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Summary 

 I 

Summary 

As materials degrade over time and traffic loads increase, monitoring the structural health 

of concrete infrastructures has become crucial. Structural health monitoring (SHM) and 

non-destructive evaluation (NDE) techniques are gaining attention for their role in main-

taining the functionality and safety of these structures. One of the most effective methods 

is tracking stress changes in concrete, as it allows engineers to detect potential weaknesses 

and address them proactively, thus preventing catastrophic failures and improving safety. 

To monitor these changes, bulk wave-based acoustoelasticity is chosen for its promise in 

long-term monitoring and tracking of internal stress distributions. 

However, applying bulk wave-based acoustoelasticity to concrete presents significant 

challenges. These challenges arise from three main areas: data processing techniques, 

acoustoelastic theory, and heterogeneity of concrete. First, there is limited research on 

data processing techniques for extracting bulk wave properties specific to concrete, re-

sulting in a gap in understanding how these techniques apply to this material. Second, the 

existing acoustoelastic theory is primarily developed for scenarios where bulk waves 

propagate parallel or orthogonal to the principal deformation directions. This focus limits 

its applicability to concrete, where the principal deformation directions often vary under 

different loading conditions. Third, the meso-scale heterogeneity of concrete causes 

strong interactions between bulk waves, at frequencies of around a hundred kilohertz, and 

heterogeneities within the concrete. These interactions, known as scattering, significantly 

impact the propagation and spatial distribution of bulk waves, making interpretation chal-

lenging. This dissertation explores solutions to these challenges and offers a theoretical 

framework for engineers and researchers to monitor stress and strain changes in concrete 

using acoustoelasticity. 

Our investigation into data processing techniques focuses on retrieving two categories of 

bulk wave properties from experiments: travel time changes and diffusive properties. We 

use wave interferometry techniques to measure travel time changes resulting from stress 

changes, comparing the wavelet cross-spectrum (WCS) technique and the stretching tech-

nique. The results show consistency in the velocity changes retrieved by both techniques. 

For diffusive properties like diffusivity and dissipation, we fit these properties through 

the diffusion equation. Adjustments are made to account for boundary effects by incor-

porating reflected energy from so-called image sources. 

We further revisit the current acoustoelastic theory to address bulk waves propagating at 

angles to the principal deformation directions. Our findings reveal that while shear strains 

have a minimal impact on longitudinal wave velocities, they significantly affect trans-

verse wave velocities. Based on this, we propose a simplified acoustoelastic expression 

for inclined propagating ballistic waves, primarily longitudinal, in a plane stress state, and 

validate it experimentally. 
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II 

Understanding acoustoelastic theory alone is insufficient for interpreting travel time 

changes of diffuse waves in concrete; the energy ratio between longitudinal and trans-

verse waves is also crucial. To address this, we propose a bulk wave energy transport 

model to estimate this energy ratio based on the angular frequency of bulk waves, the 

volume fraction of coarse aggregates, and the characteristic radius of these aggregates. 

The validity of the proposed model is confirmed by comparing theoretical diffusivities 

with experimental values, which are fitted from the diffusion equation while accounting 

for boundary reflections. 

To investigate travel time changes of diffuse bulk waves, we integrate the previously dis-

cussed acoustoelastic theory with the bulk wave energy transport model. The energy 

transport model estimates the energy ratio between longitudinal and transverse waves and 

the time required for this ratio to equilibrate. Using Monte Carlo simulations in conjunc-

tion with acoustoelastic theory, we estimate the travel time changes for diffuse longitudi-

nal and transverse waves. These estimates are then weighted by the energy ratio to predict 

travel time changes, which are compared with experimental observations retrieved using 

the WCS techniques. 

This dissertation provides a theoretical foundation for applying bulk wave-based acous-

toelasticity to concrete. Additionally, the revisited acoustoelastic theory may be applica-

ble to other compressible, statistically isotropic solids, such as metals. The scattering the-

ory-based model also offers a valuable tool for investigating scatterer properties in con-

crete. 
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Samenvatting 

Aangezien materialen in de loop der tijd degraderen en verkeersbelastingen toenemen, is 

het monitoren van de constructieve toestand van betonconstructies in de infrastructuur 

cruciaal geworden. Monitoren en niet-destructieve evaluatietechnieken krijgen steeds 

meer aandacht vanwege hun rol bij het behouden van de functionaliteit en veiligheid van 

deze constructies. Een van de meest effectieve methoden is het volgen van spanningsver-

anderingen in beton, omdat dit ingenieurs in staat stelt potentiële zwaktes te detecteren 

en proactief aan te pakken, waardoor catastrofale storingen worden voorkomen en de vei-

ligheid wordt verbeterd. Voor het monitoren van deze spanningsveranderingen wordt 

akoesto-elasticiteit van bulkgoven gekozen vanwege het potentieel voor langdurige mo-

nitoring en het volgen van interne spanningsverdelingen. 

Het toepassen van akoesto-elasticiteit van bulkgolven op beton brengt echter aanzienlijke 

uitdagingen met zich mee. Deze uitdagingen komen voort uit drie hoofdgebieden: gege-

vensverwerkingstechnieken, akoesto-elastische theorie en de heterogeniteit van beton. 

Ten eerste is er beperkte onderzoek naar gegevensverwerkingstechnieken voor het extra-

heren van bulkgolfeigenschappen die specifiek zijn voor beton, wat resulteert in een te-

kort aan begrip van hoe deze technieken toepasbaar zijn op dit materiaal. Ten tweede is 

de bestaande akoesto-elastische theorie voornamelijk ontwikkeld voor scenario’s waarin 

bulkgolven parallel of loodrecht op de belangrijkste vervormingsrichtingen voortbewe-

gen. Deze focus beperkt de toepasbaarheid op beton, waar de belangrijkste vervormings-

richtingen vaak variëren onder verschillende belastingcondities. Ten derde veroorzaakt 

de heterogeniteit op meso-schaal van beton sterke interacties tussen bulkgolven, bij fre-

quenties van rond de honderd kilohertz, en heterogeniteiten binnen het beton. Deze inter-

acties, bekend als verstrooiing, hebben een significante impact op de voortplanting en 

ruimtelijke verdeling van bulkgolven, wat de interpretatie bemoeilijkt. Dit proefschrift 

onderzoekt oplossingen voor deze uitdagingen en biedt een theoretisch kader voor inge-

nieurs en onderzoekers om spannings- en vervormingsveranderingen in beton te monito-

ren met behulp van akoesto-elasticiteit. 

Ons onderzoek naar gegevensverwerkingstechnieken richt zich op het verkrijgen van 

twee categorieën bulkgolfeigenschappen uit experimenten: veranderingen van voortplan-

tingssnelheden en diffusiestromen. We gebruiken golf-interferometrietechnieken om 

reistijdveranderingen als gevolg van spanningsveranderingen te meten, waarbij we de 

wavelet cross-spectrum (WCS)-techniek en de stretching-techniek vergelijken. De resul-

taten tonen consistentie in de snelheidsveranderingen die door beide technieken worden 

verkregen. Voor diffusiestromen zoals diffusiviteit en dissipatie passen we deze eigen-

schappen aan via de diffusievergelijking. Aanpassingen worden gemaakt om rekening te 

houden met randeffecten door gereflecteerde energie van zogenaamde beeldbronnen op 

te nemen. 
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Verder herzien we de huidige akoesto-elastische theorie om bulkgolven aan te pakken die 

onder hoeken voortplanten ten opzichte van de hoofdvervormingsrichtingen. Onze bevin-

dingen tonen aan dat, hoewel schuifvervormingen minimale invloed hebben op de snel-

heden van longitudinale golven, ze een aanzienlijke impact hebben op transversale golf-

snelheden. Op basis hiervan stellen presenteren we een vereenvoudigde akoesto-elasti-

sche uitdrukking voor schuin-voortplantende ballistische golven, welke voornamelijk 

longitudinaal zijn, in een vlakspanningssituatie en valideren we deze experimenteel. 

Het begrijpen van alleen de akoesto-elastische theorie is onvoldoende voor de interpreta-

tie van reistijdveranderingen van diffuse golven in beton; de energieverhouding tussen 

longitudinale en transversale golven is ook cruciaal. Om dit aan te pakken, stellen we een 

bulkgolf-energie-transportmodel voor om deze energieverhouding te schatten op basis 

van de hoeksnelheid van bulkgolven, de volumefractie van grove aggregaten en de ka-

rakteristieke straal van deze aggregaten. De geldigheid van het voorgestelde model wordt 

bevestigd door theoretische diffusiviteiten te vergelijken met experimentele waarden, die 

worden afgeleid uit de diffusievergelijking, terwijl rekening wordt gehouden met randre-

flecties. 

Om reistijdveranderingen van diffuse bulkgolven te onderzoeken, integreren we de eerder 

besproken akoesto-elastische theorie met het bulkgolf-energie-transportmodel. Het ener-

gie-transportmodel schat de energieverhouding tussen longitudinale en transversale gol-

ven en de tijd die nodig is om deze verhouding te stabiliseren. Met behulp van Monte-

Carlosimulaties in combinatie met akoesto-elastische theorie schatten we de reistijdver-

anderingen voor diffuse longitudinale en transversale golven. Deze schattingen worden 

gewogen door de energieverhouding om reistijdveranderingen te voorspellen, die worden 

vervolgens vergeleken worden met experimentele observaties verkregen met de WCS-

technieken. 

Dit proefschrift biedt een theoretische basis voor de toepassing van bulkgolf gebaseerde 

akoesto-elasticiteit op beton. Daarnaast kan de herziene akoesto-elastische theorie ook 

toepasbaar zijn op andere comprimeerbare, statistisch isotrope vaste stoffen, zoals meta-

len. Het op verstrooiing gebaseerde theoretische model biedt ook een waardevol instru-

ment voor het onderzoeken van verstrooiingseigenschappen in beton. 
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Chapter 1 Introduction 

 1 

1. Introduction 

1.1 Background and scope 

1.1.1 Concrete structure monitoring 

Concerns over the safety of concrete infrastructures, such as bridges and viaducts, have 

been growing in the Netherlands. These concerns stem from three primary factors: the 

outdated design of structures, the deterioration of materials over time, and the escalating 

volume and weight of the traffic. Figure 1.1 illustrates the construction years of viaducts 

and bridges in the Netherlands, revealing that a significant portion was built prior to 1975 

and has been in service for five decades. Simultaneously, there has been a substantial 

increase in traffic load over recent decades, as demonstrated in Table 1.1. Given that 

bridges and viaducts are primarily engineered to withstand anticipated traffic demands, 

the outdated designs for old bridges are unable to accommodate current traffic conditions 

according to the modern design code, which were not anticipated during their initial de-

sign and construction. Therefore, reliable structural health monitoring (SHM) or non-de-

structive evaluation (NDE) techniques are imperative to detect structural damage early. 

By identifying issues before they lead to catastrophic failure, these techniques enable 

timely maintenance and repair. This is especially important for critical concrete infra-

structures such as bridges, tunnels, and dams, where failure could have severe conse-

quences, including significant loss of life or property. 

 

Figure 1.1 Year of construction of viaducts and bridges in the Netherlands (Rijswaterstaat 2007). 

Table 1.1 Development of freight traffic mass in the Netherlands (Rijswaterstaat 2007). 

Pe-
riod 

Weight of 
semi-trailer [t] 

Weight of 3-
axle vehicle [t] 

Weight of 4-
axle vehicle [t] 

Weight of 5-
axle vehicle [t] 

Number of vehi-

cles with weight 

over 50 t 

1960s 32-36 22 N/A N/A Very low 
1970s 36-40 23-24 30 N/A Low 

1980s 40-44 26 32 N/A Moderate 

1990s 44-46 26-34.5 34-46 50 High 
2000s 46 27-34.5 35-46 50 Very high 
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In concrete structures, various features can be monitored to assess the health conditions 

or the safety of the entire structure. These features include detecting damage through 

changes in the structure’s overall behaviour, such as natural frequency (Salawu 1997) and 

mode shape (Fayyadh and Abdul Razak 2011), as well as changes in its local behaviour, 

such as visible cracks (Golewski 2023) and strain/stress alterations (Jiang, Zhang et al. 

2017). Given that local changes can lead to global failure, such as shear cracks in the 

shear-critical zone, which may go undetected when only monitoring global behaviour, 

this is particularly true for short-span concrete bridges (Sierra, Poliotti et al. 2023). There-

fore, monitoring local behaviour changes provides a more effective and proactive ap-

proach to ensuring structural safety. 

Most current research on monitoring local behaviour has focused on tracking visible crack 

initiation and propagation, with existing techniques reliably capable of detecting them on 

the surface of concrete (Zarate Garnica, Lantsoght et al. 2022, Golewski 2023). However, 

cracks in concrete are not always visible, such as internal cracks. In these cases, monitor-

ing stress or strain changes is preferable, as it allows us to detect potential weaknesses or 

areas of concern within the structure before cracks become visible, enabling proactive 

interventions and maintenance to prevent catastrophic failures and enhance safety. Addi-

tionally, the measured stress fluctuations within the structure can be used to update the 

structural model, facilitating predictions of the global structural behaviour through the 

model. Therefore, this dissertation focuses on tracking strain/stress changes in concrete 

structures. 

In the literature, commonly utilized sensors for tracking strain changes in concrete include 

strain gauges (Biswal and Ramaswamy 2016) and fibre optic sensors (Majumder, 

Gangopadhyay et al. 2008, Barrias, Casas et al. 2016). However, both these sensors are 

restricted to measuring stress either at specific locations or along the sensor itself, and 

they are generally characterized as time-consuming and expensive. Digital image corre-

lation (Sutton, Orteu et al. 2009) offers a solution for evaluating the global strain field on 

the surface. However, this technique is unsuitable for long-term monitoring due to its lack 

of sensitivity to micro-cracking on the surface of concrete. For tracking inner strain/stress 

distribution, there are only two viable options (Hirao and Ogi 2017): neutron diffraction 

and acoustoelasticity. Given the limited accessibility and constraints of laboratory and in-

situ studies in the field of concrete structures with neutron diffraction, the acoustoelastic-

ity, which describes how the velocities of an elastic material change if subjected to an 

initial static stress field, stands as the sole feasible choice. In this dissertation, we further 

narrow the scope to the analysis of elastic waves travelling through the interior of the 

medium, commonly referred to as bulk waves. Therefore, this dissertation will focus on 

interpreting the strain/stress changes in concrete by analysing changes in bulk wave prop-

erties, i.e., travel time, employing acoustoelasticity. 
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1.1.2 Bulk waves in concrete 

Concrete, being a heterogeneous material, may exhibit anisotropic behaviour at the 

mesoscale due to the presence of multiple phases, such as the mortar matrix, air bubbles, 

and coarse aggregates. When bulk waves propagate through this material, interactions 

between the waves and the different phases may occur. For ballistic waves, which denote 

the first pulse crossing the sample (Derode, Tourin et al. 2001), the wave trajectory is 

typically short and straightforward, following a direct path from the transmitter to the 

receiver. Therefore, interactions are likely minimal in this case, and these waves have 

more deterministic directionality. Please note that the definition of ballistic waves is dis-

tinct from that of coherent waves, which refer to waves whose energy predominantly 

propagates in their initial direction (Derode, Tourin et al. 2001). 

However, for coda waves, which refer to the tail of waveforms (Aki and Chouet 1975), 

interactions between bulk waves and different phases become inevitable. These interac-

tions, causing the wave energy to deviate from its original trajectory, are known as scat-

tering. This is why the term coda is synonymous with later-arriving multiply scattered 

waves (Aki and Chouet 1975). Waves in the late coda are typically referred to as incoher-

ent waves (Tourin, Derode et al. 2000) or diffuse waves (Planès and Larose 2013), where 

the wave energy transport predominantly occurs within the diffusive regime (Elaloufi, 

Carminati et al. 2002, Zhang and Zhang 2002). Please note that while coda waves indicate 

the waves in the tail of waveforms, they do not necessarily propagate in the diffusive 

regime. Therefore, the terms coda waves and diffuse waves are not always interchangea-

ble. 

Due to the much longer wave trajectories in coda waves compared to those in ballistic 

waves, coda waves are usually more sensitive to minor changes in the medium because 

of the accumulation of these changes along the wave path. Additionally, coda waves have 

a broader reach than ballistic waves, potentially allowing for the use of sparser source-

receiver arrays (Planès and Larose 2013). 

In this dissertation, we will investigate the acoustoelastic effect in both ballistic waves 

and diffuse waves. The former has a deterministic directionality, which could potentially 

be applied to determining the orientation of principal stresses, while the latter is more 

sensitive to minor changes in the medium and may have the potential to map changes in 

the medium when combined with the sensitivity kernel (Larose, Planes et al. 2010). How-

ever, it should be noted that we will not investigate the sensitivity kernel in this disserta-

tion, as this mapping technique is considered a step beyond the scope of this research. 
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1.2 Existing challenges 

Despite that acoustoelastic theory has been applied in various materials for over 70 years 

(Hughes and Kelly 1953), its implementation in concrete still encounters several signifi-

cant challenges. These challenges stem from three main aspects: data processing tech-

niques, the acoustoelastic theory, and the heterogeneity of concrete.  

Firstly, there is a lack of research on data processing techniques in retrieving bulk wave 

properties, i.e., travel time changes and diffusive properties, tailored specifically to con-

crete, resulting in a limited understanding of how to apply these techniques to this mate-

rial. Consequently, there is no consensus on selecting the appropriate technique and cor-

responding parameters to estimate travel time changes and diffusive properties in con-

crete.  

Secondly, the current acoustoelastic theory is limited to scenarios where bulk waves prop-

agate either parallel or orthogonal to the principal deformation directions, posing con-

straints on its application to concrete, where principal deformation directions usually vary 

across different loading scenarios.  

Thirdly, the heterogeneity of concrete at the meso-scale results in strong interactions be-

tween bulk waves and various phases in concrete during propagation. These interactions 

are significant when the frequency of bulk waves is around a hundred kilohertz, which is 

a typical wave frequency for ultrasonic-based concrete monitoring. Additionally, these 

interactions significantly affect the spatial distribution of bulk wave energy flux in con-

crete, presenting a considerable challenge in interpreting wave behaviour in this material. 

Currently, there is no model or theory to describe travel time changes or energy transport 

for diffuse waves in concrete. 

1.3 Objectives and aims 

The main objective of this dissertation is to improve the knowledge about the stress-in-

duced velocity changes in concrete retrieved from bulk waves. Given that such velocity 

changes may result from a combination of concrete heterogeneity and the acoustoelastic 

effect, this study aims to develop a means-end approach grounded in acoustoelasticity 

and scattering theory. To facilitate the problem-solving process, the main objective is 

divided into five specific sub-goals: 

1. Tailoring data processing techniques: Employing theoretical analyses and ex-

perimental validation to identify or propose suitable techniques capable of ac-

quiring bulk wave properties in concrete, such as travel time changes and diffu-

sive properties.  
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2. Refining the acoustoelastic theory: Employing theoretical analyses to revisit 

and refine the acoustoelastic theory capable of addressing bulk wave propaga-

tion under arbitrary stress conditions. 

3. Interpreting velocity changes in stressed concrete retrieved via ballistic 

bulk waves: Employing theoretical analyses and experimental validation to con-

nect stress-induced velocity changes retrieved from ballistic bulk waves to stress 

changes in concrete. 

4. Modelling bulk wave energy transport in concrete: Employing theoretical 

analyses and experimental validation to propose and validate a model that de-

scribes the energy transport of bulk waves within concrete. 

5. Interpreting velocity changes in stressed concrete retrieved via diffuse bulk 

waves: Employing the refined acoustoelastic theory in conjunction with the bulk 

wave energy transport model to connect the stress-induced velocity changes re-

trieved from diffuse bulk waves to stress changes in concrete, with experimental 

validation required to support the proposed approach. 

This study advances the understanding and quantification of stress-induced velocity 

changes in concrete through a framework grounded in acoustoelasticity and scattering 

theory. By integrating data processing techniques, the refined acoustoelastic theory, and 

the tailored model for bulk wave energy transport in concrete, it establishes a comprehen-

sive method for measuring, interpreting, and quantifying stress-induced velocity changes 

retrieved from bulk waves in concrete, representing a step forward in the non-destructive 

stress monitoring and structural evaluation of concrete. 

1.4 Outline 

The outline of this dissertation is illustrated in Figure 1.2. In Chapter 2, a review of acous-

toelasticity will be presented, covering its theoretical framework development and its cur-

rent applications in various materials such as metals, polymers, and concretes. Chapter 3 

will introduce the current understanding of bulk wave energy transport in heterogeneous 

solids. Beginning with the interaction between bulk waves and inhomogeneities, it will 

progress to the development of elastic scattering theory. Given the focus on energy 

transport, transport theories applicable to describing scattered bulk waves and their appli-

cations in concrete will also be reviewed. 

Chapter 4 will address Sub-goal 1, providing the theoretical foundation and experimental 

demonstration of data processing techniques to be used in subsequent chapters. These 

techniques primarily aim to extract two types of bulk wave properties: travel time changes 

and diffusive properties. The techniques for acquiring travel time changes will be applied 

in Chapters 5 and 7 to determine velocity changes in concrete, while the techniques for 



1.4 Outline 

6 

acquiring diffusive properties will be used in Chapter 6 and 7 to validate the bulk wave 

energy transport model. 

Chapter 5 will address Sub-goal 2 and Sub-goal 3, concentrating on theoretical and ex-

perimental investigations of acoustoelasticity. The acoustoelastic theory will be revisited 

and refined into a more generalized form capable of accommodating bulk waves propa-

gating under arbitrary stress conditions. This refined theory will be employed to interpret 

the acoustoelastic effect of ballistic waves, which will then undergo validation via exper-

iments employing data processed techniques for acquiring travel time changes introduced 

in Chapter 4.  

Chapter 6 will address Sub-goal 4, focusing on modelling the energy transport of bulk 

waves in concrete using scattering theory. The proposed model aims to predict diffusivity, 

the equilibration energy ratio between longitudinal and transverse waves, and the time 

required to reach this equilibration. Validation of this model will be performed using dif-

fusive properties obtained through the techniques introduced in Chapter 4.  

Chapter 7 will address Sub-goal 5, combining the refined acoustoelastic theory proposed 

in Chapter 5 with the bulk wave energy transport model proposed in Chapter 6 to interpret 

the travel time change of diffuse bulk waves. These changes will also be calculated using 

the techniques introduced in Chapter 4.  

In the final two chapters, I will introduce recommendations for applications of the pro-

posed approaches in concrete structures (Chapter 8), followed by a summary of the main 

conclusions of the dissertation and recommendations for the future work (Chapter 9). 

 

Figure 1.2 Outline of this dissertation. 
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2. Acoustoelastic theory and experimental observations 

2.1 Introduction 

Acoustoelasticity, named by Toupin and Bernstein (1961), refers to the change in velocity 

of an elastic wave within an initially stressed elastic solid. Elastic waves in such media 

include bulk waves, which are divided into longitudinal and transverse waves, as well as 

surface waves, such as Rayleigh waves. This chapter provides an overview of the devel-

opment of acoustoelasticity in solid, covering both bulk waves and Rayleigh waves. 

We will first delve into the development of the theoretical framework in Section 2.2, em-

phasizing the framework for modern acoustoelasticity, which encompasses the non-linear 

constitutive relation in the equation of motion. Given that the maximum magnitude of 

stress-induced velocity changes typically fall below 1% (Guz and Makhort 2000), identi-

fying such subtle changes from raw signals requires a signal processing approach with 

adequate sensitivity. Therefore, before reviewing the experimental work on acoustoelas-

ticity, commonly employed signal processing approaches in literature are firstly presented 

in Section 2.3. Section 2.4 then proceeds to showcase experimental endeavours in acous-

toelasticity. Section 2.5 elucidates the potential challenges that could be encountered dur-

ing the application of acoustoelastic theory to concrete, which also serve as the knowledge 

gaps. 

Acknowledging space limitations, numerous theoretical works (Birch 1938, Hayes and 

Rivlin 1961, Green 1963, Hayes 1963, Tang 1967, Ogden 1970, Tverdokhlebov 1983, 

Pao 1987, Dowaikh 1990, Degtyar and Rokhlin 1995, Duquennoy, Ouaftouh et al. 1999, 

Shams, Destrade et al. 2011, Abiza, Destrade et al. 2012) and experimental works (Smith 

1963, King and Fortunko 1983, Thompson, Lee et al. 1983, Abbasi and Ozevin 2016, Qi 

and Tan 2018, Pau and Vestroni 2019, Zhong, Zhu et al. 2021, Zhong and Zhu 2022) are 

not mentioned in this chapter. We extend our sincere respect to these pioneers whose 

exploration and dedication have propelled the theory and application of acoustoelasticity 

to its current state. Additionally, we also recommend the review articles by Guz (Guz and 

Makhort 2000, Guz 2002), whose profound insights and extensive experimental expertise 

in this domain are invaluable. 

2.2 Development of theoretical framework for acoustoelasticity 

2.2.1 Linear elasticity-based acoustoelastic theory 

The earliest exploration of elastic waves within deformed bodies can be traced back to 

Cauchy (1829) in 1829. However, despite of his pioneering work, Cauchy's contributions 

were largely overlooked by subsequent researchers such as Rayleigh (1906), Biot (1940), 

and Murnaghan (1937). It was not until over a century later that Truesdell (1952) and 

Man et al. (1987) brought attention back to Cauchy's significance in this field. 
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In the 20th century, progress in this theory was driven by Rayleigh (1906), Brillouin 

(1925), and Biot (1940). These seminal works all approached the equation of motion us-

ing linear elasticity theory, wherein strains are assumed to be small enough to neglect 

their squares and products in the stress-strain relationship. Detailed explanations of linear 

elasticity can be found in textbooks on continuum mechanics (Landau, Lifshitz et al. 1986, 

Aki and Richards 2002, Love 2013). According to linear elasticity, the velocity of elastic 

waves in isotropic materials is a second-order effect governed by the constitutive relation 

between stress and strain, characterized by the second-order elastic constants known as 

Lamé constants, denoted by λ and μ. 

The main conclusion drawn by Rayleigh was that: the usual equations [constitutive equa-

tion for materials without external load applied] may be applied to matter in a state of 

[initial] stress, provided that we allow for altered values of the elasticities. This conclu-

sion is vague, and Love (1911) gave a detailed explanation to this conclusion (‘Some 

Problems of Geodynamics’, page 89): The earth ought to be regarded as a body in a state 

of initial stress; this initial stress may be regarded as a hydrostatic pressure balancing 

the self-gravitation of the body in the initial state; the stress in the body, when disturbed, 

may be taken to consist of the initial stress compounded with an additional stress; the 

additional stress may be taken to be connected with the strain, measured from the initial 

state as unstrained state, by the same formulae as hold in an isotropic elastic solid body 

slightly strained from a state of zero stress. Love's description indicates that the constitu-

tive equations for both the initial and additional stresses are identical in Rayleigh’s theory, 

implying that the rigidity of a material remains unchanged by external loads. This concept 

is also adopted in Biot’s derivation. However, Rayleigh seems to recognize the potential 

influence of applied stress on the solid's rigidity, as hinted on page 489 of his paper: But 

although the initial state is one free of shear, we are not to conclude that the rigidity is 

the same as it would be without the imposed pressure. On the contrary, there is much 

reason to think that the rigidity would be increased. 

Building on Rayleigh’s conclusion and recognizing that elastic wave velocities are solely 

determined by rigidity and density ([(λ+2μ)/ρ]1/2 for longitudinal waves and (μ/ρ)1/2 for 

transverse waves), it becomes apparent that the velocities of elastic waves in stressed 

materials are exclusively influenced by changes in density—or, equivalently, volume—

before and after the application of external loads. This essentially encapsulates the fun-

damental concept behind Brillouin's derivation. His derivation suggested that with in-

creasing pressure, the longitudinal wave velocity decreases, a consequence of the rise in 

density caused by the applied pressure.  

It is important to reiterate that acoustoelastic theory at this stage operated within the 

framework of linear elasticity. However, elastic waves in a solid with initial stress exhibit 

a ‘small-on-large’ behaviour, where small strain due to wave motion overlays large strain 
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caused by initial stress. Compared to the much smaller strain due to wave motion, the 

initial strain is significantly larger and cannot be considered to be infinitesimal in the 

constitutive equation. Therefore, the assumption of linear elasticity becomes inadequate. 

A natural progression from this stage involves proposing a stress-strain relationship con-

sidering higher orders of deformation, which will be explored in the subsequent section. 

2.2.2 Proposal of third-order elastic constants 

As previously noted, linear elasticity assumes infinitesimal strain, allowing higher-order 

terms in the constitutive equation to be neglected. However, when small strain due to 

wave motion overlays large strain caused by initial stress, a more accurate portrayal of 

the constitutive relation between stress and strain is required, involving the incorporation 

of higher order elastic constants.  

The first literature addressing the higher-order elastic constants is attributed to Murna-

ghan (1937). Through the assumption of energy conservation, Murnaghan demonstrated 

the necessity of six constants to describe strain energy in isotropic materials: one repre-

senting initial hydrostatic pressure, two second-order elastic constants (Lamé constants), 

and three third-order elastic constants denoted as l, m, and n, commonly known as Murna-

ghan constants. 

Murnaghan constants are not the only third-order elastic constants documented in litera-

ture. For instance, Landau and Lifshitz’s ‘Theory of Elasticity’ also acknowledged the 

existence of third-order elastic constants, though they were presented as an exercise for 

readers to derive (Landau, Lifshitz et al. 1986). Toupin and Bernstein (1961) introduced 

υ1, υ2 and υ3 as third-order elastic constants, labelling them third-order Lamé constants in 

their work. Furthermore, Johnson (1981) discussed a different set of third-order elastic 

constants denoted as β1, β2 and β3.  

2.2.3 Modern acoustoelastic theory 

Section 2.2.2 introduces the proposal of third-order elastic constants, which proves in-

struments in addressing scenarios involving finite strain. This section will elaborate the 

development of modern acoustoelastic theory, which incorporates the constitutive rela-

tion involving third-order elastic constants into the equation of motion.  

Establishment of fundamental framework 

In 1953, Hughes and Kelly (1953) conducted uniaxial compression tests on polystyrene 

and Pyrex samples. In these experiments, they observed linear changes in rigidity, partic-

ularly in the bulk and shear moduli, corresponding to variations in applied stress. This 

observation confirms the assertion made by Rayleigh that applied stress influences the 

rigidity of solids (Rayleigh 1906). To quantify these changes in rigidity concerning ap-

plied stress, Hughes and Kelly incorporated Murnaghan constants into their analysis. This 
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incorporation led to the development of a new framework for acoustoelasticity, which 

considers strain-induced modulus changes in the stress-strain relationship, or constitutive 

relation. This framework, later recognized as the modern theory of acoustoelasticity (Pao 

and Gamer 1985), aligns with the later proposition by Toupin and Bernstein (1961). Based 

on the findings reported by Hughes and Kelly, it is evident that the acoustoelastic effect 

varies between longitudinal and transverse waves. Moreover, this effect appears to be 

closely tied to the direction of wave propagation and polarization.  

The framework proposed by Hughes and Kelly relies on several assumptions which sub-

ject to further adjustment for more general cases:  

• The wave velocity calculated within this framework represents the pure velocity 

in the medium. However, in experiments, the measured quantity is the travel 

time, which depends not only on the medium's velocity but also on its defor-

mation. To ensure alignment between theoretical and experimental results, this 

deformation must also be taken into account. 

• The medium is assumed to be isotropic and its mechanical properties can be 

described using five elastic constants (two Lamé constants and three Murnaghan 

constants). As a result, this framework cannot be applied to anisotropic materi-

als. 

• The medium is assumed to be compressible, meaning its volume changes under 

load. However, not all media exhibit compressibility, and for incompressible 

materials, an alternative description of acoustoelasticity is required. 

• Their expressions apply only to situations where bulk waves propagate parallel 

or perpendicular to the principal stress directions. For wave propagation in other 

directions, new expressions must be derived based on the existing framework. 

Given these assumptions, subsequent researchers have progressively expanded the theo-

retical framework to accommodate more complex scenarios. Please note that concrete is 

compressible and statistically isotropic at a sufficiently large scale. Therefore, acoustoe-

lastic theories for incompressible or anisotropic materials will not be used in this disser-

tation. 

Introduction of natural velocity accounting for medium deformation 

As mentioned earlier, the framework proposed by Hughes and Kelly (1953) calculates 

the pure velocity in the medium, which is the quotient of the static stress-induced de-

formed length in the propagation direction and the time of flight. Consequently, the 

change in time of flight resulting from static stress-induced deformation is not included 

in the total time of flight. The velocity change observed in this framework before and 

after static deformation primarily stems from the rigidity change induced by applied stress, 
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while stress-induced changes in the wave path are not considered. This finding indicates 

that applying this framework in experiments necessitates adjusting the path length to ac-

count for changes induced by stress. 

To streamline the determination of wave velocity in experiments and enhance the com-

parability between experimental measurements and theoretical frameworks, Thurston and 

Brugger (1964) extended the existing framework to include the deformation caused by 

static stress in estimating the wave velocity. This velocity, also known as the natural ve-

locity, is defined as the original length in the propagation direction divided by the time of 

flight. In their derivation, the framework is established within the natural coordinate sys-

tem, where no external stress is applied. In contrast, Hughes and Kelly derived the frame-

work within a coordinate system that includes deformation caused by static stresses. In 

this thesis, we will consider velocities derived from both the natural and initial frames of 

reference. 

Introduction of non-symmetric stiffness tensor for anisotropic 

compressible materials 

In anisotropic compressible materials, the constitutive relations between stress and strain 

cannot be adequately described using Lamé constants and Murnaghan constants alone. 

Due to the presence of minor symmetry and major symmetry of elastic tensors, there exist 

a maximum of 21 distinct second-order elastic constants for anisotropic materials. Here, 

the major symmetry is associated with the differential equation for determining elastic 

constants, while the minor symmetry is associated with the stress tensor. Similarly, em-

ploying the same symmetry principles, the number of distinct third-order elastic constants 

is 56 (Thurston 1974). To extend the framework to incorporate these elastic constants, 

adjustments in the presentation of elastic constants are necessary. 

In developing the acoustoelastic framework, Thurston and Brugger (1964) employed 

stiffness tensors in Voigt notation within the equation of motion. Furthermore, they es-

tablish the relationship between these stiffness tensors and both Lamé constants and third-

order elastic constants proposed by Toupin and Bernstein (1961) for isotropic materials. 

The introduction of these stiffness tensors facilitates in describing the acoustoelastic ef-

fect of materials with arbitrary symmetry. For example, Pao and Gamer (1985) employed 

the same stiffness tensors to derive acoustoelastic equations for elastic waves in ortho-

tropic materials. In this thesis, the stiffness tensors for isotropic materials proposed by 

Thurston and Brugger (1964) will be used in the derivation. 

Acoustoelasticity framework of incompressible materials 

Incompressible materials typically maintain a constant volume, which implies that their 

density also remains constant under load—a characteristic observed in certain polymers 

and soft biological tissues (Ganghoffer 2018). Due to this incompressibility, the strain 
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energy functions of these materials differ from those of compressible materials. To inves-

tigate the acoustoelasticity of these materials, the constitutive relation used in the equation 

of motion needs to be adjusted. For readers interested in exploring the strain energy func-

tions of incompressible materials, we recommend the book Non-linear Elastic Defor-

mations by Ogden (1997). 

Connor, Destrade, and Ogden (Connor and Ogden 1995, Connor and Ogden 1996, 

Destrade and Ogden 2005) extended the framework of acoustoelasticity to include in-

compressible materials by integrating the new strain energy function from the aforemen-

tioned book into the derivation of acoustoelastic expressions. Additionally, they exam-

ined the influence of static stress-induced deformation on the velocity of surface Rayleigh 

waves. It is worth noting that Rayleigh waves and bulk waves share the same acoustoe-

lastic framework. The primary difference between these two types of waves in the deri-

vation lies in the type of wave equation substituted into the equation of motion, as demon-

strated in the work of Hirao et al. (1981). 

Effect of shear deformation in compressible materials 

The framework proposed by Hughes and Kelly (1953) is limited to scenarios where waves 

propagate coincidentally with the axes of principal deformations. However, in engineer-

ing applications, it is not always guaranteed that elastic waves will follow these specific 

directions. For instance, Lamb waves, commonly utilized in non-destructive testing of 

plate-like structures, often propagate at angles to the principal strain direction (Mi, 

Michaels et al. 2006). In such cases, shear deformation becomes apparent, and the current 

acoustoelastic theory fails explain the observed wave velocities. 

The earliest reference that considers shear stress in relation to bulk wave acoustoelasticity 

in compressible materials is found within the context of acoustoelastic birefringence 

(Tatsuo and Yukio 1968), a special case in the acoustoelastic framework where transverse 

waves propagate perpendicular to the shear deformation plane. Further details regarding 

acoustoelastic birefringence can be found in the literature by Tokuoka and Saito (1969). 

However, it is important to note that acoustoelastic birefringence pertains only to trans-

verse waves and does not offer any general conclusions regarding wave velocities in a 

shear-deformed solid. 

To the best of our knowledge, there exists only one article by Bobrenko et al. (1990) that 

investigates the influence of shear stresses on bulk wave velocities in compressible ma-

terials. However, their study focuses solely on a solid subjected to pure shear deformation, 

and thus, their research does not lead to general conclusions. 
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2.3 Signal processing techniques in estimating velocities from recorded 

signals 

Considering that stress-induced velocity changes typically fall below 1% in magnitude 

(Guz and Makhort 2000), it becomes crucial to select a signal processing approach with 

adequate sensitivity to detect such changes. Hence, it is practically necessary to delve into 

the signal processing approaches in the literature. Since the travel time is the actual phys-

ical quantity which can be derived from the received signal. This section will use travel 

time, rather than velocity, to represent the acquired physical quantity. Please note that 

travel time is a broader term than time of flight, which is often used in the contexts that 

emphasize the minimum time required for waves to travel through space between two 

points, typically in relation to the first arrival of waves. Travel time can refer to the time 

a wave spends moving between two locations, and it does not necessarily correspond to 

the first arrival. 

