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Abstract

In this thesis, we investigate how representative periods can be used as a temporal reduction technique for stochastic
programming formulations of large-scale energy models. We specifically apply this to generation expansion planning.
The focus is on cost-efficient decisions as well as on robust decisions, especially since the latter is why uncertainty
is incorporated in most energy models. For this, we build on recent work that uses instead of traditional clustering
methods like k-means or k-medoids, a method to obtain a convex or bounded conical hull over the periods. We prove
that when inter-period constraints are ignored and a perfect hull is found, we can ensure that a feasible solution for
the original model exists, obtained from the optimal decision variables of the reduced model. The proof is suitable for
both the traditional way of using representative periods in stochastic programming, as for an approach that shares
representative periods across scenarios instead of making them scenario-dependent. We show that a greedy imple-
mentation of the hull approach can outperform standard clustering methods in terms of costs in small case studies
when a valid hull is found. The near-optimal costs can be obtained with a low number of representatives, largely due
to the absence of loss of load due to the hull methods. However, in more complex cases, such as a European-scale
model with high renewable shares, finding such a hull with the greedy algorithm proves difficult. To address this, we
propose adding extreme periods either beforehand or afterwards, and applying a blended weights approach to reduce
conservativeness while maintaining feasibility. Our results on small case studies demonstrate that extreme represen-
tatives can significantly reduce loss of load, although not always at lower cost when applied to the large European
case study. These findings suggest that targeted selection of extremes, a right weighting approach and improved hull
approximations offer a promising direction for enabling scalable, robust planning under uncertainty.
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1
Introduction

In the energy sector, it is crucial to ensure that current investments in energy production, transmission, and storage
are sufficient to meet future demand. Optimization models play an important role in supporting such decisions by
identifying cost-effective investment strategies and dispatch solutions that satisfy future energy needs while account-
ing for constraints related to transmission capacity, storage limitations, and availability of generation technologies. A
prominent example is the “Ten-Year Network Development Plan (TYNDP)”, published every two years by the Euro-
pean Network of Transmission System Operators for Electricity (ENTSO-E) [8]. Using optimization models and mul-
tiple future scenarios, the TYNDP identifies system needs and infrastructure requirements across Europe. However,
while these models are powerful in finding optimal solutions, their scale and complexity make them computation-
ally demanding: the most recent TYNDP scenarios report shows they had to limit the analysis to just three out of
thirty-five scenarios for computational reasons [8].

One of the key challenges in these energy models is that, while decisions need to be made for the coming decades,
they must satisfy constraints defined on a very fine temporal and spatial scale, often with strict technical require-
ments. For example, the system should be able to meet electricity demand at every hour over several years. This
becomes even more computationally demanding with the growing share of renewable energy sources [27], whose
availability fluctuates depending on weather conditions. As a result, we are dealing not only with demand data at
high temporal resolution, but also with data on the availability of renewable generation technologies and related op-
erational constraints at that same fine scale. Making optimal decisions while incorporating this level of temporal
detail is not feasible with standard computing resources. To make the problem tractable, models often introduce
reductions, lowering technical detail in the formulation, spatial resolution, or the temporal dimensions [21].

While energy system optimization problems are already large on their own, realistic solutions must also account
for the fact that future conditions are inherently uncertain. This need gives rise to the field of optimization under
uncertainty in energy systems [29]. The uncertainty shows up in many parts of the model, but here we focus on two
types of it. First, the demand at each location is based on forecasts, which can vary depending on weather patterns
or broader trends in electricity use. Even more uncertain, however, are renewable energy sources. Their availability
depends heavily on weather conditions, and predicting future weather patterns in advance is difficult. Still, a system
that remains reliable under a range of possible futures is highly desirable.

There are multiple ways to include uncertainty in demand or the availability of renewable generation technologies
within an optimization model, as described by Roald et al. [29]. In this thesis, we focus specifically on the use of
stochastic programming. Stochastic programming extends the deterministic version of the problem by optimizing
the expected value of the objective across multiple scenarios, rather than just one. In the context of energy mod-
els, this often translates to minimizing expected system costs under uncertainty. Important for two-stage stochastic
programming is the separation between two types of decision variables. First-stage decisions are made before the
uncertainty is revealed, these typically correspond to long-term investment choices. Second-stage decisions repre-
sent uncertain short-term operational actions, such as dispatching generation units or managing storage. These are
decided upon after the scenario has unfolded. This structure makes stochastic programming particularly suitable
for energy system planning, where large upfront investments must be made without knowing future demand and
availability values.

1



2 1. Introduction

Incorporating multiple scenarios can improve solution quality under uncertainty, but stochastic programming also
adds constraints and decision variables, making models more computationally intensive to solve. As mentioned
earlier in the context of the TYNDP, ENTSO-E ran only three out of thirty-five scenarios. Although they had more sce-
narios available, they had to make a selection due to computational availability [8]. In such a case, scenario reduction
techniques are used to limit the number of scenarios while preserving key system characteristics. While a lot of re-
search exists in this field [9], even with a reduced set of scenarios, model size remains large. This reinforces the need
for additional techniques, beyond scenario reduction, that can decrease computational effort while maintaining the
robustness of the system.

Micheli et al. [20] combines two such techniques to ease the computational burden in stochastic energy models. The
first, Benders decomposition, is a solving technique that decomposes the problem to solve it iteratively, which even-
tually converges to the optimum. The second technique is temporal reduction through representative periods. These
and related temporal reduction techniques are well-studied in deterministic energy modeling. These approaches aim
to identify a small set of time slices, such as days or weeks, that capture the essential temporal variability of the full
dataset. Clustering algorithms like k-means or k-medoids are often used to group similar periods and to select a
small number of representative periods as input for a reduced model [33]. However, as Pfenninger [26] highlights,
the performance of clustering methods depends heavily on input data, and there is no universally optimal technique.
One other limitation is that clustering tends to center around averaged values, systematically excluding outliers. As a
result, models based on such representative periods may fail to capture rare but critical events, leading to solutions
that are cost-efficient on average but vulnerable under extreme circumstances. This is undesirable, as reliability is
critical in energy networks and power outages must be avoided. To address this issue, some approaches introduce
extreme, worst-case periods after clustering [18], while others, such as in the package TulipaClustering.jl [23], focus
on selecting representative periods that span the extremes of the dataset. They use two greedy hull methods for this.

This thesis builds on insights from deterministic modeling and extends them to the stochastic setting. The goal is
to develop an approach that is both robust to uncertainty and computationally tractable. While stochastic program-
ming offers a structured way to handle uncertainty, additional temporal reduction is needed to keep model com-
plexity manageable. Although representative periods have been used in stochastic models, they are typically applied
separately within each scenario. This thesis instead proposes a cross-scenario approach, selecting periods across all
scenarios jointly. In addition to using representative periods more efficiently, we aim to improve robustness by fo-
cusing on methods that explicitly maintain feasibility. To this end, we apply the greedy hull algorithms proposed in
TulipaClustering.jl [23] and provide a theoretical justification for its use in a stochastic programming context: if the
selected representatives are a convex or bounded conical hull of the initial period set, then any solution feasible for
the representatives should also lead to a feasible solution for the full dataset. We address some of the practical lim-
itations of the greedy hull methods by adding artificially created representatives containing worst-case values. The
methods developed are tested on a European case study with a high share of renewable generation, where uncertainty
plays a central role and the benefits of stochastic programming are especially relevant.

The work in this thesis addresses the following research questions:

1. How can representative periods be shared across scenarios?
2. How can we ensure that solutions obtained from a reduced model using representative periods lead to a solu-

tion that remains feasible in the full, unreduced model?
3. Under which conditions are k-means, k-medoids, and the greedy hull methods preferable in terms of feasibility

and optimality?
4. Can we improve the greedy hull methods by constructing artificial representative periods, especially when a

true convex or bounded conical hull cannot be formed with the available number of representatives?
5. What are the advantages and limitations of using these proposed methods in realistic, large-scale case studies?

This thesis is structured as follows. Chapter 2 reviews related work, focusing on both the incorporation of uncertainty
in energy models and the use of reduction techniques to manage model size in deterministic settings. Chapter 3 intro-
duces the contributions of this thesis, where temporal reduction techniques are applied in a stochastic programming
context using the proposed cross-scenario method. This chapter also presents the full mathematical formulation.
This is done specifically for generation expansion planning (GEP), which is an example of an energy model, but all
methods mentioned in this thesis can be applied to more general settings as well. Chapter 4 provides a theoretical
foundation for maintaining feasibility in the original model while using the reduced model. It proves that, under
the condition that the representative periods are a convex or bounded conical hull of the full set, any solution to the
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reduced model can be transformed into a feasible solution for the original model. Chapter 5 compares the greedy
bounded conical or convex hull method to traditional clustering techniques through selected case studies, evaluating
their feasibility and optimality under an increasing variability. Practical limitations observed in this approach are fur-
ther explored in Chapter 6, which proposes ways to maintain feasibility by generating artificial representative periods.
These methods are first introduced in a two-dimensional setting, and then extended to higher-dimensional spaces.
Chapter 7 presents a European case study with a high share of renewables and many scenarios, serving as a realistic
example on which we can test the proposed methods. Finally, Chapter 8 summarizes the conclusions and outlines
directions for future research.



2
Related work

This chapter reviews related work on the two main themes of this thesis: temporal reduction techniques and un-
certainty in large-scale energy models. We first define what is considered an energy model to set the scope of this
research, in Section 2.1. Then we look at potential reduction techniques in the deterministic setting focusing on tem-
poral reduction methods which are widely researched in the literature. Section 2.2 discusses the main approaches.
Next, we look at uncertainty. While recognized as a critical factor in energy planning, it is often omitted in practice
due to computational challenges. Still, many studies have shown that incorporating uncertainty can lead to more
robust and cost-effective decisions than models based solely on average scenarios. In Section 2.3, we review existing
work on modeling uncertainty in energy systems, with a focus on how to deal with computational complexity.

2.1. Energy models

Energy models refer to any form of optimization or simulation that represents the flow and transformation of en-
ergy, from extraction to end use, as described by Pfenninger et al. [27]. While their work outlines a broad spectrum
of existing models, for the purpose of this thesis, we focus specifically on what they describe as energy system opti-
mization models and energy system simulation models. These are particularly relevant because they are affected by
the key challenges this thesis addresses: how to balance temporal resolution with other details and how to deal with
uncertainty in a computationally tractable way.

Within this category, models vary in focus and formulation, but generally share a common structure. At their core,
they must satisfy demand at specific locations while adhering to technical and operational constraints, for example,
limits on ramping, transmission, and production. In addition to these short-term operational decisions, many models
include long-term investment decisions in generation, storage, or transmission infrastructure. These decisions must
be made in advance and must be integrated with the detailed operational constraints, thereby adding to the model’s
size and complexity. Since these models aim to satisfy future operational constraints, accounting for uncertainty is
essential, but doing so further increases computational demands. This makes the research in this thesis especially
relevant for large-scale energy models.

While the methods proposed in this thesis are broadly applicable across different types of energy models, the experi-
ments focus on generation expansion planning (GEP). The goal in this type of model is to determine which generation
assets to invest in, and where. This focus allows for a consistent case study framework, but the techniques themselves
are not tied to GEP and could be transferred to other model types with minimal adjustments. As such, the related
work reviewed below covers a broad range of energy models, not only GEP. This helps place the proposed methods
within the wider context of research aimed at simplifying large-scale energy models while maintaining their ability to
handle uncertainty and system complexity. For a detailed review of GEP we refer to Koltsaklis and Dagoumas [13].

2.2. Reduction techniques in a deterministic setting

Energy models typically have high spatial and temporal resolution and can include many technical details. A common
approach for reduction is to aggregate spatial regions and include only a few time slices per year. However, more
detail has become increasingly necessary due to two major changes in energy systems: higher fluctuations in demand

4



2.2. Reduction techniques in a deterministic setting 5

and the growing share of renewables, which adds variability to supply [27]. In this section, we look at reduction
techniques that aim to maintain accuracy while reducing model size, with a focus on temporal reduction. This can
free up space to include more detail in other aspects of the model, such as spatial details or technology-specific
constraints. Depending on the case, however, it may also be necessary to simplify those aspects. In such cases, it can
be useful to explore more efficient model formulations [36], use relaxations on integer decision variables, or apply
spatial aggregation techniques [25, 32].

Load levels Before the rise of renewables, a common approach in temporal reduction was to use load levels. Load
levels are obtained by the load duration curve. The demand values are ordered by value and frequency, creating blocks
that represent how often each level of demand occurs. For each range of demand values load blocks are obtained and
then used to replace the hourly demand data. As described by Wogrin et al. [37], the downside is that the chronology
is lost. Some operational constraints, such as ramping limits or storage behavior, depend on the chronological order
of time steps. Removing the order and the associated transitions means the model cannot account for the variability.
The problem becomes more pronounced with renewable energy sources, whose output depends heavily on weather
and varies across hours and seasons. Losing the chronological structure can remove patterns in the data, such as
correlations between demand and availability in renewable generation technologies, or the timing of extreme events.
Moreover, the high variability causes extra needs in ramping, not captured when using load levels [18, 21, 27, 37].

System states To address this, several new approaches have emerged that include chronological order and the avail-
ability of renewable generation technologies. One such approach is proposed by Wogrin et al. [37], who introduce the
concept of system states. The idea is to cluster the input data into a limited number of representative states, each de-
fined by a typical combination of demand and renewable availability. These states are then used to replace the full set
of hourly observations in the optimization model. To retain some chronology, a transition matrix is added that cap-
tures the frequency of moving from one state to another. This allows the model to include constraints that depend on
chronology, even though the full temporal sequence is no longer explicitly modeled. The system is then solved over
these representative states and their transitions, rather than over the original time series. While this preserves some
form of chronology, it can still be too limited for models that rely more heavily on sequential constraints, for example
when including storage. In those cases, more detailed chronological information is needed, but can increase runtime.
Tejada-Arango et al. [35] propose an extension to apply the system states in models with storage.

Representative periods Another approach that is currently widely applied is the use of representative periods [14,
18, 21, 26, 28, 30, 33–35]. The general idea consists of a few steps, with different possible directions in each. We first
outline the basic process before diving into the variations. Just as with system states, the hourly input data is clustered,
but the clustering is based on groups of time steps (periods) instead of individual time steps. A period can be a day or
a week, for example. The original input data is thus first divided into these periods. A few representative periods are
then created or selected to best represent the original ones. Each representative is assigned a weight based on how
many of the original periods it represents. The model is then only solved for these selected periods.

The main difference between methods lies in how the representative periods are selected. This is mostly done through
clustering algorithms. Here, typical approaches include k-means [14, 18, 26, 33, 35], k-medoids [14, 18, 30, 33], and
hierarchical clustering [14, 21, 26, 28]. In studies, the distinction is often made between centroid-based and medoid-
based methods. The centroid of a cluster is the mean position of all points within the cluster, representing an average
location that may not correspond to an actual data point. In contrast, the medoid is the data point within the cluster
that is closest to the center, ensuring that the representative is an actual sample from the dataset. Some studies prefer
centroid-based methods like k-means, as they result in underestimation of the objective, which is even proven to be
a lower bound for the optimal solution of the original problem [18, 33]. Others argue that medoid-based clustering
captures the actual variability better, since it does not average out time series as much [14, 33]. But in general, there
is no consistent winner among the different methods, the best algorithm depends heavily on the specific case [34].
This is agreed upon by another large comparison carried out by Pfenninger [26]. Since there is a clear distinction in
behavior between centroid-based and medoid-based methods, these two are both used in our experiments.

It is also highlighted in many papers that the clustering algorithm itself is only one part of the process [26, 30, 34].
Other choices can have just as much influence on results. We will discuss some of these choices here. First, a decision
must be made about what data to cluster on. Most studies use historical time series, but variations exist. For example,
some use net-demand profiles that incorporate ramping effects [30], or even cluster based on investment decisions
instead of input data [18]. Second, normalization is a critical step before clustering, especially when demand and
availability are on different scales. Techniques vary, with the most common being z-normalization or scaling by the
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maximum value. Normalization can be applied to the full dataset or element-wise, such as per location or per time
step [33, 34]. Third, the distance metric used in clustering can also impact the result. Most papers rely on the squared
euclidean distance. Teichgraeber and Brandt [34] also mention that alternatives like the manhattan distance do not
result in better performance. More advanced metrics like dynamic time warping or shape-based distance have also
been tested, especially since they are better suited to compare time series. They are implemented with clustering by
using DTW-Barycenter Averaging or k-shape clustering, but none show a consistent advantage. Finally, the weighting
step can differ as well. While some approaches assign weights based on cluster sizes, others, like Scott et al. [30],
adjust weights using net-demand to better match the original objective function.

In addition to the previously mentioned model variations, there are also differences in the period length and the cou-
pling between periods. The motivation for using representative periods over other methods is to better capture the
chronological information present in the input data. If no coupling constraints are present, a period of just one time
step could be used and there would be no advantage in using more time steps per period. However, when coupling
constraints like ramping or storage are included, most papers opt for a 24-hour period, while some suggest using one
week to be able to capture even more information about temporal patterns. Using periods of one week increases com-
putational time, therefore, longer periods are generally avoided [34]. One important limitation of the implementation
of representative periods is that inter-period constraints are typically ignored. Some argue this is acceptable, as it is
the most commonly used approach in the literature [18], while others explore methods to add coupling constraints
back into the reduced model [35]. For now, we will focus in this research on finding and proposing the best technique
when ignoring inter-period constraints, but future work could explore combining the methods developed here with
techniques that reintroduce inter-period coupling.

In summary, there is a wide range of variation across studies using clustering techniques, and most methods still show
significant error in some settings. One common addition to improve accuracy is the inclusion of extreme days. In a
broad experimental study, Pfenninger [26] shows that including extremes can substantially improve model perfor-
mance. Teichgraeber and Brandt [34] also note that when variables like renewable availability are likely to be binding
in the constraints, it becomes even more important to include extreme conditions. There are different ways to do
this. Some studies identify extremes beforehand, using simple heuristics like maximum demand or minimum avail-
ability [14, 26, 28, 30]. Others add them after clustering by checking which days result in the most energy not served
under the chosen investment decisions [18]. Extreme days can be appended to the representative set [18], replace
cluster centers [14], or even be forced into the clustering process [30]. A technique that emphasizes extreme cases
involves replacing the clustering process entirely by selecting periods located on the boundary of the dataset, rather
than identifying central cluster points. In the TulipaClustering.jl package, this is currently implemented by finding
a convex or bounded conical hull for the set of periods and selecting the corner points of this hull as representative
periods [23]. Since computing such a hull with a limited number of corner points can be computationally intensive,
or even infeasible depending on the samples, an approximate greedy algorithm is used. The core idea is that when
the selected representatives form a convex or bounded conical hull over the full period set, any original period can be
expressed as a convex or bounded conical combination of the representatives. The resulting weights can be used to
refine the estimation of objective functions. The rationale behind choosing boundary points is that they collectively
span the feasible space, ensuring coverage of all periods within the hull. This thesis formalizes that intuition with
a theoretical proof, and further compares the algorithmic approach proposed by Neustroev et al. [23] against more
traditional clustering techniques for selecting representative periods.

To conclude, there is a wide range of options when it comes to selecting and using representative periods. Many dif-
ferent clustering methods, normalization approaches, distance metrics, and weighting schemes have been proposed,
and none clearly outperform the others in all cases. In this thesis, we focus on the bounded conical and convex hull
method, that aim to provide stronger guarantees by incorporating the idea of extremes more explicitly. We com-
pare it to centroid- and medoid-based approaches (k-means and k-medoids). To make the approach practical, we
make specific choices for normalization, distance metric, and period length, which are discussed in more detail in the
methodology chapter. For now, we explore how the previously discussed methods can be incorporated into a setting
with uncertainty, which we will dive into in the next section.

2.3. Uncertainty in energy models

Uncertainty in energy models can come from many sources and therefore different models are designed to incorpo-
rate different types of uncertainty. Here, we follow the overview of methods presented in the review by Roald et al.
[29], along with insights from individual papers. The most commonly mentioned source of uncertainty is electricity
demand [6, 9, 24, 31, 32, 38, 39], followed by the uncertainty in the availability of renewable generation technologies
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[12, 24, 32, 38, 39], and in some cases, electricity prices or investment and operational costs [6, 20, 31]. While these
sources differ, all papers agree that incorporating uncertainty leads to better decisions compared to relying on an
average deterministic scenario. However, it also introduces significant computational challenges. In this thesis, we
focus on uncertainty in demand and the availability of renewable generation technologies, as these types of models
are widely studied, have accessible scenario data, and can benefit most from temporal reduction due to their high
hourly variability.

Although there are many ways to model uncertainty, most approaches found in the literature fall into one of two main
categories: robust optimization and stochastic programming. Robust optimization focuses on finding the best deci-
sion variables under worst-case realizations within a defined uncertainty set. This uncertainty set typically defines
an interval of possible values that the uncertain parameters can take. While this makes the model more conservative,
the degree of conservatism can be adjusted by controlling the size or shape of the uncertainty set [6, 29]. Dehghan
et al. [6] argue that this approach is especially useful when it is difficult to construct scenarios, or when the uncer-
tainty space is too large to sample properly. In stochastic programming, the uncertainty is represented by a finite
set of scenarios with associated probabilities. These can be independent and identically distributed samples from a
known distribution, or discrete samples with known probabilities. The goal is usually to minimize the expected value
of the objective, taking into account both first-stage (investment) decisions and second-stage (operational) decisions,
which adapt once the scenario is revealed. The main drawback is that the size of the model grows linearly with the
number of scenarios. Moreover, it can be difficult to ensure that a limited set of scenarios captures the full probability
space.

Both method categories tend to result in large-scale models that require simplification. For both robust optimization
and stochastic programming, decomposition techniques such as Benders decomposition can be used to solve the
problem iteratively by decomposing the problem into a master problem and many independent subproblems related
to the second-stage variables [6, 9, 20, 38]. In stochastic programming, it is also common to reduce the number
of scenarios. Scenario reduction techniques, such as clustering or filtering, are used to select a smaller number of
representative scenarios that best capture the characteristics of the full set [9, 12, 24, 31, 32]. Although a combination
of decomposition and scenario reduction techniques can help reduce runtime, solving the full model often remains
challenging. We argue that the goal should be to retain as much relevant information from the scenarios as possible.
In particular, when uncertainty lies in the same variables as the hourly time series, such as availability of generation
technologies and demand, it is natural to extend temporal reduction techniques to the stochastic setting.

While Micheli et al. [20] explores the use of representative periods in stochastic settings, their approach applies them
independently to each scenario. That is, representative periods are selected separately within each scenario, and
no information is shared across scenarios. We argue that periods can be selected more efficiently when scenarios
are treated jointly, especially since the variation across periods and scenarios is driven by demand and availability.
We therefore propose a cross-scenario selection method, outlined in Chapter 3. Our aim is to develop reduction
techniques that preserve as much relevant information as possible across all scenarios. The goal is to produce a
reduced model that yields solutions close to the original optimum while maintaining feasibility for all full-scenario
constraints. To this end, we propose and implement the convex and bounded conical hull methods discussed earlier,
alongside more traditional clustering-based approaches.



3
Representative periods in stochastic

programming for generation expansion
planning

In Chapter 2, we identified temporal reduction, particularly through representative periods, as a promising approach
to reduce model size. This chapter presents the methods used to implement this approach in a stochastic program-
ming context. Some of the technical details that were previously introduced at a high level are now described more
formally.

We begin in Section 3.1 by introducing the generation expansion planning (GEP) formulation used throughout this
thesis. This serves as a running example to illustrate the implementation of the proposed methods. Section 3.2
explains how representative periods are integrated into the stochastic GEP formulation, both in the standard per-
scenario approach and in the proposed cross-scenario method. In Section 3.3, we present the mathematical and
practical details of the techniques used to construct representative periods, including normalization, selection, and
calculating weights. Finally, Section 3.4 describes the evaluation metrics and experimental setup used to assess trade-
offs between accuracy, computational efficiency, and robustness.

3.1. Stochastic programming formulation for generation expansion planning

As an example of a large-scale energy model, we begin our research with GEP. This involves selecting investments
in generation technologies at various locations to meet demand. Uncertainty arises both in the demand and in the
availability of renewable energy sources. Both parameters are often represented with hourly input data spanning a
long time horizon. This complexity can make the model intractable, particularly when stochastic programming is
applied. As noted by Gandulfo et al. [9], runtime issues often lead to selecting only a subset of the scenarios. This
makes GEP a valuable case study for this thesis.

The formulation is presented in Section 3.1.2, including the main constraints typically included in this type of prob-
lem [9]. For an overview of possible additions and variations, the review by Koltsaklis and Dagoumas [13] can be
helpful.

3.1.1. Model components

This subsection further explains the formulation of GEP. Before focusing on the model formulation in Subsection
3.1.2, we first define the underlying model components: the sets, parameters, and decision variables.

Sets

Table 3.1 shows the sets used in GEP, along with their descriptions and associated indices. Since we will later reduce
the model with representative periods, it is helpful to present it in a period-based formulation from the beginning.
The duration of one period is defined as |H|, where H represents the set of time steps within a given period. One

8
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period typically consists of 24 hours, but we will further discuss this when explaining the use of representative peri-
ods in Section 3.2. Each variable and parameter that is time step-based will be indexed by the scenario, the period
within that scenario and the hour within that period. This means that the combination (s, p,h) will be reused often.
To simplify, we have introduced an additional set I . This set acts as an abstract index for the time and allows for
more flexible representations of the indices in different contexts. This is especially important later on when using
representative periods in the formulations. A similar approach is applied for e = (n,n′), representing transmission
lines.

Set Description Index

N Locations n

G Generation technologies g

P Periods p

H Time steps within one period h

S Scenarios s

NG ⊆N ×G Generation technologies available per location (n, g )

I =S×H×P Moment in time defined by the period, time step and scenario i = (s, p,h)

L⊆N ×N Transmission lines between different locations e = (n,n′)

Table 3.1: Sets and their indices used in the GEP Model

Parameters

The parameters used in the model are summarized in Table 3.2. The first two rows describe time-dependent param-
eters: demand and availability. The availability for non-renewable generation technologies is always equal to 1.0.
Following these are three parameters related to the costs considered in the model, including investment and opera-
tional costs. The next four parameters define the technical constraints, ramping limits, and transmission capacities.
We consider a model in which import and export capacities can differ. The import capacity of a transmission line
e = (n,n′) gives a lower bound to the flow, as import is negative flow, while the export capacity is an upper bound and
refers to the flow going from n to n′. An additional parameter used is the annualization factor AF = 8760

|P×H| . When the
input data does not cover a full year, this factor is applied to the operational costs to ensure comparability with the
annualized investment costs. Finally, the parameter πs represents the probability of scenario s, which is incorporated
into the objective function to calculate the expected operating costs. Those parameters satisfy

∑
s∈S πs = 1.

