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Abstract: The increase in global population, which negatively affects energy consumption, CO2

emissions, and arable land, necessitates designing sustainable habitation alternatives. Self-sufficient
high-rise buildings, which integrate (electricity) generation and efficient usage of resources with dense
habitation, can be a sustainable solution for future urbanisation. This paper focuses on transforming
Europoint Towers in Rotterdam into self-sufficient buildings considering energy consumption and
food production (lettuce crops) using artificial intelligence. Design parameters consist of the number
of farming floors, shape, and the properties of the proposed façade skin that includes shading
devices. Nine thousand samples are collected from various floor levels to predict self-sufficiency
criteria using artificial neural networks (ANN). Optimisation problems with 117 decision variables
are formulated using 45 ANN models that have very high prediction accuracies. 13 optimisation
algorithms are used for an in-detail investigation of self-sufficiency at the building scale, and potential
sufficiency at the neighbourhood scale. Results indicate that 100% and 43.7% self-sufficiencies could
be reached for lettuce crops and electricity, respectively, for three buildings with 1800 residents. At
the neighbourhood scale, lettuce production could be sufficient for 27,000 people with a decrease
of self-sufficiency in terms of energy use of up to 11.6%. Consequently, this paper discusses the
potentials and the improvements for self-sufficient high-rise buildings.

Keywords: self-sufficiency; vertical farming; energy consumption; BIPV; building performance
simulation; metropolis; artificial intelligence; machine learning; computational optimisation

1. Introduction

There is an increasing demand for the construction of high-rise buildings in metropolises [1],
which requires the integration of various self-sufficiency aspects (such as food, energy, and
water), owing to population growth and urbanisation trends. Compared with low-rise buildings,
high-rises require more energy while causing significant CO2 emissions [2]. For this reason,
optimisation algorithms and machine learning (ML) techniques have been widely used for
investigating sustainable high-rise alternatives. However, population growth does not only
affect the increase in final energy consumption. Another global problem is the decreasing stock
of arable land in the world [3]. The United Nations Food and Agriculture Organisation (FAO)
foresees that only one-third of the arable land per person in 1970 will be available in 2050 [4].
Vertical farms, which are multi-storey plant factories [5], are designed to provide rapid and
uniform product growth of a high quality [6]. Recent work shows that various types of crops,
e.g., leafy greens, lettuce, vine crops, and tomatoes [7], can be grown in closed farming systems.
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Therefore, integrating vertical farms in high-rise buildings can be one of the sustainable solutions
for providing food in highly dense urban areas that can increase the amount of agricultural land
while decreasing CO2 emissions from the transportation of the agricultural products.

Considering dense habitation, food production and energy generation in one building
suggests a new optimisation problem in the architectural design called “self-sufficient high-
rise buildings” (also defined as generative high-rises [8]). In this definition, self-sufficiency,
which aims to provide a sufficient amount of resources in multiple aspects for the residents
and for the neighbourhood in metropolitan areas, is different from self-sufficiency in terms
of only energy (e.g., net-zero energy buildings (nZEB), energy-autonomous buildings [9]).
Additionally, it is unlikely that high-rise buildings will be designed as off-grid systems
with existing technology, such as small-scaled autonomous houses [10], because of their
extreme sizes. Therefore, the contribution of self-sufficient high-rises is to generate and
efficiently use multiple resources (such as energy, food, and water) to decrease their envi-
ronmental impact while providing dense habitation in metropolitan areas. The complexity
of this design problem is higher than the ones focusing on optimising high-rise buildings
for various performance aspects of sustainability because of the existing and proposed
challenges listed below:

• Providing a sufficient amount of food for at least the residents of high-rises, and for as
much of the neighbourhood as possible (proposed).

• Generating energy via solar power for food production and for the annual usage of
the residents of the building (proposed).

• Integrating multiple performance aspects such as energy consumption, comfort and
daylight (existing) [11].

• Considering performance variations between the ground- and sky-levels because of
the dense urban areas in metropolises (existing) [12].

• Discovering well-performing high-rise alternatives in a reasonable amount of time
during the conceptual design phase (existing) [13].

• Coping with the enormous number of decision variables to optimise the entire shape
of high-rise buildings (existing) [14].

This paper investigates the optimisation of high-rise buildings for self-sufficiency in
food production and energy consumption subject to daylight availability. The food produc-
tion system involves stacked lettuce crops, which is only one of the possible agricultural
products among the other alternatives mentioned before. Energy consumption considers
the farming and residential energy usage and the generated energy via solar panels. While
investigating high-rise alternatives, sufficient natural lighting is also taken into account.
Europoint complex in Rotterdam (also known as Marconi Towers), designed by SOM
architecture firm and constructed in 1975, is the focus of the work. The studied model
initially focuses on the building scale, and further investigation addresses the potential
self-sufficiency at the neighbourhood scale for sustainable future cities.

1.1. Problem Statement

Optimising high-rise buildings for various design and performance aspects has been
focused on for two decades. Because of the existing challenges mentioned in the previous
section, most of the published studies focus on the efficient usage of resources in high-rises,
i.e. energy-efficient layout plans [15], natural ventilation potentials [16], energy-saving so-
lutions for the envelope design [17], optimum solar access in high-density urban areas [18],
double skin façades for efficient energy usage [19], optimisation processes for improv-
ing thermal and power performances [20], multiple building operation scenarios [21],
and passive design strategies [22]. Considering the existing and proposed challenges to-
gether can result in a conflict between self-sufficiency aspects that increases the complexity
of the high-rise design problem. For instance, closed farming systems consume signifi-
cantly more energy in comparison to residential or office buildings, reaching more than
1000 kWh m−2 y−1 depending on the climate zone [23]. They do this while causing an
increase in energy consumption with less habitation in the high-rise buildings, the higher
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number of farming floors provides more food with low CO2 emissions when compared
to regular farming. On the other hand, fewer farming floors provide less cultivation area
with reduced energy consumption, but this causes higher CO2 emissions owing to the
transportation of the crops to respond to the food demand in metropolises. Therefore, an
optimal solution for self-sufficiency in energy and food should be investigated. The multi-
zone optimisation (MUZO) methodology, which uses artificial intelligence (AI) methods,
is adopted in this research to cope with existing and proposed challenges [13,14]. Similar
works, which focus on self-sufficiency in high-rises, are mentioned in Section 1.2, and the
novelty of this paper is explained in Section 1.3.

1.2. Overview of Previous Works

Previous works were found using the keywords related to “high-rise building”, “self-
sufficiency”, “energy consumption”, “photovoltaic panel”, “vertical farming”, “daylight”,
and “artificial intelligence”. Although a remarkable number of papers are published on
high-rise optimisation for performance aspects related to sustainability, studies optimising
self-sufficiency aspects are limited (Table 1). An early study focused on optimising various
floor plan configurations using the HGPSPSO algorithm to minimise the overall energy
consumption considering building integrated photovoltaic (BIPV) panels [24]. Another
work utilised single-objective and multi-objective optimisation algorithms for a two-step
optimisation process using NSGA-II and HGPSPSO to minimise energy consumption while
maximising energy production through opaque photovoltaic (PV) panels on the façade
and semi-transparent PV panels as glazing [25]. A similar problem formulation was used
to minimise energy demand and maximise the percentage of total comfortable time for
achieving zero-energy high-rise buildings with NSGA-II [26]. In addition to producing
energy through BIPV panels, a recent study considered the economic aspects of various
hybrid renewable energy generation systems in high-rises collecting the results from four
different applications [27]. Four of the previous studies presented promising results but
only considered self-sufficiency in energy. The complexity of the studied design problems
was limited because of the low size of decision variables (DV). Only one study focused on
the impact of the urban context [24], while the other papers only examined the high-rise
building itself. Moreover, none of the previous studies investigated the results conducted
by different optimisation algorithms that can lead to a representation of the solutions in
local minima owing to the No Free Lunch (NFL) theorem [28]. Finally, ML algorithms were
not involved in the previous studies. Hence, a limited number of function evaluations (FES)
were considered because of the simulation-based optimisation processes.

Table 1. Overview of previous works.