2.3.1 Arrival time picking 

The most straight-forward approach to determine the arrival time is to employ a picker to 

identify time when a signal arrives. This approach of determining the travel time of elastic 

waves for acoustoelasticity traces back to the work of Hughes and Kelly (1953). In their 

study, they measured the time that is taken by elastic waves to travel through a solid to 

estimate their velocities. This approach is widely adopted in the determination of acous-

toelastic effect of various materials, including woods (Sasaki, Iwata et al. 1998) and con-

crete (Nogueira and Rens 2019). 

To measure the travel time accurately, certain criteria are required to determine the onset 

point of the signal. In the literature, two widely accepted criteria are the Hinkley criterion 

(Hinkley 1971) and the Akaike information criterion (Maeda 1985). However, determin-

ing the onset point also highlights the significance of the sampling rate of the data acqui-

sition system (DAQ), as it greatly impacts the accuracy of this approach. For instance, let 

us assume the first-arrival is 35 μs. To achieve a resolution of relative travel time change 

of 0.2‰, the sampling rate should be 143 MHz, which far exceeds the requirements for 

applications in structural health monitoring. Additionally, the accuracy of onset point 

picking by the arrival time picker is also sensitive to the noise level (Kurz, Grosse et al. 

2005). 

A variation of the arrival time picking is known as the sing-around method. In this method, 

the received signal from a pulse transmitted into the solid is used to re-trigger the trans-

mitter continuously, creating a process of the pulse ‘singing-around’ in the sample at a 

repetition rate (pulse repetition frequency) determined by the total travel time. The pulse 

repetition frequency can be measured using a counter-type frequency meter. However, an 



2.3 Signal processing techniques in estimating velocities from recorded signals 

14 

arrival time picker is still necessary to detect the received signal and re-trigger the trans-

mitter. 

To ensure measurement accuracy, the duration of the pulse for the sing-around method is 

typically kept short, as exemplified by Crecraft's adoption of 0.40 μs for longitudinal 

waves and 0.22 μs for transverse waves (Crecraft 1962). This approach finds numerous 

applications in literature for determining the acoustoelastic effect (Crecraft 1967, Hirao, 

Fukuoka et al. 1981, Thompson, Lee et al. 1983, Hasegawa, Sasaki et al. 2000, Hasegawa 

and Sasaki 2004, Hasegawa and Sasaki 2004, Hasegawa and Sasaki 2004, Sasaki and 

Hasegawa 2007). 

In samples with small dimensions, there is a risk that the previous pulse is not fully atten-

uated when the new pulse is emitted, potentially resulting in the superposition of multiple 

pulses at later stages. This superposition can lead to incorrect measurement of travel time. 

Moreover, the performance of this approach is compromised when dealing with thick 

heterogeneous solids with strong dissipative properties, such as concrete. The combina-

tion of strong dissipation and heterogeneity results in a short transmission path, reducing 

the accuracy of the sing-around approach in measuring travel time. Additionally, same as 

the arrival time picking, the accuracy of this approach is heavily dependent on the sam-

pling rate and noise level. 

2.3.2 Wave interferometry 

Wave interferometry (WI) (Snieder, Gret et al. 2002) presents a relatively new approach 

for measuring travel time changes in a medium by exploiting the ballistic (Zhong, Zhu et 

al. 2021) and coda (Stahler, Sens-Schonfelder et al. 2011) segments of elastic waves. The 

term coda, initially proposed by Aki (1969), refers to the tail of seismograms (Aki and 

Chouet 1975). The resolution of WI in detecting relative travel time change can be up to 

0.02‰ under a sampling rate of 4 MHz and a first-arrival of around 35 μs (Larose and 

Hall 2009). This travel time change resolution under 4 MHz sampling rate is much higher 

than those of arrival time picking and sing-around approaches. So far, the WI approach 

is primarily used in detecting the stress-induced travel time change of elastic waves in 

heterogeneous materials like concrete (Payan, Garnier et al. 2009, Lillamand, Chaix et al. 

2010, Payan, Garnier et al. 2010, Payan, Garnier et al. 2011). 

Five WI techniques are seen in literature that are used to estimate the travel time change: 

the Moving Window Cross-Correlation (MWCC) (Grêt, Snieder et al. 2006, Snieder 

2006), which measures time shifts in the time domain using cross-correlation of two win-

dowed signals; the Moving Window Cross-Spectrum (MWCS) (Poupinet, Ellsworth et al. 

1984, Frechet, Martel et al. 1989), which measures the time shifts based on phase changes 

in the frequency domain, derived from the cross-spectrum of two windowed signals ob-

tained through Fourier transform; the stretching technique (Lobkis and Weaver 2003, 
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Sens-Schönfelder and Wegler 2006), which measures travel time changes in the time do-

main using cross-correlation between the reference signal and the stretched/compressed 

signal within the same time window, with a constant stretching factor; the Dynamic Time 

Warping (DTW) (Mikesell, Malcolm et al. 2015), which measures travel time changes in 

the time domain by finding the shortest warping path between the reference signal and 

the stretched/compressed signal, where the stretching factor varies along the lag-time; 

and the Wavelet Cross-Spectrum (WCS) technique (Mao, Mordret et al. 2020), which 

measures time shifts using phase changes in the wavelet domain derived from the wavelet 

cross-spectrum of two signals obtained through wavelet transform.  

A performance comparison of these five techniques is reported by Yuan et al. (2021) 

using numerical simulations (i.e., the correct value is known). They used five criteria to 

evaluate their performance: operating domain, availability of the Correlation Coefficient 

(CC), frequency resolution, stability, and accuracy. Their conclusions are summarized in 

Table 2.1. 

Table 2.1 Criteria used by Yuan et al. (2021) to compare five techniques for retrieving travel time 
changes.  

WI technique MWCC MWCS Stretching DTW WCS 

Operating domain Time Fourier Time Time Wavelet 
Availability of CC Yes Yes Yes No Yes 

Time-frequency resolution Low Medium Low Low High 

Stability Low Low Medium High Unknown 
Accuracy Low Low* High High Medium* 

Note: * only valid when the signal energy at the frequency of interest is high 

The operating domain describes which domain the WI technique operates in. The benefit 

of employing the transform-domain-based technique is the ability to capture changes in 

travel time for specific frequency components, the importance of which will be empha-

sized in Section 3.5.  

The availability of CC indicates whether the ‘correlation coefficient’ between the per-

turbed and unperturbed signal becomes available using that technique. Although the cor-

relation coefficient, or alternatively the decorrelation, is chiefly used for crack localiza-

tion (Zhang, Planes et al. 2016, Zhang, Larose et al. 2018, Grabke, Clauss et al. 2021), 

this parameter also quantifies the reliability of the retrieved travel time change (Clauss, 

Epple et al. 2020). That is, the travel time change is meaningful only when the perturbed 

and unperturbed signals are sufficiently similar (Mao, Mordret et al. 2020), which is re-

flected by the magnitude of the correlation coefficient.  

The time-frequency resolution points to the minimum resolution in both time and fre-

quency that can be resolved. Since time-domain-based techniques operate in the time do-

main, the frequency resolution of these techniques is poor. For transform-domain-based 

techniques, WCS has better time-frequency resolution than MWCS (Mao, Mordret et al. 

2020).  
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The fourth criterion, stability, evaluates whether the estimated travel time change is tem-

porally stable. When it comes to this aspect, the performance of the different techniques 

involves their ability to mitigate cycle skipping, a phenomenon that one wiggle in the 

signal associated with the perturbed medium aligns with a wiggle in the signal associated 

with the unperturbed state that is displaced by approximately one period (Mikesell, 

Malcolm et al. 2015).  

Finally, the accuracy is the degree to which the estimated travel time change corresponds 

to the correct value. In the article by Yuan et al. (2021), the authors concluded that DTW 

and the stretching technique have greater accuracy compared to other techniques. They 

also mentioned that the modest performance of MWCS and the WCS technique is at-

tributed to low energy at specific frequencies. If one operates the WCS technique in a 

frequency range with sufficient energy, it has a better performance than MWCS according 

to Mao et al. (2020). It should be noted that the assessment of the accuracy of the WCS 

technique reported by Yuan et al. (2021) involved the application of this technique to a 

broad frequency band. 

After comparing various techniques, it is evident that the stretching technique stands out 

among time-domain-based techniques due to its superior balance between accuracy and 

stability. On the other hand, the WCS technique, offering higher accuracy and improved 

time-frequency resolution compared to MWCS, demonstrates superior performance 

among transform-domain-based techniques.  

2.4 Experimental work on acoustoelasticity in solids 

After outlining the development of acoustoelastic theory and data processing approaches, 

this section will explore the experimental research dedicated to validating the theory and 

characterizing elastic constants.  

The validation of acoustoelastic theory is closely tied to theoretical work. Studies on this 

topic primarily focus on validating proposed theoretical expressions through experiments. 

These validations include the acoustoelastic effect of bulk waves (Hughes and Kelly 

1953), the acoustoelastic birefringence of transverse waves (Iwashimizu and Kubomura 

1973, Hsu 1974, Imanishi, Sasabe et al. 1982), and the acoustoelastic effect of Rayleigh 

waves (Hirao, Fukuoka et al. 1981).  

In addition to experimental validation, other researchers have focused on characterizing 

material properties, specifically second- and third-order elastic constants, using the acous-

toelastic framework. Some reported elastic constants are summarized in Table 2.2. Please 

be aware that some experimental works (Clotfelter and Risch 1974, Cantrell and Salama 

1991) are not included in Table 2.2 because they focused on acquiring the fractional 

change in velocity with respect to the applied stress rather than elastic constants. It is 
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important for readers to exercise caution when utilizing these parameters, as the acousto-

elastic equations adopted in some articles may not be consistent with others. For instance, 

Eq. (4a) in the paper by Egle and Bray (1976) cannot be reproduced from equations re-

ported by Hughes and Kelly (1953).  

Table 2.2 Lamé constants and Murnaghan constants of various compressible materials reported in 
the literature. 

Material 

Lamé con-

stants [GPa] 
Murnaghan constants [GPa] 

Source 

λ μ l m n 

Polystyrene 2.889 1.381 -18.9 -13.3 -10.0 
Hughes and Kelly 

(1953) 
Armco iron 110.0 82.0 -348 -1030 1100 

Pyrex 13.53 27.5 14 92 420 

Nickel steel 
90.9 78.0 -46 -590 -730 Crecraft (1962) 

109.0 81.7 -56 -671 -785 

Crecraft (1967) Copper 104.0 46.0 542 -372 -401 
Aluminium 61.0 24.9 -47 -342 -248 

Rail steel 
115.8 19.9 -248 -623 -714 Egle and Bray 

(1976) 110.7 82.4 -302 -616 -724 
Steel Hecla 37 111 82.1 -461 -636 -708 

Smith, Stern et al. 

(1966)* 

Steel Hecla 17 110.5 82.2 -328 -595 -668 

Steel Hecla 138A 109 81.9 -426.5 -619 -708 
Steel Rex 535 Ni 109 81.8 -327.5 -578 -676 

Steel Hecla ATV austenitic 87 71.6 -535 -752 -400 

Aluminium alloys 2S 57.0 27.6 -311 -401 -408 

Aluminium alloys B53SM 58.0 26.0 -223.5 -237 -276 

Aluminium alloys B53SP 61.9 26.2 -201.5 -305 -300 
Aluminium alloys D54S 49.1 26.0 -387.5 -358 -320 

Aluminium alloys JH77S 57.5 26.8 -337 -395 -436 

Magnesium tooling plate 25.9 16.6 -90.1 -141.6 -168.4 
Molybdenum sintered 157 110 -308.5 -669 -772 

Molybdenum resintered 178 124 -301 -852 -908 

Tungsten sintered 75.0 73.0 -250.5 -391 -496 
Tungsten resintered 163 137 -472.5 -792 -1068 

Concrete mixture 1 

9.2 12.9 -510.0 -1177.0 -942.6 

Nogueira and Rens 

(2019) 

10.3 12.8 -580.0 -846.1 -943.1 

8.9 13.1 -517.9 -960.5 -771.7 

Concrete mixture 2 
9.6 12.3 -741.6 -1183.6 -1115.8 

6.5 12.9 -783.6 -929.5 -1077.9 

Concrete mixture 3 8.3 13.0 -912.7 -455.0 -432.3 

Concrete mixture 4 6.2 12.9 -677.0 -536.0 -556.2 

Concrete mixture 5 10.7 14.4 -1151.0 -614.9 -571.2 

Concrete mixture 6 9.9 15.2 -563.0 -629.1 -1080.7 

Concrete mixture 7 8.1 12.3 -57.9 -217.3 -1275.0 

Concrete mixture 8 9.0 12.0 -153.1 -467.5 -416.9 

Concrete mixture 8 7.8 12.5 -126.9 -830.4 -483.4 

Concrete mixture 9 9.8 15.8 -1379.3 -1426.6 -497.7 

Mortar 9.0 9.8 -170.7 -235.8 -280.0 

Nylon 4.8 1.4 -13.1 -7.6 -5.6 

Aluminium 61.6 27.0 -449.8 -384.2 -229.8 
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Note: * The original third-order elastic constants are converted into the form of Murnaghan constants. 

2.5 Knowledge gaps in applying bulk wave-based acoustoelasticity to 

concrete 

In this chapter, we conducted an overview of the development of acoustoelastic theory, 

commonly used signal processing approaches, and experimental investigations on acous-

toelasticity. These endeavours primarily focus on quantifying homogeneous materials 

such as metals and polymers. Concrete, as the mostly used material in engineering prac-

tice, on the other hand, remains relatively underexplored in this regard. Based on the lit-

erature review provided in this chapter, there are two main knowledge gaps identified 

surrounding the application of bulk wave-based acoustoelasticity to concrete.  

Acoustoelastic theory for bulk waves in concrete under arbitrary stress 

conditions 

The combination of surface-bonded sensors and ballistic wave components allows for the 

alignment of the sensors so that the ballistic wave propagation direction could be either 

parallel or perpendicular to the principal deformation. However, as the recent application 

shift towards long-term monitoring utilizing permanently deployed ultrasonic sensors 

within structures, there is no assurance that ballistic waves will consistently propagate 

along these predetermined directions. Despite the efforts made by several researchers to 

investigate the influence of shear deformation on acoustoelasticity (Iwashimizu and 

Kubomura 1973, Bobrenko, Kutsenko et al. 1990), no specific conclusion regarding the 

response of bulk wave velocity to applied shear deformations can be drawn from the ex-

isting theoretical derivations. This knowledge gaps will be tackled in Chapter 5, where 

we will conduct a revisit of the modern acoustoelastic theory, followed by encompassing 

arbitrary wave propagation directions and stress conditions in the acoustoelastic theory. 

Building upon the refined theory, an experimental study will be conducted to validate the 

conclusions derived from the extended framework. 

Signal processing techniques for retrieving stress-induced travel time 

changes in concrete 

After evaluating various techniques based on the criteria outlined in the literature, we 

selected the stretching technique as the time-domain-based technique and the WCS tech-

nique as the transform-domain-based technique. However, it is important to note that the 

performance of the WCS technique in detecting velocity changes in concrete has not yet 

been explored. Therefore, before applying this technique to retrieve stress-induced veloc-

ity changes in concrete, a thorough comparison with the time-domain technique is neces-

sary to assess their stability against cycle skipping and ensure consistency in retrieving 

velocity changes. This will be further discussed in Section 4.2. 



Chapter 3 Bulk wave scattering and energy transport in concrete 

 19 

3. Bulk wave scattering and energy transport in concrete 

3.1 Introduction 

In an infinite, isotropic, and homogeneous solid, a plane wave can be defined by its fre-

quency, propagation direction, and polarization direction. However, when dealing with a 

heterogeneous solid, the existence of inhomogeneities leads to interactions with the wave, 

resulting in deviations in its original propagation direction. This phenomenon is fre-

quently accompanied by conversions of bulk wave modes (Snieder 2002) and is termed 

scattering. 

As scattering events increase, the direction of wave propagation undergoes significant 

alterations. Once a certain threshold of scattering event number is reached, waves are 

propagating in all directions with equal strength (Curtis, Gerstoft et al. 2006). Simultane-

ously, the energy ratio between two bulk wave modes stabilizes, leading to the emergence 

of diffuse waves. 

The multiply scattered waves are typically not detected in the first arrival since waves 

which travel directly from the source to the receiver and are unlikely to undergo multiple 

scattering events (Derode, Tourin et al. 2001). However, in the coda segment, diffuse 

waves dominate. As mentioned in Section 2.2.3, the acoustoelastic effect differs between 

longitudinal and transverse waves and is closely related to the directions of wave propa-

gation and polarization. Given the characteristics of diffuse waves, where waves propa-

gate in all directions with equal strength and the energy ratio between longitudinal and 

transverse waves remains constant, it becomes apparent that understanding bulk wave 

scattering and transport properties is essential for evaluating the acoustoelastic effect in 

the coda sector of waves. The bulk wave energy transport properties will be explored in 

Chapter 6.  

This chapter aims to introduce works in the literature on bulk wave energy transport in 

heterogeneous solids. We will begin by introducing theoretical descriptions of scattering 

in heterogeneous solids, with an emphasis on multiple scattering, in Section 3.2. Since 

intrinsic dissipation is not addressed by scattering theory, Section 3.3 will introduce en-

ergy transport theories for elastic waves, allowing for the separate analysis of scattering-

induced attenuation and intrinsic dissipation-induced attenuation. Section 3.4 will review 

current applications of scattering and transport theories in the realm of concrete, with 

Section 3.5 summarizing the identified knowledge gaps. 

3.2 Theoretical description on single scattering 

When a wave propagates in a heterogeneous solid, the existence of inhomogeneities leads 

to interactions with the wave, resulting in deviations in its original propagation direction. 

These deviations are random and cannot be explained by the law of reflection, which 

states that the incident wave, the reflected wave, and the normal to the surface of the 
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mirror all lie in the same plane, and the angle of reflection equals the angle of incidence. 

This phenomenon is known as scattering, and the inhomogeneities causing scattering are 

referred to as scatterers. 

It is essential to recognize that waves in an elastic heterogeneous solid can undergo vari-

ous phenomena beyond scattering alone. These include refraction due to spatial and/or 

temporal changes in the solid, such as different layers within the earth, as well as reflec-

tion across interfaces between different solids. However, when focusing on wave scatter-

ing, simplifications are necessary because it is impractical to simultaneously account for 

all three phenomena at the interfaces of the scatterers (de Hoop 2001). Consequently, the 

scattering theories in the literature primarily investigate the interaction between waves 

and scatterers in a general wave-scatterer interaction relationship, while other phenomena 

triggered by interfaces and boundaries are typically addressed through numerical calcu-

lations (Margerin, Campillo et al. 2000, Heller, Margerin et al. 2022) or by simplifying 

wave propagation into energy propagation (Trégourès and van Tiggelen 2001, Wan, Wu 

et al. 2009, Margerin 2017).  

Scattering can be broadly categorized into two types according to Sheng (2006): inelastic 

scattering and elastic scattering. Inelastic scattering alters both frequency and propagation 

direction, while elastic scattering preserves frequency but alters propagation direction. 

The primary distinction between these two types lies in whether waves adhere to energy 

conservation during interaction with scatterers. Since inelastic scattering is mainly ob-

served at subatomic scales, e.g., with electrons and neutrons (Taylor 1991), current liter-

ature on the scattering of bulk waves in solids primarily addresses elastic scattering 

(Weaver 1990, Ryzhik, Papanicolaou et al. 1996, Sheng 2006). This implies that energy 

conservation holds during the scattering process. Thus, in this dissertation, the interac-

tions between bulk waves and scatterers are also treated as elastic scattering. This means 

that the attenuation of wave energy due to scattering and dissipation is independent and 

handled separately. 

The concept of wave scattering by individual scatterer was initially formulated by Ray-

leigh (1896), who recognized that scattering arises primarily from discontinuities in den-

sity and elasticity. He formulated the scattered amplitude as a function of wavelength, 

incident amplitude, bulk modulus difference, and density difference. This formula was 

adopted by Mason and McSkimin (1947, 1948) to investigate elastic wave scattering in 

metallic materials, treating each grain as a perturbation within a matrix of other grains. 

They assessed scattering through measuring wave attenuation and calculated the total 

scattered energy from multiple scatterers by summing contributions from each scatterer. 

However, longitudinal and transverse waves are treated separately in their articles, over-

looking potential interconversions between two wave modes. 
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The mode conversion at grain boundaries was incorporated by Lifshits and Parkhomov-

skii (1950), leading to improved agreement between experimental and theoretical scatter-

ing attenuations (Merkulov 1956). They introduced the Green’s function rather than plane 

wave function to extract physical information during scattering. Unlike wave functions, 

which describe the variation of the displacement in space at every instant and how it var-

ies over time, Green’s functions analyse correlation between two locations as a function 

of time separation. It should be noted that the two locations mentioned above can coincide. 

In such circumstances, the Green’s function encapsulates information equivalent to that 

found in the wave function (Sheng 2006). Therefore, the Green’s function is more general 

than the wave function and is able to provide a broader understanding of wave propaga-

tion. 

According to the theoretical description of single scattering, the extent of interaction be-

tween waves and scatterers can be categorized into three regimes (Papadakis 1965, Stanke 

and Kino 1984, Sheng 2006) based on the relationship between wavelength λw and aver-

age diameter of scatterers d: 

• λw ≫ d: when the wavelength is 10 times larger than the average diameter of 

scatterers, the propagating wave encounters limited interactions with scatterers. 

This regime is known as the Rayleigh regime or low-frequency limit. 

• λw ≅ d: when the wavelength is of a size that is approximately equal to the aver-

age diameter of scatterers, the wave has sufficient interactions with scatterers. 

This regime is known as the stochastic regime. 

• λw ≪ d: when the wavelength is less than one-tenth of the average diameter of 

the scatterers, the wave strongly interacts with scatterers. This regime is known 

as the geometrical regime or high-frequency limit. 

In the geometrical regime, interactions between the wave and scatterers may involve re-

fraction and reflection across interfaces between different solids. Additionally, the Born 

approximation, which can significantly simplify the derivation of scattered amplitude 

during the scattering process (Sakurai and Napolitano 2020), is not applicable in this re-

gime. This approximation will be discussed further in Chapter 6.  

3.3 Theoretical description on energy transport of multiply scattered 

bulk waves 

In a heterogeneous medium, a wave may interact with multiple scatterers during its prop-

agation. These interactions involve multiple scattering, which requires a theoretical de-

scription that accounts for the spatial distribution of scatterers or spatial fluctuations of 

material properties within the medium. Several researchers have contributed to this topic, 
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including Stanke & Kino (1984), Weaver (1990), Ahmed & Thompson (1996), Turner 

(1999), and Turner & Anugonda (2001). 

However, in the above research, the attenuation of wave energy due to scattering and 

dissipation is treated independently. This implies that intrinsic dissipation, stemming 

from material viscosity and internal friction (Brunet, Jia et al. 2008), is difficult to be 

incorporated into the scattering model. Therefore, it is challenging to investigate scatter-

ing and intrinsic dissipation simultaneously using the scattering theory. To separately ex-

amine scattering-induced attenuation and intrinsic dissipation-induced attenuation, en-

ergy transport theories are introduced for bulk waves in heterogeneous solids. These the-

ories focus exclusively on the energy or intensity of bulk waves, without describing indi-

vidual wave components.  

This section will introduce two transport equations: the radiative transfer equation (RTE) 

(Chandrasekhar 2013), a differential equation used to describe the transport of wave en-

ergy through a medium, and its approximation, the diffusion equation (Watson, Fleury et 

al. 1987), a differential equation modelling the spread of wave energy over time as a result 

of diffusion.  

3.3.1 Radiative transfer equation (RTE) 

The RTE is a scalar differential equation that characterizes the propagation of wave en-

ergy in a medium, accounting for processes like scattering, intrinsic dissipation, and emis-

sion. Originally introduced by Wu (1985) for bulk waves in heterogeneous solids, this 

equation aimed to separate scattering-induced attenuation from intrinsic dissipation-in-

duced attenuation (Mayeda, Su et al. 1991, Mcsweeney, Biswas et al. 1991, Fehler, 

Hoshiba et al. 1992). 

Initially, RTE did not consider the vector nature of bulk wave motion or possible mode 

conversions. Numerous research has been done afterwards to enhance the RTE by incor-

porating wave propagation vectors, mode conversions, and intrinsic dissipations. For ex-

ample, Weaver (1990) considered wave vectors and mode conversions in RTE, while 

Sato (1994) and Zeng (1993) incorporated mode conversions and intrinsic dissipation. 

Later on, Turner and Weaver (1994) and Ryzhik et al. (1996) further developed the RTE 

to include all three aspects. This improved RTE, considering wave propagation vectors, 

mode conversions, and intrinsic dissipations, was adopted by Margerin et al. (2000) to 

numerically study multiple scattering of bulk waves in heterogeneous solids. 

Despite the advancements in describing energy transport using the RTE, its direct appli-

cation to quantify transport properties through measurements is challenging. This diffi-

culty arises from the form of RTE for bulk waves in heterogeneous solids, which is a 

complex differential equation dependent on wave vectors, locations, and time, often lack-

ing analytical solutions. Consequently, researchers commonly resort to approximating the 



Chapter 3 Bulk wave scattering and energy transport in concrete 

 23 

RTE with the simpler diffusion equation to quantify transport properties in heterogeneous 

solids. 

3.3.2 Diffusion equation 

The diffusion equation (Crank 1979, Watson, Fleury et al. 1987) describes the macro-

scopic behaviour of energy transport for diffusion process. Its corresponding equation, 

the diffusion equation, is a parabolic partial differential equation describing the isotropic 

spreading of energy throughout space. Despite its simplicity, the effectiveness of this 

equation has been demonstrated in many studies describing energy transport over long 

distances (Wesley 1965, Freund, Kaveh et al. 1988, Weitz, Pine et al. 1989, Weaver and 

Sachse 1995). 

The energy transport in heterogeneous media using the diffusion equation is characterized 

by two parameters, namely: diffusivity and dissipation, both frequency-dependent 

(Weaver and Sachse 1995). Diffusivity measures the rate at which energy spreads within 

the medium (Planès and Larose 2013), akin to the spreading velocity of the diffusion halo 

(Ramaniraka, Rakotonarivo et al. 2022). Notably, in the absence of dissipation, the pure 

diffusion or scattering process generally adheres to energy conservation (Anugonda, 

Wiehn et al. 2001). Dissipation in heterogeneous solids likely involves a combination of 

viscous dissipation and internal friction (Brunet, Jia et al. 2008), deviating from energy 

conservation. The diffusion equation will be used in Section 4.3 to quantify the scattering-

induced attenuation and intrinsic dissipation-induced attenuation of bulk wave energy in 

concrete. 

Even though the diffusion equation is simple and effective in quantifying energy transport, 

this equation is valid only within the diffusive regime, where wave energy has undergone 

numerous scattering events, losing its phase information and original propagation direc-

tion (Lai, Cheung et al. 2005). If the energy transport is not in the diffusive regime, then 

this transport can only be described using RTE.  

There were several attempts on determining the range of validity of diffusion approxima-

tion (Yoo, Liu et al. 1990, Kop, deVries et al. 1997, Zhang, Jones et al. 1999), but no 

conclusion for bulk waves until the paper of Ryzhik et al. (1996), who proposed an indi-

rect criterion to determine the validity of diffusion approximation for bulk waves. Ac-

cording to this criterion, the diffusion approximation holds when the energy ratio of trans-

verse waves to longitudinal waves converges to a constant independent of the scattering 

process during wave propagation (Egle 1981, Weaver 1982, Shapiro, Campillo et al. 2000, 

Hennino, Tregoures et al. 2001, Wu, Lai et al. 2008, Wan, Wu et al. 2009). Theoretically, 

this equilibration also implies isotropy of the bulk wave field, where transverse waves are 

fully depolarized (Margerin, Campillo et al. 2000), and the energy flux of longitudinal 

and transverse waves is isotropic in space (Paul, Campillo et al. 2005).This theoretical 
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assertion was supported by Monte Carlo simulations (Margerin, Campillo et al. 2000) and 

numerical simulations of seismic coda (Paul, Campillo et al. 2005). However, no research 

has yet addressed the range of validity of the diffusion equation in the context of concrete. 

3.4 Application of diffusion equation to concrete 

In Section 3.2, we introduced scattering theory, which describes the interactions between 

elastic waves and scatterers, covering both single and multiple scattering. Scattered waves 

hold significant potential for monitoring concrete structures due to their extended wave 

paths and their inherent sensitivity to the properties of heterogeneities in concrete. How-

ever, research on elastic wave scattering in concrete remains limited. Notable studies in-

clude Anugonda et al.’s (2001) work on multiple scattering and Ramaniraka et al.’s (2019, 

2022) studies on single scattering. Despite these efforts, a theoretical model to quantify 

multiple scattering in concrete is still lacking. 

In contrast, the diffusion equation introduced in Section 3.3 has been widely applied to 

quantify the transport properties of elastic waves in concrete due to its simpler formula-

tion compared to the RTE. These studies can be divided into two categories: global mon-

itoring of a region using diffusive properties (Ahn, Shin et al. 2022) and disturbance lo-

calization using sensitivity kernels (Zhang, Larose et al. 2018, Zhan, Jiang et al. 2020). 

The former focuses on leveraging changes in diffusive properties, such as diffusivity and 

dissipation, which are behaviours of diffuse field, to characterize variations in the micro 

and meso-structure of the material. The latter involves utilizing bulk waves within a spe-

cific time window and localizing disturbances in the sensor grid. Both approaches rely on 

the accurate estimation of diffusive properties. In global monitoring, diffusive properties 

are directly utilized, while in disturbance localization using the sensitivity kernel, the sen-

sitivity kernel is constructed based on diffusive properties (Rossetto, Margerin et al. 2011). 

Therefore, obtaining an accurate estimation of the diffusive properties is essential for the 

application of diffuse waves in concrete structure monitoring. 

The diffusive properties of a medium can be extracted by fitting the wave energy profile 

with a diffusion equations in one-dimensional form (Yim, An et al. 2016, Ramaniraka, 

Rakotonarivo et al. 2022), two-dimensional form (Becker, Jacobs et al. 2003, Quiviger, 

Payan et al. 2012) or three-dimensional form (Ahn, Shin et al. 2019, Jiang, Zhan et al. 

2019, Tinoco and Pinto 2021, Ahn, Shin et al. 2022). However, it is important to note that 

the analytical solution of the diffusion equation is derived for an infinite medium. While 

concrete can be considered as an infinite medium, in certain cases where the boundary is 

sufficiently far away, as observed in cases reported by Anugonda et al. (2001) and Schu-

bert & Koehler (2004), the direct application of the diffusion equation is limited in most 

scenarios. To overcome this limitation, Ramamoorthy et al. (2004) proposed an analytical 

solution of diffusion equation that incorporates the Neumann boundary condition. This 
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modification, which considers all possible reflected energy, enables a theoretically more 

accurate estimation of the diffusive property within a two-dimensional rectangular do-

main (In, Holland et al. 2013, Seher, In et al. 2013, In, Arne et al. 2017) and three-dimen-

sional cuboid domain (Deroo, Kim et al. 2010, Hilloulin, Legland et al. 2016). Neverthe-

less, the increased complexity in the expression of the diffusion equation makes nonlinear 

curve fitting more intricate for obtaining diffusivity, rendering it less robust compared to 

the original diffusion equation in infinite solids (Deroo, Kim et al. 2010). Currently, a 

simplified diffusion equation that accounts for boundary reflections is necessary to esti-

mate the diffusive properties of elastic waves in concrete. 

3.5 Knowledge gaps in applying the scattering and diffusion equation to 

concrete 

In this chapter, we provided an overview of the theoretical descriptions of bulk wave 

scattering and energy transport, focusing on the RTE and diffusion equation in heteroge-

neous solids. Additionally, we discussed the applications of scattering and energy 

transport of bulk waves in concrete. From the literature review, two major knowledge 

gaps were identified regarding the application of diffuse bulk waves to concrete. 

Characterizing diffusive properties in concrete structures with 

boundaries 

Diffusivity and dissipation are transport properties easily measured through experiments, 

with diffusivity also holding potential for assessing the scattering property of bulk waves 

in concrete. However, the analytical solution of the diffusion equation is proposed for an 

infinite medium, posing a challenge for direct application to most concrete structures with 

boundaries. In such cases, the influence of boundaries on diffusive properties must be 

considered. 

In the presence of complex boundary conditions, solving the diffusion equation for the 

geometry of system becomes a problem within the field of applied mathematics (Crank 

1979). Section 3.4 introduced examples of solving the diffusion equation for two-dimen-

sional rectangular and three-dimensional cuboid domains. However, the increased com-

plexity in the expression of the diffusion equation makes nonlinear curve fitting more 

intricate for obtaining diffusive properties, rendering it less robust compared to the orig-

inal diffusion equation in infinite media (Deroo, Kim et al. 2010). Hence, an improved 

diffusion equation for three-dimensional media is needed to incorporate boundaries with-

out significantly increasing its complexity, enhancing the accuracy of diffusive property 

estimation. This part will be discussed in Section 4.3. 

Evaluating the evolution of bulk wave energy in concrete 

In Section 3.3, we introduced two theoretical models for bulk wave energy transport in 

heterogeneous solids: the RTE and the diffusion equation. While the diffusion equation 
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is simpler and more suitable for engineering applications, we emphasized that it is an 

approximation of the RTE. Therefore, the range of validity, equivalent to detecting energy 

equilibration, should be verified before application. If wave energy transport can be ac-

curately described by the diffusion equation, it indicates that the bulk waves are in the 

diffusive regime, where the ratio between longitudinal and transverse waves is equili-

brated, and the bulk wave field becomes isotropic. 

Furthermore, as discussed in Section 3.2, the scattering process of bulk waves is greatly 

influenced by the relationship between the wavelength and average diameter of scatterers. 

Given that the wavelength is closely linked to the frequency of bulk waves, the scattering 

process inherently relies on wave frequency. Since the evolution of bulk wave energy 

arises from the scattering process, it can be inferred that energy evolution primarily hinges 

on wave frequency. Therefore, to effectively leverage the equilibrated energy ratio and 

the isotropic wave field in interpreting the acoustoelastic effect of diffuse coda waves, 

travel time changes and energy evolution should be investigated in the same frequency 

band. This consideration motivates the use of the WI technique in the transform domain. 

The equilibrated energy ratio is also critical for understanding the relationship between 

applied stress and measured travel time changes in the coda, as the travel time shift in the 

coda is a weighted average of both longitudinal and transverse wave changes (Snieder 

2002). Consequently, a bulk wave energy transport model is necessary to describe the 

equilibration process of wave energy in concrete. This model can help estimate the equi-

libration time, which can then be used to assess the validity of the diffusion approximation. 

Additionally, the model allows for estimating the equilibrated energy ratio, which can 

further aid in interpreting velocity changes retrieved from diffuse waves. This model will 

be discussed in Chapter 6. 
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4. Techniques for estimating bulk wave properties in concrete 

4.1 Introduction 

In Chapters 2 and 3, a literature review is provided on acoustoelasticity and bulk wave 

energy transport in heterogeneous solids, respectively. This chapter introduces the tech-

niques that will be employed in this research to extract bulk wave properties from the raw 

signal. Two types of bulk wave properties will be extracted in this chapter: travel time 

changes, covered in Section 4.2, and diffusive properties, covered in Section 4.3. The first 

can be used to investigate how travel time of bulk waves responds to applied stress, which 

will be further used in Chapters 5 and 7 to assess stress-induced velocity changes in con-

crete. The second is relevant to the scattering and transport properties of bulk waves in 

heterogeneous media, which will be utilized in Chapters 6 and 7 to analyse diffusive 

properties of bulk waves in concrete. In this chapter, we will conduct a comprehensive 

investigation of these techniques, along with necessary enhancements to ensure their de-

sired functionality. The procedures and parameter selections for applying these techniques 

to the concrete members studied in this dissertation will also be detailed in this chapter. 

4.2 Estimation of travel time changes 

The first bulk wave property of interest is the travel time change. Historically, the preva-

lent method for obtaining the travel time involves the usage of arrival time pickers 

(Karaiskos, Deraemaeker et al. 2015). However, the emergence of wave interferometry 

(WI) in concrete monitoring (Larose and Hall 2009) has garnered increased attention due 

to its high sensitivity to weak changes in the medium. This sensitivity stems from the 

extended propagation path, enabling the accumulation of effects from minor perturbations 

within the medium. Given that stress-induced velocity changes in the medium are typi-

cally subtle, with relative changes often below 1% (Guz and Makhort 2000), WI is well-

suited for detecting such nuanced changes. Based on the location of the operational win-

dow, WI can be divided into coda wave interferometry (CWI) (Snieder, Gret et al. 2002), 

which operates in the coda wave regime, and direct wave interferometry (DWI) (Zhong, 

Zhu et al. 2021), which operates in the direct wave regime. 

In this chapter and in the remainder of this dissertation, there will be repeated references 

to velocity changes and travel time changes. It is important to emphasize that the velocity 

change is associated with the change in the medium, and this change further results in the 

travel time change. Assuming a constant wave path, the velocity becomes inversely pro-

portional to the travel time. Based on this assumption, the velocity change in the medium 

can be retrieved by using the travel time change of the wave signal (Grêt, Snieder et al. 

2006). For the remainder of this dissertation, travel time changes will be associated with 

bulk waves, while velocity changes will be linked to the medium, i.e., stress-induced 

changes in the material. 



4.2 Estimation of travel time changes 

28 

WI techniques can be broadly categorized into two types based on their operational do-

main: time-domain-based techniques and transform-domain-based techniques, both of 

which are introduced in Section 2.3.2. Time domain techniques are adept at handling sig-

nals with short durations, implying lower frequency resolution, while transform domain 

techniques excel in exploring frequency-dependent changes in travel time. In this section, 

the stretching technique is chosen as the time-domain approach due to its blend of high 

accuracy and stability. Meanwhile, within the transform-domain category, the wavelet 

cross-spectrum (WCS) technique, known for its superior accuracy and time-frequency 

resolution compared to the moving window cross-spectrum (MWCS), is selected.  