Parameter Description Unit Domain

Dn,i Demand for location n, at time i MW R≥0

An,g ,i Availability as a fraction of the maximum possible capacity for gener-
ation technology g at location n and time i

1/unit [0,1]

In,g Annualized investment costs for generation technology g at location
n

EUR/MW R≥0

Vn,g Operational cost for each MWh produced by generation technology
g at location n

EUR/MWh R≥0

V loss Value of lost load EUR/MWh R≥0

Un,g Maximum capacity per unit of generation technology g at location n MW/unit R≥0

Rn,g Ramping rate for generation technology g at location n 1/unit [0,1]

Lexp
e Export capacity of the transmission line e MW R≥0

Limp
e Import capacity of the transmission line e MW R≥0

πs Probability of occurrence of scenario s 1 [0,1]

AF Annualization factor for when the periods do not cover a full year 1 R≥0

Table 3.2: Parameters, their units, and domains used in the GEP Model
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Decision variables

The decision variables, summarized in Table 3.3, are divided into first-stage and second-stage variables, reflecting the
structure of a stochastic programming model. The first-stage variables capture decisions made before the realization
of any scenario, specifically investment choices and their associated costs. The second-stage variables are scenario-
dependent and include production levels, loss of load, transmission flows, and the resulting operational costs. The
loss of load variables act as slack variables. They are penalized in the objective function and indicate the amount of
unmet demand under the current investment decisions. Throughout this thesis, we will often refer to a solution as
leading to an infeasible outcome, by which we mean that demand cannot be fully met.

Although the decision variables for the investments originally are limited to have an integer value, we relax them to
lower computational complexity. This is the common practice [18]. For the theoretical results in Chapter 4, it does
not matter for the proof whether this relaxation is used.

Variable Description Unit Domain

c inv Total investment costs EUR R≥0

cop
s Operational costs for scenario s, annualized EUR R≥0

in,g Amount of units invested in generation technology g at
location n

Units Z≥0

prodn,g ,i Production of generation technology g at location n
and time i

MW R≥0

fe,i Flow in the transmission line e at time i MW R

ln,i Loss of load in MW at location n and time i MW R≥0

Table 3.3: Decision variables, their units, and domains used in the GEP Model

3.1.2. Full model formulation

The mathematical formulation of the optimization problem is given in (3.1). To better understand its meaning, we
will break it down and discuss each part separately. First, we look at the objective function, and then we go over the
constraints. The model includes four types of constraints: balance, transmission, capacity, and ramping constraints.

min c inv + AF

(∑
s∈S

πs · cop
s

)
(3.1a)

s.t. c inv = ∑
(n,g )∈NG

In,g ·Un,g · in,g (3.1b)

cop
s = ∑

p∈P
h∈H

 ∑
(n,g )
∈NG

Vn,g ·prodn,g ,(s,p,h) +
∑

n∈N
V loss · ln,(s,p,h)

 ∀s ∈S (3.1c)

∑
g |(n,g )∈NG

prodn,g ,i +
∑

n′|(n′,n)∈L
f(n′,n),i −

∑
n′|(n,n′)∈L

f(n,n′),i + ln,i

= Dn,i ∀n ∈N , i ∈ I (3.1d)

fe,i ≥−Limp
e ∀e ∈L, i ∈ I (3.1e)

fe,i ≤ Lexp
e ∀e ∈L, i ∈ I (3.1f)

prodn,g ,i ≤ An,g ,i · in,g ·Un,g ∀(n, g ) ∈NG, i ∈ I (3.1g)

prodn,g ,(s,p,h) −prodn,g ,(s,p,h−1) ≤ Rn,g ·Un,g · in,g ∀(n, g ) ∈NG, p ∈P ,h ∈H\{1}, s ∈S (3.1h)

prodn,g ,(s,p,h) −prodn,g ,(sp,h−1) ≥−Rn,g ·Un,g · in,g ∀(n, g ) ∈NG, p ∈P ,h ∈H\{1}, s ∈S (3.1i)

prodn,g ,(s,p−1,|H|) −prodn,g ,(s,p,1) ≤ Rn,g ·Un,g · in,g ∀(n, g ) ∈NG, p ∈P\{1}, s ∈S (3.1j)

prodn,g ,(s,p−1,|H|) −prodn,g ,(s,p,1) ≥−Rn,g ·Un,g · in,g ∀(n, g ) ∈NG, p ∈P\{1}, s ∈S (3.1k)
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Objective function (3.1a)

The objective for GEP is to minimize the total cost, which consists of the investment costs (first-stage variables) and
the expected operational costs (second-stage variables). The expected operational costs are calculated by multiplying
the operational cost of each scenario by its probability and summing these values. The operational costs are annual-
ized using the factor AF .

The investment costs, further defined in (3.1b), are computed by multiplying the number of invested units by the ca-
pacity of each unit and its cost per MW. The operational costs, shown in (3.1c), include two components: the variable
costs of production and the cost of lost load, both of which depend on the scenario.

Balance constraint (3.1d)

The balance constraint ensures that, at every moment in time, the demand at a given location matches the energy
available at that location. The available energy is calculated as the sum of the production from generation technolo-
gies at that location and the energy imported, minus the energy exported. This constraint is softened by allowing a
loss of load, which acts as a slack variable. This comes with an extra cost.

Transmission constraints (3.1f) - (3.1e)

The flow on a transmission line is limited by both its export and import capacities. Export capacity for a transmission
line f=(n,n′) provides an upper bound for positive flow (energy flowing from n to n′), while import capacity sets a
lower bound on the negative flow (energy flowing from n′ to n).

Capacity constraint (3.1g)

The production of each generation technology is constrained by its availability, the number of units invested at a
specific location, and the capacity of each unit. This ensures that production does not exceed the installed capacity.

Ramping constraints (3.1h) - (3.1k)

Lastly, we consider ramping constraints. For each unit of generation technology, there is a limit on how much its pro-
duction can increase or decrease between consecutive time steps, depending on the specific technology and location.
In the previous constraints, we indexed the time using i ∈ I . For the ramping constraints, we shift to the fully written-
out indices (s, p,h). This change allows for a clearer distinction between intra-period constraints and inter-period
constraints. The intra-period constraints are the ramping constraint within a period, the ramping up constraint is
shown in (3.1h) and the ramping down constraint is shown in (3.1i). The inter-period ramping constraints relate to
the ramping between consecutive periods. These are shown in (3.1j) and (3.1k).

3.2. Applying representative periods in stochastic programming

Since representative periods are not yet widely used in stochastic programming formulations, we first explain how
they can be applied once identified. This section focuses on the reduced model formulation. The details of the
selection process will follow in Section 3.3.

In this thesis, we compare two approaches for applying representative periods: the per-scenario method, as used by
Micheli et al. [20], where representative periods are selected independently for each scenario, and the cross-scenario
method we propose, where periods are shared across scenarios. For both approaches, we first describe the general
idea and then present the mathematical formulation in the context of the GEP model, so the implementation be-
comes immediately clear. To support this, we also define the input data on which clustering is performed.

General formulation of representative periods in GEP

As described in Chapter 2, our goal is to identify a small set of representative periods that can replace the original,
much larger set of periods. This original set is composed of multiple periods per scenario. To abstract from the
scenario notation, we define an index set J , which can be any subset of S ×P . Later, we clarify how J is defined in
the per-scenario and cross-scenario methods.

In the GEP model, uncertainty and hourly variability arise both in the demand parameters, Dn,i , and in the availability
parameters, An,g ,i . We want to find representative periods that capture the variability in both of these inputs. Let C
be the set of vectors we use for clustering, defined as:

C = {
q j | q ∈RNG×H+N×H , j ∈ J

}
. (3.2)
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Here, NG = |NG| is the number of generator-location combinations, H = |H| is the number of hours per period, and
N = |N | is the number of locations. Each vector q j includes both availability and demand, defined as:

q j =
[
a j d j

]⊺
. (3.3)

These vectors are flattened versions of the availability and demand across time and locations:

a j =


An1,g1,( j ,h1)

An1,g1,( j ,h2)
...

AnNG ,gG ,( j ,hH )

 ∈RNG×H and d j =


Dn1,(s,p,h1)

Dn1,(s,p,h2)
...

DnN ,(s,p,hH )

 ∈RN×H . (3.4)

The representative periods are then used to replace the full set of original periods in the reduced model. We define a
new set R that substitutes for J in the model formulation. For each r ∈R, we determine the associated demand and
availability vectors, ar and dr .

We also redefine the time-specific index set I as follows:

I =R×H. (3.5)

This means that representative periods replace the full scenario-period product. The reduced model, using represen-
tative periods, is formulated below.

min c inv + AF · cop (3.6a)

s.t. c inv = ∑
(n,g )∈NG

In,g ·Un,g · in,g (3.6b)

cop = ∑
i=(r,h)
∈R×H

∑
j=(s,p)
∈J

Wr, j ·πs

 ∑
(n,g )
∈NG

Vn,g ·prodn,g ,i +
∑

n∈N
V loss · ln,i

 (3.6c)

∑
g |(n,g )∈NG

prodn,g ,i +
∑

n′|(n′,n)∈L
f(n′,n),i −

∑
n′|(n,n′)∈L

f(n,n′),i + ln,i

= Dn,i ∀n ∈N , i ∈R×H (3.6d)

fe,i ≥−Limp
e ∀e ∈L, i ∈R×H (3.6e)

fe,i ≤ Lexp
e ∀e ∈L, i ∈R×H (3.6f)

prodn,g ,i ≤ An,g ,i · in,g ·Un,g ∀(n, g ) ∈NG, i ∈R×H (3.6g)

prodn,g ,(r,h) −prodn,g ,(r,h−1) ≤ Rn,g ·Un,g · in,g ∀(n, g ) ∈NG,r ∈R,h ∈H\{1} (3.6h)

prodn,g ,(r,h) −prodn,g ,(r,h−1) ≥−Rn,g ·Un,g · in,g ∀(n, g ) ∈NG,r ∈R,h ∈H\{1} (3.6i)

The main change is in the operational costs. We do not separately calculate this per scenario, but have one total
operational cost. This is a design choice so that the same model can be used for both per-scenario and cross-scenario
approaches. The number Wr, j symbolizes the weight contributed by period j to representative R. This is multiplied
by the probability of the scenario the period appears in. The total weight of each representative, where the scenario
probability is taken into account, can be denoted as Wr = ∑

j=(s,p)∈J Wr, j ·πs . These weights are calculated based
on how many original periods are represented by each r , incorporating both frequency and scenario probability. We
explain the chosen approach for the weights in more detail in Section 3.3.4.

Per-scenario

An example of the per-scenario use of representative periods is provided by Micheli et al. [20] in the context of a gen-
eration and transmission expansion planning model. In this approach, representative periods are selected separately
for each scenario. This involves applying the steps of normalization, selection, and calculation of weights to each
scenario individually. This results in a separate representative set Rs for each scenario, representing all periods in
that scenario, Js .
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To calculate the weights in this case, we multiply the clustering weights by the scenario probability πs for each r ∈Rs .
One advantage of this approach is that the clustering task is performed on smaller, more homogeneous sets. However,
this separation also means that similar patterns across different scenarios may be ignored. As a result, the union of all
representatives, R= ⋃

s∈SRs , may include redundant or highly similar periods that increase the model size without
adding new information.

Cross-scenario

To better capture the overall structure of the full scenario space, we propose the cross-scenario method. Here, rep-
resentative periods are selected from the combined set of periods across all scenarios, resulting in a single, scenario-
independent set R. This approach allows us to identify a smaller set of representative periods that generalizes well
across different scenarios, reducing redundancy and potentially improving model compactness.

The key idea is to perform clustering on the full joint set J = S ×P . The selection process thus considers the joint
variability in demand and availability across all scenarios. This enables the model to reuse the same representative
periods in multiple scenarios, rather than duplicating similar patterns. In this approach, the weights Wr reflect how
many original periods across all scenarios are best represented by each r , taking into account the probability of those
periods occurring based on the scenario probability. Although the calculation of weights becomes slightly more in-
volved, it ensures that the reduced model still reflects the original probability structure. We further elaborate on this
in Section 3.3.4.

An advantage of the cross-scenario method is its ability to minimize redundancy by recognizing similarities between
periods in different scenarios. This can lead to a more efficient representation of uncertainty, especially when com-
mon temporal patterns exist across the scenario set. However, it also requires more computational effort during the
selection phase.

3.3. Selecting representative periods

As we discussed in Chapter 2, there is a wide variety of approaches for selecting representative periods for the reduced
model formulation. These approaches range from clustering-based methods to the earlier-mentioned hull methods
or handpicking days with certain characteristics. Within these categories, further variations arise from choices in nor-
malization, distance metrics, and weight strategies. The main aim of this thesis is to compare two classical clustering
methods, k-means and k-medoids, with newer selection methods based on greedy algorithms that construct a con-
vex or bounded conical hull, as implemented in the TulipaClustering.jl framework [23]. To ensure a fair comparison,
we apply the same normalization and distance metrics across all methods. These steps are explained first, followed
by a description of the selection methods. We conclude the section by discussing two approaches for the weights.

3.3.1. Normalization

Normalization is necessary for any selection method that uses a distance metric, as the availability of generation
technologies ranges from 0 to 1, while demand values are in megawatts (MW) and can range up to high values, de-
pending on the location and spatial scale. Without normalization, the scale difference would cause demand values to
dominate the distance calculation.

As discussed in Chapter 2, two common normalization methods are z-normalization and normalization by the max-
imum value. We opt for the latter, as it requires less computation and is easier to interpret. Before clustering, we
divide each demand value by a maximum value. However, demand levels vary significantly between locations. In our
European case study, smaller countries may consume up to 50 times less electricity than larger ones. If we normalize
by a global maximum across all locations, differences in smaller countries may have too little influence on the cluster-
ing process. While one could argue that larger countries are also responsible for more cross-border exports and thus
deserve more weight, this risks neglecting important patterns at smaller locations. No country is entirely dependent
on its neighbors. Therefore, to ensure that relative differences are treated equally across locations, we normalize by
the maximum demand per location rather than using a global maximum. A similar approach, but then focused on
the maximum demand per time step, was mentioned by Teichgraeber and Brandt [33].

In addition to scaling the demand, we also adapt the structure of the vectors used for clustering. For GEP models, we
found that the ratio of availability to demand is more informative than the absolute availability itself. This is because
increased availability alongside proportionally increased demand often results in similar system requirements. We
are going into more detail on that later in Chapter 6. As such, we use the normalized demand in combination with
the availability-to-demand ratio as the basis for clustering.
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The modified clustering vectors then contain the following values per location:

a j ,n =



An,g1,( j ,h1)

/
Dn,( j ,h1)

An,g1,( j ,h2)

/
Dn,( j ,h2)

...

An,gG ,( j ,hH )

/
Dn,( j ,hH )

 and d j ,n =



Dn,(s,p,h1)

/
Dmax

n

Dn,(s,p,h2)

/
Dmax

n

...

Dn,(s,p,hH )

/
Dmax

n

 . (3.7)

Here Dmax
n denotes the maximum demand at each location over the full dataset (typically taken over all scenarios and

periods), used to normalize the demand. The availability is normalized by the demand at that same location and time
step. We assume that if a location has a demand at some point in time higher than zero, it will have a demand higher
than 0 at all times. If there are locations that only produce energy and do not have a demand, no normalization by
demand is applied.

3.3.2. Distance metrics

Normalization is a necessary preprocessing step when we intend to compute distances between periods. It plays
a key role in clustering-based approaches as well as in the hull-based algorithms we explore in this thesis. After
normalization, the next step is to define how similarity or dissimilarity between periods is measured, which directly
affects the outcome of the process.

There are several possible distance metrics. The most common one is the squared euclidean distance, which is widely
used in clustering algorithms such as k-means and k-medoids. Alternative metrics like the manhattan distance have
also been studied and, according to Mallapragada et al. [19], tend to yield comparable results in many energy system
applications. For simplicity and consistency with prior work, we primarily use the squared euclidean distance in this
thesis.

However, the TulipaClustering.jl package also includes an option for cosine distance, particularly for use with the
greedy convex hull method [23]. While cosine distance is less commonly applied in energy system clustering, it can
be especially useful if we want to find vectors that have a large angle between them, and are thus not proportional to
each other. Due to its novelty in this context, we include cosine distance in our experiments to assess its performance.

Squared euclidean distance

The squared euclidean distance between two vectors qi and q j is defined as:

dSE(i , j ) =
D∑

k=1

(
qi ,k −q j ,k

)2 , (3.8)

where D is the dimensionality of the clustering vectors. This metric penalizes large differences heavily in selection
methods, thus tends to favor centroids that minimize the total variance within clusters. In other fields, it is shown
that this metric is not always the most suitable option in higher dimensions and that the manhattan distance would
be preferable [1]. However, it is still the most common choice for k-means and k-medoids.

Cosine distance

The cosine distance between two vectors measures the angle between them, ignoring differences in magnitude. It is
defined as:

dcos(i , j ) = 1− qi ·q j

|qi |, |q j |
. (3.9)

Cosine distance ranges from 0 (vectors point in the same direction) to 2 (opposite direction). It emphasizes similarity
in shape or profile rather than absolute scale, which could result in the selection of representative periods that are
more distinct in those attributes rather than having similar patterns. This could lead to more variability in the set of
representatives.
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3.3.3. Selection methods

Now that the normalization and distance metric are defined, we turn to the selection of representative periods. Se-
lection methods either choose periods directly from the original dataset (as in k-medoids or greedy hull methods),
or generate artificial periods as centroids (as in k-means). In this thesis, we compare four methods: k-means, k-
medoids, and two greedy algorithms that construct a bounded conical hull and a convex hull.

In what follows, we describe each method in more detail, including how representatives are selected in the algorithmic
implementations that we use for each of the methods.

Greedy convex hull

We begin with the convex hull approach, which is not yet commonly used for selecting representative periods but was
introduced in the TulipaClustering.jl package [23]. The convex hull of a set of points S ⊆Rn is the minimal convex set
containing S. This can formally be written as:

conv(S) =
{

x ∈Rn

∣∣∣∣∣ x =
k∑

i=1
λi si , si ∈ S, λi ≥ 0,

k∑
i=1

λi = 1, k ∈N
}

. (3.10)

The objective is to identify a subset of representative periods, R ⊆P , such that the set of representatives R are part
of the corner points of the convex hull of the period set. This means that conv(P) = conv(R). All periods can be
expressed as the convex combination of the representatives, guaranteeing that there is a feasible solution for all pe-
riods in the initial dataset when those representatives are used in the reduced model formulation. The theoretical
justification for this feasibility is provided in Chapter 4.

However, computing the full convex hull in high-dimensional spaces is computationally expensive. The worst-case

complexity of established algorithms, such as the method by Clarkson [4], is O
(
N⌊ n

2 ⌋
)
, where N is the number of input

points and n the dimensionality. While algorithms such as Quickhull [2] often perform better in practice, they share
the same exponential upper bound. Moreover, it could be possible that for a predefined number of representatives,
we are sure that they will not form a convex hull over the initial set since the number of representatives is lower than
the number of corner points of the hull.

To address this, Neustroev et al. [23] use a greedy approximation algorithm that incrementally builds a set of ex-
treme points. Starting with an empty representative set, the algorithm first computes the mean of all periods. It then
iteratively selects the point from the input set that is furthest from the convex hull of the current representatives,
measured by the chosen distance metric (e.g., squared euclidean or cosine distance). This process continues until a
desired number of representatives is reached.

Greedy bounded conical hull

The bounded conical hull method is closely related to the convex hull but covers a larger area. The idea is to find a
conical hull, which is the minimal set of conical combinations of a set S. A conical combination is different from a
convex combination in the sense that the weights do not have to sum up to exactly 1. For the bounded conical hull
used, the weights are constrained to have a maximum sum of 1. This can formally be written as:

conical(S) =
{

x ∈Rn

∣∣∣∣∣ x =
k∑

i=1
λi si , si ∈ S, λi ≥ 0,

k∑
i=1

λi ≤ 1, k ∈N
}

. (3.11)

As with the convex hull method, a similar greedy algorithm is used to try to find representatives that form a bounded
conical hull. To reform the algorithm from finding a convex hull to finding a bounded conical hull, the zero vector
is added to the set of representatives. Therefore, this approach can only work when the distance to zero can be
computed, which is not the case for the cosine distance metric. This means that this method will only be evaluated
in combination with the squared euclidean distance.

k-means

We follow with an explanation of k-means as previously given by Li et al. [18] in a similar context of representatives.
With k-means, the goal is to find clusters such that the summed distance of each cluster member to the cluster mean
(centroid) is minimized. Given a set S, the goal is to find a partition into k clusters, so that S =∪k

i=1Si . The k-means
clustering algorithm then solves the following optimization problem to find the optimal partition S∗:
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S∗ = argmin
S

k∑
i=1

∑
s∈Si

d(s,µi ), (3.12)

where µi is the mean of the points in cluster Si . Calculating this exactly is generally not feasible, so in practice it-
erative algorithms are used. In our case, we use the implementation provided in the Clustering.jl package in Julia.
It starts with a random initialization of cluster centers, then partitions the input data based on these centers. The
next iteration of cluster centers is calculated by taking the mean value of the points assigned to each cluster. Since
random initialization is used, the outcome varies with each run. In this thesis, we always use multiple random seeds
to account for this variability, and present the median and quartile values.

The k-means method is widely used due to its simplicity and efficiency, especially when using the squared euclidean
distance. However, the resulting centroids may not correspond to actual periods from the dataset, and might have
values that are overly averaged out. Li et al. [18] shows that if k-means is used, the reduced model solution will provide
a lower bound. This can be an advantage when bounds are desired, but a consistent underestimation can also be seen
as a drawback.

k-medoids

The k-medoids algorithm is similar to k-means but selects actual data points (medoids) as the cluster centers. The
process is nearly the same, but each time that k-means computes the mean of a cluster, k-medoids finds the sample
closest to this mean from the points in that cluster. A similar random initialization is done based on the input data,
so also for k-medoids, we propose always using multiple seeds in our experiments.

3.3.4. Weight calculation

When the representative periods are found, we can calculate their weights to have an accurate representation in the
objective function. The common approach is that each period gets assigned to exactly one representative, resulting
in Dirac weights. We first explain this process. Afterwards, we also go more into detail in a new method of computing
weights that is proposed by Neustroev et al. [23].

Dirac weights

While various methods for weight calculation exist, the most common is to assign each period to exactly one repre-
sentative, typically the one to which it is closest. For k-means and k-medoids, this means that each representative
receives a weight corresponding to the size of the cluster for which it serves as centroid or medoid. In the case of
the greedy convex or bounded conical hull method, this assignment is less intuitive, since those approaches are not
based on clusters. However, the same weights method of assigning each period to the closest representative can still
be used.

In practice, this means that each entry of the weight matrix, Wr, j is either equal to 0 or to 1. Also, for all j there is
exactly one r such that Wr, j = 1. This weights method ensures that the annualization factor in the objective of the
reduced model remains consistent with that of the full model. While this way of assigning weights aligns naturally
with clustering-based methods like k-means and k-medoids, its interpretation is less straightforward for the hull-
based approaches. For this reason, TulipaClustering.jl also implements an alternative weighting scheme, which we
describe in the next part.

Blended representative periods

The core idea behind the hull methods is to identify representatives that form the corner points of the convex or
bounded conical hull of the original set of periods. If this is achieved, each original period can be expressed as a
convex or conical combination of the representatives, as defined in (3.10) and (3.11). The concept of blended weights
builds on this observation.

If a period lies within the convex or bounded conical hull formed by the selected representatives, then we can com-
pute the associated weights, denoted as the λ coefficients in the earlier definitions of the hulls. These express the
period as a convex or conical combination of the representatives. If a period does not lie within the hull, we approxi-
mate it by projecting it onto the hull and use the associated weights from the projection. This approach assigns each
period to multiple representatives, with different weights, rather than to just one. These weights are then summed
across all periods to determine the final weight for each representative, resulting in what is called the blended weights
method in the TulipaClustering.jl [23]. This approach is applicable to both convex and conical combinations.
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In the implementation, the implementation begins with a projection onto the unit simplex, using the algorithm pro-
posed by Condat [5], which finds the point within the unit simplex closest to the original period vector. This step
ensures that the projected weights are non-negative and sum to one. Subsequently, a subgradient descent algorithm
is used to iteratively minimize the error between the reconstructed period (using the weighted combination of rep-
resentatives) and the original period. Again, for a bounded conical combination a similar approach is used, but
including the zero vector and removing its weight later on.

In the weight matrix, the entries are no longer restricted to be either 0 or 1, but can take any value in between. For the
convex approach, the total weight distributed over all representatives for one period j should sum exactly to 1. For
conical combinations, individual periods may contribute total weights of less than one (since we are using a bounded
conical hull). In such cases, a rescaling step is required to ensure that the total sum of all entries of the weight matrix
matches the total number of original periods in the full model.

3.4. Evaluation techniques

Finally, we also discuss the evaluation techniques used in this thesis. While some elements are theoretical, the focus
lies also on conducting experiments to highlight the advantages and disadvantages of each method. To evaluate these
methods properly, we must first clarify the purpose of the reduction.

The reduced model yields optimal decision variables for a smaller, representative set of periods. While the opera-
tional decision variables are not always directly meaningful, since the original periods are not exactly the same as the
representatives, the investment decisions are immediately relevant, as they are carried over into the full model. Some
papers evaluate the quality of the reduced model by comparing its objective value to that of the full model, using the
reduced model’s investment decisions as input [18]. Others use the installed capacity as a performance metric [26].
In this thesis, we follow a third approach: we fix the investment decisions obtained from the reduced model, and
then run the full model using these fixed decisions, similar to the method in Li et al. [18]. We compare this result to a
solution obtained without any reduction at all.

There are several ways to compare these solutions. One metric we use is to assess feasibility: by counting the number
of time steps with loss of load under the full model when using reduced-model investment decisions. This gives an
impression of the robustness of the model. We also evaluate the total cost, and from that compute the relative regret,
defined as the percentage increase in the objective function due to using a reduced model. This gives an insight in
how close to the optimal solution the reduction is.

In the context of stochastic programming, it is especially important to define what we consider the original model.
As mentioned earlier, one could compare the stochastic model to a deterministic model using average input values,
which gives rise to the value of the stochastic solution (VSS) [29], a common argument for using stochastic optimiza-
tion. However, since the benefit of stochastic programming is well established in prior work, our focus is on com-
paring reduction methods within the stochastic framework. The challenge, especially in the large-scale case study
presented at the end of this thesis, is that solving the full stochastic model is computationally infeasible. In such
cases, we compare the reduced models against one another based on their objective values, but we cannot bench-
mark them against the full optimal solution.