Study Location Aspects Building
Sufficiency

Neighbourhood
Sufficiency System Optimisation

Method(s) DV Size

This paper Rotterdam Food
Energy

100% for
1800 people

43.7%

100% up to
27,000 people

Between
47.8–11.6%

Stacked lettuce
BIPV given in Table 2 117

[24] Hong Kong Energy up to 48.77% - BIPV HGPSPSO 11
[25] Hong Kong Energy up to 71.36% - BIPV HGPSPSO

NSGA-II 11
[26] Athens Energy 33% - BIPV NSGA-II 8

[27] Hong Kong Energy
16.02%
53.65%
69.26%
81.29%

-
-
-
-

BIPV
BIPV-wind
BIPV-wind-

battery
Optimum

BIPV-wind-
battery

-
-

NSGA-II
NSGA-II

-
-
1
2
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1.3. Novelty of This Paper

This study considers multiple self-sufficiency aspects (i.e., food production and energy
consumption) instead of considering a singular criteria (e.g., energy sufficient only as
in previous works). Additionally, an enormous number of design parameters related
to the number of farming floors, shape, and the property of the proposed façade skin
with shading devices are extensively investigated using AI methods for self-sufficiency
in building and the neighbourhood scales. For these reasons, the paper is focused on
optimising three towers of the Europoint complex in Rotterdam for self-sufficiency in total
energy consumption (Etot) and food production (FP).

Since the developed model can consider the abovementioned crops by changing the
simulation parameters to provide the required indoor environments, self-sufficiency for
food production is demonstrated for stacked lettuce crops. The study aims to provide
sufficient lettuce crops for the habitants with low energy consumption subject to acceptable
daylight performance. As the urban context may affect the design decisions [12], the impact
of two towers on another is considered by dividing each building into three subdivisions as
suggested in MUZO. Therefore, design decisions for various floor levels, which can provide
better high-rise performance [29], are also investigated considering dense surroundings. A
new façade skin is proposed in each tower for integrating PV panels and generating shading
devices. 39-variables are used to parametrise the studied complex for the abovementioned
design parameters. One optimisation problem is formulated for the three towers to use the
advantage of each building’s location for power generation and so that the assignment of
farming floors achieves the highest self-sufficiency performance possible. This formulation
suggests a design problem, which corresponds to more than 4.5e + 91 design alternatives
in the search space, with 117-variables. A parametric high-rise model is integrated into the
simulation engines to evaluate the self-sufficiency of the complex. Because the simulation
models take significant time during the optimisation process, 45 surrogate models are
developed for performance prediction based on feed-forward neural networks (FNN).
Ten-fold cross-validation (CV) and hyperparameter tuning in each model are considered to
investigate the highest prediction accuracies. Developed surrogate models are optimised
for self-sufficiency in building and the neighbourhood scales using five single-objective and
eight multi-objective optimisation algorithms. Near feasibility threshold (NFT) constraint
handling [30,31] is used to cope with 37 and 36 constraints in both optimisation problems.
Considering different search strategies suggests a need for a deep investigation of the
search space since the global optimal of the design problem is unexplored owing to the
NFL theorem in architecture [14]. Employed algorithms, based on the swarm, evolutionary
and model-based search strategies that are frequently used in the architectural design
domain [32], are given in Table 2.

Table 2. Overview of the optimisation algorithms used in this study.

Scale Objective Constraints Plug-Ins Algorithms

Building Minimise Etot
FP

36 DF

Optimus (v1.0.2) [33]
Silvereye (v1.1.0) [34]

Galapagos (Rhino 6) [35]
Opossum (v2.2.4) [36]

“

jEDE [33]
PSO [37]
GA [38]

CMA-ES [39]
RBFopt [40]

Neighbourhood Minimise Etot
Maximise FP

36 DF

Optimus (v1.0.2) [33]
Wallacei (v2.65) [41]
Octopus (v0.4) [42]

“
Opossum (v2.2.4) [36]

“
“
“

jEDE (stepwise) [33]
NSGA-II [43]

HypE [44]
SPEA-2 (Alt Pm/Pm) [45]

RBFMopt [40,46]
NSPSO [47],
MACO [48]

MOEA/D [49]
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2. Methodology

The MUZO methodology [13,14], which consists of three main phases to optimise
high-rise buildings for performance aspects related to sustainability, is considered to be the
core of the methodology. The parametric high-rise model, alongside machine learning for
surrogate models, computational optimisation and decision-making phases are followed
to utilise the MUZO methodology to optimise the Europoint complex for self-sufficiency
in food and energy as illustrated in Figure 1. The following subsections explain the case-
building and utilisation of the MUZO methodology in detail.
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Figure 1. Utilisation of MUZO methodology for the self-sufficient Europoint complex.

2.1. Case Building Description

The Europoint complex, which was designed by the SOM architecture firm and
constructed in 1975, is in the Merwe-Vierhavens (M4H) area of Rotterdam. The complex
consists of three towers with 22 storeys, 3.75 m floor heights and a 95 m overall height. It
has a rectangular plan scheme measuring 47.6 m by 33.2 m and a central core plan with
1580 m2 gross and 1033 m2 net floor areas, the Europoint Towers are some of the buildings
that represent the international façade style of the 1970s (Figure 2). Recently, the MOR team
of TU Delft [50] proposed a prototype for the Europoint complex considering net-positivity
in energy, air, water, material, and biomass for the Solar Decathlon competition in 2019 [51].
One of the main reasons to focus on these towers was the undesirable energy performance of
the existing buildings, which corresponds to 75% of the building stock [52]. The Europoint
complex is one of the many examples available in Europe of building complexes that
have a significantly higher energy usage when compared to buildings that incorporate the
sustainable solutions of the 21st century. In addition to the great potential for improving
the energy performance of the Europoint complex, another aspect we consider in this study
is to cope with the dense surrounding that will be a challenge in many metropolises based
on population growth and urbanisation trends in the future. Besides the built environment,
the distances between the Europoint Towers (31 m and 24 m, respectively) cause a large
degree of shading on one another. Therefore, each tower should be focused on as a design
problem that uses different parameter sets. Related to the self-sufficient high-rise concept,
we also propose a different building program that provides farming and residential floors,
in addition to public and commercial usage with semiprivate gardens, as illustrated in
Figure 3.
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2.2. Parametric High-Rise Model

The studied buildings are parametrised considering the most commonly used design
parameters for optimisation problems in architecture [32], as well as by following the
steps of the first phase of MUZO methodology, which suggests dividing the buildings
into several zones (subdivisions) to evaluate their performances separately. Hence, the
performance variances in different floor levels can be considered during the optimisation
process. The existing complex with surroundings is modelled in the Rhino3d computer-
aided design program [53]. The parametrisation process is completed in the Grasshopper3d
(GH) algorithmic modelling environment [54] that works as a plug-in for Rhino3d. The
following subsections explain the parametrisation process and the simulation setups.

2.2.1. Parametrisation Process

Public and commercial activities are placed on the ground level. Floor levels between
1 to 10, which are also decision variables, are associated with farming floors. The rest of the
floor levels are defined as residential floors. The zoning process of the MUZO methodology
is considered for dividing the residential part into three zones (subdivisions) in each
building. The proposed façade covers the south (S), east (E), and west (W) orientations since
the north (N) part of the buildings has insufficient solar potential and creates unnecessary
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shading. The shape of the skin also follows the zones, farming floors, and other parameters
related to the BIPV. The proposed skin can have different distances from the building to
create box-shaped shading devices in each zone. Reflectance values of these devices are
defined as another parameter for extensive daylight control. In addition, 13 different glazing
types, which are based on various visible transmittances (Tvis), thermal transmittances
(U-val.) and solar transmittances (g-val.), are also investigated during the optimisation
process. Finally, another parameter is used to control the existing size (2.7 m) of the
windows that affects the daylight performance, energy consumption, and façade area that
can be used for placing additional BIPV panels. Hence, the energy performance of the entire
complex can be optimised for finding the most desirable self-sufficiency score under various
circumstances (such as considering different design preferences for shaded or unshaded
parts of the towers). All the mentioned variables, which are given in Table 3, correspond to
a 39-dimensional design problem in each tower that suggests a 117-dimensional design
problem for the entire complex. The proposed façade skin with three zones is illustrated in
Figure 4.

Table 3. Decision variables and glazing properties.

Parameters Explanation
Tower # Zone #

Location Type Unit Boundary
1 2 3 1 2 3

x1 Number of farming floors X X X - - Discrete - [0, 10]
x2, x3 Extrusion of farming BIPV X - - Discrete m [0, 25]
x2, x3 “ X - - Discrete m [0, 10]
x2, x3 “ X - - Discrete m [0, 20]
x4, x5 Extrusion of roof BIPV X X X - - Discrete m [0, 5]

x6, . . . , x9 Glazing type X X X X X X N-S-E-W Discrete - [1, 13]
x10, . . . , x12 Shading reflectance X X X X S-E-W Discrete - [0.3, 0.6, 0.9]
x20, . . . , x22 “ X X X X S-E-W Discrete - [0.3, 0.6, 0.9]
x30, . . . , x32 “ X X X X S-E-W Discrete - [0.3, 0.6, 0.9]
x13, . . . , x15 Shading distance X X X X S-E-W Discrete m [0.25, 1.50]
x23, . . . , x25 “ X X X X S-E-W Discrete m [0.25, 1.50]
x33, . . . , x35 “ X X X X S-E-W Discrete m [0.25, 1.50]
x16, . . . , x19 Window reduction size X X X X N-S-E-W Continuous m [0.0, 1.0]
x26, . . . , x29 “ X X X X N-S-E-W Continuous m [0.0, 1.0]
x36, . . . , x39 “ X X X X N-S-E-W Continuous m [0.0, 1.0]

Glazing
Types Configuration Argon Air Krypton Type Tvis g-val. U-val.

