again, the construction of three neural network estimators for different modes
requires the data availability for all modes. These network estimators estimate the lateral tire forces. The
neural network estimator consist of an ensemble of small neural networks with only 10 neurons in the
single hidden layer. To estimate the friction coefficient a recursive least squares regression is applied.
The final estimate for the lateral tire force is an interpolation between the outcomes of these networks
weighted by the estimated friction coefficient.

Boada et al. (2016) adopt the ANFIS structure. This allows the implementation of fuzzy logic rules
to make the VSA estimation more robust. The ANFIS network aims to combine the advantages of the
neural network and fuzzy logic estimator. In the network if­then rules are learned that are able to capture
nonlinear relations in an efficient manner. Using these if­then rules an estimator is created that is better
adapted to variable environments and presents better generalisation capabilities. However, training the
network properly requires a large amount of training data. An UKF is added for filtering and correcting the
resulting VSA estimate.

Kim et al. (2020) use a deep ensemble based estimator where a time window of measurements is fed
to two fully connected layers and a layer of LSTM cells. Next, two fully connected layers are in place, one
to calculate an estimate of the VSA and the other to estimate the corresponding standard deviation. An
ensemble estimator is constructed using 5 networks. Using such an ensemble estimator has advantages
and disadvantages. An ensemble estimator can decrease the variance on the estimate. However, in­
creasing the number of networks increases training time. The final estimate of the ensemble estimator is
the mean of the 5 different predictions of sideslip angle. The respective uncertainty level of the estimation
is calculated using the estimated standard deviations. The architecture of the hybrid model is presented
in Figure 2.5.

Figure 2.5: Estimation architecture proposed by Kim et al. (2020)

The paper of Ayyad et al. (2021) uses a Compression Recurrent Neural Network (C­RNN) for providing
uncertainty estimates. The model is trained such that it compresses the training data distribution the best
via the minimum description length principle. The aim of the estimation is to accurately identify out of
distribution inputs. However, the model is unable to make accurate predictions for these inputs. Therefore,
this structure is only useful for identification purposes and not for making predictions.
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2.4. Summary
In this chapter several methods to estimate the VSA are discussed. This can be subdivided into observer­
based, data­driven and hybrid approaches. Observer­basedmethods rely on an underlying vehicle model,
which introduce corresponding assumptions. The UKF seems to be the preferred type of observer since it
is able to capture high nonlinear relationsmore effectively. In literature the RNN is the preferred data­driven
model architecture for estimating the VSA, since it is able to model temporal relations. The disadvantage
of data­driven approaches is that they rely on a large amount of high quality data to prevent unwanted
excitations. Various hybrid architectures are already evaluated in literature, using the neural network
estimator as a sensor to the observer is the most common structure. A shortcoming of current literature
is that the estimation models are trained and evaluated on either simulated data or a small experimental
dataset.
The next chapter introduces the large­scale experimental dataset used in this study. Furthermore, it is
discussed how this dataset is processed before it is used to train the data­driven models.



3
Experimental setup

Chapter 3 discusses how the experimental data is collected and processed. The data is collected during
different standardised vehicle handling manoeuvres performed on testing grounds. These manoeuvres
can be used to evaluate the vehicle dynamics in various conditions. An overview of the performed ma­
noeuvres is presented, just as what data is being recorded. Naturally, experimental data has to be prepro­
cessed before using it to develop data­driven models. It is discussed how the preproccesing procedure is
constructed and what corresponding design choices are made.

3.1. Data collection
3.1.1. Testing manoeuvres
The different testing manoeuvres aim to provide insight regarding the VSA at different vehicle states. For
example, manoeuvres are executed where the vehicle is driven in a circle with different radii and differ­
ent velocities. This corresponds to different lateral accelerations at various longitudinal velocities in a
steady­state. In contrast, using the lane change manoeuvre the transient behaviour of the vehicle can be
examined. Using different sorts of testing manoeuvres can increase the robustness of the estimator. The
different manoeuvres in the experimental dataset are discussed below.

Braking in turn (ISO 7975): During the braking in turn manoeuvre the vehicle is turning and braking at
the same time. This allows evaluation of the VSA during high negative longitudinal accelerations. The
manoeuvre is performed with various initial speeds and with ESC turned on and off.

Steady state cornering (ISO 4138): This manoeuvre consists of the vehicle driving in a circle at a certain
longitudinal velocity. This can provide information regarding the steady­state behaviour of the vehicle at
different levels of lateral acceleration. These tests are performed in both directions. The initial speeds
differed as well as the radius of the circle the vehicle is following.

Hockenheim: These tests are not standardised handling manoeuvres, but various laps around a repro­
duced Hockenheim circuit at the Automotive Testing Papenburg facility. It can be very useful to look at
the behaviour of the vehicle when it is driving at its limits on a track. The circuit is driven in both directions
with ESC turned on and off.

J­turn (ISO 7401): During the J­turn manoeuvre the vehicle starts by driving straight with an initial veloc­
ity, at a moment the steering wheel angle is immediately changed to a set angle. This mimics a sudden
steering manoeuvre where the aim is to quickly reach a high lateral acceleration. This manoeuvre is also
performed with various initial velocities.

Double lane change (ISO 3888­1): The double lane change manoeuvre is a well­known manoeuvre to
test the handling performance of a vehicle. The test consists of driving the vehicle from an entry lane
to a side lane and then returning to the entry lane. The distance between the end of the entry lane and
the beginning of the side lane is specified, just as the width of the lanes that depends on the width of the
vehicle. The manoeuvre is performed at increasing initial velocities until the vehicle is not able to pass the
test anymore.

10
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Slalom: During the slalommanoeuvre the vehicle needs to slalom around pylons. This manoeuvre is used
to evaluate the transient behaviour of the vehicle. Again, the initial speeds are increased until the vehicle
is not able to pass through the pylons anymore.

Spiral: The beginning of the spiral manoeuvre is equal to the J­turn manoeuvre. However, after that a
second turn is added at a moment when the vehicle is not yet stable. The spiral is executed in both direc­
tions at velocities of 50 and 100 km/h with the ESC turned on and off.

Random steering (ISO 7401 ­ ISO 8726): The random steering manoeuvre consists of applying sinu­
soidal steering inputs where the vehicle is expected to behave linearly. Various frequencies of steering
inputs are evaluated during these tests.

Roll: During the roll manoeuvre the axial rotation of a vehicle towards the opposite side of the steering is
mimicked. This is achieved by making short sudden steering to let the vehicle body roll over the chassis.
It is expected that this manoeuvre does not create high sideslip angles.

3.1.2. Data logging
Within the testing vehicle a large number of states are recorded by a number of different sensors. These
sensors included an Inertial Measurement Unit (IMU), Global Positioning System (GPS), steering angle
sensor, four load sensing bearings, four wheel force transducers and an optical VSA sensor. The different
sensors are discussed below.

GPS: The GPS is being used to determine the location of the vehicle. Since it is able to measure its
position over time, it can also be used to determine the velocity and acceleration of the vehicle in the x­
and y­direction.

IMU: The IMU can measure the accelerations and angular rate of the vehicle it is located in. These ac­
celerations can be integrated to find the velocities, angle and the covered distance.

Steering angle sensor: The steering angle sensor is used to measure the steering angle at the steering
wheel.

Optical sideslip angle sensor: The optical sideslip angle sensor is being used to find the ’true’ VSA via an
optical analysis. The Corrsys Datron is used for this task, which is a very expensive sensor that is not
always robust. This makes it impossible to use commercially. The variance of the sensor is around 0.5
degrees.

Load sensing bearing: The load sensing bearing measures the bearing strains of the wheel bearing.
These bearing strains can be used to reconstruct the wheel forces for the different wheels. There are
four load sensing bearings available, one for every wheel.

Wheel force transducer: The wheel forces and moments are measured directly using Kistler wheel force
transducers. These measurements do not require a mapping to determine the wheel forces and are
expected to be more accurate than the mapping of the bearing strains. A wheel force transducer is also
located at all wheels of the vehicle.

3.1.3. Data preprocessing
The used dataset consists of experimental data that needs to be preprocessed before use. The measure­
ments to use as features for the sideslip angle estimation need to be selected. Furthermore, within the
data measurement errors and measurement noise is present. This needs to be eliminated before using it
to develop a model to achieve higher estimation performance.

Feature selection
To present an overview of the frequency each input variable is used in the literature, a bar plot is shown.
In Figure 3.1 it is illustrated how many times each variable is used as an input to a data­driven model. In
this analysis 13 research papers that focused on learning­based approaches have been analysed.
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Figure 3.1: Feature frequency across 13 analysed research papers

Lateral acceleration is an input variable that is used consistently across the literature. This is to be
expected since this variables is closely related to the VSA. However, there is a clear disadvantage to
using the lateral acceleration as a predictor for the sideslip angle. A road bank angle would generate a
component of lateral acceleration due to gravity. Melzi and Sabbioni (2011) indicate that when the bank
angle is not included as a predictor, the value of lateral acceleration gets misunderstood by the network,
compromising the quality of the estimate. They argue that adding manoeuvres with a bank angle should
improve the robustness of the estimator, but the estimation quality may decrease. It is important to note
that the same problem holds for a road slope, this angle would generate a component of longitudinal accel­
eration. This could degrade the performance of the neural network in a similar manner for the longitudinal
acceleration feature.

The longitudinal velocity is another frequently used feature for VSA estimation. This state is assumed
to be known, but this may not always be the case. When using a GPS sensor the velocity can be de­
termined accurately, provided that a high quality receiver is used and that there is no signal blockage.
However, in literature the longitudinal velocity is sometimes estimated using the combination of wheel ve­
locities and longitudinal slip estimations from an observer. This estimation method can severely decrease
the quality of the velocity estimate. In this study measurements from a GPS sensor are used.

In preliminary research there is investigated if adding the wheel forces or bearing strains has any effect
on the performance of the data­driven estimator. To test this, three datasets with different features are
created. In the first dataset only features that can be relatively easy be measured are included. In the
second dataset also the wheel forces measured by the wheel force transducer in all three directions for
all four wheels are included. The third dataset included six bearing strains for every wheel. An overview
of the features in each dataset is presented in Table 3.1.

Dataset 1 Dataset 2 Dataset 3
Lateral acceleration Lateral acceleration Lateral acceleration

Longitudinal acceleration Longitudinal acceleration Longitudinal acceleration
Longitudinal velocity Longitudinal velocity Longitudinal velocity

Yaw rate Yaw rate Yaw rate
Steering angle Steering angle Steering angle

Longitudinal wheel force (x 4) Strain gauge #1 (x 4)
Lateral wheel force (x 4) Strain gauge #2 (x 4)
Vertical wheel force (x 4) Strain gauge #3 (x 4)

Strain gauge #4 (x 4)
Strain gauge #5 (x 4)
Strain gauge #6 (x 4)

Table 3.1: Features different datasets
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A Feedforward Neural Network (FFNN) is trained on the different datasets to evaluate the difference
in performance. The results showed that adding the wheel forces or bearing strains increase the perfor­
mance on the test set by decreasing the Root Mean Squared Error (RMSE) with respectively 9.3% and
13.2%. The precise results are presented in Table 3.2. Based on these preliminary results there is de­
cided to use the bearing strains as input features for development of the different estimation models. In
Appendix A the results can be found where the dataset containing the wheel forces is used to develop the
hybrid model.

Dataset 1 Dataset 2 Dataset 3
Training RMSE 0.367 0.355 0.322
Validation RMSE 0.354 0.300 0.277

Test RMSE 0.354 0.321 0.307

Table 3.2: Performance of FFNN trained on different features evaluated by RMSE [deg]

Next to the bearing strains the five most frequently used input variables have been selected as features
for the sideslip angle estimation. The bearing strains and additionally selected features are discussed in­
dividually below.

Lateral acceleration: The lateral acceleration in m/s2 is measured by the GPS and IMU sensor. There
is chosen to select the measurement of the IMU as the true acceleration. This choice is made since the
GPS measurements must be differentiated twice to obtain accelerations, making it more error prone.

Longitudinal acceleration: The longitudinal acceleration in m/s2 is measured by the GPS and IMU. The
case is equal to that of the lateral acceleration and thus the measurement of the IMU is selected.

Longitudinal velocity: The longitudinal velocity in m/s is measured by the GPS and IMU. The IMU mea­
surement must be integrated while the GPSmeasurement must be differentiated. Integration is more error
prone and therefore the differentiated signal of the GPS is being used as the velocity measurement.

Steering wheel angle: The steering wheel angle is measured by the steering angle sensor in degrees.
This angle is measured at the steering wheel and converted to the angles of the wheel using the known
steering wheel ratio.

Yaw rate: The yaw rate in deg/s is measured by the IMU sensor. This quantity is measured directly by the
IMU such that no integral or derivative has to be used.

Bearing strains: The wheel bearing strains are measured by load sensing bearings. These load sensing
bearings are placed at all four wheels as to obtain all wheel forces in the vehicle. For each wheel there
are six strains measured, these strains can be mapped to obtain the forces and moments present on the
wheel. In literature these forces are reconstructed using a mapping from the bearing strains. The mapping
coefficients are determined by a linear least squares regression between transformed bearing strains and
wheel forces (Kerst et al., 2019). It is interesting to analyse if the neural network is able to identify the
wheel forces in an equivalent manner.

Outlier removal and normalisation
Statistical outlier removal is used to remove extreme outliers. Note that removal is done cautiously to
avoid deleting valuable scarce measurements of edge cases. Only data is used where the longitudinal
velocity of the vehicle is higher than 5 m/s. Namely, below this velocity the sideslip angle measurements
from the optical sensor are inaccurate. Aside from deleting single measurement points, the complete
manoeuvre should be evaluated. During some tests control of the vehicle was lost and the vehicle spun.
These manoeuvres are deleted from the testing set since the presence of such high sideslip angles in the
dataset can have a negative effect on the performance of the estimator. Additionally, the aim of the study
is not to estimate the VSA during spins of the vehicle.
Before the data is used for the development of the estimator, it must be normalised. Normalisation is
required since all variables have a different physical interpretation and a different order of magnitude.
Unscaled input variables can result in a slow or unstable learning process of machine learning models
(Brownlee, 2018). There are two common methods of normalising the data, the first is to map the data
onto the interval of [0,1] as displayed in Equation 3.1. Here 𝑥𝑚𝑖𝑛,𝑖 denotes the minimal and 𝑥𝑚𝑎𝑥,𝑖 the
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maximal value of the respective feature.

𝑥𝑛𝑜𝑟𝑚,𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛,𝑖

𝑥𝑚𝑎𝑥,𝑖 − 𝑥𝑚𝑖𝑛,𝑖
(3.1)

The second method of normalisation is to scale the data such that it has a mean of zero and a standard
deviation of one. Every input variable is demeaned by subtracting the mean and divided by the standard
deviation of the respective variable. Themean of each feature is denoted by 𝑥̄𝑖 and the respective standard
deviation by 𝜎𝑥,𝑖.

𝑥𝑛𝑜𝑟𝑚,𝑖 =
𝑥𝑖 − 𝑥̄𝑖
𝜎𝑥,𝑖

(3.2)

There are no set rules for when to choose which normalisation mapping, selection is based upon trial
and error. The normalisation mapping that results in better performance of the model is selected.

Data filtering
A visual inspection of the data revealed that there is a significant amount of noise present in the measured
data. Therefore, a filter needs to be applied to remove most of this measurement noise. Especially the
IMU measurements contain a large amount of noise. It is important to filter out the noise such that the
network is trained with accurate measurements. The data is filtered using a lowpass filter with a cut­off
frequency of 5 Hz. For the purpose of VSA estimation there is focused upon vehicle behaviour below
these frequencies. For active stability functions the signals are typically filtered with a lowpass filter with
a cut­off frequency around 5 Hz (Acosta and Kanarachos, 2018; Viehweger et al., 2021).
An Infinite Impulse Response (IIR) filter is used to design the lowpass filter. However, although the Finite
Impulse Response (FIR) filter has a higher computational load, it is a better alternative. By implementing
the IIR filter the first few measurements must be deleted from each manoeuvres. However, this small
change has no significant effect on the performance. In contrast to the FIR, the IIR does not have a
constant phase for all frequencies.

Offset removal
Another preprocessing step for the data is to eliminate the offset in the bearing strain measurements. The
bearing strain values at an equal state differed between manoeuvres, this variation consisted of a certain
offset that needs to be eliminated before accurate estimation can be performed. This offset is different
for each day of data collection and even varies slightly between each manoeuvre. The presence of this
variation in the data could therefore significantly impact the performance of the neural network estimator.
To determine this offset the measurements of the LSB are averaged over the periods in the manoeuvre
where the longitudinal and lateral acceleration of the vehicle are close to zero (𝑎𝑥 ∧ 𝑎𝑦 < 0.05𝑚/𝑠2).
At these time points the bearing strains are considered to be close to the respective offset. However,
for some manoeuvres the vehicle is never in a non­accelerating state and thus the offset could not be
determined. For these manoeuvres the average offset of that testing day is selected. These calculated
offsets are then subtracted from the data of the respective manoeuvre to create a dataset without offsets.
In this manner the bearing strains are suited to train an estimator on. It must be noted that this method
is an approximation, but it produced the most promising results without knowledge of the exact offsets
before each manoeuvre. It is also a method that is used in real applications for calibration purposes,
which shows the validity of the approach.