Finally, since we are working with scenarios, it is important to decide on the evaluation perspective: do we want a
method that performs best on average, or one that performs best in the worst-case scenario. Different methods may
excel under different criteria, but we assess the mean value in this thesis. Additionally, evaluating performance on
the same scenarios used for representative selection can introduce bias. It is therefore preferable to test on scenarios
unseen by the model, a practice known as out-of-sample evaluation [29].
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Feasibility in the hull

The ultimate goal of solving the reduced model is to construct a feasible solution for the original complete model,
using the optimal solution of the reduced model. In this chapter, we prove that whenever an exact version of the
bounded conical hull or convex hull method is applied to identify representative periods, we can always construct
such a feasible solution for the initial model from the reduced model. We focus on the stochastic programming for-
mulation for generation expansion planning (GEP), but the results can be extended to more general formulations.
Specifically for GEP, we demonstrate that if the optimal solution of the reduced model has no loss of load, then the
provided solution for the original model will also satisfy demand at all times. We distinguish between GEP mod-
els without (Section 4.1) and with (Section 4.2) inter-period ramping constraints. For the latter, we need additional
constraints in the reduced model to ensure that we can construct a feasible solution for the initial model. Using the
bounded conical or convex hull method combined with the previously mentioned blended weights, we can also prove
that the optimal solution of the reduced model provides an upper bound on the costs for the original model. We do
so in Section 4.3.

For the proofs, we rely on the critical assumption that representative periods are identified using the bounded conical
hull or convex hull method. Consequently, these results do not apply to other clustering methods, such as k-means
or k-medoids. Moreover, we assume that the hull perfectly represents the periods, which may not always hold for
approximate algorithms. This highlights not only the advantages of our method over existing clustering techniques,
but also the need to further refine approaches to approximate the bounded conical hull or convex hull.

4.1. Feasible solution for generation expansion planning without inter-period
constraints

In this section, we present the theorem on feasibility for the GEP model without inter-period ramping constraints.
We start by clarifying the definition and usage of representative periods, as previously discussed in Section 3.2. We
explain when representative periods perfectly represent the original set of periods in Subsection 4.1.1, and then we
introduce the theorem without inter-period constraints in Subsection 4.1.2.

4.1.1. Mathematical notation

As defined earlier in (3.2), we call C the set of vectors for which we want to find representatives. In the case of the
GEP model, each period j has an associated vector q j , containing the values for availability and demand during that
period, as given in (3.3) and (3.4). Our goal is to find a set of representative periods R such that their vectors perfectly
represent the corresponding values in C. Since this definition is central to the proofs in this chapter, we formalize it
as follows:

Definition 4.1. We say that the set R represents the set J perfectly if every element q j in C can be expressed as the
sum of weighted elements of the set of representative values indexed by R. We denote this set of representative values
by CR:

CR = {
qr | q ∈RG×H+N×H ,r ∈R}

. (4.1)
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Thus, R represents the set J perfectly if for all j ∈J there exist scalars λr, j ∈R such that the following holds:

q j =
∑

r∈R
λr, j ·qr . (4.2)

This completes the definition.

The representatives are indexed by the set R, which can either be a subset of J when actual data points are selected
as representatives, or a set of new points when artificial representatives are created. This distinction does not affect
the proof, however, adding artificial representatives can affect the costs and thus the optimality by making the model
too conservative. Whether it might be beneficial to add some artificial representatives will be explained later on when
discussing them in 6.

Next, we present four conditions for the weights λr, j . Conditions 1 and 2 define a bounded conical hull and are
essential for all theorems in this chapter. However, if the representatives form a convex hull, as described in Condition
3, we may be able to obtain more precise results. The appearance of Condition 4 is highly unlikely in practice, but it
is included to provide additional theoretical insight.

Condition 1. The weights are non-negative, i.e., λr, j ∈R≥0 for all r ∈R and j ∈J . This implies that C ⊆ coni
(
CR

)
, the

conical hull of CR.

Condition 2. The sum of the weights for each period j is bounded above by 1, i.e.,
∑

r∈Rλr, j ≤ 1 for all j ∈ J .

Condition 3. The weights sum to 1, i.e.,
∑

r∈Rλr, j = 1 for all j ∈ J . Together with Condition 1, this implies that C ⊆
conv

(
CR

)
, the convex hull of CR.

Condition 4. Every period is perfectly represented by exactly one of the representative periods, i.e., λr, j ∈ {0,1} for all
r ∈R and j ∈J and

∑
r∈Rλr, j = 1 for all j ∈J . This implies that C = CR.

Lastly, we introduce a more compact notation for the maximum sum of the weights, as it will be used in the constraints
of the reduced model:

Λ= max
j∈J

∑
r∈R

λr, j (4.3)

Under Condition 3 or 4, this is equal to 1. In case of Condition 2, it can be smaller than 1, provided that the represen-
tatives selected are artificial representatives. However, when actual data points are chosen as representatives, those
points can be exactly represented by one of their representatives, resulting again in Λ= 1.

Remark 1. Before presenting the theorem, we note that in practice, clustering is performed not on the original vectors
given in (3.3) and (3.4), but on the normalized vectors defined in (3.7). However, when the weights satisfy (4.2) for the
normalized vectors, they also satisfy it for the denormalized vectors for both the representative periods and the original
periods.

4.1.2. Constructing a feasible solution

With the conditions stated and all notation defined, we now focus on the first theorem, in which we construct a
feasible solution to the original model using the optimal solution of the reduced model. In this theorem, we ignore
inter-period constraints. Since representative periods are not actual consecutive time steps, modeling inter-period
constraints becomes challenging. As a result, a common assumption in the literature is to omit these constraints
entirely [18, 34]. However, especially in settings that include long-term storage, including them could be beneficial
for model outcomes [35]. For this reason, we later examine formulations that do include inter-period constraints.

In the cross-scenario method, we identify a set of representative periods R that represent the full set of initial periods
across all scenarios, i.e., J = S ×P . In the per-scenario method, we instead identify a separate set of representative
periods Rs for each scenario, corresponding to Js = (s, p) | p ∈P . The complete set of representative periods is then
R=⋃

s Rs , and J =⋃
s Js . Based on these sets, we define the reduced model as follows:

min c inv + AF · cop (4.4a)
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s.t. c inv = ∑
(n,g )∈NG

In,g ·Un,g · in,g (4.4b)

cop = ∑
i=(r,h)
∈R×H

Wr

 ∑
(n,g )
∈NG

Vn,g ·prodn,g ,i +
∑

n∈N
V loss · ln,i

 (4.4c)

∑
g |(n,g )∈NG

prodn,g ,i +
∑

n′|(n′,n)∈L
f(n′,n),i −

∑
n′|(n,n′)∈L

f(n,n′),i + ln,i

= Dn,i ∀n ∈N , i ∈R×H (4.4d)

fe,i ≥−Limp
e · 1

Λ
∀e ∈L, i ∈R×H (4.4e)

fe,i ≤ Lexp
e · 1

Λ
∀e ∈L, i ∈R×H (4.4f)

prodn,g ,i ≤ An,g ,i · in,g ·Un,g ∀(n, g ) ∈NG, i ∈R×H (4.4g)

prodn,g ,(r,h) −prodn,g ,(r,h−1) ≤ Rn,g ·Un,g · in,g · 1

Λ
∀(n, g ) ∈NG,r ∈R,h ∈H\{1} (4.4h)

prodn,g ,(r,h) −prodn,g ,(r,h−1) ≥−Rn,g ·Un,g · in,g · 1

Λ
∀(n, g ) ∈NG,r ∈R,h ∈H\{1} (4.4i)

We chose to use the summed weights Wr in the objective function, which was earlier defined in Section 3.2 and is a
product of the weight matrix and the scenario probabilities.

As mentioned earlier, feasibility in an energy model unofficially means that the demand equation (4.4d) can be met
without loss of load. This is why loss of load is heavily penalized in the model’s operational costs. However, because of
this internal penalization, GEP can always obtain a feasible solution by adding sufficient loss of load. In the following
theorem, we thus analyze the amount of the loss of load as well: Assuming that the optimal solution to the reduced
model has no loss of load, the constructed solution for the original model will also contain no loss of load. If this is
not possible, the theorem ensures that a solution exists in which the loss of load costs are at least bounded.

Theorem 4.1. Consider an instance of the GEP model as described in Section 3.1, but without inter-period ramping
constraints. We find representative periods R that perfectly represent the original period set J . Solve the reduced model
with this representative set to optimality, as formulated in (4.4). An optimal solution to the reduced model always exists.
Denote the optimal values of the decision variables as i⋆n,g , prod⋆n,g ,(r,h), f ⋆e,(r,h), and l⋆n,(r,h).

If the weights λr, j in (4.2) satisfy Condition 1 and 2 for every j ∈J , then the variables prodn,g ,( j ,h), fe,( j ,h), and ln,( j ,h),
as defined in (4.5) through (4.7), together with the investment decisions i⋆n,g , will form a feasible solution to the original
model:

prodn,g ,( j ,h) =
∑

r∈R
λr, j ·prod⋆n,g ,(r,h) ∀(n, g ) ∈NG,h ∈H, j ∈J , (4.5)

fe,( j ,h) =
∑

r∈R
λr, j · f ⋆e,(r,h) ∀e ∈L,h ∈H, j ∈J , (4.6)

ln,( j ,h) =
∑

r∈R
λr, j · l⋆n,(r,h) ∀n ∈N ,h ∈H, j ∈J . (4.7)

Moreover, if there is no loss of load, e.g. if l⋆n,(r,h) = 0 for all n ∈N ,h ∈H, j ∈J , then the proposed solution will also not
contain any loss of load.

If the optimal solution of the reduced model does contain loss of load, then in the proposed solution, the loss of load at
each hour and location is bounded above by the maximum loss of load observed in the reduced model for that hour and
location.

Proof. We aim to show that all constraints of the original model are satisfied by the proposed solution. The con-
straints are given in (3.1d) through (3.1j), and we address each set of constraints individually. Afterwards, we prove
the statements about the loss of load.
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Balance constraint (3.1d) Let j ∈J , n ∈N , and h ∈H. We first rewrite the balance constraint so that we only have
the production on the left-hand side of the equality:

∑
g |(n,g )∈NG

prodn,g ,( j ,h) = Dn,( j ,h) −
∑

n′|(n′,n)∈N
f(n′,n),( j ,h) +

∑
n′|(n,n′)∈L

f(n,n′),( j ,h) − ln,( j ,h). (4.8)

We need to show that the balance constraint of the original model will hold under the proposed solution ∀n ∈N , j ∈
J ,h ∈H. Using the definitions in (4.5), we can rewrite the production term on the left-hand side of (4.8). Interchang-
ing the sums and using that the balance constraint is satisfied for the representative periods in the reduced model,
leads to the following set of equations:

∑
g |(n,g )∈NG

prodn,g ,( j ,h) =
∑

g |(n,g )∈NG

( ∑
r∈R

λr, j ·prod⋆n,g ,(r,h)

)

= ∑
r∈R

λr, j ·
( ∑

g |(n,g )∈NG
prod⋆n,g ,(r,h)

)

= ∑
r∈R

λr, j ·
(

Dn,(r,h) −
∑

n′|(n′,n)∈N
f ⋆(n′,n),(r,h) +

∑
n′|(n,n′)∈L

f ⋆(n,n′),(r,h) − l⋆n,(r,h)

)
.

(4.9)

We look at each component in (4.9) individually whether we can rewrite it. First of all the demand term,
∑

r∈Rλr, j ·
Dn,(r,h), equals Dn,( j ,h) because the weights λr, j satisfy (4.2). Then for the flow and loss of load parts, we use the
definitions in (4.6) and (4.7) to make a similar replacement. For the first flow component this looks as follows:∑

r∈R
λr, j

∑
n′|(n′,n)∈N

f ⋆(n′,n),(r,h) =
∑

n′|(n′,n)∈N

∑
r∈R

λr, j f ⋆(n′,n),(r,h)

= ∑
n′|(n′,n)∈N

f(n′,n),( j ,h).
(4.10)

By repeating this process for the other terms in (4.9), we get the following equation, which is equal to the right-hand
side of the balance equation in (4.8):

Dn,( j ,h) −
∑

n′|(n′,n)∈N
f(n′,n),( j ,h) +

∑
n′|(n,n′)∈L

f(n,n′),( j ,h) − ln,( j ,h). (4.11)

We can thus conclude that the constraint is met by the solution.

Transmission constraints (3.1e) - (3.1f) We will show that the import capacity constraint in (3.1e) is met for the
original model using the proposed solution. Let e ∈ L, j ∈ J , and h ∈ H. The flow f ⋆e,(r,h) satisfies (3.1e) for each
representative. Using the definition in (4.6) and the non-negativity of the weights in Condition 1, we can rewrite the
flow:

fe,( j ,h) =
∑

r∈R
λr, j · f ⋆e,(r,h)

≥ ∑
r∈R

λr, j · (−Limp
e · 1

Λ
)

≥−Limp
e

(4.12)

The last inequality follows from Condition 2 and the definition ofΛ as given in (4.3). We can conclude that the import
constraint is satisfied. The argument for the export capacity constraint in (3.1f) is similar.

Capacity constraint (3.1g) Let (n, g ) ∈NG, j ∈ J and h ∈H. We follow a similar argument as above to rewrite the
left-hand side of the original constraint. We can then get an inequality, using the definition in (4.5) and Condition 1.
The last equality in the equations below is derived from λr, j · An,g ,(r,h) = An,g ,( j ,h), by the definition of the weights in
(4.2).
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prodn,g ,( j ,h) =
∑

r∈R
λr, j ·prod⋆n,g ,(r,h)

≤ ∑
r∈R

λr, j · An,g ,(r,h) · i⋆n,g ·Un,g

= i⋆n,g ·Un,g · An,g ,( j ,h).

(4.13)

We can conclude that the capacity constraint holds for the proposed solution for the original model.

Ramping constraint (3.1h) - (3.1i) Lastly, we need to check the ramping constraints. In this model, we are only
considering intra-period ramping constraints. Below is shown how the ramping up constraint in (3.1h) is satisfied in
the original model under the proposed solution. The argument for the ramping-down constraint follows similarly.
Let j ∈J , h ∈H\{1}, and (n, g ) ∈NG. We follow a similar approach as before with the import capacity constraint:

prodn,g ,( j ,h) −prodn,g ,( j ,h−1) =
∑

r∈R
λr, j ·prod⋆n,g ,(r,h) −

∑
r∈R

λr, j ·prod⋆n,g ,(r,h−1)

= ∑
r∈R

λr, j ·
(
prod⋆n,g ,(r,h) −prod⋆n,g ,(r,h−1)

)
≤ ∑

r∈R
λr, j ·

(
Rn,g ·Un,g · i⋆n,g ·

1

Λ

)
≤ Rn,g ·Un,g · i⋆n,g .

(4.14)

We can conclude that the intra-period ramping-up constraint is met, and with a similar argument we can show the
same for the ramping-down constraint.

By verifying the balance, transmission, capacity and ramping constraints, we have demonstrated that the proposed
solution satisfies all constraints for the full input set indexed by J , under the assumption that the representative set
CR satisfies Condition 1 and Condition 2.

Loss of load To show that if there is no loss of load in the reduced model solution, then the proposed solution will
also be free of loss of load, we use the defined values in (4.7). If the reduced model has no loss of load, this sum will
always be zero, meaning that the proposed solution is indeed free of loss of load.

If there is loss of load in the reduced model, then for each location and hour, define the maximum loss of load in the
reduced model as follows:

l max
n,h = max

r∈R
l⋆n,(r,h) (4.15)

We then bound the loss of load in the original model at location n and hour h, for each j ∈J :

ln,( j ,h) =
∑

r∈R
λr, j · l⋆n,(r,h) (4.16)

≤ ∑
r∈R

λr, j · l max
n,h (4.17)

≤ l max
n,h (4.18)

The last step follows from the non-negativity of the weights and Condition 2, which ensures that the weighted sum
does not exceed the maximum value. We have thus shown that the loss of load in the proposed solution is bounded at
each time step and hour by the maximum loss of load in the reduced model for that location and hour. This completes
the proof of the theorem.

A nice property of the proof is that it applies to any set J for which R is a perfectly representing set satisfying Con-
dition 1 and 2. So for all periods with arbitrary values in the bounded conical hull of CR a feasible solution can be
found with this theorem.

Also note that the proof does not rely on Condition 3. Therefore, using either the bounded conical hull or a convex
hull to represent the values does not affect the existence of the proposed solution in the theorem. However, when
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Condition 3 holds, the final step for the ramping and transmission constraints can be reformulated as an equality.
This might have beneficial effects on optimality, and therefore we will continue to experiment with both the bounded
conical hull and convex hull in later case studies.

Since this thesis focuses on Generation Expansion Planning (GEP) in particular, the theorem and proof were pre-
sented in the context of GEP. However, the results are extendable to more general formulations. To support this, we
provide a version of the proof in a general setting in Appendix A, and encourage readers to apply the approach more
broadly.

4.2. Including inter-period ramping constraints

In the previous section, we assumed that inter-period constraints could be ignored in the initial model. This simplifi-
cation is common in the literature and will also be applied in subsequent chapters of this thesis. However, neglecting
these constraints can lead to an unrealistic system, especially for models involving long-term storage or technologies
with limited flexibility. To address this, we now present two formulations that incorporate a specific type of inter-
period constraint: ramping constraints. These are intended as initial steps toward more comprehensive future work
in this area.

In the first formulation of the reduced model, we include all inter-period ramping constraints from the original model
directly. The feasibility of the resulting solution now depends on preserving these constraints in the reduced formu-
lation. To achieve this without introducing additional decision variables, we reformulate the original ramping con-
straints (3.1j) and (3.1k) using the representative periods. Since the original production variables in the theorem’s
solution are defined as weighted sums of production values from the reduced model, we substitute prodn,g ,( j ,h) in the
original ramping with their equivalent expressions in (4.5). This leads to the following two constraints, which exactly
replicate the original inter-period ramping behavior:

∑
r∈R

λr,(s,p−1) ·prodn,g ,(r,H) −
∑

r∈R
λr,(s,p) ·prodn,g ,(r,1) ≤ Rn,g ·Un,g · in,g ∀(n, g ) ∈NG, s ∈S , p ∈P\{1}, (4.19)∑

r∈R
λr,(s,p−1) ·prodn,g ,(r,H) −

∑
r∈R

λr,(s,p) ·prodn,g ,(r,1) ≥−Rn,g ·Un,g · in,g ∀(n, g ) ∈NG, s ∈S , p ∈P\{1}. (4.20)

The theorem below follows directly from these constraints.

Theorem 4.2. Consider an instance of the GEP model as described in Section 3.1. We find representative periods R
that perfectly represent the original period set J . Solve the reduced model, as formulated in (4.4) with the additional
ramping constraints in (4.20) and (4.19) to optimality. An optimal solution to the reduced model always exists. Denote
the optimal values of the decision variables as i⋆n,g , prod⋆n,g ,(r,h), f ⋆e,(r,h), and l⋆n,(r,h).

If the weights λr, j in (4.2) satisfy Conditions 1 and 2 for every j ∈J , then the variables prodn,g ,( j ,h), fe,( j ,h), and ln,( j ,h),
as defined in (4.5) through (4.7), together with the investment decisions i⋆n,g , will form a feasible solution to the original
model.

Moreover, if there is no loss of load, e.g. if l⋆n,(r,h) = 0 for all n ∈N ,h ∈H, j ∈J , then the proposed solution will also not
contain any loss of load.

If the optimal solution of the reduced model does contain loss of load, then in the proposed solution, the loss of load at
each hour and location is bounded above by the maximum loss of load observed in the reduced model for that hour and
location.

Proof. To show that all constraints of the original model are satisfied, we can reuse the proof of Theorem 4.1. This
proof already covers all constraints except the inter-period ramping constraints. We only need to show that these
inter-period ramping constraints hold for the original model under the proposed solution.

The reduced model contains the constraints defined in (4.19) and (4.20). These constraints are, in fact, identical to the
inter-period ramping constraints in the original model, given in (3.1j) and (3.1k). To show this, we need to substitute
prodn,g ,(s,p−1,H) with its equivalent expression:

∑
r∈R

λr,(s,p−1) ·prodn,g ,(r,H). (4.21)



24 4. Feasibility in the hull

Applying the same substitution to the other production variable gives the equations in the reduced model formula-
tion. Since they are already enforced in the solution of the reduced model, it follows that the inter-period ramping
constraints are automatically satisfied in the solution in the theorem. We can thus conclude that the proposed solu-
tion satisfies all constraints of the original model. This completes the proof.

This proof relies on incorporating period-specific ramping constraints into the reduced model. As a result, it cannot
be extended to an arbitrary set J where CR satisfies Conditions 1 and 2, while this was possible without inter-period
constraints. This will likely increase the costs when the actual realizations do not perfectly match the input data.
Moreover, the reduced model in this theorem will take more time to solve to optimality, as significantly more con-
straints are added.

These two downsides of the proposed formulation in the theorem motivate us to explore alternative methods for
incorporating inter-period ramping constraints. In Corollary 4.3, we introduce an approach that will need fewer
constraints. While this method will likely eliminate the optimal and near-optimal solutions of the original problem,
it can provide a useful starting point for developing more efficient strategies for handling inter-period (ramping)
constraints.

For the corollary, we add a set of constraints to the reduced model formulation to replace the constraints in (4.19) and
(4.20). The replacement constraints make sure that the first hour of each representative period is within the ramping
limits of the last hour of all representative periods. This can be summarized in the following two constraints:

prodn,g ,(r1,H) −prodn,g ,(r2,1) ≤ Rn,g ·Un,g · in,g ∀(n, g ) ∈NG,r1,r2 ∈R, (4.22)

prodn,g ,(r1,H) −prodn,g ,(r2,1) ≥−Rn,g ·Un,g · in,g ∀(n, g ) ∈NG,r1,r2 ∈R. (4.23)

We do need the stronger assumption that the weights satisfy Condition 3. With a convex hull, the maximum produc-
tion difference between representative periods provides an upper bound for the differences among the actual periods
they represent. This bound does not hold for the bounded conical hull.

Corollary 4.3. Consider an instance of the GEP model as described in Section 3.1. We find representative periods R
that perfectly represent the original period set J . Solve the reduced model, as formulated in (4.4) with the additional
ramping constraints in (4.22) and (4.23) to optimality. An optimal solution to the reduced model always exists. Denote
the optimal values of the decision variables as i⋆n,g , prod⋆n,g ,(r,h), f ⋆e,(r,h), and l⋆n,(r,h).

If the weightsλr, j in (4.2) satisfy Conditions 1, 2 and 3 for every j ∈J , then the variables prodn,g ,( j ,h), fe,( j ,h), and ln,( j ,h),
as defined in (4.5) through (4.7), together with the investment decisions i⋆n,g , will form a feasible solution to the original
model.

Moreover, if there is no loss of load, e.g. if l⋆n,(r,h) = 0 for all n ∈N ,h ∈H, j ∈J , then the proposed solution will also not
contain any loss of load.

If the optimal solution of the reduced model does contain loss of load, then in the proposed solution, the loss of load at
each hour and location is bounded above by the maximum loss of load observed in the reduced model for that hour and
location.

Proof. Since this corollary replaces Theorem 4.2, we only need to verify that the inter-period ramping constraints
remain satisfied under these replacements.

Let (n, g ) ∈NG. For the pair (n, g ), we define the maximum production value across all representative periods at the
end of a period, and the minimum production value across all representative periods at the beginning of a period, as
follows:

prodmax
n,g = max

r∈R
prodn,g ,(r,H), (4.24)

prodmin
n,g = min

r∈R
prodn,g ,(r,1). (4.25)

Let s ∈S and p ∈P\{1}. Define λr, j as the weights satisfying (4.2) for j = (p, s). Then, the following holds:
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∑
r∈R

λr,(p−1) ·prodn,g ,(r,H) −
∑

r∈R
λr,p ·prodn,g ,(r,H) ≤

∑
r∈R

λr,(p−1) ·prodmax
n,g − ∑

r∈R
λr,p ·prodmin

n,g

= prodmax
n,g −prodmin

n,g

≤ Rn,g ·Un,g · i⋆n,g .

(4.26)

The weights can be removed in the second step since prodmax
n,g and prodmin

n,g are constant for a fixed combination of
location and generation technology, and the weights satisfy Condition 3.

By confirming that the inter-period ramping constraints hold, we conclude that the defined solution is indeed feasi-
ble. This holds for any set C for which CR is representative.

From the proof, it can be seen why this might be too conservative. The minimum and maximum production oc-
curring at the beginning or end of a period must be within the ramping limits of each other for each location and
generation technology. In a realistic scenario, this would most likely not happen, since high demand and availability
changes resulting in such a production shift are unlikely in consecutive hours. However, we might be able to relax
these constraints if we can determine the maximum production change at a given location. We will not do so in this
thesis, but motivate future work to focus on this.

4.3. Upper bound on the objective with blended weights

While this thesis primarily focuses on making robust decisions, another key aspect of using representative period
reductions is ensuring that the objective function leads to a realistic estimate of system costs. This helps prevent
outcomes where systems have unexpectedly high operational costs. By applying the bounded conical or convex hull
method in combination with blended weights (as introduced in Section 3.3.4), we can derive an upper bound on the
true system costs.

To achieve this, we have to use blended weights instead of the more commonly used Dirac weights. Under the Dirac
approach, each original period j ∈ J was assigned to exactly one representative r ∈ R such that Wr, j = 1. With
blended weights, we instead use the coefficients λr, j for the weights. This modification allows us to prove that the
optimal value of the reduced model provides an upper bound on the true objective value.

For completeness, we also show how the total weight per representative is computed under this approach:

Wr =
∑

j=(s,p)∈J
πs ·λr, j . (4.27)

In Theorem 4.1, we showed that the investment decisions from the reduced model yield a feasible solution to the
original model. We now extend this result by demonstrating that, when using blended weights, the objective value
of that constructed solution matches the objective value of the reduced model. Since the solution is feasible for the
original model, this implies that the reduced model’s optimal value serves as an upper bound on that of the original
model.

Theorem 4.4. Consider an instance of the GEP model as described in Section 3.1, but without inter-period ramping
constraints. We find representative periods R that perfectly represent the original period set J . Solve the reduced model
to optimality, as formulated in (4.4), where the weights are defined as in (4.27). An optimal solution to the reduced
model always exists. Denote the optimal values of the decision variables as i⋆n,g , prod⋆n,g ,(r,h), f ⋆e,(r,h), and l⋆n,(r,h). Let z⋆

denote the corresponding objective value.

If the weights λr, j in (4.2) satisfy Conditions 1 and 2 for every j ∈J , then the variables prodn,g ,( j ,h), fe,( j ,h), and ln,( j ,h),
as defined in (4.5) through (4.7), together with the investment decisions i⋆n,g , will form a feasible solution to the original
model. Moreover, its objective value in the original problem is equal to z⋆.