1 4–16–4 X Double 0.8 0.75 2.6
2 4–12–4 X Double 0.79 0.55 1.6
3 4–16–4 X Double 0.79 0.55 1.3
4 4–16–4 X Double 0.71 0.44 1.1
5 5–15–12 X Double 0.78 0.63 1.1
6 5–10–4 X Double 0.7 0.49 0.8
7 4–12–4–12–4 X Triple 0.7 0.6 0.7
8 9–10–4–10–13 X Triple 0.64 0.35 0.5
9 4–16–4–16–4 X Triple 0.69 0.48 0.6

10 4–12–4–12–4 X Triple 0.63 0.39 0.9
11 6–12–5–12–12 X Triple 0.62 0.42 0.4
12 6–12–4–12–8 X Triple 0.72 0.51 0.7
13 4–15–4–15–4 X Triple 0.7 0.74 0.6
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2.2.2. Simulation Setups

The Etot simulated for self-sufficiency of residential and farming floor levels consists
of heating (Eh), cooling (Ec), lighting (EL) and equipment (Eeq) consumption, the DF of
residential levels and energy generation (Eg) via BIPV panels. Honeybee (HB) and Ladybug
(LB) plug-ins in GH [55], which use Open Studio for energy analysis [54], simulating the
energy consumption and generation. Regarding the daylight assessment, HB and LB also
evaluate the design alternatives using the Radiance simulation engine [56]. Having an
oceanic climate, winters in Rotterdam are mild, humid, and windy, whereas summer days
are cool. Therefore, the focus of residential energy consumption is primarily to minimise
the heating, lighting and equipment loads. In the farming system, significant energy
usage is necessary for the growing process of the plants that require cyclically consistent
temperatures, a certain level of humidity with mechanical ventilation, artificial lighting,
and other mechanical equipment. Therefore, heating and cooling loads are both considered,
as well as lighting and equipment loads. The simulation model of the residential floors is
simplified to five thermal zones as N, S, E, W, and core, whereas four thermal zones are
utilised in the farming floors, which are farming, germination and seed (g&s), and core, as
illustrated in Figure 5. Inputs of the farming energy model are based on recently published
closed systems [7,23]. Schedules are based on a 16/8 occupancy period, and 1000 ppm
CO2 is considered, which results in an estimated 80 kg m2 y−1 lettuce yield in an 833 m2

floor area, for three stacked hydroponics crop systems covering 50% of the floor plan. In
residential floors, various schedules are considered for occupancy, lighting, equipment,
and HVAC considering the preferences of the MOR team [50] as defined in Figure 6. All
the other inputs of the energy models are given in Table 4.
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Figure 6. Schedules used in residential energy model.

Table 4. Inputs of the energy models.

Type Simulation
Parameter Unit Validation

(Simulation) Sampling (Simulation) Residential
Model

Farming
Model

Loads Equipment W/m2 Residential: 5.5 Residential: 5.5 X
“ Core: 2.5 Core: 2.5/2.0 X X
“ - Farming: 0 X
“ - g&s: 0 X

Lighting “ Residential: 1.5 Residential: 1.5 X
“ Core: 7.5 Core: 7.5 X X
“ - Farming: 100 X
“ - g&s: 0/1.5 X

Mech. Vent. l/s-m2 0.9 0.9 X X
Natural vent. - Off On X
Air-tightness ac/h 0.1 0.1 X

- 1.0 X
People ppl/m2 Residential: 0.04 Residential: 0.04 X

“ Core: 0.08 Core: 0.08 X X
“ - Farming: 0 X
“ - g&s: 0.02 X

Set points Heating ◦C 20/18 20/18 X
“ - 24 X

Cooling “ - - X
“ - 30 X

Ventilation “ - 21/24 X
Humidity % Residential: 10/90 Residential: 10/90 X

“ - Farming: 75/85 X
Daylight lx Core: 300 Core: 300 X

“ Residential: 250 Residential: 250 X
HVAC Template - Ideal air loads Ideal air loads X X

Economiser - None Differential Dry Bulb X X
Heat recovery - Off Off X X

CoP - 1.0 1.0/5.0 X X
Construction Floor - Adiabatic Adiabatic X X

type Ceiling - Adiabatic Adiabatic X X
Exterior wall - Generic Metallic cladding/60 mm, X X

wood framing/180 mm,
cast concrete/560 mm

Interior wall - Generic Cast concrete/300 mm X X
Glazing - #7 in Table 3 All types in Table 3 X

Construction Floor W/m2 K 0.1538 0.22 X X
U-val. Ceiling “ 0.1538 0.22 X X

Exterior wall “ 0.1538 0.1538 X X
Interior wall “ 0.1538 0.40 X X

Glazing “ #7 in Table 3 All types in Table 3 X
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Regarding BIPVs, the rooftop and façade of residential floors are used to place solar
panels. Additionally, external surfaces of the farming floors are used to locate BIPVs since
the exterior surfaces of the considered farming system consist of opaque wall material. On
the southern elevation of farming, and on the rooftop, four different parameters are defined
to optimise the alignment of the panels to achieve the highest Eg.

The boundaries of these parameters on the street level (x2, x3) are defined according to
site conditions. Therefore, different maximum extrusions are considered for each building
(Table 3). The radiation analysis to calculate the energy potential of BIPV surfaces is
conducted on a 0.5 m by 0.5 m grid to calculate the energy potential through radiation
analysis. Sensor points with a minimum of 175 kWh m−2 of energy falling on the surface
are used to locate the PV panels for maximum energy/cost profit. This selection also
suggests different BIPV patterns in each tower because the way each building is shaded
differs from one another. Hence, the total Eg can be enhanced in the entire complex because
of the larger available PV surface area in different subdivisions (zones) of the towers. As a
result, an optimum configuration for window sizes, glazing types, and shading extrusion is
expected for energy consumption, alongside generation, and daylight availability. Figure 7
illustrates an example of BIPV allocation in the Europoint complex, whereas parameters
used in the calculation of Eg are given in Table 5.
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Table 5. Parameters of BIPV simulation.

Location PV Type PV Efficiency Coverage Inverter Efficiency

Farming/roof façade Opaque monocrystalline PV cells 20% 85% 90%
Rooftop “ 20% 85% 90%

Residential façade Colorblast monocrystalline PV cells 14% 85% 90%

Finally, daylight models are developed to simulate DF, which is one of the most
commonly used daylight metrics to identify the lighting performance in the early phase of
the design process [57,58]. According to Dutch standard NEN-EN 17037, a minimum of 2%
of DF should be provided in residential places. While evaluating the DF, performances of
each orientation in each zone, which correspond to 36 DF results, are considered under an
overcast sky. For each model, a 0.5 m by 0.5 m grid size, which is 0.8 m above the finished
floor, is used. In total, 7263 sensor points are used to evaluate one design alternative for the
entire complex that corresponds to 807 sensor points on one floor. An example simulation
result with the sensor points is illustrated in Figure 8.
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Radiance parameters, which are similar to those used in the studies published in the
same domain, and the material properties of the developed daylight models, are given
in Table 6. Based on the simulation results in three zones for three towers, the following
equations calculate the energy consumption of the entire complex:

Etot = ER + EF − Eg, (1)

ER =
3

∑
i=1

3

∑
j=1

(
Ehi,j

+ ELi,j + Eeqi,j

)
zi,j, (2)

EF =
3

∑
i=1

x1

∑
x1=0

Ehi, x1
+ Eci, x1

+ ELi, x1
+ Eeqi, x1

, (3)

Eg =
3

∑
i=1

Egi , (4)

where ER and EF are the total energy consumption of residential and farming floor
levels, {i1, . . . , i3} are the three towers in the complex, {j1, . . . , j3} are the three subdivisions
(zones) of each tower, and zi,j is the number of each zone in each tower that changes with
the number of the farming floors (x1). Since the parameters related to the closed farming
system are not considered in this study, simulation results of the farming model explained
above are multiplied with x1 to calculate the farming energy consumption in each tower.
All the simulation models use the Amsterdam weather data file provided by LB tools [64].
Integrating simulation engines to the parametric model completes the first phase of the
MUZO methodology. After validating the results of the energy model with simulations,
the parametric high-rise model becomes ready for the second phase of MUZO.
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Table 6. Radiance parameters and material properties of the daylight simulations.