Dataset characteristics
Next, an analysis of the available data is presented. When all the manoeuvres are combined there is a
total of approximately 630.000 measurements available. The number of tests per manoeuvre is shown in
Table 3.3. The length of the various manoeuvres differs, therefore the average length of each manoeuvre
is presented.

It is interesting to analyse the distribution of the VSA measurements, which is shown in Figure 3.2.
It must be noted that this is a log density plot and to provide intuition the percentiles of the distribution
are highlighted. This provides insight regarding the operating region where the estimator will have a
large amount of training data and where not. From this histogram there can be concluded that the data
availability around a sideslip angle of zero is much more extensive than for sideslip angles with high
absolute values, which is to be expected. With normal driving, only low sideslip angles are reached.
The data is approximately symmetric with respect to positive and negative sideslip angles. High VSA
measurements are really scarce in the dataset, this causes worse performance of the estimator in this
operating region. Based on the number of available measurements there is expected that the performance
of the data­driven estimator will approximately drop when the absolute value of the sideslip angle is larger
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Manoeuvre Number of tests Average duration [s]
Total 190 27.7

Braking in turn 42 10.0
Circle 28 46.2

Hockenheim 7 146.2
J­turn 33 9.5

Double lane change 33 13.5
Slalom 15 23.2
Spiral 14 21.8

Random steering 8 115.4
Roll 10 18.9

Table 3.3: Size of dataset

than 6 degrees. Each bin in the histogram represents 1.5 degrees and an analysis showed that when
the sideslip angle is between 6 and 7.5 degrees only 750 measurements are available. In contrast, when
the sideslip angle is between 4.5 and 6 degrees there are still 4500 measurements available. Of course,
experimental validation is requires to validate this statement.

Figure 3.2: Density distribution of VSA measurements on a logarithmic scale

Data division
When modelling a system using neural networks, a labelled dataset is required. This dataset must be di­
vided into a set to train and evaluate the model on. This is necessary to properly evaluate the performance
of the model. If one would use the same data to train the models as well as to evaluate their performance,
overfitting would occur. This means the model is only suited for the training data and has no ability to
generalize. If so, the model will not be able to perform equally well outside the training set. Furthermore,
the hyperparameters of the model must be tuned for optimal performance. The solution to this problem
is to divide the available data up into three different sets: a training, validation, and testing set. Various
methods to split the data into these different sets exist (Y. Xu and Goodacre, 2018).

The training set of the data is usually the largest subset of data and is used for model training. In other
words, on this part of the data all the models with different hyperparameters are trained.
The validation set is the part of the data that is used for model selection and hyperparameter tuning. For
example, to get the optimal performance from a neural network, one must determine the number of neu­
rons in each hidden layer. This number of neurons is a data dependent hyperparameter. Models with a
different number of neurons can be built on the training set to subsequently be evaluated on the validation
set. The performance on the validation set is then pivotal in deciding the number of neurons.
The testing set is third set of data and should exclusively be used to evaluate the performance of the tuned
model. It is important not to evaluate the model halfway through the tuning process on the testing data
since this will lead to overfitting on the data. Also, the testing set must be independent from the training
and validation set. In this way, the performance capability of the estimator outside the training data can
be properly evaluated.
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Manoeuvre Train & Validation Test
Braking in turn 40 2

Circle 26 3
Hockenheim 4 3

J­turn 28 5
Double lane change 29 4

Slalom 11 4
Spiral 13 1

Random steering 6 2
Roll 10 0

Table 3.4: Data division manoeuvres

For this study, the testing data set is handpicked with the aim to mimic the highest number of driving
conditions. This is achieved by selecting manoeuvres where different handling characteristics are evalu­
ated and the corresponding reached sideslip angles have a large range. This allows a proper evaluation
of the generalization capabilities of the estimator. The remaining manoeuvres are divided into the training
and validation set. The number of tests in the respective datasets are shown in Table 3.4. There is cho­
sen for a 70%/15%/15% division between the training, validation and testing datasets. The data division
resulted in a combined training and validation data set of 535.000 data points and a test set of 95.000
data points.

3.2. Evaluation metrics
To evaluate the performance of the different models, evaluation metrics must be selected. These metrics
should be chosen in a way such that they are able to judge certain performance characteristics of the
estimators. In the current setting it is useful to evaluate the overall variance of the estimation error, but
also look at the maximal error that is reached. Namely, it is important to have an idea of the upper bound
on the error. Therefore, the two used metrics are the RMSE and the Maximum Error (ME). These two
metrics are commonly used in the literature and provide the opportunity to evaluate the variance as well
as the maximum of the estimation error. The RMSE, a measure of the variance of the error deviation, is
defined in Equation 3.3. The ME deviation is defined in Equation 3.4. The true value is denoted by 𝑦𝑖 and
the respective estimation is denoted by 𝑦̂𝑖. The standard deviation of the error is denoted by 𝜎𝑖.

𝑅𝑀𝑆𝐸 = √1𝑛

𝑛

∑
𝑖=1

( 𝑦̂𝑖 − 𝑦𝑖𝜎𝑖
)
2

(3.3)

𝑀𝐸 =max(|𝑦̂𝑖 − 𝑦𝑖|) (3.4)

Next to these two well­known measures, another metric is introduced. The RMSE in the nonlinear
region of the tire dynamics. It is known that the tires dynamics become nonlinearly at lateral accelerations
of around 4 m/s2. This nonlinear RMSE will compute the RMSE of the predictions where the absolute
value of the lateral acceleration is larger than 4 m/s2. Here, 𝐴 denotes the set of measurements where the
tires are behaving in the nonlinear region. The RMSE is then computed over this set of measurements.

𝐴 = {(𝑦̂𝑖 − 𝑦𝜎𝑖
)
2
||𝑎𝑦,𝑖| > 4} (3.5)

𝑅𝑀𝑆𝐸𝑛𝑙 = √
1
|𝐴|

|𝐴|

∑
𝑖=1

𝐴 (3.6)
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3.3. Summary
This chapter describes how the experimental data is collected and processed. Various sensors are mea­
suring different vehicle states when it is performing vehicle handling manoeuvres. These manoeuvres
evaluate the vehicle behaviour in different operating regions. Wheel force transducers and LSBs are
used to provide insight regarding the tire forces of the vehicle. This results in a large­scale experimental
dataset where the outliers are filtered out via statistical outlier removal. It is apparent that a small number
of high sideslip angle measurements are present in the dataset. The performance of the different methods
is compared via the RMSE, the RMSE in the nonlinear tire region and the ME.
The used estimation architectures are discussed in the next chapter. The FFNN, Recurrent Neural Net­
work (RNN) and Transformer are introduced as purely data­driven models. Also, current state of the art
methods to estimate the uncertainty of the neural networks are highlighted. Finally the different observer
variations and the hybrid model architecture is discussed.



4
Estimation architectures

This chapter introduces the different neural network architectures. Additionally, how these networks are
trained and regularized is discussed. Next, the hybrid approach combining the neural network estimator
with the observer is elucidated. Various observer variations are introduced accompanied by an analysis
regarding their differences.

4.1. Feedforward neural network
Neural networks are very versatile models that can be applied to a large variety of tasks. The key to
successfully applying such a modelling method is to design the network and tune the hyperparameters in
a way that it is able to properly represent the actual system. More formally speaking, the goal is to create
a neural network of which the effective capacity is equal to the complexity of the task.

One of the simplest neural network architectures is that of a FFNN. In such a network the information
only moves forward and no memory is present in the network. Neurons are elementary units in a feedfor­
ward neural network. A neuron is a mathematical function with the form as presented in Equation 4.1, a
visual representation is shown in Figure 4.1.

𝑔(𝑥𝑡; 𝑤) = Φ(𝑤0 +
𝑛

∑
𝑗=1
𝑤𝑗𝑥𝑡,𝑗) (4.1)

Here, 𝑤0 denotes the bias and𝑤𝑗 denotes the weights corresponding to an input 𝑥𝑗. Within the function
Φ(⋅) only linear operations are performed. The function Φ(⋅) is an activation function that maps the re­
sulting value from the linear operations. One should note that the non­linearity within the neural networks
solely originates from the activation function. Thus, when only linear activation functions are used, the
resulting model is linear.

Figure 4.1: Artificial neuron visualised

Activation function
Examples of activation functions are the linear function, Rectified Linear Unit (ReLU) function, Sigmoid
function, hyperbolic tangent function, Softsign function, and Softmax function. These functions can be
divided into non­saturated and saturated functions. A saturated function is a function that flattens as it
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approaches infinity, this implies that the derivative will approach zero. A drawback of using a saturated
function as activation function is that when a neuron becomes saturated, in other words the input value of
the neuron becomes very large in absolute value, it becomes very difficult to change the weights within this
neuron. This is the case since the change of the weights is dependent on the derivative of the activation
function at that point. Naturally, this change is slow when the derivative is close to zero.
The linear, ReLU and sigmoid activation function along with the derivatives are shown in Figures 4.2­4.4.
It can be observed how the derivatives differ between the activation functions. The sigmoid function is an
example of a saturated activation function.

Figure 4.2: Linear Activation Figure 4.3: ReLU Activation Figure 4.4: Sigmoid Activation

The choice for a certain activation function is very important when designing a neural network. There
does not exist one superior activation function since the choice is problem dependent. Also, within a net­
work different activation functions may be used in different layers. For example, the activation functions
used in the hidden layers can differ from those in the output layer. This can especially be useful when
the output must represent a classification, probability, or fraction. For a binary classification task the sign
function can be used for the output layer. This will solely result in values of ­1 and 1, which can be values
corresponding to a certain class.

A typical feedforward neural network consists of three or more layers. The first layer is the input layer
where the independent variables of the data point are filled in. Therefore, the number of neurons in the
input layer will correspond to the number of input variables. The final layer is called the output layer,
which presents the resulting dependent variables. Again, the number of neurons in the output layer will
correspond to the number of outputs of the model. The layers between the input and the output layer
are called hidden layers. Between subsequent layers there exist connections, the output of the previous
layer is the input to the next layer. Within a feedforward network there do not exist connections between
neurons in the same hidden layer. Since the neurons in the input layer do not receive values from previous
layers, no computations are made within these neurons, these neurons simple indicate the distribution of
the input variables over the neurons in the hidden layer. A shallow neural network is characterized by con­
sisting of only one or two hidden layer(s) of neurons. These layers can consist of an arbitrary number of
neurons. When the network consists of three or more hidden layers, one speaks of a deep neural network.

The goal of a neural network is to train the model such that it predicts the output values at a certain
time point correctly based on the corresponding inputs. Thus, the weights must be adjusted in such a way
that the model minimises the loss function. The loss function is used to score predictions to determine the
performance of the model. These predictions should be close to the true measured value.

Weight learning
In single­layer neural networks the weight adjustment is straightforward since the loss is a direct function
of the weights. In a multi­layer network the problem is more complicated since the loss is a composition
of weights in earlier layers (Aggarwal, 2018).
The weights in the neural network can be updated via different methods, one well­known method is gra­
dient descent. Gradient descent is a simple method that computes the updated weights via Equation 4.2.
Here 𝜃𝑡 is the set of weights at time step t, 𝛼 denotes the learning rate and ∇𝐽(𝜃𝑡) represents the gradient
of the loss function with respect to the weights at the current weight values.
The backpropagation algorithm provides a way to compute the gradient of the cost function with respect to
the weights and biases. These gradients can be used for stochastic gradient optimisation. The backprop­
agation algorithm is introduced by Rumelhart et al. (1986) and relies on two assumptions: the cost function
can be written as an average over individual training examples and the cost function can be written as a
function from the outputs of the neural network.
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𝜃𝑡+1 = 𝜃𝑡 − 𝛼∇𝐽(𝜃𝑡) (4.2)

To explain the backpropagation algorithm the notation of Nielsen (2015) is followed. For a simple
feedforward network with an arbitrary number of L layers, the backpropagation algorithm consists of the
following steps. Note that in these steps the effect of a single training sample is examined.
The first step is to fill in the input data and compute the prediction of the estimator. Next, the error in the
output layer is calculated (𝛿𝐿), the difference between the prediction and the true value. This output error
has to be backpropagated through earlier layers in the network via Equation 4.3. The first term (𝑤𝑙+1)𝑇
’moves’ the error 𝛿𝑙+1 backwards through the linear part of the neuron. The term 𝜎′(𝑧𝑙) measures how
fast the activation function 𝜎 is changing at the evaluated point. This multiplication is performed using the
Hadamard product denoted by⊙.

𝛿𝑙 = ((𝑤𝑙+1)𝑇𝛿𝑙+1) ⊙ 𝜎′(𝑧𝑙) (4.3)

When the backpropagated error is known for each layer, the gradient of the cost function can be found.
The goal of the backpropagation algorithm is to obtain these gradients.

𝜕𝐶
𝜕𝑏𝑙𝑗

= 𝛿𝑙𝑗 (4.4)

𝜕𝐶
𝜕𝑤𝑙𝑗𝑘

= 𝜎(𝑧𝑙−1𝑘 )𝛿𝑙𝑗 (4.5)

Using these gradients it is possible to simply apply gradient descent to learn the parameters. A faster
and more efficient method is to use batches of training data to calculate the gradients instead of using
the complete dataset. With stochastic gradient descent the parameters are updated using the gradient of
these batches. Optimization algorithms exist that can be used instead of stochastic gradient descent that
aim to improve the training speed. Well known optimisation algorithms include RMSprop, Adagrad and
Adam (Duchi et al., 2011; Hinton et al., 2012). The optimal optimisation algorithm is data dependent.

For ’learning’ the weights in the model there has been made use of the Adam optimizer, developed by
Kingma and Ba (2014). When training a network with a relatively simple structure this optimizer performs
well. The name Adam is derived from ’adaptive momentum estimation’, the method the optimiser uses to
update the network weights. The first and second moment of the gradients are being used to speed up
training using the momentum principle. The Adam optimiser contains several hyperparameters that need
to be tuned such as the learning rate and various decay rates.

Batch normalisation
The training of deeper neural networks is complicated by the fact that the distribution of the layer inputs is
affected by the parameter values of the preceding layers. Changes in the parameter values of preceding
layers can cause significant changes of the input distribution. Therefore, the parameter values in this
layer must adapt for the change in distribution, in turn this causes difficulties for the next layer. This effect
propagates through the layers and becomes a considerable problem in models that contain many layers,
in other words, deep networks. It is especially problematic for deep networks when saturated activation
functions are being used. This constant adaptation, known as internal covariate shift, causes more train­
ing steps to be required.

Batch normalisation is a method introduced by Ioffe and Szegedy (2015) to decrease the required train­
ing time for deep neural networks. The batch normalisation layer is used to normalise the output between
the hidden layers, in this manner the internal covariate shift is reduced. It is most effective if the normali­
sation takes place between the sum of the neuron and the activation function. Batch normalisation uses,
as the name suggests, batches for the normalisation of the layer inputs. It is computationally expensive to
use the complete data set for normalisation, since all data must be passed through the neural network at
every backpropagation step. In stochastic optimisation the use of batches decreases the computational
load and also adds regularisation to the network. Every weight updating step the mean and variance of
the respective batch are calculated using the equations below.
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𝜇𝐵 =
1
𝑚

𝑚

∑
𝑖=1
𝑥𝑖 (4.6)

𝜎2𝐵 =
1
𝑚

𝑚

∑
𝑖=1
(𝑥𝑖 − 𝜇𝐵)2 (4.7)

The inputs are normalised by using these values for the mean and variance. However, normalisation
of the inputs to a layer is very constraining and could restrict the inputs to the linear region of a nonlinear
activation function. In such cases the neural network model is unable to model nonlinear relations. To
avoid this, a scaling and shift are in place. This is achieved using learned 𝛾 and 𝛽 parameters. Every time
step the values of 𝛾 and 𝛽 are learned using backpropagation of the gradient of the loss. Since batches
are used, it can be suboptimal to use these values if a very skewed batch is selected. Therefore, the
selected parameters 𝛾 and 𝛽 are computed by an exponential moving average over its previous values.

𝑥̂𝑖 =
𝑥𝑖 − 𝜇𝐵
√𝜎2𝐵 + 𝜖

(4.8)

𝑦𝑖 = 𝛾𝑥̂𝑖 + 𝛽 (4.9)

Recent literature has argued that batch normalisation does not solve the problem of internal covariate
shift, but rather significantly smooths the optimisation landscape (Santurkar et al., 2018). This smoothness
also improves training due to better performance of the optimisers on smoother surfaces, but exemplifies
the lack of knowledge in the field of training neural networks.

Weight initialisation
When the size of a neural network grows, the initialisation of the weights becomes more important. The
initial point can determine if the algorithm converges or not, unfortunately a lot is unknown about initialisa­
tion (Goodfellow et al., 2016). There are various methods of initialisation that aim to improve the training
speed. Glorot and Bengio (2010) propose an initialiser that aims to satisfy the objectives of maintaining
activation variances and back­propagated gradients variance as one moves up or down the network. The
variance of the uniform distribution then depends on the number of nodes (𝑛) in the current and next hid­
den layer. The exact specification of the initialisation distribution is presented in Equation 4.10.