Proof. In Theorem 4.1, we already showed that the proposed decision variables form a feasible solution to the original
model. It remains to show that, using the defined weights, the cost of this solution equals the optimal objective value
of the reduced model.
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The objective function of the original model is given in (3.1). Substituting the proposed solution into this expression
gives:

∑
(n,g )∈NG

In,g ·Un,g · i⋆n,g +
∑

j=(s,p)∈J
πs

∑
h∈H

( ∑
(n,g )∈NG

Vn,g
∑

r∈R
λr, j ·prod⋆n,g ,(r,h) +

∑
n∈N

V loss
∑

r∈R
λr, j · l⋆n,(s,r,h)

)
. (4.28)

We can reorder these sums to obtain the following:

∑
(n,g )∈NG

In,g ·Un,g · i⋆n,g +
∑

r∈R

∑
j=(s,p)∈J

πs ·λr, j
∑

h∈H

( ∑
(n,g )∈NG

Vn,g ·prod⋆n,g ,(r,h) +
∑

n∈N
V loss · l⋆n,(s,r,h)

)
. (4.29)

Using (4.27) gives:

∑
(n,g )∈NG

In,g ·Un,g · i⋆n,g +
∑

r∈R
Wr

∑
h∈H

( ∑
(n,g )∈NG

Vn,g ·prod⋆n,g ,(r,h) +
∑

n∈N
V loss · l⋆n,(s,r,h)

)
. (4.30)

This is exactly the objective function of the reduced model with blended weights. Since the decision variables are
optimal for that model, the resulting cost equals z⋆. This completes the proof.

This upper bound is particularly useful when solving the operational part of the original model under fixed invest-
ments is already computationally expensive. The result also extends to more general model formulations, as shown
in Appendix A.

4.4. Conclusion

We now have two strong theoretical motivations for using the convex hull or bounded conical hull method when
selecting representative periods. First, if such a hull is constructed and the reduced model has no loss of load in its
optimal solution, we can guarantee a feasible solution without loss of load for the original model. Second, the optimal
objective value of the reduced model when using blended weights provides an upper bound on the original model’s
costs. These results are derived under the assumption that the representative periods form a bounded conical or
convex hull. Finding an exact solution can be computationally expensive. For this reason, we use the earlier proposed
greedy algorithm in our experiments. In the next chapters, we examine the practical implications of the hull-based
methods, both in cases where a perfect representative set is found and where it is potentially harder to find one.
The theorems from this chapter provide a strong motivation for improving and optimizing hull-based methods in
practice, so that their theoretical guarantees can be translated effectively into real-world applications.
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Feasibility and optimality of the greedy hull
methods compared to traditional methods

In Chapter 4, we proved that using representatives that form a bounded conical or convex hull, under the assumption
that such a hull is found, ensures a feasible solution. Feasibility, better defined here as meeting all demand, is essential
for energy systems, and commonly used selection methods do not guarantee this same level of feasibility. However,
it is still possible that other methods, by coincidence, find a set of representative periods that also result in a feasible
solution. Moreover, alternative methods could, in some cases, lead to lower costs for the full model.

To illustrate this, consider a simplified example with only three periods in total, with a single location, and one time
step per period, all with the same demand. At this location, we can choose between investing in gas or wind on-
shore. Satisfying demand in any given period requires one fully operational unit of either technology. However, the
availability of wind onshore varies:

Period Wind Availability
1 0.0
2 0.6
3 1.0

Table 5.1: Wind availability and demand across the three periods.

We assume that the operating costs of gas are high while investment costs for both gas and wind onshore are relatively
low, making it more cost-effective to invest in two units of wind onshore rather than operating one unit of gas. In an
optimal full-model solution, the best strategy would be:

• Invest in one unit of gas, since period 1 has no wind and demand must still be met.
• Invest in two units of wind onshore, which can satisfy demand in periods 2 and 3.

Suppose now that we choose two representative periods from the three options. A convex hull is formed by the
extreme periods, meaning the representatives would be period 1 and period 3. Since period 3 requires only one
unit of wind onshore to meet demand, the model would install just one unit. However, in the full model, this would
lead to the use of gas in period 2, even though, in the optimal solution, this demand would have been met by one
additional wind onshore unit. Thus, using a convex hull results in higher costs compared to the optimal solution of
the full model.

Alternatively, k-medoids finds two clusters and chooses the periods best representing that cluster as cluster centers.
Since periods 2 and 3 are closer to each other than periods 1 and 2, it will see period 1 as one cluster and the other two
as one cluster. Suppose it then selects periods 1 and 2 as cluster centers. Since period 2 requires 0.6 wind availability,
the model would invest in two units of wind onshore and one unit of gas, matching the optimal solution of the full
model.

27
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However, k-medoids can also fail. If period 2 had a lower availability (e.g., 0.4), the k-medoids method might instead
select periods 2 and 3 as cluster centers. This would lead to an incorrect assumption in the reduced model that gas is
unnecessary. As a result, the model would invest only in wind onshore, but this would be infeasible in period 1, where
no wind is available.

This simple example highlights the importance of investigating the effect of the different methods on both the feasi-
bility and optimality of the produced solution. To examine the potential (dis)advantages of the methods, we compare
them using artificially created case studies that exhibit specific characteristics. We then evaluate the clustering meth-
ods introduced in Section 3.3: k-means, k-medoids, greedy convex hull and greedy bounded conical hull on those
case studies. In Section 5.1, the setup and motivation behind the case studies is explained in more detail. The metrics
on which we evaluate are further explained in Section 5.2. The results will be presented in Section 5.3. The goal of
this chapter is not to identify the best method, but to build insight. Since we experiment on simplified, artificial case
studies, the results may not fully reflect realistic scenarios. Still, understanding how and why certain methods behave
the way they do will help us reason through more realistic case studies later on.

5.1. Case studies

We created four case studies, each with its own characteristics, to evaluate feasibility and optimality under all four
methods. Since we use a greedy method to construct the hulls, we are not certain that a valid hull will always be
found. Therefore, we start with a case study where the convex hull is known beforehand. This way, the hull methods,
which try to find the periods forming the corner points of the hull, are both expected to succeed and should be able to
generate a feasible solution with a small number of representative periods. In the following case studies, we gradually
introduce more variation into the data points, making it more difficult for the approximate methods to find a hull.
This allows us to observe when k-means or k-medoids might provide a better approximation of the optimal solution
of the full model. Across all cases, whether a hull is found or not, we explore the trade-off between feasibility and
optimality. Below, we describe and motivate each of the case studies in more detail, while Figure 5.1 gives a visual
overview.

For all four case studies, the same three days from a provided dataset were selected as initial periods. These days were
chosen to ensure they are sufficiently distinct in terms of their demand and availability of generation technologies
profiles. They consist of 20 locations and 24 time steps per period. Since we cluster on availability for three sorts
of generation technologies and the demand values, this results in a 1920-dimensional space in which we find the
representative periods. Based on these three initial periods, we created different case studies that include the three
initial days along with 90 additional days, which are distributed in some way between or around the initial three
periods. To solely focus on the research question of this chapter, we assume no inter-period constraints and no
scenarios. For the scenarios, they can be omitted without loss of information, since we are not considering inter-
period constraints. Collecting the created data into a single scenario or distributing it across multiple equally likely
scenarios would thus not affect the feasibility, as long as we assume that the cross-scenario method would be used
for applying the representative periods.

While each period consists of 1920 dimensions, Figure 5.1 shows only two of those dimensions to give an indication
of how the created periods are distributed relative to the initial three periods. The initial samples in the graphs are
larger in size and shown in a different color, while the generated points are visualized with small dots. In two of the
case studies, we also show two values from a different location to better visualize the correlation between them. The
following descriptions explain the case studies one by one:

Convex The periods for this case study are visualized in the upper left part of Figure 5.1. We want to start with a
case study for which we know that a representative set forming a convex or bounded conical hull exists with only
three representatives. To do so, we generate 90 artificial points, with all new points being convex combinations of the
original three. We ensure that the generated points are not too close to the boundary. This way, it should be easier
for the greedy hull methods to correctly identify the hull. We achieve this by using the softmax operation to generate
convex weights from three initial values randomly drawn between -1 and 1. Figure 5.1 clearly shows that the data
points are concentrated around the center rather than the boundaries of the hull.

Centered cluster The periods for this case study are visualized in the upper right part of Figure 5.1. To add more
variation within the data points, we again assume that the original three points are outliers, but the other points are
no longer necessarily convex combinations of them. Each period is created by adding random noise to the average
values of the three initial periods. The direction and size of the noise vary per location, but remain constant across
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Figure 5.1: Distribution of Wind Onshore and SolarPV availability values in the created case studies, at the 12th hour
of each period. The large points represent the initial periods, from which the other periods were derived. Each case
study consists of 93 different periods. All black and yellow points correspond to values in the Netherlands. The
triangles in the plots at the bottom resemble one specific period, period 44. The grey points correspond to one of the
initial points and period 44, but for Germany instead of the Netherlands.

all time steps at that location. While the three initial periods can still be seen as outliers, they may not form a perfect
hull for the other periods. This can also be observed in the figure, where one of the new periods at the top right lies
outside the convex hull formed by the yellow dots.

Separate clusters with spatial correlation In the previous two case studies, the majority of the periods were cen-
tered between the initial three periods, making the initial samples act like outliers. In this and the next case study, we
explore the behavior of the methods when that is not necessarily the case. This should make it harder for the greedy
hull methods to find a hull using a small number of representative periods. In this case study, shown in the bottom
left of Figure 5.1, we consider three clusters, each centered around one of the initial periods. Each period within a
cluster is generated by adding random noise to the values of the cluster center. The size and direction of the noise
are consistent across locations and time steps within each period, but vary between availability of different types of
generation technologies or demand. In Figure 5.1, we also show values at a different location for two of these peri-
ods. This highlights the spatial correlation: for each created period, the shift occurs in a similar direction across all
locations. We chose this setup assuming that it may make it easier to identify a hull in the high-dimensional space
with the greedy algorithm. However, a larger number of representative periods will likely be needed to construct a
hull compared to the previous cases.

Separate clusters without spatial correlation The periods for the final case study are shown in the bottom right
of Figure 5.1. This case study follows a similar structure to the previous one, with three clusters around the original
periods. However, we now add different random noise at different locations. This is visualized by the triangles, which
represent the values of the same period at another location. It can be seen that these are shifted from the initial value
at that location in a different direction. In general, this may be a more realistic setting, as more sun at one location
does not necessarily imply more sun elsewhere. However, it likely increases the difficulty of identifying a hull using
the greedy methods, since there is less correlation between periods.
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There are, of course, many other possibilities for designing artificial case studies. The goal here is not to provide a
comprehensive overview, but rather to investigate the behavior of individual methods in a controlled setting, and to
gain more intuition and insight into how they perform. In particular, we are interested in identifying the conditions
under which the greedy hull methods succeed in finding a valid hull and generating good solutions, as well as the
situations in which they fail. This way, we can better understand the limitations of these approaches and identify
where improvements might be needed.

5.2. Evaluation method

In this section, we define how we evaluate the effect of the different methods on both optimality and feasibility. First,
we introduce two metrics that will be used for this purpose. After that, we describe the experimental setup. Finally,
as we need to distinguish between in-sample and out-of-sample evaluation, we explain this distinction at the end of
this section.

5.2.1. Metrics

We will define two metrics, since we want to see the effect on optimality as well as the effect on feasibility for all
methods. As seen in the introduction of the chapter, there are cases in which the hull points might provide invest-
ment decisions that result in a feasible solution, but might not be the most optimal choice in terms of costs, whereas
other methods might be able to identify those representatives important for optimality earlier on. By looking at both
optimality and feasibility individually, we can identify when this behavior occurs. Moreover, we might be able to see
at which point adding more representatives is not necessary in terms of feasibility, but can help in finding a more
optimal set of investment decisions.

First, consider the evaluation of optimality. For a given combination of distance metric, clustering method, and
number of representative days, we first solve the reduced problem. The resulting investment decisions are then fixed
and used as input parameters in a second run of the original problem, where only the second-stage variables remain
as decision variables. This provides the optimal total cost when investment decisions are obtained from the reduced
problem. Finally, this cost is compared to the optimal cost obtained by solving the full problem without any reduction.
The percentage difference represents the relative regret when using representative periods rather than solving the full
model directly. This value is always non-negative, as costs can never be lower than the optimal value.

For feasibility, we want to measure the occurrence of loss of load. Since a penalty is applied for loss of load, any
infeasibility will already be reflected in a higher relative regret. However, we want to explicitly identify when a higher
relative regret is due to an increased total loss of load. Therefore, we count the number of time steps where loss of
load occurs. This count is then compared to the number of time steps with loss of load in the optimal solution of the
original problem. The difference between these counts indicates additional time steps with loss of load, introduced
when using representative periods. This difference can be negative, as the reduced problem might select investment
decisions that result in no loss of load, while the full problem might allow some loss of load if it leads to a lower overall
objective value.

5.2.2. Experimental setup

We specifically want to find out the effect of using the three clustering methods for the selection of representative
periods. For a meaningful comparison of the metrics, all other parameters have to be kept constant. However, we
also want to analyze the effect of different distance metrics and how the results change when increasing the number
of representative periods. To account for this, we repeat each experiment for different parameter settings. Specifically,
we vary:

• Number of representative periods, ranging from 3 to 41, in steps of 2.
• Distance metric, where we compare squared euclidean distance and cosine distance.
• Clustering method, where we compare k-means, k-medoids, the greedy bounded conical hull and the greedy

convex hull approach.

The distance metrics were chosen as squared euclidean distance is mostly used, while the cosine distance showed
some initial good results when used in combination with the greedy convex hull method [23]. The cosine distance
can, however, not be used in combination with the greedy bounded conical hull method. This method requires a
distance metric for which the distance to the zero vector is defined. For the greedy bounded conical hull method, we
will thus only show results in combination with the squared euclidean distance.
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Since k-means and k-medoids involve a random initialization step, the selected representative periods might differ
across runs. To account for this variability, we generate ten different random seeds for each number of representative
periods and repeat all experiments accordingly. In the results, we present the median values along with the 25% and
75% quantiles to illustrate the variability introduced by randomness.

5.2.3. Out-of-sample evaluation

The metrics defined in Subsection 5.2.1 provide insight into the in-sample performance of the methods. However, in
practice, we want solutions that are robust to variations in the data rather than optimal for a single specific realization.
If the selection of representative periods does not generalize well, the method may overfit to a specific realization,
leading to investment decisions that might not be the most cost-effective approach for different realizations.

To assess robustness against variations in the samples, we include an out-of-sample evaluation. For this evaluation,
we create test sets with a similar underlying distribution to the artificially generated case studies. The investment
decisions obtained from the reduced problem are then used to solve the dispatch variables of the test set to optimal-
ity. The resulting objective function and number of time steps with loss of load are compared to the corresponding
values obtained when solving the full problem for the test set, resulting in the same two metrics as for the in-sample
evaluation.

5.3. Results

In this section, we present the results from the four case studies with different distributions of periods described
in Section 5.1 and evaluate them using the relative regret and increase in time steps with loss of load as metrics.
The greedy convex hull, greedy bounded conical hull, k-means and k-medoids method are compared, as outlined
previously in Section 5.2. In particular, we aim to assess the impact of each method on both feasibility and optimality,
and to identify where the approximate hull methods begin to reach their limitations.

There are two variants per experiment, as both the cosine distance and squared euclidean distance are used in finding
representative periods. Each case study will be examined individually to highlight the relevant conclusions. Overall,
we observe a strong correlation between relative regret and the additional time steps with loss of load, particularly
due to the penalization of loss of load in the objective function. For this reason, we chose not to present the latter
graphically, as the trends would be similar to those observed by looking at the relative regret. However, it is useful
to highlight the cases where no additional loss of load occurs in comparison to the optimal solution. To do so, we
include additional data in tables, with a complete overview in Appendix B.

Convex For this case study, we expect both greedy hull methods to easily identify the hull, since the three original
periods were designed to form one. This allows us to clearly observe the effect on feasibility compared to the other
methods.

In Figure 5.2, we can see the relative regret for the in-sample and out-of-sample experiments and the two different
distance metrics. All four graphs show a very similar pattern. In all cases, the greedy convex hull method has best per-
formance from the beginning on. It obtains a relative regret close to 0 with a much lower number of representative
periods used than k-means and k-medoids: with five representative periods the greedy convex hull method in com-
bination with the cosine distance leads to a relative regret under 1%. For the greedy bounded conical hull method,
we observe a similar outcome when using the squared euclidean distance. For k-means and k-medoids, the median
relative regret drops below 1% only when using 15 and 11 representative periods, respectively. This indicates that a
larger number of representative periods is required to achieve comparable performance in terms of costs. For these
two methods, an even larger number of representative periods is required to achieve consistent results. The 75th per-
centile curves for both methods still exhibit spikes beyond 21 representative periods, indicating that for at least 2 out
of 10 seeds the relative regret exceeds 25%.

As expected in this case study, the hull methods need only a small number of representatives to come close to an
optimal solution. We also analyze the infeasibility in more detail. For this, we examine Table 5.2. As the distance
metric seems to have only a small influence in Figure 5.2, we chose to only show the values corresponding to the
squared euclidean distance. Also, we show only 3 up to 11 representative periods, since we want to focus on the
behavior when using a low number of representatives. The full table with all values can be found in Appendix B.

The results in Table 5.2 confirm that a hull was indeed found with three representative periods: there are no time steps
with loss of load in either the in-sample or out-of-sample evaluation. Since the optimal solution of the full model had
seven time steps with loss of load, this even results in a negative value in the table. The absence of infeasibility does
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Figure 5.2: Relative regret (%) per number of representative periods in the in-sample and out-of-sample experiments
on the convex case study, for both the cosine distance and squared euclidean distance. The different methods for
selecting the representative periods are in different colors. The area for k-means and k-medoids represents the 25%
and 75% quantiles.

not of course not imply that the most optimal investment decisions were made. This becomes clear when increasing
the number of representative periods for the greedy convex hull method, from three to five, which results in more
time steps with loss of load but also leads to a lower relative regret. This indicates that the first three representatives
were essential for feasibility, while the additional two improved optimality. The table also shows that for k-means and
k-medoids, even with 11 representative periods, there are still some time steps with additional loss of load compared
to the optimal solutions. Moreover, these are median values and do not capture the full variation in the results, as
shown by the quantiles in Figure 5.2.

In general, we can conclude that for this case study, where both a convex and bounded conical hull are easily found,
the greedy hull methods show important advantages over the other two methods. They achieve zero infeasibility
and a low relative regret with fewer representative periods and are less affected by randomness than k-means and
k-medoids. This randomness caused sudden spikes in relative regret for certain seeds, even when a larger number of
representative periods was used. In this case study, we also observed that the results were similar across both distance
metrics and in both the in-sample and out-of-sample evaluations.

Centered cluster In the case study with one centered cluster of periods with the three initial periods as outliers, the
three initial periods are no longer forming a hull. We would thus expect that both hull methods might need more
representative periods to form a valid hull and to achieve no infeasibility.

We can see from Figure 5.3 that both greedy hull methods again outperform the other two methods, in terms of relative
regret. The greedy convex hull and greedy bounded conical hull methods already approach a solution with nearly 0%
relative regret with 5 representative periods in each of the graphs, while a similar relative regret is reached only when
using at least 13 representative periods in the other two methods. It can also be seen that there is again fluctuation
in the case of k-means and k-medoids, and that there are quite large differences in seeds. For example, with 11
representative periods, the 25% quantile shows a relative regret close to 0% for k-medoids with cosine distance, while
the 75% quantile is still above 150%. In terms of distance metrics, the behavior in the results is quite similar between
the two, not indicating that one outperforms the other.

To get a more detailed overview of infeasibility, we can look at Table 5.3. As before, only a limited number of represen-
tative periods is shown, and only for the squared euclidean distance. We observe that with just three representative
periods, the greedy bounded conical hull method already results in no additional loss of load in the original model.
For the greedy convex hull method, this is achieved with five representative periods. Also, when using one of the other
methods, the number of time steps with additional loss of load is higher than in the previous case study. This suggests
that the differences between the hull methods and the clustering algorithms are even more visible in this case. We
also see that there seems to be more infeasibility in the out-of-sample evaluation for these two, while this is not the
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Method Representatives In-sample Out-of-sample
Relative regret (%) LoL Relative regret (%) LoL

greedy bounded conical hull 3 3.8 -7 3.9 -7
5 1.8 0 2.3 0
7 0.1 0 0.1 0
9 0.1 0 0.1 0

11 0.1 0 0.1 0
greedy convex hull 3 6.2 -7 6.2 -7

5 0.2 0 0.3 0
7 0.1 0 0.1 0
9 0.1 0 0.1 0

11 0.1 0 0.1 0
k-Means 3 163.1 686 130.4 531
(Median) 5 86.6 357 67.9 268

7 44.2 190 37.4 125
9 14.7 56 14.5 49

11 1.7 10 1.7 10
k-Medoids 3 141.8 580 113.1 438
(Median) 5 86.6 361 68.4 287

7 54.7 213 45.4 165
9 12.9 47 12.9 49

11 2.1 10 2.2 10

Table 5.2: Relative regret (%) and increase in time steps with loss of load (LoL) for the in-sample and out-of-sample
experiments on the "Convex" case study. Multiple combinations of the number of representative periods and meth-
ods for finding the representative periods are shown. Only the results for the squared euclidean distance are in the
table.
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Figure 5.3: Relative regret (%) per number of representative periods in the in-sample and out-of-sample experiments
on the "Centered cluster" case study, for both the cosine distance and squared euclidean distance. The different
methods for selecting the representative periods are in different colors. The area for k-means and k-medoids repre-
sents the 25% and 75% quantiles.

case for the hull methods. The results for k-means and k-medoids are too similar to draw a meaningful distinction
between them.

We can again conclude that, for this case study, the hull methods show that only a small number of representatives is
needed to form a hull and thus ensure no additional loss of load. The instability observed for k-means and k-medoids
at lower numbers of representative periods was even more pronounced than in the previous case study. Finally, no
substantial differences were observed between in-sample and out-of-sample evaluations or the distance metrics.

Separate clusters with spatial correlation In this case study, we expect that the greedy hull methods will require
more representative periods to achieve a low relative regret, since there is more variability. We are particularly inter-
ested in how quickly a hull is found.
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Method Representatives In-sample Out-of-sample
Relative regret (%) LoL Relative regret (%) LoL

greedy bounded conical hull 3 8.7 -7 8.3 -7
5 1.0 0 0.8 0
7 0.9 0 0.7 0
9 0.8 0 0.7 0

11 0.5 0 0.4 0
greedy convex hull 3 13.1 11 12.3 9

5 1.0 0 1.1 0
7 0.7 0 0.9 0
9 0.6 0 0.6 0

11 0.5 0 0.6 0
k-Means 3 301.1 1608 329.7 1911
(Median) 5 280.0 1283 309.5 1628

7 180.8 682 212.6 803
9 10.9 82 13.4 111

11 10.8 81 13.2 110
k-Medoids 3 202.2 888 233.3 1051
(Median) 5 196.4 859 215.8 998

7 159.0 565 192.4 808
9 10.8 80 13.1 109

11 10.8 82 13.2 111

Table 5.3: Relative regret (%) and increase in time steps with loss of load (LoL) for the in-sample and out-of-sample
experiments on the "Centered cluster" case study. Multiple combinations of the number of representative periods
and methods for finding the representative periods are shown. Only the results for the squared euclidean distance are
in the table.
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Figure 5.4: Relative regret (%) per number of representative periods in the in-sample and out-of-sample experiments
on the "Separate clusters with spatial correlation" case study, for both the cosine distance and squared euclidean
distance. The different methods for selecting the representative periods are in different colors. The area for k-means
and k-medoids represents the 25% and 75% quantiles.

The relative regret graphs are shown in Figure 5.4. For the squared euclidean distance, the greedy convex hull method
already achieves a near-zero relative regret, which is better than expected. In general, both hull-based methods show
lower relative regret in most cases compared to the clustering algorithms. They continue to show fluctuations de-
pending on the seed, even when more representative periods are used. One example is the combination of 21 repre-
sentative periods, the squared euclidean distance, and the k-medoids method. Here the median value is above 40%.
However, the fluctuations are less extreme than in the previous case study.

The most interesting difference in Figure 5.4 is that the out-of-sample evaluation shows that for all methods the cho-
sen investment decisions do not generalize as well as before. By design, there was a lot of variation around the extreme
values for this case study. It could thus be that for out-of sample case, this resulted in some extreme periods which
were not covered at all by the investment decisions that were optimal for the first sample, the sample for which the
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representative periods were found.

Method Representatives In-sample Out-of-sample
Relative regret (%) LoL Relative regret (%) LoL

greedy bounded conical hull 3 52.2 480 103.7 618
5 50.8 444 93.2 568
7 8.7 107 40.9 226
9 8.4 117 43.7 242

11 4.8 48 40.5 161
greedy convex hull 3 50.8 301 70.1 436

5 2.3 -4 35.9 123
7 1.0 -9 30.4 109
9 0.7 -10 30.6 109

11 0.4 -9 30.8 123
k-Means 3 194.0 1358 238.2 1365
(Median) 5 190.9 1269 234.4 1270

7 61.0 492 108.0 604
9 59.9 470 106.1 573

11 28.7 254 73.6 367
k-Medoids 3 146.3 1025 192.7 1086
(Median) 5 146.9 975 192.8 1074

7 53.3 432 99.5 544
9 54.1 430 99.9 548

11 50.2 403 96.3 516

Table 5.4: Relative regret (%) and increase in time steps with loss of load (LoL) for the in-sample and out-of-sample
experiments on the "Separate clusters with spatial correlation" case study. Multiple combinations of the number of
representative periods and methods for finding the representative periods are shown. Only the results for the squared
euclidean distance are in the table.

To further investigate this behavior, we turn to Table 5.4. The increase in time steps with loss of load between the
in-sample and out-of-sample evaluation is visible for all methods. Notably, the greedy convex hull method is able
to achieve zero infeasibility for the in-sample periods, while the greedy bounded conical hull method is not. This
highlights that, depending on the structure of the data, one method may successfully identify a feasible hull while the
other does not, even when both are theoretically possible. As in previous case studies, both k-means and k-medoids
result in a significantly higher number of time steps with additional loss of load compared to the hull-based methods.

In this case study, the greedy convex hull method again results in the best performance, and there is a clear distinction
between the hull methods and the clustering algorithms. The greedy bounded conical hull was not able to find a
hull with fewer than 11 representative periods, which highlights that this case study indeed contains more variation,
especially around the extremes, than before. This is also seen in the out-of-sample results, which have higher relative
regret than before for each of the methods. In terms of distance metrics, patterns were similar.