Study Ambient
Accuracy (-aa)

Ambient
Bounces (-ab)

Ambient
Division (-ad)

Ambient
Resolution (-ar)

Ambient
Super-Samples (-as)

This paper 0.1 4 1000 300 20
[59] 0.15 2 1000 300 20
[60] 0.15 2 512 256 128
[61] 0.1 5 1500 300 20
[62] 0.15 2 512 256 128
[63] 0.15 2 512 256 128

Category Type Reflectance
or Tvis

Tower #
1 2 3

Zone #
1 2 3

Exterior wall Concrete 0.4 XXX XXX
Interior wall Painted white wall 0.7 XXX XXX

Ceiling Painted white ceiling 0.7 XXX XXX
Floor Wood 0.4 XXX XXX

Shading device White/grey/dark (see Table 3) (see Table 3) XXX XXX
Glazing (see Table 3) (see Table 3) XXX XXX

Surrounding (city) Concrete blocks 0.3 XXX XXX
Surrounding

(towers) - 0.5 XXX XXX

Ground - 0.2 XXX XXX

2.3. Machine Learning for Surrogate Models

The surrogate modelling in phase two of the MUZO methodology starts with the
sampling process. In this paper, Latin Hypercube Sampling (LHS) [65] generates the design
alternatives to be used in the ANN development. As a common approach, Equation (5)
identifies the sample size as [66]:

ns = 22.5ni, (5)

where ns is the size of the samples and ni is the number of decision variables. In this
case, at least 877 samples should be collected for a 39-dimensional design problem. Since
the extension of the sample size is beneficial [67], the size of the collection is extended to
1000, thus, the sampling process covers 9000 design alternatives to be collected from the
entire complex for ER, Eg, and DF. Normalisation of the collected samples initiates the
development of the ANN models using a min–max scale as:

x′ = σ(max(x)−min(x)) + min(x), (6)

where x′ is the scaled value, σ is the standard deviation and x is the original value. After
identifying a ratio of 0.2 to define training and test sets, the Stochastic Gradient Descent
(SGD) algorithm [68] optimises the weights and biases for an ANN architecture that has
39 input, 3 hidden, and 1 output layers. The α of each ith layer is activated as in Equation (7),
whereas each neuron is activated by the rectified linear units (ReLU) as in Equation (8):

αi = f

(
bi +

m

∑
j=1

wijxi

)
, (7)

f (x) =
{

0 f or x ≤ 0
x f or x > 0

, (8)

where f is the activation function, b is the bias, wij is the ith layer of the jth weight, and
xi is the input vector of the ith layer. To avoid overfitting, ANN models also consider
the dropout technique [69] with a rate of 0.1. Based on this setup, the grid search process
initiates parameter tuning with a 10-fold CV to identify the best prediction accuracy in
each ANN model using the five hyperparameters given in Table 7. The R-squared (R2)
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term in Equation (9), the mean squared error (MSE) in Equation (10), the mean absolute
error (MAE) in Equation (11), and the standard deviation (Std) in Equation (12) are used
for model selection:

R2 = 1− ∑i(xi − yi)
2

∑i(xi − x)2 , (9)

MSE =
1
n

n

∑
i=1

(xi − yi)
2, (10)

MAE =
∑n

i=1|yi − xi|
n

, (11)

Std =

√
1

n− 1

n

∑
i=1

(xi − x)2, (12)

where n is the size of the samples, {x1, . . . , xn} are the observed values, x is the mean of
the collected data, xi is the observed data, and yi is the predicted value. The purpose is
to select the models which present a high mean for R2, and a low mean for MSE, and
MAE while presenting low Std values for R2, MSE, and MAE at the end of the grid search.
Hyperparameters with the best accuracies are once again fit to record the weights and
biases for developing the predictive models in the last phase of the MUZO methodology.
The abovementioned steps are developed in the Python programming language [70], which
also uses the additional Python libraries given in Table 7 to automate the entire ML process.

Table 7. Python libraries and grid search setup.

Python Libraries Grid Search Setup

Library Explanation Hyperparameters Values

Pandas [71] Data analysis library Batch size [25, 50, 75]
Keras [72] Deep learning library Epochs [250, 500, 750]

TensorFlow [73] Open-source ML platform Neuron size [50, 100, 150]
Scikit-learn [74] ML library Learning rate [0.01, 0.05, 0.1]

Joypy [75] Plot library Momentum [0.3, 0.6, 0.9]

2.4. Computational Optimisation for Decision-Making

The final phase of the MUZO methodology initiates the optimisation process in GH,
which reads the weights and biases that are recorded in phase two, by defining each
predictive model with the following equation:

y = fn( fn−1( fn−2( fn−3(x·wn−3 + bn−3)·wn−2 + bn−2)·wn−1 + bn−1)·wn + bn), (13)

where fn is the nth activation function, wn and bn are the nth weight and bias, respec-
tively, and x and y are the input vector and the predicted performance aspect. The first
optimisation problem focuses on the analysis of self-sufficiency in building scale in detail.
Equation (14) presents the single-objective constrained problem formulation that is subject
to 37 constraints for the first optimisation round:

minimise : Etot
subject to : DF1,...,36 ≥ 2

Fp ≥ 60
, (14)

where Etot is the total energy consumption of the three towers, DF1,...,36 are the values
of 36 DFs in four orientations (N, S, E, W) for the three zones of the three towers. The
minimum Fp is defined as 60 tons for 1800 residents living in the Europoint complex,
assuming 100 g of lettuce is consumed per person in one day. Therefore, at least two
farming floors should be placed in the complex, while optimal energy production can
also be achieved with the alignment of two farming floors in three buildings. The second
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optimisation round investigates the potential self-sufficiency of the Europoint complex at
the neighbourhood scale with multi-objective constrained problem formulation subject to
36 constraints as:

minimise : Etot
maximise : Fp
subject to : DF1,...,36 ≥ 2

. (15)

Equation (15) considers Fp as another objective function that corresponds to 30 non-
dominated solutions in the Pareto front. Instead of a limited searchability for constant
penalty functions, both optimisation problems handle the constraints with NFT by panelis-
ing the fitness function f (x) as:

fp(x) = f (x) +
(

v(x)
NFT

)α

, (16)

NFT =
NFT0

1 + λ·g , (17)

where fp(x) is the panelised fitness function, v(x) is the total violation, NFT0 is the upper
bound of the NFT taken as 0.1, λ and α are defined as 0.04 and 2, respectively, and g is the it-
eration or generation number. The optimisation phase of the MUZO methodology suggests
a need for replication of the optimisation runs and algorithm comparisons owing to the
NFL theorem in architecture. Thus, the decision-making step considers various replications
using different optimisation algorithms for extensively investigating the unexplored search
space of the design problem.

3. Results and Discussion

This section presents the results of the validation and sampling processes using sim-
ulation models, statistical results of the grid search and tuned models of ML, and the
optimisation results for two scales of self-sufficiency problems, i.e., the building and neigh-
bourhood scales. Finally, results are discussed for both problem scales focusing on the
potentials and limitations of the study.

3.1. Model Validation and Sampling Results

Energy results collected from HB were validated using another simulation model in
DesignBuilder (DB) before initiating the sampling phase for the entire complex. Therefore,
a simplified version of the residential energy model was used in HB and DB with the values
given in Table 4. As illustrated in Figure 9, monthly air, radiant, and operative tempera-
tures suggested an observable correlation between the results of HB and DB. For further
investigation, a regression analysis was performed considering weekly temperatures. The
results in Figure 10 indicated that R2 for all the temperature results was higher than 0.96.
Afterwards, EF was calculated for the validated HB environment. When CoP was equal to
1, annual farming energy consumption was calculated as 1123.2 MWh y−1, whereas it was
629.3 MWh y−1 for CoP 5. The FP of the farming system for lettuce crops was calculated as
33 tons on a single floor with the temperatures given in Figure 11.
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The collected samples, which include the simulation results of ER (for CoP 1 and 5),
Eg and average DF for all orientations in all zones of the three towers, were published
as an open-access dataset [76]. The completion time for this task was recorded as 15 d
6 h 40 m using a computer with an Intel I7 5820K core processor at 3.30 GHz, with 16-GB
DDR4 of memory, and a 256-GB solid-state drive. Distributions of the simulation results
(Figure 12) indicated that the three towers presented similar ER values between 1066 MWh
and 1951 MWh (when CoP was equal to 5), and a wider range between 1652 MWh and
3246 MWh (while CoP was 1). Regarding Eg, tower one had the highest solar power
potential with a range of between 592 MWh and 1040 MWh. While tower two presented a
solar power potential range of between 580 MWh and 901 MWh, tower 3 demonstrated a
range from 556 MWh to 923 MWh. Although ranges of towers two and three were similar,
the minimum Eg of tower two was higher than that of tower three because of its location.
Nevertheless, the maximum Eg of tower three indicated that its solar potential could be
improved with the x2 and x3 parameters by controlling the positions of the BIPV panels.