Given that the performance of the stretching technique has already been demonstrated for 

measuring velocity changes in concrete health monitoring (Larose and Hall 2009, Payan, 

Garnier et al. 2009), while it is not the case for the WCS technique, their consistency in 

determining velocity changes in concrete and the stability against cycle skipping needs to 

be assessed. Stability here evaluates whether the estimated travel time change is tempo-

rally stable. When it comes to this aspect, the performance of different techniques in-

volves their ability to mitigate cycle skipping, a phenomenon where a wiggle in the signal 

associated with the perturbed medium aligns with a wiggle in the signal from the unper-

turbed state, displaced by approximately one period (Mikesell, Malcolm et al. 2015). 

This section aims to elaborate and compare the two selected techniques. We will first 

emphasize the knowledge gap in Section 4.2.1. Theoretical backgrounds of these tech-

niques are discussed in Section 4.2.2. To assess their performance in retrieving velocity 

changes in concrete, a dedicated experiment is designed, with details provided in Section 

4.2.3. The results are compared and discussed in Section 4.2.4, with the parameter selec-

tion for applying the stretching and WCS techniques in later chapters introduced in Sec-

tion 4.2.5. 

4.2.1 Knowledge gap in techniques for estimating stress-induced travel 

time changes in concrete 

The literature presents various efforts to retrieve stress-induced velocity changes in con-

crete using WI techniques, as summarized in Table 4.1. Notably, current studies predom-

inantly rely on time-domain-based techniques. Additionally, the potential frequency de-

pendence of the retrieved velocity changes is ignored and hence cannot be evaluated. 

Given that frequency is not explicitly considered in bulk wave-based acoustoelasticity 

(Hughes and Kelly 1953, Toupin and Bernstein 1961, Thurston and Brugger 1964), some 

researchers assume that the travel time change remains constant across different fre-

quency components in concrete (Stahler, Sens-Schonfelder et al. 2011). This has not yet 

been validated. To address this, it is imperative to employ a frequency-domain-based 

technique to investigate stress-induced velocity changes in concrete thoroughly. 
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Table 4.1 Recent studies on retrieving the stress-induced velocity changes in concrete using WI. 

Specimen dimensions 

[mm] 
WI technique 

Time window 

length [μs] 
Literature 

Cylinder 
Ø160 × 285 

Stretching 450 Larose et al. (2009) 

Cylinder 

Ø75 × 160 
MWCC* 20 Payan et al. (2009) 

Cylinder 

Ø75 × 160 
MWCC NM** Payan et al. (2010) 

Cylinder 
Ø70 × 135 

MWCC NM Lillamand et al. (2010) 

Cylinder 

Ø75 × 160 
MWCC 20 Payan et al. (2011) 

Prism 

305 × 76 × 76 
Stretching NM Schurr et al. (2011) 

Cube 
150 × 150 × 150 

Stretching NM Stähler et al. (2011) 

Cylinder 

110 × 450 
Stretching 200 Zhang et al. (2012) 

Cylinder 

110 × 450 
Stretching 200 Zhang et al. (2013) 

Beam 
6100 × 1600 × 800 

Stretching 500 Zhang et al. (2016) 

Cube 

100 × 100 × 100 
Stretching 50/75 Zhang et al. (2018) 

Beam 

2000 × 150 × 400 
Stretching NM Clauß et al. (2020) 

Beam 
5960 × 870 × 300 

Stretching NM Jiang et al. (2020) 

T-beam 

29200 × 1700 × 1600 
Stretching NM Zhan et al. (2020) 

Prism 

300 × 150 ×150 
Stretching 40 Zhan et al. (2020) 

Cube 
150 × 150 × 150 

Stretching 257 Hu et al. (2021) 

Beam 

5960 × 870 × 300 
T-beam 

29200 × 1700 × 1600 

Stretching 2000/6000 Jiang et al. (2021) 

Concrete Containment Stretching 320 Xue et al. (2022) 
Cylinder 

Ø152 × 304 

Prism 
508 × 152 × 152 

Stretching 14/150 Zhong et al. (2021) 

Prism 

400 × 100 × 100 
Bone-shaped cylinder 

Stretching NM Diewald et al. (2022) 

Cube 

150 × 150 × 150 
100 × 100 × 100 

Stretching NM He et al. (2022) 

Cylinder 
Ø100 × 200 

Stretching 200 Zhong et al. (2022) 

Note:   * MWCC: Moving Window Cross-Correlation 

           ** NM: Not Mentioned 

In Section 2.3.2, we have introduced five WI techniques and compared them in the con-

text of seismology. After the comparison, it is evident that the stretching technique stands 
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out among time-domain-based techniques due to its superior balance between accuracy 

and stability. On the other hand, the WCS technique demonstrates better performance 

among transform-domain-based techniques. However, it is worth noting that the perfor-

mance of transform-domain-based techniques in discerning velocity changes in concrete 

remains unexplored. Therefore, prior to employing the transform-domain technique for 

retrieving stress-induced velocity changes in concrete, it is essential to conduct a compre-

hensive comparison with the time-domain technique to ensure their consistency. 

4.2.2 Theoretical background of wave interferometry techniques 

4.2.2.1 The stretching technique 

The stretching technique (Lobkis and Weaver 2003) assumes a linear increase or decrease 

of the travel time as a result of a homogeneous velocity perturbation of the medium (Sens-

Schönfelder and Wegler 2006). This technique calculates correlation coefficients of win-

dowed signals recorded in an unperturbed state, uunp, and after (or during) the perturbation, 

uper, in the time domain using: 
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where the time window is centred at time tc with a duration of 2T and ε denotes the stretch-

ing factor. In case of a uniform velocity change dv in the medium, the stretching factor 

that maximizes CC(tc,T,ε), εmax, coincides with the relative change in travel time, dt/t. 

The stretching technique does not solely rely on the phase spectrum. This can be proved 

by representing this technique in the frequency domain. Letting the Fourier transforms of 
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of ε is much smaller than 1, then Zhan et al. (2013) derive the following expression: 
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where f is the frequency, Aunp(f) and Aper(f) are amplitude spectra, and φunp(f) and φper(f) 

are phase spectra. Equation (4.1) can be rewritten as: 
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where the asterisk denotes complex conjugation. Please note that Parseval’s theorem is 

used in the derivation of Equation (4.3) through Equation (4.1). Although Equation (4.3) 

contains imaginary terms, its absolute value coincides with the value of CC obtained by 

Equation (4.1). Explicitly, this is written as (Liu 1994): 
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The quantity |CC| in Equation (4.4) is usually referred to as the ‘coherency’. Equation 

(4.4) clearly shows that both amplitude and phase spectra are involved in the calculation 

of the stretching technique. 

The stretching technique is adept at handling the retrieval of velocity changes from bal-

listic waves within very narrow time windows, which is also known as DWI (Zhong, Zhu 

et al. 2021). The utilization of such short time windows is essential for capturing travel 

times changes of pure wave modes while minimizing the influence of possible wave mode 

conversions on the results. As per the frequency-time uncertainty principle (Gabor 1947, 

Tsao 1984), when a signal has a short duration and fewer sampling points, its frequency 

resolution tends to be diminished. Consequently, in theory, transform-domain-based tech-

niques are deemed inadequate for this application due to the unreliable nature of the re-

sults they yield. 

4.2.2.2 The wavelet cross-spectrum (WCS) technique 

The WCS technique (Mao, Mordret et al. 2020) relies on the phase of the wavelet cross-

spectrum, which is related to the time shift between two signals. In application, a raw 

signal is firstly transformed to the wavelet domain using the continuous wavelet transform 

(CWT). In this dissertation, the analytical Morlet wavelet (Morlet, Arens et al. 1982, 

Morlet, Arens et al. 1982) is chosen as the mother wavelet since it has equal variance in 

time and frequency. The analytical Morlet-based CWT filter bank Φ(f(c)
i,fn) is designed 

in the frequency domain as: 
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                                            (4.5b) 

where fn, fNyquist and f(c)
i represent the frequency components of the filter, the Nyquist 

frequency, and the centre frequency of the filter, respectively. The parameter N represents 

the total number of sampling points of the signal in the time domain. The number of filters 

in the filter bank is M. The functions H(·) and S(f(c)
i) are the Heaviside step function and 

scale function, respectively. The constant ω0 is set to 6 to satisfy the admissibility condi-

tion, which requires the mother wavelet to be zero-mean (Farge 1992). A typical analyti-

cal Morlet-based CWT filter bank is shown in Figure 4.1. It is important to note that the 

CWT filter bank consists of multiple Gaussian filters in the frequency domain. Conse-

quently, each filter does not isolate a single frequency component but instead captures 

energy from adjacent frequencies. This leads to less pronounced energy fluctuations be-

tween consecutive frequency components. 

 

Figure 4.1 Typical analytical Morlet-based CWT filter bank. 

The designed CWT filter bank is multiplied with the target signal in the frequency domain, 

and then transformed back to time domain through the inverse fast Fourier transform 

(IFFT). The obtained time-frequency spectrum is dubbed the wavelet spectrum W(f(c)
i,tn), 

where tn is the sampling point in the time domain. 

After operating the CWT, the wavelet cross-coherency Γ(f(c)
i,tn) can be calculated through 

the obtained wavelet spectra of the signal before perturbation, Wunp(f(c)
i,tn), and after per-

turbation, Wper(f(c)
i,tn): 
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         (4.6) 

where s(f(c)
i) represents the wavelet scale (Torrence and Compo 1998) and can be calcu-

lated through dividing S(f(c)
i) in Equation (4.5b) by the sampling rate. The symbol ς{·} 

denotes the smoothing operator for both time and frequency scales to prevent the coher-

ency being identically one (Glangeaud 1981). The phase angle of the wavelet cross-co-

herency Γ(f(c)
i,tn) is the phase difference spectrum ϕunp,per(f(c)

i,tn). This phase difference 

spectrum can be converted into the time difference spectrum δtunp,per(f(c)
i,tn) through di-

viding by 2πf(c)
i at each frequency component. The travel time change spectrum 

dt/tunp,per(f(c)
i,tn) can be obtained using the δtunp,per(f(c)

i,tn) divided by the lapse time t at each 

lapse time.  

Compared with the Fourier transform-based MWCS, in which the length of the time win-

dow is fixed, the time window used in WCS adapts to each frequency through CWT and 

hence has a better time-frequency resolution (Mao, Mordret et al. 2020). Another ad-

vantage of WCS technique is its higher computational speed, especially compared to 

time-domain-based techniques (Mao, Mordret et al. 2020). A drawback of the WCS tech-

nique is poor performance in estimating the velocity change at frequencies with low en-

ergy (Mao, Mordret et al. 2020, Yuan, Bryan et al. 2021), which will be further discussed 

in Section 4.4.1. 

4.2.3 Specimens and experiments 

The selected WI techniques are further verified and compared in a concrete specimen. To 

ensure that the propagating waves in the coda within the specimen are predominantly bulk 

waves, the dimensions of the specimen should be several times larger than the maximum 

wavelength of transverse waves, which dominate the coda (Snieder 2002). Considering 

that the maximum wavelength of transverse waves associated with the lowest frequency 

of interest (50 kHz) is approximately 54 mm (assuming a transverse wave velocity of 

approximately 2700 m/s, which is typical for concrete), a cylindrical sample with a diam-

eter of 300 mm (approximately 5.6 times the wavelength) and a height of 500 mm (ap-

proximately 9.3 times the wavelength) is designed. A typical commercial concrete mix-

ture with a compressive strength grade of C50/60 is used. The load is applied along the 

axial direction of the cylinder and is uniformly distributed over the cross sectional areas 

by means of a gypsum layer and a wooden plate on the top surface of the cylinder. A 

diagram of the experimental setup is shown in Figure 4.2. 
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Two piezoelectric sensors, namely smart aggregates (SAs), with the polarization direction 

parallel to the load direction are embedded inside this cylinder to serve as the actuator 

and receiver. The minimum distance from the SA to the surface of the specimen is 100 

mm (top/bottom surface). Considering that the frequencies of interest exceed 50 kHz, and 

that the Rayleigh wave velocity in concrete is around 2300 m/s (Shin, Yun et al. 2007), 

the maximum effective depth of penetration of Rayleigh waves, which is equal to one 

Rayleigh wave wavelength (Giurgiutiu, Bao et al. 2001), is about 46 mm. This is obvi-

ously smaller than 100 mm, implying that the presence of Rayleigh wave-related particle 

velocities in measurements can be neglected. Sensor locations are also depicted in Figure 

4.2.  

 

(a) Front view. 
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(b) Top view. 

Figure 4.2 Concrete cylindrical specimen with smart aggregate (SA) locations. 

In the test, the cylinder is loaded to a stress range between 7 MPa and 12 MPa. The load-

ing and unloading processes are repeated 3 times. The loading protocol is designed based 

on this stress range and shown in Figure 4.3. The first and second cycles are loaded from 

500 kN (7.07 MPa) to 700 kN (9.90 MPa) and back to 500 kN (7.07 MPa) with a 10 kN 

(0.14 MPa) interval. The third cycle starts from 500 kN (7.07 MPa) but goes up to 800 

kN (11.32 MPa) and back to 400 kN (5.66 MPa) with the same interval. The choice of 

the load interval of 10 kN (0.14 MPa) is determined by two criteria: it should be suffi-

ciently large to ensure detectability of travel time changes and yet small enough to guar-

antee sufficient resolution in detecting stress changes. The loading and unloading pro-

cesses are coloured in red and green in Figure 4.3, respectively. There are 151 loading 

steps in total, as shown on the x-axis, and the first loading step is counted as load step 0. 

The loading speed during both the loading and unloading processes is maintained at 0.5 

kN/s, which translates to 7.07 kPa/s. Upon reaching each load step, there is an initial one-

minute waiting period to ensure stability in the loading jack before measurements are 

taken. The measurement at each loading step is completed in less than one minute. 

A portable ultrasonic system is used at each load step to generate and receive wave signals. 

Considering the resonant frequency of SA, around 80 kHz (Kong 2015), and frequency 

of interest, higher than 50 kHz, a squared pulse with a frequency of 54 kHz is used as the 

excitation signal. The sampling rate is 1 MHz. Since the test was carried out in the lab 

with a small temperature fluctuation, it is supposed that velocity variations are mainly 

caused by stress changes. 

          

  

     

     



4.2 Estimation of travel time changes 

36 

 

Figure 4.3 Loading protocol (red dots are associated with loading stages, green dots with 
unloading). The loading speed during both the loading and unloading processes is maintained at 0.5 

kN/s, which translates to 7.07 kPa/s. Upon reaching each load step, there is an initial one-minute 
waiting period to ensure stability in the loading jack before measurements are taken. The 

measurement at each loading step is completed in less than one minute. 

4.2.4 Comparison between the wavelet cross-spectrum technique and the 

stretching technique 

4.2.4.1 Time-frequency characteristics of typical waves received by smart 

aggregates in concrete 

In this section, we will present the characteristics of typical waves received by SAs in 

concrete. These characteristics will assist in identifying the frequency of interest, which 

will be used in the frequency-domain analysis, i.e., the WCS technique. As mentioned in 

Section 4.2.2.2, the WCS technique needs to be applied within frequency bands exhibiting 

adequate energy levels to ensure its effective performance in retrieving velocity changes. 

Therefore, a time-frequency analysis is required to identify frequency bands with suffi-

ciently high energy, within which the WCS technique will be implemented. 

The time-domain signals measured at the first five loading steps (Step 0-4) are shown in 

Figure 4.4(a). The stress linearly increases with steps of 0.14 MPa. With such small stress 

changes, waveforms are almost identical, and time shifts are not visible in direct waves. 

However, time shifts are evident in the coda, whereas the waveforms still have almost the 

same form. Upon reaching a higher stress level of approximately 9.90 MPa, as illustrated 

in Figure 4.4(b), waveforms of direct waves remain relatively indistinguishable, but time 

shifts become more pronounced compared to Figure 4.4(a). In the coda, time shifts be-

come substantial, and the similarity between waveforms decreases, particularly between 

the signals recorded at 7.07 MPa and 9.90 MPa. The result shown in Figure 4.4(b) sug-

gests that directly applying WI to signals recorded at 7.07 MPa and 9.90 MPa may result 

in an unreliable measurement of velocity perturbations, given the relatively low wave-

form similarity between these two cases in the coda. We will revisit this topic in Section 

4.2.4.3. 
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(a) Signals at Loading Step 0 (7.07 MPa), 1 (7.22 MPa), 2 (7.36 MPa), 3 (7.50 MPa), and 4 (7.64 
MPa). 

 

(b) Signals at Loading Step 0 (7.07 MPa), 5 (7.78 MPa), 10 (8.49 MPa), 15 (9.20 MPa), and 20 
(9.90 MPa). 

Figure 4.4                                    .                         μ         μ               
                                            ,                                   μ          μ  

contains multiply scattered waves. 

In this dissertation, the time-frequency analysis is realized using the CWT (i.e., a filter 

bank introduced in Section 4.2.2.2). The centre frequencies of the filter bank require the 

input of the frequency range and the number of voices per octave, a parameter related to 

the sampling density of the frequency scale. The frequency range is selected from 50 Hz 

to the Nyquist frequency, 500 kHz, and the number of voices per octave is 10. 

Figure 4.5 shows the time-frequency spectra of the signals at Step 150 (5.66 MPa) and 

Step 110 (11.32 MPa), respectively. These selected load steps represent the lowest and 

highest compressive stress levels in this test, respectively. For each load step, there are 

two time-frequency spectra representing linear and log magnitudes, respectively. The log-

magnitude spectra, illustrated in Figure 4.5(b) and Figure 4.5(d), facilitate the examina-

tion of wave energy in the late coda (i.e., from 4000 μs to 6000 μs), which is barely 

discernible in the linear-magnitude spectra in Figure 4.5(a) and Figure 4.5(c). From the 
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magnitude of the time-frequency spectrum, one can find that the energy concentrates in 

two frequency bands: one roughly from 50 kHz to 80 kHz, and the other from 120 kHz 

to 180 kHz. We consistently observe that the frequency characteristics of signals received 

by SAs fall within these two frequency bands, even across different types of concrete. 

This may be related to the resonant frequency of the SA, which is around 80 kHz (Kong 

2015). Note that the frequency bands may vary when different sensors are used.  

 

(a) 5.66 MPa (load step 150) with magnitude in the linear scale. 

 

(b) 5.66 MPa (load step 150) with magnitude in the log scale. 
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(c) 11.32 MPa (load step 110) with magnitude in the linear scale. 

 

(d) 11.32 MPa (load step 110) with magnitude in the log scale. 

Figure 4.5 Time-frequency spectra of signals at load step 150 and load step 110. The energy 
concentrates in two frequency bands, 50-80 kHz and 120-180 kHz, highlighted using red or black 

dashed lines. 

4.2.4.2 Choice of parameters for wave interferometry techniques 

For the stretching technique, the time window length is an important parameter. Rossetto 

et al. (2011) suggested a criterion that time windows in coda should contain at least five 

periods to prevent cycle skipping and mitigate strong fluctuations of the CC. There is no 

strict upper limit for the length of the time window. However, it is worth considering that 

the travel time change obtained through the stretching technique represents an average 

travel time change within the time window over which the stretching technique is oper-

ated. Consequently, a longer time window may result in reduced resolution of the travel 

time change across the travel time scale. To be on the safe side, the time window length 

for the stretching technique is therefore set to 200 μs, which is 10 times the reciprocal of 

50 kHz and hence a time window contains at least ten periods. The time windows start 

just before the first arrival, and adjacent time windows overlap by 100 μs (50% overlap) 

to ensure the continuity of obtained εmax or dt/t. In Section 4.2.4.3, the reference signal is 

fixed as the signal at load step 0 (500 kN). In Section 4.2.4.4, relative dt/t are obtained by 
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step-wise stretching (Wang, Chakraborty et al. 2020), meaning that the signal at the pre-

vious loading step is always taken as the reference. The range of ε is from -1% to 1% with 

a step of 0.01‰. Considering the low signal-to-noise ratio (SNR) in the late coda, only 

the time windows before 6000 μs are used for the analysis. 

As mentioned before, the WCS technique is effective only for obtaining the travel time 

changes at frequencies for which there is sufficient energy. Based on the time frequency 

analysis of the typical wave signals, only the frequency bands between 50 and 80 kHz 

and between 120 and 180 kHz are adopted for the WCS analysis and referred to as the 

low-frequency regime (50-80 kHz) and the high-frequency regime (120-180 kHz). Just 

as for the stretching technique, the reference signal is set to be the signal at Step 0 in 

Section 4.2.4.3. Relative dt/t are obtained by step-wise WCS in Section 4.2.4.4, where 

the reference signal is always associated with the previous loading step. The mother 

wavelet is the analytic Morlet wavelet. To prevent the CC from being identically one 

(Glangeaud 1981), the smoothing approach as used by Torrence and Webster (1999) is 

adopted: a boxcar filter with a window length of three scales for scale smoothing and a 

Gaussian, exp(-t2/(2s2)), for time smoothing. 

4.2.4.3 Comparison in terms of stability against cycle skipping 

As mentioned in Section 2.3.2, the stability analysis of a WI technique determines 

whether the retrieved velocity changes are stable as a function of time. In case of low 

stability, anomalously large or small travel time changes can be observed. A lack of sta-

bility is due to the alignment of peaks which in reality are offset by approximately one 

period. This phenomenon is usually referred to as cycle skipping (Mikesell, Malcolm et 

al. 2015). Effectively, the assessment of a WI technique’s stability therefore involves as-

sessing its ability to mitigate cycle skipping.  

To ensure the occurrence of cycle skipping (for assessment purposes), the reference signal 

is set to be the signal at Step 0 (corresponds 7.07 MPa) for all computations in this section. 

The current signals are associated with loading steps 1 to 5 with magnitudes of compres-

sive stress from 7.22 MPa to 7.78 MPa. The inferred travel time difference relative to the 

signal at 7.07 MPa are shown in Figure 4.6(a). It is important to emphasize that the 

stretching technique quantifies the relative travel time change (dt/t) between two traces. 

The travel time difference in Figure 4.6 is obtained by multiplying this relative travel time 

change with the travel time (i.e., tc in Equation (4.1)). An anomalously high/low travel 

time difference, marked by the red cycle, is observed at around 3800 μs for the coda of 

the signal associated with the compressive stress of 7.64 MPa. Focussing on the analysis 

using signal obtained at 7.64 MPa, the travel time difference and CC are shown for all 

time windows in Figure 4.6(b). It is found that cycle skipping occurs at time window 37, 

which has a central time tc of 3780 μs and is marked by a red cycle, and despite the fact 

that the CC in this time window has a relatively high value of around 0.7.  
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(a) Travel time difference as a function of travel time (i.e., tc in Equation (4.1)). 

 

(b) Travel time difference and CC as function of travel time (i.e., tc in Equation (4.1)) with the current 
signal being the signal at 7.64 MPa. 

Figure 4.6 Cycle skipping when using the stretching technique. The reference signal is set to be the 
signal at Step 0 (corresponds to 7.07 MPa). Cycle skipping is indicated by red cycles. The stresses 

shown in this figure are compressive stresses. 

As mentioned in Section 4.2.2.1, the stretching technique selects the stretching factor ε 

associated with the highest correlation coefficient. Focussing on time window 37 (tc=3780 

μs) of the signal recorded at 7.64 MPa, we investigate how the correlation coefficient 

varies for different stretching factors. Figure 4.7(a) therefore displays the CC as a function 

of the employed stretching factor ε. Two almost equally high peaks can be observed, both 

with a relatively high correlation coefficient. The second peak is associated with a stretch-

ing factor of 5.79‰. Since the CC attains its maximum for this value of ε, the stretching 

factor corresponding to this peak is selected. Plotting the stretched reference signals using 

the stretching factors associated with the two peaks, 0.43‰ and 5.79‰, together with the 

current signal, it can be observed that the time difference between the two stretched sig-

nals is indeed one cycle (see the yellow and red dotted cycles shown in Figure 4.7(b)). 

Here ‘one cycle’ corresponds to a time shift just below 20 μs, which corresponds to a 

frequency just over 50 kHz. Obviously, the true ε is not expected to be 5.79‰ since this 
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value is significantly higher than the ε inferred for adjacent time windows (see Figure 

4.6(b)). 

The main reason for the occurrence of cycle skipping is the decrease in SNR owing to the 

signal’s amplitude attenuation. The strong noise masks the similarity between reference 

and current signals. Furthermore, because higher frequencies attenuate faster, the band-

width becomes narrower with increasing travel time, further exacerbating cycle skipping 

(Mikesell, Malcolm et al. 2015). In conclusion, the low SNR is the main trigger of cycle 

skipping while employing the stretching technique in this case. A similar conclusion can 

be found by Mikesell et al. (2015). 

 

(a) Variation of the correlation coefficients with stretching factors. 

 

(b) Current signal and stretched signals with stretching factors highlighted in Figure 4.7(a). 

Figure 4.7 Stretching factors and stretched signals in the time window 37 (tc=3780 μs) when using 
the signal at 7.64 MPa as the current signal. The stresses shown in this figure are compressive 

stresses. 

The cause of cycle skipping while employing the WCS technique differs from that of the 

stretching technique. The WCS technique is based on the phase spectrum in the wavelet 

domain, which implies that this technique can only measure phase changes from –π to +π. 

Consequently, travel time differences corresponding to the phase difference spectrum 

                    .  

                          .   

                    .  

                          .   
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range from a positive half period to a negative half period. Inferred travel time differences 

beyond this range will ‘jump’ from the boundary one period to another, resulting in anom-

alously large travel time differences. Phase-based travel time differences are shown in 

Figure 4.8 for four specific frequencies. The black dashed lines in Figure 4.8 represent 

the travel time difference at positive and negative half periods for the considered fre-

quency (equal to half the reciprocal of the frequency). As shown in Figure 4.8(a), no 

travel time difference jumping from –π to +π (or vice versa) is observed, which suggests 

that cycle skipping does not occur at 51 kHz. This is due to the fact that the 51 kHz is the 

lowest frequency depicted in Figure 4.8, and signals with this frequency have the longest 

period. Consequently, signals with this frequency component are able to accommodate a 

larger absolute time shift. However, for the higher frequencies, 77 kHz, 125 kHz and 177 

kHz, one can observe that the travel time differences jump from –π to +π (or vice versa) 

in the coda part at some travel times, which is typical for cycle skipping. For the wave 

with a frequency of 177 kHz, cycle skipping is observed when the signal at 7.50 MPa is 

the current signal, whereas cycle skipping only occurs (first) when signal at 7.64 MPa 

while employing the stretching technique, see Figure 4.6(a). However, for the wave with 

a frequency of 77 kHz, cycle skipping is observed for current signals at the same load 

step (7.64 MPa) as the stretching technique. According to Figure 4.8, the occurrence of 

cycle skipping in the WCS technique depends on the magnitude of the travel time differ-

ence and the wave frequency. 

 

(a) 51 kHz. 
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(b) 77 kHz. 

 

(c) 125 kHz. 

 

(d) 177 kHz. 

Figure 4.8 Travel time difference of different frequency components as a function of travel time 
retrieved using the WCS technique. The stresses shown in this figure are compressive stresses. 

Based on the results presented in this section, it is evident that the triggers of cycle skip-

ping in the stretching technique and the WCS technique differ. When employing the 

stretching technique, cycle skipping becomes apparent in time windows with low SNR. 
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Conversely, using the WCS technique, the occurrence of cycle skipping depends on the 

wave frequency and the magnitude of the travel time difference because of operating in 

the wavelet domain. This contrasting trigger mechanism for cycle skipping complicates 

the determination of which technique provides better stability. When examining the per-

formance of these techniques specifically for wave frequencies ranging from 50 kHz to 

80 kHz in this particular case, their stability against cycle skipping is found to be compa-

rable. It should be noticed that the above conclusion is drawn based solely on this exper-

iment and one should be careful generalizing these to other materials and/or significantly 

higher stress levels.  

4.2.4.4 Comparison in terms of retrieved velocity changes 

In the previous section, we compared the two techniques in terms of their stability against 

cycle skipping. Here, we will assess their consistency in retrieving velocity changes 

within the medium. Consequently, the term ‘velocity change’ will be used throughout this 

section. To ensure the reliability of the relative velocity change (dv/v), which refers to the 

travel time changes between two consecutive loading steps, we will first evaluate the CC 

values. Next, the accumulated velocity changes obtained using the two techniques, cal-

culated by summing the relative velocity changes across different load steps, are evalu-

ated and compared to evaluate their consistency in retrieving velocity changes. 

The CC from the stretching technique is calculated for a specific time window, whereas 

the CC from the WCS technique is associated with a specific travel time and frequency. 

In order to compare the CC and dv/v obtained from the two techniques as a function of 

travel time, we use the same time windows as those adopted in the stretching technique. 

We calculate the mean WCS technique-based relative dv/v and CC by averaging all dv/v 

and CC values corresponding to travel times within the selected time window. Along the 

frequency scale, the mean WCS technique-based relative dv/v and CC are calculated by 

averaging all dv/v and CC values over discrete frequencies within frequency bands 50-80 

kHz (low-frequency regime) and 120-180 kHz (high-frequency regime). The averaging 

across frequency scales is deemed reasonable because the CWT filter bank is based on 

multiple Gaussian filters in the frequency domain, as discussed in Section 4.2.2.2. The 

CC retrieved using the stretching technique and the WCS technique are shown in Figure 

4.9. The CC values are generally higher than 0.8 for both techniques, surpassing the 

threshold 0.7 recommended by Clauss et al. (2020), below which the calculated dv/v is 

deemed unreliable. This indicates that the relative dv/v obtained from both techniques are 

reliable. The relatively low CC values in the coda of the high-frequency regime shown in 

Figure 4.9(c) are mainly attributed to the attenuation imposed low SNRs of high-fre-

quency waves. 
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(a) CC obtained using the stretching technique. 

 

(b) CC within the frequency band of 50-80 kHz obtained using the WCS technique. 

 

(c) CC within the frequency band of 120-180 kHz obtained using the WCS technique. 

Figure 4.9 CC at travel time and loading steps obtained using the stretching technique and the WCS 
technique (indicated in red on the vertical axis are the loading stages, and indicated in green the 

unloading stages; note that the CC from the WCS technique represents an average over the 
discrete frequencies within the frequency band). 

To compare the relative dv/v retrieved using the stretching technique and the WCS tech-

nique, the whole signal is further split into a series of non-overlapping time segments with 
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a length of around 1 ms (the first time segment is from the first arrival to 1 ms). For the 

stretching technique and the low-frequency regime WCS, the mean relative dv/v of time 

windows with CC higher than 0.9 is calculated in each time segment. For the high-fre-

quency regime WCS, the relative dv/v is calculated in each time segment by averaging 

the relative dv/v of time windows with CC higher than 0.8.  

The relative dv/v between signals of the neighbouring load steps during the whole loading 

program are plotted in Figure 4.10. Here, the three lines are retrieved by stretching tech-

nique and WCS technique of the two different frequency ranges in the first four time 

segments. The relative dv/v is frequency dependent, manifested by higher magnitudes of 

relative dv/v retrieved from waves in the low-frequency regime compared to those from 

the high-frequency regime. Additionally, the stretching technique-based relative dv/v, op-

erating in broadband, gives intermediate values in the first time segment and is nearly 

equal to the dv/v retrieved from the low-frequency regime in the later time segments. This 

can be explained by the fact that few high-frequency signals remain at greater travel time 

after 1 ms, as shown in Figure 4.5(b) and Figure 4.5(d). 

 

(a) Relative dv/v retrieved from the signal in the first time segment (first arrival-1 ms). 

 

(b) Relative dv/v retrieved from the signal in the second time segment (1 ms-2 ms). 
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(c) Relative dv/v retrieved from the signal in the third time segment (2 ms-3 ms). 

 

(d) Relative dv/v retrieved from the signal in the fourth time segment (3 ms-4 ms). 

Figure 4.10 Relative dv/v retrieved from the signal in different time segments as a function of 
loading steps (indicated in red on the horizontal axis are the loading stages, and indicated in green 
the unloading stages; note that the relative dv/v from the WCS technique represents an average 

over the discrete frequencies within the frequency band). 

The vertical axis in Figure 4.10 represents the relative dv/v, where the signal associated 

with the previous loading step is used as the reference. By summing these relative dv/v 

values, one can obtain the accumulated dv/v, reflecting changes relative to the initial stress 

at load step 0. It is important to note that this operation is only applicable when the mag-

nitude of total velocity change is small. If there is a significant magnitude of total velocity 

change, we recommend using a similar approach as described in Hu et al. (2021), in which 

the accumulated velocity change is acquired by multiplying relative velocities. Figure 

4.11 displays trajectories of the accumulated dv/v retrieved using the stretching technique 

and the WCS technique. The accumulated dv/v retrieved from the stretching technique, 

the low-frequency regime WCS, and the high-frequency regime WCS all demonstrate a 

linear relationship with increasing compressive stress. Same as the observation in Figure 

4.10, the stretching technique-based velocity changes give intermediate values in the first 
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time segment and is nearly equal to those retrieved from the low-frequency regime in the 

later time segments. 

 

(a) Accumulated dv/v obtained using the stretching technique. 

 

(b) Accumulated dv/v within the frequency band of 50-80 kHz obtained using the WCS technique. 

 

(c) Accumulated dv/v within the frequency band of 120-180 kHz obtained using the WCS technique. 

Figure 4.11 Relationship between accumulated dv/v vs. compressive stress in different time 
segments. 
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As mentioned earlier, the stretching technique determines the stretching factor, εmax, that 

maximizes the CC. Equation (4.4) reveals that both the amplitude spectrum and phase 

spectrum influence |CC(tc,T,ε)| and εmax. This equation also demonstrates that the relative 

dv/v retrieved from the stretching technique is weighted by the wave energy. Therefore, 

it is possible to approximate the stretching technique-based result using the WCS tech-

nique-based result by incorporating wave energy information: using the relative dv/v re-

trieved from the low-frequency regime WCS and high-frequency regime WCS, the esti-

mated dv/v can be calculated using the following equation: 

                          (4.7) 

where (dv/v)estimated, (dv/v)low-frequency and (dv/v)high-frequency represent the estimated relative 

dv/v, the relative dv/v retrieved from the low-frequency regime WCS, and the relative 

dv/v retrieved from the high-frequency regime WCS, respectively. The Elow-frequency and 

Ehigh-frequency denote the wave energies (mean squared value of amplitude) of frequency 

bands in the low-frequency and high-frequency regimes. These energies can be directly 

obtained from the wavelet time-frequency spectrum. Considering that the stress condition 

can slightly alter the energies in frequency components of the signal, as depicted in Figure 

4.5(b) and Figure 4.5(d), the energy of the current signal is always utilized as the 

weighting factor. As the intermediate value demonstrated by the stretching technique is 

more apparent in the first-time segment, this segment is employed to evaluate the esti-

mated relative dv/v. However, the conclusion remains applicable to other time segments 

as well. 

Figure 4.12 presents a comparison between the estimated accumulated velocity change 

and those retrieved from the stretching and WCS techniques in the first time segment. As 

shown in this figure, the slope of the estimated result is in closer agreement with the result 

obtained using the stretching technique. The discrepancy between the stretching tech-

nique-based result and the constructed result based on the WCS technique can be at-

tributed to the limited frequency components utilized in Equation (4.7), only 50-80kHz 

and 120-180kHz. Considering the challenge of including all frequency components due 

to the potential contamination of travel time changes in frequency bands with low energy 

(Mao, Mordret et al. 2020, Yuan, Bryan et al. 2021), it is not feasible to incorporate every 

frequency in the analysis. Nevertheless, the proximity between the estimated result and 

the result retrieved from the stretching technique indicates that the stretching technique-

based velocity change can be approximated using the velocity changes retrieved from the 

WCS technique.  
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Figure 4.12 Comparison between the estimated accumulated velocity change and those retrieved 
utilizing the stretching and WCS techniques in the first time segment. 

To ensure consistency in the velocity changes retrieved using the stretching technique 

and the WCS technique, we conduct an additional comparison. In this comparison, the 

stretching technique is applied to the bandpassed time-series after the CWT, also referred 

to as the wavelet-stretching technique (Yuan, Bryan et al. 2021). The comparison of ve-

locity changes retrieved using the WCS technique and the wavelet-stretching technique 

is shown in Figure 4.13. This comparison encompasses two frequency bands previously 

mentioned: 50-80 kHz and 120-180 kHz. As depicted in Figure 4.13, the results obtained 

using both techniques demonstrate a high degree of consistency. Therefore, based on 

findings presented in Figure 4.12 and Figure 4.13, one can conclude that the velocity 

changes retrieved from the WCS technique and the stretching technique are consistent. 
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(a) Low-frequency regime: 50-80 kHz. 

 

(b) High-frequency regime: 120-180 kHz. 

Figure 4.13 Comparison between the relative velocity changes retrieved utilizing the wavelet-
stretching and WCS techniques in different time segments. 

4.2.5 Application of the stretching and WCS techniques in subsequent 

chapters 

In the previous sections of Section 4.2, we compared two WI techniques: the stretching 

technique and the WCS technique. These techniques will be applied in Chapter 5 and 7 

to retrieve stress-induced velocity changes in the medium. Based on the comparisons in 

Section 4.2, the following guidelines are proposed for their use in this dissertation: 

• The stretching technique will be used to retrieve velocity changes in the ballistic 

wave regime, while the WCS technique will be applied to the coda wave regime. 

• The time window for the stretching technique should be kept short to ensure it 

captures a pure wave mode while still containing at least one full cycle of the 

signal. 

• The frequency range for the WCS technique should be 50-80 kHz, where wave 

energy is highest and persists in the coda. 
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• The load step should be small enough to maintain stability. In the results shown 

in Figure 4.8, this value should be smaller than 0.57 MPa. Therefore, in Chapter 

7, the load step is set to 0.28 MPa. 

4.3 Estimation of diffusive properties 

In Section 4.2, we have discussed techniques that can be used to retrieve velocity changes 

in concrete from bulk waves. However, travel time changes in the coda are resulted from 

a combination of acoustoelasticity and scattering process. Therefore, understanding the 

energy transport properties of bulk waves during the scattering process in concrete can 

greatly aid in interpreting the travel time changes in the coda.  

This section will introduce techniques that can be used to estimate energy transport prop-

erties of bulk waves in concrete. As mentioned in Section 3.3.1, the energy transport 

within all regimes can be described by the radiative transfer equation (RTE) 

(Chandrasekhar 2013). However, the complex nature of RTE presents challenges for its 

practical application in engineering. As an alternative, the diffusion equation (Watson, 

Fleury et al. 1987) is commonly used when the energy transport occurs in a diffusive 

regime (Yoo, Liu et al. 1990, Zhang, Jones et al. 1999, Elaloufi, Carminati et al. 2002). 