Separate clusters without spatial correlation Without spatial correlation, obtaining a hull can become more diffi-
cult for the greedy methods, as an increase in availability of a generation technology at one location does not imply a
similar increase at others. As a result, we expect both hull methods to require more representative periods to achieve
zero infeasibility.

The effect is clearly visible in the graphs in Figure 5.5. A clear distinction between the hull methods and the clustering
algorithms cannot be made, and all methods perform worse compared to the previous case studies. Notably, both
k-means and k-medoids require a very large number of representative periods, 29 for k-medoids and 37 for k-means
(in the case of cosine distance), to reduce the relative regret below 10%. This is significantly higher than in previous
case studies, indicating that when spatial correlation is removed, more representative periods are required across all
methods to capture enough information. This highlights that the number of representative periods needed to achieve
a given level of relative regret is highly dependent on the structure of the dataset.

For the first time, we also observe a noticeable difference between the cosine distance and the squared euclidean
distance, particularly in combination with the greedy convex hull method. With the cosine distance, this method
achieves the lowest regret across most numbers of representative periods, whereas with the squared euclidean dis-
tance, its regret remains significantly higher than that of the other methods. This suggests that when a valid hull is
not guaranteed, the performance of the greedy convex hull method can vary considerably depending on the choice
of distance metric and the specific representative periods selected.
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Figure 5.5: Relative regret (%) per number of representative periods in the in-sample and out-of-sample experiments
on the "Separate clusters without spatial correlation" case study, for both the cosine distance and squared euclidean
distance. The different methods for selecting the representative periods are in different colors. The area for k-means
and k-medoids represents the 25% and 75% quantiles.

Method Representatives In-sample Out-of-sample
Relative regret (%) LoL Relative regret (%) LoL

greedy bounded conical hull 3 78.8 431 83.6 497
5 79.4 394 82.8 416
7 83.4 453 87.4 512
9 82.8 412 85.7 435

11 28.9 254 26.1 264
greedy convex hull 3 118.5 710 105.6 694

5 100.8 611 82.9 564
7 109.3 592 91.9 519
9 108.6 567 91.2 532

11 114.8 566 98.2 544
k-Means 3 89.4 748 77.8 734
(Median) 5 85.6 690 73.7 635

7 64.8 596 55.2 542
9 59.4 518 49.8 478

11 65.2 567 54.8 532
k-Medoids 3 83.1 694 69.7 655
(Median) 5 85.9 693 71.5 606

7 74.6 623 60.9 587
9 64.6 543 54.4 534

11 56.1 483 49.0 465

Table 5.5: Relative regret (%) and increase in time steps with loss of load (LoL) for the in-sample and out-of-sample
experiments on the "Separate clusters without spatial correlation" case study. Multiple combinations of the number
of representative periods and methods for finding the representative periods are shown. Only the results for the
squared euclidean distance are in the table.

To assess whether the high relative regret is indeed associated with additional loss of load, and thus supports the hy-
pothesis that a hull is not found, we examine the detailed results for up to 11 representative periods in Table 5.5. We
observe that the elevated relative regret, particularly for the greedy convex hull method, corresponds to a substantial
increase in time steps with additional loss of load compared to the previous case studies. A value of zero or below is
not reached for any method–distance combination within this range of number of representative periods, as shown
in the complete overview in Table B.7 and B.8. This suggests that a valid hull is not formed when using a small number
of representative periods. This may be due to the approximate algorithm failing to identify the correct periods, or be-
cause no convex or bounded conical hull exists with that number of representative periods. In either case, it is worth
investigating how the method can be improved, either by selecting more relevant periods or by exploring alternative
ways to improve feasibility. This is particularly relevant in light of the previous case studies, where the hull methods
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clearly demonstrated their advantages when a valid hull could be found, resulting in both zero infeasibility and low
relative regret.

5.4. Conclusion

The experiments in this chapter compared greedy hull methods and traditional clustering approaches for selecting
representative periods, focusing on feasibility and optimality across case studies with distinct characteristics. Results
show that the greedy convex hull and greedy bounded conical hull methods are highly effective when a hull can be
formed. In these cases, feasibility was ensured, and relative regret dropped below 1% with just a few representatives.
Adding more periods further improved the regret once feasibility was achieved. In contrast, k-means and k-medoids
reached similarly low regret only with more representatives and still failed to guarantee feasibility. This supports the
idea that hull methods are well-suited for finding representatives essential to feasibility. This also suggests that once
a hull is identified, other methods could be used to add further points, an idea explored in the next chapter. A key
shortcoming of the clustering methods was their variability due to randomness. In some cases, increasing the number
of representatives led to a sharp rise in median regret. The spread between the 25% and 75% quantiles also remained
visible even with more representatives.

The final case study, with less spatial correlation, was challenging for all methods. None achieved low regret with a
limited number of representatives. Since the hull methods suddenly were not able to ensure feasibility, we suspect
that either no convex or bounded conical hull exists for that number of representatives in that dataset, or the approxi-
mation algorithm failed to find it. Possible improvements are discussed in the next chapter. Since trends in in-sample
evaluation mirrored those in out-of-sample evaluation, we will focus on in-sample results in the next chapter. Out-
of-sample evaluation returns in the later European case study.



6
Enhancing the representative set with artificial

periods for feasibility

In Chapter 4, we proved that when the set of representative periods formed a convex or bounded conical hull con-
taining all other periods, a solution with no additional infeasibility could be constructed from the optimal solution of
the reduced problem. To test this in practice using a greedy implementation for finding the hull, we analyzed the in-
feasibility and relative regret on four different case studies in Chapter 5. In the first three cases, the hull was identified
with a small number of representatives, leading to a feasible solution for the full problem with lower relative regret
compared to alternative methods. However, in the final case study, both hull methods were unable to construct a hull
for the given number of representatives. As a result, the relative regret was comparable to or worse than k-means
and k-medoids, and feasibility was no longer ensured. The key difference in this last case was that there was less
correlation between periods.

Our hypothesis is that in high-dimensional spaces, distributions with less correlation between dimensions and more
distance between the vectors, make it more difficult to construct a convex or bounded conical hull. In this context,
"more difficult" means that the greedy hull method may fail, while a higher-runtime algorithm could still succeed,
or that no convex or bounded conical hull consisting solely of corner points from the representative set exists for the
given number of representative periods. The latter can even occur in lower dimensions: a clear example is a circle,
where a convex hull composed only of points from the circle would require all points on that circle (See Figure 6.1).

To address this, we propose modifying our approach by introducing representative periods that are not part of the
original set of periods. The idea of “artificial” representatives is not new: by finding cluster centroids, k-means does
essentially the same. The values of the artificial representatives that we will use are chosen to be in the extremes, to
form a bounding polytope that contains the hull. This can lead to a set that is larger than the actual hull in terms of
volume, but requires fewer representatives. In this way, we are able to ensure feasibility with fewer representatives.
This can, however, come at the cost of optimality, as the newly added extreme representatives may lead to unneces-
sary investments. To explore this, we first illustrate the approach with a two-dimensional example in Section 6.1. To
further refine the method, we also investigate the effect of adding these points earlier in the process, allowing them
to be taken into account when finding the rest of the alternatives.

To further optimize this process, we can make a distinction between representative periods added for feasibility in the
early selection process (e.g., representatives that are on the extreme side) and representative periods added for opti-
mality (e.g., cluster centers added after the extremes). This idea is similar to previous studies where worst-case sam-
ples were added in later stages, sometimes even after optimizing, to reduce infeasibility in k-means and k-medoids
clustering [18], but now the extreme points are created before clustering instead of being taken from the data after
clustering. We expect that the influence on optimality depends largely on the weights assigned to these artificial rep-
resentatives compared to the other representatives. To test this, we also apply the blended weights of Subsection 6.1.3.
In Section 6.2, we extend the methods identified in two-dimensions to higher dimensions and apply them to the case
study from the previous chapter.

38
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6.1. Finding a bounding polytope for the hull in a two-dimensional space

While the high-dimensional space in which we are looking for representatives makes it harder to obtain a hull, prob-
lems can occur in lower-dimensional examples as well. To understand why this happens and what possible directions
for improvement are, we start this chapter by looking at a two-dimensional example. We first present the example in
Subsection 6.1.1. In this example, the data is distributed in such a way that every period belongs to the convex hull,
making it impossible to approximate the convex hull well with just a few data points. We thus propose a method of
finding a bounding polytope for the convex hull with artificial representatives in Subsection 6.1.2. This approach does
not extend to higher dimensions, so we try to identify the relevant points in the 2-dimensional example for generation
expansion planning specifically, to see if we can gather insights that are useful for higher dimensions. This last part is
presented in Section 6.1.4 and is the foundation for the methods proposed in Section 6.2.

6.1.1. Two-dimensional example

In the two-dimensional case, there is one value for demand and one value for availability per period. We ignore
inter-period constraints. The goal is to test on an example for which finding a convex or bounded conical hull is not
possible with a limited number of representative periods. For this example, we created 100 synthetic periods evenly
distributed along a perfect ellipse in two-dimensional space. This is visualized in Figure 6.1, where demand has been
scaled by dividing all values by the maximum demand to ensure it is on a scale similar to the availability. This was
also done when finding the representatives, just as in the previous experiment. Since this example is for visualization
purposes only, we do not use any additional normalization here. Figure 6.1 shows the representatives selected by the
four previously tested methods when using three representatives, combined with the squared euclidean distance.

Greedy bounded conical hull Greedy convex hull K−means K−medoids
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Figure 6.1: The full set of 100 periods (in black) on which the four representative period methods are applied for find-
ing three representative periods. The larger markers indicate these representative periods selected by each method
in combination with the squared euclidean distance metric.

In Figure 6.1, we see that in every case, all the samples fall outside the convex hull formed by the representatives,
except for the representatives themselves. This is always the case for an ellipse: no matter which points are selected as
representatives, the convex hull formed by them will always exclude the rest of the samples on the border. This means
that feasibility cannot be guaranteed using just the selected representatives, at least not when those representatives
are constrained to be original data points. We can conclude that the representatives found by the greedy convex
hull method will not form a hull containing all periods, as will none of the other methods, as they also do not select
representatives outside the ellipse. This is reflected in the results when we try to optimize the original periods under
the investment decisions from the reduced model. We used a similar experimental setup as in the previous chapter,
now applied to the two-dimensional case.

Figure 6.2 shows the relative regret for these experiments. Unlike earlier case studies, the hull methods do not start
with low regret, as they are unable to construct a convex hull with few representative periods. In fact, they show more
variability in regret, including cases where regret increases with more representatives, a pattern previously observed
only for the clustering algorithms. The choice of distance metric also has a notable impact. The greedy convex hull
method using cosine distance still performs best and is the first to reach a relative regret below 5%, while the same
metric leads to higher regret for the other two methods compared to squared euclidean distance. However, with
squared euclidean distance, the greedy convex hull method requires more than 85 representative periods to achieve
a relative regret under 1%. The greedy bounded conical hull method shows similar behavior, but shows a sudden
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Figure 6.2: Relative regret (%) per number of representative periods for the 2-dimensional experiment, for both the
cosine distance and squared euclidean distance. The different methods for selecting the representative periods are in
different colors. The area for k-means and k-medoids represents the 25% and 75% quantiles.

increase in regret at 37 representatives. Its results are only shown for squared euclidean distance, since the method
requires a metric where the distance to the origin is defined.

A look at the infeasibility of the solution provides us with even more interesting insights. We know beforehand that
feasibility is not ensured by the hull methods, since an actual hull cannot be formed. Figure 6.3 shows the results
on infeasibility for each number of representative periods, measured by the increase in the number of time steps
with loss of load compared to the optimal solution. We see that for every combination of distance metric and repre-
sentative period method, there are still time steps with loss of load up to at least 29 representative periods. At that
number, the greedy convex hull method combined with cosine distance succeeds in achieving zero additional infea-
sibility compared to the optimal solution. What this experiment shows is that both hull methods, when a hull is not
actually found, do not ensure feasibility at all. The feasibility and optimality highly depend on the actual representa-
tive periods chosen and their position within the dataset, where sudden spikes can be caused by selecting the wrong
representative, as seen for the greedy bounded conical hull method with 37 representative periods.
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Figure 6.3: Increase in time steps containing loss of load per number of representative periods for the 2-dimensional
experiment, for both the cosine distance and squared euclidean distance. The different methods for selecting the
representative periods are in different colors. The area for k-means and k-medoids represents the 25% and 75%
quantiles.
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The only exception to all of this is that with just two representative periods, the greedy convex hull method in combi-
nation with the cosine distance metric has selected a combination of periods that leads to zero infeasibility elsewhere.
Adding more representative periods leads to an increase in both infeasibility and costs. We hypothesize that one of
the first two representatives has a very positive influence on the feasibility, and adding more representatives decreases
this influence. We will investigate why this happens in Subsection 6.1.4, where we formalize why some representa-
tives on the hull are more influential for feasibility than others in the context of the generation expansion model.
But even with this exception, none of the methods can approach a stable low relative regret with a small number of
representative periods, suggesting it is worth exploring whether we can already make some improvements in the two-
dimensional space before moving to higher dimensions. This information can then be used in higher dimensions.

6.1.2. Bounding polytope for the convex hull

In two dimensions, it is easy to visualize a bounding polytope around the dataset using just three representatives,
by imagining a large triangle around the samples. The tightest way to do this for our example is when the edges of
the triangle each touch exactly one point on the ellipse. The initial ellipse is inscribed within the triangle. To find
all representatives for which this is true, we consider an ellipse where each individual point has twice the distance to
the center compared to the original ellipse. If we pick three equally distant points on this larger ellipse, they form a
bounding polytope containing the hull of the samples. In theory, infinitely many combinations are possible, but we
conducted experiments on 12 representative configurations, evenly spaced across the range. This ensures that each
set differs enough to make a meaningful comparison in performance, while still providing a good overall coverage of
the possibilities. The configurations are shown in Figure 6.4.

The bounding polytope corner points can be seen as artificially created periods, which we add to the set of represen-
tatives during clustering. Depending on the chosen configuration, the outcome can be very different. For example,
triangle 3 optimizes for a point with high demand combined with low availability, most likely leading to high invest-
ments in the non-renewable generation technology. Thus, we can already imagine which configurations might lead
to more conservative solutions than others.
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Figure 6.4: Options for three representatives tightly forming a bounding polytope for the original ellipse.

We first test the problem using only these three artificial representatives, with their weight in the reduced problem
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equally distributed. This corresponds to the leftmost point in Figure 6.5 for each of the blue lines. As a reference,
we also added the results for the original clustering methods without the bounding polytope representatives to the
graph, so the k-means and k-medoids lines are equal to the ones previously shown in 6.2. Below we will look at the
continuation of the line, but for now we first focus on the leftmost point. For three representatives, we already see
that the relative regret is much lower than when using just k-medoids or k-means.

We also see that the relative regret differs largely per configuration. For triangle 10 we have a relative regret of 4%, while
for the lighter lines the relative regret is higher than 25%. We can thus deduce that some of the artificial representatives
result in more conservative investment decisions associated with higher costs, while others are more closely related
to the investment decisions optimal for the original problem.

To further improve the results, we add more representative periods to the bounding polytope representatives, focus-
ing on adding periods that improve optimality rather than feasibility. We do this because infeasibility in the original
problem is already zero when the bounding polytope representatives are included in the solution, giving us the luxury
to focus solely on optimality from this point onwards. To combine the triangle samples with extra representatives, we
first find representatives with k-means and k-medoids, and then add the artificial triangle samples afterwards, assign-
ing them a weight equal to the appropriate fraction of the total weights, depending on the number of representative
periods used. The weights are then rescaled to ensure the same total weight in the objective as before. We do not
combine the bounding polytope with the greedy convex hull method or bounded conical hull method, since we are
sure that the representatives already contain the hull. Therefore, it would not make sense to look for additional hull
points.
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Figure 6.5: Relative regret (%) per number of representative periods for the 2-dimensional experiment, for both the
cosine distance and squared euclidean distance. Different methods for selecting the representative periods are shown
in different colors. The shaded areas represent the 25% and 75% quantiles across different random initializations for
k-means and k-medoids.

As mentioned above, all number of representative periods lead to zero additional loss of load in the original problem,
a great achievement. Adding the bounding polytope points thus eliminated all infeasibility, as expected based on the
earlier proofs for the hull in Chapter 4. The expected downside is that the relative regret might not be able to decrease
to 0%, even when using a large number of representative periods. The artificially added periods that ensure feasibility
also cause the decision variables to take on more extreme values than would be necessary for the full problem. This
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results in solutions that might be too conservative.

This is indeed reflected in Figure 6.5. For all triangle configurations, even with additional representative periods, a
lower bound on relative regret is reached. When using a larger number of representative periods, the original k-means
and k-medoids methods have better performance in terms of relative regret. For a low number of representative
periods, however, there are clear advantages to using the bounding polytope. The relative regret is mostly below the
original methods when fewer than 15 representative periods are used.

As expected, we observe significant differences between the configurations. The best configuration seems to be tri-
angle 10, which consistently shows the lowest relative regret of all configurations. It is followed by triangles 11 and 9.
Especially for triangle 10, the relative regret is very low from the beginning onward. When using a low number of rep-
resentative periods, below 25 for example, this configuration would give the best results over all proposed methods.
This is very important, as in practice we would like to find the method that is best with a low number of representative
periods, as then the best speedup can be achieved.

In practice, we would not be able to inspect all configurations before selecting the best. Therefore, we want to under-
stand why some perform better than others. Looking at the best performing configurations in Figure 6.4, they appear
to correspond to an extreme point at the top of the ellipse. We will explore a potential reason on why these configura-
tions perform best in Subsection 6.1.4. Second, we want to deal with the conservativeness of this approach. Adjusting
the weights in the objective function might overcome these conservative solutions. This way, the extreme points can
gradually lose weight when better representatives for the actual periods are found. This will be investigated in the
next subsection.

6.1.3. Incorporating blended weights
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Figure 6.6: Relative regret (%) per number of representative periods for the 2-dimensional experiment, for both the
cosine distance and squared euclidean distance. The different methods for selecting the representative periods are
in different colors. The areas represent the 25% and 75% quantiles based on different random initializations for k-
means and k-medoids.

The zero infeasibility achieved by using the bounding polytope in the previous subsection is very valuable. However,
when more representative periods are used, the relative regret becomes higher than when the bounding polytope
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is not used as method. This can be seen in Figure 6.5, for example in the combination of k-medoids and squared
euclidean distance after 25 representative periods.

The bounding polytope representatives were added after selecting the other periods, and their weights were scaled to
have the average weight of one representative. We expect that if these weights could decrease more when there are
enough other representatives that are closer to the original periods, the influence of the artificial points would slowly
fade. This could lead to a lower relative regret when more representative periods are used. The blended weights
approach, explained earlier in Subsection 3.3.4, allows for this kind of dynamic behavior. To make this work, the
artificial representatives need to be added before selecting the other representatives instead of after. This way, we can
build the correct initial weight matrices and enable blended weights.

We run similar experiments for the blended weights approach as before, combining the different bounding polytope
configurations with both k-means and k-medoids. Figure 6.6 shows the relative regret from those experiments, where
each blue line represents a different configuration. With blended weights, the bounding polytope approach succeeds
to achieve a relative regret close to 0$. However, for a small number of representative periods, the results are similar
to what we saw in Figure 6.5, with no real improvement in relative regret. The effect of the blended weights is only
visible once we use more than 60 representative periods, which makes it less useful in this particular example. At that
point, both k-means and k-medoids without artificial representatives already have a lower regret than the bounding
polytope plus blended weights combinations. So, blending weights does decrease the relative regret, but can be
improved to affect lower number of representatives as well.

6.1.4. Worst-case artificial representatives relevant for generation expansion planning

In Figure 6.3, we observe that there was a sharp improvement when using two representative periods for the greedy
convex hull method with the cosine distance metric, even resulting in zero infeasibility. Surprisingly, adding more
periods can increase both infeasibility and cost, as also seen in Figure 6.2. Such a sharp improvement appears again
when using 10 and 29 representative periods for this particular method combination. To better visualize which points
contribute to this positive effect, we highlight them in Figure 6.7. All the ‘important’ representative periods are located
in the upper-left quadrant of the ellipse. As we explain below, this is not a coincidence.

In the generation expansion planning (GEP) model described in Section 3.1, we assume that curtailment of renew-
able energy is always possible. This means that even if more energy is available than needed, overproduction can be
avoided. From this, we can reason that any period with similar demand but higher availability than a chosen rep-
resentative period will not contain infeasibility. This suggests that, rather than constructing a convex or bounded
conical hull over all points, we might only need to consider periods with lower availability. However, as shown in
Figure 6.7, the “ important” representatives are not just on the left side of the circle with a low availability, but specif-
ically in the upper-left quadrant. This is due to the higher demand associated with those points. To have a robust
investment decision the representative set should include one representative with a relative high demand for the sys-
tem, especially if that demand is associated with low availability in renewable energy sources. Taking this together,
for feasibility in the original problem we would like to find a representative in the reduced problem that has a low
availability-to-demand ratio, combined with a high demand.

To explain why these features are relevant, we first prove, in two dimensions, which points are guaranteed to have no
infeasibility when a single representative is selected. We will later generalize this result to higher-dimensional data. To
start, we present the formal definition of the simplified two-dimensional model used before. Since only one location
is considered, we remove the location index and constraints related to energy flow. Each period includes only one
hour, so the index set I contains combinations of scenarios and periods, but not hours. We also assume that only one
generation technology, denoted g1, has uncertain availability. For all g ∈G \ g1 and all i ∈ I , we set Ag ,i = 1. This leads
to the following original model:

min c inv + AF · cop (6.1a)

s.t. c inv = ∑
g∈G

Ig ·Ug · ig (6.1b)

cop = ∑
i∈I

( ∑
g )∈G

Vg ·prodg ,i +V loss · li

)
(6.1c)∑

g∈G
prodg ,i + li = Di ∀i ∈ I (6.1d)
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Figure 6.7: The three specific representative periods that lead to large improvements in optimality and feasibility,
when using the greedy convex hull method in combination with the cosine distance metric on the 2-dimensional
example.

prodg ,i ≤ Ag ,i · ig ·Ug ∀g ∈G, i ∈ I (6.1e)

The reduced model becomes:

min c inv + AF · cop (6.2a)

s.t. c inv = ∑
g∈G

Ig ·Ug · ig (6.2b)

cop = ∑
r∈R

Wr

( ∑
g∈G

Vg ·prodg ,r +V loss · lr

)
(6.2c)∑

g∈G
prodg ,r + lr = Dr ∀r ∈R (6.2d)

prodg ,r ≤ Ag ,r · ig ·Ug ∀g ∈G,r ∈R (6.2e)

Assume we have a representative r in the reduced model that does not lead to any loss of load. We will examine which
periods i this representative alone can ensure feasibility for, when it is added to the full set of representatives R. By
analyzing this, we gain insight into why certain representatives contribute more to overall feasibility, making them
more valuable to include in the model.

Just as in the normalization step, we assume that if a location has a demand at some point in time higher than zero, it
will have a demand higher than 0 all times. If there are locations that only produce energy and do not have a demand,
they should be merged with another node to be taken into account.

Theorem 6.1. Consider an instance of the two-dimensional GEP model as presented in (6.1). We use a representative set
R for the original period set I . Solve the reduced model with this representative set to optimality, for which the model
in (6.2) is used. Denote the optimal values of the decision variables as i⋆g , l⋆r and prod⋆g ,r .

Let r ∈R. Assume that l⋆r = 0. Then for all i ∈ I for which (6.3) and (6.4) hold, we can ensure that there exist a solution
to the original model with the optimal investment decisions i⋆g of the reduced model, which ensures that li = 0.

Ag1,i

Di
≥ Ag1,r

Dr
. (6.3)

Di ≤ Dr . (6.4)

The decision variables that will satisfy this for i are defined as:
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prodg ,i =
Di

Dr
·prod⋆g ,r ∀g ∈G. (6.5)

Proof. We show that when a representative is included in the reduced model, all original periods that satisfy (6.3) and
(6.4) indeed satisfy the constraints in the original model with zero loss of load with the proposed solution.

As stated in the theorem, l⋆r = 0. We can thus remove the loss of load variable in the demand constraint met by the
reduced model, like in (6.6). Moreover, we split the availability constraints of the reduced model into (6.7) and (6.8)
to highlight the difference between the uncertain generator g1 and the other generation technologies:∑

g∈G
prod⋆g ,r = Dr , (6.6)

prod⋆g ,r ≤ i⋆g ·Ug ∀g ∈G\{g1}, (6.7)

prod⋆g1,r ≤ Ag1,r · i⋆g1
·Ug1 . (6.8)

Now we show that when using the optimal investment decision variables ig from the reduced model, the production
decision variables defined by (6.5) will indeed provide a feasible solution with no loss of load.

First we show that the demand constraint still holds for all i , with no infeasibility occurring:

∑
g∈G

prodg ,i =
∑

g∈G

Di

Dr
prod⋆g ,r

= Di

Dr

∑
g∈G

prod⋆g ,r

= Di

Dr
Dr

= Di .

(6.9)

This is fully based on the how we defined the production values to be in (6.5) and the demand constraint in the
reduced model given by (6.6).

Now, we show that the availability constraint is satisfied under this solution. We do this first for uncertain generation
technology g1. The following holds:

prodg1,i =
Di

Dr
prod⋆g1,r

≤ Di

Dr
· Ag1,r · i⋆g1

·Ug1

= Ag1,r

Dr
·Di · i⋆g1

·Ug1

≤ Ag1,i

Di
·Di · i⋆g1

·Ug1

= Ag1,i · i⋆g1
·Ug1 .

(6.10)

This shows that the availability constraint is satisfied for the uncertain generation technology g1. We used the condi-
tion (6.3) from the theorem. Now we show the same for the certain generation technologies. Let g ∈G\{g1}, then:

prodg ,i =
Di

Dr
prod⋆g ,r

≤ Di

Dr
· i⋆g ·Ug

≤ i⋆g ·Ug .

(6.11)

For the last step, we use that the demand value of the representative was constrained to be higher than the demand
value of the periods it could represent, as mentioned in (6.4).
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We can conclude that the constraints hold for i in the original model, concluding the proof.

The theorem can be interpreted in two ways. First, it explains why the representative periods in the upper-left quad-
rant of the ellipse lead to the sudden drops in costs and infeasibility: they combine a low availability-to-demand ratio
with high demand, which, based on the proof, means coverage of a larger set of original periods. Second, it also shows
that choosing one representative period can ensure feasibility for all periods in I in the original model, namely the
(artificial) representative period that satisfies:

Dr = max
i∈I

Di (6.12)

Ag1,r

Dr
= min

i∈I
Ag1,i

Di
(6.13)

Including only this point in the reduced model would guarantee feasibility. Therefore, in two-dimensional examples,
this representative could replace the bounding polytope or a convex or bounded conical hull. Other representative
periods could then be found to improve optimality.