Energies 2022, 15, 660 16 of 35
Energies 2022, 15, x FOR PEER REVIEW 16 of 35 
 

 

 
Figure 12. Distributions of collected samples. 

Regarding 𝐷𝐹, N and S orientations presented similar distributions, while higher 
values were observed in the north when compared to the south. The reason for this was 
that the places located on the southern elevation of the towers were much deeper than in 
the north. On the other hand, various distributions were observed in the E and W orien-
tations in different zones and towers, that could be due to the effect of the towers shading 
one another. Finding 𝐷𝐹 values higher than 2% in the E and W orientations was more 
challenging than for N and S orientations during the sampling process. Therefore, differ-
ent design decisions were expected for various zones of each tower in the optimisation 
process.  

3.2. Machine Learning Results 
The data collection, which had 1000 samples in each zone, was trained using FNN 

(as an ANN method) and is explained in Section 2.3. In total, 9000 samples were used to 
develop 45 surrogate models, which predict 𝐷𝐹, 𝐸ோ, and 𝐸௚ using 39 design parameters 
that are given in Table 3. Additionally, 36 𝐷𝐹 models were developed separately for each 
zone in each orientation, since the daylight standard should be achieved for the entire 
complex. During the prediction of 𝐸௧௢௧, the summation of consumed (𝐸ோ) and produced 
(𝐸௚) energy for each tower was considered. Grid search setup, which investigates the five 
hyperparameters given in Table 7, was considered with a 10-fold CV. The total number of 
the models to fit using the FNNs was calculated as 109,350, based on the results of 2430 
models for completing the grid search process in every fold of the 45 surrogate models. 
The average completion time for one grid search task was recorded as 2 h 17 m using a 
computer with an Intel Xeon E5-2640 v4 core processor at 2.40 GHz, with 64-GB DDR4 of 
memory, and a 1024-GB solid-state drive. A self-developed Python program automati-
cally read the data, developed ANN models, selected the best hyperparameters for 45 
models according to mean and Std of the MAE, MSE, and R2 values, fitted the final ANN 
models for training alongside test sets using the selected hyperparameters, and reported 

Figure 12. Distributions of collected samples.

Regarding DF, N and S orientations presented similar distributions, while higher
values were observed in the north when compared to the south. The reason for this was
that the places located on the southern elevation of the towers were much deeper than in
the north. On the other hand, various distributions were observed in the E and W orienta-
tions in different zones and towers, that could be due to the effect of the towers shading
one another. Finding DF values higher than 2% in the E and W orientations was more
challenging than for N and S orientations during the sampling process. Therefore, different
design decisions were expected for various zones of each tower in the optimisation process.

3.2. Machine Learning Results

The data collection, which had 1000 samples in each zone, was trained using FNN
(as an ANN method) and is explained in Section 2.3. In total, 9000 samples were used to
develop 45 surrogate models, which predict DF, ER, and Eg using 39 design parameters
that are given in Table 3. Additionally, 36 DF models were developed separately for each
zone in each orientation, since the daylight standard should be achieved for the entire
complex. During the prediction of Etot, the summation of consumed (ER) and produced
(Eg) energy for each tower was considered. Grid search setup, which investigates the five
hyperparameters given in Table 7, was considered with a 10-fold CV. The total number
of the models to fit using the FNNs was calculated as 109,350, based on the results of
2430 models for completing the grid search process in every fold of the 45 surrogate models.
The average completion time for one grid search task was recorded as 2 h 17 m using a
computer with an Intel Xeon E5-2640 v4 core processor at 2.40 GHz, with 64-GB DDR4 of
memory, and a 1024-GB solid-state drive. A self-developed Python program automatically
read the data, developed ANN models, selected the best hyperparameters for 45 models
according to mean and Std of the MAE, MSE, and R2 values, fitted the final ANN models for
training alongside test sets using the selected hyperparameters, and reported the statistical
results as well as weights and biases for the 45 surrogate models. The best hyperparameters
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with corresponding means and Stds of the MAE, MSE, and R2 values for three zones of the
three towers are given in Figure 13.
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During the batch size selection, 21 models had the best accuracy using a value of 25,
while for ten models it was 50, and for 14 models it was 75. For epochs, 31 models had the
best score with values of 750, for nine models it was 500, and for five models it was 250.
For the momentum parameter, four models had the best score using values of 0.3, for seven
models it was 0.6, and for 34 models it was 0.9. Regarding the learning rate parameter, nine
models had the best accuracy using values of 0.01, fifteen models yielded the best results
using 0.05, and 21 models using 0.1. As final the hyperparameter, 6 out of 45 ANN models
had the best accuracy using 50 neurones, 23 models had the best results using 100 neurons,
and for 16 models the best value was 150 neurones. Results of the best hyperparameters
indicated that the mean of all MAE values was less than 0.05 while having Std values of
less than 0.005. The mean of the MSE values was less than 0.003 with Std values smaller
than 0.0005. The mean of all R2 values was higher than 0.94, whereas the Std values were
less than 0.0015.

Reported statistical results in the grid search process presented promising prediction
accuracies. Therefore, tuned ANN models were developed using the selected hyperparame-
ters in the next step. Initially, the data was split into training and test sets considering a ratio
of 0.2 to demonstrate accurate prediction. Results in Figure 14 indicated that MAE and MSE
values of both sets were less than 0.05 and 0.003, respectively. Additionally, all R2 values
were higher than 0.94. Finally, tuned ANN models were used to predict the parameter
values generated by LHS with the weights and biases provided as the Supplementary
Material. R2 values indicated that there was a very high correlation between the simulation
and the prediction results for ER, Eg and mean DF as shown in Figure 15. All of the results
of the second phase of the MUZO methodology suggested that the predictive models could
be used for the optimisation process in the next phase.
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3.3. Computational Optimisation Results

During the last phase of the MUZO methodology, two design problems were con-
sidered focusing on different scales. First, a single-objective problem was investigated in
detail employing the single-objective optimisation algorithms given in Table 2, using the
Optimus, Opossum, Galapagos, and Silvereye plug-ins in GH. Since jEDE, GA, and PSO are
populated algorithms, 50 and 100 population & swarm (P&S) sizes were considered in this
optimisation round. Secondly, the multi-objective optimisation problem was investigated
considering single replication to present the potential self-sufficiency of the Europoint
complex at the neighbourhood scale by employing the stepwise and multi-objective optimi-
sation algorithms given in Table 2, using the Optimus, Wallacei, Octopus, and Opossum
plug-ins in GH. Except for RBFMOpt, 50 P&S was considered for populated algorithms.
The mutation rate of jEDE was set between −1 and 1, while the other algorithms were used
with the default parameters. The NFT module in the Optimus plug-in was considered to
cope with the constraint functions of both problems for all optimisation algorithms. All the
runs were completed when CoP was equal to 5. Since the ML models for CoP 1 were also
developed, their results were also reported. The following subsections present the gathered
results for both problems at the building and neighbourhood scales.