𝑊 ∼ 𝑈 [− √6
√𝑛𝑗 + 𝑛𝑗+1

, √6
√𝑛𝑗 + 𝑛𝑗+1

] (4.10)

When the initialisation of the model is not close to a good solution, the optimisation algorithm can get
stuck in a local minimum in this vicinity, which is called premature convergence. In this case, the model has
a high error on the training and validation set. The choice of initialisation leads to a form of stochasticity
in the training of the model since each initialisation can result in a different solution.

Hyperparameter tuning
Hyperparameter tuning is essential for the performance of the neural network. By adjusting the hyperpa­
rameters the effective capacity of the model is changed with the aim to match it to the complexity of the
task. There are two approaches to tune the hyperparameters in a neural network, manual tuning by the
user or automatic tuning using an algorithm.

Manual search: Manual search is the most straightforward approach and consists of simple trial and error.
Different hyperparameters sets are chosen and the estimator is trained using the selected set. To evaluate
the choice a certain performance metric is evaluated such as the RMSE on the validation set. The lower
the RMSE on the test set, the better the selected set of hyperparameters.

Grid search: All different combinations of hyperparameters in the selected ranges can also be evaluated,
this is called grid search. It must be noted that this is very inefficient. The required number of evaluations
scales exponentially with the number of hyperparameters to tune.

Random search: Grid search quickly becomes infeasible due to the high number of required evaluations.
Bergstra and Bengio (2012) show that for tuning neural networks random search performs much better
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than pure grid search over the same domain. Random search is able to find models that are as good as or
better within a fraction of the computational time. To decide which hyperparameters should be selected,
again the RMSE on the validation set is evaluated. To perform the random search the user must indicate
what hyperparameters to vary and over what range.

Sequential model­based optimization: Another method for hyperparameter tuning is sequential model­
based optimization. Hutter et al. (2011) introduced this technique for problems where evaluation fitness
function, in this case the calculation of the RMSE on the validation set, is computationally expensive.
The methods employs Bayesian optimization for finding the next set of hyperparameters to evaluate. The
concept of Bayesian optimization is to reduce the number of times the function has to be evaluated by
only evaluating the most promising sets of hyperparameters. This method has the advantage over grid
search and random search that it does not evaluate hyperparameters in the vicinity of already evaluated
hyperparameter sets with low performance.
The Bayesian optimization uses a surrogate function, which is a probability representation of the objective
function built from previous evaluations. The next set of hyperparameters that needs to be evaluated is
selected by maximizing the expected improvement with respect to the set of hyperparameters. In other
words, this means finding the best set of hyperparameters under the surrogate function.

4.2. Recurrent neural network
A Recurrent Neural Network (RNN) is a special type of network architecture that allows the modelling of
temporal dependence. This special architecture allows the input at a certain time step to interact with the
hidden state of previous time steps. This way of being able to model temporal dependence over data
points can be very useful for modelling the VSA. Due to the transient response of the vehicle, the ac­
celerations and yaw moment of a few timesteps ago will still have an effect on the current sideslip angle
(Rajamani, 2011).

RNNs are a class of neural networks that have been extensively used in the areas of speech recognition
and natural language processing (Graves et al., 2013; Peng et al., 2015). These network architectures
are useful for these tasks since they have a ’memory’, namely current inputs influence the outcome a few
steps ahead in time. For example, this is useful in speech recognition tasks where words can only be
recognized if a sequence of tones is entered into the model.
By adjusting the weights of the connections between neurons of consecutive time points, one can adjust
the influence of the temporal dependence. When these weights are set to zero, one obtains a feedforward
neural network. If high weights are used, previous states have a large effect on the current outcome. A
visual representation of the architecture is presented in Figure 4.5.

Figure 4.5: Representation of a simple recurrent neural network. The state of the current time step influences the output of the next
time step. Reprinted from Colah’s blog, by C. Olah, 2015, https://colah.github.io/posts/2015­08­Understanding­LSTMs/

Vanishing/Exploding gradients
The primary challenge when training RNNs is the vanishing/exploding gradient problem. The RNN model
is trained by updating the coefficients using the backpropagation through time algorithm. This algorithm
is very similar to the backpropagation algorithm, but suited to networks with a recurrent structure. The
algorithm calculates the gradient of the weights in the same way as the backpropagation algorithm as
shown in Equation 4.5. Rewriting the backpropagation formulas, Equation 4.11 is obtained. Suppose a
RNN is trained to estimate a certain parameter that heavily depends on a certain input of a large number
of timesteps ago, in other words there is a delay in the response of a few timesteps. When the heavily
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correlated input is a large number of time steps apart from the output, this dependence is difficult to capture.
This is caused by the multiplicative nature of the weight updating equation over time.

𝜕𝐶
𝜕ℎ𝑙 = 𝑐𝜎

′(ℎ𝑙+1) 𝜕𝐶
𝜕ℎ𝑙+1 (4.11)

Namely, upon inspection of Equation 4.11 one can observe that the partial derivative used for updating
the weights is dependent on the derivative of the activation function. For most activation functions this
derivative is lower than one for all values of ℎ𝑙+1, which denotes the loss in a certain hidden layer. Fur­
thermore, the shown equation is iterative over the time steps. Suppose that 𝜎′(ℎ𝑙+1) = 0.3, when trying
to update the weights 10 time steps ago the magnitude of the gradient update will drop to 0.310 ≈ 6∗10−6
of the original values. Therefore, many updates are required to significantly change this parameter.
When the computed gradient is smaller than one, over time the update gradient will converge to zero, this
is called the vanishing gradient problem. When the computed gradient is larger than one, the gradient will
grow to infinity, respectively the exploding gradient problem. There are methods to decrease the impact
of this problem by using modified backpropagation algorithms or gradient clipping (Pascanu et al., 2013).
However, often other recurrent cells are selected for its greater capability of modelling longer temporal
dependencies.
It is important to note that the vanishing/exploding gradient problem also occurs when trying to train deep
networks. The same multiplicative nature of gradients can be found when trying to propagate the error
through different layers of the network.

Long Short­Term Memory cell
As discussed, RNNs are useful when one wants to use past information for a present prediction. When
this information is recent (few time steps ago), the discussed RNN structure is useful. However, this struc­
ture is not able to model long­term dependencies. To learn long­term dependencies a new kind of cell is
developed, the Long Short­Term Memory (LSTM) cell (Hochreiter and Schmidhuber, 1997).

The LSTM cell is capable of learning long­term dependencies due to the presence of a cell state that
is passed through time. The cell state is represented by the top horizontal line in Figure 4.6. It allows
information to pass through time freely.

Figure 4.6: Structure of the LSTM cell. Note that 𝜎 represents the sigmoid function and tanh represents the hyperbolic tangent
function. Reprinted from Colah’s blog, by C. Olah, 2015, https://colah.github.io/posts/2015­08­Understanding­LSTMs/

Within the LSTM cell several gates exist, these are discussed from left to right as they can be observed
in Figure 4.6. The first gate is the ’forget gate’ indicated by F, this gate looks at the previous hidden state
(ℎ𝑡−1) and current data point (𝑥𝑡) and determines what data to remove from the cell state via Equation
4.12.

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (4.12)

The next gate is called the ’input gate’, indicated by I in Figure 4.6. This gate decides what data gets
added to the cell state. This gate again makes use of the previous hidden state (ℎ𝑡−1) and current data
point (𝑥𝑡). The variable 𝑖𝑡 is a scaling factor that indicates how much each part of the state must be
updated. The new cell state (𝐶𝑡) is composed of the old cell state (𝐶𝑡−1) multiplied by the forget state (𝑓𝑡)
to ’delete’ this invaluable data. Additionally, the newly computed cell state (𝐶̃𝑡) times the scaling factor (𝑖𝑡)
is added to the cell state.
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𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4.13)
𝐶̃𝑡 = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (4.14)
𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶̃𝑡 (4.15)

The last step is to determine the output signal of the LSTM cell. The respective section is indicated by
O in Figure 4.6. This output signal is composed of a combination of information retrieved from the updated
cell state (𝐶𝑡) and information from the data point (𝑜𝑡).

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (4.16)
ℎ𝑡 = 𝑜𝑡 tanh(𝐶𝑡) (4.17)

There also exist RNN structures that are bidirectional. In the current study there is chosen not to
evaluate such architectures as the model is developed for online estimation. Thus, the data of future time
steps is unknown and a bidirectional structure is not useful.

Gated Recurrent Unit
There exist multiple variants of the LSTM cell such as the Gated Recurrent Unit (GRU). This unit combines
the ’forget gate’ and ’input gate’ to a single ’update gate’ (Cho et al., 2014). Therefore, the GRU is less
complex than the LSTM cell and less weights need to be ’learned’. When the dataset is small the choice
can be made to use the GRU instead of the LSTM cell. This simplification of the GRU has the conse­
quence that the memory content (hidden state) is exposed at each step without any control. In contrast,
the LSTM has the ability to only show a part of the memory content using the output gate.
Another difference is the location of the input gate or respectively the reset gate. This different location
changes the dynamics of how information is added to the memory. In the LSTM the amount of informa­
tion added to the memory is independent of the forget gate. However, the GRU controls the flow of the
memory in the previous step, but does not control the amount of added information to the memory. An
overview of the GRU is presented in Figure 4.7.

Figure 4.7: Structure of the GRU. Reprinted from Primo.ai, 2020, https://primo.ai/index.php?title=Gated_Recurrent_Unit_(GRU)

Chung et al. (2014) evaluated the performance of the GRU versus the LSTM cell on different tasks and
could not make a concrete conclusion about which of the gating units performed better. In their research
they found that it is very dependent on the task.

4.3. Transformer
RNNs are very popular for dealing with sequential data, but are accompanied by a few problems. Firstly,
information is lost when the RNN is trying to process long data sequences. This is especially true for
vanilla RNN structures due to the vanishing/exploding gradient problem, but also holds in a lesser degree
for LSTM and GRU cells. Secondly, RNNs must process the data sequentially and since the next cell
depends on the state information of the previous cell, RNNs are unsuited for parallel computing. This
causes longer training and prediction times.
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Transformers are a relatively new approach in deep learning that aim to solve these problems. Trans­
formers are introduced by Vashwani et al. (2017) for the task of Natural Language Processing (NLP)
and are based on the principle of attention. The Transformer makes it possible to achieve sequence to
sequence modelling without the use of recurrent network units. If use of the Transformer for the task of
VSA estimation is advantageous needs to be evaluated. Also, due to computational complexity it has to
be investigated if real time application of the architecture is feasible.

Attention
Attention is a principle that humans use every day without being aware of it. To introduce the concept it
is useful to present an example. Imagine that you lost your red water bottle in a room and are searching
for it by looking across the room. When searching you explicitly focus on objects that appear to be red,
in other words you pay attention to red objects. This is natural since this is a feature of your water bottle.
This attention is very useful since you do not have to pay attention to objects of a different colour since
this cannot be your water bottle. Machine learning tries to exploit this attention mechanism to increase
the performance of the neural network.

The principle of attention is introduced in deep learning for the purpose of translating large texts. The
main goal of attention in this context is to establish connections between related parts of the text. When
related parts of the text are further apart, information can get lost when using RNNs due to their sequential
structure. However, due to the attention principle Transformers do not suffer from this distance due to the
made connections.

Transformers make use of self­attention, a mechanism using keys, values and queries. It is useful to
explain these concepts using the process of language translation. In this situation the keys and values are
the memory of what words the model has seen before and the query is the current word that needs to be
processed. The query is compared against the keys and based on the similarity a score is given. These
scores are normalized and multiplied by the values to obtain an attention value. The exact mathematical
formulation is presented in Equation 4.18 where Q, K and V indicate respectively the queries, keys and
values. Here, the Softmax function creates a probability function over the keys with peaks at similar keys.
This distribution is multiplied by the values for the final score.

Attention(𝑄, 𝐾, 𝑉) = softmax(𝑄𝐾
𝑇

√𝑛
)𝑉 (4.18)

The Transformer in the paper of Vashwani et al. uses multi­head self­attention, essentially an en­
semble method. The attention function is not computed once, but multiple times in parallel. Thus, the
attention score is calculated multiple times using what the authors call ’different representation subspaces
at different positions’. The attention scores are averaged out to form a final score.

Architecture
The Transformer is constructed in an encoder­decoder structure. This essentially means that the input is
first encoded into a feature subspace, after which it is decoded to the output. For example, with language
translation the encoder converts the input sentence into a language independent feature space. Subse­
quently, the decoder translates this to the new language. Each language will have a specific encoder
and decoder. The encoder must be specific for the input language, the decoder determines the output
language. When a decoder for the French language is used, the output is French, when a decoder for the
Dutch language is used, the output is Dutch.

A full overview of the Transformer model architecture is presented in Figure 4.8. The part of the
Transformer that acts as the encoder in outlined by a red box, where the decoder is outlined by the blue
box. The multi­head attention block, which is discussed in the attention section, is part of the encoder
and of the decoder. For the task of NLP the authors use a total of 6 encoders and 6 decoders, these are
placed in a sequential manner.

Positional encoding
Before the input reaches the encoder it is processed by learned embedding layers such that the dimension
of the data is suited for the encoder. Furthermore, to preserve positional information of the sequence, a
sinusoid­wave­based positional encoding is applied and summed with the embedding output. At last, after
the final decoder layer a learned linear and Softmax layer are applied.
The Transformer is trained by feeding a sentence in one language to the Transformer via the input and
the translation of the sentence to the output. It must be noted that the translation of the sentence is shifted
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Figure 4.8: Transformer architecture proposed by Vashwani et al. (2017)

right by one position, this is to avoid the decoder from simply copying the decoder input. By shifting the
decoder input one position to the right it is asked of the model to predict the next word, when the prediction
is wrong the model immediately gets corrected using the shifted decoder input. This method of training
a model is also known as teacher forcing, which helps to train the model faster. When the sentence is
entered into the decoder input it must start with a start­of­sentence token and it must end with an end­of­
sentence token.

Inferring using Transformers is different from that of more classical predictors. To translate a sentence
it needs to be entered into the encoder input. In the decoder a start­of­sentence token has to be filled in.
The Transformer will then output a single element which needs to be added to the decoder input. The
Transformer then runs again predicting the second element, which again must be added to the decoder
input. These steps have to be repeated until the Transformer predicts an end­of­sequence token, at this
point the full encoder sequence is translated. It can be seen that multiple runs through the encoder are
required to translate a sentence.

From the architecture one can gather that the Transformer has a complex structure with a large amount
of weights that have to be ’learned’. In general, when more weights need to be ’learned’, more data has to
be available and training of the network will take longer. For NLP tasks a lot of training data is available and
the network can be pretrained. If the weights of the same model for a different application are available
one can make use of transfer learning, which can severely shorten the required training time.

Time series application
The Transformer architecture is originally designed to be used for NLP, a task that is completely different
from time series estimation. Thus, it is unclear if the architecture can be used for this application. To
start, when sentences are used as an input to the Transformer they are tokenized. This means they are
translated into integers according to a given vocabulary V. Of course, floats as inputs of the time series
data cannot be tokenized in such a way. To solve this problem a new input and output embedding has to
be designed that is able to deal with float inputs.
Next, in the NLP case a collection of superimposed sinusoidal functions are added to each input embed­
ding. When processing time series this is not viable since the inputs are floats instead of distinct tokens.
Kazemi et al. (2019) offer a solution to this problem by introducing the Time2Vec representation for time.
This method encodes measurements taken close to each other in time with similar values, which allows
the Transformer to spot that the measurements happened close after one another. Also, measurements
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from the same hour as previous days or one the same weekday get encoded with a higher similarity. This
allows the Transformer to also model daily, weekly and seasonal fluctuations. It must be noted that the
measurements must come from the same timeline to make it possible to model such fluctuations. When
the system is independent of time and not all measurements are consecutive, this encoding is not useful.
If so, the independent sections of measurements must be positionally encoded separately.

Researchers have already evaluated the performance of the Transformer when used for forecasting.
Wu et al. (2020) used the Transformer for forecasting the influenca­like illness activity. These time se­
ries are highly influenced by seasonal effects. The Transformer shows great promise by outperforming
ARIMA, LSTM and Seq2Seq models. As discussed, it is important that enough data is available to train
the Transformer. The track record of the Transformer is very good and evaluation of the performance can
be very interesting.

If the size of the available training data is low or a decoder is not necessary, the decoder can be dis­
carded. A decoder may not be necessary when the complexity of the task is low or with a small number of
output parameters. It is also possible to replace the decoder with a fully connected layer. When discarding
the decoder, inference does not have to be performed using teacher forcing and the model can be trained
in a traditional manner. Additionally, when training a model with many weights it is always useful to start
with pretrained weights. It does not matter for what task these weights are used since pretraining will
almost always reduce training time significantly.

4.4. Hybrid approach
In literature hybrid structure models achieve the highest performance. These structures combine data­
driven with observer­based models to provide a higher quality sideslip angle estimation. Different struc­
tures exist with the aim of achieving the highest performance. The most frequently used structure consists
of a data­driven model estimating a sideslip angle along with the respective uncertainty level. The ob­
server uses these two estimates as a sensor measurement and a corresponding amount of noise. There
are many design choices to be made when constructing the hybrid model. The building blocks of the hy­
brid structure are discussed in this section. Choices must be made regarding the type of observer model
to use, the method of calculating uncertainty of a data­driven model, and the overall structure of the model.