This is a very important implication, and it can be extended to higher dimensions and multiple scenarios. Only when
we add ramping constraints or transmission lines, we can not apply the results. Nevertheless, we can easily extend it to
cases with more than one uncertain generation technology and locations, as long as we do not allow any transmission
between locations. We do that below.

Corollary 6.2. Consider an instance of the GEP model as presented in (6.1), but with multiple locations n ∈N , time
steps within periods h ∈H and multiple uncertain generation technologies. We define the total set of uncertain gener-
ation technologies to be GU ⊂ G and the combination of uncertain generation technologies and locations to be NGU ⊂
N ×GU . We use a representative set R for the original period set J . Solve the reduced model with this representative set
to optimality, for which the model in (6.2) is used, again with multiple locations and time steps within periods. Denote
the optimal values of the decision variables as i⋆n,g , l⋆n,(r,h) and prod⋆n,g ,(r,h).

Let r ∈R. Assume that l⋆n,(r,h) = 0 for all n ∈N ,h ∈H. Then for all j = (s, p) ∈ J for which (6.14) and (6.15) hold, we

can ensure that there exist a solution to the original model with the optimal investment decisions i⋆n,g of the reduced
model, which ensures that ln,( j ,h) = 0, for all n ∈N and h ∈H.

An,g ,( j ,h)

Dn,( j ,h)
≥ An,g ,(r,h)

Dn,(r,h)
∀h ∈H, (n, g ) ∈NGU (6.14)

Dn,( j ,h) ≤ Dn,(r,h) ∀n ∈N ,h ∈H (6.15)

The decision variables that will satisfy this for j are defined as:

prodn,g ,( j ,h) =
Dn,( j ,h)

Dn,(r,h)
·prod⋆n,g ,(r,h) ∀h ∈H, (n, g ) ∈NG (6.16)

Proof sketch. The proof follows the exact reasoning of the proof for Theorem 6.1, while using (n, g ) ∈NGU where g1

was used. Also, every step is the case for all h ∈H and n ∈N .

Given these theorems, we can better explain the results that we observed previously in this chapter. We first discuss
why the second representative period when using the greedy convex hull method and cosine distance on the two-
dimensional case, already led to zero infeasibility. In Figure 6.7 we can see that it looks like it is the period which
satisfied the minimum ratio condition in (6.13). However, the demand in that representative is not equal to the max-
imum demand. This is because, in the solution of that reduced model, investment was made solely in the uncertain
generation technology. Since the constraint on having the maximum demand was not necessary for uncertain tech-
nologies, the condition in (6.12) was not required.

We also would like to understand why some bounding polytope configurations performed better than others. How-
ever, the previous theorem only explains feasibility and says nothing about optimality. Since all triangle configura-
tions satisfied feasibility, the insights from the theorem do not help. However, we do see that the specific bounding
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polytope whose points had no availability-to-demand ratio lower than necessary, triangle 11, was among the best-
performing configurations. Its regret was second lowest, with triangle 10 being the configuration with the lowest
relative regret (See Figure 6.4 for the configurations). So while the theorem gives a nice direction for points that we
should consider as (artificial) representatives, it is not a panacea: choosing a representative period combination in
which some representatives have a lower than necessary ratio might still result in a solution with lower relative regret.

To conclude, selecting a worst-case point for feasibility and complementing it with other points for optimality is an
effective and theoretically promising approach. However, the theoretical guarantees on feasibility presented in this
chapter do not trivially extend to a case including transmission and ramping. Nevertheless, we want to see whether
the improvements observed in two dimensions are still reproducible in higher dimensions.

6.2. Identifying worst-case artificial representatives in a higher-dimensional space

In two dimensions, we see that constructing a bounded conical or convex hull is not always possible with a limited
number of representative periods, such as in the case of the ellipse. Moreover, it could be that the greedy implemen-
tation does not necessarily select the correct hull points due to its approximate nature. This leads to two hypotheses
for why the greedy convex hull and greedy bounded conical hull methods performed less effectively in the final case
study presented in Chapter 5.

In two dimensions, adding artificial extremes to construct a bounding polytope for the hull as the first set of represen-
tatives showed potential: infeasibility was immediately eliminated, and depending on the configuration, the results
when including the artificial representatives were better than just using k-means and k-medoids. Since forming a
bounding polytope, as done in the previous section, would be intractable in high dimensions, with points needed
growing exponentially, we focus on incorporating what we learned while adjusting for high dimensions.

We propose creating one worst-case artificial representative to try to ensure feasibility with. Although Theorem 6.1
did not trivially extends to the high-dimensional case with ramping and transmission lines, we believe that it can
still be interesting to test its effect. To this end, we propose adding one worst-case representative period that covers
all minimum availability-to-demand ratios and maximum demand. We first find the maximum demand for each
time step and each location, and then, for each uncertain generation technology, choose availability such that the
availability-to-demand ratio is equal to the minimum for this generation technology. We do this for each time step
and location individually, thus creating essentially a worst-case period.
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Figure 6.8: Relative regret (%) per number of representative periods for the “Separate clusters without spatial corre-
lation” case study, for both the cosine distance and squared euclidean distance. The different methods for selecting
the representative periods are in different colors. The “Worst-case period” method is combined with either greedy
convex hull, k-means or k-medoids. The area for k-means and k-medoids represents the 25% and 75% quantiles

We test the proposed method on the previously discussed case study: separate clusters without spatial correlation.
For this case study, we were not able to achieve a successful result for each one of the methods, where “successful”
is defined as achieving a low relative regret when using a low number of representative periods. We combine the
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artificial worst-case representative with k-means and k-medoids, just like was done for the bounding polytope in the
previous section. However, we also combine the artificial worst-case representative with the convex hull method.
Earlier, we did not opt for this as the bounding polotype was guaranteed to already contain the hull. Now, a hull is
not necessarily contained by the artificial representative, and feasibility is also not necessarily ensured. It therefore
makes sense to continue looking for a convex hull.

Figure 6.8 shows the relative regret when using this artificial worst-case period. In the graphs, we also show the
lines representing the results of the experiments in the previous chapter, in which the original four methods were
tested on these experiments. The “Worst-case period” line shows the combination of this artificial representative
period with each of the three other clustering methods mentioned. In general, we see that adding this one worst-case
period has a very positive influence. We obtain a relative regret below 10% with only five representative periods. It
is interesting to see that the differences between combining this artificial representative with the greedy convex hull
method, k-means, or k-medoids are minimal. This indicates that the results are largely influenced by the artificial
representative.
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Figure 6.9: Relative regret (%) per number of representative periods for the “Separate clusters without spatial corre-
lation” case study, for both the cosine distance and squared euclidean distance. The different methods for selecting
the representative periods are in different colors. The “Worst-case period” method is combined with either greedy
convex hull, k-means or k-medoids. The area for k-means and k-medoids represents the 25% and 75% quantiles.

Just as with the bounding polytope before, at some point, the solution with the artificial worst-case period cannot
achieve a lower regret, while the other methods will be able to do so when a high number of representative periods are
used. We see this for the greedy bounded conical hull, which achieves lower regret when more than 21 representative
periods are used. We once more try the blended weights mentioned before to slowly decrease the influence of the
worst-case period. The results of this can be seen in Figure 6.9. The graph is zoomed in to highlight differences
between the methods.

We see a clear advantage when using blended weights in combination with k-means or k-medoids clustering. This
is interesting, as the difference was only minor when weights were not blended. It could be that, since k-means
and k-medoids both focus on finding centers, the periods that get more weight when using the blended weights are
more closely located to a majority of the periods. Therefore, they are better for optimality. For the greedy convex
hull method, although less weight is assigned to the one worst-case artificial representative when using the blended
approach, the weight is still assigned to representatives that are more on the extreme side of the period set. We can
conclude that for a small number of representative periods, using blended weights can significantly reduce relative
regret. However, even when many representative periods are available, the solutions that include the worst-case
period remain too conservative, resulting in a higher relative regret compared to, for example, the greedy bounded
conical hull method.

In addition to optimality, we also consider the increase in time steps with loss of load in Figure 6.10. Here, we observe
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a clear difference between the methods that include the worst-case period and the original methods. When the worst-
case representative is added, there is no additional loss of load anywhere, while for the greedy bounded conical hull,
despite having the lowest regret when using more than 30 representative periods, the number of time steps with loss
of load remains above zero throughout. So when evaluating performance, it is important to consider that avoiding
any loss of load is also a critical aspect of system reliability.
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Figure 6.10: Increase in time steps containing loss of load per number of representative periods for the “Separate
clusters without spatial correlation” case study, for both the cosine distance and squared euclidean distance. The
different methods for selecting the representative periods are in different colors. The “Worst-case period” method is
combined with either greedy convex hull, k-means or k-medoids. The area for k-means and k-medoids represents
the 25% and 75% quantiles.

6.3. Conclusion

This chapter demonstrated that even in simple two-dimensional settings, constructing a convex or bounded conical
hull from original data points can be infeasible with a limited number of representative periods. To address this,
we introduced artificial representatives that form a bounding polytope enclosing the convex hull of the data. This
guarantees feasibility with only a limited number of representatives and, in those cases, also achieves a lower relative
regret than alternative methods. While effective in two dimensions, the approach scales poorly to higher dimensions
due to the exponential increase in required points and computational complexity.

In the context of Generation Expansion Planning (GEP), we can reason more structurally about which periods are crit-
ical. In two dimensions, we showed that a single worst-case representative, with maximum demand and a minimum
availability-to-demand ratio, can ensure feasibility for all original periods under simplified assumptions. Extending
this to higher dimensions, we proposed generating a worst-case artificial representative period that captures these ex-
treme conditions. While this no longer guarantees feasibility due to added constraints like ramping and transmission,
results on the case study from the previous chapter show that this worst-case period reduces infeasibility and regret.
Blended weights help reduce conservativeness as more representatives are added. The experiments also support a
hybrid approach: using an artificial worst-case period to ensure feasibility, then complementing it with additional
periods aimed at improving optimality. This, in combination with the blended weights approach, proved promising.

In conclusion, artificial representatives are a valuable tool for improving feasibility when few representative periods
can be used. For practical applications, we recommend combining artificial worst-case representatives with blended
weights and supplementing them with periods selected for optimality. In the next chapter, we will apply this method
to a larger, more realistic case study.
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Up to this point, we have explored both the theoretical results of the two hull methods and their performance in
small-scale case studies. We found that when a hull is identified, these methods guarantee feasibility and often lead
to a very positive effect on relative regret compared to alternative approaches. Although identifying such a hull can be
challenging in data with high variability, this challenge was successfully addressed by introducing artificial represen-
tatives with extreme, worst-case values, ensuring feasibility. This approach performed well in the final case study of
the previous chapter. In this chapter, we extend that analysis to a case study with the size and complexity of real-world
applications. The European case study we use features a high share of renewables and reflects the variability common
in energy systems. It is adapted from a deterministic model by Gao et al. [11], with additional variability introduced
through scenarios based on climate and demand data from the 2022 TYNDP Scenarios [7]. This setup enables us
to evaluate the feasibility and optimality of all previously proposed methods, as well as their impact on processing
time. This is particularly relevant, as the full model cannot be solved on a standard laptop within reasonable time and
memory constraints. In Section 7.1, we first explain how the case study is adapted and which assumptions are made.
Section 7.2 then outlines the experimental setup in more detail. The experiments include the clustering methods,
hull methods, the addition of worst-case representatives, and the use of blended weights. The results are presented
and discussed in Section 7.3.

7.1. Case study

We define several criteria for selecting a suitable case study to test the proposed methods on. First, the case study
should feature a high share of renewables in the generation mix, as such systems are most sensitive to temporal
detail. Second, since scenario development is a complex field on its own, we aim to build on existing scenario data
rather than constructing entirely new ones. Third, we select a case that does not rely on storage options, as this
thesis does not focus on inter-period constraints. We do motivate future work to incorporate this, as storage is very
relevant in current energy systems. Fourth, the case study should be large enough to reflect real-world complexity and
computational limitations, particularly for stochastic programming, where the full problem size becomes infeasible
to solve on a standard laptop.

The data we used was made publicly available by Gao [10], and it was earlier obtained from the 2022 TYNDP Sce-
narios [7]. It is well-suited to our purpose, as it focuses entirely on renewable generation, making it highly sensitive
to temporal resolution. Moreover, its size and complexity reflect real-world case studies. While the original imple-
mentation is deterministic and relies only on data from the 2008 climate year, it is based on a dataset that includes
35 years of availability and demand data, enabling the construction of stochastic scenarios. In this chapter, we make
use of this broader dataset to generate multiple scenarios for the model, allowing us to evaluate the performance of
the proposed methods under a stochastic programming setting. The full dataset is too large to solve directly with
stochastic programming, which further motivates the use of temporal reduction techniques.

To meet the needs of this thesis, several adjustments to the original case study are necessary. We begin by describing
the process of adding scenario data. The original case study includes hourly data per location for both electricity
demand and the availability of renewable energy sources (onshore wind, offshore wind, and solar PV). This data is
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based on the climate year 2008, with demand projections taken from ENTSO-E’s 2030 national trends and climate
data from the Pan-European Climate Database (PECD) [7]. Since both the national trends and the PECD also provide
data for multiple climate years, we extend the case study to include all available years from 1982 to 2016. This results
in 35 complete scenarios, each with a full year of hourly input data. A few caveats must be addressed when extending
the dataset.

1. The original case study includes 30 European countries, which is fewer than those available in the PECD. We
therefore restrict the scenario data to the countries present in the original dataset. Those are all the EU countries
(27 in total) and the United Kingdom, Norway and Switzerland.

2. Some countries are split into multiple regions in the ENTSO-E demand scenario data. For France, Greece, and
the United Kingdom, we use only the region marked "00", following the approach used in the original case study.
For Denmark, Italy, Luxembourg, Norway, and Sweden, we aggregate demand across regions, again following
the original setup.

3. Availability values per generation technology in the PECD scenarios are provided per region, with varying spa-
tial resolution across countries. The zones used here are even more detailed than before. Except for the coun-
tries mentioned next, we use the region marked "00". For Italy, Norway, and Sweden, we average across multiple
regions, consistent with the original case study processing.

4. The PECD includes more technology-location combinations than those permitted in the original case study.
We filter the dataset accordingly and include only the combinations allowed in the original setup.

5. While the original case study included Malta, we exclude it from our dataset. Under the given assumptions and
transmission capacities, Malta would experience loss of load in nearly every period across all scenarios. This is
because in the case study it is only allowed to produce solar energy, which is unavailable at night, and imports
from other countries are insufficient to meet demand. Including Malta would therefore distort the loss of load
metric, which we use to evaluate the quality of our reductions. By excluding it, we hope to ensure that any
observed loss of load reflects the performance of the reduction methods rather than structural infeasibilities in
the model setup.

With these adjustments, we construct a consistent set of 35 scenarios with a full year of hourly data for demand and
renewable availability across the original set of countries and technologies. This extended dataset forms the basis for
evaluating the proposed reduction methods under realistic temporal and spatial variability.

In terms of technology options, the original case study allows new investments exclusively in renewable generation.
Storage and hydropower are included in the original dataset, but we exclude them from our model. This decision
reflects limitations discussed earlier: modeling storage properly requires handling intertemporal constraints across
representative periods, such as the techniques proposed by Tejada-Arango et al. [35], which fall outside the scope of
this thesis. Nuclear power is included in the original case at its existing capacity, without the option for expansion.
Our original model did not account for fixed capacities or investment bounds, so we adapt it by setting the investment
cost of nuclear to zero, ensuring full installation of existing capacity, and by limiting the investment variable in,g at the
current installed capacity to prevent additional investment. For other technology-location combinations, the original
case study also imposes investment limits. However, after removing hydropower, these limits become too restrictive,
often leading to infeasible or unrealistic system configurations. We therefore relax these bounds to maintain model
feasibility while preserving the general structure of the original setup.

No ramping data is available in the original dataset. To introduce some realism without significantly increasing model
complexity, we adopt ramping parameters from the PyPSA model [3], applying a ramping limit of 0.3 of the total
capacity exclusively to nuclear power. Finally, other parameters, such as transmission capacity, variable costs, and
investment costs, are taken directly from the original case study without modification. We also retain the original
value of lost load, set at one thousand euros per megawatt. This is relatively low compared to estimates proposed by,
for example, the Netherlands Authority for Consumers and Markets [22], which suggests a value more than 60 times
higher.

7.2. Experimental setup

As mentioned earlier, the case study provides 35 full-year scenarios of hourly data. For our experiments, we randomly
select ten scenarios for in-sample use, meaning they are used in the process of selecting representative periods. An
additional nine scenarios are selected for out-of-sample evaluation, where the quality of the selected representatives
is tested on unseen data. This split allows us to assess both how well the reduction performs during training and how
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robust it is to new conditions. Using all remaining scenarios for out-of-sample evaluation was not feasible due to the
time limits of this thesis. Below, we first describe the setup used to generate the different reduced models, followed
by the setup used to evaluate their performance.

7.2.1. Reduced model

Even with representative periods, the size and complexity of the case study result in relatively long computation times.
Moreover, multiple parameters influence the outcome, and some methods involve randomness, such as k-means and
k-medoids, requiring repeated runs to obtain more reliable estimates. To balance comprehensiveness with computa-
tional feasibility, we fix several components and vary only the most relevant ones. Fixed are the normalization method
and the length of one period as 24 hours, as described in Chapter 3. We also fix the distance metric. Previously, we
experimented with both cosine distance and squared euclidean distance. However, the differences in performance
were not consistent. Moreover, cosine distance offers less graphical interpretability and is not compatible with one
of the methods (greedy bounded conical hull), leading us to focus on the more commonly used squared euclidean
distance.

The goal of the experiments is two-fold: first, we want to understand the differences in how representative periods are
handled, either per-scenario or cross-scenario. As described earlier in this thesis, the per-scenario approach selects
representative periods within each scenario, while the cross-scenario approach treats the entire set of periods as
one and performs the selection over that combined set. We aim to assess whether one of these approaches offers
advantages, in terms of computational time and accuracy.

In addition to comparing these approaches, the main focus of the experiments is to evaluate the performance of
different selection methods. These include the four techniques discussed earlier: k-means, k-medoids, greedy convex
hull, and greedy bounded conical hull. In the previous chapters, we saw that in cases with high variability between
periods, all methods can produce undesirable results. These can be improved by adding artificial representatives,
particularly to enhance feasibility. Therefore, we test the original methods alongside enhanced versions where one
artificial representative is added afterwards per scenario, following the same approach as in Section 6.2. We choose
to add one worst-case period per scenario, rather than one for the entire dataset, for two reasons: first, we expect that
this approach will be less conservative, which is important especially in large datasets; second, it allows us to use the
same set of artificial representatives for both the per-scenario and the cross-scenario approaches, making it easier to
compare their performance based solely on the representatives selected by the original methods. Since we expect this
setup to be slightly conservative, we test it both in isolation and in combination with the blended weights instead of
the Dirac weights, as described in Section 3.3.4 and previously applied in the experiments in Chapter 6.

Temporal reduction is a trade-off between reducing computational complexity and maintaining accuracy. We there-
fore test multiple values for the number of representatives, to see whether some methods perform best with fewer
representatives while others are more optimal when more representatives are used. In earlier experiments, especially
with the clustering methods, we saw that performance can depend on the number of representatives, and that in-
creasing this number does not always lead to better accuracy. Including all possible values would be computationally
infeasible, so we focus on six levels: 20, 50, 100, 200, 400, and 800 representative periods. For cross-scenario selec-
tion, this refers to the total number of representatives selected from the full set of 3650 periods (365 days across 10
scenarios). For per-scenario selection, each scenario contributes a proportional share, meaning 2, 5, 10, 20, 40, or 80
representatives per scenario from its 365 days.

7.2.2. Evaluation

To assess the quality of the selected representative periods, we use the same set of evaluation metrics that capture
both optimality and computational performance as before. These metrics are applied consistently across all experi-
ments to enable fair and meaningful comparisons.

To evaluate computational performance, we measure the total time required for both the selection of representative
periods and the solution of the reduced model. Each experiment with the greedy hull methods is run multiple times to
capture variability in runtime. For the clustering-based methods, which involve randomness, we run the experiments
using 10 different seeds. We then calculate the speedup based on these run times, where the full stochastic problem
is ran once. Average speedup is reported along with 95% confidence intervals, estimated using bootstrapping.

For cost and feasibility evaluation, we use the investment decisions from the reduced model to solve the full opera-
tional problem for each of the scenarios, both in-sample and out-of-sample. This allows us to compute the expected



54 7. European case study

system cost and the expected number of time steps with loss of load. For both in-sample and out-of-sample evalua-
tions, we report the relative regret compared to the full stochastic solution based on these costs along with confidence
intervals to show variation. Since k-means and k-medoids are run with ten different seeds, their confidence intervals
may be narrower than those of the greedy hull methods, which are deterministic in the way they are implemented.

7.3. Results

We want to understand the effect of all proposed methods on optimality, feasibility and runtime. We will do so one
by one, as different insight can be taken from each case. But first of all, we want to explain that we do not include
k-means in any of the detailed results plots. The reason for this is that using the original methods without worst-
case periods added led to consistently higher relative regret when applying k-means compared to the other methods,
while similar speedup was observed. This effect is illustrated in Figure 7.1, which provides an overview of all original
methods, without artificial representatives added. The values are averages over all in-sample scenarios and repeated
runs. To improve clarity in the subsequent figures, we thus exclude k-means from the remaining original experiment
plots.
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Figure 7.1: Total speedup and average relative regret (%) over all in-sample scenarios under all different original ex-
periment settings, without artificial representatives. The combination of colour and shape indicates the method used.
Run time includes both the selection of representative periods and the reduced model run.

Without k-means in the plot, we can better observe the differences in results. To start, we analyze the average speedup
versus the average relative regret across all in-sample scenarios for the different combinations of selection methods
and implementations: the original methods without artificial representatives, the original methods with worst-case
periods added per scenario, and the original methods with worst-case periods added before using blended weights.
This is illustrated in Figure 7.2. Afterwards, we delve deeper into the relative regret, loss, and speedup to gain clearer
insights into the differences between the selection methods and between per- and cross-scenario evaluations. We
also show the confidence intervals for the calculated averages.

When we look at the methods that achieve the highest speedup while also having better relative regret than alternative
approaches, the methods that include worst-case periods stand out. The difference in relative regret between using
worst-case periods with or without blended weights is very small in this case, as we also observed in other case studies
with a limited number of representative periods. It does seem that with blended weights, the maximum speedup
is lower than when not using blended weights. This makes sense, since blended weights introduce an additional
processing step.

For a speedup below 100 times faster, the original methods, without enhancement through worst-case periods, yield
the lowest relative regret. We saw this as well in previous case studies, where worst-case periods introduced a lower
bound for relative regret, where adding more periods did not necessarily led to a lower regret. This effect seems even
more pronounced in this case study. There are several possible explanations for this. First, the value of lost load was
relatively low, especially compared to estimates such as those by Netherlands Authority for Consumers and Markets
[22]. It was also ten times lower than what was used in previous case studies in this thesis. This could mean that, in
this case study, allowing some loss of load is more cost-effective than making additional investments, which makes
the more robust methods have a higher relative regret. Methods that incorporate worst-case periods tend to produce
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Figure 7.2: Average relative regret (%) versus average speedup (x) over all in-sample scenarios under different settings.
The combination of colour and shape indicates the method used.

representatives where there is high risk for loss of load, pushing the system to invest more conservatively. This can
result in suboptimal investment choices compared to just allowing limited loss of load, which is likely what happens
for the original methods. Second, the case includes only renewable energy sources as investable technologies. In
worst-case scenarios with low availability, the system is forced to invest even more in renewables to cover demand.
If availability approaches zero, the required capacity becomes unrealistically high and results in high investment
costs. In more realistic settings, other generation types with higher operational costs could be used to cover peaks or
extreme shortages. This would reduce total investment and overall costs. Therefore, we expect different outcomes in
case studies with a higher value of lost load and a more diverse set of investable technologies, which could be a future
extension of this research.

We observe a difference in the trajectory of relative regret between using only worst-case periods and combining them
with blended weights. With blended weights, relative regret remains stable across different numbers of representative
periods, so similar outcomes are reached for both the highest and lowest speedups. For the method using worst-case
periods without blended weights, we see some improvement in relative regret as speedup decreases. We believe
this is caused by the weighting scheme, which automatically assigns lower weights to the worst-case periods as the
total number of periods increases. This reduces their influence, making the method less conservative and improving
optimality. With a different weighting method, this trend might not be visible.

In-sample cost evaluation

We continue with the optimality outcomes shown in Figure 7.3. This figure presents the average relative regret across
all in-sample scenarios, using the fixed investments from the experimental setup. The results are shown separately
for different numbers of representative periods and for the different methods (original, with worst-case representa-
tives, and with worst-case and blended weights). The scale is consistent, allowing for fair comparison. To improve
readability, results for per-scenario and cross-scenario evaluations are placed in separate columns within each graph.

In Figure 7.3 we see that the earlier observed change regarding whether adding artificial representatives is beneficial
for the relative regret or not happens around 50 representative periods. With 50 representative periods, some combi-
nations of the original methods have a lower relative regret compared to when worst-case periods are added. The best
performing with this low number of representative periods is the greedy convex hull. When using more representative
periods, there is no longer a clear distinction between methods, and no single method consistently outperforms the
others. Their intervals often overlap, and the means are similar.

Differences between per-scenario and cross-scenario evaluations are also small and vary across selection methods.
For the hull methods without artificial representatives, per-scenario results show slightly lower means, although the
confidence intervals overlap, so no significant conclusion can be drawn. We expect the greedy hull algorithms to
perform better on smaller, more coherent sets, as their approximations can be more accurate. In the per-scenario
case, the sample size is smaller and the periods are likely more similar, which may support better approximations
than in the cross-scenario case, where all periods are combined into a single set.
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Figure 7.3: Average relative regret (%) over all in-sample scenarios under different settings. The combination of colour
and shape indicates the method used. The error bars show the 95% confidence intervals for the mean, based on
bootstrapping.

In-sample loss of load evaluation

Figure 7.4 shows the average number of additional time steps with loss of load compared to the stochastic solution,
for different methods and variations. As expected we see here the advantages of adding the worst-case periods. The
methods using these, with or without blended weights, result in significantly fewer hours with loss of load than the
original methods. This supports the idea that the increased costs reflect a trade-off for improved robustness. Even
with only 20 representative periods, there is no additional loss of load compared to the stochastic solution when using
worst-case periods.

Another observation from the figure is that the lower relative regret for the greedy convex hull method without artifi-
cial representatives and 20 representative periods is related to less loss of load compared to k-medoids. However, the
number of time steps with loss of load is still very high, over 1500 hours across the 10 scenarios. This suggests that a
perfect hull was not necessarily found, which aligns with earlier indications in previous chapters.