3.3.1. Building Scale

Results at the building scale were conducted for 7500 FES using a computer with an
Intel I7 5820 K core processor at 3.30 GHz, with 16-GB DDR4 of memory, and a 256-GB
solid-state drive. Because the non-populated algorithms were used in the Opossum plug-in,
7500 FES was defined as a maximum iteration count for CMA-ES and RBFOpt, whereas
50 and 100 P&S sizes were considered with 150 and 75 generation/iteration counts for the
populated algorithms. The criteria for comparing the optimisation results of this problem
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were defined as finding feasible solutions for 37 constraints, the lowest Etot needed to
have zero violation, Std was calculated for five replications, and computation time (CPU)
needed to have been recorded. Figure 16 illustrates the boxplots of the optimisation results
for feasible solutions only, whereas Table 8 presents the number of feasible solutions
(v(x) = 0), the minimum (Min), maximum (Max), average (Avg), and Stds of Etot for five
replications. For constraint handling, jEDE, CMA-ES, and GA reported feasible results in
all the replications, whereas RBFOpt found two, and PSO reported one feasible solution.
For the algorithms which reported infeasible solutions, Max, Avg, and Std values were also
higher than the ones which reported feasible results in all replications because the panelised
fitness function remained until the end of the optimisation. Regarding feasible alternatives,
jEDE presented promising results with the lowest Etot and Std values. The CMA-ES
algorithm also suggested promising searchability for discovering feasible solutions, while
finding slightly higher values of Etot and Std than jEDE. Despite the feasible solutions, GA
had higher Etot when compared to jEDE and CMA-ES. During the optimisation process, the
CPU of the algorithms was recorded as 82, 269, 819, 124, and 334 min for jEDE, CMA-ES,
RBFOpt, GA, and PSO, respectively. This suggested that the jEDE was the most robust
algorithm because its lower CPU, Etot, and Std values than the other algorithms. The
convergence graphs of all algorithms for this optimisation round are given in Figure 17.
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Table 8. Overview of the optimisation results for 5 replications at the building scale.

Algorithm v(x) = 0 Min Etot Max Etot Avg Etot Std

jEDE (Pop size: 50) 5 out of 5 3072.8 3240.8 3163.5 61.1
jEDE (Pop size: 100) 5 out of 5 3182.5 3403.2 3296.1 71.0

CMA-ES 5 out of 5 3217.9 3404.0 3338.6 66.9
RBFOpt 2 out of 5 5165.1 74,456.9 41,559.0 29,261.3

GA (Pop size: 50) 5 out of 5 3934.1 4241.4 4134.6 109.3
GA (Pop size: 100) 5 out of 5 4011.8 4401.5 4253.1 129.7

PSO (Swarm size: 50) 1 out of 5 3384.6 42,463.4 29,392.7 13,939.7
PSO (Swarm size: 100) 1 out of 5 3330.3 41,652.1 23,312.7 14,979.3
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The results of the jEDE with a population size of 50 was selected for further analysis
of self-sufficiency at building scale. When the design of the optimised complex was in-
vestigated in detail, weekly averages of air temperatures were observed as being between
19.5 ◦C and 25.1 ◦C in all zones. Since the violation was 0 at the end of the optimisa-
tion process, all the 36 DF values were higher than 2%, while 66 tons of lettuce was
provided in one year. For energy performance, the Etot of the optimised design was
reported as 3072.8 MWh y−1, while the values of ER, EF, and Eg were 4206.3 MWh y−1,
1258.6 MWh y−1, 2392.1 MWh y−1, respectively. Therefore, 43.7% self-sufficiency was
achieved in energy, while 100% self-sufficiency was reached in lettuce production. Con-
sidering CoP as 1, ER, EF and Eg were reported as 6854.9 MWh y−1, 2246.4 MWh y−1,
2392.1 MWh y−1, respectively. Average air temperatures of three zones for each tower are
given in Figure 18.
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Finally, the efficiency of the MUZO methodology was tested by generating typical
high-rise scenarios, which had the same set of design parameters for the complex instead
of differentiating them as in the optimised solution. 7776 typical design scenarios were
generated using the combinations of the parameters given in Table 9 for each tower. Design
scenarios having more than two farming floors in the complex were discarded to have the
same lettuce production for 1800 residents. Figure 19 presents the comparison between the
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optimised design and typical scenarios, whereas Figure 20 illustrates the parameter values
of the optimised design and the best typical scenario.

Table 9. Parameter values used to generate typical scenarios.

Tower #
Number of

Farming
Floors

Extrusion of
Farming

BIPV
Extrusion of
Roof BIPV

Glazing
Type

Shading
Reflectance

Shading
Distance

Window
Reduction Size

1 [0, 1, 2] [0, 12, 24] [0, 3, 5] [1, 4, 8, 12] [0.3, 0.6, 0.9] [0.25, 0.75, 1.50] [0.0, 0.3, 0.6, 0.9]
2 “ [0, 5, 10] “ “ “ “ “
3 “ [0, 10, 20] “ “ “ “ “
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Results indicated that the studied problem was extremely challenging because of
finding feasible solutions for DF in each orientation of nine zones while minimising Etot.
When the distribution of the typical scenarios was examined in Figure 18, it was observed
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that there were 1202 feasible solutions out of 7776. Although some infeasible alternatives
had similar Etot values with the optimised solution, their DF values were less than 2%,
which was lower than the Dutch building standards. Additionally, the lowest energy
consumption in the typical scenarios was observed as 3922.9 MWh y−1. When the optimised
solution was compared to a typical design, the performance improvement was noted as
21%, corresponding to 850.1 MWh y−1 less energy consumption for the entire complex.
The final design achieved at the end of the MUZO methodology is illustrated in Figure 21
using the parameter values of the jEDE algorithm with a population size of 50.
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3.3.2. Neighbourhood Scale

Results for the neighbourhood scale were also conducted for 7500 FES using a com-
puter with an Intel I7 5820 K core processor at 3.30 GHz, with 16-GB DDR4 of memory, and
a 256-GB solid-state drive. The 7500 FES was defined as the maximum iteration count for
the RBFMopt algorithm in the Opossum plug-in because of its non-populated application.
In other algorithms, 50 population sizes were considered for jEDE, NSGA-II, HypE, SPEA-2,
and MOEA/D with 150 generations, and 50 swarm sizes for NSPSO, and MACO with
150 iterations. The criteria for comparing the optimisation results of this problem were
defined as finding feasible solutions for 36 constraints, having a large number of non-
dominated solutions, and having a small CPU. Results of the jEDE algorithm were based
on the stepwise run using incremental violation for Fp. Table 10 presents the overview of
the optimisation results at the neighbourhood scale. Figure 22 illustrates the search space
and the lowest Etot (non-dominated) results of jEDE, whereas Figure 23 presents the same
results for the rest of the other multi-objective algorithms.
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Table 10. Overview of the optimisation results for 1 replication at the neighbourhood scale.

Algorithm Number of Non-Dominated
Solutions in v(x) = 0

Number of Non-Dominated
Solutions Outperformed

Other Algorithms
CPU

jEDE (stepwise) 30 out of 30 24 out of 30 1 d 21 h 14 m
(
for 30 Fp

)
NSGA-II 20 out of 30 0 out of 30 1 h 58 m (for 1 run)

HypE 20 out of 30 6 out of 30 1 h 41 m (for 1 run)
SPEA-2 (Alt Pm) 30 out of 30 0 out of 30 2 h 36 m (for 1 run)

SPEA-2 (Pm) 28 out of 30 0 out of 30 2 h 36 m (for 1 run)
MACO 0 out of 30 0 out of 30 5 h 34 m (for 1 run)
NSPSO 5 out of 30 0 out of 30 5 h 35 m (for 1 run)

RBFMopt 0 out of 30 0 out of 30 2 d 10 h 10 m (for 1 run)
MOEA/D 0 out of 30 0 out of 30 5 h 32 m (for 1 run)Energies 2022, 15, x FOR PEER REVIEW 24 of 35 

 

 

 
Figure 22. Search space and optimisation results of jEDE for stepwise run. 

 
Figure 23. Search space and optimisation results of multi-objective algorithms. 

Figure 22. Search space and optimisation results of jEDE for stepwise run.