4.4.1. Extended Kalman filter
The first observer to discuss is the EKF, an extension of the well­known Kalman filter. The Kalman filter
is an optimal estimator, but can only be applied to linear systems. Since the dynamics that need to be
modelled here are nonlinear, this observer cannot be applied.

Figure 4.9: Schematic representation EKF

To understand the EKF observer the large similarities with the linear Kalman filter are used. The vari­
ables that one attempts to track are located in the state vector 𝑥. The covariance matrix 𝑃 denotes the
(co)variances of the different states in 𝑥, a measure of the uncertainty of the estimation. The Kalman filter
consists of two phases, the prediction and update phase. During the prediction phase the next conditional
state is predicted using the transition matrix 𝐹. Additionally, the covariance matrix for the next time step
is computed using the transition matrix and the process noise. The discrete linear Kalman filter described
here operates in discrete time steps. The subscripts in the equations denotes the time step of the re­
spective state or covariance matrix and conditional on what time step this state or covariance matrix is
estimated. For example 𝑃̂𝑘+1|𝑘 denotes that the covariance matrix at time 𝑘 + 1 is estimated conditionally
on the information present at timestep 𝑘. During the predict phase only information about time step 𝑘 is
present, no measurements from time step 𝑘 + 1 are available.
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𝑥̂𝑘+1|𝑘 = 𝐹𝑥̂𝑘|𝑘 (4.19)
𝑃̂𝑘+1|𝑘 = 𝐹𝑃̂𝑘|𝑘𝐹𝑇 + 𝑄 (4.20)

After the measurements at time step 𝑘 + 1 are known, the update phase follows. The measurements
are contained in the observation vector 𝑧. This observation vector is used to determine how accurate the
conditional state 𝑥̂𝑘+1|𝑘 is by computing the residual vector 𝑦, the error between the observation and the
conditional observation. The conditional observation is calculated by multiplication of the measurement
function 𝐻 with the conditional state.

𝑦𝑘+1|𝑘+1 = 𝑧𝑘+1 − 𝐻𝑥𝑘+1|𝑘 (4.21)

Next, the Kalman gain 𝐾 has to be calculated, which is dependent on the system uncertainty 𝑆. The
system uncertainty is calculated using the covariance matrix 𝑃 and the measurement noise 𝑅. The mea­
surement noise 𝑅 is an indication of the noise level on the measurements in the observation vector 𝑧.

𝑆 = 𝐻𝑃̂𝑘+1|𝑘𝐻𝑇 + 𝑅 (4.22)
𝐾 = 𝑃̂𝑘+1|𝑘𝐻𝑇𝑆−1 (4.23)

Then, the final prediction of the state and covariance matrix conditional on the most recent information
can be made. A visual representation of the EKF is presented in Figure 4.9.

𝑥̂𝑘+1|𝑘+1 = 𝑥̂𝑘+1|𝑘 + 𝐾𝑦𝑘+1|𝑘+1 (4.24)
𝑃̂𝑘+1|𝑘+1 = (𝐼 − 𝐾𝐻)𝑃̂𝑘+1|𝑘 (4.25)

As mentioned, the EKF is a nonlinear extension to the Kalman filter that linearizes around the current
estimate. The dynamics in the discussed Kalman filter are linear, which allows a linear transformation be­
tween the state and next conditional state. However, in nonlinear systems this linear transformation does
not exist and the EKF compensates for this by using the first order derivatives for these transformations.
To achieve this, the matrices 𝐹 and 𝐻 are replaced by the partial derivative of these functions evaluated
at the current state.

𝐹𝑘 =
𝜕𝑓
𝜕𝑥 |𝑥̂𝑘|𝑘

(4.26)

𝐻𝑘 =
𝜕ℎ
𝜕𝑥 |𝑥̂𝑘+1|𝑘

(4.27)

To use the EKF the matrices 𝐹 and 𝐻 have to be derived from the system dynamics. The matrix 𝑅 can
be determined via evaluation of the measurement noise and can otherwise be tuned. Also, the matrix 𝑄
must be tuned for optimal performance.

4.4.2. Unscented Kalman filter
The EKF has a flaw that decreases the performance significantly. For a linear system the Kalman filter is
able to propagate the Gaussian random variable through the system dynamics analytically. However, for
nonlinear system dynamics the state distribution is approximated by a Gaussian random variable that is
propagated through the first order linearization of the nonlinear system. Higher order terms are ignored,
which can lead to suboptimal performance and divergence of the filter.

In the UKF, proposed by Julier and Uhlmann (1997), the state distribution is also represented by a
Gaussian random variable, but is identified using a minimal set of sample points. These carefully chosen
sample points are named ’sigma­points’. These sigma­points are selected from the source Gaussian and
are mapped using the nonlinear dynamics on the target Gaussian. These points are then being used
to calculate the actual mean and variance of the transformed Gaussian. The sigma­points are located
around the mean in directions based on the covariance matrix of the system.
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Figure 4.10: Schematic representation UKF

A number of 2𝑁 sigma­points is required in a system with 𝑁 dimensions. The exact locations of the
sigma­points are computed using the following formulas, here 𝜇 denotes the mean of the source Gaussian,
𝜆 is a scaling parameter for how far the sigma points need to be located from the mean and Σ is the
covariance matrix of the source Gaussian.

𝒳[0] = 𝜇 (4.28)

𝒳[𝑖] = 𝜇 + (√(𝑁 + 𝜆)Σ)𝑖 for i = 1,...N (4.29)

𝒳[𝑖] = 𝜇 − (√(𝑁 + 𝜆)Σ)𝑖−𝑛 for i = N+1,...2N (4.30)

The different sigma points also have weights assigned to them. These weights are based on the scaling
factor and sum to 1. The mean has a weight that grows when the scaling factor becomes larger, thus when
the sigma­points are located further from the mean in the source Gaussian, the mean is higher weighted.
The weights are placed in such a way that results in approximations up to the third order for Gaussian
inputs (Wan and Van Der Merwe, 2000). When non­Gaussian inputs are used, the approximations are
accurate to the second order. The accuracy can be up to the third and fourth order, but this is determined
by the choice for 𝛼 and 𝛽.

𝑤[0] = 𝜆
𝑛 + 𝜆 (4.31)

𝑤[𝑖] = 1
2(𝑛 + 𝜆) for i = 1,...,2N (4.32)

The next step is to propagate the sigma­points through the nonlinear system. The mean and variance
of the target Gaussian can easily be computed using the weights and transformed sigma­points. In these
equations 𝑓(⋅) denotes the nonlinear system. Furthermore, the process noise 𝑄 must be added to the
covariance matrix to account for unmodeled noise in the model.

𝜇′ = Σ2𝑁𝑖=0𝑤[𝑖]𝑓(𝒳[𝑖]) (4.33)
Σ′ = Σ2𝑁𝑖=0𝑤[𝑖](𝑓(𝒳[𝑖]) − 𝜇′)(𝑓(𝒳[𝑖]) − 𝜇′)𝑇 + 𝑄 (4.34)

For the update step the calculated sigma­points are used to determine the expected outcome of the
system using the nonlinear measurement function ℎ(⋅). This expected outcome is used to calculate the
covariance of the system in the measurement space. This covariance matrix contains the respective
measurement noise 𝑅𝑡.

𝒵 = ℎ(𝒳) (4.35)
𝑧̂ = Σ2𝑁𝑖=0𝑤[𝑖]𝒵[𝑖] (4.36)
𝑆 = Σ2𝑁𝑖=0𝑤[𝑖](𝒵[𝑖] − 𝑧̂)(𝒵[𝑖] − 𝑧̂)𝑇 + 𝑅𝑡 (4.37)

The last step is to calculate the Kalman gain, in contrary to the EKF the Jacobian is not used for
this. Instead, the cross­correlation between the sigma­points in the state space and sigma­points in the
measurement space is calculated. This term is very similar to the 𝑃̂𝐻𝑇 being used in the EKF. The Kalman
gain is then calculated by multiplying this with the predicted covariance matrix.
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𝑇 = Σ2𝑁𝑖=0𝑤[𝑖](𝒳[𝑖]) − 𝜇′)(𝒵[𝑖] − 𝑧̂)𝑇 (4.38)
𝐾 = 𝑇𝑆−1 (4.39)

The final states are then predicted using almost equivalent formulas as those used in the UKF. A
schematic overview of the UKF is presented in Figure 4.10.

𝜇 = 𝜇′ + 𝐾(𝑧 − 𝑧̂) (4.40)
Σ = (𝐼 − 𝐾𝑇)Σ′ (4.41)

Using the UKF one is able to capture up to the third order Taylor series terms, a large improvement
over the EKF. Additionally, the UKF does not depend upon derivatives of the system dynamics. This can
be useful when these dynamics are unknown.

4.4.3. Confidence level estimation
For an observer to operate in an optimal way, estimations and the respective uncertainty level must be
provided to estimate the state. In this study neural networks are being used for predictions, these networks
do not present the uncertainty of an estimation by default. However, in recent literature more attention
has been paid towards estimating the uncertainty of neural network estimations. Several methods that
are viable in the current setup are discussed.

Deep ensemble estimation
The most straightforward manner of estimating the uncertainty level of a neural network estimation is to
train multiple models and letting these models predict independently. The different predictions can then be
combined to form a final estimate and an uncertainty level. The final estimate is themean of the predictions
of the different models and the uncertainty level is the variance of the estimations of the different models.
Predicting using a combination of different models is a type of model averaging. The different models
that are trained on the data can have the same network structure with equal hyperparameters for training
in place. This is possible due to the high stochasticity of neural network training. The network weights
are initialized in a different manner and gradient evaluation using batches will almost always cause the
network to converge to a different set of network weights. The advantage of this method is that it is very
easy to implement and that is it is possible to use this method of uncertainty level estimation for all different
neural network structures. The disadvantage is that one must train a large number of neural networks and
that the uncertainty level estimation may not be accurate at points where all models predict incorrectly.

Figure 4.11: Structure of UDE

Lakshminarayanan et al. (2016) adapt this method by training the individual models in such a way
that they predict the outcome and uncertainty level simultaneously. This is achieved by training the neu­
ral networks to output two values, the prediction and the respective uncertainty in terms of the variance,
shown in Figure 4.11. To train a network in such a way, the negative log­likelihood criterion denoted
in Equation 4.42 is minimized. This allows the two outputs to be trained synchronously. This model is
called the Uncertainty Deep Ensemble (UDE) and can be applied to all types of neural networks discussed.
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− log𝑝𝜃(𝑦𝑛|𝑥𝑛) =
log𝜎2𝜃(𝑥)

2 + (𝑦 − 𝜇𝜃(𝑥))
2

2𝜎2𝜃(𝑥)
+ 𝑐 (4.42)

The predictions of the ensemble are considered to be a mixture of Gaussian distributions. To compute
predictive probabilities of the ensemble there is assumed that the ensemble predictions form a mixture
of Gaussians which mean and variance are equal to the mean and variance of the true distribution. The
variance of a Gaussian mixture cannot be calculated by simply taking the mean of all estimates. Instead,
Equation 4.43 should be applied where 𝜇∗(𝑥) is the mean of all predictions. In this manner a Uncertainty
Deep Ensemble (UDE) is constructed.

𝜎2∗ = 𝑀−1∑
𝑚
(𝜎2𝜃𝑚 + 𝜇

2
𝜃𝑚(𝑥)) − 𝜇

2
∗ (𝑥) (4.43)

The paper also proposes the use of adversarial training, a method of training neural networks proposed
by Szegedy et al. (2013) and further improved by Goodfellow et al. (2014). Using this method adversarial
examples are generated by applying small perturbations to the training data. These perturbations are
chosen in a direction such that the loss is maximally increased. This direction is found by evaluation of
the gradient of the loss function. These adversarial examples are generated via the fast gradient sign
method, shown in Equation 4.44. Here, 𝜖 denotes the adversarial training multiplier.

𝑥′ = 𝑥 + 𝜖 sign(∇𝑥𝑙(𝜃, 𝑥, 𝑦)) (4.44)

Adding these adversarial examples to the training data can increase the robustness of the estimator.
The method smooths the predictive distribution of the estimator around the observed training examples in
an efficient manner. Namely, only in the direction where the gradient is the largest.

Monte Carlo Dropout
There also exist methods to estimate the uncertainty of an estimation using a single model, such as Monte
Carlo Dropout (MCDO) (Gal and Ghahramani, 2016). The use of a single neural network model clearly
decreases training time over ensemble methods. However, the overall idea of the method is comparable
to that of ensemble methods. Namely, the single model is used to create a large number of different mod­
els by the use of dropout. The dropout method deletes neurons randomly from the network with a certain
tuned probability. This creates a submodel with slightly different behaviour. For MCDO to operate, a
number of submodels are created by applying dropout to the network. An ensemble is formed from these
submodels. The final estimation is the mean of the predictions of the submodels and the uncertainty is the
variance of the predictions. A visual representation of this mechanism is presented in Figure 4.12. It is
important to note that MCDO can only be applied to networks where a dropout layer is in place. However,
it is possible to put a dropout layer in place where the nodes have a probability of zero of dropping out.
This will not interfere during the training phase, but allows the use of MCDO during the interference phase.

Figure 4.12: Submodel creation MCDO

The dropout rate during the interference phase needs to be tuned such that the confidence intervals
overlap with the true error distribution. The assumption that the predictions of the submodels form a normal
distribution has to be made. However, this can be verified by making a large number of predictions using
the different submodels and performing a Jarque­Bera test. When the distribution is known, the dropout
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rate must be tuned such that the number of predictions in a certain probability interval is in accordance
with the number of predictions of the normal distribution in that probability interval. To be more precise,
the dropout rate is increased until 95 % of the measurements lie within the 95 % confidence interval of the
estimation.

Monte Carlo Batch Normalisation
The last method to estimate the uncertainty of neural network predictions is Monte Carlo Batch Normal­
isation (MCBN) (Teye et al., 2018). The method to estimate the uncertainty is based around the batch
normalisation layer, discussed in Section 4.1. To use a neural network model for MCBN, it needs to be
trained in a normal manner with a batch normalisation layer in place. Only in the inference phase changes
are made such that the uncertainty level can be estimated.

It is important to recall that the batch normalisation layer is positioned between the linear operations
in the artificial neuron and the activation function. The output of the linear operation needs to be nor­
malised to avoid internal covariance shift. Using the normal batch normalisation layer this is achieved by
subtracting the mean of that batch and normalising using the variance of the respective batch, as shown
in Equation 4.8. When using MCBN the batch statistics of the current batch are not used, but instead the
statistics of a randomly sampled batch from the training data. A number of 𝑇 times a different randomly
sampled batch is drawn and the corresponding statistics are being used to normalise the output of the
linear operation. After this normalisation step the output is scaled and shifted by learned parameters 𝛾
and 𝛽. The parameters are learned via an exponential moving average. This step allows the model to
determine the optimal distribution for each hidden layer. An overview of MCBN and in what way the layer
is implemented in the artificial neuron is shown in Figure 4.13.

The drawing of the randomly sampled batches from the training data introduces randomness to the
inference phase. The number of times a randomly sampled batch of training data has to be drawn (𝑇) and
the size of the respective batch are hyperparameters that need to be tuned.

Figure 4.13: MCBN method visualised

A disadvantage of MCBN is that it can only be used in network architectures where a batch normal­
isation layer is present, which is not trivial. Namely, applying a batch normalisation layer to a RNN is
deemed foul practise. This is caused by the fact that the estimated statistics of the incoming distribu­
tion are shared between all timesteps. This can cause batch normalisation to be less effective for RNN
structures. Instead, for RNN structures one should implement layer normalisation introduced by Ba et al.
(2016). Unfortunately, it is not possible to apply a procedure equivalent to MCBN to layer normalisation.

4.4.4. Observer model
In the hybrid structure an observer must be implemented to make the estimation more robust and smooth.
The observer is constructed on an underlying model that describes the dynamics of the system. In this
case the observer must be based on a vehicle model that describes the dynamics of the vehicle in an
accurate manner such that accurate estimation of the VSA can be achieved. For analysis of the VSA, the
nonlinear bicycle model is selected, a common choice in literature (Cheli et al., 2015; Kim et al., 2020).
This simple model is able to provide accurate sideslip angle estimates.

The nonlinear bicycle model is used to compute several states that cannot be measured directly, in­
cluding the VSA. The motions of the vehicle are derived via Newton’s second law. Via the equilibrium
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equations of the system the lateral velocity (𝑣) and yaw rate (𝑟) states are updated in the observer model.
Since the bicycle model assumes constant forward velocity (𝑢), the forces in the forward direction (𝑥) must
sum to zero. In the equilibrium equations 𝑙𝑓 and 𝑙𝑟 respectively denote the distance from the CoG to the
front and rear wheels. The mass of the vehicle is 𝑚 and 𝐼𝑧 denotes the moment of inertia of the vehicle
around the vertical axis.