For the original methods, the reduction in costs with more representative periods seen in Figure 7.3 coincides with
a reduction in infeasibility. This suggests that later-added representatives help improve feasibility and, in turn, opti-
mality. For the methods using worst-case periods, however, the level of infeasibility remains fairly stable as more rep-
resentatives are added. This implies that most of the loss of load that could be avoided, or was optimal to avoid, was
already addressed by the worst-case periods and the first few representatives. Combined with the earlier observation
that cost reductions in these methods are likely due to the weighting scheme rather than additional representatives,
this suggests that the optimal number of representatives for achieving feasibility might be reached relatively early in
the process. Beyond that point, it might be more interesting to see the effect of different methods for calculating the
weights rather than adding more and more representatives to include extra information.

Out-of-sample evaluation

For the out-of-sample evaluation, we tested the fixed investment decisions on 9 unseen scenarios to check for any
major differences. Testing on more scenarios was not possible due to time considerations. Similar to what we ob-
served in Chapter 5, the trends remain consistent, and no new conclusions emerge from the figures. We see that with
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Figure 7.4: Average increase in time steps with loss of load over all in-sample scenarios under different settings. The
combination of colour and shape indicates the method used. The error bars show the 95% confidence intervals for
the mean, based on bootstrapping.

limited number of representatives, adding worst-case periods without blended weights again leads to no additional
loss of load compared to those of the full stochastic model. The relative regret is in that case most optimal among al-
ternatives. When increasing the number of representatives, costs are lower for the original methods, while loss of load
is consistently more reduced when using the methods that include worst-case periods. Among the original methods,
the greedy convex hull again shows best results. When using more representatives, the performance differences be-
tween k-medoids and the hull methods, show overlapping results, with no method clearly outperforming the others
consistently.

Across all methods, improvements tend to plateau after around 200 representative periods. The only exception is the
method using worst-case periods without blended weights, which continues to reduce costs. As noted earlier, this
is most likely due to the decreasing weights of the extreme scenarios as more representatives are added, leading to
less overly conservative investment decisions. For a full overview of these results, we refer to Appendix C, where the
relevant plots are provided. We do not discuss them in further detail here.

Runtime evaluation

Lastly, we evaluate the speedup when using the reduced models, which helps in assessing the trade-off between
accuracy and computational effort. Figure 7.5 shows the average total speedup for each method, including runtime
for both the selection of representative periods and the optimization of the reduced model.

In Figure 7.5, we see that for a small number of representative periods, e.g. 20, the hull methods are faster than k-
medoids. The confidence intervals for the means do slightly overlap and are larger for the hull methods, since they are
based on fewer runs. For k-medoids, the average is calculated over 10 runs (as 10 different seeds were used), whereas
for the hull methods, due to time limitations, only 5 runs were done. Still, both a lower relative regret and faster run
time means that the greedy convex hull is very attractive with this number of representatives.

When using more than 100 representative periods, the hull methods have lower speedup than k-medoids. This be-
comes more pronounced when using worst-case periods. To investigate this, we separated the total runtime into
processing time and optimization time; see Appendix C for the detailed plots. Notably, the decrease in speedup is
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Figure 7.5: Average speedup (x) of the reduced model compared to the full stochastic model, calculated by dividing
the total runtime of the full model by the total runtime of the reduced model. This includes the selection of represen-
tatives and creating and optimizing the reduced model. The combination of colour and shape indicates the method
used. The error bars show the 95% confidence intervals for the mean, based on bootstrapping.

mostly due to higher processing time. Further inspection of the implementation revealed that, for the greedy hull
method, the projected subgradient descent algorithm struggled to update these distances efficiently, spending more
time on small incremental updates. This is an implementation detail that can likely be improved. This became a
larger problem when multiple worst-case periods were added beforehand, as in the cross-scenario methods in the
top row. This explains why the cross-scenario approach is, in that case, slower than the per-scenario approach.

7.4. Conclusion

Overall, we can conclude that for this particular case study and for both in-sample and out-of-sample evaluation, the
newly investigated methods are an improvement over standard algorithms when a limited number of representatives
is used. This is desirable, as often the computational complexity will only allow such a limited number. We summarize
the findings once more below.

Although the original hull methods were not able to find a valid hull and did not result in additional loss of load, they
did show a lower relative regret and less infeasibility than the alternative k-medoids when using 20 representatives.
With more representatives, this distinction did not persist. This suggests that further work is needed to improve
the implementation or investigate whether more exact methods could make hull-based approaches more effective.
What we can conclude, however, is that both hull methods and k-medoids are preferable to k-means, which showed
consistently higher costs across all tested values for the number of representative periods.

We did, however, observe that using additional worst-case periods immensely improves feasibility. This came at the
cost of increased system costs in this setting. When computational limitations only allow a small number of represen-
tative periods to be used, in this case below 50 representatives for the total of 3650 days, the use of worst-case periods
can ensure no additional loss of load and best relative regret among alternatives. However, for a higher number of
representatives, the solution with worst-case periods results in higher relative regret than not using them, which does
not improve at a high rate, and original methods might be more suitable. However, loss of load is consistently higher
when using the original methods, so for robustness, the methods using worst-case periods should be used.
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We believe further cost improvements could be achieved by adapting the weighting scheme when using worst-case
periods. In particular, we observed that with Dirac weights, costs decreased as the number of representatives in-
creased, likely because the weight assigned to worst-case periods decreased, while the level of loss of load remained
stable. Although we initially hypothesized similar effects for blended weights, we saw the opposite. It is unclear
whether this is due to the concept of blended weights itself, or whether the implementation using projected subgra-
dient descent is simply not suited to large-scale cases where samples differ widely. Further research could explore
alternative weighting approaches.

In terms of selection methods, differences between per-scenario and cross-scenario approaches were relatively small
for the number of representatives tested. In terms of speed-up, the hull methods are faster than k-medoids for a
low number of representative periods. They get slower than the alternative when more representatives need to be
found. This effect was especially visible when using worst-case periods. It is likely linked to the implementation of
the subgradient descent, which fails to calculate distances to the hull correctly. When using worst-case periods, this
resulted in more distance calculations and therefore, an increase in runtime.

While these findings offer valuable insights, we also note that some of the case-specific choices may limit general-
ization. We could not extend the case study further due to the time limit of this thesis, but we do have advice on
future work, especially since we believe that the proposed methods might be even more beneficial in those cases.
For instance, cross-scenario selection may be more effective with fewer representatives or in systems with stronger
seasonal patterns, such as those with seasonal storage. Likewise, the cost difference introduced by using worst-case
periods might be smaller in cases with a higher, and more realistic, value of lost load, or with a more diverse set of
investable technologies beyond just renewables. We therefore recommend extending the current case study in future
work to include a broader set of generation technologies, a higher value of lost load, and additional complexity such
as storage. This would help clarify the effects of the proposed methods under more realistic system conditions.



8
Conclusion

In this thesis, we explored how representative periods can be used in stochastic programming formulations of energy
models, with a strong emphasis on ensuring feasibility before addressing optimality. We showed that by construct-
ing either a convex or a bounded conical hull over the original set of periods, feasibility for the full problem can be
guaranteed. This is a significant theoretical result, and when the greedy implementation method succeeds, it offers
strong advantages. However, identifying a suitable convex or bounded conical hull is not always straightforward,
and in some cases, it may not be possible at all. To address this, we proposed enhancements that focus on select-
ing extreme, worst-case periods that are particularly relevant for feasibility. These can be combined with clustering
approaches that emphasize cluster centers, enabling a balance between feasibility and optimality. Blended weights
further help to reduce over-conservativeness. We applied the method to a European case study to demonstrate its
potential, especially when we can only use a limited number of representatives. Further work could improve the cur-
rent approximation strategy for finding a hull and focus on further managing the conservativeness introduced by the
selected worst-case periods.

In this final chapter, we first provide a detailed summary of the main findings and revisit the research questions in
Section 8.1. Afterwards, we reflect on the limitations of our approach and highlight promising directions for future
research 8.2.

8.1. Summary of findings

In energy models, the demand for greater technical, spatial, and temporal detail has increased due to the growing
share of renewable energy sources. This has led to research focused on reducing model size while retaining essen-
tial characteristics. At the same time, uncertainty in both renewable energy availability and demand levels has made
models based on average predictions more costly in practice than those that explicitly incorporate uncertainty. While
various methods exist for modeling uncertainty, such as stochastic programming and robust optimization, these ap-
proaches further increase computational complexity, which is already a challenge in deterministic settings for large-
scale problems.

This thesis addressed that challenge by exploring strategies to reduce complexity in uncertain energy models. Specif-
ically, we focused on temporal reduction in stochastic programming, as this can complement other established tech-
niques such as scenario reduction and decomposition strategies. Among existing temporal reduction methods, rep-
resentative periods are the most widely used. Multiple approaches exist for using them, but no clear best method
has emerged, and earlier work has emphasized the importance of capturing worst-case periods to ensure feasibil-
ity. Therefore, we further investigated existing methods and the recently introduced hull-based approach, which fo-
cuses more explicitly on extreme periods, and applied it specifically to stochastic programming. While our research is
largely based on generation expansion planning, the underlying methods and theoretical contributions have broader
applicability across energy system models, although further research may be needed for those extensions. Below, we
will walk through each of our key findings.

First, we demonstrated how representative periods can be used effectively in stochastic programming. While earlier
work showed that representative periods were typically selected per scenario, we showed that they can also be shared
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across multiple scenarios, making them scenario-independent. This avoids redundancy caused by selecting similar
periods separately for each scenario. However, because the selection of representative periods relies on approximate
algorithms, these may perform better on smaller sets (per-scenario) than on larger, combined sets. In the final case
study, we did not observe a significant difference in average performance, both in runtime and cost, between the per-
scenario and cross-scenario approaches. Moreover, all theoretical results apply equally to both approaches, making
the choice between them less critical from a feasibility standpoint. Still, we believe that with improved approximation
algorithms, as discussed later, the benefits of the cross-scenario method may become more apparent.

We investigated and compared the two most common clustering approaches, k-means and k-medoids, to the greedy
convex hull and greedy bounded conical hull methods. In previous research, it became evident that among the clus-
tering algorithms k-means and k-medoids, performance is case-dependent, and neither provides guarantees regard-
ing feasibility. Our results support this observation and show that hull methods, based on finding either a convex
or a bounded conical hull as currently implemented in TulipaClustering.jl [23], can provide such feasibility guaran-
tees. We investigated this further and proved that in a stochastic programming formulation for generation expansion
planning, when the representatives indeed form one of the two hulls, a feasible solution can be constructed from the
optimal solution of the reduced model. Moreover, if the reduced model shows no loss of load, there will also be no
loss of load in the original model under this solution. When using blended weights, also implemented in TulipaClus-
tering.jl, which applies the convex or conical weights in the objective, we also proved that the solution provided by the
reduced model gives an upper bound on the system costs. This makes the use of these hull methods very interesting.
The results are based on the assumption that either the convex or bounded conical hull was indeed found, which
is not always the case in practice. We also ignored inter-period constraints, such as ramping or storage, which con-
nect periods chronologically and influence operational decisions. This is a common assumption. However, we still
proposed ways of handling these constraints. While this can ensure feasibility in the reduced model, as in the case
without inter-period constraints, it may limit the practical benefits in terms of computational efficiency or optimality.

To test the effect of the theoretical results, we compared a greedy implementation for finding the convex or bounded
conical hull with standard clustering algorithms, using specifically designed case studies. These case studies were
constructed with different levels of correlation and random noise, to explore where limitations in one of the methods
might occur. In the first case study, the samples were designed so that a convex hull could be formed with just three
representatives, which were easily found by the greedy algorithm. We saw that the theoretical results indeed applied:
feasibility was ensured by both the greedy convex hull and greedy bounded conical hull method, and thanks to this,
a close-to-optimal solution was found using fewer representative periods than required by the standard clustering
algorithms. As we increased the variety in two additional case studies, the hull methods still succeeded in finding a
hull and ensuring feasibility. They required slightly more representatives than in the first case, but still fewer than
the clustering methods. Only in the final case study was a hull not found, and all methods, both the hull-based and
the clustering algorithms, struggled to achieve the same low relative regret as before. This motivated us to investigate
how to enhance the methods further to ensure feasibility in more difficult cases.

Across all designed case studies, we also observed that while feasibility and optimality are related, a solution with no
loss of load does not necessarily mean the most optimal solution is found. Adding more representative periods after
identifying a hull can help improve optimality. For k-means and k-medoids, we also saw that a low relative regret was
not always associated with zero additional loss of load. In addition to this, the results of these two methods showed
considerable variation due to their random initialization. Using 10 different seeds, we observed large interquantile
intervals, with sharp increases and decreases in relative regret occurring from only small changes in the number of
representative periods.

To improve performance of the greedy hull methods in cases where all methods struggled to achieve low relative
regret, we examined a two-dimensional example that shared this difficulty. In two dimensions, we were able to con-
struct a bounding polytope around the convex hull of the samples, which led to artificially created representatives
that ensured feasibility. This bounding polytope can then be combined with for example k-means or k-medoids to
find representatives important for optimality rather than feasibility. With these artificial representatives, we were able
to achieve lower relative regret and zero infeasibility, with only a limited number of representatives. When increasing
the number of representatives, they resulted in a more conservative investment solution than alternatives, leading
to higher costs. Using blended weights, we could scale down the influence of the worst-case representative as more
representatives were added, reducing costs again.

From analyzing the two-dimensional case study behaviour, we were able to identify a specific worst-case representa-
tive that ensured feasibility in two dimensions, one with the highest demand and lowest availability-to-demand ratio,
which we proved. While not directly extendable to higher dimensions, this served as a useful heuristic for improving
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the earlier case study in which all methods struggled. By combining this single worst-case representative with one
of the original methods for selecting the remaining representatives, we saw a large improvement. Blending weights
again had a positive effect on costs, better balancing the influence of the extreme point.

Overall, when a convex or bounded conical hull was found, the results were very positive, with both approaches
performing similarly. However, in cases where a hull was not found, additional extreme, worst-case representatives
may be needed to maintain feasibility. To test the methods on a more realistic case, we applied them to a European
case study with high renewable penetration and multiple scenarios. The representative periods were created from 10
scenarios, and decisions were evaluated on 9 additional scenarios.

The results from the earlier case studies extend to the large European case study. While the original greedy hull
methods again failed to ensure feasibility, likely because they did not successfully identify a valid hull, adding worst-
case periods significantly reduces infeasibility. Even when using only 20 representatives, the additional number of
time steps with loss of load compared to the full stochastic solution was below 0. This comes at a higher relative regret,
but when using a limited number of representatives, this regret is still lower than not using artificial representatives.

When comparing the greedy convex hull methods with the clustering methods, we saw that for a low number of
representative periods, the greedy convex hull method performed best in terms of relative regret, among the orig-
inal methods. As more periods were added, the differences between the hull methods and the k-medoids method
became smaller, with overlapping confidence intervals. In terms of speed, the hull methods were faster with fewer
representatives, but slowed down as more representatives were included. Across the tested number of representa-
tive periods, no clear performance difference emerged between per-scenario and cross-scenario selection. Lastly,
k-means consistently performed worse in both cost and feasibility.

Differences between different methods and between per- or cross-scenario approaches were very small when using
worst-case periods. Differences between blended and non-blended weights also appeared small for a lower number
of representatives, where using non-blended weights was slightly better in terms of loss of load and relative regret.
Even with a higher number of representatives, blended weights did not yield improvements for the high relative regret.
However, we observed that when using Dirac weights, reducing the weight of worst-case representatives through the
natural effect of using more representatives lowered costs while maintaining stable levels of loss of load. This shows
that the weighting strategy is a promising area for future research, as it can largely influence the costs when the most
important representatives are already identified.

8.2. Discussion and future work

We showed how representative periods can be used in stochastic programming and, more generally, that when feasi-
bility is a key concern, alternative selection methods beyond standard clustering approaches can be more effective.
In particular, methods based on constructing a convex or bounded conical hull provide strong theoretical guarantees
and can significantly reduce the number of representative periods needed. However, these methods still require im-
provement before they can be reliably used as a default option for temporal reduction. Below, we give suggestions for
future work and discuss how the proposed methods could be integrated into other types of models, along with the
further research needed to support this. We also highlight assumptions made throughout this thesis that should be
investigated further.

First, we believe that the construction of a convex or bounded conical hull can be improved to perform even better on
large-scale studies. At the moment, a greedy implementation is used, which works well in smaller examples. However,
in larger settings such as the final case study, the projected gradient descent used to calculate distance to the hull
and the corresponding blended weights showed limitations. The current approach may fail to compute accurate
weights depending on parameters like the learning rate, number of iterations, or tolerance. While tuning these can
help, it may be worthwhile to explore alternative approximation algorithms that are more stable or better suited for
high-dimensional cases, without adding significant runtime. Improving this would have a strong positive impact on
the practical usability of the hull-based methods. Also, from the large European case study we noted that distance
calculations in the process of finding the hull often led to small differences and were sometimes incorrect, which
could be due to the large sample size or large differences between samples. As this is part of the hull implementation,
it could be interesting to see whether improvement here would even speed up the process more.

A second direction for future work is improving how worst-case representatives are identified and used to ensure fea-
sibility. This approach, which can act as a fallback when finding a full hull is not possible, already showed its potential.
In two dimensions, we could guarantee feasibility based on a well-defined worst-case representative, but the proof is
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not yet extended to higher dimensional models with additional constraints such as transmission, ramping and stor-
age. Defining artificial worst-case representatives differently or adapting the selection method may lead to stronger
guarantees and better applicability to more complex models. Since the worst-case representative already performed
well in practice, strengthening this method could offer significant benefits. Also, we saw from the European case study
that the method for calculating the weights had no influence on loss of load, while having a significant influence on
the costs. Future research in this field, with better refinement and testing of different weighting methods, could lead
to much better results in terms of costs and finding the balance between conservativeness and feasibility. Moreover,
currently the worst-case representatives for the European case study were identified per-scenario, why one over all
scenarios might be more optimal and less redundant.

These two directions both aim to improve feasibility when using representative periods. Currently, representative
periods are not selected explicitly based on feasibility, and no clear metric exists for evaluating this across different
selection methods. We therefore recommend that robustness and feasibility receive more attention when applying
temporal reduction techniques in energy models. Standard clustering algorithms like k-means and k-medoids are
often used due to their simplicity, but their dependence on random initialization leads to inconsistent results. In our
experiments, relative regret sometimes spiked from small changes in the number of representatives or due to random
seeds. Also, their inability to select points on the boundary lead consistently to more infeasibility. While they may
perform well in some cases, they do not offer the theoretical guarantees that methods like the hull-based approaches
can provide. Moreover, k-means in particular was not able to generalize well to the large case study and should only
be carefully used in energy model applications.

Another important area for future research is incorporating inter-period constraints. While our theoretical results
rely on ignoring these constraints, they are essential in many real-world models, especially when storage dynamics
are involved. We discussed possible ways to include ramping constraints, but acknowledge that most are either im-
practical or overly conservative. Further research should investigate how these constraints can be integrated with
representative periods, especially in cross-scenario settings. Extending our methods to other types of models may
require subtle changes to preserve feasibility guarantees or to achieve similar practical performance. However, this is
not a limitation specific to our approach, any method using representative periods must eventually address this issue.
We especially advise this to repeat cross-scenario and per-scenario experiments when seasonality due to storage is
added, as differences might be more distinctive in that case.

Throughout this thesis, we highlighted the trade-off between feasibility and optimality. Hull-based and worst-case-
focused methods are strong in ensuring feasibility, but may miss out on more central periods that are important for
cost-effectiveness. We believe future work should explore how to balance both the number of extreme representatives
and the number of total representatives necessary for improvements.

Another factor that deserves more attention is the choice of distance metric, normalization, and weighting strategy
when selecting representative periods. These are often set upfront without much analysis, but they can affect per-
formance. In our work, we used both cosine and squared euclidean distances, and while they performed similarly in
most cases, there were examples where one clearly outperformed the other. We also relied on a single normalization
approach and tested two weighting strategies, but many other options exist. A systematic review of these choices
could reveal which combinations work best under different modeling assumptions.

Lastly, for practical use in real-world studies, additional work is needed to refine how these methods are applied.
Temporal reduction techniques should not be considered in isolation but used in balance with other methods such as
scenario reduction, Benders decomposition, or spatial aggregation. Whether to prioritize spatial, temporal, or tech-
nical detail will depend heavily on the case and the model. A careful analysis should precede any decision. Moreover,
combining reduction techniques could allow higher resolution in other model dimensions, for instance, keeping spa-
tial detail while simplifying the temporal side, and we encourage future research to explore how these combinations
affect performance and solution quality.
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Feasibility in the hull for general stochastic

programming models

We extend Theorem 4.1 for Generation Expansion Planning to more arbitrary formulations of stochastic program-
ming problems. To do so, we consider a formulation of the following form:

min f (⃗x)+ ∑
j=(s,p)∈J

πs · g (y⃗ j ) (A.1a)

s.t. Ay⃗ j = d⃗ j ∀ j ∈J (A.1b)

B y⃗ j +C j x⃗ ≤ v⃗ j ∀ j ∈J (A.1c)

y⃗ j ∈Rm ∀ j ∈J (A.1d)

x⃗ ∈Rn
≥0 (A.1e)

Here the vector x⃗ represents the first stage decision variables which are made before the exact scenario is known.
The second stage variables are represented by the vector y⃗ j and we optimize their expected value. We then consider
two types of constraints: an equality constraint (A.1b) and inequality (A.1c) constraint. The equality constraint in
the formulation is just a matrix representation of the balance constraint which only consist of second stage decision
variables. The right hand-side is indexed by j , to allow different values per period. The inequality constraint covers
all other types of intra-period constraints. In this general formulation of Theorem 4.1, we do not allow inter-period
constraints.

For finding a representative set R for J , we assume that the representative periods are constructed based on d⃗ j and
the uncertain components of v⃗ j and C j . Here, the uncertain parts refer to the period-dependent components, which
we denote with the suffix u. When these are combined with the constant, period-independent parts (denoted with
the suffix c), we obtain the original vectors and matrices:

v⃗ j = v⃗c + v⃗u
j ∀ j ∈ J , (A.2)

C j =C c +C u
j ∀ j ∈ J . (A.3)

Define the reduced model based on representative periods R as follows:

min f (⃗x)+ ∑
r∈R

Wr · g (y⃗r ) (A.4a)

s.t. Ay⃗r = d⃗r ∀r ∈R (A.4b)

B y⃗r +Cr x⃗ ≤ v⃗r ∀r ∈R (A.4c)

Without imposing additional restrictions on v⃗c and C c , the previous theorems extend to this general formulation only
if the weights satisfy Condition 3. In contrast, when a conical hull is obtained instead of a convex hull (as in Condition
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2), further assumptions are required. We elaborate on this in the subsequent corollary.

Theorem A.1. Consider the stochastic programming formulation in (A.1) and find a representative set R perfectly
representing J , where the weights satisfy Condition 1 and 3. Let (⃗x⋆, y⃗⋆r ) denote the optimal solution to the reduced
model in (A.4).

For the original problem, we construct a solution by setting x⃗ = x⃗⋆ and defining the second-stage variables as follows:

y⃗ j =
∑

r∈R
λr, j · y⃗⋆r , ∀ j ∈J (A.5)

This solution will be a feasible solution to the original problem.

Proof. To show that the proposed solution is a feasible solution in the model formulated by (A.1), we have to verify
the equality constraints and then the inequality constraints. But first, we show that the based on Condition 3 and the
way that we clustered the weights are convex, we can deduce the following equalities:

d⃗ j =
∑

r∈R
λr, j d⃗r (A.6)

v⃗ j =
∑

r∈R
λr, j v⃗r (A.7)

C j =
∑

r∈R
λr, j Cr (A.8)

This will be used in the remainder of the proof. We start with the equality constraints given by (A.1b). Let j ∈J . We
rewrite the left-hand side of the equality constraints:

Ay⃗ j = A
∑

r∈R
λr, j · y⃗⋆r

= ∑
r∈R

λr, j · Ay⃗⋆r

= ∑
r∈R

λr, j · d⃗r

= d⃗ j

(A.9)

The last line is equal to the right-hand side. This proofs that all the equality constraints are still satisfied. For the
inequality constraints given by (A.1c), we perform similar steps:

B y⃗ j +C j x⃗ = B
∑

r∈R

(
λr, j · y⃗⋆r

)+C j x⃗

= ∑
r∈R

(
λr, j ·B y⃗⋆r

)+C j x⃗

≤ ∑
r∈R

λr, j (v⃗r −Cr x⃗)+C j x⃗

= v⃗ j −
∑

r∈R

(
λr, j Cr x⃗

)+C j x⃗

= v⃗ j

(A.10)

We conclude that the inequality constraints are also satisfied by the provided solution. Since both types of constraints
hold, the solution is feasible.

It is possible to extend this theorem to representative periods that form a bounded conical hull, so when the weights
satisfy Condition 2 rather than Condition 3. For the uncertain parts, we still ensure that the following holds:

v⃗u
j = ∑

r∈R
λr, j v⃗u

r (A.11)

C u
j = ∑

r∈R
λr, j C u

r (A.12)
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This remains unchanged from the previous formulation. However, for the certain parts, we also assume that the
following holds:

v⃗c ≥ ∑
r∈R

λr, j v⃗c (A.13)

C c x⃗ ≤ ∑
r∈R

λr, j C c x⃗ (A.14)

Comparison is done element-wise. Since both the weights and the first-stage variables are non-negative, it follows
that v⃗c must consist of non-negative entries and that C c must be a matrix with non-positive entries. We present the
implication as a corollary:

Corollary A.2. Consider the stochastic programming formulation in (A.1) and find a representative set R perfectly
representingJ , where the weights satisfy Condition 1 and 2. Additionally, assume that the entries of v⃗c are non-negative
and that the entries of C c are non-positive. Let (⃗x⋆, y⃗⋆r ) denote the optimal solution to the reduced model in (A.4).

For the original problem, we construct a solution by setting x⃗ = x⃗⋆ and defining the second-stage variables as follows:

y⃗ j =
∑

r∈R
λr, j · y⃗⋆r ∀ j ∈J (A.15)

This solution will be a feasible solution to the original problem.

Proof. We only need to show that the inequality constraint still holds under this assumption, the proof for the equality
constraint remains unchanged from Theorem A.1.