Such a simple scalar equation has been successfully and extensively utilized in describing 

the energy transport of various phenomena, including electromagnetic waves (Kop, 

deVries et al. 1997), acoustic waves (Tallon, Brunet et al. 2017) and elastic waves (Jia 

2004). This section will delve into the techniques that estimate diffusive properties of 

concrete medium, specifically, diffusivity and dissipation.  

Diffusive properties are generally extracted by fitting the wave energy profile with the 

diffusion equation in one-dimensional (Yim, An et al. 2016, Ramaniraka, Rakotonarivo 

et al. 2022), two-dimensional (Becker, Jacobs et al. 2003, Quiviger, Payan et al. 2012), 

or three-dimensional forms (Ahn, Shin et al. 2019, Jiang, Zhan et al. 2019, Tinoco and 

Pinto 2021, Ahn, Shin et al. 2022). However, it is crucial to acknowledge that the analyt-

ical solution of the diffusion equation is derived for an infinite medium. Although con-

crete may approximate an infinite medium in certain scenarios with sufficiently distant 

boundaries (Anugonda, Wiehn et al. 2001, Schubert and Koehler 2004), the direct appli-

cation of the diffusion equation for infinite media to concrete structures is generally im-

practical due to the non-negligible energy reflection from boundaries. To address this lim-

itation, improvements to the diffusion equation are made to estimate diffusive properties 

by incorporating the effect of boundary conditions, which will be elaborated further in 

this section. 

In this section, we will start with the knowledge gap in Section 4.3.1. Then, the theoretical 

background of the diffusion equation will be introduced in Section 4.3.2. The theoretical 

background will commence with a presentation of the diffusion equation in infinite media, 
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followed by a more precise estimation tailored to consider boundaries. To explore the 

impact of boundaries on acquired diffusive properties, experimental investigations are 

conducted on a set of concrete specimens. Section 4.3.3 provides details regarding the 

specimens and experiments. The subsequent analysis of the experimental results is pre-

sented in Section 4.3.4 and 4.3.5. Procedures for fitting diffusive properties in later chap-

ters will be summarized in Section 4.3.6. 

4.3.1 Knowledge gap in characterizing diffusive properties in concrete 

structures with boundaries 

Diffusivity and dissipation are transport properties easily measured through experiments, 

with diffusivity also holding potential for assessing the scattering property of concrete. 

However, the analytical solution of the diffusion equation is proposed for an infinite me-

dium, posing a challenge for direct application to most concrete structures with bounda-

ries. In such cases, the influence of boundaries on diffusive properties must be considered. 

In the presence of complex boundary conditions, solving the diffusion equation for the 

geometry of system becomes a problem within the field of applied mathematics (Crank 

1979). Section 3.4 introduced examples of solving the diffusion equation for two-dimen-

sional rectangular and three-dimensional cuboid domains. However, the increased com-

plexity in the expression of the diffusion equation makes nonlinear curve fitting more 

intricate for obtaining diffusive properties, rendering it less robust compared to the orig-

inal diffusion equation in infinite media (Deroo, Kim et al. 2010). Hence, an improved 

diffusion equation is needed to incorporate boundaries without significantly increasing 

its complexity. 

In situations with planar boundaries, the solution to the diffusion equation can be approx-

imated by superimposing energy from the real source with additional energy reflected 

from the planar boundary. This method, where reflected energy is treated as originating 

from the image source (Weaver and Sachse 1995, Rossetto, Margerin et al. 2011), is 

known as the image source method (Allen and Berkley 1979). By using this method, 

reflected energy from planar boundaries can be incorporated by adding additional terms 

to the diffusion equation. However, it is important to note that the image source method 

is limited to geometries formed by planar boundaries (Habets 2006). In the case of wave 

propagation in cylindrical samples, this method is not applicable. To acquire diffusive 

properties in samples with such geometries, the diffusion equation needs to be further 

adjusted to estimate diffusive properties of bulk waves. 

4.3.2 Theoretical background of diffusion equation 

4.3.2.1 Diffusion equation in an infinite medium 

The governing equation for diffusion is written in the following form (Weaver and Sachse 

1995, Weaver 1998): 



Chapter 4 Techniques for estimating bulk wave properties in concrete 

 55 

                                     (4.8) 

where t represents the time and xi are the spatial coordinates. In a three-dimensional Car-

tesian coordinate system, i can be 1, 2 and 3. E(xi,t) is the transport energy at location xi 

and time t, and E0 represents the deposited impulse energy at initial location at time t = 0 

(Weaver and Sachse 1995). The parameters D and α represent the diffusivity and dissipa-

tion, respectively, that describe the characteristics of energy transport.  

The diffusivity quantifies how quickly the energy spreads within the medium (Planès and 

Larose 2013). In this context, the diffusivity can be viewed as a measure similar to the 

‘spreading velocity’ of the diffusion halo (Ramaniraka, Rakotonarivo et al. 2022). It is 

noteworthy that the pure diffusion process, in the absence of dissipation, generally fol-

lows the energy conservation (Anugonda, Wiehn et al. 2001). The mechanism of dissipa-

tion in concrete is likely a combination of viscous dissipation and internal friction (Brunet, 

Jia et al. 2008). Unlike the energy-conserving nature of the pure diffusion process, the 

dissipation process does not follow the energy conservation. 

In an infinite n-dimensional medium, the solution of Equation (4.8) is given as (Weaver 

and Sachse 1995): 

                                               (4.9) 

where r represents the distance between source and receiver. The logarithmic form of 

Equation (4.9) is commonly employed in fitting the diffusion equation: 

                             (4.10) 

Taking the partial derivative of Equation (4.10) with respect to t gives: 

                                        (4.11) 

As indicted in Equation (4.11), when the time t is very small, the slope of the logarithm 

energy against time is positive and dominated by the term r2/4Dt2. When t is large, the 

slope of the energy against time is negative and dominated by α. One can also estimate 

the arrival time of the maximum energy from Equation (4.11) by setting the equation 

equal to zero and considering the fact that this arrival time must be positive: 

                                           (4.12) 
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When assuming that no dissipation and the initial deposited energy is 1, Equation (4.9) 

becomes: 

                                                  (4.13) 

Owing to the energy conservation inherent in the pure diffusion process, the integral of 

Equation (4.13) over space represents the total energy of the wave field, which is equal 

to the initial deposited energy. However, both Equation (4.9) and (4.13) are derived under 

the assumption of an infinite medium, which may not be realistic when applying them to 

concrete specimens with multiple boundaries. 

4.3.2.2 Diffusion equation in a medium with multiple planar boundaries 

In the presence of complicated boundary conditions, the diffusion equation needs to be 

solved for the geometry of the system (Crank 1979), and this task presents a problem 

within the field of applied mathematics (Rossetto, Margerin et al. 2011). In situations 

where the boundaries of a concrete structural element are predominantly planar, the solu-

tion to the diffusion equation can be approximated by superimposing the energy from the 

real source with the additional energy reflected from the planar boundary. The reflected 

energy can be considered as originating from the image source (Morse and Feshbach 1954, 

Weaver and Sachse 1995, Rossetto, Margerin et al. 2011), as illustrated in Figure 4.14. It 

is essential to underscore that the image source method is constrained to geometries 

formed by planar boundaries (Habets 2006). 

 

Figure 4.14 Schematic representation of energy superposition in the medium with a planar 
boundary. 

Rossetto et al. (2011) proposed the following equation to account for the energy contri-

bution from an image source: 

                                      (4.14) 

where r’ represents the distance between image source and receiver, and b is a coefficient 

that is related to the nature of the boundary condition. If the boundary is absorbing, b=−1 
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and if it is fully reflecting, b=1.The normalization coefficient a is defined as (Rossetto, 

Margerin et al. 2011): 

                                           (4.15) 

where d1 is the distance between the source to the boundary, and erf(∙) denotes the error 

function. Considering that the acoustic impedance of concrete is around 20000 times 

higher than that of air (Ahn, Shin et al. 2022), the transmitted energy from concrete to the 

air is in the order of 10-5, which is significantly smaller than the reflected energy. There-

fore, the concrete-air boundary can be approximated as the fully reflecting boundary, and 

b in this case is set to be 1. Equation (4.14) can be simplified into: 

                                           (4.16) 

After substituting Equation (4.9) into Equation (4.16), one can get the approximate ex-

pression of diffusion equation in a medium with a single planar boundary: 

                               (4.17) 

As shown in Equation (4.17), the contribution of an image source to the energy produced 

by the real source is calculated as exp{-[(r’)2-r2]/(4Dt)} multiplied by the energy pro-

duced by the real source. In cases with multiple planar boundaries, the expression be-

comes: 
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where N represents the number of image sources. The logarithmic form of Equation (4.18) 

is commonly employed in fitting the diffusion equation: 
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4.3.2.3 Diffusion equation in a cylindrical medium 

As pointed out in Section 4.3.2.2, the conventional image source method is limited to 

geometries defined by planar boundaries (Habets 2006). In the case of a cylindrical mem-

ber as depicted in Figure 4.15 hence the method for planar boundaries becomes inappli-

cable. Therefore, a new approach is proposed to estimate diffusive properties of bulk 
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waves in cylindrical members. This approach is further employed in Chapter 7 to under-

stand the evolution of travel time changes over time. 

 

Figure 4.15 Schematic representation of energy reflections and image sources in the cylindrical 
member. The red and black paths indicate primary and secondary reflections, respectively; circles 

with the same colours indicate the radii of the corresponding image sources. 

To simplify the estimation process, we consider the situation that both the source and 

receiver are situated along the central axis of an infinitely long cylinder. The diameter of 

the cylinder is denoted as 2RC, and the separation between the source and receiver is rep-

resented by the variable r, as illustrated in Figure 4.15. The circular surface, which is a 

concrete-air boundary, can be approximated as the fully reflecting boundary as discussed 

in Section 4.3.2.2. The travel distance from the source to the receiver, considering primary 

boundary reflection (red arrow lines), remains a constant value of [r2+(2RC)2]1/2. It is im-

portant to emphasize that the circular boundary causes the reflected energy to converge 

at a specific point—the location of the receiver. This converged energy is equivalent to 

the total energy produced by the sources located on the circle centred at the real source 

with a radius of 2RC, shown as the red circle in Figure 4.15. With this consideration in 

mind, the reflected energy, denoted as E(r’,t), can be calculated by integrating along the 

circle with a radius of 2RC in the polar coordinate system: 

                                          (4.20) 

where C denotes the curve of integration, and r’ represents the distance between image 

sources and receiver.  

The fundamental assumption in this context is the absence of energy leakage at the bound-

ary. The primary reflected energy in Figure 4.15 (red circle) can be calculated through: 

                        (4.21) 
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In the case of secondary reflections, as depicted by the black circle in Figure 4.15, the 

secondary reflected energy is: 

                        (4.22) 

For the h-th reflections, the reflected energy is: 

                    (4.23) 

The expression for the superposition of the main energy from the source and the energy 

reflected from h reflections can be expressed as: 

( )
( )

( )
22

C2

0 4 4
total C3

12

1 2 2 .

4

jRr ht
Dt Dt

j

E
E e jR e

Dt







−−
−

=

 
 = +
  


                             (4.24) 

Please note that in Equation (4.24), the parameter h approaches infinity when accounting 

for the infinite reflections within an infinitely long cylinder. The logarithmic representa-

tion of Equation (4.24) is as follows: 
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4.3.3 Specimens and experiments 

In this chapter, we consider two members. The first member is a prefabricated beam. This 

member is employed to assess the diffusive properties of bulk waves in a medium with 

planar boundaries. The prefabricated beam is constructed using an environmental-

friendly cementitious material called alkali-activated (geopolymer) concrete (Singh, 

Ishwarya et al. 2015). The beam comprises two components: prestressed beam with a 

height of 300 mm, along with a cast-in-situ layer atop the beam. The prestressed beam is 

manufactured in a prefabricated concrete plant. The cast-in-situ layer is applied 28 days 

after the beam casting. It is essential to note that the geopolymer concrete used in the 

topping layer is supplied by a commercial company and features a different composition 

compared to the mixture used for prestressed beams. 

SAs are used to generate and receive elastic waves. These sensors are positioned at the 

mid-span in the beam. There are 12 SAs, designated from BB1 to BB12, as illustrated in 

Figure 4.16. Specific sensor locations in this beam can be found in Table 4.2. Measure-

ments are taken between adjacent SAs within each row, where the SAs in the bottom row 

are not in direct communication with those in the top row. There are a total of ten SA 

pairs, and each SA pair involves two measurements, swapping the roles of transmitter and 
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receiver between the first and second measurement. Hence, a total of 20 measurements 

are conducted. The SAs are situated at a minimum distance of 77 mm from the boundaries. 

Given that the frequency of interest is higher than 50 kHz and the Rayleigh wave velocity 

in concrete is approximately 2300 m/s (Shin, Yun et al. 2007), the maximum effective 

depth of penetration for Rayleigh waves is approximately 46 mm (Giurgiutiu, Bao et al. 

2001). This depth is smaller than 77 mm, indicating that the contribution of Rayleigh 

wave-related energy transport in measurements can be neglected. During the data acqui-

sition, each measurement involves gathering data by stacking five signals. The sampling 

rate for data acquisition is 3 MHz. 

 

(a) Cross-sectional view. 

 

(b) Front view. 
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(c) Photo of the beam. 

Figure 4.16 Dimensions and photo of the geopolymer concrete and the sensor layout (unit: mm; 
black arrow on the SA indicates the polarization direction of the sensor). 

Table 4.2 Locations of SAs relative to the coordinates in Figure 4.16(a) and Figure 4.16(b). 

Sensor BB1 BB2 BB3 BB4 BB5 BB6 BB7 BB8 BB9 BB10 BB11 BB12 

x [mm] 3070 3315 3560 3815 4070 4325 3070 3315 3560 3815 4070 4325 

y [mm] 77 77 77 77 77 77 277 277 277 277 277 277 

z [mm] 550 550 550 550 550 550 550 550 550 550 550 550 

 

The second category consists of a concrete cylinder, with its height and diameter, as well 

as the sensor layout, matching that depicted in Figure 4.1. It is worth noting that the con-

crete mixture compositions in these two cylinders are different. The cylinder utilized in 

Section 4.2 is cast on the construction site using a commercial mixture with an unknown 

composition, whereas the one used in this section is cast in our laboratory. The mixture 

composition is crucial in determining the transport properties of elastic waves, a topic that 

will be further explored in Chapter 6. Consequently, we use the cylinder cast in our lab 

to investigate the diffusive properties. Since there is only one pair of sensors embedded 

in the cylinder, the diffusive properties of bulk waves are investigated during the loading 

and unloading process. The compressive load is applied from 100 kN (1.41 MPa) to 500 

kN (7.07 MPa) and then back to 200 kN (2.83 MPa) with a 20 kN (0.28 MPa) interval.  

4.3.4 Diffusive properties in specimens with planar boundaries 

In this section, the diffusive properties of elastic waves will be examined in the beam 

member. The signal energy will be firstly analysed in Section 4.3.4.1 to determine the 

fitting parameters. Subsequently, we will compare diffusive properties obtained with and 

without considering boundary reflections in Section 4.3.4.2. Additionally, the impact of 

the interface between the prestressed beam and the cast-in-situ layer on the diffusive prop-

erties will be investigated in Section 4.3.4.3. Finally, we will assess the reliability of the 

acquired diffusivity and dissipation by examining the arrival time of the maximum energy 

in Section 4.3.4.4.  

4.3.4.1 Signal energy and parameters for fitting the diffusion equation 

Since diffusivity and dissipation are functions of frequency, these properties of bulk 

waves should be acquired for specific frequency bands. Here, the CWT introduced in 

Section 4.2.2.2 is used to transform the time-domain signal into a time-frequency spec-

trum. Once the time-frequency spectrum is obtained, the wave energy is calculated by 

averaging the squared value of the amplitude within a specific time window of a certain 

length (Weaver and Sachse 1995). The length of the time window is selected to be at least 

the reciprocal of the frequency of interest to minimize energy fluctuations caused by 

waveform oscillations. The centre time of the time window is taken as the elapsed time t 
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in Equation (4.19). When selecting the beginning and ending time windows for curve 

fitting, two factors need to be taken into consideration:  

• The beginning time window should encompass the first arrival of the wave to 

smoothen the wave energy, particularly to mitigate any sudden increases caused 

by the ballistic wave (i.e., Fig. 8 in the paper by Margerin et al. (2000)). 

• The declining trend of the logarithmic energy should exhibit linearity or approx-

imate linearity before the ending time window. This ensures the reliability of the 

fitted dissipation, as energy follows exponential decay when only dissipation is 

present. 

To demonstrate how to determine the beginning and ending time windows, the logarithm 

of the ensemble-averaged energy at various frequency components, obtained from the 

signal received by BB2 with BB1 as the transducer, is plotted in Figure 4.17. Eight fre-

quency components ranging from 50 kHz to 400 kHz, with an interval of 50 kHz, are 

selected. The length of time window is tentatively set as 40 μs (two times reciprocal of 

50 kHz) for all frequency components, with an overlap of 20 μs between adjacent time 

windows. As shown in Figure 4.17, the ensemble-averaged energy of all frequency com-

ponents initially experiences a rapid rise, followed by a subsequent decrease. The ascend-

ing part primarily corresponds to the spreading of energy in space, while the decreasing 

part is mainly attributed to dissipation. As the frequency of the wave increases, the energy 

decays at a faster rate. The energy of components with frequencies of 350 kHz and 400 

kHz reaches the noise level at around 1100 μs. Similar decay trends can be observed in 

signals from other transducer-receiver pairs. Moreover, the energy in the high-frequency 

regime, particularly at 350 kHz and 400 kHz, exhibits significant fluctuations, making 

the linear decrease associated with dissipation less pronounced. However, it can still be 

observed that the rate of energy reduction for 350 kHz and 400 kHz slows down after 

approximately 800 μs. Based on these observations, the centre time of the ending time 

window for curve fitting is set to around 800 μs. 
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Figure 4.17 Logarithm of the ensemble-averaged energy (denoted as ln<E>) at various frequency 
components as a function of time received by BB2 while BB1 as the actuator. 

As reported by Schubert and Koehler (2004), the arrival time of the maximum energy is 

dominated by diffusivity, while the subsequent decay is closely related to dissipation. 

However, as revealed in Figure 4.17, using time windows of equal length to capture the 

wave energy results in an imbalance of data points between the maximum energy arrival 

and energy decay portions. This disparity in data sampling may lead to an inaccurate 

estimation of diffusivity. To address this issue, it is crucial to ensure that the number of 

data points in the energy arrival and decay portions should be relatively comparable. To 

achieve this, the signal is divided into two parts: the initial part from 25 μs to 225 μs and 

the latter part from 225 μs to 725 μs. Starting from 25 μs can also help eliminate the 

influence of cross-talk on the obtained energy. The 1st time window, starting at 25 μs, 

has a length of 40 μs. The subsequent 10 time windows (2nd to 11th) also have a length 

of 40 μs, with each overlapping the previous window by 20 μs. The 12th time window, 

starting at 225 μs,  has a length of 100 μs. The subsequent 10 time windows (13th to 22nd) 

have a length of 100 μs and overlap the previous window by 50 μs.  

4.3.4.2 Influence of boundary reflections 

Since the SAs are embedded at the midspan, far from the edges, there are four major types 

of reflections in the beam, illustrated using the SA pair BB1-BB2 in Figure 4.18. These 

reflections include: reflection from the bottom surface, reflection from the top surface, 

secondary reflections from bottom and top surfaces, and reflections from the front and 

back surfaces. Assuming that the diffusivity is 150 m2/s and the maximum elapsed time 

is 800 μs, the maximum contributions of the reflected energy from these boundaries to 

the main energy, as shown in Figure 4.18, can be estimated using Equation (4.17): 95.2% 

from the bottom surface, 37.5% to the main energy from the top surface, 46.0% to the 

main energy from the secondary reflections, and 26.0% to the main energy from the front 

and back surfaces. 
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(a) Reflection from the bottom surface. 

 

(b) Reflection from the top surface. 

 

(c) Secondary reflection from bottom 
and top surfaces (red: top-bottom; 

black: bottom-top). 

 

(d) Reflection from the front/back surface (red: back 
surface; black: front surface). 

Figure 4.18 Illustration of four types of reflections from boundaries in SA pair BB1-BB2. 

Figure 4.19 shows a typical experimental result of the signal energy of 200 kHz compo-

nent received by BB2 while BB1 serves as the actuator. The experimental result is fitted 

using both the diffusion equation in an infinite medium and the diffusion equation that 

accounts for reflected energy from top and bottom surfaces and secondary reflections. 

The curve fitting is evaluated using a least-square criterion to find the best-fit diffusive 

properties. The energy evolutions constructed using the fitted properties from diffusion 

equation in an infinite medium and the diffusion equation that accounts for reflected en-

ergy from top and bottom surfaces and secondary reflections are nearly identical. How-

ever, the acquired diffusivity and dissipation differ, as shown in Table 4.3. 
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Figure 4.19 Comparison between fitted diffusion curves with and without considering boundary 
reflections (200 kHz component of the signal received by BB2 while BB1 as the actuator in the 

beam). 

Table 4.3 Fitted results with different amount of image sources. 

Diffusion equation used for fitting 

Fitted results 

lnE0 

[-] 

Diffusivity 

D [m2/s] 

Dissipation 

α [s-1] 

Infinite medium (dotted line in Fig. 4.20) -0.53 44.4 6205 

Consider reflections from bottom surface -0.90 47.4 6465 

Consider reflections from bottom and top surfaces -0.89 47.2 6505 

Consider reflections from bottom and top surfaces, and second-
ary reflections (solid line in Fig. 4.20) 

-0.89 47.2 6523 

Consider reflections from bottom and top surfaces, secondary re-

flections, and reflections from front and back surfaces 
-0.89 47.2 6525 

 

Since a portion of the wave energy reflects back from the boundary, the diffusion equation 

without considering boundaries interprets this reflected energy as part of the initial energy 

emitted by the source. Consequently, the calculated deposited energy (lnE0 in Table 4.3) 

is higher than when the reflected energy is taken into account. Additionally, the superpo-

sition of reflected and diffusive energy introduces a delay in the arrival time of maximum 

energy and exhibits a slower decay trend in the dissipation phase. If one fits the diffusion 

equation in such cases without considering the reflection, both diffusivity and dissipation 

will be underestimated, as indicated in Table 4.3. 

Given the limited impact of remote image sources on the main energy, it is not necessary 

to consider all image sources. In scenarios presented in Table 4.3, taking into account 

reflections from the bottom and top surfaces, along with secondary reflections, already 

provides sufficiently accurate results. Consequently, only these image sources will be 

utilized in the fitting process for the bottom row of SAs in the beam.  

The fitted diffusive properties as a function of frequencies, utilizing the mentioned reflec-

tions for the bottom row of SAs (BB1 to BB6), are depicted in Figure 4.20. In these fig-

ures, the box plot is employed to visually demonstrate the spread of diffusive properties. 
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Each box represents the interquartile range (IQR) of the dataset, with the line inside indi-

cating the median value. The top and bottom edges of the box represent the medians of 

the upper and lower halves of the dataset, respectively. Outliers, depicted as circles, are 

values that exceed 1.5 times the IQR above or below the top or bottom of the box. The 

lines extending from each box connect the median of the upper half to the maximum non-

outlier data value and the median of the lower half to the minimum non-outlier data value. 

Similar to the observations in Table 4.3, neglecting reflections leads to consistently lower 

estimations of both diffusivity and dissipation. Moreover, the diffusivity of elastic waves 

in the low-frequency regime, characterized by faster energy spreading, is more affected 

by boundary reflections. 

 

(a) Diffusivity. 

 

(b) Dissipation. 

Figure 4.20 Comparison between the fitted diffusive properties with and without considering 
boundary reflections using signals from BB1 to BB6 in the beam.  

4.3.4.3 Influence of concrete-concrete interface 

To investigate the influence of concrete-concrete interface on the diffusive properties, 

Figure 4.21 presents the diffusivity and dissipation obtained from both the top and bottom 

rows of SAs in the beam. It should be noted here that only reflections from solid-air 
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boundaries are considered in the fitting process, neglecting the boundary at the interface 

between the prestressed beam and the cast-in-situ layer. The fitted results reveal no ap-

parent divergence in diffusivity between different SA rows, despite the small distance of 

23 mm between the top row of SAs and the concrete-concrete interface. This suggests 

that the concrete-concrete interface has limited influence on diffusivity in this specimen. 

There are several outliers in the fitted results shown in Figure 4.21(a). Specifically, two 

data points from top row of SAs at 50 kHz show diffusivity values exceeding 200 m2/s. 

These outliers will be discussed in Section 4.3.4.4. 

The dissipation of wave energy shows a consistent faster decay in the region of the top 

row SAs. This observation can be attributed to three potential explanations. Firstly, the 

geopolymer concrete in the cast-in-situ topping layer may exhibit higher dissipation com-

pared to the concrete in the prestressed beam, leading to a higher dissipation of elastic 

waves in this particular region. Secondly, it is possible that a portion of the wave energy 

leaks to the interface, which is also highlighted by Trégourès and van Tiggelen (2001). 

Thirdly, the region where the bottom SA row is embedded experiences higher compres-

sive stress, which can lead to lower dissipation. This could happen when the internal fric-

tion dominates the dissipation process (Brunet, Jia et al. 2008).  

 

(a) Diffusivity. 
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(b) Dissipation. 

Figure 4.21 Comparison between the fitted diffusive properties from the top and bottom rows of SAs 
in the beam. 

4.3.4.4 Arrival time of maximum energy 

In Section 4.3.4.2 and 4.3.4.3, we discussed the influence of boundary reflections and the 

concrete-concrete interface on the diffusive properties in the beam. In this section, we 

will present the arrival time of maximum energy estimated through fitted results. The 

arrival time of maximum energy, which can be calculated using Equation (4.12) in con-

junction with the diffusivity and dissipation, can be used to ensure that the fitted diffusive 

properties are reasonable. In practice, the arrival time of maximum energy cannot precede 

the first arrival of longitudinal waves. Therefore, any arrival time of maximum energy 

earlier than this threshold, approximately 55 μs, is deemed unreliable. 

The diffusivity and dissipation of bulk waves in the beam obtained using both the top and 

bottom rows of SAs are shown in Figure 4.22. The diffusivity exhibits a decreasing trend 

with increasing wave frequency. The lower diffusivity observed at higher frequencies can 

be attributed to increased interactions between elastic waves and scatterers in concrete 

due to the shorter wavelength. These interactions between waves and scatterers will be 

further investigated in Chapter 6. The dissipation shows a linear increase with the wave 

frequency, which is in line with the result reported by Anugonda et al. (2001).  

                       

               

 

 

  

  

  

  

  

 
  
 
  
 
  
 
 
  
 

  
 
 

                       
                         



Chapter 4 Techniques for estimating bulk wave properties in concrete 

 69 

 

(a) Diffusivity. 

 

(b) Dissipation. 

Figure 4.22 Diffusive properties of bulk waves in the beam acquired using all SAs. 

The arrival time of maximum energy as a function of frequencies is depicted in Figure 

4.23, and the arrival time of longitudinal waves is highlighted as a red dotted line. There 

are few data points observed beyond the arrival time of longitudinal waves. Notably, the 

corresponding diffusivities of these data points all exceed 200 m2/s, and all of them cor-

respond to outliers in Figure 4.21(a). To mitigate the influence of these data points, we 

focus solely on diffusivities below 180 m2/s in the following chapters. By checking arrival 

times of maximum energy, the majority of diffusive properties obtained using the im-

proved diffusion equation in geopolymer specimens is deemed reliable and trustworthy.  
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Figure 4.23 Arrival time of maximum energy in the beam (red dotted line indicates the mean arrival 
time of longitudinal waves). 

4.3.5 Diffusive properties in the cylindrical specimen 

In Section 4.3.4, diffusive properties of bulk waves in specimens with planar boundaries 

are determined by fitting them using an improved diffusion equation incorporating re-

flected energy from planar boundaries. In cases where the boundaries are curved, such as 

the cylindrical sample, this approximation becomes inadequate. To address this limitation, 

Section 4.3.2.3 introduced a new diffusion equation tailored for assessing diffusive prop-

erties of bulk waves in cylindrical samples. This newly proposed diffusion equation will 

be employed in this section to evaluate diffusive properties of bulk waves within the cy-

lindrical sample.  

4.3.5.1 Signal energy and parameters for fitting the diffusion equation 

Figure 4.24 displays the logarithm of ensemble-averaged energy as a function of time for 

a signal collected in the new cylindrical sample. Consistent with the approach adopted in 

Section 4.3.4, a total of 22 time windows are employed during curve fitting. The 1st time 

window, starting at 60 μs, has a length of 40 μs. The subsequent 10 time windows (2nd 

to 11th) also have a length of 40 μs, with each overlapping the previous window by 20 

μs. The 12th time window, starting at 260 μs, has a length of 100 μs. The subsequent 10 

time windows (13th to 22nd) have a length of 100 μs and overlap the previous window 

by 50 μs. The centre time of the 22nd time window is 810 μs; however, given the excep-

tionally low energy of the 400 kHz component at this time, the centre time of the last time 

window of 610 μs is applied specifically for this component, which corresponds to the 

18th time window. 
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Figure 4.24 Logarithm of the ensemble-averaged energy (denoted as ln<E>) as a function of time in 
the cylindrical sample. 

4.3.5.2 Determination of the diffusion equation to fit the diffusive properties 

Before fitting diffusive properties using the diffusion equation, it is imperative to assess 

the contributions of reflected energy. These contributions can be divided into two cate-

gories: energy reflected from the planar boundaries (top and bottom surfaces) and energy 

reflected from the circular surface of the cylinder. To incorporate the reflected energy 

from planar boundaries, the image source method outlined in Section 4.3.2.2 can be em-

ployed. Figure 4.25(a) illustrates two types of primary reflections, both equally repre-

sented in this scenario with a constant propagation path of 0.5 m. Secondary reflections, 

shown in Figure 4.25(b), exhibit varying propagation paths in this sample: the Type I 

reflection (coloured in red) has a propagation path of 0.7 m, while the Type II reflection 

(in black) spans 1.3 m. 

                      

    (a) Two types of primary reflection.       (b) Two types of secondary reflection. 

Figure 4.25 Illustration of primary and secondary reflections from planar boundaries (note that the 
dimensions in this figure do not match the actual dimensions). 
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Reflections from the circular surface can be classified in the manner discussed in Section 

4.3.2.3. The travel distances from the source to the receiver for primary, secondary, ter-

tiary, and quaternary reflections are given by [d2+(2R)2]1/2, [d2+(4R)2]1/2, [d2+(6R)2]1/2, 

and [d2+(8R)2]1/2, respectively. Considering a maximum lapse time of 800 μs, the re-

flected energy to be considered in the diffusion equation can be determined by their max-

imum contributions to the main energy using Equation (4.24) with a diffusivity of 150 

m2/s. These contributions to the main energy are shown in Table 4.4. For planar reflec-

tions, the primary and Type I secondary reflections contribute the most to the main energy, 

whereas the contributions of Type II secondary reflections, only 3.57%, and higher-order 

reflections are negligible. Regarding reflections from the circular surface, the first four 

orders make significant contributions, higher than 30% each of the main energy, and will 

be considered in the diffusion equation. Therefore, the final expression of the diffusion 

equation includes diffusion equation components relate to: 

• idealized diffusion in infinite medium; 

• two image sources related to primary reflections from planar boundaries; 

• one image source related to Type I secondary reflections from planar boundaries; 

• primary reflection from the circular surface; 

• secondary reflection from the circular surface; 

• tertiary reflection from the circular surface; 

• quaternary reflection from the circular surface. 

Table 4.4 Contributions of energy reflected from boundaries to the main energy in the cylindrical 
sample. 

Type of reflections 

Maximum contribution to the 

main energy in an infinite me-

dium [%] 

Primary reflections from top and bottom surfaces 143.31 
Type I secondary reflections from top and bottom surfaces 43.46 

Type II secondary reflections from top and bottom surfaces 3.57 

Primary reflection from circular surface 156.27 
Secondary reflection from circular surface 178.08 

Tertiary reflection from circular surface 104.60 

Quaternary reflection from circular surface 37.54 
Quinary reflection from circular surface 8.68 

4.3.5.3 Influence of boundary reflections 

The comparison of diffusive properties, as determined by the diffusion equation in an 

infinite medium and the improved diffusion equation accounting for reflections intro-

duced in Section 4.3.5.2, is presented in Figure 4.26. Notably, the presence of reflected 

energy exerts a significant influence on the diffusivity of the 50 kHz component. This 
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impact is particularly pronounced due to the inherently higher diffusivity of this compo-

nent, rendering it more susceptible to reflected energy. Conversely, the influence of re-

flected energy on diffusive properties of other frequency components is negligible. This 

observation is different from that in Figure 4.20(a), where diffusivities fitted considering 

reflections consistently surpass those fitted using the diffusion equation in an infinite me-

dium. A plausible explanation for this discrepancy lies in the increased complexity of the 

diffusion equation introduced in Section 4.3.5.2 compared to that in Section 4.3.4.2, mak-

ing curve fitting more challenging. Simultaneously, dissipation, which is closely associ-

ated with the exponential decay in the latter stage, consistently exhibits higher values 

when reflections are taken into account. This observation is consistent with that in Figure 

4.20(b). 

 

(a) Diffusivity. 

 

(b) Dissipation. 

Figure 4.26 Comparison between the fitted diffusive properties with and without considering 
boundary reflections in the concrete cylinder. 
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4.3.5.4 Arrival time of maximum energy 

Figure 4.27 illustrates the diffusivity and dissipation obtained using the diffusion equation, 

considering reflections, in the concrete cylinder. Notably, the diffusivity generally exhib-

its a decreasing trend with increasing frequency, although the diffusivities of the 100 kHz 

component are lower than expected. Conversely, dissipation shows an increasing trend 

with wave frequency, consistent with observations in geopolymer specimens. To ensure 

the fitted diffusive properties are reasonable, the arrival time of maximum energy is ex-

amined. As depicted in Figure 4.28, the arrival time of maximum energy always occurs 

after the first arrival of longitudinal waves, approximately at 64 μs. Consequently, the 

diffusive properties obtained using the enhanced diffusion equation in the concrete cylin-

der are considered reliable. 

 

(a) Diffusivity. 

 

(b) Dissipation. 

Figure 4.27 Diffusive properties of bulk waves in the concrete cylinder. 
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Figure 4.28 Arrival time of maximum energy in the concrete cylinder (red dotted line indicates the 
mean arrival time of longitudinal waves). 

4.3.6 Procedures for fitting diffusive properties in subsequent chapters 

In Section 4.3, we demonstrated how to acquire diffusive properties using the improved 

diffusion equation by taking the reflections from solid-air boundaries into consideration. 

In Chapter 6 and 7, these diffusive properties will be applied to investigate the scattering 

properties of bulk waves in concrete. Based on the content of Section 4.3, the following 

guidelines are proposed for fitting diffusive properties in this dissertation: 

• For geopolymer beam: We consider the primary and secondary reflections from 

the top and bottom surfaces. The 1st time window, starting at 25 μs, has a length 

of 40 μs. The subsequent 10 time windows (2nd to 11th) also have a length of 

40 μs, with each overlapping the previous window by 20 μs. The 12th time win-

dow, starting at 225 μs, has a length of 100 μs. The subsequent 10 time windows 

(13th to 22nd) have a length of 100 μs and overlap the previous window by 50 

μs. 

• For concrete cylinder: We consider primary reflections and Type I secondary 

reflections from the bottom and top surfaces, as well as primary, secondary, ter-

tiary, and quaternary reflections from the circular surface. The 1st time window, 

starting at 60 μs, has a length of 40 μs. The subsequent 10 time windows (2nd to 

11th) also have a length of 40 μs, with each overlapping the previous window 

by 20 μs. The 12th time window, starting at 260 μs, has a length of 100 μs. The 

subsequent 10 time windows (13th to 22nd) have a length of 100 μs and overlap 

the previous window by 50 μs. The maximum lapse time is approximately 800 

μs; however, due to the extremely low energy of the 400 kHz component at this 

time, a maximum lapse time of 600 μs is applied specifically for this component. 
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4.4 Discussion 

4.4.1 Cycle skipping in the WCS technique 

In Section 4.2.4.3, we discussed that the causes of cycle skipping in the stretching tech-

nique and the WCS technique are different. Cycle skipping observed while employing 

the stretching technique is predominantly attributed to the low SNR in the coda, while the 

results of the WCS technique depend explicitly on the magnitude of velocity change and 

the selected frequency component. In a previous study by Mao et al. (2020), the authors 

mentioned that cycle skipping in the WCS technique could be mitigated through the pro-

cess of phase unwrapping. However, they also noted that this approach may not be effec-

tive in the coda when the waveform similarity is lost. In another research paper by 

Mikesell et al. (2015), the authors identified three reasons for the occurrence of cycle 

skipping in the stretching technique: (i) low SNR, (ii) short time windows, and (iii) sig-

nificant divergence between the two signals. Based on the experiment conducted in this 

study and the insights from Mao et al. (2020), one can attribute the occurrence of cycle 

skipping in the WCS technique to three factors as well: (i) low SNR, (ii) signal dominated 

by frequencies that have a shorter period compared to the travel time shift, and (iii) sig-

nificant divergence between the two signals. Reason (i) can also help explain why the 

WCS technique performs poorly in frequency bands with low energy: the SNR of the 

signal in these frequency bands is relatively low, making it more susceptible to the cycle 

skipping and leading to less accurate retrieval of the velocity change. 

4.4.2 Computational efficiency of the stretching technique and the WCS 

technique 

In a study given by Yuan et al. (2021), the authors compared the performances of the 

stretching technique and the WCS technique by applying them to the same signal within 

a single time window. They concluded that the stretching technique is computationally 

faster compared to the WCS technique when operating in a single time window. However, 

in our research, one can observe that the retrieved velocity change exhibits travel time 

dependence, as reflected in different slopes of velocity change versus stress in different 

time segments. Therefore, we suggest using multiple overlapping time windows for the 

stretching operation to capture this travel time-dependent behaviour. However, a draw-

back of using multiple time windows is the significant increase in computational cost. On 

the other hand, the WCS technique operates in the wavelet domain and directly retrieves 

the velocity change at each lapse time from the phase spectrum. Considering the time-

dependent nature of retrieved velocity change, the WCS technique offers higher compu-

tational efficiency compared to the stretching technique in the application to concrete. 