∑𝐹𝑦 = 𝐹𝑦𝑓 cos(𝛿) + 𝐹𝑦𝑟 = 𝑚(𝑣̇ + 𝑟𝑢) (4.45)

∑𝑀𝑧 = 𝑙𝑓𝐹𝑦𝑓 − 𝑙𝑟𝐹𝑦𝑟 = 𝐼𝑧𝑟̇ (4.46)

To use the nonlinear bicycle model the tire forces have to be estimated, which requires a tire model.
There is chosen to use the Dugoff tire model, introduced by Dugoff et al. (1969). The Dugoff model
provides analytical relations of the longitudinal and lateral tire forces as a function of the slip angle and
slip ratios. Therefore, it accounts for the coupling of the forces in both directions, indicated by the friction
ellipse. The model ignores the effects of turn slip and camber.
The tire slip angle of the front and rear wheel are calculated using the lateral and longitudinal velocity of
the vehicle, as well as the steering angle (𝛿). The distance from the CoG to the front and rear wheels is
respectively indicated by 𝑙𝑓 and 𝑙𝑟. The vertical force of the wheels (𝐹𝑧) is calculated using the mass of
the vehicle (𝑚) and the geometry of the bicycle model. Here, 𝐿 denotes the length of the wheelbase of
the vehicle and 𝐶𝑜𝐺𝑧 is the height of the CoG.

𝛼𝑓 = 𝛿 − arctan(
𝑣 + 𝑙𝑓𝑟
𝑢 ) (4.47)

𝛼𝑟 = arctan(−𝑣 − 𝑙𝑟𝑟𝑢 ) (4.48)

𝐹𝑧,𝑓 =
𝑚𝑔𝑙𝑟
𝐿 − 𝑚𝐶𝑜𝐺𝑧𝑢̇𝐿 (4.49)

𝐹𝑧,𝑟 =
𝑚𝑔𝑙𝑓
𝐿 + 𝑚𝐶𝑜𝐺𝑧𝑢̇𝐿 (4.50)

Next, the road surface friction coefficient of both tires is calculated using the longitudinal velocity, a
road surface constant (𝜇0), the slip angle of the tire and the friction reduction coefficient of the tire (𝑒𝑟).

𝜇𝑓 = 𝜇0 (1 − 𝑒𝑟𝑢√𝑡𝑎𝑛(𝛼𝑓)2) (4.51)

𝜇𝑟 = 𝜇0 (1 − 𝑒𝑟𝑢√𝑡𝑎𝑛(𝛼𝑟)2) (4.52)

Then, it is computed if the tires are behaving in the linear region by computing the 𝜆 variable. When 𝜆
is greater than 1, the tire is behaving linearly. The cornering stiffness of the tire, which is a tire dependent
characteristic, is denoted by 𝐶𝛼.

𝜆𝑓 =
𝜇𝑓𝐹𝑧,𝑓

2√(𝐶𝛼,𝑓𝑡𝑎𝑛(𝛼𝑓))2
(4.53)

𝜆𝑟 =
𝜇𝑟𝐹𝑧,𝑟

2√(𝐶𝛼,𝑟𝑡𝑎𝑛(𝛼𝑟))2
(4.54)

𝑓(𝜆) = {𝜆(2 − 𝜆) if 𝜆 < 1
1 if 𝜆 ≥ 1 (4.55)

Finally, the lateral and longitudinal tire forces can be calculated. However, here we are only interested
in the lateral tire forces.

𝐹𝑦,𝑓 = 𝐶𝛼,𝑓𝑡𝑎𝑛(𝛼𝑓)𝑓(𝜆𝑓) (4.56)
𝐹𝑦,𝑟 = 𝐶𝛼,𝑟𝑡𝑎𝑛(𝛼𝑟)𝑓(𝜆𝑟) (4.57)
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The advantage of the Dugoff tire model is that it contains a low number of parameters to tune. How­
ever, the shape of the tire curve is very limited where the peak in the tire curve cannot be modelled. This
makes it a simplified representation of the real tire behaviour.

Various observer variations are implemented in an attempt to achieve optimal performance. All dif­
ferent variations are used in combination with the EKF and UKF. The only exception is the tire forces
observer which is only being used in combination with the EKF.
An important note is that all observers are designed under the assumption that no road bank angles are
present. In contrast, neural networks are able to deal with road bank angles, although the quality of the
estimation might be slightly lower.

Standard (ST): The first observer variation to discuss is the standard observer. This observer uses the
steering angle, longitudinal velocity and longitudinal acceleration as inputs. The observer states are the
lateral velocity and yaw rate. The sideslip angle is then calculated using the estimated lateral velocity and
measured longitudinal velocity.

Tire forces (TF): The tire forces observer variation also makes use of the longitudinal force on the front
wheels. These forces, measured per wheel, add two inputs to the observer. Van Aalst (2020) proposed to
use these forces to compute the yaw moment of the vehicle at the CoG. Also, the force component in the
lateral direction created by the steering angle of the front wheels can be computed. This extra information
is useful for the prediction phase as well as for the computation of the first derivative of the transition and
measurement function.

Extra measurements (XM): In the extra measurement variation the lateral forces on the front and rear
wheels are added as two measurements to the observer. This addition leads to an extension of the di­
mensions of the transition and measurement function. This extension allows a more precise modelling of
the vehicle dynamics and aims to improve the quality of the transition and measurement function. It also
allows an analysis of the error between the estimated and true lateral force.

Adaptive (AD): In the last observer variation the measurement noise matrix is adaptive to the error on
the lateral tire forces estimation. When the lateral force error is higher than a certain threshold, the noise
levels corresponding to the lateral forces states are changed.

The true tire forces are presented as measurements to the observer. The tire forces are also estimated
by the observer using the Dugoff tire model. When the error between the estimated and measured lateral
tire forces becomes too large, the tire is probably operating in the nonlinear region. At this point the
measurement noise on the tire forces is increased. However, one should avoid constant switching between
a reduced and normal value for the sensor noise. Therefore, the hysteresis principle is introduced by
Tuononen (2009) for the situation where the lateral force error becomes too large. The noise levels in the
covariance matrix increase (mode 2) when the sum of the lateral tire forces error is above the threshold
𝜏2 and are held constant (mode 1) when the sum of the lateral tire forces error is below 𝜏1. Here it is
important to note that 𝜏2 is higher than 𝜏1, when the difference between these two thresholds is large
enough, chattering is avoided. The hysteresis principle is visualised in Figure 4.14.

Figure 4.14: Hysteresis principle
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Cheli et al. (2015) propose to increase the sensor noise values in a linear way where Van Aalst (2020)
proposes to increase the 𝑅 matrix values nonlinearly, as shown in Equation 4.58. Here, 𝑅𝑖𝑖 denotes the
original measurement noise value, 𝑀𝑅 denotes the maximum reduction parameter, 𝐹𝑦,𝑒𝑟𝑟 is the lateral
tire forces error and 𝜎 is the sigma parameter. During the tuning process 𝑀𝑅 and 𝜎 have to be tuned in
an attempt to achieve maximal performance. The nonlinear increment showed better performance and is
therefore selected.

𝑅𝑖𝑖,𝑛𝑒𝑤 = 𝑅𝑖𝑖 −𝑀𝑅 ∗ (1 − 𝑒𝑥𝑝(−0.5(𝐹𝑒𝑟𝑟/𝜎)2)) (4.58)

4.4.5. Hybrid structure
The hybrid structure is created by combining the data­driven model with the observer. A visual representa­
tion of the hybrid structure is presented in Figure 4.15. The possible variations for the different components
of the hybrid model are displayed in the respective blocks.

Figure 4.15: Proposed hybrid structure with suggested components

In Section 4.4.1 and 4.4.2 the mathematical formulations of the EKF and UKF are introduced. In these
filters two types of uncertainty are introduced, process noise (𝑄) and measurement noise (𝑅).
The transition matrix is used to compute the states of the next timestep based on the current state. This
matrix is often an approximation of the true dynamics, which can cause a slight error in the state prediction.
The process noise is therefore added to the covariance of this conditional state estimate to account for
untracked influences. The process noise 𝑄 can therefore be interpreted as a level of confidence one has
in the quality of the transition matrix in that operating region.
In the proposed structure there are also measurements available that can help to refine the state es­
timation. However, the measurements (𝑧) can also contain a certain amount of noise, captured in the
measurement noise matrix 𝑅. This covariance matrix is used to help compute the eventual Kalman gain
matrix 𝐾. It is very well possible that the amount of measurement noise changes over time, dependent on
an external variable.

The matrices 𝑄 and 𝑅 need to be tuned for the specific task such that optimal performance can be
achieved. Both 𝑄 and 𝑅 are assumed to be diagonal matrices with on the diagonal the noise levels of
the corresponding state or measurement. The proposed hybrid approach uses the uncertainty level of
the sideslip angle estimate to compute the sensor noise. Namely, the estimation of the neural network is
used as a measurement to the observer and a scaled version of the respective uncertainty level is used
as the corresponding noise.

The measurement noise matrix 𝑅 is not constant over all timesteps since the uncertainty level of the
neural network estimator is different for each timestep. Therefore, each timestep the measurement noise
corresponding to the sideslip angle estimate has to be adapted based on this uncertainty level. When
the uncertainty of the neural network estimator is high, the corresponding measurement noise is high.
When the measurement noise is high, the observer does not have a lot of trust into the corresponding
measurement and determines it is unreliable. This causes the observer to trust the estimation of the
internal model more and thus weights this value higher. Vice versa, when the measurement noise is
low, the observer deems the estimation of the neural network reliable. The final outcome of the observer
is a weighted average of the measurement from the neural network estimator and the estimation of the
internal model. It must be noted that this weighted average is not linearly weighted based on the amount
of measurement and process noise.
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For proper operation of the observer, the uncertainty level estimate has to be scaled by a constant. This
constant has to be tuned such that the scale of the measurement noise of the sideslip angle measurement
is optimal for estimation. The sensor noise corresponding to the neural network estimate is calculated by
Equation 4.59, where 𝑅𝑠𝑐𝑎𝑙𝑒 denotes the scaling constant.

𝑅𝛽 = 𝑅𝑠𝑐𝑎𝑙𝑒𝜎𝛽 (4.59)

It is significantly more difficult to find a proper method of adjusting the 𝑄 matrix. This matrix must
be adjusted based on how much confidence there is in the prediction of the transition matrix. When
the prediction is inaccurate, the process noise should be increased and when the prediction is accurate it
should be decreased. An ”innovation­based” method to adapt the process noise in such a way is proposed
by Akhlagi et al. (2017). The difference between the posterior state estimate and the predicted state
estimate is calculated each time step. This difference is called the ”innovation” and is computed via
Equation 4.60 where 𝑥+𝑡 denotes the posterior state estimate and 𝑥̂−𝑡 denotes the predicted state estimate.

𝑤̂𝑡−1 = 𝑥+𝑡 − 𝑥̂−𝑡 (4.60)
= 𝐾𝑡(𝑧𝑡 − 𝐻𝑡(𝑥−𝑡 )) (4.61)
= 𝐾𝑡𝑑𝑡 (4.62)

The process noise 𝑄 can be approximated by calculating the covariance matrix corresponding to this
”innovation”. Calculating the covariance matrix is achieved via Equation 4.63. This multiplication ensures
the covariance matrix is a positive semi­definite symmetric matrix.

𝑄𝑘−1 = 𝐸[𝑤̂𝑡−1𝑤̂𝑇𝑡−1] = 𝐾𝑡𝐸[𝑑𝑡𝑑𝑇𝑡 ]𝐾𝑇𝑡 (4.63)

Unfortunately, it is not possible to estimate the expected value online in a sequential manner. There­
fore, it is approximated by an exponential moving average in the following manner. Here 𝛼 is a forgetting
factor to tune that determines how much the process noise is influenced by the last estimate.

𝑄𝑘 = 𝛼𝑄𝑘−1 + (1 − 𝛼)(𝐾𝑡𝑑𝑡𝑑𝑇𝑡 𝐾𝑇𝑡 ) (4.64)

This process noise estimate can be used in the next time step. This approach is an approximation, but
allows adaptive feedback based on the available measurements. The method indicates how the quality of
the transition matrix changes for different operating regions. For example, it is possible that for a certain
range of lateral accelerations the estimation of the transition matrix is really accurate. This would result in
a small ”innovation” and thus the process noise would decrease. Therefore, a higher weight is placed on
the estimation from the transition matrix. The final estimation will therefore be closer to the estimation of
the observer model.

4.5. Summary
In this chapter the different estimation models are introduced. The data­driven models consist of the
FFNN, RNN and Transformer. The RNN and Transformer are able to model temporal behaviour since
these structures can estimate based on the data measurements of multiple time steps. Additionally, the
methods to compute the uncertainty of the neural network estimate are introduced. The uncertainty level
estimate allows the proper adaptation for the covariance matrix of the observer. MCDO and MCBN can
be used in combination with the original model while the UDE requires a deep ensemble to be trained.
The different observer model variations are constructed using the EKF and UKF based on the nonlinear
bicycle model. Linear and exponential scaling of the uncertainty estimate is proposed for adaptation of
the covariance matrices.

In the next chapter the models introduced in this chapter are evaluated on a test set. Additionally,
a method is introduced to evaluate the robustness of the used hybrid model. Finally, the computational
complexity and required training time of the different models is analysed.
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Results

In this chapter the performance of the different estimation structures is evaluated and analysed. Firstly, the
performance of the data­driven neural networks is discussed and evaluated. Secondly, the performance
of the neural networks that are able to predict uncertainty levels of their estimations are discussed. This is
achieved using various performance metrics that are able to judge the quality of the predicted uncertainty
level. Next, the hybrid structures are evaluated that combine the data­driven neural network estimator
with a model­based observer. The robustness of these hybrid structures is put to the test by combining
the observer with a suboptimal neural network. At last, the required computational time of the different
estimation methods is discussed.

5.1. Neural network models
In this section first the model optimization procedure of the different neural networks is addressed. The
hyperparameters that need to be tuned and corresponding network design choices are reasoned. Addi­
tionally, the optimal hyperparameters are presented. Finally, the performance of the different networks is
presented and compared.
The neural networks in the current section are fitted on the features of Dataset 3 in Table 3.1. This is the
feature set that included the six bearing strains per wheel.

5.1.1. Feedforward neural network
There is chosen to select a ’simple’ network structure for the FFNN estimator. A network with a maximum
of two hidden layers and a limited amount of neurons in each layer. The tuning and training of such a net­
work is fairly straightforward and it allows an evaluation of the capabilities of a ’simple’ network structure.
Even within a simple neural network structure there are still many hyperparameters to tune. Examples are
the learning rate, number of hidden layers, number of neurons in these layers, dropout rate of the neu­
rons, and the activation function. As discussed, there are several methods of tuning these parameters.
There is chosen to implement a Bayesian optimisation algorithm for hyperparameter tuning. This method,
discussed in Section 4.1, allows evaluation of only the most promising combinations of hyperparameters
to speed up the tuning process. The optimisation is implemented using the gp_minimize from the Scikit­
learn optimisation toolbox (Pedregosa et al., 2011).

Hyperparameter optimisation requires the user to indicate the ranges of the different hyperparameters
and the respective prior distribution. The exact ranges and distributions of the different parameters are
presented in Table 5.1. For these ’simple’ estimators the size of the network is kept relatively small and
limited to 300 and 200 neurons for the respective layers. It is possible for the network to consist of either
one or two hidden layers. Furthermore, a linear, nonlinear non­saturated (ReLU) and nonlinear saturated
(Sigmoid & Tanh) activation function are evaluated. The dropout rate for each neuron is restricted to being
between 0 and 0.4. It is important to note that a uniform distribution over all hyperparameters is selected
with exception of the learning rate parameter. For this parameter a log­uniform distribution is chosen due
to the multiplicative effect of this parameter on the training dynamics. Namely, the error propagated back
through the network is the learning rate times the loss of the function. For this task a log­uniform search
for the parameters is more suited.

37
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Range Optimal
Number of hidden layers 1­2 2
Number of nodes layer 1 50­300 250
Number of nodes layer 2 50­200 100

Learning rate 10−4 − 10−1 0.001
Activation function Linear ­ ReLU ­ Sigmoid ­ Tanh ReLU

Dropout 0­0.4 0.2

Table 5.1: Optimized hyperparameters FFNN

Next to developing a shallow FFNN with only two layers, a Deep Neural Network (DNN) was trained.
Such networks are constructed using a higher number of hidden layers to model more complex nonlinear
relations between the input variables. However, these deeper networks are not able to match the per­
formance and are quickly overfitting to the data. Therefore, no deeper feedforward neural networks are
analysed.

5.1.2. Recurrent neural network
The hyperparameters that need to be tuned for the optimal RNN are mostly equal to those of the FFNN.
However, there is one important additional hyperparameter, the length of the time window of measure­
ments being used by the RNN. This time window needs to be tuned properly, when the time window is too
short, not all available information is used. In contrast, when the time window is too long, unnecessary
data is added as an input to the estimation, which can act as undesirable noise.
In literature the used time windows differ significantly. Ghosh et al. (2018) use a time window of 0.5 sec­
onds, while Sieberg et al. (2021) use a window of only 0.1 seconds. Therefore, there is optimized over the
range of 5 to 50 timesteps (0.05­0.5 seconds). Additionally, when analysing the vehicle behaviour during
the J­turn manoeuvres, the transient response seems the have a maximal duration between 0.2 and 0.6
seconds. This validates the range of the time window.