First, note that we can combine the assumptions in (A.13) and (A.14) with Condition 2 to obtain the following:

v⃗ j = v⃗c + v⃗u
j (A.16)

= v⃗c + ∑
r∈R

λr, j v⃗u
r (A.17)

≥ ∑
r∈R

λr, j
(
v⃗c + v⃗u

r

)
(A.18)

= ∑
r∈R

λr, j v⃗r (A.19)

A similar argument leads to the following inequality for C j :

C j =C c +C u
j (A.20)

=C c + ∑
r∈R

λr, j C u
r (A.21)

≤ ∑
r∈R

λr, j
(
C c +C u

r

)
(A.22)

= ∑
r∈R

λr, j Cr (A.23)

With these two inequalities, we can prove that the inequality constraints in the original model still hold. Let j ∈ J .
We start by rewriting the left-hand side of the inequality constraint (A.1c):

B y⃗ j +C j x⃗ = B
∑

r∈R
λr, j y⃗⋆r +C j x⃗

= ∑
r∈R

λr, j B y⃗⋆r +C j x⃗

≤ ∑
r∈R

λr, j (v⃗r −Cr x⃗)+C j x⃗

≤ v⃗ j −
∑

r∈R
λr, j Cr x⃗ +C j x⃗

≤ v⃗ j −C j x⃗ +C j x⃗

= v⃗ j

(A.24)
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Since the final line equals the right-hand side of the inequality constraint, the constraint is satisfied. We conclude
that the theorem holds.

We also extend this result by showing that, when using blended weights as in (4.27), the objective value of the con-
structed solution is equal to that of the reduced model.

Theorem A.3. Consider the stochastic programming formulation in (A.1) with the additional assumption that the cost
functions are linear. Find a representative set R perfectly representing J , where the weights satisfy Condition 1 and 3.
Let (⃗x⋆, y⃗⋆r ) denote the optimal solution to the reduced model in (A.4) when the weights are defined as in (4.27). Let z⋆

denote the corresponding objective value.

For the original problem, we define a solution by setting x⃗ = x⃗⋆ and defining the second-stage variables as follows:

y⃗ j =
∑

r∈R
λr, j · y⃗⋆r , ∀ j ∈J (A.25)

This solution is feasible for the original problem. Moreover, its objective value in the original problem is equal to z⋆.

Proof. In Theorem A.1, we already showed that the proposed decision variables form a feasible solution to the original
model. It remains to show that, using the defined weights, the cost of this solution equals the optimal objective
value of the reduced model. The objective function of the original model is given in (A.1). Substituting the proposed
solution into this expression gives:

f (⃗x⋆)+ ∑
j=(s,p)∈J

πs · g

( ∑
r∈R

λr, j · y⃗⋆r

)
(A.26)

By linearity of the function g , this is equal to:

f (⃗x⋆)+ ∑
j=(s,p)∈J

πs ·
∑

r∈R
λr, j · g (y⃗⋆r ) (A.27)

Reordering the sums and using (4.27) gives:

f (⃗x⋆)+ ∑
r∈R

Wr · g (y⃗⋆r ) (A.28)

This is exactly the objective function of the reduced model with blended weights. Since the decision variables are
optimal for that model, the resulting cost equals z⋆. This completes the proof.
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Feasibility and optimality results

Method Representatives In-sample Out-of-sample
Relative regret (%) LoL Relative regret (%) LoL

greedy conical hull 3 3.8 -7 3.9 -7
5 1.8 0 2.3 0
7 0.1 0 0.1 0
9 0.1 0 0.1 0

11 0.1 0 0.1 0
13 0.1 0 0.1 0
15 0.1 0 0.1 0
17 0.0 0 0.1 0
19 0.0 0 0.1 0
21 0.0 0 0.1 0
23 0.0 0 0.1 0
25 0.0 0 0.1 0
27 0.0 0 0.1 0
29 0.0 0 0.1 0
31 0.0 0 0.1 0
33 0.0 0 0.1 0
35 0.0 0 0.1 0
37 0.0 0 0.0 0
39 0.0 0 0.0 0
41 0.0 0 0.0 0

greedy convex hull 3 6.2 -7 6.2 -7
5 0.2 0 0.3 0
7 0.1 0 0.1 0
9 0.1 0 0.1 0

11 0.1 0 0.1 0
13 0.1 0 0.1 0
15 0.0 0 0.1 0
17 0.0 0 0.0 0
19 0.0 0 0.1 0
21 0.0 0 0.1 0
23 0.0 0 0.1 0
25 0.0 0 0.1 0
27 0.0 0 0.1 0
29 0.0 0 0.1 0
31 0.0 0 0.1 0
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33 0.0 0 0.1 0
35 0.0 0 0.1 0
37 0.0 0 0.1 0
39 0.0 0 0.1 0
41 0.0 0 0.0 0

k-Means 3 163.1 686 130.4 531
5 86.6 357 67.9 268
7 44.2 190 37.4 125
9 14.7 56 14.5 49

11 1.7 10 1.7 10
13 1.0 5 1.1 5
15 0.0 0 0.1 0
17 12.3 42 12.3 42
19 0.0 0 0.0 0
21 0.0 0 0.1 0
23 0.0 0 0.0 0
25 0.0 0 0.0 0
27 0.0 0 0.0 0
29 0.0 0 0.0 0
31 0.0 0 0.0 0
33 0.0 0 0.0 0
35 0.0 0 0.0 0
37 0.0 0 0.0 0
39 0.0 0 0.0 0
41 0.0 0 0.0 0

k-Medoids 3 141.8 580 113.1 438
5 86.6 361 68.4 287
7 54.7 213 45.4 165
9 12.9 47 12.9 49

11 2.1 10 2.2 10
13 1.0 5 1.1 5
15 0.0 0 0.1 0
17 12.1 42 12.1 40
19 0.0 0 0.0 0
21 0.0 0 0.1 0
23 0.0 0 0.0 0
25 0.0 0 0.0 0
27 0.0 0 0.0 0
29 0.0 0 0.0 0
31 0.0 0 0.0 0
33 0.0 0 0.0 0
35 0.0 0 0.0 0
37 0.0 0 0.0 0
39 0.0 0 0.0 0
41 0.0 0 0.0 0

Table B.1: Relative regret (%) and increase in time steps with loss of load (LoL) for the in-sample and out-of-sample
experiments on the "Centered cluster" case study. Multiple combinations of the number of representative periods
and methods for finding the representative periods are shown. Only the results for the squared euclidean distance are
in the table.

Method Representatives In-sample Out-of-sample
Relative regret (%) LoL Relative regret (%) LoL

greedy convex hull 3 3.1 -7 3.2 -7
5 0.6 0 0.7 0
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7 0.5 0 0.6 0
9 0.2 0 0.2 0

11 0.1 0 0.1 0
13 0.1 0 0.0 0
15 0.0 0 0.0 0
17 0.0 0 0.0 0
19 0.1 0 0.0 0
21 0.1 0 0.0 0
23 0.0 0 0.0 0
25 0.0 0 0.0 0
27 0.0 0 0.0 0
29 0.0 0 0.0 0
31 0.0 0 0.0 0
33 0.0 0 0.0 0
35 0.0 0 0.0 0
37 0.0 0 0.0 0
39 0.0 0 0.0 0
41 0.0 0 0.0 0

k-Means 3 143.1 622 114.5 480
5 71.0 286 55.5 223
7 50.6 192 41.5 136
9 13.5 52 13.5 49

11 1.7 10 1.7 10
13 1.0 5 1.0 5
15 0.0 0 0.1 0
17 11.9 41 11.9 39
19 0.0 0 0.0 0
21 0.0 0 0.1 0
23 0.0 0 0.0 0
25 0.0 0 0.0 0
27 0.0 0 0.0 0
29 0.0 0 0.0 0
31 0.0 0 0.0 0
33 0.0 0 0.0 0
35 0.0 0 0.0 0
37 0.0 0 0.0 0
39 0.0 0 0.0 0
41 0.0 0 0.0 0

k-Medoids 3 92.1 424 72.7 295
5 56.3 235 46.8 179
7 26.7 101 26.4 96
9 25.8 91 25.8 84

11 0.0 0 0.1 0
13 0.0 0 0.1 0
15 0.0 0 0.1 0
17 0.0 0 0.1 0
19 0.0 0 0.1 0
21 0.0 0 0.0 0
23 0.0 0 0.0 0
25 0.0 0 0.0 0
27 0.0 0 0.0 0
29 0.0 0 0.0 0
31 0.0 0 0.0 0
33 0.0 0 0.0 0
35 0.0 0 0.0 0
37 0.0 0 0.0 0
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39 0.0 0 0.0 0
41 0.0 0 0.0 0

Table B.2: Relative regret (%) and increase in time steps with loss of load (LoL) for the in-sample and out-of-sample ex-
periments on the "Convex" case study. Multiple combinations of the number of representative periods and methods
for finding the representative periods are shown. Only the results for the cosine distance are in the table.

Method Representatives In-sample Out-of-sample
Relative regret (%) LoL Relative regret (%) LoL

greedy conical hull 3 8.7 -7 8.3 -7
5 1.0 0 0.8 0
7 0.9 0 0.7 0
9 0.8 0 0.7 0

11 0.5 0 0.4 0
13 0.4 0 0.3 0
15 0.3 0 0.2 0
17 0.3 0 0.2 0
19 0.1 0 0.1 0
21 0.1 0 0.1 0
23 0.1 0 0.1 0
25 0.1 0 0.1 0
27 0.1 0 0.1 0
29 0.1 0 0.1 0
31 0.1 0 0.0 0
33 0.0 0 0.0 0
35 0.0 0 0.0 0
37 0.0 0 0.1 0
39 0.0 0 0.1 0
41 0.0 0 0.1 0

greedy convex hull 3 13.1 11 12.3 9
5 1.0 0 1.1 0
7 0.7 0 0.9 0
9 0.6 0 0.6 0

11 0.5 0 0.6 0
13 0.4 0 0.5 0
15 0.4 0 0.4 0
17 0.2 0 0.3 0
19 0.2 0 0.4 0
21 0.2 0 0.4 0
23 0.1 0 0.3 0
25 0.1 0 0.3 0
27 0.1 0 0.3 0
29 0.1 0 0.3 0
31 0.1 0 0.3 0
33 0.1 0 0.2 0
35 0.1 0 0.2 0
37 0.1 0 0.2 0
39 0.0 0 0.1 0
41 0.0 0 0.1 0

k-Means 3 301.1 1608 329.7 1911
5 280.0 1283 309.5 1628
7 180.8 682 212.6 803
9 10.9 82 13.4 111

11 10.8 81 13.2 110
13 116.4 343 124.5 382
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15 0.3 0 0.4 0
17 0.3 0 0.4 0
19 0.2 0 0.3 0
21 0.2 0 0.2 0
23 0.2 0 0.2 0
25 0.1 0 0.2 0
27 0.1 0 0.2 0
29 0.1 0 0.2 0
31 0.1 0 0.2 0
33 0.1 0 0.2 0
35 0.1 0 0.2 0
37 0.1 0 0.1 0
39 0.1 0 0.1 0
41 0.1 0 0.1 0

k-Medoids 3 202.2 888 233.3 1051
5 196.4 859 215.8 998
7 159.0 565 192.4 808
9 10.8 80 13.1 109

11 10.8 82 13.2 111
13 120.9 328 128.5 385
15 0.2 0 0.2 0
17 2.4 15 2.3 20
19 4.5 31 4.4 40
21 0.1 0 0.1 0
23 0.1 0 0.1 0
25 0.1 0 0.1 0
27 0.1 0 0.1 0
29 0.1 0 0.1 0
31 0.0 0 0.1 0
33 0.1 0 0.1 0
35 0.0 0 0.1 0
37 0.1 0 0.1 0
39 0.0 0 0.1 0
41 0.0 0 0.1 0

Table B.3: Relative regret (%) and increase in time steps with loss of load (LoL) for the in-sample and out-of-sample
experiments on the "Centered cluster" case study. Multiple combinations of the number of representative periods
and methods for finding the representative periods are shown. Only the results for the squared euclidean distance are
in the table.

Method Representatives In-sample Out-of-sample
Relative regret (%) LoL Relative regret (%) LoL

greedy convex hull 3 6.0 -7 5.7 -7
5 0.5 0 0.5 0
7 0.5 0 0.6 0
9 0.3 0 0.5 0

11 0.1 0 0.3 0
13 0.3 3 0.5 3
15 0.2 0 0.5 0
17 0.2 0 0.3 0
19 0.2 0 0.4 0
21 0.1 0 0.3 0
23 0.1 0 0.3 0
25 0.1 0 0.3 0
27 0.1 0 0.2 0
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29 0.1 0 0.2 0
31 0.1 0 0.2 0
33 0.1 0 0.2 0
35 0.0 0 0.1 0
37 0.0 0 0.1 0
39 0.0 0 0.1 0
41 0.0 0 0.1 0

k-Means 3 309.4 1624 341.5 1985
5 246.6 1179 283.2 1422
7 184.3 733 212.6 877
9 10.8 81 13.2 110

11 10.7 80 13.1 109
13 111.6 291 118.8 341
15 0.3 0 0.4 0
17 0.3 0 0.4 0
19 0.3 0 0.3 0
21 0.2 0 0.3 0
23 0.2 0 0.2 0
25 0.2 0 0.2 0
27 0.1 0 0.2 0
29 0.1 0 0.2 0
31 0.1 0 0.2 0
33 0.1 0 0.2 0
35 0.1 0 0.2 0
37 0.1 0 0.2 0
39 0.1 0 0.1 0
41 0.1 0 0.1 0

k-Medoids 3 211.6 973 244.5 1122
5 186.7 752 204.2 903
7 152.4 583 166.5 654
9 131.7 441 151.8 548

11 125.8 374 143.2 474
13 0.2 0 0.2 0
15 52.9 159 55.3 181
17 2.9 23 3.0 25
19 0.3 0 0.4 0
21 0.1 0 0.1 0
23 0.1 0 0.1 0
25 2.5 17 2.5 23
27 0.1 0 0.1 0
29 0.1 0 0.1 0
31 0.0 0 0.1 0
33 0.0 0 0.1 0
35 0.0 0 0.1 0
37 0.0 0 0.1 0
39 0.0 0 0.1 0
41 0.0 0 0.1 0

Table B.4: Relative regret (%) and increase in time steps with loss of load (LoL) for the in-sample and out-of-sample
experiments on the "Centered cluster" case study. Multiple combinations of the number of representative periods
and methods for finding the representative periods are shown. Only the results for the cosine distance are in the
table.

Method Representatives In-sample Out-of-sample
Relative regret (%) LoL Relative regret (%) LoL
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greedy conical hull 3 52.2 480 103.7 618
5 50.8 444 93.2 568
7 8.7 107 40.9 226
9 8.4 117 43.7 242

11 4.8 48 40.5 161
13 4.8 30 39.6 151
15 4.7 39 39.9 152
17 4.2 36 40.5 164
19 3.6 34 41.4 159
21 1.7 11 35.6 141
23 1.9 9 35.9 141
25 1.7 19 35.8 155
27 1.7 16 35.8 149
29 0.5 -2 35.3 137
31 0.5 20 34.2 168
33 0.5 19 34.1 171
35 0.2 13 28.6 149
37 0.2 13 28.7 149
39 0.0 3 29.0 132
41 0.0 3 29.3 132

greedy convex hull 3 50.8 301 70.1 436
5 2.3 -4 35.9 123
7 1.0 -9 30.4 109
9 0.7 -10 30.6 109

11 0.4 -9 30.8 123
13 0.6 -9 25.6 110
15 0.6 -7 26.5 129
17 0.6 -8 25.7 114
19 0.6 -7 25.1 108
21 0.6 -8 24.9 119
23 0.3 -2 31.0 137
25 0.2 -2 31.8 136
27 0.2 -2 30.8 138
29 0.2 -2 30.7 123
31 0.2 -2 28.8 121
33 0.2 -2 28.9 127
35 0.1 0 28.0 129
37 0.1 0 27.7 132
39 0.1 -1 28.4 130
41 0.1 -1 28.6 133

k-Means 3 194.0 1358 238.2 1365
5 190.9 1269 234.4 1270
7 61.0 492 108.0 604
9 59.9 470 106.1 573

11 28.7 254 73.6 367
13 25.5 227 70.4 357
15 6.7 98 47.3 240
17 8.3 106 50.1 237
19 8.4 102 50.3 244
21 6.2 86 47.3 222
23 5.3 74 45.8 211
25 5.5 78 45.8 211
27 3.7 62 42.6 199
29 2.0 40 38.3 169
31 1.8 36 38.5 172
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33 2.5 52 40.3 180
35 2.0 37 39.7 179
37 1.0 24 37.1 167
39 1.6 33 38.9 174
41 1.4 29 38.7 173

k-Medoids 3 146.3 1025 192.7 1086
5 146.9 975 192.8 1074
7 53.3 432 99.5 544
9 54.1 430 99.9 548

11 50.2 403 96.3 516
13 8.9 116 46.2 242
15 30.2 260 75.9 384
17 9.8 102 47.4 231
19 8.6 106 45.5 237
21 32.9 265 79.6 406
23 3.2 58 38.6 194
25 1.3 35 34.9 171
27 0.9 30 35.2 176
29 0.8 26 34.9 166
31 1.7 37 35.2 172
33 2.7 48 36.4 180
35 0.4 14 32.2 157
37 0.1 7 29.3 144
39 1.1 24 35.1 160
41 0.4 13 34.5 156

Table B.5: Relative regret (%) and increase in time steps with loss of load (LoL) for the in-sample and out-of-sample
experiments on the "Separate cluster with spatial correlation" case study. Multiple combinations of the number of
representative periods and methods for finding the representative periods are shown. Only the results for the squared
euclidean distance are in the table.

Method Representatives In-sample Out-of-sample
Relative regret (%) LoL Relative regret (%) LoL

greedy convex hull 3 14.7 164 46.2 308
5 14.6 162 40.6 290
7 14.0 159 40.3 286
9 0.3 -4 27.2 125

11 0.2 -4 30.6 128
13 0.2 -2 30.3 142
15 0.1 0 29.6 141
17 0.1 2 28.6 129
19 0.1 1 28.2 133
21 0.1 0 28.0 144
23 0.1 0 28.7 147
25 0.1 -2 28.3 127
27 0.1 -2 29.5 136
29 0.1 -1 29.5 140
31 0.1 -1 29.0 141
33 0.1 -1 29.1 133
35 0.1 -1 29.2 140
37 0.1 -1 28.2 127
39 0.1 -1 28.1 124
41 0.1 -1 28.2 127

k-Means 3 194.0 1358 238.2 1365
5 190.8 1287 234.3 1292
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7 41.3 348 86.5 467
9 41.5 335 87.3 461

11 15.7 173 59.3 308
13 16.5 186 60.5 317
15 9.0 118 51.8 258
17 8.7 103 50.6 248
19 11.2 129 55.0 262
21 6.5 96 47.7 239
23 3.4 62 42.1 197
25 5.5 76 45.8 209
27 3.0 53 40.1 183
29 2.0 39 40.0 185
31 1.6 34 38.6 177
33 2.7 51 41.4 193
35 2.0 38 39.8 181
37 1.7 35 39.4 179
39 1.6 35 39.2 179
41 1.7 31 39.3 182

k-Medoids 3 142.5 910 189.6 1026
5 52.7 453 100.2 563
7 5.2 98 38.9 239
9 51.3 403 97.4 523

11 2.8 68 37.1 210
13 1.1 34 34.7 180
15 1.0 33 34.1 166
17 0.6 19 34.1 160
19 0.4 16 28.9 148
21 0.5 14 34.3 160
23 0.3 10 28.6 142
25 0.1 4 29.1 137
27 0.2 8 28.4 151
29 0.1 3 28.7 137
31 0.1 4 28.9 139
33 0.2 7 31.6 139
35 0.1 4 28.6 137
37 0.1 3 28.5 135
39 0.0 3 28.9 138
41 0.0 1 28.6 133

Table B.6: Relative regret (%) and increase in time steps with loss of load (LoL) for the in-sample and out-of-sample
experiments on the "Separate clusters with spatial correlation" case study. Multiple combinations of the number of
representative periods and methods for finding the representative periods are shown. Only the results for the cosine
distance are in the table.

Method Representatives In-sample Out-of-sample
Relative regret (%) LoL Relative regret (%) LoL

greedy conical hull 3 78.8 431 83.6 497
5 79.4 394 82.8 416
7 83.4 453 87.4 512
9 82.8 412 85.7 435

11 28.9 254 26.1 264
13 28.3 256 25.5 260
15 29.6 261 26.8 272
17 27.6 247 25.2 251
19 22.8 195 21.4 201
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21 5.1 84 8.9 99
23 5.0 84 8.9 99
25 5.0 82 8.9 98
27 5.0 79 8.3 88
29 3.7 66 7.8 80
31 3.9 66 7.8 83
33 4.1 68 7.9 86
35 3.7 62 7.1 81
37 0.7 21 3.2 46
39 0.6 17 2.9 40
41 0.9 19 3.9 43

greedy convex hull 3 118.5 710 105.6 694
5 100.8 611 82.9 564
7 109.3 592 91.9 519
9 108.6 567 91.2 532

11 114.8 566 98.2 544
13 120.5 607 104.4 578
15 85.4 436 74.3 466
17 86.4 413 74.3 434
19 86.6 441 74.4 468
21 85.9 456 73.4 449
23 86.0 454 73.4 463
25 79.4 428 65.6 423
27 80.8 391 67.7 403
29 54.1 335 45.0 365
31 53.9 361 45.1 363
33 54.3 364 45.4 354
35 3.4 59 3.6 78
37 3.4 59 3.4 59
39 3.0 53 3.2 70
41 3.1 54 3.0 51

k-Means 3 89.4 748 77.8 734
5 85.6 690 73.7 635
7 64.8 596 55.2 542
9 59.4 518 49.8 478

11 65.2 567 54.8 532
13 42.5 426 34.9 372
15 38.9 365 32.2 343
17 30.9 320 27.5 303
19 33.7 358 29.6 328
21 29.9 316 24.2 324
23 33.9 324 27.2 316
25 21.0 224 16.7 220
27 18.9 202 16.1 193
29 16.8 186 13.6 181
31 16.2 186 13.7 196
33 10.5 139 9.9 145
35 11.9 151 10.3 143
37 9.8 121 10.0 133
39 15.3 163 12.3 186
41 9.9 116 6.5 109

k-Medoids 3 83.1 694 69.7 655
5 85.9 693 71.5 606
7 74.6 623 60.9 587
9 64.6 543 54.4 534

11 56.1 483 49.0 465
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13 48.0 461 37.6 374
15 48.2 477 41.3 462
17 33.7 320 30.9 347
19 30.3 343 26.1 341
21 37.1 378 30.9 359
23 32.3 344 25.0 311
25 17.5 217 16.9 248
27 15.6 155 11.5 164
29 15.6 179 12.8 185
31 10.6 139 9.8 144
33 7.0 96 8.5 108
35 6.6 87 9.3 110
37 9.4 121 8.4 128
39 10.9 131 9.6 133
41 6.3 76 5.3 83

Table B.7: Relative regret (%) and increase in time steps with loss of load (LoL) for the in-sample and out-of-sample
experiments on the "Separate cluster without spatial correlation" case study. Multiple combinations of the number of
representative periods and methods for finding the representative periods are shown. Only the results for the squared
euclidean distance are in the table.

Method Representatives In-sample Out-of-sample
Relative regret (%) LoL Relative regret (%) LoL

greedy convex hull 3 120.5 815 108.5 768
5 95.4 694 86.4 658
7 59.6 459 49.2 448
9 62.2 507 49.7 476

11 14.2 175 15.5 164
13 15.4 197 17.1 225
15 14.1 176 14.0 176
17 14.1 171 14.0 181
19 13.7 182 14.1 176
21 11.0 146 10.7 158
23 7.2 85 8.3 94
25 7.2 94 8.5 93
27 7.5 93 8.3 103
29 7.4 95 8.3 105
31 7.7 97 9.3 123
33 8.1 100 9.3 127
35 8.1 103 9.3 123
37 8.2 103 9.4 125
39 7.0 79 6.9 106
41 5.0 57 5.3 83

k-Means 3 89.3 747 77.7 733
5 87.1 714 75.1 654
7 70.1 656 58.9 605
9 55.6 532 46.4 498

11 63.1 563 54.1 540
13 39.2 405 32.7 374
15 37.2 365 31.5 367
17 30.7 318 26.1 293
19 34.6 372 28.8 341
21 31.1 321 24.2 307
23 31.5 312 25.7 293
25 19.4 199 15.4 189
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27 19.8 202 16.3 198
29 15.8 175 12.5 163
31 15.6 178 12.4 187
33 12.7 170 12.1 170
35 11.9 152 10.3 164
37 9.7 119 9.1 145
39 15.2 166 12.2 179
41 9.4 113 6.9 111

k-Medoids 3 83.0 685 69.6 655
5 81.0 653 67.9 575
7 55.7 532 49.8 528
9 52.0 499 46.1 501

11 38.7 379 35.2 391
13 27.7 262 22.9 262
15 28.4 320 26.8 319
17 13.1 159 14.2 159
19 10.9 150 10.7 161
21 14.3 160 11.6 163
23 11.5 121 10.2 141
25 12.3 152 11.7 161
27 10.9 141 9.8 151
29 5.8 70 6.2 81
31 5.7 73 6.2 85
33 3.0 47 4.3 62
35 4.6 55 5.0 72
37 4.4 64 6.3 86
39 4.3 55 4.8 62
41 1.2 25 2.9 37

Table B.8: Relative regret (%) and increase in time steps with loss of load (LoL) for the in-sample and out-of-sample
experiments on the "Separate clusters without spatial correlation" case study. Multiple combinations of the number
of representative periods and methods for finding the representative periods are shown. Only the results for the cosine
distance are in the table.
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Figure C.1: Average relative regret (%) over all out-of-sample scenarios under different settings. The combination of
colour and shape indicates the method used. The error bars show the 95% confidence intervals for the mean, based
on bootstrapping.
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Figure C.2: Average increase in time steps with loss of load over all out-of-sample scenarios under different settings.
The combination of colour and shape indicates the method used. The error bars show the 95% confidence intervals
for the mean, based on bootstrapping.
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Figure C.3: Average runtime spent finding representatives for the reduced model. The combination of colour and
shape indicates the method used. The error bars show the 95% confidence intervals for the mean, based on boot-
strapping.
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Figure C.4: Average total runtime spent on optimizing the reduced model. The combination of colour and shape
indicates the method used. The error bars show the 95% confidence intervals for the mean, based on bootstrapping.



D
Code and input data

As part of this thesis, the code implementing all methods is publicly available on GitHub [15]. Due to file size lim-
itations, some data files (both input and output) are stored in two separate online data repositories as zipped files
[16, 17]. Instructions for downloading these files are provided in the GitHub repository, and direct links to both the
code and data repositories are listed in the bibliography.

The hardware specifications for the laptop on which all experiments were run are as follows: AMD Ryzen 7 PRO
5850U processor, 8 cores, 16 threads, 1.90 GHz base clock speed, integrated Radeon Graphics. 16 GB RAM. Windows
11 Enterprise 24H2, 64-bit. Only the full stochastic problem for the European case study was ran on a separate TNO
computer due to storage limitations of the laptop.
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