Chapter 4 Techniques for estimating bulk wave properties in concrete 

 77 

4.4.3 Noise reduction using the WCS technique 

In the work presented by Wang et al. (2021), a possible solution for noise reduction in the 

application of WI is proposed. This approach involves filtering the signal before applying 

the stretching technique. While this operation effectively reduces the impact of noise, it 

introduces additional computational costs due to the signal filtering process, which in turn 

slows down the computational speed. On the other hand, wavelet decomposition, a tool 

for time-frequency analysis, implicitly acts as a filter by allowing selective focus on a 

specific frequency band where the signal energy is sufficiently high. This allows the WCS 

technique to effectively reduce the influence of noise without the need for additional sig-

nal filtering. 

4.4.4 Effect of boundary conditions on diffusivity in concrete cylinder 

In Section 4.3.5, we investigate the diffusive properties of bulk waves in a concrete cyl-

inder. During the curve fitting process, we account for primary reflections and Type I 

secondary reflections from the bottom and top surfaces, as well as primary, secondary, 

tertiary, and quaternary reflections from the circular surface. However, since these diffu-

sive properties are measured during loading, where the top and bottom surfaces are in 

contact with loading plates rather than being ideal air-solid boundaries, considering these 

reflections may lead to an overestimation of the diffusivity. Here, our primary focus will 

be on diffusivity, as it will be used in Chapter 6 to validate the bulk wave energy transport 

model. 

To assess the impact of these reflections on diffusivity, we compare diffusivities fitted 

using the diffusion equation with (Figure 4.29(a)) and without (Figure 4.29(b)) consider-

ing reflections from the top and bottom surfaces. Note that not accounting for these re-

flections may also lead to an underestimation of diffusivity. For frequencies above 100 

kHz, this effect is negligible. However, for the 50 kHz component, considering reflections 

significantly increases the scattering of diffusivity values. Since these results are obtained 

from the same sensor pair, the spatial fluctuation of diffusivity can be neglected. There-

fore, it can be concluded that the fitted diffusivity at low frequencies—specifically 50 

kHz in this dissertation—is highly sensitive to the formulation of the diffusion equation 

used for fitting, which can also explain the high scattering of diffusivities at 50 kHz shown 

in Figure 4.27(a). This suggests that diffusivity at low frequencies in concrete should be 

treated with caution. In Chapter 6, we will use the diffusivity values fitted from the dif-

fusion equation including reflections from the top and bottom surfaces, and will provide 

further discussion in that chapter. 
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(a) With reflections from top and bottom surfaces (same with Figure 4.27(a)). 

 

(b) Without reflections from top and bottom surfaces. 

Figure 4.29 Comparison of bulk wave diffusivity in the concrete cylinder with and without 
considering reflections from top and bottom surfaces. 
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5. Response of travel time in ballistic bulk waves to stresses 

5.1 Introduction 

The response of travel time of elastic waves to applied stresses is termed as acoustoelas-

ticity. It should be emphasized again here that this process consists of two steps: the ap-

plied stress will first lead to velocity changes in the medium, and these velocity changes 

in the medium in turn lead to changes in the travel time of bulk waves propagating in the 

medium. However, the application of acoustoelasticity to concrete is limited to cases 

where the wave propagation direction is either parallel or perpendicular to one of the 

principal axes of deformation. In practical terms, this limitation implies that the bulk 

waves must travel either parallel or perpendicular to the principal deformation directions. 

This chapter is dedicated to investigating the response of the travel time of ballistic bulk 

waves to normal and shear stresses in concrete. We will start with the knowledge gap in 

Section 5.2. Given the identification of certain inconsistencies in acoustoelastic expres-

sions within existing literature, a re-examination of the theory becomes necessary. Build-

ing upon this observation, a thorough re-evaluation of the theoretical framework of acous-

toelasticity is conducted in Section 5.3. Within this framework, the acoustoelastic theory 

for bulk waves is extended to encompass a more general scenario involving both shear 

and normal strains, as detailed in Section 5.4. Within the same chapter, three numerical 

examples utilizing concrete as the medium are presented to explore the influence of nor-

mal and shear strains on the velocity and polarization direction of bulk waves. Leveraging 

the key insights from Section 5.4, we simplify the expression for acoustoelasticity within 

the context of inclined propagating ballistic waves in the plane stress state, as demon-

strated in Section 5.5. Together with the propagation directions of ballistic waves, this 

simplification aids in determining the magnitude and direction changes of principal 

stresses in the plane stress state through an easily calibrated process. The experimental 

validation for this simplified acoustoelastic expression is detailed in Section 5.6. Section 

5.7 provides a detailed discussion on the inconsistencies of acoustoelasticity in the liter-

ature and potential errors in acquiring the acoustoelastic parameters of concrete. 

5.2 Knowledge gap relating theoretical framework of acoustoelasticity 

In the past, experiments investigating the acoustoelastic effect were conducted in labora-

tories using ultrasonic sensors externally attached to the surface of the sample. Further-

more, ballistic wave components are commonly utilized for data processing due to their 

straightforward propagation directions—tracing a direct line from the actuator to the re-

ceiver—and easier determination of wave modes, characterized by minimal interactions 

with boundaries and scatterers within the medium. The combination of surface-bonded 

sensors and ballistic wave components allows for the alignment of the sensors so that the 
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ballistic wave propagation direction could be either parallel or perpendicular to the prin-

cipal deformation, except in certain cases like Lamb waves, which propagate at an angle 

to the principal deformation direction (Mi, Michaels et al. 2006). However, as the recent 

application shift towards long-term monitoring utilizing permanently deployed ultrasonic 

sensors within structures, there is no assurance that ballistic waves will consistently prop-

agate along these predetermined directions. Consider the scenario of monitoring a con-

crete bridge deck under the influence of moving vehicle loads, where the stress condition 

changes over time. In such an instance, it becomes impractical to consistently align the 

wave propagation direction along the principal deformation directions. 

When body waves propagate inclined to the principal deformation in an isotropic elastic 

medium, it implies an angle between the wave propagation direction and the principal 

stress direction. By establishing a new coordinate system aligned parallel and perpendic-

ular to the wave propagation direction and computing the stress matrix within this new 

coordinate system, shear stresses can be identified. Simultaneously, the presence of shear 

stresses concurrently indicates the existence of shear deformations, which is defined as 

an isochoric plane deformation in which there are a set of line elements with a given 

reference orientation that do not change length and orientation during the deformation 

(Ogden 1997). In this case, the current expressions for acoustoelasticity, which only in-

volves the principal stresses/strains, is not applicable.  

Despite the efforts made by several researchers to investigate the influence of shear de-

formation on acoustoelasticity (Iwashimizu and Kubomura 1973, Bobrenko, Kutsenko et 

al. 1990), no specific conclusion regarding the response of bulk wave velocity to applied 

shear deformations can be drawn from the existing theoretical derivations. This limitation 

stems from the lack of research on the impact of shear deformations on acoustoelasticity 

in a given material. 

Some researchers have made assumptions asserting that shear deformation does not affect 

either transverse or longitudinal wave velocities (Mi, Michaels et al. 2006, Muir 2009), 

upon which they derived equations to address cases where waves propagate at an angle 

to the principal deformation. However, the theoretical basis that support these assump-

tions were inadequately verified. 

Furthermore, inconsistencies exist in the current literature on acoustoelastic theory, ne-

cessitating re-examination as they could potentially yield inaccurate descriptions of the 

acoustoelastic effect. These discrepancies primarily stem from two categories: incon-

sistent acoustoelastic expressions (Egle and Bray 1976, Payan, Garnier et al. 2011) and 

the improper utilization of third-order elastic constants (Stahler, Sens-Schonfelder et al. 

2011). Hence, it is imperative to re-evaluate the theoretical framework of modern acous-

toelasticity for bulk waves in light of these identified inaccuracies.  
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These two knowledge gaps will be tackled in this chapter, where we will conduct a re-

elaboration of the modern acoustoelastic theory, followed by an refinement of the frame-

work to encompass arbitrary wave propagation directions and stress conditions. Building 

upon that theory, an experimental study will be conducted to validate the conclusions 

derived from the extended framework.  

5.3 Theoretical framework of modern acoustoelasticity 

This section provides a thorough re-examination of theoretical framework for modern 

acoustoelasticity. We will start with the definitions of coordinates, deformations, and dis-

placements in Section 5.3.1 and proceed to expressions for strain and stress in Section 

5.3.2. Section 5.3.3 will show the non-linear constitutive equation derived from the strain 

energy function. This process entails the incorporation of five constants: two second-or-

der elastic constants and three third-order elastic constants, which will be illustrated in 

Section 5.3.4. The equations of motion in the initial frame and natural frame will be pre-

sented in Section 5.3.5 and 5.3.6, respectively. To explore acoustoelastic effects across 

various wave modes, the integration of a plane wave into the equation of motion will be 

shown in Section 5.3.7. 

5.3.1 Coordinates, deformations and displacements 

The concept of small-on-large in acoustoelasticity gives rise to three distinct states: the 

natural state, initial state, and final state. The definitions of the three states are shown in 

Figure 5.1. The natural state represents the original state of the body without external 

stress applied. The coordinates associated with this state are referred to as natural coordi-

nates, denoted as a (with components aα, α∈{1,2,3}). The initial state, also known as the 

deformed state, is a state in which the body has already undergone elastic deformation 

due to applied stress. The coordinates associated with this state are referred to as initial 

coordinates or Lagrangian coordinates (Hughes and Kelly 1953), denoted as x (with com-

ponents xj, j∈{1,2,3}). The final state represents the result from the dynamic disturbances 

of the pre-deformed body. The position of a material point in this state is described by the 

coordinates X (with components XJ, J∈{1,2,3}). It is important to recognize that the ex-

pressions of acoustoelasticity derived from the natural state and the initial state differ due 

to the consideration of pre-deformation in the natural frame-based acoustoelasticity, 

whereas it is not considered in the initial frame-based acoustoelasticity (Pao and Gamer 

1985). 
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Figure 5.1 Coordinates and displacements at natural, initial, and final states. 

The static deformation from natural to the initial state and the dynamic deformation from 

the initial to the final state are represented by the transformation of coordinates as: 

( )1 2 3
ˆ , , ,x a a a=x                                                          (5.1) 

( )1 2 3
ˆ , , , ,X x x x t=X                                                        (5.2) 

where x̂  and X̂  are two continuous vector functions. The displacements associated with 

the deformation of the natural state to the initial state, uinitial, and with the deformation of 

the natural to the final state, ufinal, are defined respectively as: 

( )initial ,= −u a x a                                                          (5.3) 

( )final , .t = −u a X a                                                         (5.4) 

Similarly, the incremental displacement from the initial to the final state uincremental is given 

by: 

( )incremental final initial, .t = − = −u a u u X x                                          (5.5) 

5.3.2 Strain and stress 

In this section, we will specify the strain and stress tensors utilized in the derivation. For 

the sake of simplicity, we employ the Lagrangian finite strain tensor. The expressions for 

the Lagrangian finite strain tensors in the initial and final states, in terms of natural coor-

dinates, are given by: 
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final 1
,

2

K KX X
e

a a
 

 


  

= −    

                                                (5.7) 

respectively. Note that here, and in the remainder of this dissertation, Einstein’s summa-

tion convention applies for repeated indices (k and K in Equation (5.6) and (5.7), respec-

tively). The Kronecker delta δij is defined as: 

1, for
.

0, else
ij

i j


=
= 


                                                        (5.8) 

The Lagrangian finite strain tensors in Equation (5.6) and (5.7) quantify how much, lo-

cally, the displacement differs from a rigid body displacement, and we can easily tell from 

these two equations that this strain tensor is symmetry. The incremental strain eαβ
incremental 

is: 

( ) ( )
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(5.9) 

The approximation stems from the neglection of the terms involving products of spatial 

derivatives of dynamic displacement in Equation (5.9). This is justified if the condition 

that the magnitude of the dynamic disturbance is much smaller than the static deformation 

is fulfilled. 

Two stress tensors are considered in the derivation: the Cauchy stress tensor T, defined 

over the area of elements in the deformed state, and the second Piola-Kirchhoff stress 

tensor S, defined over the area of elements in the undeformed state. Although the stress 

measured using the ultrasonic method is related to the Cauchy stress tensor (Pao and 

Gamer 1985, Pao 1987), it is more convenient to use the second Piola-Kirchhoff stress 

tensor for the subsequent derivation since it forms a conjugate pair with the Lagrangian 

finite strain tensor (Ogden 1997), which will be shown in Equation (5.15). 

The Cauchy stress tensor in the initial state and the second Piola-Kirchhoff stress tensor 

in the natural state are related by (Pao and Gamer 1985): 
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initial
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 
                                                 (5.10) 

where ρ0 and ρinitial are the mass densities in the natural and initial states, respectively. In 

some literature (Johnson 1981), the ratio of density is expressed as the Jacobian determi-

nant in Equation (5.10). It is important to note that the Jacobian determinant essentially 

describes the ratio of medium volume between different states. Assuming that the mass 

of the medium remains constant during elastic deformation, this volume ratio can then be 

expressed in terms of density ratio. Similarly, the Cauchy stress tensor in the final state 

and the second Piola-Kirchhoff stress tensors in the initial and natural states are linked 

by: 

final

initial

final

0
,

JI
IJ ij

i j

JI

XX
T S

x x

XX
S

a a


 










=

 


=

 

                                                 (5.11) 

where ρfinal is the mass density in the final state.  

Similar to the operations performed on displacement and strain, a second Piola-Kirchhoff 

stress tensor for the incremental stress is defined in the initial frame as follows: 

incremental final initial ,ij ij ijS S S= −                                                   (5.12) 

Considering that the Cauchy stress tensor is equivalent to the second Piola-Kirchhoff 

stress tensor for the initial static stress in the initial frame (Pao and Gamer 1985), Equation 

(5.12) can be further simplified into: 

incremental final initial .ij ij ijS S T= −                                                  (5.13) 

5.3.3 Non-linear constitutive equation 

In order to derive the non-linear equation of motion, it is necessary to specify the consti-

tutive equation. Assuming that the body is elastic and its initial state is unstrained, a strain 

energy function can be defined and estimated using the following equation (Toupin and 

Bernstein 1961, King and Fortunko 1983, Pao and Gamer 1985, Janssen 1994): 

1 1
,

2! 3!
ijkl ij kl ijklmn ij kl mnW C e e C e e e= +

                                         (5.14) 

where the strain tensor eij can refer to either Lagrangian finite strain tensor in the initial 

or final state. The tensors Cijkl and Cijklmn are second- and third-order elastic coefficients. 

The second Piola-Kirchhoff stress tensor can be directly obtained through the strain en-

ergy: 
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.
W

S
e






=


                                                           (5.15) 

The expressions of the second Piola-Kirchhoff stress tensors in the initial and final states 

are: 

initial initial initial initial1
,

2
S C e C e e     = +

                                      (5.16) 

and 

final final final final1
,

2
S C e C e e     = +

                                        (5.17) 

respectively. The incremental second Piola-Kirchhoff stress tensor is then: 

( )

incremental final initial

final final final initial initial initial

incremental final final initial initial

incr

1 1

2 2

1

2

S S S

C e C e e C e C e e

C e C e e e e

C e
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 

= −

= + − −

= + −

( )

emental incremental initial

incremental incremental
initial1

.
2

k l k k l k

l l

C e e

x x u x x u
C C e

a a x a a x

  

  

   

+

      
= + +        

      (5.18) 

5.3.4 Second- and third-order elastic constants for isotropic materials 

The elastic constants discussed in this section pertain to isotropic materials. It is important 

to note that these constants are not applicable for materials that are not isotropic. The Cijkl 

represents the second-order elastic coefficients composed of the second-order elastic con-

stants, also known as Lamé constants, λ and μ. The second-order elastic coefficients can 

also be expressed using other types of second-order elastic constants, such as any combi-

nation pair of Young's modulus, Poisson's ratio, bulk modulus and shear modulus. The 

expression for Cijkl is as follows: 

( ) ,ijkl ij kl ik jl il jkC       = + +                                           (5.19) 

where δij denotes Kronecker delta. The second-order elastic coefficients can be expressed 

using Voigt notation as CIJ. Then, the second-order elastic coefficients matrix is: 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

2 0 0 0

2 0 0 0

2 0 0 0
.

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

   

   

   







+   
   

+
   
   +

=   
   
   
   
    

      (5.20) 
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The third-order elastic coefficients, Cαβγδεη, can be expressed using the third-order elastic 

constants: 

( )

( ) ( )

( )

( ) ( )

( ) ( )

2 2

1
[

2

]

1
[

4

] ,

C l m n

m n

n

   

         

    

         

         

  

         

    

         

         

= − +

 
+ − + + + 
 

+ +

+ + + +

+ + + +

                  (5.21) 

where l, m, and n are Murnaghan constants (Murnaghan 1937), which are a type of third-

order elastic constants. The third-order elastic coefficients can also be expressed using 

other types of third-order elastic constants, such as ν1, ν2 and ν3 (Toupin and Bernstein 

1961): 

( ) ( )

( )

( ) ( )

( ) ( )

1

2

3

[

]

[

] .
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         

   

          

    

          

         

=

+ + + +

+ +

+ + + +

+ + + +

                        (5.22) 

It is important to emphasize that in Equation (5.21) and (5.22), the Murnaghan constants 

l, m, and n cannot be interchangeably replaced by ν1, ν2 and ν3, and vice versa. Therefore, 

Eq. (2) by Stahler et al. (2011) is incorrect since the authors substituted ν1, ν2, and ν3 

directly with l, m and n. Similar to Cijkl, the third-order elastic coefficients Cαβγδεη can also 

be represented using Voigt notation as CKLM, which are commonly known as standard 

third-order elastic coefficients. The standard third-order elastic coefficients exhibit the 

following symmetry in isotopic materials (Paufler 1988): CIJK=CIKJ=CJIK=CJKI=CKIJ=CKJI. 

Table 5.1 provides a compilation of commonly used third-order elastic constants for iso-

tropic materials reported in the literature. 

Table 5.1 Commonly used third-order elastic constants for isotropic materials. 

Murnaghan  

(1937) 

Standard Voigt notation 

(Thurston and Brugger 

1964) 

Toupin & Bernstein 

(1961) 

Johnson 

(1981) 

Landau & 

Lifshitz (1986) 

l 

C111 = C222 = C333 = 2l+4m 

ν1 = 2l-2m+n 
β1 = l/3-

m/3+n/6 
A = n C112 = C113 = C221 = C223 = 

C112 = C112 = 2l 

m 
C123 = 2l-2m+n 

ν2 = m-n/2 β2 = m-n/2 B = m-n/2 
C441 = C552 = C663 = m-n/2 

n 

C442 = C443 = C551 = C553 = 

C661 = C662 = m ν3 = n/4 β3 = n/3 C = l-m+n/2 

C456 = n/4 
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5.3.5 Equation of motion in the initial frame 

The equation of motion for the dynamic deformation in the final state is defined as (Pao 

1987): 

( )

final
final

incremental

final

2 incremental
final

2
.

IJ
I

J

I I

I

T
X

X

x u

t t

u

t








=



  +
 =

   


=



                                         (5.23) 

Substituting Equation (5.11) into Equation (5.23) gives: 

2 incrementalfinal
final initial

initial 2
.JI I

ij

j i j

XX u
S

x x x t






  
=      

                             (5.24a) 

Equation (5.24a) can be further written as: 

final 2 incremental
final final initial

2
.

JI

j iji J JI I I
ij ij

J j i J i j J

XX

x Sx X XX X u
S S

X x x X x x X t


  
            + + =

       

    (5.24b) 

The second term on the left side of Equation (5.24b) is equal to zero, while the first and 

third terms adhere to the chain rule. Therefore, Equation (5.24b) can be simplified into: 

2 incremental
final initial

2
.I I

ij

j i

X u
S

x x t


  
= 

   

                                      (5.24c) 

After the substitution of Equation (5.13) and introducing the following equation based on 

the fact that the deformation from natural to initial state is static in the uniform stress state 

(Pao and Gamer 1985): 

initial

0 ,
ij

j

T

x


=


                                                            (5.25) 

Equation (5.24c) can be further simplified into: 

incremental 2 incremental 2 incremental
initial initial

2
.

ij i i
jl

j j l

S u u
T

x x x t


  
+ =

   
                             (5.26) 

Equation (5.26) can also be found in the paper by Pao and Gamer (1985). When deriving 

Equation (5.26), the products involving the incremental stress tensor and incremental dis-

placement are neglected due to the small magnitude of the dynamic disturbance.  
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Now, we are trying to further simplify the equation of motion by substituting the stress 

tensor into Equation (5.26). The incremental stress tensor incremental

ijS  in the initial frame 

can be represented by it in the natural frame using the coordinate transformation (Pao and 

Gamer 1985): 

( )

initial
incremental incremental

0

incremental incrementalinitial

0

initial

1

2

.

ji
ij

ji k l k k l k

l l

xx
S S

a a

xx x x u x x u

a a a a x a a x

C C e
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     

  










=

 

       
= +          

 +

            (5.27) 

The derivatives of the initial coordinates with respect to natural coordinates in Equation 

(5.27) can be written as: 

initial

.i i
i

x u

a a


 


 

= +
 

                                                     (5.28) 

Therefore, Equation (5.27) can be approximated as: 

incrementalinitial
incremental

0
,k

ij ijkl

l

u
T

x






= 


                                           (5.29) 

where 

initialinitial initial initial
initial .

ji k l
ijkl ijkl ijklmn mn mjkl imkl ijml ijkm

m m m m

uu u u
C C e C C C C

a a a a

  
 = + + + + +
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      (5.30) 

Equation (5.30) can also be found in the literature (Pao and Gamer 1985, Janssen 1994). 

The initial stress tensor initial

jlT  can be expressed as: 

initial
initial initial
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initial
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0
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0
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j l
jl

j l

jlmn mn
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=

                                           (5.31) 

The higher-order terms in the constitutive equation are neglected in Equation (5.31). Sub-

stituting Equation (5.29) and Equation (5.31) into Equation (5.26) gives the following 

equation of motion: 

2 incremental 2 incremental
0

2
,k i

ijkl

j l

u u
B

x x t


 
=
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                                          (5.32) 
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where the acoustoelastic moduli Bijkl are defined as 

initial

initial initial

initialinitial initial initial

:

.

ijkl jlmn mn ik ijkl

jlmn mn ik ijkl ijklmn mn
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mjkl imkl ijml ijkm
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

= +

= + +

  
+ + + +

   

                   (5.33) 

Equation (5.32) and (5.33) can also be found in the paper by Pao and Gamer (1985). 

Please note that the strain tensor einitial
mn, which is related to the static strain caused by the 

initial stress, will hereinafter simply referred to as emn. 

5.3.6 Equation of motion in the natural frame 

The derivation of the equation of motion in the natural frame is similar to that in the initial 

frame. Substituting Equation (5.11) into Equation (5.23) gives a similar expression as 

Equation (5.24): 

2 incremental
final 0

2
.I IX u

S
a a t



 


  

=     

                                          (5.34) 

Equation (5.34) is the governing equation of motion in the natural frame. Considering 

that the deformation from natural to the initial state is static, the second Piola-Kirchhoff 

stress tensor in the natural coordinate system follows (Pao and Gamer 1985): 

initial 0 .ix
S

a a


 

 
=    

                                                    (5.35) 

Therefore, using a similar approach that adopted in deriving the equation of motion in the 

initial frame, we can obtain: 

( )
( )incremental 2 incremental

initial incremental 0

2
.

I I I
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                   (5.36) 

Considering that the initial second Piola-Kirchhoff stress tensor is static, Equation (5.36) 

can be written as: 

2 incremental 2 incremental

initial incremental 0

2
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u x u
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                       (5.37) 

The initial and incremental second Piola-Kirchhoff stress tensor in Equation (5.37) are: 

initial initial ,S C e  =                                                       (5.38) 

and 
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(5.39) 

respectively. Accordingly, the term in Equation (5.37) involving the incremental second 

Piola-Kirchhoff stress tensor is: 
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Now, Equation (5.37) can be written as: 
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Equation (5.41) can be further simplified into: 
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                                         (5.42) 

where the acoustoelastic moduli Dξβkδ are: 

initial initial
initial initial: .k

k k k k k

u u
D C e C C e C C

a a



            

 


 

= + + + +
 

          (5.43) 

Equation (5.42) and (5.43) can also be found in the paper by Pao and Gamer (1985). 

Please note that the strain tensor einitial
εη, which is related to the static strain caused by the 

initial stress, will hereinafter simply referred to as eεη. 

5.3.7 Plane waves propagation 

To investigate the wave velocities among different wave modes, a plane harmonic wave 

with the following form is introduced into the equation of motion (Hughes and Kelly 

1953, King and Fortunko 1983, Pao and Gamer 1985, Cantrell and Salama 1991): 
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( )
e ,

i kN x t
u U   

 

−
=                                                       (5.44) 

where Nλ is a unit vector normal to the plane wave that relates to the wave propagation 

direction, k represents the wavenumber, ω is the angular frequency, and Uγ is the ampli-

tude vector related to the wave polarization direction. The wave mode is dictated by the 

relation between Nλ and Uγ. When they are orthogonal, indicating that the polarization 

direction is perpendicular to the wave propagation direction, these waves are identified 

as transverse or shear waves. Conversely, when the vectors are parallel, signifying that 

the polarization direction aligns with the wave propagation direction, these waves are 

termed longitudinal or compression waves. The choice of a harmonic wave is made to 

simplify the calculations, but the resulting outcome is also applicable to plane waves with 

a general time function (Pao and Gamer 1985). The second-order partial derivative of 

Equation (5.44) with respect to time is: 

( ) ( )
2 incremental

2

2
e .

i kN x ti
i

u
U

t

  


−
= −



                                           (5.45) 

The second-order partial derivative of Equation (5.44) with respect to spatial variables is: 

( )( )( ) ( )
2 incremental

2 e .
i kN x tk

j l k

j l

u
N N k U

x x
  

    
−

= −
 

                             (5.46) 

Therefore, substituting the plane wave propagation into the equation of motion in the 

initial frame gives: 

( )( ) ( ) ( )
2

0

2
e e .

i kN x t i kN x t

ijkl j l k iB N N U U
k

    

   


  

− −
=

                         (5.47) 

Equation (5.47) can be further simplified into 

( )( ) ( )
2

0 initial 0 ,ijkl j l ik kB N N v U       − =
  

                               (5.48) 

where vinitial, coinciding with ω/k, denotes the wave velocity in the initial frame. Similarly, 

substituting the plane wave propagation into the equation of motion in the natural frame 

gives: 

( )( ) ( )
2

0 natural 0 ,k k kD N N v U          − =
  

                            (5.49) 

where vnatural denotes the wave velocity in the natural frame. 

5.4 Bulk wave acoustoelasticity in compressible elastic medium 

subjected to normal and shear deformations 

In Section 5.3, we introduce the theoretical framework of modern acoustoelasticity. This 

framework holds the potential to accommodate plane waves with arbitrary propagation 

and polarization directions, as illustrated in Equation (5.48) and (5.49). However, to solve 
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these two equations analytically, it is necessary to specify either the propagation vector 

Nλ or the amplitude vector Uk as known. Both specifying the known propagation vector 

(Johnson 1981, Pao and Gamer 1985, Duquennoy, Ouaftouh et al. 1999) and the known 

amplitude vector (King and Fortunko 1983) can be found in the literature. Nevertheless, 

from an experimental perspective, it is suggested to specify the known propagation vector. 

This vector, which points in the propagation direction, is easier to determine in experi-

ments than the wave polarization-related amplitude vector. Therefore, we adopt this con-

figuration and propose a governing equation based on Equation (5.48) and (5.49) with a 

specified unit vector Nλ, while leaving the amplitude vector Uk unspecified. This govern-

ing equation will be introduced in Section 5.4.1.  

Based on the governing equations, the velocity changes of bulk waves in the medium 

subject to both normal and shear strains will be investigated through three examples. The 

classical theory of acoustoelasticity, where the principal stresses coincide with the prop-

agation directions, will be shown as Example 1 in Section 5.4.2. Example 1 consists of 

acoustoelastic expressions in the both natural and initial frames. Additionally, this exam-

ple will illustrate the connection between the acoustoelastic expressions in these two 

frames. 

When bulk waves propagate inclined to the principal stress directions in an elastic me-

dium, indicating an angle between the wave propagation direction and principal stress 

directions, new considerations arise. By establishing a new coordinate system aligned 

parallel and perpendicular to the wave propagation direction, and calculating the strain 

matrix within this new coordinate system, we can identify the existence of shear strains. 

Hence, Example 2 and 3 will illustrate two scenarios depicting the impact of shear strains 

on wave velocities. Example 2 examines situations where bulk waves travel perpendicular 

to the shear deformation plane, commonly known as acoustoelastic birefringence. In this 

example, obtaining analytical solutions is feasible. Example 3 involves bulk waves trav-

eling on the shear deformation plane, posing challenges in deriving analytical forms of 

acoustoelasticity. Consequently, numerical calculations will be employed to evaluate the 

effects of shear strain on bulk wave acoustoelasticity in this scenario. Example 2 and 3 

will be shown in Section 5.4.3 and 5.4.4, respectively. 

As emphasized in the introduction, to the best of our knowledge, there is only one relevant 

article (Bobrenko, Kutsenko et al. 1990) in the literature that shares similarities with our 

work. However, this dissertation solely focuses on examining the velocities of bulk waves 

in a medium subjected to pure shear, without involving any normal deformation. 
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5.4.1 Governing equation 

We specify that the plane wave propagates along the x-axis with the unit vector N=(1;0;0) 

and leave the amplitude vector Uk unspecified. Substituting this unit vector into Equation 

(5.48) and (5.49) gives: 

( )
2

0 initial

1 1 0 ,i k ik kB v U  − =
  

                                            (5.50) 

and 

( )
2

0 natural

1 1 0 ,k k kD v U   − =
  

                                           (5.51) 

respectively. The determination of the wave mode relies on the relation between the unit 

vector Nλ and the amplitude vector Uk, as discussed in Section 5.3.7. Equation (5.50) can 

be expressed in the matrix form as: 

( )
1111 2111 3111 1 1

2
0 initial

1121 2121 3121 2 2

1131 2131 3131 3 3

.

B B B U U

B B B U v U

B B B U U



     
     

=
     
          

                                (5.52) 

where the acoustoelastic moduli are: 

( ) ( ) ( )

( ) ( )( )

1111 11 11 111 11 12 112 22 13 113 33

11 22 33

5

2 5 10 2 4 2 ,

B C C C e C C e C C e

l m e l e e    

= + + + + + +

= + + + + + + + +

                            (5.53a) 

( ) ( ) ( )

( ) ( )

2121 66 11 66 661 11 12 66 662 22 13 663 33

11 22 33

2 2

4 2 ,
2

B C C C C e C C C e C C e

n
m e m e m e     

= + + + + + + + +

 
= + + + + + + + + − 

 

        (5.53b) 

( ) ( ) ( )

( ) ( )

3131 55 11 55 551 11 13 55 553 33 12 552 22

11 33 22

2 2

4 2 ,
2

B C C C C e C C C e C C e

n
m e m e m e     

= + + + + + + + +

 
= + + + + + + + + − 

 

        (5.53c) 

( ) ( )1121 2111 11 166 12 122 2 4 2 ,B B C C e m e = = + = + +                                          (5.53d) 

( ) ( )1131 3111 11 155 13 132 2 4 2 ,B B C C e m e = = + = + +                                          (5.53e) 

( )2131 3121 44 654 23 232 2 ,
2

n
B B C C e e

 
= = + = + 

 

                                                   (5.53f) 

where e11, e22 and e33 represent the normal strains along x-, y- and z-axis, respectively. 

The shear strains in the x-y, x-z and y-z plane are denoted by e12, e13 and e23, respectively. 

The derivation details of acoustoelastic moduli Bijkl can be found in Appendix A. The 

second- and third-order elastic coefficients are expressed using the Voigt notations. 

Please note that in the following sections, we differentiate between strain tensor and prin-

cipal strains using the following notation: the strain tensor, including normal and shear 

strains, is represented using eij, while the principal strain is denoted as ei. 
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Equation (5.52) can be viewed as an eigenvalue equation for the acoustoelastic modulus 

matrix Bijkl. The eigenvalues of this matrix are equal to ρ0(vinitial)2, with the corresponding 

eigenvectors being the amplitude vector Uk. Determining the wave velocity necessitates 

both the eigenvalue and eigenvector: the eigenvector identifies the wave mode, while the 

eigenvalue provides the velocity of this mode in the initial frame. Thus, eigenvalues and 

eigenvectors hold equal significance. In the acoustoelastic modulus matrix, the diagonal 

elements pertain to terms associated with normal strains, while shear strains are hidden 

within the non-diagonal elements, as depicted in Equation (5.53). In the remainder of this 

dissertation, the acoustoelastic modulus matrix in Equation (5.52) will be referred to as 

the B-matrix. 

Similarly, in the natural frame, Equation (5.51) can be expressed in the matrix form as: 

( )
1111 2111 3111 1 1

2
0 natural

1121 2121 3121 2 2

1131 2131 3131 3 3

.

D D D U U

D D D U v U

D D D U U



     
     

=
     
          

                               (5.54) 

where the acoustoelastic moduli are: 

( ) ( ) ( )

( ) ( )( )

1111 11 11 111 11 12 112 22 13 113 33

11 22 33

3

2 3 6 2 4 2 ,

D C C C e C C e C C e

l m e l e e    

= + + + + + +

= + + + + + + + +

                        (5.55a) 

( ) ( ) ( )

( ) ( )

2121 66 11 661 11 12 66 662 22 13 663 33

11 22 33

2

2 2 ,
2

D C C C e C C C e C C e

n
m e m e m e     

= + + + + + + +

 
= + + + + + + + + − 

 

             (5.55b) 

( ) ( ) ( )

( ) ( )

3131 55 11 551 11 13 55 553 33 12 552 22

11 33 22

2

2 2 ,
2

D C C C e C C C e C C e

n
m e m e m e     

= + + + + + + +

 
= + + + + + + + + − 

 

             (5.55c) 

( )

initial initial

1 2
1121 2111 166 12 66 11

2 1

initial initial

1 2
12

2 1

2

2 2 ,

u u
D D C e C C

a a

u u
me

a a
  

 
= = + +

 

 
= + + +

 

                                       (5.55d) 

( )

initialinitial

31
1131 3111 155 13 55 11

3 1

initialinitial

31
13

3 1

2

2 2 ,

uu
D D C e C C

a a

uu
me

a a
  


= = + +

 


= + + +

 

                                       (5.55e) 

( )2131 3121 44 654 23 232 2 .
2

n
D D C C e e

 
= = + = + 

 

                                              (5.55f) 

Equation (5.54) can be viewed as an eigenvalue equation for the acoustoelastic modulus 

matrix Dξβkδ, and the eigenvectors and eigenvalues can be used to determine the wave 
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mode and its corresponding velocity in the natural frame. The derivation details of acous-

toelastic moduli Dξβkδ can be found in Appendix B. In the remainder of this dissertation, 

the acoustoelastic modulus matrix in Equation (5.54) will be referred to as the D-matrix. 

Please note that two primary distinctions exist between the acoustoelastic moduli in the 

initial and natural frames. Firstly, the difference between diagonal elements in acoustoe-

lastic moduli obtained in the natural and initial frames is either 2(λ+2μ)e11 or 2μe11. This 

value is related to the consideration of pre-deformation, which will be further discussed 

in Section 5.4.2. Secondly, some acoustoelastic moduli in the natural frame can only be 

determined through the use of deformation (refer to Equation (5.55d) and (5.55e)), 

whereas all corresponding moduli in the initial frame can be derived from strains. There-

fore, the analytical analysis in Section 5.4.3 and 5.4.4 will primarily rely on expressions 

in the initial frame, where velocities can be obtained through strains. 

5.4.2 Example 1: waves propagating parallel or perpendicular to the 

principal deformations 

The existing modern acoustoelastic assumes that three principal stresses are applied along 

x-, y- and z-axis, respectively (Hughes and Kelly 1953, Toupin and Bernstein 1961, 

Thurston and Brugger 1964, Johnson 1981, Pao and Gamer 1985). The principal strains 

that are induced by these principal stresses are denoted as e1, e2 and e3 along x-, y- and z-

axis, respectively. Therefore, Equation (5.52) can be expressed as: 

( )
1111 1 1

2
0 initial

2121 2 2

3131 3 3

0 0

0 0 ,

0 0

B U U

B U v U

B U U



     
     

=
     
          

                               (5.56) 

where acoustoelastic moduli B1111, B2121 and B3131 are: 

( ) ( ) ( )1111 11 11 111 1 12 112 2 13 113 35 ,B C C C e C C e C C e= + + + + + +                             (5.57a) 

( ) ( ) ( )2121 66 11 66 661 1 12 66 662 2 13 663 32 2 ,B C C C C e C C C e C C e= + + + + + + + +         (5.57b) 

( ) ( ) ( )3131 55 11 55 551 1 13 55 553 3 12 552 22 2 .B C C C C e C C C e C C e= + + + + + + + +         (5.57c) 

The diagonal elements are zero since only the principal stresses involved. As the B-matrix 

in Equation (5.56) is diagonal, its three eigenvectors are (1;0;0), (0;1;0), and (0;0;1). Cor-

respondingly, the three eigenvalues are B1111, B2121 and B3131, and three velocities are 

(B1111/ρ0)1/2, (B2121/ρ0)1/2 and (B3131/ρ0)1/2. Considering that the propagation direction is 

(1;0;0), the eigenvalue (B1111/ρ0)1/2 corresponds to the velocity of the longitudinal wave, 

while the remaining (B2121/ρ0)1/2 and (B3131/ρ0)1/2 correspond to the velocities of transverse 

waves. Moreover, in the absence of externally induced strain in the isotropic medium, the 

wave velocities are [(λ+2μ)/ρ0]1/2 and (μ/ρ0)1/2, representing longitudinal and transverse 

wave velocities, respectively. 
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The acoustoelasticity in the natural frame in the scenario that principal stresses are applied 

along x-, y- and z-axis is shown as follows: 

( )
1111 1 1

2
0 natural

2121 2 2

3131 3 3

0 0

0 0 ,

0 0

D U U

D U v U

D U U



     
     

=
     
          

                              (5.58) 

where acoustoelastic moduli D1111, D2121 and D3131 are: 

( ) ( ) ( )1111 11 11 111 1 12 112 2 13 113 33 ,D C C C e C C e C C e= + + + + + +                        (5.59a) 

( ) ( ) ( )2121 66 11 661 1 12 66 662 2 13 663 32 ,D C C C e C C C e C C e= + + + + + + +              (5.59b) 

( ) ( ) ( )3131 55 11 551 1 12 552 2 13 55 553 32 .D C C C e C C e C C C e= + + + + + + +               (5.59c) 

The determination of the wave modes and corresponding velocities here follows the same 

method as described after Equation (5.56), which will not be reiterated in this context. 