The next design choice is to select the type of recurrent cell to use. The options include the normal
recurrent cell, the LSTM cell and the GRU. Due to results in literature regarding the performance of the
LSTM cell, the LSTM cell is selected as a starting point. The same priors hold over the hyperparameters
introduced in the FFNN section, for the length of the time window a uniform prior is used.

Range Optimal
Length time window 5­50 20
Number of LSTM cells 50­200 100

Learning rate 10−4 − 10−1 0.001
Activation function ReLU ­ Sigmoid ­ tanh tanh

Recurrent activation function ReLU ­ Sigmoid ­ tanh sigmoid
Dropout 0­0.4 0.2

Table 5.2: Optimized hyperparameters RNN

The optimal time window for the RNN is 20 time steps, equivalent to 0.2 seconds. This seems to be
in the same range as described in literature. Furthermore, a single layer of 100 LSTM cells with the most
commonly used activation and recurrent activation function proved to be optimal. It must be noted that
RNNs with a larger number of hidden layers have been evaluated as well. These models did not result in
any improvement, which may be caused by the high number of parameters in LSTM networks. The LSTM
cells in the single hidden layer dropped out during training with a probability of 20%. Next to the LSTM cell
the performance of the RNN using the GRU is evaluated. These estimators yielded similar performance
and for further experiments the network consisting of the LSTM cells is considered.

5.1.3. Transformer
Tuning the Transformer is a difficult task due to the high number of hyperparameters. The required compu­
tational time for tuning hyperparameters using Bayesian optimisation scales exponentially with the number
of hyperparameters. Additionally, the required training time of a single Transformer is very high, making
the tuning process computationally expensive. To keep the required computational time feasible, there
is chosen to tune only the hyperparameters that have the most significant effect on the model architecture.

To use the Transformer structure, the input data must be positionally encoded. For most time series ap­
plications this can be achieved by using the Time2Vec representation introduced by Kazemi et al. (2019).
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However, in the current case the timed data is not continuous over all manoeuvres or even of the same
duration. The different tests are all completely independent of each other with respect to time. There is no
seasonality or time dependence to model. It is therefore difficult to positionally encode one of the J­turn
manoeuvres with a slalom manoeuvre in the same vector format. A new method of positional encoding
must be devised for the task.

The positional encoding must encapsulate the order of the different measurements. The first option
is to put all measurements of the different tests after each other and encode these using the Time2Vec
representation. The problem of this approach is that seasonal relations are encoded when these are not
present. Thus, the Transformer would train on relations that are not truly present.
Another approach is grouping the different tests by manoeuvre, this would result in a manoeuvre specific
encoding. Still the measurements must be encoded a second time for the order within these tests. There
are several issues with this encoding method, the first of which is that there is not known beforehand which
type of manoeuvre is encountered when driving normally. Therefore, it is not possible to apply this encod­
ing in real driving situations. Secondly, there does not have to be a relation between the measurements
at a certain time of different tests. Namely, differing initial velocities can cause the vehicle to approach the
first turn at a different time point. Nevertheless, there is chosen for this type of encoding due to the lack
of better alternatives.
It must be noted that when no proper positional encoding is in place, the Transformer will behave as a
FFNN. Since the order of the measurements is unknown, no more information is available for the Trans­
former to act on. In other words, all measurements are independent of each other, just as is the case for
FFNN training.

Range Optimal
Number of Transformer blocks 1­4 2

Number of heads 2­4 4
Head size 32­256 128

Number of neurons in layer 32­256 64
Learning rate 10−4 − 10−1 0.001
Dropout 0­0.4 0.2

Table 5.3: Optimized hyperparameters Transformer

There is chosen to discard the decoder of the Transformer model. Since the aim is to solely estimate
the VSA it is unnecessary to decode the hidden state of the encoder. Namely, the VSA estimate is a
single scalar for every timestep. Thus, one can train the Transformer to let this hidden state between the
encoder and decoder be the VSA estimate.
To reach optimal performance only 2 Transformer blocks are required. This is significantly less than for
NLP tasks where six or more blocks are used (Vaswani et al., 2017). This can be explained since the
complexity of the task is significantly lower. Also, the number of heads is lower with a number of four
compared to eight in NLP applications. The feedforward layer in each Transformer block consisted of 64
neurons, which dropped out at a chance of 20%.

5.1.4. Performance analysis
Table 5.4 shows the performance in terms of RMSE and ME of the different neural network models on the
training, validation and test set. Additionally, the performance on the different manoeuvres in the test set
is broken down. When no more than three tests of the respective manoeuvre are present in the test data
set, only the average is shown. If four or more tests are present, also the minimum and maximum of the
performance metrics over the tests is shown. The best performances are made bold.
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FFNN RNN Transformer

Training RMSE Avg 0.067 0.063 0.068
Validation RMSE Avg 0.045 0.056 0.059

Test RMSE Avg 0.284 0.276 0.298
ME Max 2.254 2.570 2.481

Braking turn RMSE Avg 0.211 0.219 0.209
ME Avg 0.795 0.735 0.717

Circle RMSE Avg 0.376 0.369 0.410
ME Avg 1.210 1.130 1.508

Hockenheim RMSE Avg 0.271 0.269 0.301
ME Avg 2.254 1.755 1.847

J­turn RMSE Avg 0.258 0.258 0.257
Min 0.170 0.201 0.180
Max 0.417 0.399 0.437

ME Avg 0.867 0.770 0.871
Min 0.430 0.545 0.463
Max 1.265 0.995 1.339

Lane change RMSE Avg 0.226 0.229 0.221
Min 0.216 0.217 0.211
Max 0.236 0.245 0.235

ME Avg 1.100 1.138 1.194
Min 0.767 0.764 0.967
Max 1.553 1.544 1.617

Random steering RMSE Avg 0.175 0.179 0.182
ME Avg 1.356 1.074 0.924

Slalom RMSE Avg 0.384 0.347 0.402
Min 0.287 0.268 0.355
Max 0.438 0.395 0.446

ME Avg 2.182 1.697 1.695
Min 1.159 1.305 1.410
Max 2.182 2.570 2.481

Spiral RMSE Avg 0.464 0.367 0.371
ME Avg 1.399 1.353 1.270

Table 5.4: Performance neural network architectures in RMSE [deg] & ME [deg]

From Table 5.4 it can be observed that the RNN with LSTM cells shows the best performance in terms
of RMSE on the test set. However, the FFNN estimator has the lowest ME over all the test manoeuvres
and follows closely in second in terms of RMSE. The differences in terms of RMSE and ME are very small
between the models on the various manoeuvres. During the slalom and lane change manoeuvre when
the vehicle exhibits transient behaviour the RNN and Transformer should be able to outperform the FFNN.
This is expected since the estimator has information of previous timesteps to its disposal. However, the
performance of the FFNN on these manoeuvres is very similar and thus it appears that no gain is made
from the availability of these data points.

One advantage of the FFNN is the simple structure of the network that allows it to be quickly trained
and feasible for all different uncertainty level estimation methods. Due to the small difference in RMSE
between the RNN and FFNN no exclusions can be made. The limited performance of the Transformer
can be attributed to the implementation of the positional encoding. When the Transformer is not able to
recognize the order of themeasurements, it has equal capabilities as the FFNN. Thus, similar performance
is expected at best. However, it is likely that the positional encoding simply adds noise to the estimation.
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Next to analysing the performance metrics for the various manoeuvres it is useful to perform a visual
analysis. Several manoeuvres are highlighted to show the estimation differences between the models.

Figure 5.1: VSA estimation J­turn manoeuvre low velocity Figure 5.2: VSA estimation J­turn manoeuvre high velocity

Figure 5.1 shows that the estimated sideslip angle during the turn of the J­turn remains approximately
constant a different level for the different estimators. Normally, the transient behaviour varies for different
models, but the models converge to the same sideslip angle when the states remain approximately con­
stant. This is what would be expected in the second part of the J­turn manoeuvre, but no convergence
takes place.
Figure 5.2 shows that none of the estimations reach the peak of the actual sideslip angle. One explanation
is that ESP is turned off during this particular test, which can result in a higher VSA. This information is not
available for the neural network estimator. Evaluation of tests with ESP turned off can provide information
regarding the generalisation capabilities of the estimator. In this case it appears that the estimator is not
fully able to generalise for the ESP being turned off.

Figure 5.3: VSA estimation circle manoeuvre with diameter of 25 meter

During the circle manoeuvre shown in Figure 5.3 the Transformer shows unwanted behaviour. Be­
tween the 15 and 20 seconds mark the model estimates a sideslip angle that is too high. The other
models also seem to be disrupted during this period, although significantly less. It is unclear what is the
cause of this behaviour.

During the Slalom manoeuvre shown in Figure 5.4 very high sideslip angles are reached. All models
show strange behaviour during the last peak where it is estimated that the VSA decreases slowly for some
short time. In reality the sideslip angle is still decreasing fast which leads to a significant error. However,
all estimation models are able to model the magnitude of the peak. No large differences between the
different models appeared during this manoeuvre.
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Figure 5.4: VSA estimation slalom manoeuvre

As discussed, the most problematic manoeuvres are highlighted and discussed in this section. Over­
all, the neural network estimators showed the ability to robustly estimate the sideslip angle in a large
number of situations. The only issue is that there is not much data available of very high sideslip angle
measurements. Therefore, the neural network estimator may not have trained sufficiently in this particular
operating region.

5.2. Uncertainty level estimation
There are different methods of estimating the uncertainty level of a neural network estimation. To compare
the performance of these methods MCDO, MCBN, a Deep Ensemble (DE), an UDE and an uncertainty
deep ensemble using adversarial training (UDE AT) are implemented. The used estimation methods are
trained and tuned upon the earlier defined training and validation set, the performance is again evaluated
upon the testing set.

To compare the performance of the different methods additional metrics are introduced. Namely, using
the RMSE the quality of the mean prediction can be evaluated, but not the quality of the respective uncer­
tainty level. Teye et al. (2018) use two metrics to compare the performance, the Predictive Loglikelihood
(PLL) and the Continuous Ranked Probability Score (CRPS). The PLL is widely accepted as a metric
for ranking the quality for uncertainty estimation. An important feature is that it makes no assumptions
regarding the form of the distribution. The metric is maximized by a perfect prediction.
The CRPS takes the full predicted probability density function into account and is less sensitive to outliers
than the PLL metric. The definition of the CRPS is shown in Equation 5.1. The CRPS can be interpreted
as the sum of the squared area between the cumulative distribution function and 0 where 𝑦 < 𝑦𝑖 and
between the cumulative distribution function and 1 where 𝑦 ≥ 𝑦𝑖. A perfect prediction with no variance
results in a CRPS of zero, the lower the CRPS the higher the performance.

𝐶𝑅𝑃𝑆 = ∫
∞

−∞
(𝐹(𝑦) − 1(𝑦 ≥ 𝑦𝑖))2𝑑𝑦 (5.1)

These metrics should also be used to tune the different methods. Namely, there are still a few hyper­
parameters that need to be tuned on the training data set to obtain optimal performance. For MCDO, the
dropout rate for the inference stage has to be tuned. Using MCBN the added noise variance and batch size
need to be tuned. For the deep ensembles the different hyperparameters of the individual models have
to be tuned. The deep ensemble with adversarial training also contains the adversarial training multiplier
that requires tuning. It is very easy to tune MCDO and MCBN since there is only a single hyperparameter
and the evaluation time of the uncertainty estimation methods is low. This means that in a short time
window a large number of hyperparameter values can be evaluated. Thus, the optimal value can quickly
be found. This is in stark contrast with the deep ensemble estimators that depend on a large number of
hyperparameters with a high evaluation time. Training a single network approximately takes one minute
and since the ensembles consist of around 10 to 20 models, training a single ensemble takes 10­20 min­
utes. Thus, it becomes computationally expensive to perform a hyperparameter optimisation over a high
number of parameter dimensions. For such an optimisation a computer cluster is required, in this study
such steps are not taken. Instead only a handful of hyperparameter combinations have been evaluated
that are selected based on experience with the dataset and earlier hyperparameter evaluations.
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The MCDO estimator is evaluated with the dropout rate varying between 0.1 and 0.6 with steps of
0.05. This is the rate at which the neurons drop out to create the submodels. The PLL is maximized and
the CRPS is minimized for a dropout rate of 0.4.
For tuning the MCBN estimator the noise variance parameter is varied between 0 and 0.5 while the num­
ber of batches is varied between 50 and 250 in steps of 50. The noise variance should be set to zero
and the number of batches to 100. Thus, no noise should be added since there is enough variation in the
training data set. For both the MCDO and MCBN estimator a FFNN model is used as a base model. The
MCDO method is also applied to a RNN model, but this did not lead to an improvement.

As discussed, tuning the deep ensemble models is slightly more complex due to the added computa­
tional complexity. To compare the performance in a fair manner there is decided to select equal hyper­
parameters for all three ensembles. Upon manual tuning there is decided to train 20 FFNN models with
2 hidden layers with respectively 50 and 20 neurons. These are trained for 10 epochs each with a batch
size of 256. Tuning the ensemble with adversarial training does require the tuning of a few additional
hyperparameters. These are related to adversarial training, the most prominent of which is the multiplier
parameter, which is set to 0.1

RMSE [deg] PLL [­] CPRS [­]
FFNN 0.284 ­ ­
RNN 0.276 ­ ­
MCDO 0.267 0.796 0.149
MCBN 0.266 0.846 0.151
DE 0.306 0.810 0.190
UDE 0.235 0.655 0.124

UDE AT 0.237 0.669 0.125

Table 5.5: Uncertainty estimation performance

Table 5.5 shows the performance of the different uncertainty level estimators. It becomes clear that
the UDEs achieve the best performance in terms of RMSE. It is unexpected to observe that the normal
ensemble model is not able to meet this accuracy since the same model structure is used. On top of that,
the uncertainty models need to present an estimation as well as the corresponding uncertainty level. One
would suspect that this task is significantly more difficult than solely predicting the VSA. The difference
between the training of the two ensembles is that the used loss function differs. For the normal deep
ensemble the mean­squared error function is minimized where for the UDE the negative log­likelihood
is minimized. However, for a constant uncertainty level, the negative log­likelihood loss is equal to the
mean­squared error loss plus a constant. Therefore, this should not have an effect.

The predictive log likelihood is maximized by the MCBN method while the CRPS is minimized by the
UDEs. It appears that the UDEs estimate a wider confidence interval than the other methods. The PLL
punishes a wider confidence interval more than the CRPS metric, which can explain the discrepancy be­
tween the two methods. The wider confidence interval is no issue in this study since it will be scaled
regardless.

Next, a visual representation of the estimation of MCBN and the UDE is presented in Figures 5.5 and
5.6, here the shaded blue indicates the 95% confidence interval of the estimate. A slalom manoeuvre
is highlighted and immediately various observations can be made. First of all, the estimated confidence
level of the UDE estimator is much wider than that of the MCBN estimator. Next, it is useful to analyse
the variability of the confidence interval. When combining the uncertainty estimator with the observer, the
scale of the confidence interval is not very important since this is scaled either way. However, the variability
of the confidence interval is important. When the confidence interval is much larger when the model is very
uncertain, this provides valuable information for the observer. In contrast, when the confidence interval is
always approximately of the same size, the observer will have problems differentiating between the cases.

In Figures 5.5 and 5.6 it can be seen that the variability of the confidence interval of the UDE is much
higher. In combination with the high performance in terms of RMSE of this estimator, there is chosen to
select this estimator for further evaluation.
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Figure 5.5: VSA estimation MCBN of slalom manoeuvre

Figure 5.6: VSA estimation UDE of slalom manoeuvre

5.3. Hybrid architectures
In this section the tuning procedure for the hyperparameters of the various hybrid structures is discussed.
The different hybrid estimators have a selection of hyperparameters that need to be tuned for optimal per­
formance. Table 5.6 provides an overview of the hyperparameters that need to be tuned for the observers,
which differs between the variations. The variations with an adaptive 𝑅 matrix require the highest number
of hyperparameters to be tuned.

Model 𝑄11 𝑄22 𝑅𝑠𝑐𝑎𝑙𝑒 𝜏1,2 𝑀𝑅
EKF ST X X X
EKF TF X X X
EKF XM X X X
EKF AD X X X X X
UKF ST X X X
UKF XM X X X
UKF AD X X X X X

Table 5.6: Parameters to tune for different hybrid structures

Torun et al. (2018) recently proposed Two­Stage Bayesian Optimisation (TSBO), an algorithm useful
for optimizing parameters tied to non­convex black box functions. In these functions it is not possible to
extract gradients with respect to the different parameters, not allowing gradient descent methods. TSBO
is an active learning algorithm since it selects the next evaluation point based on the expectancy that it will
maximize the reward, this is achieved by applying Bayes’ theorem. For the respective distributions of the
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prior, posterior and likelihood, Gaussian distributions are assumed due to their theoretical and practical
advantages. To optimize via Bayesian Optimisation an acquisition function is ’learned’ and maximized to
find the next point at which to evaluate.