During the stepwise optimisation, jEDE discovered feasible solutions in all problems
that corresponded to 30 non-dominated solutions. Because of the single-objective design
of jEDE, the total run time was higher than other multi-objective optimisation algorithms
owing to the 30 runs completed in each step. Contrarily, results of jEDE were used as
a benchmark, because of its promising searchability. Results indicated that jEDE found
24 lower Etot values than other algorithms. In other words, 24 results dominated the other
non-dominated solutions discovered by multi-objective optimisation algorithms. On the
other hand, HypE dominated six of the jEDE solutions, slightly. Despite promising results
in Etot, NSGA-II and HypE could find 20 non-dominated solutions out of 30. However,
the non-dominated solutions of NSGA-II were dominated by jEDE and HypE. SPEA-2 Alt.
The Pm. and Pm. applications discovered 30 and 28 non-dominated solutions, which were
also dominated by jEDE and HypE, respectively. Additionally, NSPSO presented a limited
number of feasible non-dominated solutions, whereas the MACO, RBFMopt, and MOEA/D
algorithms discovered only infeasible alternatives. Therefore, jEDE, NSGA-II, HypE, and
versions of the SPEA-2 algorithms were selected to investigate the potential of the Euro-
point complex in detail. Figure 24 illustrates the combined version of the non-dominated
solutions, which have an Etot between 2575.4 MWh y−1 and 19,639.6 MWh y−1 and an Fp
between 33 tons and 1000 tons, as a result of the selected algorithms. The developed model
indicated potential annual self-sufficiency in lettuce production starting from 900 people
up to 27,000 people, whereas potential self-sufficiency in energy was observed for between
47.8% and 11.6% starting from the building scale to the neighbourhood scale.
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Despite the increasing surface area of BIPV panels at higher values of Fp, self-sufficiency
in energy was decreased because of the significant energy use of the closed farming systems.
Regarding the energy results, variances of Etot were higher at the building scale when com-
pared to the neighbourhood scale. The reason was that the lower values of Fp increased the
significance of the design parameters related to the energy consumption of the residential
floors. In solutions with higher Fp values at the neighbourhood scale, the energy consump-
tion of the closed farming systems dominated the impact of those parameters. Therefore,
jEDE significantly improved upon other algorithms at the building scale, whereas jEDE
and HypE slightly improved upon NSGA-II and SPEA-2 at the neighbourhood scale. From
a broad perspective of the search space, a linear correlation was observed between Etot
and Fp that was expected as the constant energy consumption and production results
of the farming systems were associated with the number of the farming floors (x1). To
evaluate the potential impact of the developed model in Rotterdam city, the density of
the habitation was considered at 3043 residents per km2 [77]. A self-sufficiency map is
illustrated in Figure 25 using Stamen Maps [78]. For the highest value of Fp, the Europoint
complex could provide lettuce for 27,000 residents in a 1.67 km radius that corresponded
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to 2.66% of the population of Rotterdam (assuming the city has 1,012,017 residents [77]).
To become a self-sufficient city after achievement of self-sufficiency at the neighbourhood
scale, approximately 940,000 m2 of vertical farming area would be needed to respond to
the lettuce demand of the citizens of Rotterdam. In other words, 38 complexes like the
Europoint complex, which involves 30 Fp levels that have 833 m2 floor area each, would
make Rotterdam self-sufficient in lettuce crop.
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3.4. Discussion

This section presents the discussion based on the results of the sampling, ML, and
optimisation experiments conducted for the Europoint complex. Five topics are discussed,
which are defined as: the parametric high-rise model; ML for performance prediction; com-
putational optimisation; self-sufficiency in energy and food; and the MUZO methodology
for self-sufficient high-rise buildings in future cities.

• Parametric high-rise model: Samples of Europoint complex were collected separately
for each subdivision (zone) using a computer with an Intel I7 5820 K core processor
at 3.30 GHz, with 16-GB DDR4 of memory, and a 256-GB solid-state drive. During
the sampling process, the computer terminated the calculation process because of a
memory shortage when the entire complex was simulated using 21 models. The same
test was replicated using a computer with an Intel Xeon E5-2640 v4 core processor at
2.40 GHz, that had 64-GB DDR4 of memory, and a 1024-GB solid-state drive. The com-
pletion time was recorded as more than 1 h when it was expected to be approximately
22 m for the hourly simulation period. After the examination, the reason was defined
as the data transfer between the simulation plug-ins and engines. Although less effort
was required to conduct the results using all the simulation models of the complex,
each sampling process was completed separately, which was three times more efficient
than considering a sampling process for the entire complex. Lower simulation periods,
i.e., 15 min, can cause an exponential increase in the efficiency of conducting the
sampling results. In this paper, self-sufficiency in energy and food was examined
subject to daylight performance. In the case of integrating other performance aspects
related to self-sufficiency or comfort, the MUZO methodology would still be a feasible
solution because of how it deals with different parts of the buildings as different de-
sign problems. Moreover, there was no error reported during the simulations because
the studied building had an orthogonal floor plan and façade configuration. In the
case of convex or nonconvex surfaces involved in any part of the building, errors, or
exponential increases in simulation time could be observed.

• ML for performance prediction: 45 surrogate models were developed to predict the
performance aspects. While nine of these models were used to predict energy-related
criteria, 36 of them were considered for daylight evaluation. Instead of using a high
number of surrogate models to predict the daylight in detail, average values for each
tower were considered during the initial phase of the ANN development. Despite the
promising prediction accuracies, which had R2 values higher than 0.8, it was observed
that the minimum daylight requirement could not be achieved in all orientations of the
three zones. Therefore, different surrogate models were considered that caused a slight
increase in function evaluation during optimisation, but also a higher accuracy in terms
of correct prediction. One may argue that a possible alternative could be to develop
daylight models for average and deviatory values, which were not investigated owing
to the limitations of the study. On the other hand, because of the full automation
between the developed Python program and the predictive models developed in GH,
extra effort was not needed to cope with a high number of surrogate models. Results
of the grid search process indicated that different hyperparameter sets were required
to predict performance with a high level of accuracy. This once again underlines the
importance of grid search investigations for predicting performance aspects in the
building simulation domain. When large numbers of ANN models are required for
fitting during the grid search process, GPU usage can be considered not only for the
studied problem scale in this paper but also for the problems focusing on larger scales
in the built environment.

• Computational optimisation: For the building scale, jEDE with the Optimus plug-in
presented the most robust search behaviour because of it having the lowest fitness,
CPU, and Std values. One reason could be that updating the number sliders in the GH
environment requires additional time for each function evaluation. Another reason
could be related to the procedures considered in optimisation algorithms, i.e., covari-
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ance matrix adaptation and the radial basis function. Despite updating the number
sliders, GA in the Galapagos plug-in discovered near-optimal alternatives in less time
when compared to other algorithms. On the other hand, CMA-ES presented promising
solutions in terms of fitness and Std but required an expensive computation budget.
Despite using the radial basis function, RBFopt could not perform desirable solutions
that might be related to the high number of decision variables. This underlines once
again an ongoing discussion for using either model-based algorithms (e.g., RBFopt)
or optimisation procedures with predictive models (i.e., this paper) in architectural
design [14]. The results of this paper indicated that surrogate-based optimisation algo-
rithms are convenient to utilise in small-scale architectural design problems, whereas
optimisation with surrogate models should be considered for design problems having
an enormous number of design parameters. Therefore, an extensive investigation
could be possible for large-scale design problems as attempted in this study. Since
7500 FES were sufficient for jEDE and CMA-ES, an investigation of a higher number of
FES, which might slightly improve the results of other algorithms, was not considered.
For the neighbourhood scale, the same number of FES were also considered for all
algorithms. A higher number of FES with additional runs could also result in an
increase in the number of conducted Pareto-front solutions. Since the purpose of the
multi-objective formulation was to present the potentials of the developed model, this
investigation remains limited. Additionally, the HypE and NSGA-II algorithms, and
variants of the SPEA-2 algorithm presented non-dominated results in an acceptable
amount of time, whereas the MACO, NSPSO, RBFMopt, and MOEA/D algorithms
could not provide promising results and required an expensive computational budget.
Moreover, stepwise jEDE results indicated that results of the multi-objective optimisa-
tion algorithms could be dominated in 24 solutions out of 30. This highlights a gap
in the development of multi-objective optimisation algorithms, which are capable
of coping with high-dimensional constrained design problems in the architecture
domain. Using predictive models, 577500 FES are completed during the optimisation
processes in 3 weeks. This task would take more than 19 years if simulation-based
optimisation was considered for the same number of FES. This reminds us once again
of the importance of selecting convenient optimisation methods during the conceptual
phase of the design process.