The difference in longitudinal wave velocity acquired using modern acoustoelasticity be-

tween the natural and initial frames can be approximated by employing Taylor expansion, 

as shown below: 

1111 1111 1111 1111

0 0 0 0

1111

0

2

11
110

1111

11
110

1 1

2

.

B D B D

D

C
e

D

C
e

   







 
−  − 

 

=

                                   (5.60) 

The assumption made during the derivation from step 2 to step 3 in Equation (5.60) is 

that the terms in D1111 involving static strain are significantly smaller than C11. Conse-

quently, D1111 can be approximated as equal to C11 in this scenario. Considering that 

(C11/ρ0)1/2 is the longitudinal wave velocity in the medium without external load applied, 

the primary distinction between these two frames lies in whether the travel time in the 

pre-deformed length in the propagation direction is considered. The natural wave velocity 

represents the original length in the direction of propagation divided by the time of flight, 

while the velocity in the initial frame of reference is determined by the quotient of the 

pre-deformed length in the direction of propagation and the time of flight (Pao and Gamer 

1985). This suggests that correcting the wave path at each load step is necessary to obtain 

the velocity in the initial frame, whereas the velocity in the natural frame does not require 

such correction. 

Please note that the velocity change of the medium measured using WI techniques, such 

as the stretching and WCS techniques, reflects the velocity change in the natural frame. 
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The fundamental assumption underlying the interpretation of medium velocity change via 

WI techniques is that travel time is inversely proportional to velocity, aligning with ob-

servations in the natural frame. 

5.4.3 Example 2: waves propagating perpendicular to the shear 

deformation plane – acoustoelastic birefringence 

The second example addresses a scenario where the bulk wave travels perpendicular to 

the shear deformation plane in an isotropic material. In this instance, the polarization di-

rections of two transverse wave modes always align with the principal stress directions. 

It is worth highlighting that the primary application scenario for the associated theory in 

this example is in slightly anisotropic materials such as rolled metals (Imanishi, Sasabe 

et al. 1982) and woods (Hasegawa and Sasaki 2004, Hasegawa and Sasaki 2004, 

Hasegawa and Sasaki 2004) to decouple the velocity variations induced by material tex-

tures and applied stresses (Iwashimizu and Kubomura 1973). 

Suppose that the directions of three principal stresses are aligned with the x, y and z axes, 

respectively, as depicted in Figure 5.2(a). The corresponding principal strains are denoted 

as e1, e2 and e3. The three principal stresses can either be tensile or compressive. Assum-

ing that the wave is propagating along the x-axis. The initial governing equation under 

the principal strain is: 

( )

0

1111 1 1
2

0 0 initial

2121 2 2

0

3131 3 3

0 0

0 0 ,

0 0

B U U

B U v U

B U U



     
     

=     
         

                                (5.61) 

where vinitial represents the velocity in this state, and the elements in the B0-matrix before 

coordinate transformation are: 

( ) ( )( )0

1111 1 2 32 5 10 2 4 2 ,B l m e l e e    = + + + + + + + +                      (5.62a) 

( ) ( )0

2121 1 2 34 2 ,
2

n
B m e m e m e     

 
= + + + + + + + + − 

 

                 (5.62b) 

( ) ( )0

3131 1 3 24 2 .
2

n
B m e m e m e     

 
= + + + + + + + + − 

 

                 (5.62c) 

The shear strain in the y-z plane is implemented by transforming the principal strain to a 

new coordinate system, which can be obtained by rotating around the  x-axis with a certain 

angle θ, as shown in Figure 5.2(b). After the coordinate transformation, the new strain 

matrix is shown as follows: 



5.4 Bulk wave acoustoelasticity in compressible elastic medium subjected to normal and shear 

deformations 

98 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

11 12 13 1

21 22 23 2

31 32 33 3

1 0 0 0 0 1 0 0

0 cos sin 0 0 0 cos sin .

0 sin cos 0 0 0 sin cos

e e e e

e e e e

e e e e

   

   

      
      

= −      
      −      

    (5.63) 

 

(a) Triaxial principal stress state for the principal strain condition (black arrow: normal stress 
direction; blue arrow: wave propagation direction). 

 

(b) Stress state for the strain condition after transforming to a new coordinate system (black arrow: 
normal stress direction; red arrow: shear stress direction; blue arrow: wave propagation direction). 

Figure 5.2 Stress states before and after the rotation of the coordinate system in Example 2. 

The governing equation with the wave propagating along the x’-axis (or x-axis) after the 

rotation can be written as: 

( )
1111 1 1

2
0 initial

2121 3121 2 2

2131 3131 3 3

0 0

0 ,

0

B U U

B B U v U

B B U U



     
     

=
     
          

                               (5.64) 

where 𝑣initial represents the velocity in the new coordinate system, and elements in the B-

matrix after the coordinate transformation are: 

( ) ( )( )

( ) ( )( )

1111 11 22 33

0

1 2 3 1111

2 5 10 2 4 2

2 5 10 2 4 2 ,

B l m e l e e

l m e l e e B

    

    

= + + + + + + + +

= + + + + + + + + =

              (5.65a) 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2121 11 22 33

2 2

1 2 3

2 2

3 2

4 2
2

4 2 cos sin

cos sin ,
2

n
B m e m e m e

m e m e e

n
m e e

     

      

  

 
= + + + + + + + + − 

 

 = + + + + + + + 

 
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              (5.65b) 
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( ) ( )

( ) ( ) ( ) ( )
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2 2
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4 2
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m e m e e

n
m e e

     

      

  

 
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 
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 
 + + − +   
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              (5.65c) 

( ) ( )( )2131 3121 23 3 22 2 sin cos .
2 2

n n
B B e e e   

   
= = + = + −   

   

                   (5.65d) 

The parameter B1111 remains equal to the initial B0
1111, indicating that the presence of 

shear strain does not alter the longitudinal wave velocity in this particular strain configu-

ration. The B-matrix in Equation (5.64) is diagonalizable and can be decomposed as: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1111

2121 3121

2131 3131

0

1111

0

2121

0

3131

0 0

0

0

1 0 0 0 0 1 0 0

0 cos sin 0 0 0 cos sin .

0 sin cos 0 0 0 sin cos

B

B B

B B

B

B

B

   

   

 
 
 
  

    
    

= −    
    −    

          (5.66) 

Notably, Equation (5.66) is strikingly similar to the decomposition of strain matrix in 

Equation (5.63). The three eigenvectors in Equation (5.66) are (1;0;0), (0;cosθ;sinθ), and 

(0;-sinθ;cosθ), which are exactly the same as those for the strain matrix in Equation (5.63). 

The first one is aligned with the propagation direction (1;0;0), which represents the lon-

gitudinal wave mode. The latter two are orthogonal to the propagation direction, which 

are relevant to the two transverse wave modes. Given that the eigenvectors specified in 

Equation (5.63) denote the principal strain directions, it becomes evident that in this par-

ticular scenario, the polarization directions of bulk waves consistently align with the prin-

cipal strain directions.  

In addition, as shown in Equation (5.66), the eigenvalues of the B-matrix are solely de-

termined by the B0-matrix, which is calculated based on the principal strain. This implies 

that, in this given configuration, if the magnitudes and directions of the principal strains 

and the material elastic constants remain constant, the wave velocity, whether it is for the 

longitudinal or transverse wave, will remain constant regardless of the rotation of the 

coordinate system or the magnitude of the shear strain. The difference between the second 

and third eigenvalues of the B-matrix can be determined through: 

( ) ( ) ( )
2 2

0 0 0 initial initial

2121 3131 S2 S3 2 32 ,
2

n
B B v v e e 

  − = − = + −     

                      (5.67) 

where vinitial
S2 and vinitial

S3 are the second and third eigenvalue-based transverse wave ve-

locities. Equation (5.67) is the initial frame version of Eq. 44 by Pao and Gamer (1985) 

under the condition of the isotropic material. This equation reveals that the difference 
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between the squared velocities of two transverse waves is proportional to the difference 

in principal strain, which is commonly referred to as the acoustoelastic birefringence 

(Iwashimizu and Kubomura 1973, Imanishi, Sasabe et al. 1982, King and Fortunko 1983, 

Sasaki and Hasegawa 2007). 

From this specific instance, one might notice that the influence of shear strains on the 

transverse wave velocity cannot be ignored. This observation stems from two aspects. 

Firstly, as the coordinate system rotates, the normal strain undergoes alterations while the 

transverse wave velocity remains constant. If the transverse wave velocities are exclu-

sively dependent on the normal strains, their values cannot be constant during the rotation. 

Hence, this observation indicates the involvement of shear strains in the process. Sec-

ondly, in this scenario, wave polarization always aligns with principal strain directions. 

If the effect of shear strains is minimal, the moduli B2131 and B3121 in Equation (5.66) can 

be disregarded, resulting in an diagonalized B-matrix. Consequently, the eigenvectors in 

this matrix, which are (1;0;0), (0;1;0) and (0;0;1), consistently align with the new coordi-

nate system's axes after rotation. However, in reality, polarization remains unchanged 

during coordinate system rotation, underscoring the significance of shear strain influence 

on polarization direction. 

5.4.4 Example 3: Wave propagating on the shear deformation plane 

Example 2 presents a scenario where the bulk wave travels perpendicular to the shear 

deformation plane within an isotropic material. In this section, we will explore the prop-

agation of bulk waves on the shear deformation plane under a plane stress state, where 

the out-of-plane principal stress is negligible. Such a stress state is commonly encoun-

tered in structural materials like concrete (Mosley, Bungey et al. 1999, Bing, Park et al. 

2001). 

In this example, the analytical analysis will be presented first in Section 5.4.4.1. As ob-

taining the analytical solution for acoustoelasticity in this case is challenging, a numerical 

analysis will be carried out in Section 5.4.4.2. This analysis will utilize the mechanical 

properties of concrete to explore the influence of shear deformations on acoustoelasticity. 

Unlike structural or aerospace members made of metallic materials or polymers in which 

elastic waves are predominantly Lamb and Rayleigh waves due to their thin thickness, 

concrete elements are usually of comparable dimensions in all axes, making the study of 

bulk wave acoustoelasticity in concrete important. In this section, we consider concrete 

as statistically isotropic and statistically homogeneous. Such an assumption is expected 

to be reasonable for concrete at a sufficiently long length scale (Turner and Anugonda 

2001). 
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5.4.4.1 Analytical analysis 

Suppose that the directions of two principal stresses are aligned with the x and y axes, 

respectively, as depicted in Figure 5.3(a). The corresponding principal strains along the x 

and y axes are denoted as e1 and e2, respectively. Please note that there exists another 

principal strain, e3, pointed upward, which is not shown in Figure 5.3(a). The two princi-

pal stresses can either be tensile or compressive. The bulk wave propagates along the x-

axis in this example, same with the configuration in Example 1 and 2. The governing 

equation for the biaxial strain state is: 

( )

0

1111 1 1
2

0 0 initial

2121 2 2

0

3131 3 3

0 0

0 0 ,

0 0

B U U

B U v U

B U U



     
     

=     
         

                               (5.68) 

where the three eigenvalues of the B0-matrix, B0
1, B0

2 and B0
3, are: 

( ) ( )( )0 0

1 1111 1 2 32 5 10 2 4 2 ,B B l m e l e e    = = + + + + + + + +                  (5.69a) 

( ) ( )0 0

2 2121 1 2 34 2 ,
2

n
B B m e m e m e     

 
= = + + + + + + + + − 

 

             (5.69b) 

( ) ( )0 0

3 3131 1 3 24 2 .
2

n
B B m e m e m e     

 
= = + + + + + + + + − 

 

              (5.69c) 

From Equation (5.68), it is apparent that the first eigenvalue, B0
1, correlates with the lon-

gitudinal wave velocity, whereas the second and third eigenvalues, B0
2 and B0

3, corre-

spond to the transverse wave velocities. The introduction of shear strains in the x-y plane 

involves rotating the original coordinate system x-y to a new coordinate system x’-y’ with 

a specific angle θ, as illustrated in Figure 5.3(b). Since the direction of principal strain e3 

is along the axis of rotation, its value remains constant during the rotation. Then, the 

simplified transformation of the strain matrix can be obtained through: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )
11 12 1

21 22 2

cos sin cos sin0
,

sin cos sin cos0

e e e

e e e

   

   

−      
=       

−      

                  (5.70) 

where θ is the angle between the x-axis and x’-axis after the rotation of the coordinate 

system. 

 

(a) Biaxial principal stress state for the principal strain condition (black arrow: normal strain 
direction; blue arrow: wave propagation direction). 
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(b) Stress state for the strain condition after transforming to a new coordinate system (black arrow: 
normal stress direction; red arrow: shear stress direction; blue arrow: wave propagation direction). 

Figure 5.3 Stress states before and after the rotation of the coordinate system in Example 3. 

After the coordinate rotation, the wave will propagate along the new x’-axis, and the new 

governing equation is: 

( )
1111 2111 1 1

2
0 initial

1121 2121 2 2

3131 3 3

0

0 ,

0 0

B B U U

B B U v U

B U U



     
     

=
     
          

                               (5.71) 

where the acoustoelastic moduli in the B-matrix are: 

( ) ( )( )1111 11 22 332 5 10 2 4 2 ,B l m e l e e    = + + + + + + + +                        (5.72a) 

( ) ( )2121 11 22 334 2 ,
2

n
B m e m e m e     

 
= + + + + + + + + − 

 

                (5.72b) 

( ) ( )3131 11 33 224 2 ,
2

n
B m e m e m e     

 
= + + + + + + + + − 

 

                   (5.72c) 

( )1121 2111 122 4 2 .B B m e = = + +                                                                 (5.72d) 

Since the B-matrix in Equation (5.71) is symmetrical, the analytical solutions for three 

eigenvalues of this matrix, denoted as, B1, B2 and B3, are: 

( )

( )
( )

2 2

1111 2121 1111 2121 2111

1

2

2111

2

1111 2121

1111 1111 2121

4

2

4
1 1
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B B B

+ + − +
=
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−
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                           (5.73a) 
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+ − − +
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+ −
−

= − −

                          (5.73b) 

3 3131 .B B=                                                                                             (5.73c) 

The first and second eigenvalues comprise the diagonal elements in the B-matrix, such as 

B1111 and B2121, as well as a term related to shear deformation, B2111. To better understand 
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the impact of shear deformation-related terms on changes in eigenvalues during coordi-

nate transformations, the difference between the same eigenvalue before and after the 

coordinate transformation is calculated using: 

( )
( )

2

2111

2

1111 21210 0

1 1 1111 1111 1111 2121

4
1 1

,
2

B

B B
B B B B B B

+ −
−

− = − + −
                  (5.74a) 

( )
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2
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2

1111 21210 0

2 2 2121 2121 1111 2121

4
1 1

.
2

B

B B
B B B B B B

+ −
−

− = − − −
                  (5.74b) 

As depicted in Equation (5.74), the change in eigenvalue can be separated into two com-

ponents: the variation in the diagonal element B1111 or B2121 due to the alteration in the 

normal strain, and the change in the term related to the shear strain.  

Equation (5.71) indicates that the third eigenvalue, B3, is associated with the transverse 

wave velocity. Since the initial first eigenvalue B0
1 in Equation (5.69) is related to the 

velocity of longitudinal waves, it is probable that the first eigenvalue B1 in Equation (5.73) 

is also linked to the longitudinal wave velocity, which can be calculated through (B1/ρ0)1/2. 

Similarly, the second eigenvalue, B2, corresponds to the transverse wave velocity 

(B2/ρ0)1/2. Considering the close relationship between the first eigenvalue B1 and the first 

diagonal element in the B-matrix B1111 shown in Equation (5.73a), there is a potential 

representation of longitudinal wave velocity through B1111, expressed as (B1111/ρ0)1/2. 

However, it is important to note that this longitudinal wave velocity is an approximation 

and may deviate from the exact value (B1/ρ0)1/2. Likewise, the approximation of the trans-

verse wave velocity can be expressed as (B2121/ρ0)1/2. Utilizing the exact and approximate 

velocities, we can then calculate four velocity changes using the following equations 

based on the diagonal elements and the eigenvalues to assess potential discrepancies be-

tween exact and approximate velocities: 

1111

0 0
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2 2
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 

  
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

+
−

− +
= =
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                           (5.75a) 
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
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 



−
−

= =

                                                 (5.75d) 

where dv/vP,app, dv/vP,exa, dv/vS,app and dv/vS,exa represent the approximate velocity changes 

of longitudinal wave using the first diagonal element B1111, the exact velocity changes of 

longitudinal wave calculated using the first eigenvalue B1, the approximate velocity 

changes of transverse wave using the second diagonal element B2121, and the exact veloc-

ity changes of transverse wave calculated using the second eigenvalue B2, respectively.  

Unlike Example 2, it is not feasible to draw any conclusions regarding the impact of shear 

deformation on the wave mode and its corresponding velocity solely through analytical 

analysis in Example 3. Hence, a numerical analysis is required. 

5.4.4.2 Numerical analysis 

The Lamé parameters and Murnaghan constants of concrete used in the numerical analy-

sis are obtained from the paper by Nogueira and Rens (2019). To induce large shear stress 

during the rotation of the coordinate system, the compressive stress σ1 is applied along 

the x-axis with a magnitude of 40% of the compressive strength as one of the principal 

stresses, as shown in Figure 5.3(a). It should be noted that the concrete is still considered 

to be in the elastic stage under this condition (Materials 2017). Considering the low con-

crete tensile strength, in the y-axis a tensile stress of 3 MPa is applied. The influence of 

wave propagation angle θ to the wave velocity is studied by rotating the angle θ from 0° 

to 90° with steps of 5°, while maintaining the principal stresses unchanged. The shear 

stress arises immediately as the coordinate rotation commences and reaches its maximum 

at an angle of 45°. 

The static strain is determined by dividing the stress by the elastic modulus or shear mod-

ulus. Please be aware here that strain we are using is the tensorial strain. This section 

exclusively presents the results based on the mechanical properties of Specimen 1 re-

ported by Nogueira and Rens (2019), while the numerical results employing the proper-

ties of other specimens can be found in Appendix C. The compressive strength of Speci-

men 1 is 33.1 MPa, and the magnitude of applied compressive stress is 40% × 33.1 MPa 

= 13.24 MPa. 

The changes in B1111 and shear deformation-related term relative to the original principal 

stress state calculated based on Equation (5.74a) are shown in Figure 5.4. The horizontal 

axis represents the angle between the wave propagation direction and x-axis the of the 

coordinate system. As the coordinate system rotates, the changes in B1111 (depicted by the 

solid black line in Figure 5.4) are much more significant than those in the shear defor-
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mation-related term (represented by the dash-dotted black line in Figure 5.4). Conse-

quently, the variation in the first eigenvalue, B1, is primarily influenced by the changes in 

B1111. This is evident from the nearly identical absolute values of B1111 (shown by the 

dotted grey line in Figure 5.4) and B1 (displayed by the dashed grey line in Figure 5.4). 

Since changes in B1111 are solely attributed to variations in the normal strain, it can be 

concluded that the variation in shear strain has minimal impact on B1. 

 

Figure 5.4 The change in B1111 and shear deformation-related term relative to the original principal 
stress state calculated based on Equation (5.74a), and the comparison between the moduli B1111 

and B1 during the coordinate transformation. 

However, relying solely on the knowledge of the first eigenvalue is insufficient to deter-

mine the wave mode it corresponds to. Therefore, it is important to examine the first 

eigenvector during the coordinate transformation as well. Figure 5.5 displays the first and 

second scalars in the first eigenvector, while the third scalar (which remains constant at 

0) is not included in this figure. The first scalar gradually decreases as the shear strain 

emerges, yet it remains significantly larger than the second scalar and remains close to 1. 

Considering that the wave propagates in the direction of (1;0;0), the first eigenvector is 

not perfectly parallel with the propagation direction. This phenomenon was anticipated 

by Pao and Gamer (1985) in their article: in general, neither of obtained polarization 

direction is parallel to the propagation direction (page 809). In their article, this type of 

wave is referred to as a quasi-longitudinal wave, and subsequent researchers have adopted 

this terminology (Bobrenko, Kutsenko et al. 1990). 
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Figure 5.5 The first and second scalars in the first eigenvector of the B-matrix in Equation (5.71) 
during the coordinate transformation. 

Figure 5.6 presents the numerical results of the changes in B2121 and the shear defor-

mation-related term relative to the original principal stress state based on Equation (5.74b). 

Unlike the previous findings in Figure 5.4, the change in the shear deformation-related 

term (represented by the dash-dotted black line in Figure 5.6) is significant compared to 

that of B2121 (depicted by the solid black line in Figure 5.6). Consequently, there is a 

noticeable discrepancy between B2121 (the dotted grey line in Figure 5.6) and B2 (the 

dashed grey line in Figure 5.6) when the shear strain emerges. Moving on to Figure 5.7, 

we examine the first and second scalars in the second eigenvector of the B-matrix during 

the coordinate transformation. Similar to the observations in Figure 5.5, it is evident that 

the wave does not conform to a pure transverse wave mode. This particular type of trans-

verse wave is commonly referred to as a quasi-transverse wave (Pao and Gamer 1985). 

 

Figure 5.6 Change in B2121 and the shear deformation-related term in coordinate transformation 
relative to the original principal stress condition calculated based on Equation (5.74b), and the 

comparison between the moduli B2121 and B2. 
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Figure 5.7 The first and second scalars in the second eigenvector of the B-matrix in Equation (5.71) 
during the coordinate transformation. 

The aforementioned results are derived from the elements and eigenvalues of the B-matrix. 

However, our primary interest lies in the wave velocity obtained from acoustoelasticity. 

Figure 5.8 presents the velocity change calculated using Equation (5.75). Consistent with 

the observations in Figure 5.4 and Figure 5.6, the velocity change of the quasi-longitudi-

nal wave can be accurately estimated using the diagonal element B1111. The maximum 

error occurs when the shear stress reaches its maximum, with an error magnitude of ap-

proximately 0.32‰. Considering the magnitudes of applied principal stresses, -13.24 

MPa and 3 MPa, this difference is very limited. In contrast, the transverse wave velocity 

cannot be estimated using the diagonal element B2121, confirming our earlier conclusion.  

 

Figure 5.8 Velocity changes of the quasi-longitudinal wave based on the first diagonal element B1111, 
the quasi-longitudinal wave based on the first eigenvalue B1, the quasi-transverse wave based on 
the second diagonal element B2121 and quasi-transverse wave based on the second eigenvalue B2 

using Equation (5.75). 

5.5 Simplification of longitudinal wave acoustoelasticity in plane stress 

state 

In Section 5.3 and 5.4, we thoroughly re-examined the theoretical framework of modern 

acoustoelasticity and proved that the impact of shear stress/strain on longitudinal wave 
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velocity in concrete when bulk waves propagate on the shear deformation plane is indeed 

negligible. This finding allows us to simplify the equations used to describe wave propa-

gation in stressed media, especially when propagating at an angle to the principle direc-

tion of stress.  

In this section, the simplification of longitudinal wave acoustoelasticity in plane stress 

state with arbitrary propagation directions will be presented. We will begin by providing 

the acoustoelastic expression for longitudinal waves in the bi-axial stress state in Section 

5.5.1, then progress to the expression for inclined propagating longitudinal waves on the 

stress plane in Section 5.5.2.  

It is important to highlight that equations derived in this section is based on the acousto-

elasticity in the natural frame. This option is grounded in the fact that the natural velocity 

is inversely proportional to the time of travel, eliminating the need to correct the length 

of wave path using strain measurements (Pao and Gamer 1985). 

5.5.1 Acoustoelasticity for longitudinal waves propagating along one of 

the principal stress directions in the plane stress state 

Assuming that a uniaxial stress is applied along the x-axis, and considering the propaga-

tion of a longitudinal wave along the same axis. In this case, the velocity of the longitu-

dinal wave can be expressed as follows: 

( ) ( ) ( )( )

( ) ( )

2
0 natural

11 1 2 3

1 1

s s

2 3 6 2 4 2

2 3 6 2 4 2 2 ,

v l m e l e e

l m l
E E

     

 
    

= + + + + + + + +

= + + + + + − +

                (5.76) 

where e1, e2 and e3 indicate static principal strains along the x-, y- and out-of-plane z-axis, 

respectively. The parameter σ1 represents the static principal stress along the x-axis, while 

υ represents the static Poisson ratio, and Es is the static elastic modulus. It is important to 

note that in viscoelastic materials like concrete, the static Poisson ratio and static elastic 

modulus cannot be represented using Lamé parameters in Equation (5.76). This is because 

these Lamé parameters are derived from the constitutive equation for high-frequency ul-

trasonic waves and may not adequately describe the constitutive relation of viscoelastic 

materials under static loading conditions, where the strain rate is much lower than that of 

ultrasonic waves. Equation (5.76) can be further simplified into the following form by 

introducing the acoustoelastic parameter A1111: 

( ) ( )

( )
0natural

11 11 1111 1 1111
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3 6 2 4 2 2
1 , : ,

2

l m l
v v A A

E

   


 

+ + + − +
= + =

+
              (5.77) 

where the longitudinal wave velocity without external load applied is represented as v(0)
11, 

which is equal to [(λ+2μ)/ρ0]1/2.  
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When the longitudinal wave propagates along the x-axis while the uniaxial stress is ap-

plied along the y-axis, the longitudinal wave velocity is: 

( ) ( ) ( )( )

( ) ( )

2
natural

11 1 2 3

2 2 2

s s s

2 3 6 2 4 2

2 3 6 2 4 2 .
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           (5.78) 

Similarly, Equation (5.78) can be simplified into the form shown in Equation (5.77): 

( ) ( )
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               (5.79) 

When the longitudinal wave propagates along the x-axis and the bi-axial stresses are ap-

plied along the x- and y-axis, the longitudinal wave velocity in this stress state is: 
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 (5.80) 

where σ1 and σ2 represent the principal stresses along the x- and y-axis, respectively. Note 

that Equation (5.80) is similar to the combination of Equation (5.76) and Equation (5.78) 

and can be simplified into: 

( )0natural

11 11 1111 1 1122 21 .v v A A = + +                                           (5.81) 

In this section, only the acoustoelastic parameters for longitudinal waves in the natural 

frame are introduced. The remaining parameters can be found in Appendix D. 

5.5.2 Acoustoelasticity for longitudinal wave propagating inclined to 

principal stress directions in the plane stress state 

In a plane stress state, we assume that the principal stresses are applied along the x- and 

y-axes, as illustrated in Figure 5.9(a), and the stress in z-axis is zero. These two principal 

stresses can be either compressive or tensile. The propagation direction of a longitudinal 

wave is indicated by the dotted arrow. To make the acoustoelasticity applicable in this 

scenario, we need to align the axes of the coordinate system parallel and perpendicular to 

the wave propagation direction, as depicted in Figure 5.9(b). The normal and shear 

stresses in the new rotated coordinate system, denoted as x’ and y’, can be determined by: 
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              (5.82) 

where θ is the inclination of the wave propagation, and σ11 and σ22 represent the normal 

stresses along x’- and y’-axes, respectively. The parameters σ12 and σ21 represent the shear 

stresses in the x’-y’ plane. 

 
(a) Principal stresses in the original coordinate 

system. 

 
(b) Normal and shear stresses in the rotated 

coordinate system. 

 
(c) Simplified bi-axial stress state by neglecting the shear stresses in the rotated coordinate system. 

Figure 5.9 Coordinate system transformation (solid arrow: stress direction; dotted arrow: 
longitudinal wave propagation direction; θ represents the rotation angle to orient the coordinate 

system according to the propagation direction). 

 

Based on the result presented in Section 5.4.4, it has been established that the velocity 

change of a longitudinal wave is primarily influenced by the normal stress/strain, while 

the impact of shear stress/strain on the longitudinal wave velocity can be neglected in the 

scenario of the plane stress state. As a result, the stress state depicted in Figure 5.9(b) can 

be simplified to a bi-axial stress state, as illustrated in Figure 5.10. This figure demon-

strates that the acoustoelastic parameter associated with an inclined propagating longitu-

dinal wave closely resembles that in a bi-axial stress state with axial stresses of σ11 and 

σ22. Therefore, along with the normal stresses computed in Equation (5.82), the acousto-

elastic effect in the bi-axial stress state in Figure 5.9(c) can be formulated as: 
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   (5.83) 

Please note that Equation (5.83) is not new, and one can find it in the papers dealing with 

the acoustoelastic effect of waves propagating inclined to the principal stress directions 

(Mi, Michaels et al. 2006, Muir 2009, Gandhi 2010, Shi, Michaels et al. 2013, Abbasi and 

Ozevin 2016). The main assumption in Equation (5.83) is that the influence of shear 

stresses on wave velocity is negligible, which has not been proven valid in the aforemen-

tioned articles. Additionally, we want to emphasize here that the procedure adopted in 

this section is not applicable to transverse waves since shear stresses significantly affect 

transverse wave velocity when bulk waves propagate on the shear deformation plane. 

5.6 Experimental validation for simplified acoustoelastic expression 

To validate the simplified acoustoelastic expression for the longitudinal waves in the 

plane stress state presented in Section 5.5, an experiment is designed where the longitu-

dinal wave propagates at an angle relative to the coordinate system within a plane stress 

state. The specifics of the sample used in the experiment, the layout of the ultrasonic 

sensors, and the loading protocol are detailed in Section 5.6.1, while the data processing 

approach for obtaining the acoustoelastic parameters for inclined propagating longitudi-

nal waves is explained in Section 5.6.2. 

5.6.1 Concrete specimen, sensor layout and measurement plan 

The test specimen is a concrete cylinder with dimensions of 300 mm in diameter and 500 

mm in height. The cylinder is cast using self-compacting concrete of grade C60/75. The 

mean cube compressive strength (tested from 150 mm cubes) and mean prism elastic 

modulus of concrete on the 28th day are 75 MPa and 39 GPa, respectively. 

In the experiment, a total of 11 ultrasonic sensors with a central frequency of 80 kHz were 

employed as transmitters and receivers. Specifically, two sensors were affixed to one side 

of the concrete cylinder as transmitters, while the remaining sensors were placed on the 

opposite side as receivers, as illustrated in Figure 5.10. The uniaxial compressive load 

was applied onto the top and bottom surfaces of the cylindrical sample, aligned with the 

y-axis according to the coordinate system in Figure 5.10. The transmitter located near the 

top surface is denoted as Transmitter 1, and the corresponding arrangement of receivers 

is referred to as SL 1. Likewise, when utilizing the other transmitter, Transmitter 2, the 
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layout of receivers is termed SL 2. The inclinations of the receivers within SL 1 and SL 

2 can be found in Table 5.2. 

           

(a) Schematic front view.                        (b) Schematic top view. 

      

(c) Photos of the specimen and sensors. 

Figure 5.10 Schematic of sensor layout. 

 

Table 5.2 Receiver inclination for SL1 and SL2 with respect to the x-axis on the x-y plane (please be 
aware that 90° indicates that the propagation direction is parallel to the principal stress direction). 

 
Re-

ceiver 
1 2 3 4 5 6 7 8 9 

Inclination θ 
[°] 

SL 1 0.96 8.72 18.26 26.26 33.43 39.12 44.81 49.24 52.78 

SL 2 49.40 44.90 39.35 33.29 26.11 18.61 8.90 0.57 9.46 
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A total of four repetitive ultrasonic tests, numbered as Test 1–4, were conducted on the 

concrete sample. The age of the concrete during Test 1 is 15 months, while for Test 2, 3 

and 4, it is 16 months. All measurements are performed throughout the loading process 

at a sampling rate for signals of 10 MHz. Prior to the measurement, the sample undergoes 

three-cycle pre-loading, where the stress ranged from 2.829 MPa to 11.318 MPa, as indi-

cated in Table 5.3. This pre-loading procedure aimed to mitigate the relatively lower slope 

of the stress-velocity relationship that may occur due to crack formation during the initial 

loading phase (Stahler, Sens-Schonfelder et al. 2011). For the first three tests, the receiver 

configuration of SL 1 is utilized, with Transmitter 1 serving as the source. Although the 

minimum and maximum compressive stresses are the same for all three tests, the stress 

interval in Test 3 is twice as large as that in Test 1 and Test 2. This variation in stress 

interval is implemented to assess the sensitivity of the obtained results with different 

stress intervals. In Test 4, Transmitter 2 is used as the source, while maintaining the same 

stress range and interval as Test 3. The loading protocols of four tests can be found in 

Figure 5.11. 

Table 5.3 Detailed information for four tests. 

Test 

No. 

Sensor 

layout 

Minimum compres-

sive stress [MPa] 

Maximum compres-

sive stress [MPa] 

Stress inter-

val [MPa] 

Number of meas-

urements 

1 SL 1 2.829 11.318 0.707 13 
2 SL 1 2.829 11.318 0.707 13 

3 SL 1 2.829 11.318 1.415 7 

4 SL 2 2.829 11.318 1.415 7 

 

 

Figure 5.11 Loading protocol of four tests. 

5.6.2 Data processing approach 

Since the interconversion between longitudinal and transverse waves could occur at each 

scattering event (Snieder 2002), the longitudinal wave component may contain a certain 

amount of transverse waves. In order to minimize the impact of transverse waves on the 

analysis, only the initial one-and-a-half cycles of the signal, which corresponds to a du-
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ration of approximately 23.5 μs, will be utilized to retrieve the velocity change of longi-

tudinal waves in concrete. Due to its short duration, the signal cannot be effectively pro-

cessed using the WCS technique due to the poor frequency resolution of around 42.6 kHz. 

Therefore, the stretching technique introduced in Section 4.2.2.1 will be used to retrieve 

the stress-induced velocity change. In addition, the stretching technique used in this sec-

tion is step-wise, where the signal from the previous load step is taken as the reference. 

The velocity relative to the measurement at the initial load step is then calculated using 

the following equation: 
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                       (5.84) 

where v11,1 and v11,k indicate the velocity of longitudinal waves propagating in the x direc-

tion measured at the first stress level and the kth stress level, respectively. The parameter 

(dv/v)11,k-1 can be directly obtained using the stretching technique. Since the interconver-

sion between longitudinal and transverse waves could occur at each scattering event 

(Snieder 2002), the longitudinal wave component may contain a certain amount of trans-

verse waves. In order to minimize the impact of transverse waves on the analysis, only 

the initial one-and-a-half distinguishable cycles of the signal will be utilized for the 

stretching calculation. This corresponds to approximately 23.5 μs in duration at a fre-

quency of 64 kHz. 

During the experiment, the principal stress is along the y-axis, as shown in Figure 5.10. 

Based on this information, Equation (5.83) can be simplified as: 
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                (5.85) 

Equation (5.85) can be expressed in a form similar to Equation (5.77) and (5.79) as: 

( ) ( ) ( )0natural 2 2

11 11 eff 2 eff 1111 11221 , : sin cos ,v v A A A A  = + = +               (5.86) 

where Aeff is the effective acoustoelastic parameter for inclined propagating longitudinal 

waves. As shown in Equation (5.86), this effective acoustoelastic parameters can be cal-

culated through the relationship between applied stress and longitudinal wave velocity. It 

should be noted that the initial compressive stress level in Equation (5.86) is assumed to 

be zero. However, during the experiment, the initial compressive stress is 2.82 MPa, as 
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shown in Table 5.3. Therefore, the following equation is employed to incorporate this 

non-zero initial compressive stress: 
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where σ2,1 and σ2,k indicate the principal compressive stresses in the y direction at the first 

stress level (2.82 MPa), and stress level at which the measurement k is taken, respectively. 

The parameter v11,k and v11,1 represent the wave velocity at measurement k and the wave 

velocity at the initial stress state, respectively. The effective acoustoelastic parameter can 

be calculated by means of the slope of compressive stress-square of relative velocity re-

lation, denoted as s, through: 

eff

2,1

.
1

s
A

s
=

−

                                                         (5.88) 

The slope s can be determined by performing a linear fit of the square of relative velocity 

with respect to the compressive stress.  

5.7 Effective acoustoelastic parameters for longitudinal waves 

The signals received from Receivers 1, 5, and 9 during Test 1 under compressive stresses 

of 2.829 MPa, 5.659 MPa, 8.488 MPa, and 11.318 MPa are shown in Figure 5.12. In these 

figures, the waveforms exhibit remarkable similarity across different stress levels, with 

diminishing amplitudes attributed to increased travel distance. The velocities of ballistic 

waves in all cases consistently exceed 4000 m/s, indicative of longitudinal waves. As 

mentioned above, the longitudinal wave component may contain a certain amount of 

transverse waves because of the interconversion between longitudinal and transverse 

waves (Snieder 2002). However, since we apply the stretching technique in a very short 

time window, around 23.5 μs, after the first arrival, we anticipate minimal influence of 

transverse waves on the obtained results. While phase shifts in the signals received from 

Receiver 1 remain insignificant, they become progressively more pronounced with 

greater inclination, as shown in Figure 5.12(b) and Figure 5.12(c). Similar phenomenon 

as described above are also observable in Tests 2, 3 and 4. 
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(a) Receiver 1 (θ=0.96°). 

 

(b) Receiver 5 (θ=33.43°). 

 

(c) Receiver 9 (θ=52.78°). 

Figure 5.12 Signals from Receiver 1, 5, and 9 during Test 1 under compressive stresses of 2.829 
MPa, 5.659 MPa, 8.488 MPa, and 11.318 MPa. 