The TSBO works, as the name suggests, in two stages, the fast exploration stage and the pure ex­
ploitation stage. The purpose of the fast exploration space is to quickly find the region in the sample space
where the global optimum appears to be located. To do so, the sample space of the variables to optimize
is divided into 2𝑑 regions of hyperrectangles. The centre points of these hyperrectangles are evaluated to
learn the acquisition function over the sample points. The new set of regions to evaluate are determined
by querying the newly learned acquisition function. This is repeated until the Euclidean distance between
the previous best and current best set of hyperparameters is lower than a set threshold.

The second stage is the pure exploitation stage and during this stage the best result from the fast
exploration stage is finetuned. The found tight region is divided into three new regions along its longest
dimension and candidate points are generated using the learned acquisition function. This is repeated a
number of times to get closer to the optimum of the function.

The different hybrid structures are tuned using TSBO with the RMSE as evaluation metric. However,
the RMSE is not evaluated on the complete validation data set, since this would severely slow the opti­
mization process. Instead there is chosen to evaluate the RMSE on a couple handpicked manoeuvres
from the validation set. Thesemanoeuvres are chosen based on three factors, namely high sideslip angles
are reached, high RMSE when evaluating the performance of the neural network estimator, and differing
vehicle dynamics. First of all, it is useful to evaluate manoeuvres where high sideslip angles are reached
since the tires are in the nonlinear region. Secondly, it is important to determine if adding the observer
could improve the quality of the estimation where the neural network is performing relatively worse. At
last, the observer must be able to deal with different types of vehicle dynamics, for example transient and
steady­state behaviour. This should be reflected when tuning the hyperparameters.

5.3.1. Performance analysis
The next step is to analyse the results of the different hybrid structure variations. Table 5.7 shows the
evaluation of the different performance metrics on the test set using the different observers. Note that this
is the performance achieved in combination with the UDE without adversarial training.
It is important to note that for a fair comparison the Hockenheimmanoeuvres that included bank angles are
removed. One of the assumptions of the observer model is that no bank angles are present. Unfortunately,
this causes only a single Hockenheim manoeuvre to remain for the analysis.

EKF AD EKF TF EKF XM EKF AD UKF ST UKF XM UKF AD

RMSE avg 0.282 0.259 0.262 0.267 0.263 0.264 0.254
RMSE NL avg 0.341 0.303 0.311 0.315 0.333 0.334 0.293
ME max 2.142 2.070 2.041 2.148 1.841 2.081 2.077

Table 5.7: Comparison performance hybrid structures in RMSE [deg] and ME [deg]

Optimising the hyperparameters of the model showed that a low amount of measurement noise re­
sulted in the best performance. This is caused by the fact that the estimation performance of the UDE
is high by itself. However, this causes all the different hybrid structures to reach approximately equal
performance. The UKF using the adaptive 𝑅 matrix (AD) presented the optimal performance in terms of
RMSE. However, the ST UKF outperforms the other models significantly in terms of the ME. The differ­
ence compared to the other observer variations of 0.2 degrees is significant.

5.3.2. Robustness of hybrid structure
In the previous section the VSA estimation using the different hybrid structures is evaluated. In these
structures, the observer has a lot of confidence in the predictions of the UDE. This confidence is estab­
lished by a very low amount of measurement noise in the 𝑅 matrix corresponding to the estimated sideslip
angle. This is optimal since the UDE estimator provided accurate estimates for all manoeuvres in the test
case. However, it could be the case that in a specific part of the operating range the UDE is less reliable,
deteriorating the performance. This can for example be caused by the absence of enough training data
points in a part of the operating region. In this case the observer must be able to correct the UDE estimate.
It needs to be determined how the hybrid structures perform when there are inaccuracies in the UDE esti­
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mator. To test this, a non­optimal estimator is trained and coupled with an observer to see if the observer
is able to correct the lower quality sideslip angle estimates.

Suboptimal neural network estimation
The first step is to create a suboptimal neural network estimator, which can be achieved in various ways.
The estimator can be trained on only a small random subset of the training data, or only on data from a
specific part of the operating range. There is chosen to train the UDE estimator on a subset of the training
data. Two different subsets are created, for the first subset all the measurements are deleted where the
lateral acceleration is higher than 7 m/s2. The second subset is created in a similar manner, but this time
the threshold is 5 m/s2. The number of remaining data points after these operations and the performance
of the respectively trained estimators is presented in Table 5.8. To provide some insight regarding the
established thresholds, the maximal lateral acceleration the vehicle can sustain is around 10 m/s2. The
UDE is trained using the same hyperparameters as before. From the table it can be observed that the
performance of the estimator drops when the measurements of high lateral accelerations are deleted. The
difference in performance between the full set and the subset where only measurements with lateral ac­
celerations lower than 7 m/s2 (|𝑎𝑦| < 7) are present is not that large. It appears that lowering the threshold
to 5 m/s2 (|𝑎𝑦| < 5) significantly deteriorates the performance of the estimator.
The approach of deleting data mimics scarce to no data being available in certain operating regions. This
can very well be the case in real applications and can normally be the cause of serious drops in perfor­
mance of data­driven approaches. Therefore, correction of the observer model would be proof of model
robustness. When an observer model is combined with a different neural network estimator, the 𝑅 and 𝑄
matrices have to be tuned again.

# data points % RMSE [deg]
Full 534.576 100 0.256

|𝑎𝑦| < 7 479.566 89.7 0.295
|𝑎𝑦| < 5 431.952 80.8 0.417

Table 5.8: Summary of data subsets

Figure 5.7: VSA estimation suboptimal UDE estimators for slalom manoeuvre

The difference between the different estimators is visually highlighted in Figure 5.7. Here, the red
shaded background indicates that the absolute value of the lateral acceleration is above 5 m/s2. It is
clearly visible that the neural network that is not trained on data in this operating region is struggling to
make accurate estimations.

Linear R scaling
The next step is to couple the suboptimal neural network estimators with the various observer variations
and determine the performance. The structure of this hybrid model is described in Section 4.4.5 and the
measurement noise is computed using Equation 4.59. It is also very useful to gain intuition about the
performance of the observer variations and the uncertainty deep ensembles when these are not coupled.
Therefore, the performance metrics of these cases are also presented.
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Metric No obs EKF ST EKF TF EKF XM EKF AD UKF ST UKF XM UKF AD

No NN RMSE ­ 0.407 0.406 0.401 0.392 0.443 0.452 0.456
RMSE NL ­ 0.600 0.596 0.594 0.582 0.567 0.565 0.565

ME ­ 2.265 2.166 2.384 2.270 2.534 2.383 2.381

UDE (full) RMSE 0.256 0.282 0.259 0.262 0.267 0.263 0.264 0.254
RMSE NL 0.310 0.341 0.303 0.311 0.315 0.333 0.334 0.293

ME 2.205 2.142 1.964 1.985 2.148 2.679 2.663 1.710

UDE (|𝑎𝑦| < 7) RMSE 0.295 0.319 0.307 0.312 0.364 0.316 0.344 0.368
RMSE NL 0.442 0.430 0.409 0.425 0.493 0.368 0.540 0.613

ME 2.596 2.078 2.353 2.163 2.268 1.769 2.928 3.787

UDE (|𝑎𝑦| < 5) RMSE 0.417 0.400 0.397 0.404 0.392 0.376 0.406 0.476
RMSE NL 0.786 0.593 0.584 0.608 0.579 0.490 0.452 0.400

ME 3.314 2.268 2.211 2.270 2.270 2.024 2.007 2.593

Table 5.9: Non­optimal uncertainty estimation, linearly scaled R matrix, RMSE [deg] and ME [deg]

Table 5.9 shows the characteristics of the different estimators. First, the performance of the observers
when these are not coupled to neural networks is discussed. It becomes apparent that the RMSE of the
different variations is around 0.4 degrees and the maximal error is between 2.1 and 2.5 degrees. There
is not a large difference in performance between the different hybrid variations.
For the UDEs that are trained on the full data or subsets it becomes apparent that the RMSE increases
when the training set becomes smaller. This is of course expected since less training data, especially in
a specific operating region, equates to worse performance for data­driven estimation methods. Further­
more, especially the RMSE in the nonlinear operating region increases, which is logical since training data
from this region is deleted.

When the observer variations are coupled to the UDE that is trained on the full dataset, the hybrid
approach also performed well. The presence of the observer did not deteriorate the performance in any
way. In the case where the observer variations are coupled to the UDE trained on data with measurements
where the lateral acceleration is lower than 7 m/s2, the presence of the observer seems to deteriorate the
performance slightly. None of the variations is able to lower the overall RMSE. However, the standard
UKF variation does seem able to improve the estimation in the nonlinear operating region.
When the UDE is only trained on measurements with a lateral acceleration lower than 5 m/s2, the pres­
ence of the observer does lower the RMSE. However, the improvement is not very large and the UKF
variation with the adaptive 𝑅 matrix is still providing worse performance. The RMSE in the nonlinear op­
erating region is lowered by all observer variation, which points towards the benefit of the hybrid approach.

Figure 5.8: Boxplot RMSE of tests of UKF AD (full) Figure 5.9: Boxplot RMSE of tests with UKF AD (|𝑎𝑦| < 5)
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In Figure 5.8 and 5.9 boxplots of the RMSE of individual tests are shown for the neural network estima­
tor, the observer and the hybrid approach. Note that the UKF observer with an adaptive 𝑅 matrix is used
for this analysis. Every test in the test set represents a single point and using these boxplots it can be
seen if there is a constant improvement over all tests when the hybrid structure is utilized. From the figures
it becomes apparent that the hybrid approach achieves very similar performance as the neural network
when this network is trained upon the complete dataset. When only a subset of the data is used and the
neural network performance is significantly worse, the hybrid approach has slightly better performance
than the observer. However, the hybrid approach does not seem able to perform much better than its
individual components.

Upon further investigation, the observer did not seem to take over when the confidence level of the
neural network estimator is low. It is found that this is caused by the scaling of the uncertainty level
estimate. As discussed in Section 4.4.5 the sensor noise for the sideslip angle measurement is computed
as a linear scaling of the estimated uncertainty level. However, the uncertainty level estimates are always
of approximately the same order of magnitude. This causes a linear scale unable to differentiate well
enough between high and low uncertainty levels. Therefore, the observer model does not take over
estimation when the uncertainty level of the neural network estimator is low.

Exponential R scaling
To let different uncertainty levels have a larger influence on the sensor noise level of the sideslip angle
measurement, an exponential scaling is evaluated. By using an exponential scaling more differentiation
is created between approximately similar uncertainty levels. The exponential constant is of course an
additional tuning parameter and the linear scaling has to compensate for the magnitude created by the
exponential scaling. The new calculation of the sensor noise is shown in Equation 5.2. The corresponding
results of the hybrid structures using this new scaling for calculation of the sensor noise are presented in
Table 5.10.

𝑅𝛽 = 𝑅𝑠𝑐𝑎𝑙𝑒𝜎
𝑅𝑒𝑥𝑝
𝛽 (5.2)

Metric No obs EKF ST EKF TF EKF XM EKF AD UKF ST UKF XM UKF AD

No NN RMSE ­ 0.407 0.406 0.401 0.392 0.443 0.452 0.456
RMSE NL ­ 0.600 0.596 0.594 0.582 0.567 0.565 0.565

ME ­ 2.265 2.166 2.384 2.270 2.534 2.383 2.381

UDE (full) RMSE 0.256 0.263 0.258 0.260 0.260 0.260 0.258 0.258
RMSE NL 0.310 0.313 0.310 0.312 0.312 0.319 0.318 0.316

ME 2.205 2.043 2.028 2.168 2.188 2.409 2.177 2.049

UDE (|𝑎𝑦| < 5) RMSE 0.417 0.405 0.386 0.389 0.371 0.322 0.333 0.333
RMSE NL 0.786 0.742 0.687 0.688 0.646 0.507 0.547 0.543

ME 3.314 2.704 2.865 2.458 2.580 2.949 2.563 2.068

Table 5.10: Non­optimal uncertainty estimation, exponentially scaled R matrix, RMSE [deg] and ME [deg].

There are several observations that can be made from the results shown in Table 5.10. The first ob­
vious result is that the exponentially scaled uncertainty level significantly improves the performance. The
hybrid estimators are able to improve the performance in terms of RMSE of the neural network estimator
when it is trained on the subset of data by approximately 20%. Additionally, the hybrid models are able
to outperform the pure observer model. This observation is a proof of concept of the hybrid structure,
namely the combination of the neural network and the observer is outperforming its individual compo­
nents. Moreover, the ME is almost equal for the UKF with the adaptive 𝑅 matrix in the case of the optimal
and suboptimal uncertainty deep ensemble.
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Figure 5.10: Boxplot RMSE of tests of UKF AD (full) Figure 5.11: Boxplot RMSE of tests with UKF AD (|𝑎𝑦| < 5)

Figure 5.10 and 5.11 show the boxplots of the tests using the UKF with the adaptive 𝑅 matrix where
the measurement noise is scaled exponentially. This has a small effect on the performance of the hybrid
approach when the neural network is trained on the full dataset. However, when the suboptimal neural
network is used, the hybrid approach more significantly outperforms the observer model than with the
linear scaling in place. The mean is slightly lower, but the first quartile of the box is significantly lower.

Adaptive Q adjustment
The 𝑄 matrix, the process noise, is a diagonal matrix with a size equal to the number of states of the
observer. For the previous hybrid estimators the values of the 𝑄 matrix remained constant. However,
as discussed in Section 4.4.5 the process noise can also be adapted based on quality of the predictions
made by the transition matrix. When this varies for different operating regions, the quality of the prediction
can be projected to a corresponding amount of process noise.

For implementation of the adaptive 𝑄 adjustment two additional parameters are introduced. The first
one is the scaling constant of the exponential moving average that is used to approximate the expected
value. From exploratory testing it was found that 𝛼 = 0.1 resulted in the best performance. Secondly, the
adaptive 𝑄 values have to be scaled exponentially to optimize the performance. This scaling parameter
must be tuned for the different variations, which is again achieved using TSBO. Equation 5.3 shows the
scaling function which scales the 𝑄 values linearly and exponentially. The results of the adaptive 𝑄 values
are shown in Table 5.11.

𝑄𝑛𝑒𝑤,𝑖𝑖 = 𝑄𝑠𝑐𝑎𝑙𝑒,𝑖𝑖𝑄
𝑄𝑒𝑥𝑝
𝑖𝑖 (5.3)

Metric No obs EKF ST EKF TF EKF XM EKF AD UKF ST UKF XM UKF AD

No NN RMSE ­ 0.407 0.406 0.401 0.392 0.443 0.452 0.456
RMSE NL ­ 0.600 0.596 0.594 0.582 0.567 0.565 0.565

ME ­ 2.265 2.166 2.384 2.270 2.534 2.383 2.381

UDE (full) RMSE 0.256 0.264 0.259 0.260 0.260 0.282 0.263 0.256
RMSE NL 0.310 0.314 0.311 0.312 0.311 0.344 0.310 0.297

ME 2.205 2.219 2.164 2.268 2.269 3.827 2.397 2.272

UDE (|𝑎𝑦| < 5) RMSE 0.417 0.339 0.338 0.349 0.330 0.330 0.331 0.324
RMSE NL 0.786 0.518 0.540 0.571 0.534 0.535 0.543 0.509

ME 3.314 2.254 2.201 2.269 2.269 3.582 2.549 2.562

Table 5.11: Non­optimal uncertainty estimation, exponentially scaled R and adaptive Q matrix, RMSE [deg] and ME [deg].

The increase in performance over the exponentially scaled 𝑅 matrix is relatively small. The adaptive
UKF variation showed the best performance with an approximately equal RMSE as the standard UKF
variation for the exponentially scaled measurement noise. The implementation of the adaptive 𝑄 values
introduced two more hyperparameters to be trained. Adding many parameters increases the required time
for the tuning process and can generally decrease generalisation capabilities. It is therefore not trivial that
this adaptation of the 𝑄matrix should be applied. It may be useful to evaluate other algorithms for adapting
the process noise.
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Figure 5.12 and 5.13 show the boxplots of the tests using the UKF with the exponentially scaled 𝑅
and adaptive 𝑄 matrix. This slightly improved the performance of the hybrid approach when the neural
network is trained on the full dataset. However, when the suboptimal neural network is used, the hybrid
approach more significantly outperforms the observer model than is the case for only exponentially scaling
the measurement noise. Especially the mean is significantly lower. Also the maximal RMSE is for the first
time lower than is the case for the observer.

Figure 5.12: Boxplot RMSE of tests of UKF AD (full) Figure 5.13: Boxplot RMSE of tests with UKF AD (|𝑎𝑦| < 5)

5.4. Computational time
It is important to discuss the inference time of the hybrid estimators to judge if implementation in real driv­
ing applications is feasible. If the required computational time is too high, it cannot be used at the required
frequency.

The code to run the hybrid structures is written in Python and the neural networks are trained using the
Keras library, a front end to Tensorflow. The Tensorflow GPU library is used to train the network parallel
on different cores of the Graphics Processing Unit (GPU). The observer variations are implemented using
Simulink models in Matlab, these models are called from Python. The hardware used for training is a HP
Omen 15 laptop with a AMD Ryzen 7 CPU 4000 series with a Nvidia GeForce GTX 1650 Ti GPU.