• Self-sufficiency in energy and food: Considering the assumption concerning lettuce
consumption, that 1800 people live in the three towers of Europoint complex, the Etot
of the optimised design at the building scale was reported as 3072.8 MWh y−1 (for
CoP 5) while ER, EF, and Eg were 4206.3 MWh y−1, 1258.6 MWh y−1, 2392.1 MWh y−1,
respectively. Despite the detailed parameter investigations of glazing types, window
sizes, the shapes of the BIPV surfaces, and the shading devices used for each orientation
in each tower, 43.7% sufficiency could be reached in terms of electricity usage at the
building scale. Moreover, the required energy consumption for self-sufficiency at the
neighbourhood scale reached up to 19,639.6 MWh y−1 because of the providing of
lettuce crops for 27,000 people using 30 floors for vertical farming. Considering that
one floor of farming requires 629.3 MWh y−1, 96.1% of the energy demand was from
food production for providing 1000 tons of lettuce for the 27,000 people. Although
the energy demand of the vertical farming was decreased when fewer farming floors
were considered in the entire complex, more than 10 times the energy use intensity
was required when compared to the residential floors. Even though the benefits of
closed farming systems for food production in the centre of the city with low CO2
emissions, high energy consumption remains one of the big challenges. This highlights
the necessity of integral designs that use the potential solar and wind power of the
building environment, as well as the importance of combining vertical farming with
urban farming on roof-tops and in unused parts of the city to achieve self-sufficiency
with lower energy consumption at the neighbourhood scale.
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• MUZO methodology for self-sufficient high-rise buildings in future cities: The MUZO
methodology was utilised to conduct the self-sufficient design alternatives for en-
ergy consumption and food production (demonstrating sufficiency for lettuce crops)
focusing on the Europoint complex in Rotterdam. Various advantages of consider-
ing this methodology were observed (e.g., coping with complex simulation models
for sampling, investigation ability of the best prediction accuracy for multiple per-
formance aspects, and the extensive investigation of the search space that leads to
comprehensive decision-making in the design process because of employing multiple
optimisation algorithms with replications). When compared to typical scenarios us-
ing the same parameter sets for the entire high-rise design, the energy consumption
discovered by the MUZO methodology was improved by 21%. For self-sufficiency
in food production, results suggested various floor selections on which to place the
closed farming system, considering the total energy consumption as well as the total
energy generation. Because of efficient agricultural production in closed farming
systems, residents of the Europoint complex and habitants in the neighbourhood (up
to 27,000) people could exploit the lettuce production in the Europoint complex. Self-
sufficiency of lettuce crops for food production was demonstrated in this study. The
variety in agricultural products could be increased by considering different simulation
parameters to provide necessary indoor conditions for different crops using the same
computational model. However, self-sufficiency in energy was not as achievable as
food production. The results indicated that 100% self-sufficiency in energy could not
be achieved at the building scale using existing BIPV technology. Therefore, combined
systems for BIPV, battery, wind [27], and combined heat and power systems can be
considered to improve the self-sufficiency at the building scale. Moreover, considering
the potential of other buildings in the surrounding area (e.g., using their roofs for
PV panels) appears to be a vital approach for future cities. The involvement of the
surrounding buildings in addition to the buildings under study increases the com-
plexity of the design problem. Considering the MUZO methodology can be a feasible
approach, as it was able to present promising results for the three high-rise buildings
in this paper.

4. Conclusions

This paper presents the results of an optimisation investigation of high-rise buildings
for self-sufficiency in terms of energy consumption and food production for lettuce crops
using AI techniques. The utilisation of MUZO for the Europoint complex located in Rot-
terdam managed the sampling process for 9000 design alternatives, and the development
of 45 ANN models, which considered grid searches for five hyperparameters in the first
two phases of the methodology. The final phase focused on optimisation of the three
towers by employing the developed surrogate models with 117 decision variables, using
13 optimisation algorithms with single-objective and multi-objective problem formula-
tions, which were subject to 37 and 36 constraints for the building and neighbourhood
scales. The results showed that 100% self-sufficiency in food production for lettuce crops,
and 43.7% self-sufficiency in energy consumption can be reached at the building scale,
including 1800 residents. At the neighbourhood scale, sufficient lettuce production can be
provided for up to 27,000 people living in a radius of 1.67 km by decreasing self-sufficiency
in energy up to 11.6%. The relevance of the MUZO methodology is also shown by its
discovery of self-sufficient high-rise alternatives at the building scale with an improvement
of 21% in the considered performance aspects when compared to typical design scenarios.
Self-sufficiency scores achieved at the building and neighbourhood scales highlight the
necessity of integrating the potentials of the surrounding buildings in addition to the
high-rise buildings in question. Hence, self-sufficient cities can be achieved by developing
self-sufficient neighbourhoods.

• Limitations of the study: The importance of this study for future cities is presented
in the digital (virtual) environment by the obtained ML scores, optimisation results,
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and the validation of the utilised MUZO methodology. Validation between the results
obtained from the digital environment and the monitored data from the indoor en-
vironment of the real applications is one of the limitations of this study. Regarding
the HVAC system, the default setup of the HB and LB plugins is considered during
the energy simulations. A detailed HVAC setup (e.g., condenser or VRF loops) may
improve the optimisation results using other plug-ins of LB tools. Additionally, only
lettuce crops are integrated into the closed farming system, as they are one of the
most well-documented agricultural products for vertical farming. Nevertheless, the
developed computational model has the potential to consider other agricultural prod-
ucts by changing the parameters of the energy model to provide the necessary indoor
conditions for the growing process of other plants. Although plant factories use water
resources effectively when compared to traditional farming, self-sufficiency in water
may require additional design and operational parameters to be considered in the
optimisation process. Finally, the urban heat island impact of the proposals, which
may be the primary focus of future works, is not taken into consideration.

• Future works: Higher self-sufficiency scores at the neighbourhood scale may require
the use of random forests [79] and convolutional neural networks [80] for detecting
the potential of roof spaces for PV panels. Considering self-sufficiency in different
time frames (i.e., monthly, or weekly) can provide an overview of the sufficiency
performance in different weather conditions. Since the climate region has an inevitable
impact on self-sufficiency aspects, hypothetical models developed for various climate
zones may guide the necessary actions to be taken while transforming our cities for a
sustainable future. In this respect, providing a potential reduction in CO2 emissions,
in addition to energy consumption and food production, may help policymakers to
develop self-sufficient, carbon-neutral, energy-positive lives in metropolises. Energy
models can also consider different set points as variables, and various occupancy
scenarios to decrease consumption. The impact of creating separate farming buildings
instead of considering farming and residential levels in a single building may also
provide a better operation in different scenarios. Integrating daylight simulation into
the energy model may also decrease the total energy demand, with an additional
computation budget owing to the hourly illuminance data. In addition to daylight,
optimising the view of the residential spaces can be an added value that may in-
crease the demand for self-sufficient high-rise buildings owing to the promising city
view. Using the same model, the diversity of the agricultural products can be in-
creased to include leafy greens, vine crops, and tomatoes [7], in addition to integrating
other self-sufficiency aspects (e.g., harvesting water, or adding ducted openings for
wind energy [81]). Involving parameters of the façade design of the closed farming
systems [23], and semi-transparent PV panels can reduce the energy demand while
increasing the complexity of the optimisation problem. At the neighbourhood scale,
different types of food production systems can find a place in various locations that
allows for the provision of a large amount of various crops. Hence, the potential of the
neighbourhood scale can be involved in providing vital food products to achieve self-
sufficient cities in the future. Finally, economical aspects considering the fundamentals
of the circular built environment may present an additional long-term strategy for
decreasing the life-cycle cost and CO2 emissions of future cities.
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Statistics
MAE Mean absolute error
MSE Mean squared error
R2 R-square
Std Standard deviation
Machine learning
AI Artificial intelligence
ANN Artificial neural networks
CV Cross-validation
FNN Feedforward neural network
ML Machine learning
Optimisation
CMA-ES Covariance matrix adaptation with evolution strategy
CPU Computation time
DV Decision variable
FES Function evaluations
GA Genetic algorithm
HypE Hypervolume-based many-objective optimisation
jEDE Self-adaptive differential evolution with the ensemble of

mutation strategies
MACO Multi-objective ant colony optimisation
MOEA/D Multi-objective evolutionary algorithm based on decomposition
NSGA-II Non-dominated sorting genetic algorithm II
NSPSO Non-dominated sorting particle swarm optimisation
P&S Population and swarm
PSO Particle swarm optimisation
RBFopt Radial basis function optimisation
RBFMopt Multi-objective radial basis function optimisation
SPEA-2 Strength Pareto evolutionary algorithm 2
HGPSPSO Hybrid generalised pattern search particle swarm optimisation
NFL No free lunch
NFT Near feasibility threshold
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Performance assessment
BIPV Building-integrated photovoltaic
DF Daylight factor [%]
Ec Cooling consumption [MWh]
Eeq Equipment consumption [MWh]
EF Farming energy consumption [MWh]
Eg Energy generation [MWh]
Eh Heating consumption [MWh]
EL Lighting consumption [MWh]
ER Residential energy consumption [MWh]
Etot Total energy consumption [MWh]
Fp Food production [ton]
g&s Germination and seeding
GH Grasshopper 3d–Algorithmic modelling environment
g-val. Solar transmittance of the materials used in simulation models
PV Photovoltaic
Tvis Visible transmittance of the materials used in simulation models
U-val. Thermal transmittance of the materials used in simulation models

[W/m2 K]
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13. Ekici, B.; Kazanasmaz, Z.T.; Turrin, M.; Taşgetiren, M.F.; Sariyildiz, I.S. Multi-zone optimisation of high-rise buildings using

artificial intelligence for sustainable metropolises. Part 1: Background, methodology, setup, and machine learning results. Sol.
Energy 2021, 224, 373–389. [CrossRef]
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