The square of relative velocities obtained using Equation (5.84) as a function of the com-

pressive stress in the four tests are shown in Figure 5.13. When the inclination approaches 

0°, the longitudinal wave propagates nearly perpendicular to the principal stress direction, 
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resulting in the lowest slope of the square of relative velocity with respect to the com-

pressive stress. This finding aligns with observations in the literature (Lillamand, Chaix 

et al. 2010). As the inclination increases, a progressively more significant acoustoelastic 

effect can be observed, characterized by an increasing slope.  

    

(a) Test 1. 

   

(b) Test 2. 

      

(c) Test 3. 
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(d) Test 4. 

Figure 5.13 Square of relative velocity vs. compressive stress. The circles represent the 
experimental measurements, while the dotted lines indicate the linear fit results. The parameter θ 

indicates the inclination of sensor-receiver pair with respect to x-axis in Figure 5.10(a). A linear fit of 
the square of relative velocity with respect to the compressive stress is performed, and the obtained 

slope is denoted as s. The goodness-of-fit is evaluated using the coefficient of determination R2. 
The effective acoustoelastic parameter Aeff is acquired using Equation (5.88) with σ2,1 = -2.829 MPa. 

To quantify the relationship between the compressive stress and the square of relative 

velocity, a linear fit is performed to acquire the slope of this relationship. The goodness-

of-fit is evaluated using the coefficient of determination R2. It is noteworthy that the ma-

jority of these coefficients are high, as shown in Figure 5.13, suggesting a robust linear 

relationship between compressive stress and the square of relative velocity, which aligns 

with the theoretical analysis presented in Section 5.5. This observation further reinforces 

the accuracy and reliability of the measurements. 

The obtained slope is then utilized to calculate the effective acoustoelastic parameter us-

ing Equation (5.88). These parameters can be found in the legends of Figure 5.13. The 

consistent outcomes and fluctuations observed in the first three tests, demonstrate the 

reproducibility of the acoustoelastic effect from the same sensor configuration. One plau-

sible explanation of the fluctuations in the measurements at different inclinations, i.e., the 

magnitude of the effective acoustoelastic parameter acquired from Receiver 4 (θ=26.26°) 

is higher than that from Receiver 3 (θ=18.26°) in Test 1 shown in Figure 5.13(a), is the 

spatial variation of mechanical properties of concrete (Nguyen, Sbartaï et al. 2013). This 

observation also suggests that relying on a single transmitter-receiver pair to obtain the 

acoustoelastic parameter may not provide a representative result for the sample. Addi-

tionally, examining Test 2 and Test 3 reveals that the effective acoustoelastic parameter 

is not significantly affected by the magnitude of the load step. Test 4 exhibits slightly 

different results compared to the initial three tests. Considering that the wave trajectories 

of transmitter-receiver pairs in Test 4 are different from the previous three tests, this var-

iance could also be ascribed to the spatial variation of mechanical properties of concrete. 
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Nevertheless, the overall trend of the effective acoustoelastic parameters is evident: the 

magnitude of effective acoustoelastic parameters increases as the inclination increases.  

5.8 Comparison of acquired effective acoustoelastic parameters with 

those from literature 

In Section 5.7, we present the effective acoustoelastic parameters obtained from the ex-

periment for longitudinal waves. To further validate these parameters, we calculate acous-

toelastic parameters A1111 and A1122 based on the results presented in Section 5.7 and com-

pare them with values reported in the literature. 

The effective acoustoelastic parameter is determined by three variables as shown in Equa-

tion (5.86): A1111 and A1122, which are acoustoelastic parameters, and θ, the inclination of 

wave propagation. Since the inclination of wave propagation can be inferred from the 

sensor locations in the experiment, only two acoustoelastic parameters remain unknown. 

Theoretically, these two parameters can be derived using two effective acoustoelastic pa-

rameters corresponding to distinct inclinations of wave propagation. In this study, each 

test involves longitudinal waves propagated at nine distinct inclinations, resulting in nine 

effective acoustoelastic parameters. Utilizing these nine parameters alongside the mini-

mum norm least-squares criterion facilitates the determination of the two unknown acous-

toelastic parameters, A1111 and A1122. Once these parameters are obtained, it becomes fea-

sible to reconstruct the effective acoustoelastic parameters for different receivers based 

on their known inclinations. The deviation between these reconstructed results and the 

experimental data is evaluated using the root mean square deviation (RMSD). The acous-

toelastic parameters, A1111 and A1122, and RMSD values comparing experimental and re-

constructed results are detailed in Table 5.4. Figure 5.14 illustrates the comparison be-

tween the effective acoustoelastic parameters derived from experiments and those recon-

structed using the parameters listed in Table 5.4. 

Table 5.4 Acoustoelastic parameters obtained using minimum norm least-squares criterion. 

Test 

No. 

Acoustoelastic parameters [(GPa)-1] RMSD values between experimental and recon-

structed results [(GPa)-1] A1111 A1122 

1 -2.4838 -0.1155 0.1698 
2 -2.7425 -0.1192 0.1804 

3 -2.8100 -0.0859 0.1865 

4 -3.2680 -0.3629 0.1909 
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Figure 5.14 Comparison of effective acoustoelastic parameters obtained from experiments and 
those reconstructed using the acoustoelastic parameters listed in Table 5.4. 

In the first three tests, which share the same sensor configuration (SL 1), the reconstructed 

results are quite consistent. However, the reconstructed effective acoustoelastic parame-

ters in Test 4 consistently manifest a higher magnitude compared to those in Tests 1, 2, 

and 3. As previously mentioned, this discrepancy could be attributed to the spatial varia-

tion of mechanical properties in concrete. The acoustoelastic parameter A1122 exhibits a 

significantly lower magnitude than A1111 in all four tests, and the magnitude of A1122 ob-

tained from Test 4 is at around three times larger than those from the other tests. Despite 

some fluctuations, the overall trend of the effective acoustoelastic parameters derived 

from the experiment aligns with the expectation: when the propagation direction of lon-

gitudinal waves approaches closer to the direction of the principal stress, the acoustoelas-

tic effect becomes more significant, and the magnitude of the effective acoustoelastic 

parameters increases.  

The acoustoelastic parameters obtained in this study are further compared with those re-

ported in the literature. To ensure comparability, the slope of the stress-velocity change 

relationship, which is widely adopted in the literature, is converted into the acoustoelastic 

parameter A1111 and A1122. The following equation, which is derived from Equation (5.77), 

is adopted for longitudinal waves propagating parallel to the uniaxial principal stress di-

rection: 
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Please note that the approximate equivalence holds as the magnitude of A1111σ1, approxi-

mately 0.002, is much smaller than 1 in concrete (Nogueira and Rens 2019). A similar 

expression to Equation (5.89) can be employed to convert the slope of the stress-velocity 
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change relationship for longitudinal waves propagating perpendicular to the uniaxial prin-

cipal stress direction into A1122, although it will not be presented here. The comparison 

between acoustoelastic parameters in this study and those reported in the literature is pre-

sented in Table 5.5. The parameters acquired from four tests are consistent with the find-

ings reported by other researchers in the literature, reinforcing the validity of the effective 

acoustoelastic parameters shown in Section 5.7. 

Table 5.5 Comparison between acoustoelastic parameters in this section and those reported in the 
literature. 

  Test 1 Test 2 Test 3 Test 4 

Lil-

lamand 
et al. 

(2010) 

Nogueira 

et al. 

(2019) 

Zhong 

et al. 

(2021) 

Acoustoelastic 
parameters 

[(GPa)-1] 

A1111 -2.48 -2.74 -2.81 -3.27 -1.30 
Vary from 
-0.80 to -

5.26 

-2.42 

A1122 -0.12 -0.12 -0.09 -0.36 -0.40 

Vary from 

+0.48 to -
0.74 

-0.42 

5.9 Discussion 

5.9.1 Identified inconsistencies in acoustoelastic theory in the current 

literature 

In Section 5.2, we highlighted the presence of literature producing inconsistent results 

compared to other publications. These inconsistencies primarily stem from two factors: 

incorrect acoustoelastic expressions (Egle and Bray 1976, Payan, Garnier et al. 2011) and 

the improper utilization of third-order elastic constants (Stahler, Sens-Schonfelder et al. 

2011). In Section 5.3.4, we have discussed some of them (Stahler, Sens-Schonfelder et al. 

2011). Directly applying equations in these papers may yield inaccurate result. Here, we 

address the concerns in the article by Mi et al. (2006), and Egle and Bray (1976). In this 

section, we have demonstrated that the longitudinal wave velocity is primarily influenced 

by the normal stress/strain, while the transverse wave velocity is influenced by both nor-

mal and shear stress/strain in the context of concrete. Our numerical results pertaining to 

the transverse wave velocity raise concerns regarding the accuracy of Eq. 17 in the paper 

by Mi et al. (2006), as this equation assumes that shear stress/strain does not affect the 

transverse wave velocity in the aluminium. 

We noted that Eq. (1a) in the work by Egle and Bray (1976), directly obtained from ex-

pressions reported by Hughes and Kelly (1953) is correct. However, in the derivation of 

Eq. (2a) in their article, we identified multiple typos. In their article, Eq. (2a) is in the 

following form (Egle and Bray 1976): 

( ) ( ) ( )
2

0

11

2
2 4 2 2 2 1 ,

l
v m       



  
= + + + + + + +  

  

                     (5.90a) 
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where ε represents the strain in 1-direction in their article. The correct expression should 

take the following form: 

( ) ( ) ( )
2

0

11

2
2 5 2 2 2 2 1 .

l
v l m      



  
= + + + + + − +  
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                     (5.90b) 

Based on Eq. (2a) in their article, they proceeded to derive Eq. (4a) for relative changes 

in wave velocity with axial strain (Egle and Bray 1976): 

0
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                                          (5.91a) 

It is crucial to note that this result is incorrect. The correct version of the expression should 

be in the following form: 
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                                          (5.91b) 

Considering that the magnitude of the third-order elastic constant l is typically much 

larger than that of the second-order elastic constant m (Hughes and Kelly 1953, Nogueira 

and Rens 2019), directly utilizing Eq. (4a) reported by Egle and Bray (1976) will under-

estimate the magnitude of velocity change for a given strain change in a medium with 

identical elastic constants. In the following up study conducted by Payan et al. (2011), 

they employed the inaccurate expression of Eq. (4a), which potentially leads to incorrect 

conclusions. 

5.9.2 Error estimation in acquiring the acoustoelastic parameters of 

concrete 

The precision of the acoustoelastic parameters of concrete obtained through the approach 

proposed in this section is influenced by four main factors: (1) simplification of the acous-

toelastic theory, (2) accuracy of the stretching technique to estimate velocity changes in 

concrete, (3) change of mechanical properties of concrete relating to the age of concrete, 

and (4) the special variation of mechanical properties of concrete. The first factor stems 

from neglecting the impact of shear stresses on longitudinal wave velocities. However, 

this discrepancy in velocity change is very limited, typically less than 0.06‰ per 1 MPa 

at a 45° inclination (the maximum observed difference) in the plane stress state, based on 

observations shown in Section 5.4.4.2.  

The second type of error arises from the stretching technique. Based on studies by Weaver 

et al. (2011) and Mao et al. (2020), the error magnitude ranges from 0.01‰ to 0.2‰, 

similar to the magnitude of velocity change when the longitudinal wave propagates per-

pendicular to the uniaxial stress direction. 
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To provide a more intuitive understanding of how errors stemming from the stretching 

technique affect the acquired effective acoustoelastic parameters, we conducted a prelim-

inary error analysis. Given the absence of research on the precision of the stretching tech-

nique specifically applied to concrete thus far, we assume a maximum error of 0.1‰ in 

dv/v, a value consistent with findings by Weaver et al. (2011) and Mao et al. (2020). Using 

Taylor expansion, we estimate the error of (dv/v+1)2 to be approximately 0.2‰. In this 

demonstration, we use Test 1 as an illustration. The acoustoelastic parameter A1122 char-

acterizes velocity changes in the medium when longitudinal waves propagate perpendic-

ular to the stress direction. In Test 1, this propagation direction closely aligns with the 

sensor inclination of 0.96° (Receiver 1). The relationship between the square of relative 

velocity and compressive stress for this sensor inclination, along with the errors resulting 

from the stretching technique, can be seen in Figure 5.15(a). The acoustoelastic parameter 

A1111 describes velocity changes in the medium when longitudinal waves travel parallel 

to the stress direction. However, a sensor inclined in such a manner is lacking. Instead, 

for illustrative purposes, we utilize the sensor inclination of 52.78° (Receiver 9), which 

is closest to the scenario of A1111 in our tests. The relationship between the square of 

relative velocity and compressive stress for this sensor inclination, together with the 

stretching technique-induce error, is displayed in Figure 5.15(b).  

 

(a) Inclination of receivers of 0.96° (Receiver 1). 
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(b) Inclination of receivers of 52.78° (Receiver 9). 

Figure 5.15 Square of relative velocity vs. compressive stress in Test 1 with receivers inclined at 
0.96° (Receiver 1) and 52.78° (Receiver 9). The centre circle of the error bar indicates the square of 

relative velocity acquired from Test 1. The absolute maximum error of dv/v is  . ‰. 

Figure 5.15 clearly illustrates that errors propagated from the stretching technique signif-

icantly affect measurements from Receiver 1 but have minimal impact on those from 

Receiver 9. To further quantify the propagation of these errors to the effective acoustoe-

lastic parameters, the following equation will be employed to estimate the errors in the 

effective acoustoelastic parameters, denoted as ΔAeff: 
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                                                   (5.92) 

where Δs indicates the error in the fitted slope, propagated from the errors in the velocity 

change acquired using the stretching technique. The slope s can be determined by con-

ducting a linear fit of the square of relative velocity to the compressive stress. The error 

in the fitted slope Δs can be estimated using the following equation: 
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                                           (5.93) 

where x1 and x2 represent two query point, while y1 and y2 denote corresponding fitted 

values at these query points. The parameter Δ indicates the absolute error associated with 

the two fitted values. In this study, Δ is equal to the error of (dv/v+1)2, approximately 

0.2‰. The parameters x1 and x2 correspond to compressive stresses at the second stress 

level, -3.54 MPa, and the last stress level, -11.32 MPa, respectively. Utilizing Equation 

(5.92) and (5.93), the propagated error from the stretching technique to the effective 
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acoustoelastic parameter is calculated. When the inclination of receivers is 0.96° (Re-

ceiver 1), the propagated error is determined as 0.051 GPa. This value is comparable in 

magnitude to the effective acoustoelastic parameter acquired from the same receiver in 

Test 1, -0.076 GPa. Furthermore, the effective acoustoelastic parameters of Receiver 1 

obtained from Test 2 (-0.062 GPa) and Test 3 (-0.035 GPa), utilizing identical transmitter 

configuration, fall within the specified error bounds. In contrast, when the inclination of 

receivers is 52.78° (Receiver 9), the propagated error to the effective acoustoelastic pa-

rameter is computed to be 0.052 GPa. Notably, this magnitude is significantly smaller 

than the effective acoustoelastic parameter acquired from the same receiver in Test 1, -

1.710 GPa. The proportion of the magnitude of error to the magnitude of effective acous-

toelastic parameter is only 3.0%. However, utilizing effective acoustoelastic parameters 

obtained from receivers with lower inclinations does not substantially affect the values of 

acoustoelastic parameters A1111 and A1122. Table 5.6 displays the acoustoelastic parameters 

derived using effective parameters from receivers with inclinations larger than 10°. These 

parameters exhibit similar magnitudes compared to those in Table 5.4, indicating that the 

smaller effective parameters from receivers with lower inclinations minimally influence 

the fitting process based on the minimum norm least-squares criterion. 

Table 5.6 Acoustoelastic parameters obtained using minimum norm least-squares criterion. 

Test No. Receivers involved 
Acoustoelastic parameters [(GPa)-1] 

A1111 A1122 

1 Receiver 3~9 -2.4838 -0.1155 
2 Receiver 3~9 -2.7425 -0.1192 

3 Receiver 3~9 -2.8100 -0.0859 

4 Receiver 1~6 -3.2680 -0.3629 

 

Furthermore, the parameters of Receiver 9 in Test 2 (-1.832 GPa) and Test 3 (-1.887 GPa) 

surpass the error bounds. There is a notable increase in the magnitude of effective acous-

toelastic parameters from Test 1 to Test 2 (0.122 GPa), whereas from Test 2 to Test 3, 

this difference is lower (0.055 GPa). Interestingly, the parameter change between Test 2 

and Test 3 slightly exceeds the estimated propagated error, suggesting that the actual error 

from the stretching technique might be higher than 0.1‰ in concrete. There is no existing 

research on the precision of the stretching technique when applied to concrete. Two po-

tential reasons behind the significant jump in the magnitude of effective acoustoelastic 

parameters acquired from Receiver 9 between Test 1 and Test 2 include the underesti-

mated error while using the stretching technique, as discussed above, and the age of con-

crete, which will be further explored in the subsequent paragraph. Despite these consid-

erations, it can be concluded that errors stemming from the stretching technique notably 

affect acoustoelastic parameters when the longitudinal wave propagation direction is per-

pendicular or nearly perpendicular to the uniaxial stress direction, while their impact is 

limited when the longitudinal wave propagates parallel or nearly parallel to the uniaxial 

stress direction. 
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The third aspect to consider is the age of the concrete. The mechanical properties of con-

crete, which can be represented by second-order elastic constants Lamé parameters, will 

gradually develop with time, and such a development is called hydration. The increase of 

Lamé parameters during the hydration process results in an increase of both longitudinal 

and transverse wave velocities (Carette and Staquet 2016). However, there is no research 

on the time-dependent behaviour of Murnaghan constants in concrete, but it is certain that 

these constants must change during hydration. Understanding the evolution of Lamé pa-

rameters and Murnaghan constants during concrete hydration could aid in interpreting the 

notable increase in the magnitude of effective acoustoelastic parameters between Test 1 

and Test 2. 

The last aspect concerns the spatial variation of mechanical properties of concrete 

(Nguyen, Sbartaï et al. 2013). Our study reveals variations in effective acoustoelastic pa-

rameters with changes in transmitter position, suggesting differences in parameters across 

various transmitter and receiver locations, even within the same concrete sample. Im-

portantly, these differences can be substantial.  

To enhance the future application of the proposed approach for concrete stress monitoring, 

two key issues should be addressed: (1) analysing the source frequency content-induced 

errors in the stretching technique for retrieving stress-induced velocity changes in con-

crete through both theory and experiment to establish its minimum resolution in retrieving 

velocity change, and (2) exploring the impact of spatial variation of mechanical properties 

of concrete on acoustoelastic parameters through numerous repetitive experiments. 

5.10 Summary 

This section presents an investigation on the response of the travel time of ballistic bulk 

waves to normal and shear stresses in concrete. Based on contents presented in this sec-

tion, we draw a general conclusion regarding the influence of shear strains on bulk wave 

velocities in concrete: shear strains exert a limited effect on longitudinal wave velocities 

but significantly alters transverse wave velocities in the context of concrete when bulk 

waves propagate on or perpendicular to the shear deformation plane. This conclusion 

suggests that acoustoelasticity can potentially be used to detect both the magnitude and 

directional changes of principal stresses by using ballistic waves. 

According to acoustoelastic theory, the travel time changes of bulk waves in stressed 

concrete depend on both the wave mode and the propagation direction. The former sug-

gests that the energies of longitudinal and transverse waves are crucial for estimating 

travel time changes of multiply scattered bulk waves in the diffusive regime, as empha-

sized by Snieder (2002). In later chapters, we will work on the travel time changes of 

diffuse bulk waves in concrete, where Equations (5.52) and (5.54) will be mainly used. 
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6. Modelling transportation of bulk wave energy 

6.1 Introduction 

According to the acoustoelastic theory detailed in Chapter 5, travel time changes of bulk 

waves in stressed concrete depend on both the wave mode and the propagation direction. 

We further demonstrated the impact of propagation direction on the acoustoelastic effect 

of ballistics waves through experiments in the same chapter. Although ballistic waves 

have a deterministic directionality, allowing for the determination of principal strain di-

rections in an isotropic medium, methods based on these waves can only examine a lim-

ited region between the transducer and the receiver. In contrast, diffuse waves, with their 

longer trajectories, can cover a larger area with a sparser sensor array (Planès and Larose 

2013), making them ideal for detecting changes over a broader region.  

Diffuse waves are characterized by an equilibrated energy ratio between longitudinal and 

transverse waves (Weaver 1982) and an isotropic wavefield in space (Paul, Campillo et 

al. 2005). Despite this, the distinct acoustoelastic effects of longitudinal and transverse 

waves suggest that their energies are crucial for estimating travel time changes of multiply 

scattered bulk waves in the diffusive regime, as emphasized by Snieder (2002). Therefore, 

interpreting stress-induced travel time changes in diffuse waves requires a model to esti-

mate the bulk wave energy evolution in concrete. 

We acknowledge that investigating the acoustoelastic effect of bulk waves before they 

reach the diffusive regime is challenging due to the complexity of wave propagation di-

rections. The characteristics of diffuse waves can greatly simplify the interpretation of 

wave properties, such as travel time changes, in the coda. Please note that only after waves 

enter the diffusive regime the condition where bulk waves arrive at the receiver from all 

directions with equal strength is met (Curtis, Gerstoft et al. 2006). Otherwise, the wave-

field must be considered anisotropic, which significantly complicates the analysis. 

This chapter introduces a theoretical framework of modelling the propagation of bulk 

wave energy in concrete. We will start with the knowledge gap in Section 6.2. After re-

viewing the scattering theory in elastic media proposed by Weaver (1990), Turner et al. 

(2001), and Ryzhik et al. (1996) and the theoretical description of the energy equilibration 

proposed by Snieder (2002), Margerin et al. (2001), and Trégourès et al. (2001), we pro-

pose the theoretical framework to estimate the energy evolution in Section 6.3. However, 

adapting this framework to concrete involves tailoring certain parameters, which is dis-

cussed in detail in Section 6.4. The role of intrinsic dissipation in the energy transport 

model will be investigated in Section 6.5. The resulting theoretical framework, capable 

of estimating the evolution of bulk wave energy in concrete, will undergo validation uti-

lizing the diffusivity measured in Section 4.3. The validation process and the energy evo-

lution predicted by the model will be elaborated in Section 6.6.  



6.3 Total scattering cross-sections and energy equilibration in elastic media 

128 

6.2 Knowledge gap in evaluating the energy evolution of bulk waves in 

concrete 

As detailed in Section 2.3.2, the WI method is currently preferred for detecting stress-

induced velocity changes in concrete due to its high sensitivity to subtle changes in the 

medium. However, when applying the WI approach to coda waves, understanding the 

correlation between applied stress and measured travel time change is challenging due to 

the complex nature of these waves, which undergo multiple scattering and propagate in 

random directions. One potential simplification involves evaluating travel time changes 

when bulk waves reach energy equilibration. In this scenario, the energy ratio is known, 

and the bulk wave field is theoretically isotropic. Consequently, acoustoelastic effects of 

longitudinal and transverse waves can be decoupled, and propagation directions can be 

assumed uniformly distributed in space. However, as of now, no relevant research on the 

energy evolution of bulk waves has been reported in the realm of concrete. 

6.3 Total scattering cross-sections and energy equilibration in elastic 

media 

In this section, theoretical backgrounds of total scattering cross-sections and energy equi-

libration in elastic media are introduced. Section 6.3.1 gives a brief review on the funda-

mental definition of mean free path and scattering cross-section. Section 6.3.2 presents 

analytical expressions for total scattering cross-sections in heterogeneous media with lo-

cal isotropy reported by Turner and Anugonda (2001). Section 6.3.3 rederives the equili-

bration time as well as the energy equilibration ratio based on the work of Snieder (2002) 

and Trégourès et al. (2001). 

6.3.1 Definition of scattering cross-section and mean free path 

The main purpose of this section is introducing the fundamental definition of mean free 

path and scattering cross-section, emphasizing the relationship between the classical def-

inition (Chen 1984, Sheng 2006) and the probabilistic-based definition (Snieder 2002). 

These definitions will be demonstrated using simplified examples without considering 

the possible mode conversion and scattering angles.  

When elastic waves propagate through a heterogeneous medium containing randomly 

spread scatterers, collisions occur between waves and scatterers. These collisions result 

in the scattering of a portion of the wave energy into different directions from the wave 

propagation direction. We assume that all scatterers are in the same spherical shape with 

a cross-sectional area of σ [m2], which is also known as scattering cross-section. Consid-

ering that elastic waves are incident upon an element of area A [m2] and thickness dx [m] 

containing ns scatterers per m3, as show in Figure 6.1. The fraction of the area of the 

element being blocked by the total area of scatterers, denoted as Asc, is: 
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The energy blocked by scatterers can be represented as: 
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where E and E’ represent the energy flux of incident waves and transmitted waves, 

respectively. The solution of the differential equation in Equation (6.2) is: 
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where E0 is the energy at initial location. The charactristic decay length of Equation (6.3) 

is defined as the mean free path, denoted as ls (Chen 1984): 
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The mean free path can be understood as a plane wave that will have had a good 

probability, with only 36.8% initial energy remaining, of making a collision after 

travelling a distance ls (Chen 1984). Since the product nsσ in Equation (6.4) is related to 

the total area of scatterers, it is also termed the total scattering cross-section (Turner 

1998), denoted as Σ. Please note that the physical dimension of Σ is L-1. 

 

Figure 6.1 Illustration of definitions of scattering cross-section and mean free path. 

The mean free path in Equation (6.4) is also known as the scattering mean free path 

(Turner and Anugonda 2001), which gives the decay length of the wave energy that 

propagates in its initial direction (Tourin, Derode et al. 2000). Energy tends to propagate 

toward regions with lower energy (Morse and Feshbach 1954). This behavior can be 

captured using the weighted total scattering cross-section (Weaver 1990), denoted as Σ’. 

Please note that the physical dimension of Σ’ is the same as that of Σ, which is L-1. A 
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transport length l* over which the wave has lost its initial direction (Busch, Soukoulis et 

al. 1994) is defined as: 

* 1
: .l =

 −

                                                              (6.5) 

The transport length l* in Equation (6.5) is known as the transport mean free path (Turner 

1998, Turner and Anugonda 2001). For elastic waves with a forward-scattering tendency, 

Σ’>0 and the transport mean free path is larger than the scattering mean free path. 

Conversly, Σ’<0 when waves have a back-scattering tendency. When the wave 

propagation is non-preferential, Σ’≈0 and the scattering mean free path is equal to the 

transport mean free path. 

The mean free path can also be defined by means of the fraction of cross-section area 

blocked by scatterers (Snieder 2002). We assume that scatterers in Figure 6.1 are in the 

same spherical shape. The mean distance between two adjacent scatterers is defined as xa 

[m]. After a wave has travelled the distance xa, there is a probability that it has interacted 

with scatterers. This probability, which is dimensionless, is denoted by p. The fraction of 

energy blocked by scatterers in this case is then: 

a

a

d

d
1

d .

E E E

x
E p E

x

p
E x

x

= −

 
= − − 

 

= −

                                                     (6.6) 

Equation (6.6) is equivalent to Equation (6.2), and p can be understood as the fraction of 

cross-section area blocked by scatterers. The scattering mean free path in this case is: 

s a .
x

l
p

=
                                                                  (6.7) 

6.3.2 Total scattering cross-sections for elastic bulk waves 

Definitions of scattering mean free paths and scattering cross-sections mentioned in Sec-

tion 6.3.1 are provided for simple cases. It is assumed that the scattering cross-section is 

equivalent to the physical area of the scatterer. However, the scattering cross-section is 

generally smaller than the physical area of each scatterer (Sheng 2006). Additionally, the 

previous definition does not account for the scattering angle between incident and scat-

tered waves. In reality, the scattering cross-section should account for the energy flux 

scattered in a specific direction at a certain angle relative to the incident wave (Boyd, 

Gaeta et al. 2008).  

Figure 6.2 demonstrates a more realistic scattering scenario. The scattering angle, denoted 

as θs, is defined as the angle between the incident unit wave vector, denoted as p, and the 
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scattered unit wave vector, denoted as p’. Please note that p and p’ are unit vectors point-

ing to the propagation directions. Obviously, the cosine of the scattering angle, cosθs, is 

equal to the dot product between p and p’. The scattering plane is determined by p and p’ 

with the scattered spherical wave being locally considered a plane wave (Newton 2013). 

The scattering cross-section is angle dependent, and the total scattering cross-section is 

defined as the integral of the scattering cross-sections over all angles (Turner 1998): 

( ) ( )
1

s s
1

: cos d cos ,  
+

−
 =                                                    (6.8) 

where σ(cosθs) denotes the scattering cross-section that is related to the dot product be-

tween p and p’. The total scattering cross section that is related to the propagation pref-

erence, or weighted total scattering cross-section, is defined as (Turner 1998): 
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As shown in Equation (6.9), Σ’ contains a weighting factor of the cosine of the scattering 

angle in the integral. 

 

Figure 6.2 Sketch of a scattering event with a scattering angle θs between the incident and scattered 
waves. The parameters p and p’              unit wave vectors for incident and scattered waves, 

respectively. 

The total scattering cross-sections of elastic wave in the case of longitudinal (P) and trans-

verse (S) waves are defined separately due to their distinct propagation characteristics. In 

this dissertation, the total scattering cross-section for longitudinal waves is denoted as ΣP, 

while the total scattering cross-section for transverse waves is denoted as ΣS. When elastic 

waves propagate through a medium like concrete, there is a probability of collision with 
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scatterers. During such collisions, the wave mode may convert to another mode. There-

fore, the scattering cross-section of a certain wave mode can be subdivided into two cat-

egories: those in which the waves retain their original mode after the collision and those 

in which the waves convert to another mode. For longitudinal waves, scattering cross-

sections associated with mode transitions are denoted as σPP and σPS. The first P in the 

subscript σPP and σPS represents the original longitudinal wave mode, and the second letter 

represents the mode it converts into. Accordingly, total scattering cross sections, also 

known as longitudinal wave attenuations (Turner and Anugonda 2001), are denoted as 

ΣPP and ΣPS. By utilizing Equation (6.8), the following relation can be obtained: 
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An analogous definition is used for mode transition-related total scattering cross-sections 

of transverse waves: 
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Equation (6.10) can also be represented by means of the probabilistic-based definition: 
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where pPP represents the probability of longitudinal waves converting to longitudinal 

waves. Similar definitions apply to pPS, pSS and pSP. As shown in Equation (6.11a), the 

total scattering cross-section of longitudinal waves depends on both probabilities of P-P 

and P-S scattering.  

Equation (6.10) provides a generic relationship between the total scattering cross-section 

and the scattering cross-section of different wave modes. To obtain explicit expressions 

of the total scattering cross-sections in heterogeneous media with local isotropy, rigorous 

derivations are required. In this dissertation, derivations given by Turner and Anugonda 

(2001) are adopted. The whole derivation is based on three assumptions (Ryzhik, 

Papanicolaou et al. 1996, Turner and Anugonda 2001):  

 (1) the medium is statistically isotropic and statistically homogeneous; 
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(2) the phase velocity remains unchanged during the scattering; 

(3) spatial fluctuations of heterogeneities are weak.  

Assumption 1 implies that heterogeneities in the medium are uniformly distributed. This 

assumption is expected to be reasonable for geophysical materials and concrete (Turner 

and Anugonda 2001). Assumption 2 is known as the Born approximation (Stanke and 

Kino 1984), which assumes that scattering events only change the propagation direction 

and wave mode, while the phase velocities, or more specifically, the frequency and wave 

number, of longitudinal and transverse waves remain constant. This simplification allows 

expressing the total scattered field as a sum of scattered waves emitted by each individual 

scatterer (Margerin, Campillo et al. 2000). By adopting the Born approximation, the scat-

tered amplitude can be directly calculated using the three-dimensional Fourier transform 

of the potential energy function, with respect to the difference of the incident and scattered 

wave vectors, p-p’ (Sakurai and Napolitano 2020). In the context of elastic wave scatter-

ing in statistically isotropic and statistically homogeneous media, the potential energy 

function relates to spatial fluctuations of Lamé constants, λ and μ, as well as density, ρ 

(Ryzhik, Papanicolaou et al. 1996), which govern the propagation of elastic waves in 

these media. The use of the Born approximation also explains the power spectral densities 

involved in the expressions shown below: the spatial fluctuations are transformed into the 

power spectral densities in the Fourier domain when applying the Born approximation 

(Ryzhik, Papanicolaou et al. 1996). The Born approximation fails when the wavelength 

is much smaller than the diameter of scatterers (Weaver 1990), or in other words, the 

scattering is in the geometrical regime (Papadakis 1965). Assumption 3 is to avoid the 

occurrence of localization (Anderson 1985, Weaver 1990, Sheng 2006), a phenomenon 

in which energy propagation is hindered within a confined region due to significant in-

terferences from scatterers. The validity of Assumption 2 and 3 will be discussed in Sec-

tion 6.7.3. 

The mode transition-related total scattering cross-sections are shown as follows (Turner 

and Anugonda 2001): 
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where ω represents the angular frequency, μ and λ are Lamé parameters of the heteroge-

neous medium (average among different phases), vP and vS denote longitudinal wave and 

transverse wave velocities in the heterogeneous medium (average among different 

phases), and ρ is the density of the heterogeneous medium (average among different 

phases). The parameter χ is defined as the cosine of the scattering angle, cosθs, between 

the incident wave vector kK=(ω/vK)p and scattered wave vector kL=(ω/vL)p’, where su-

perscripts K (K∈{P,S}) and L (L∈{P,S}) represent the modes of incident and scattered 

waves, respectively. The power spectral density (PSD) of material property fluctuation 

( )KL

ijR   involved in Equation (6.12) is defined as (Turner and Anugonda 2001): 

( ) ( )KL KL

K L: ,ij ijR R = −k k                                                (6.13) 

where subscripts i and j can be material parameters ρ, μ and λ. For example, R
is the 

PSD of fluctuations of λ, and R
 is the cross power spectral density (CPSD) of fluctua-

tions of λ and μ. Calculating the PSD and CPSD of material property fluctuations in con-

crete is a complex task. To make this feasible, certain simplifications are required, which 

will be explained in detail in Section 6.4.1. 

It should be noted that expressions in Equation (6.12) correspond to the wave energy, 

which are twice the expressions associated with displacement (Turner and Anugonda 

2001). As shown in Equation (6.12c) and (6.12d), the ratio of ΣSP and ΣPS is a constant 

independent of the scattering mechanism: 
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v
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
                                                            (6.14) 
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6.3.3 Energy equilibration and equilibration time 

In this section, the time required to reach the energy equilibration between longitudinal 

and transverse waves, as well as the two transverse wave modes, based on the probabil-

istic model proposed by Snieder (2002) will be derived. Although the derivation is con-

ducted in infinite media, these theoretical expressions can also be applied to concrete 

components with boundaries, as long as the influence of Rayleigh waves is limited 

(Trégourès and van Tiggelen 2001). 

6.3.3.1 Energy equilibration between longitudinal and transverse waves 

Take the notations EP for longitudinal wave energy and ES for transverse wave energy. 

The probability of a longitudinal wave converting to a transverse wave can be represented 

by the fraction of total cross-section area blocked by scatterers that enforce this conver-

sion. This probability can be denoted as pPS. Similarly, pSP represents the probability of a 

transverse wave converting to a longitudinal wave. Please note here that pPS ≠ pSP, as also 

indicated in Equation (6.14). The number of cross-sections with scatterers encountered 

by a longitudinal wave in a time interval dt is defined as vP×dt/xa. Consequently, the re-

duction of the longitudinal wave energy due to conversion into the transverse wave en-

ergy can be defined as pPS×EP×vP×dt/xa. Using the same definitions, the total change in 

the longitudinal and transverse wave energies during a time interval dt can be expressed 

as (Snieder 2002): 
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                                       (6.15a) 
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                                        (6.15b) 

By substituting Equation (6.14) into Equation (6.15), one can get: 

3

SP
P PS P PS S2

P

d
,

d 2

vE
v E E

t v
= −  +                                            (6.16a) 

3

S S
PS S P PS P2

P

d
,

d 2

E v
E v E

t v
= −  +                                             (6.16b) 

or in a matrix form: 
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−       

                                        (6.17) 

By setting dEP/dt to 0, which indicates that the rate of change of longitudinal wave energy 

over time is zero, one can further obtain the energy equilibration ratio between longitudi-

nal and transverse waves (Weaver 1990, Ryzhik, Papanicolaou et al. 1996, Turner 1998, 

Snieder 2002): 

3

SP
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S P

.
2

vE

E v
=                                                             (6.18) 

One can also estimate the energy evolution over time by solving the differential equation 

in Equation (6.16a). Since the dissipation is not considered here, the total energy E fol-

lows the energy conservation and can be expressed as a sum of EP and ES. This energy 

conservation can be used to eliminate ES in Equation (6.16a), and one can obtain: 
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The analytical solution of Equation (6.19) is: 
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                             (6.20) 

where E(0)
P is related to the initial energy of longitudinal waves at t=0. Solutions for both 

longitudinal and transverse wave energies can be represented in a matrix form as: 
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                        (6.21) 

The time required for the energy equilibration between longitudinal and transverse waves 

is determined by the exponential function in Equation (6.21). This function can be inter-

preted as an exponential decay, and the characteristic equilibration time τPS is defined as 

(Margerin, van Tiggelen et al. 2001): 
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v

v v
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+ 
                                                     (6.22) 

As the equilibration time in Equation (6.22) is a characteristic value of exponential decay 

shown in Equation (6.21), this time represents the global energy equilibration of the entire 
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wave field (Trégourès and van Tiggelen 2001) and does not indicate local energy equili-

bration (Margerin, van Tiggelen et al. 2001). It is important to note that not all waves 

necessarily achieve equilibration at time τPS; however, they attain equilibration in a sta-

tistical sense at this moment. The equilibration time shown in Equation (6.22) is in line 

with the finding reported by Trégourès and van Tiggelen (2001) (see page 30 in their 

paper).  

It should be noted that the previous derivation does not consider the intrinsic dissipation. 