5.4.1. Training time
The training time is only a one­time thing causing a low training time to be desirable, but not essential.
The training time of the hybrid model consists of two parts, training the ensemble of neural networks and
tuning the 𝑅 and 𝑄 matrix of the used observer. Training an ensemble of neural network models naturally
takes longer caused by the higher number of models to train. The larger the ensemble, the higher the
training time. Additionally, there is a significant difference in training time of a FFNN and a RNN, the FFNN
trains much faster. An overview of the training time is presented in Table 5.12.

Single model UDE (20 models)
FFNN 45.5 910
RNN 384 7680

Table 5.12: Training time UDE in seconds

The next step is to train the hyperparameters of the model. As discussed, this is achieved using the
TSBO algorithm introduced by Torun (2018). This algorithm allows optimization over a fixed number of
function evaluations, thus, the user is able to influence the tuning time significantly. However, enough
function evaluations are required to ensure that the optimal hyperparameters are found. For the observer
variations with an adaptive 𝑅 matrix more hyperparameters need to be tuned. Therefore, more iterations
are required to find the optimal set of hyperparameters. The required number of function evaluations
scales exponentially with the number of parameters to explore the hyperparameters space with equal
accuracy.
The computational time required for the function used to tune the different hybrid estimators is presented in
Table 5.13. For the tuning process of the ST, TF and XM variations 120 function evaluations are required.
However, for tuning the AD variation with the adaptive 𝑅 matrix 200 function evaluations are required. The
required time for the total tuning process is also presented.
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Single eval Tuning (120/200 evals)
EKF ST 2.9 348
EKF TF 3.0 360
EKF XM 3.1 372
EKF AD 3.2 640
UKF ST 2.6 312
UKF XM 2.7 324
UKF AD 2.9 580

Table 5.13: Required time for tuning of hybrid models in seconds

Adding up the two tasks, the hybrid model using the feedforward neural network can be trained and
tuned in approximately 20 minutes. Tuning and training the hybrid model using the recurrent neural net­
work takes approximately 2.5 hours due to the long training time of the recurrent neural network ensemble.

5.4.2. Inference time
The proposed algorithm needs to be able to operate real time. The required frequency of estimates being
made is 100 Hz. The inference time essentially consists of two parts, the initialisation time and the esti­
mation time. The initialisation time consists of loading the ensemble of models and connecting Python to
Matlab for initialisation of the Simulink model used for the observer.
The inference time of the UDE in Python is around 0.06 seconds for a manoeuvre of 1000 samples, corre­
sponding to is 10 seconds. The initialisation time is approximately equal for all types of hybrid structures.
The same holds for the inference time, although this is obviously affected by the length of the manoeuvre.
The initialisation time is around 14 seconds while the inference time for a manoeuvre of 10 seconds using
the hybrid structure is around 0.8 seconds.

It must be noted that the used estimation pipeline for is far from optimal. For commercial implementa­
tion it is very advantageous to develop the neural network and observer model in the same programming
language. Therefore, no further conclusions should be drawn from the presented inference time. For a
better understanding one should gain intuition of the required number of operations for a single estima­
tion step. The uncertainty neural network must be evaluated as well as the unscented Kalman filter. For
the evaluation of a FFNN a lot less computations have to be performed compared to that of a RNN. The
number of required operations for the UKF is lower than that of evaluation of the FFNN. Since evaluation
of the UDE, an ensemble of 20 FFNNs, is 0.06 seconds for a manoeuvre of 1000 sample, it is expected
that implementation of the hybrid estimator is feasible.

5.5. Summary
To conclude the highest performing models are summarized in Table 5.14. For a fair comparison there
is chosen to exclude the two Hockenheim manoeuvres where a road bank angle is present from the test
set. Therefore, the performance of the neural network and uncertainty estimators may differ slightly from
earlier reported results.
The performance of the different neural networks is very similar, each different architecture performed
best on several of the manoeuvres. Overall the RNN has a slight edge in performance over the other
architectures in terms of RMSE. However, the feedforward neural network has the lowest ME. It is very
difficult to find a proper positional encoding for the Transformer model, if one is eventually developed this
could severely boost the performance of this architecture.

Model Optimality NN Best variation RMSE [deg] RMSE NL [deg] ME [deg]
Neural network ­ RNN 0.266 0.322 2.570

Uncertainty estimator ­ UDE 0.256 0.310 2.205
Linear R Optimal UKF AD 0.254 (+0.0%) 0.293 (+0.0%) 1.710 (+0.0%)

Exponential R EKF TF 0.258 (+1.6%) 0.310 (+5.8%) 2.028 (+18.6%)
Adaptive Q UKF AD 0.256 (+0.8%) 0.297 (+1.4%) 2.272 (+32.9%)
Linear R Suboptimal UKF ST 0.376 (+0.0%) 0.490 (+0.0%) 2.024 (+0.0%)

Exponential R UKF ST 0.322 (­14.4%) 0.507 (+3.5%) 2.949 (+45.7%)
Adaptive Q UKF AD 0.324 (­13.8%) 0.509 (+3.9%) 2.562 (+26.6%)

Table 5.14: Overview performance estimation architectures
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The FFNN and RNN have extensions to estimate not just the VSA itself, but also the respective con­
fidence level. The commonly used MCDO and MCBN methods are surpassed by the performance of the
UDE consisting of multiple FFNNs. It is unexpected to observe that this uncertainty estimation method
outperformed the original FFNN, no explanation is found for this unexpected result. One possibility is that
ensemble models are necessary in the task to achieve better results. These individual models may model
different modes of the system, which causes the average to become an accurate estimation.

In hybrid structures the uncertainty level of the estimation is required to adapt the sensor noise on the
sideslip angle measurement in the observer. Different model variations are evaluated in combination with
the extended and unscented Kalman filter. From the table it can be concluded that when an optimal UDE
is used, exponential scaling of the sensor noise and adaptive process noise has a small effect on the
performance of the hybrid model. This is expected since in this case the hybrid model follows the UDE
estimation closely. The effect of the observer is minimal and thus changes in these noise levels have little
effect on the estimation.

Additionally, a suboptimal UDE is used to test if the observer is able to deal with suboptimal estima­
tions. When using a suboptimal UDE, the UKF significantly outperformed the EKF variations. This is
expected since UKF variations are able to capture higher order nonlinear effects. The fact that the addi­
tion of the observer actually caused an improvement in performance shows the great promise of the hybrid
structures. The performance is maximized with a linear and exponentially scaled uncertainty level for the
measurement noise. It must be noted that the ME is significantly increased by this scaling. However,
further analysis showed this is an isolated case. The adaptive process noise does not lead to an increase
in performance.

The inference time of the hybrid structure is deemed acceptable. It is difficult to make hard conclusions
since an optimal pipeline has not been used in this thesis. The linking of Python with Matlab surely has
clear shortcomings and online estimation with this pipeline is not possible at a rate of 100 Hz. Therefore,
an analysis of the required number of calculations is more useful. There are 20 small FFNNs that have to
be evaluated along with an UKF with nine sigma points. The inference time of the UDE is 0.06 seconds for
a manoeuvre of 10 seconds. The use of a FFNN over a RNN decreases the inference time significantly.
The computational time required for the observer is much lower when considering the limited number of
required mathematical operations. Therefore, it seems reasonable to assume that the hybrid model can
be used for online estimation when a suitable estimation pipeline is in place. Of course this is assuming
that a processor with the same order of magnitude of computational power is used.
In the next chapter the conclusion based on these results follow. Additionally, several aspects of this study
require further investigation, this is summarized in the future work section.



6
Conclusion and Future work

6.1. Conclusion
In this thesis the additional value of tire force information on VSA estimation is evaluated. There can be
concluded that the addition of these led to a significant increase of performance in terms of RMSE using a
FFNN. The next step is to evaluate different types of neural network architectures to optimize the respec­
tive performance. It is concluded that the FFNN and RNN yield similar performance while the Transformer
model is unable to match this. This is probably due to an unsuited positional encoding, causing the model
unable to retrieve the order of the measurements. Due to the lower neural network complexity and shorter
training and inference times, the FFNN is selected for further use in the hybrid structure.

The goal is to design a hybrid structure using the FFNN in combination with an observer model. Dif­
ferent observer variations developed in literature are replicated to compare performance. To create the
hybrid structure, the FFNN needs to output an estimation as well as a corresponding uncertainty level.
Several methods exist to obtain the uncertainty level of a neural network estimation. These methods are
compared using the RMSE as well as the PLL and CRPS. Based on these metrics there is concluded
that the UDE consisting of FFNNs provides the best performance. Therefore, the UDE is used for the
hybrid approach. Unexpectedly, the UDE also outperformed the developed FFNN and RNN by reducing
the RMSE with respectively 17.2% and 14.9%.

To combine the UDE with the observer, the uncertainty level of the estimation needs to be scaled to
the measurement noise corresponding to the VSA measurement. Since the developed UDE is accurate
across the complete testing set with a RMSE of 0.256 degrees, the measurement noise corresponding to
the sideslip angle is set very low. This causes similar performance for all hybrid estimator variations. The
estimator does not use the capabilities of the observer, thus, the hybrid approach performs equally well
as the purely data­driven approach.

To determine if the observer is able to add value when the quality of the UDE estimations is low, a sub­
optimal UDE is developed. This UDE is only trained on measurements with absolute lateral accelerations
lower than 5 m/s2, mimicking sparse data of high sideslip angles. Thus, the developed UDE provides less
accurate estimations of high sideslip angles.
It is evaluated if the observer is able to correct these estimations. Creating a suboptimal neural network
to test the hybrid structure is a new approach that provides insight into the robustness of the estimator.
Without this method the true potential of the hybrid structure cannot be evaluated properly.

In current literature a linear scale is used to simply match the variance of the other sensor noise levels.
However, using this linear scaling the observer is not able to correct the UDE estimation. However, it
is found that scaling the uncertainty level not only linearly, but also exponentially the performance can
be increased significantly. This scaling allows a higher differentiation between high and low uncertainty
level estimations. When using a suboptimal neural network this change leads to a decrease of 14.4 % for
the RMSE. Adapting the process noise based on the quality of the transition matrix estimation results in
equal performance. Since this adaptation increases the number of parameters to tune, it is inadvisable to
implement it.
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6.2. Future work
There are several aspects on the subject of VSA using hybrid structures that need to be explored further.
First of all, the measurement noise of the sideslip angle is computed using a linear and exponential scaling,
which proved beneficial. The main objective of changing the measurement noise as well as the process
noise is to influence the Kalman gain to achieve maximal performance. However, it is possible that the
Kalman gain should not be solely varied based on the uncertainty level of the sideslip angle estimation, but
also based on other states. This can be explored by computing the Kalman gain using a neural network,
as proposed by Revach et al. (2021). For example, it may become apparent that the Kalman gain must
also be changed for different lateral acceleration levels.

Next, the observer is unable to deal with road bank angles. This requires the elimination of two Hock­
enheim manoeuvres from the testing set when evaluating the hybrid approach. The VSA error of the
observer during corners with a bank angle is very large. Of course, before it can be implemented com­
mercially this problem needs to be fixed. It cannot be the case that driving on roads with a bank angle
causes inaccurate VSA estimation. There already exist extensions of observers that attempt to estimate
the banking angle as a state to correct for this. However, these extensions have not been used in combi­
nation with data­driven approaches.

Data augmentation can be used to try and improve the performance of data­driven models in high VSA
situations. It is interesting to compare the performance of data augmented data­driven models to hybrid
models.
Additionally, the dataset used for this study unfortunately solely consisted of tests in dry conditions. It
would be insightful to evaluate the performance of the neural network and observer in various road con­
ditions such as wet or icy.
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This paper compares model-based and data-driven approaches for sideslip angle estimation and analyses the benefits
of adding measured tyre forces. The analysed model-based approaches are the extended Kalman filter and the un-
scented Kalman filter, in which tyre forces are incorporated as measurements in the observation model. An adaptive
covariance matrix is introduced to minimize the tyre model mismatch during evasive manoeuvres. The data-driven
approaches focus on the usage of a feed-forward and a recurrent neural network. Using the large-scale experimen-
tal dataset covering 216 various vehicle manoeuvres, we demonstrate a significant improvement in accuracy using
data-driven approaches compared to model-based ones. Results show that tyre force measurements improve the
performance of both model-based and data-driven approaches.

1 INTRODUCTION

The ability to estimate the vehicle sideslip angle in real-
time is essential to strengthening the performance of
active vehicle control. A large variety of driving condi-
tions, such as normal or at the handling limits, steady-
state or transient manoeuvres, makes the estimation
challenging. Especially, the highly nonlinear behaviour
of tyres leads to a substantial limitation in tyre model
accuracy. Many different solutions for vehicle sideslip
angle estimation have been proposed in the past. They
could be split into two different approaches, such as
model-based and data-driven [1-4]. Both approaches
allow the incorporation of tyre forces, measured by
load sensing bearings [5] or smart tyres [3]. This paper
provides a fair evaluation of the accuracy of each ap-
proach and aims to quantify the benefits of adding tyre
force measurements for each of the proposed solutions.
Model-based and data-driven approaches have already
been analysed in surveys; however, the comparison is
based on limited simulation data [6, 7]. Furthermore,
an additional research goal is related to tyre force mea-
surements providing different benefits, and it is not pre-

viously addressed in the literature. This paper proposes
a comparison based on the large-scale real-world exper-
imental dataset. It considers standard vehicle dynamics
manoeuvres, e.g. double lane change, slalom, random
steer, J-turn, spiral, braking in a turn, and steady-state
circular tests, together with recorded laps at the Pa-
penburg track. The dataset contains a great diversity of
driving situations. Statistical outlier removal is applied
to remove extreme outliers. The dataset consists of 216
manoeuvres which correspond to 2 hrs of driving. The
distribution of the sideslip angle and lateral acceleration
is represented in Figure 1. The lower availability of high
sideslip angle data points is due to the difficulties of
driving in such conditions, and it influences the training
of the data-driven approach. An extended Kalman Fil-
ter (EKF) and a unscented Kalman Filter (UKF) using a
single-track vehicle model are implemented for model-
based approach, while a Feed-Forward Neural Network
(FFNN) and a Recurrent Neural Network (RNN) are
considered for data-driven approach. During the devel-
opment of the estimators, the longitudinal velocity is
assumed known as in [1, 2].
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Figure 1: The distribution of measured sideslip angle
and lateral acceleration data points. The lateral acceler-
ation distribution is wide, while the sideslip angle dis-
tribution focuses on small values.

The contribution of this paper is twofold. First, the
accuracy of model-based and data-driven approaches
are fairly compared using the mentioned dataset, repre-
senting various driving manoeuvres. Second, for each
proposed approach, the benefit of adding tyre force
measurements is analysed and assessed

2 SIDESLIP ANGLE ESTIMATION

2.1 Model-based approach

The single-track model with tyre axle forces computed
by the Dugoff tyre is chosen as the vehicle model.
The states are the lateral velocity vy and the yaw rate
while, the inputs are the longitudinal velocity vx and
the longitudinal acceleration ax. The measurement vec-
tor is composed of the lateral acceleration ay , and the
tyre force measurements when they are considered. The
process and measurement noise covariance matrix are
tuned using a two-stage Bayesian optimisation [8][6].
The measurement noise matrix is continuously adapted
according to the absolute difference between the esti-
mated and the measured tyre forces to improve the ac-
curacy of the estimation of vehicle sideslip angle vehi-
cle sideslip angle estimation [2][1].

2.2 Data-driven approach

FFNN is considered because it is the most straightfor-
ward implementation, but it does not have any time de-
pendence, which can could improve the overall estima-
tion performance. Thus, a RNN is also considered to
evaluate the predictive power level of previous mea-
surements on the current time-step. The performance
of FFNN and RNN is strongly related to the training
dataset. The manoeuvres used in the training dataset are
not reused in the test set to avoid overfitting. Two dif-
ferent measurement sets are considered: the first, con-
siders measurements just coming from the inertial mea-
surement unit (IMU), i.e. ay , ax, , steering wheel an-
gle and vx, while the second dataset also considers the
measured tyre forces in all the three directions. FFNN
and RNN are both trained with a back-propagation al-
gorithm using Adam optimiser.

3 RESULTS

The final results, Table 1, are evaluated on a valida-
tion dataset composed of 23 manoeuvres taken from the
available dataset described in the Introduction. The key
performance indicators (KPI) are the root mean square
error (RMSE) and the maximum error (ME). On aver-
age, the UKF is more accurate than EKF, even if their
performance is very close when using tyre force mea-
surements. FFNN and RNN have very similar perfor-
mance, and the difference is due to the optimisation
routine rather than the different architecture. Their per-
formance is even slightly worse than the model-based
approach due to a very high error when the sideslip an-
gle reaches 5 degrees. Data-driven approaches outper-
form model-based ones when the dataset includes tyre
force measurements. A comparison between the RNN
and UKF, both with tyre force measurements, is shown
in Figure 2. The selected manoeuvre is a J-turn at the
handling limit with vehicle active control is switched
off.
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KPI EKF EKF + UKF UKF + FFNN FFNN + RNN RNN +
tyre meas tyre meas tyre meas tyre meas

RMSE [deg] 0.391 0.350 0.373 0.347 0.360 0.221 0.390 0.225
ME [deg] 1.012 0.858 0.867 0.790 1.419 0.892 1.649 0.783

Table 1: Average results for the sideslip angle estimation of the validation dataset composed by 23 manoeuvres.
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