This term can be taken into consideration by adding an additional dissipation matrix in 

Equation (6.17) (Trégourès and van Tiggelen 2001): 
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                        (6.23) 

where J is the mode conversion matrix and A is the dissipation matrix. The parameters 

τ(a)
P and τ(a)

S are characteristic dissipation times of longitudinal and transverse waves, re-

spectively. There is no analytical solution for Equation (6.23), but one can get an asymp-

totic approximation by using the perturbation method with the assumption that the dissi-

pation time is much larger than the scattering mean free time (Margerin, van Tiggelen et 

al. 2001). However, in this dissertation, we will address it using a different approach. 

The matrix J+A is essentially a matrix that describes dynamics of elastic wave energy. 

To clarify the physical meaning of eigenvalues in the matrix J+A, here, we will consider 

the non-dissipative case, in which the dissipation matrix is a zero matrix and the energy 

motion is governed by the conversion matrix J. The eigenvalues λi (i∈{1,2}) and corre-

sponding eigenvectors Vi of the conversion matrix are: 
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The first eigenvector corresponds to the energy equilibration ratio, indicating the equili-

bration of energy between the two wave modes. The corresponding eigenvalue signifies 

that, statistically, there is no energy conversion when the whole system reaches the equi-

libration. The second eigenvector indicates the energy conservation between two wave 
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modes. The second eigenvalue coincides to the reciprocal of the equilibration time, de-

scribing the speed of energy conversion. Thus, as shown in the non-dissipative case, the 

equilibration time and equilibration ratio can be estimated by numerically calculating the 

eigenvalues and eigenvectors of the dynamic matrix J+A. This approach will be em-

ployed to determine the equilibration time and equilibration ratio in the presence of dis-

sipation. 

6.3.3.2 Energy equilibration between two transverse waves 

Using a similar definition mentioned in Section 6.3.3.1, energy changes in horizontal 

transverse (SH) waves and vertical transverse (SV) waves are: 
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                         (6.25b) 

The factor 1/2 in the term with the longitudinal wave energy denotes the equivalent pos-

sibility of a longitudinal wave converting into SH and SV waves. Taking the difference 

of the two equations in Equation (6.25) gives: 
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( ) ( )SV SH

SS SP S SV SH

d
2 .

d

E E
v E E

t

−
= −  + −                                 (6.26) 

By taking d(ESV-ESH)/dt=0, it can be observed that the energy of SH and SV waves be-

comes equal once they reach equilibration. Therefore, the equilibration ratio between two 

transverse waves is equal to one. The characteristic decay time for the differential equa-

tion in Equation (6.26) is: 

( )SS

SS SP S

1
: .

2 v
 =

 +
                                                   (6.27) 

This decay time is the equilibration time between SH and SV wave energy. Considering 

that the dissipation of SH waves and SV waves is the same, the dissipation does not affect 

the equilibration ratio (Margerin, van Tiggelen et al. 2001, Trégourès and van Tiggelen 

2001) but the equilibration time shown in Equation (6.27) will change. 

6.4 Estimation of total scattering cross-sections in concrete 

As shown in Equation (6.22), Equation (6.23) and Equation (6.27), total scattering cross-

sections are crucial for understanding the energy equilibration process. As indicated in 
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Equation (6.12), calculating these scattering cross-sections first requires determining the 

PSD and CPSD of material property fluctuations. However, this calculation is challenging 

in the case of concrete. To address this complexity, certain simplifications are necessary, 

which will be explained in detail in Section 6.4.1. Moving forward to Section 6.4.2, ana-

lytical expressions of both total scattering cross-sections and weighted total scattering 

cross-sections will be provided for bulk waves in concrete.  

6.4.1 Power spectral density of material property fluctuations in concrete 

6.4.1.1 Spatial correlation function of material property fluctuations 

It is crucial to underscore that obtaining the PSD of material property fluctuations directly 

in the Fourier domain is not feasible. Hence, a more viable approach involves initially 

acquiring the spatial correlation function of material property fluctuations and subse-

quently transforming it into PSD or CPSD through Fourier transform operation. Spatial 

correlation function, which quantifies the spatial statistics of material properties in the 

heterogeneous medium, is utilized to link spatial fluctuations of elastic parameters and 

the dynamic properties of elastic waves, i.e., velocity and scattering-induced attenuation 

(Calvet and Margerin 2012). In this section, the acquisition of spatial correlation function 

of material property fluctuations in concrete will be introduced. 

To simplify the concrete material in the following derivation, this material is treated as a 

two-phase or binary material: scatterers and the matrix. Investigating the spatial or two-

point correlation function in a binary material is not a new topic. The earliest attempt can 

be dated back to 1949 (Debye and Bueche 1949). Since then, the related theory has been 

further developed (Frisch 1965) and been widely applied in the construction of random 

media (Yeong and Torquato 1998, Rozman and Utz 2001, Koutsourelakis and Deodatis 

2005).  

For the assumed two-phase concrete, the entirely occupied three-dimensional space can 

be divided into two non-intersecting parts: scatterer Κs and matrix Κm. Recent studies by 

Ramaniraka et al. (2019, 2022) have yielded insights into the scattering behaviour of elas-

tic waves with frequencies of several hundred kilohertz in concrete. Through a combina-

tion of numerical simulations and experimental observations, these studies have estab-

lished that the scattering phenomenon is mainly attributed to the interfacial transition zone 

(ITZ) surrounding the coarse aggregates. In Section 6.7.2, a further discussion is given 

on this topic.  

The random field for the scatterers is: 

( ) s

s

1, if
.

0, otherwise
I


= 


x
x                                                   (6.28) 
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Consequently, the random field for the matrix is Im(x)=1-Is(x). The ensemble average of 

Is(x) and Im(x) are equivalent to the volume fraction of scatterers ϕs and matrix ϕm: 

( )s s ,I =x                                                        (6.29a) 

( )m m s1 ,I  = = −x                                             (6.29b) 

where <⋅> indicates the ensemble average operation. The correlation function of material 

property fluctuations in the medium is in the following form (Liu and Turner 2008): 

( )
( ) ( )( ) ( ) ( )( )

( ) ( )

m s m s

2

s 1 s 2 s ,
i i j j

ij

i j

A A A A
R r I I

A A


− −
 = − x x                        (6.30) 

where r represents the spatial distance between x1 and x2. The parameters Ai
(s) and Ai

(m) 

denote magnitudes of material property i (i and j can be density ρ, Lamé second parameter 

μ and Lamé first parameter λ) of the scatterer and matrix, respectively. For example, Rλλ 

is the auto-correlation function of fluctuations of λ, and Rλμ is the cross-correlation func-

tion of fluctuations of λ and μ. The derivation of Equation (6.30) can be found in Appen-

dix E.  

By introducing a normalized correlation function R(r), the second-order statistics of the 

fluctuations in Equation (6.30) can be defined as (Debye, Anderson Jr et al. 1957, 

Torquato 1999): 

( ) ( ) ( )
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  

 

− = −

=

x x x x
                                       (6.31) 

Substituting Equation (6.31) into Equation (6.30) gives: 
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 
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=

=

                                  (6.32) 

where Aij is the contrast of the properties for the two phases. The form for the normalized 

correlation function R(r) is assumed to be an exponential function, which is able to de-

scribe correlation of continuous and discrete materials fairly well (Debye and Bueche 

1949, Stanke 1986): 

( ) ,
r

HR r e
−

=                                                            (6.33) 

where H is the characteristic correlation length. Equation (6.33) can be interpreted as a 

formula describing the probability that two points separated by a distance r are in the 

same phase within a binary material. When r exceeds H, this probability becomes low. 
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From this perspective, the characteristic correlation length H can be seen as the average 

distance between regions of the phase with the lower volume fraction in the binary mate-

rials. It is noteworthy that the characteristic correlation length in concrete differs from 

that in polycrystalline metals or ceramics. In polycrystals, the medium is dominated by 

grains (Zavattieri, Raghuram et al. 2001). As a result, the characteristic correlation length 

in this medium is closely tied to the size of the grains. However, in concrete, the matrix 

component, the mortar, constitutes a larger portion, leading to the characteristic correla-

tion length being primarily influenced by the spacing between scatterers, the coarse ag-

gregates. 

The most challenging aspect in calculating the correlation function of material property 

fluctuations through Equation (6.32) lies in determining the contrast of properties for the 

two phases. Since scattering events happen on the surface of scatterers, material proper-

ties of scatterers refer to the properties of the ITZ. Hence, the average material property 

can be written as:  

( ) ( )s m

s m .i i iA A A = +                                                 (6.34) 

To simplify the contrast of properties for the two phases, the following relation between 

material properties of two phases is proposed: 

( ) ( )s ms

s

.
1

i iA A



=

+
                                                       (6.35) 

By doing this, A2
ij in Equation (6.32) is a constant 1. Considering that the volume fraction 

of coarse aggregates in concrete is usually lower than 0.5, Equation (6.35) implies that 

the material properties of ITZ are at most 33% of those of matrix. Experimental studies 

reported in the literature indicate that the Poisson ratio of the ITZ is generally comparable 

to that of the matrix (Keinde, Kamali-Bernard et al. 2014, Li, Li et al. 2019), while the 

elastic modulus of the ITZ ranges from 40% to 85% of the matrix (Lutz, Monteiro et al. 

1997, Li, Zhao et al. 1999, Mondal, Shah et al. 2009, Keinde, Kamali-Bernard et al. 2014). 

These observations imply that ratios of Lamé parameters μ and λ are approximately pro-

portional to the ratio of the elastic moduli. Hence, employing Equation (6.35) could po-

tentially result in an overestimation of the amplitude of the correlation function in Equa-

tion (6.32), consequently leading to an overestimation of total scattering cross-sections. 

Please note that the ratio of density in Equation (6.35) is assumed to be comparable to 

that of Lamé parameters. The reason for this is that no available research exists working 

on the density of ITZ to the best of our knowledge. Anticipated to have a lower density 

than the matrix due to its porous structure, the exact density ratio between the ITZ and 

the matrix proves challenging to quantify. 
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6.4.1.2 Power spectral density of material property fluctuations 

In Section 6.4.1.1, the spatial correlation function of material property fluctuations is de-

fined. In the calculation of total scattering cross-sections, the spatial correlation function 

should be transformed into the Fourier domain. The spatial Fourier transform of normal-

ized correlation function R(r) in Equation (6.33) is given as (Turner and Anugonda 2001): 
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where q represents the angular wavenumber with a physical dimension of L-1. Together 

with Equation (6.32) and Equation (6.35), the PSD or CPSD of material property fluctu-

ation is given as follows: 
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where i and j can be density ρ, Lamé second parameter μ and Lamé first parameter λ. 

Therefore, Equation (6.13) can be written as: 
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where xK or xL is the dimensionless frequency defined as xK=ωH/vK or xL=ωH/vL. As 

shown in Equation (6.38), the physical dimension of PSD or CPSD is L3. For bulk waves, 

Equation (6.38) can be expanded to include three possible combinations of wave mode 

transitions: P-P, S-S, and S-P (P-S). After incorporating these wave mode transitions, 

Equation (6.38) can be expressed as follows: 
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There are three key parameters in Equation (6.39): angular frequency ω, characteristic 

correlation length H, and volume fraction of coarse aggregates ϕs. The angular frequency 

is related to the property of bulk waves and is independent of the medium itself. The 

volume fraction of coarse aggregates can be directly obtained from the mixture composi-

tion of concrete. Consequently, to apply Equation (6.39) to concrete, it is essential to 

define the characteristic correlation length H. The details of this specification will be pre-

sented in the subsequent section. 

6.4.1.3 Determination of characteristic correlation length in concrete 

In binary materials, there exists a correlation between the volume fraction of scatterers ϕs 

and the characteristic correlation length H when the diameter of scatterers is a constant. 

This correlation is evident in the inverse relationship: as the volume fraction of scatterers 

increases, the characteristic correlation length decreases. Therefore, a similar method as 

for determining the mean free path in Section 6.3.1 is employed to estimate the charac-

teristic correlation length through the volume fraction of coarse aggregates.  

Assuming that all coarse aggregates (scatterers) have a spherical shape with the same 

radius of rs. This assumption allows us to consider a uniform size for all coarse aggregates, 

making the estimation of the correlation length more straightforward. A differential equa-

tion analogous to Equation (6.2) is formulated to describe the area of the medium blocked 

by coarse aggregates: 
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Therefore, the characteristic correlation length H can be given as: 

s

s
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For the remainder of this dissertation, we will refer to it as the characteristic aggregate 

distance. Similar to the mean free path, the characteristic aggregate distance H can be 

thought of as the distance with a high probability of separating two coarse aggregates.  

By using Equation (6.41), the three unknowns in Equation (6.39) become independent 

variables: angular frequency of elastic waves ω, volume fraction of coarse aggregates in 

concrete ϕs, and characteristic radius of coarse aggregates rs. Determining the first two 

unknowns is relatively straightforward, while the third one requires utilizing sieving in-

formation for coarse aggregates. The following expression is adopted for calculating the 

characteristic radius of coarse aggregates (Alderliesten 2005): 
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where V represents the total volume of coarse aggregates, ni denotes the volume ratio 

within the grading interval i, and ri is the characteristic radius within this grading interval. 

The subscript g denotes the total number of grading intervals. The expression of the char-

acteristic radius of coarse aggregates is then: 
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                                  (6.42b) 

The usage of Equation (6.42) allows for determining the characteristic radius of coarse 

aggregates without altering the number of scatterers. 

6.4.2 Expressions of total scattering cross-sections for bulk waves in 

concrete 

This section aims to integrate the PSD or CPSD of material property fluctuations into 

expressions for total scattering cross-sections. It is important to note that these total scat-

tering cross-sections are not directly measurable through experiments. An alternative val-

idation method involves indirect validation through diffusivity, which can be acquired 

from the average intensity of signals. Considering that the theoretical prediction of diffu-

sivity requires not only total scattering cross-sections but also weighted total scattering 

cross-sections, this section will also provide expressions for the latter. 

The expressions for total scattering cross-sections can be simplified by substituting Equa-

tion (6.39) into Equation (6.12): 
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As shown in Equation (6.43), the physical dimension of Σ is L-1. The Lamé parameters in 

Equation (6.43) are expressed by means of longitudinal and transverse wave velocities. 

Upon acquiring Equation (6.43), the weighted total scattering cross-sections can be ob-

tained by incorporating a weighting factor of the cosine of the scattering angle in the 

integral used to calculate total scattering cross-sections, as shown in Equation (6.9). 

Therefore, the expressions for weighted total scattering cross-sections are shown as fol-

lows: 
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After acquiring both total scattering cross-sections and weighted total scattering cross-

sections, transport mean free paths can be obtained through (Weaver and Sachse 1995, 

Turner 1998, Turner and Anugonda 2001): 
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and the diffusivity is given by (Weaver and Sachse 1995, Ryzhik, Papanicolaou et al. 

1996, Turner 1998, Turner and Anugonda 2001): 
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As shown in Equation (6.46), the diffusivity of elastic waves is a weighted average of the 

diffusivities of longitudinal and transverse waves. 

6.5 Role of dissipation on the equilibration process 

In Section 6.3, we discussed the theoretical background of the energy equilibration pro-

cess. To enable its calculation in concrete, we then adapted the expressions of total scat-

tering cross-sections specifically for concrete. In this section, a numerical analysis will 

be conducted to explore the impact of dissipation on both the equilibrated energy ratio 

and the time required for global energy equilibration.  

6.5.1 Numerical analysis setup 

We present three numerical cases for the analysis, and the parameters for these numerical 

cases are provided in Table 6.1. In each case, one parameter is intentionally tuned to 

investigate its influence on the energy equilibration. In Case I, the influence of wave fre-

quency on the equilibration process is investigated. The frequency range is chosen from 

40 kHz to 200 kHz, a typical frequency band utilized in ultrasonic-based concrete moni-

toring. Since the dissipation of elastic waves is a function of their frequency, it is concur-

rently adjusted with the frequency within this range. The dissipation of the transverse 

wave is estimated based on the relationship between the dissipation and frequency re-

ported in beam member in Figure 4.22. Here, it should be noted that the dissipation meas-

ured from the experiment is assumed to be solely attributed to that of transverse waves, 
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which may lead to a slight underestimation of the transverse wave dissipation due to the 

presence of longitudinal waves within the measured coda waves. The experimentally de-

rived dissipation is a combination of both transverse and longitudinal wave dissipation. 

Since longitudinal wave dissipation is lower than that of transverse waves (Margerin, van 

Tiggelen et al. 2001), attributing the entire measured dissipation to transverse waves 

could lead to a slight underestimation of their actual dissipation. No existing research has 

addressed the determination of longitudinal wave dissipation in concrete. Therefore, the 

following relation, commonly used in geophysics, is adopted to estimate the longitudinal 

wave dissipation: τ(a)
P/τ(a)

S=10/3 (Margerin, van Tiggelen et al. 2001).  

The coarse aggregate diameter range embraced in the current concrete industry in the 

Netherlands is typically 4 mm to 16 mm. However, in Case II, this range is adjusted to 2 

mm to 16 mm. It is important to note that this adjustment includes fine aggregates with 

diameters between 2 mm and 4 mm, primarily aimed at assessing the equilibration process 

in scenarios involving smaller scatterers. Considering that the volume fraction of coarse 

aggregates in concrete typically remains below 0.5, the volume fraction of aggregates in 

Case III is specified within the range of 0.1 to 0.5. The calculation steps can be found in 

Algorithm 6.1. 

Table 6.1 Parameters for numerical cases. 

Properties Case I Case II Case III 

P-wave velocity [m/s]* 4500 4500 4500 

S-wave velocity [m/s]** 2745 2745 2745 
Frequency of elastic waves [kHz] From 40 to 200 80 80 

Characteristic radius of aggregates [mm] 5 From 1 to 8 5 

Volume fraction of aggregates [-] 0.4 0.4 From 0.1 to 0.5 
P-wave dissipation [s-1] From 600 to 3000 1200 1200 

S-wave dissipation [s-1]*** From 2000 to 10000 4000 4000 

Note: *    P-wave velocities are estimated through measurements reported in Section 4.2. 

          **   S-wave velocities are estimated through P-wave velocity and the velocity ratio in concrete. 

          *** S-wave dissipation is estimated from Figure 4.22. 

 

Algorithm 6.1 Calculation of energy equilibration ratio and global equilibration time 

1: Initialize P-wave velocity vP, S-wave velocity vS 

  vP←4500 

  vS←2745 

2: Initialize angular frequency ω, characteristic radius of aggregates rs, volume fraction of aggregates ϕs,  

 P-wave dissipation 1/τ(a)
P, and S-wave dissipation 1/τ(a)

S based on Table 6.1 
3:  Calculate total scattering cross sections: 

    ΣSS←Eq.6.43(b) 

   ΣSP←Eq.6.43(d) 

   ΣPS←Eq.6.43(c) 

4:  Calculate the global equilibration time for P-S and S-S without dissipation: 

  τPS←Eq.6.22 

  τSS←Eq.6.27 

5:  Calculate the P-S equilibration ratio without dissipation: 
  EP/ES←Eq.6.18 

6:  Calculate eigenvalues and eigenvectors for the matrix J+A in Eq.6.23: 
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  λi←ComputeEigenvalues(J+A), i ∈ {1,2} 

  Vi←ComputeEigenvalues(J+A), i ∈ {1,2} 

7:  Calculate the P-S equilibration ratio with dissipation: 

  V1←Find Vi with the ratio of two components greater than 0, Vi,1/Vi,2>0 

  (EP/ES)(a)←V1,1/V1,2 

8:  Calculate the global equilibration time for P-S with dissipation: 

  λ2←Find the minimum value of λi 

  τ(a)
PS←1/λ2 

9:  Return τPS, τSS, EP/ES, τ
(a)

PS, and (EP/ES)(a). 

 

6.5.2 Impact of dissipation on the global equilibration time 

The global energy equilibration time (calculated using Equation (6.22) and (6.27)) as a 

function of the characteristic radius of aggregates, volume fraction of aggregates, and 

elastic wave frequency are presented in Figure 6.3. In Case I, the global equilibration time 

for P-S conversion exhibits a declining trend with the rise in wave frequency. This can be 

attributed to the shorter wavelength of high-frequency waves, facilitating collisions be-

tween elastic waves and aggregates. Similarly, for the P-S global equilibration time in 

Case III, the higher volume fraction of aggregates promotes an increased occurrence of 

collisions between elastic waves and aggregates, thus contributing to the observed reduc-

tion in the global equilibration time. 

In Case II, the P-S global equilibration time initially experiences a decrease with an in-

crease in the characteristic radius of aggregates, followed by a subsequent slight increase. 

This two-stage phenomenon stems from the intricate interplay between elastic waves and 

scatterers. When the volume fraction of aggregates is held constant, smaller aggregates 

are positioned more closely to each other, yet their small size results in a weaker interac-

tion with elastic waves. Conversely, as the characteristic radius grows, the interaction 

between elastic waves and scatterers intensifies. Consequently, there is a pronounced de-

crease in energy equilibration time as the aggregate size increases. These enhanced inter-

actions or collisions play a crucial role in facilitating the equilibration process, with the 

size of the aggregates primarily determining their interference on propagating waves dur-

ing this stage. With the continued increase in the characteristic aggregate radius, there is 

a decrease in the number of aggregates, accompanied by an increase in their characteristic 

distance. Consequently, elastic waves experience fewer collisions, necessitating a longer 

time for energy equilibration. During this phase, the interference of aggregates on propa-

gating waves is primarily dictated by the characteristic distance between aggregates. The 

minimum equilibration time is observed when the aggregate diameter is 8 mm (a radius 

of 4 mm), signifying that the elastic wave undergoes the highest number of collisions in 

this scenario. It is noteworthy that this diameter is smaller than both the longitudinal wave 

wavelength (56.3 mm) and the transverse wave wavelength (34.3 mm). 

When considering dissipation, the global equilibration time is consistently reduced in all 

three cases, which aligns with the trend predicted by the asymptotic solution provided by 
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Margerin et al. (2001) (see Eq. 12 in their article), in which the existence of dissipation 

will expedite the reaching of equilibration. For S-S equilibration, the equilibration time 

is significantly shorter than that of P-S equilibration in all three cases. Consequently, fo-

cusing on P-S equilibration is sufficient for the concrete monitoring.  

 

(a) Case I: elastic wave frequency. 

 

(b) Case II: characteristic radius of aggregates. 
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(c) Case III: volume fraction of aggregates. 

Figure 6.3 Numerical results of global equilibration time as a function of elastic wave frequency, 
characteristic radius of aggregates, and volume fraction of aggregates. Calculation procedures can 

be found in Algorithm 6.1. 

6.5.3 Impact of dissipation on the equilibrated energy ratio 

The energy equilibration ratio ES/EP as a function of elastic wave frequency, characteristic 

radius of aggregates and volume fraction of aggregates are presented in Figure 6.4. The 

incorporation of dissipation causes a shift in favour of the least absorbed longitudinal 

wave mode in the energy equilibration ratio ES/EP. This finding is consistent with the 

asymptotic solutions presented by Margerin et al. (2001) (see Eq. 11 in their article) and 

Trégourès et al. (2001) (Eq. 68). Furthermore, the energy equilibration ratio ES/EP, when 

considering dissipation, is found to be sensitive to the volume fraction of aggregates but 

not significantly influenced by the wave frequency. Since the equilibration ratio is slightly 

lower when considering dissipation, it is worth noting that when assessing the wave en-

ergy and velocity changes observed in the coda, directly utilizing the equilibrated energy 

ratio suggested by Snieder (2002), where ES/EP is around 10.4, assuming vP=√3×vS and 

no dissipation, may result in a slight overestimation of the contribution from transverse 

wave energy. 
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(a) Case I: elastic wave frequency. 

 

(b) Case II: characteristic radius of aggregates. 

 

(c) Case III: volume fraction of aggregates. 

Figure 6.4 Numerical results of energy equilibration ratio as a function of elastic wave frequency, 
characteristic radius of aggregates, and volume fraction of aggregates. Calculation procedures can 

be found in Algorithm 6.1. 
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6.6 Model validation and prediction of wave energy evolution 

In Section 6.5, we investigated the role of dissipation in the energy equilibration process. 

We have noted that S-S equilibration process is significantly faster than the P-S equili-

bration process, which suggests that focusing on P-S equilibration is sufficient for con-

crete monitoring. In this section, the proposed model is validated by the diffusivities ac-

quired form experiments introduced in Chapter 4. Detailed information regarding the ac-

quisition of diffusivities can be found in Section 4.3. The model validation is provided in 

Section 6.6.1. The validated model is then employed to estimate the evolution of bulk 

wave energy in concrete structures, as shown in Section 6.6.2. 

6.6.1 Model validation 

To ensure the reliability of the theoretical model in predicting energy evolution, this 

model should be validated first before applying to concrete. In this section. The validation 

is conducted by comparing diffusivities calculated from the model with those acquired 

from experiments. 

The theoretical model relies on three key inputs: the angular frequency of the elastic wave 

(ω), the volume fraction of coarse aggregate in concrete (ϕs), and the characteristic radius 

of coarse aggregates (rs). The choice of these three parameters in the theoretical model 

are discussed first. The angular frequency is derived from the frequency in Hz.  

The experimental results involve those for geopolymer concrete members and those for 

the concrete cylinder. The diffusivities in the concrete cylinder can be found in Figure 

4.27(a). For geopolymer concrete members, there are three members involved, including 

two beams and one slab. In Section 4.3.4, one beam was introduced and used to demon-

strate the extraction of diffusive properties in a medium with planar boundaries. The ge-

ometries and sensor layouts in the remaining geopolymer concrete members are intro-

duced in Appendix F. The procedure and parameter selection for fitting the diffusivity 

through received signals can be found in Section 4.3.6. To ensure comparability between 

experimental results and theoretical predictions, the frequencies incorporated into the 

model align with those used in the signal processing of experimental data, ranging from 

50 kHz to 400 kHz with a 50 kHz interval. The dry density of coarse aggregates used in 

all concrete specimens is 2630 kg/m3. The volume fraction of coarse aggregate in concrete 

can be directly deduced from the mixture composition, as shown in Table 6.2 and Table 

6.3. The volume fractions of coarse aggregates are equal to 0.257 for geopolymer concrete 

specimens and 0.278 for concrete cylinder. The characteristic radius of coarse aggregates 

is computed using Equation (6.42), and the sieving of coarse aggregates for all concrete 

specimens is provided in Table 6.4. Within each grading interval, there exist two charac-

teristic radii: the maximum radius and the minimum radius, which are related to the range 

of particle sizes that can be effectively separated. To explore the impact of the choice of 
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the characteristic radii on diffusivities predicted by the model, both the maximum and 

minimum radii within grading intervals are employed as the characteristic radii of coarse 

aggregates for respective calculations. The average longitudinal wave velocities meas-

ured in geopolymer concrete beams and the concrete cylinder are 4544 m/s and 4688 m/s, 

respectively. The transverse wave velocities can be estimated from the longitudinal wave 

velocities with a factor of 0.61 (Nogueira and Rens 2019). 

Table 6.2 Mixture composition of the geopolymer concrete in prestressed beams. 

Materials Content (kg/m3) 

Blast furnace slag 550.0 

NaOH solution (50.0 wt%) 36.9 
Sodium silicate solution (48.0 wt%) 80.4 

Water 191.0 

Admixture/Retarder 1.375 
Sand: 0-4 mm 762.0 

Gravel: 4-16 mm 676.0 

 

Table 6.3 Mixture composition of the concrete in the cylindrical specimen. 

Materials Content (kg/m3) 

CEM IIIB 285.0 
CEM IIIA 285.0 

Fillers (fly ash) 45.0 
Water 192.0 

Super plasticizer 4.3 

Sand: 0-4 mm 830.0 
Gravel: 4-16 mm 730.0 

 

Table 6.4 Sieving of gravel 4-16 mm in the mixture composition. 

Aggregate diameter Volume ratio 

12 - 16 mm 22.6% 
8 - 12 mm 38.9% 

5.6 - 8 mm 28.1% 

4 - 5.6 mm 10.4% 

 

The comparisons between experimental results and theoretical predictions as functions of 

frequency are shown in Figure 6.5. Theoretical predictions are generally consistent with 

experimental results, which suggests that proposed model is reliable. Furthermore, the 

results obtained using the maximum and minimum radii within the grading interval as the 

characteristic radius do not exhibit significant divergence. Throughout the remainder of 

this dissertation, the maximum radius within grading intervals will be utilized as the char-

acteristic radii of coarse aggregates for calculations.  
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(a) Geopolymer concrete specimens. 

 

(b) Concrete cylinder (experimental results can be found in Figure 4.27(a)). 

Figure 6.5 Comparison of experimental results and theoretical predictions by the model as functions 
of frequency. Theoretical predictions are calculated using Equation (6.46), where transport mean 
free paths are calculated through Equation (6.45), (6.44) and (6.43). The characteristic correlation 

length in Equation (6.43) and (6.44) is calculated using Equation (6.41) and (6.42b). 

6.6.2 Wave energy evolution and equilibration predicted from the model 

In Section 6.6.1, the model underwent validation using diffusivities. The current section 

shifts its focus to examining the energy evolution of bulk waves during transport, lever-

aging the insights gained from the validated model for geopolymer concrete members. 

A longitudinal wave source is adopted here, indicating that the primary energy contribu-

tion comes from longitudinal waves. The selection of the longitudinal wave source di-

rectly aligns with the sensor employed for data collection—the compressive mode SA. 

This sensor predominantly generates longitudinal waves upon vibration. The excitation 

signal is a squared pulse with a frequency of 54 kHz. Considering the central frequency 

of the smart aggregate (SA) sensor is around 80 kHz, all subsequent calculations are based 

on this frequency. Upon normalizing the total energy as 1, Equation (6.21) can be ex-

pressed as follows: 
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                                  (6.47) 

One can also use Equation (6.23) to compute the equilibration ratio, taking into account 

the influence of dissipation. This analysis will not delve into the equilibration time when 

dissipation is present. The reason lies in the fact that the presence of dissipation expedites 

the achievement of energy equilibration. By neglecting dissipation, one can obtain a more 

conservative estimate for the equilibration time. In the calculation of the equilibrated en-

ergy ratio in the scenario with dissipation, the dissipation of transverse waves at a fre-

quency of 80 kHz is determined to be 5635 s-1. This value is derived from dissipation 

measurements of geopolymer concrete specimens shown in Figure 4.22, assuming that 

the dissipation measured in the experiment is exclusively associated with transverse 

waves. It is worth noting that this approach might slightly underestimate the dissipation 

of transverse waves, as discussed earlier. The dissipation of longitudinal waves is esti-

mated using the same equation adopted in Section 6.5.1, τ(a)
P/τ(a)

S=10/3 (Margerin, van 

Tiggelen et al. 2001). 

Figure 6.6 depicts the energy evolution of a longitudinal wave source utilizing Equation 

(6.47). Initially, the energy consists of solely longitudinal wave energy produced by the 

source. As time progresses, this energy experiences a significant decrease, reaching a 

plateau at approximately 80 μs. In contrast, the transverse wave energy increases and also 

reaches a plateau around the same time. The red dotted line in the figure indicates the 

global equilibration time calculated using Equation (6.22), which is roughly 14.2 μs. No-

tably, this time slightly exceeds the period of the longitudinal wave at the 80 kHz fre-

quency, which stands at 12.5 μs.  

 

Figure 6.6 Theoretical longitudinal and transverse energy evolutions generated by a longitudinal 
wave source in concrete using Equation (6.47). 
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For a more in-depth comparison between the global equilibration time and the time re-

quired for full energy equilibration, the energy ratio evolution between transverse and 

longitudinal waves is presented in Figure 6.7. This figure illustrates that the energy ratio 

does not fully equilibrate at the global equilibration time indicated by the red dotted line, 

which can also be seen from Figure 6.6. Instead, the global equilibration time should be 

interpreted as a characteristic time for energy to approach equilibration, as highlighted in 

Section 6.3.3.1. The complete equilibration is observed at approximately 120 μs, achiev-

ing an equilibration ratio of around 8.81. Taking dissipation into account and following 

the calculation provided in Algorithm 6.1, one can acquire the equilibration ratio when 

considering dissipation. In this case, this ratio is reduced to 8.32, as denoted by the black 

dotted line.   

 

Figure 6.7 The evolution of energy ratio between transverse waves and longitudinal waves using 
Equation (6.47). The equilibrated ratio considering dissipation is calculated using Equation (6.23). 

6.7 Discussion 

6.7.1 Equilibration time 

In Section 6.3.3, we gave the expressions of global equilibration time for P-S and S-S in 

Equation (6.22) and Equation (6.27), respectively. However, we noted that Equation (6.22) 

is not fully consistent with the Eq. (25) proposed by Snieder (2002). This is because 

Snieder distinguished between two transverse wave modes. Therefore, there is a coeffi-

cient 2 in the denominator of Snieder’s derivation. 

Additionally, the global equilibration time does not indicate complete equilibration of 

wave energy; rather, it signifies a characteristic time that indicates the mean value of the 

exponential decay demonstrated in Equation (6.21). This assertion finds support in the 

observations from Section 6.6.2, where the energy ratio does not reach equilibration at 

the global equilibration time. 

The diffusion approximation theoretically becomes applicable when bulk wave energy 

achieves full equilibration (Ryzhik, Papanicolaou et al. 1996). It is important to note that 
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this full equilibration is in a statistical sense. It does not imply that the energy distribution 

at a specific location and time remains constant once equilibration is reached. Instead, the 

energy ratio continues to fluctuate around a constant value until the signal-to-noise ratio 

is met, as observed in previous seismological studies (Shapiro, Campillo et al. 2000, 

Hennino, Tregoures et al. 2001). Consequently, when fitting the diffusive properties, the 

initiation of time windows is expected to occur after the time needed for the energy to 

reach complete equilibration, approximately 100 μs as depicted in Figure 6.7. However, 

selecting this time as the initial time of the first time window for fitting diffusive proper-

ties may fail to encompass the energy rise segment, which is closely linked to diffusivity, 

as emphasized by previous researchers (Quiviger, Payan et al. 2012) and also highlighted 

in Section 4.3.2.1. Consequently, the diffusivity derived from such diffusion curves with-

out including the segment before the arrival time of the maximum energy might be inac-

curate. Given this consideration, it is suggested for using the global equilibration time as 

a criterion for evaluating the validity of the diffusion approximation. This criterion im-

plies that the initial few windows, spanning from the arrival time of longitudinal waves 

to the time required for full equilibration, can be taken into account when fitting diffusive 

properties from the experimental data. Moreover, for sensitivity kernel-based crack map-

ping, it is advisable to choose the time window until the energy is fully equilibrated. The 

key consideration here is that the accuracy of crack mapping is sensitive to the effective 

velocity (Zhang, Planes et al. 2016, Zhang, Larose et al. 2018), which remains nearly 

constant after reaching equilibration. 

6.7.2 Possible scatterers in concrete 

In this paper, the concrete is treated as a two-phase material: scatterers and mortar matrix. 

The scattering process of elastic waves in concrete is influenced by three key parameters: 

the material property difference between the matrix and scatterers, the volume fraction of 

scatterers, and the diameter of scatterers. There are several possible scatterers in concrete, 

namely, air voids, reinforcement, boundaries, and the ITZ outside coarse aggregates. Cer-

tain criteria need to be met for scatterers to have a significant contribution to the scattering 

process. The scatters should have: 

• a significant different mechanical property compared to the matrix; 

• a non-negligible volume fraction; 

• sufficiently large diameter comparing to the wavelength considered.  

Regarding air voids, their small diameters, typically smaller than 3 mm (Punurai, 

Jarzynski et al. 2007), suggest a generally limited contribution to the scattering process 

of elastic waves with frequencies lower than 500 kHz, despite the significant material 

property difference with the matrix. When considering concrete with an extremely high 
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volume fraction and extremely large diameters of air voids, the air voids can also be ac-

counted for by treating the concrete as a three-phase material (Baniassadi, Garmestani et 

al. 2011).  

Reinforcement, on the other hand, is limited in volume fraction and distribution within 

concrete, such as the maximum longitudinal reinforcement area ratio in a beam being 4% 

(Eurocode 2. 2005), and it is mostly located at localized locations. Consequently, its im-

pact on the scattering process is theoretically limited.  

The influence of boundaries, including solid-solid boundaries and solid-air boundaries, 

on the scattering process remains an open question. In acquiring the diffusivity, solid-air 

boundaries can be considered by incorporating image sources; however, the model is 

based on the assumption that the medium is statistically isotropic and statistically homo-

geneous. Therefore, it is difficult to consider possible mode conversions when reflections 

happen on boundaries. While boundaries may have limited impact on the energy equili-

bration ratio (Trégourès and van Tiggelen 2001), the presence of mode conversions on 

boundaries increases total scattering cross-sections, leading to an earlier attainment of 

energy equilibration. Solid-solid boundaries, in contrast, have an effect on both equilibra-

tion time and equilibration ratio (Trégourès and van Tiggelen 2001). Further studies are 

necessary to incorporate boundaries into the theoretical framework. 

The ITZ, which is tightly attached to the coarse aggregates, is characterized by high po-

rosity, resulting in lower mechanical properties compared to the mortar or other matrix 

(Königsberger, Hlobil et al. 2018). Specifically, the elastic modulus of the ITZ ranges 

from 40% to 85% of that of the matrix, as reported by various studies (Lutz, Monteiro et 

al. 1997, Li, Zhao et al. 1999, Mondal, Shah et al. 2009, Keinde, Kamali-Bernard et al. 

2014). The maximum thickness of ITZ has been determined to be only 150 μm (Prokopski 

and Halbiniak 2000), significantly smaller than the diameter of coarse aggregates, which 

exceeds 4 mm. Since scattering events happen on the ITZ, as a result of discontinuity in 

material properties, diameters of scatterers in concrete are assumed the same as those of 

coarse aggregates in this dissertation. Please note that this simplification may overesti-

mate the contribution of the ITZ to scattering (underestimate the diffusivity), as it assumes 

that the mechanical properties of the whole coarse aggregate are identical to those of the 

ITZ. 

6.7.3 Revisit of assumptions in the derivation of total scattering cross-

sections 

In Section 6.3.2, we indicated that there are three main assumptions involved in the deri-

vation of expressions for the total scattering cross-sections: (1) the medium is statistically 

isotropic and statistically homogeneous; (2) the phase velocity remains unchanged during 

the scattering; (3) spatial fluctuations of heterogeneities are weak. In this section, we will 
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revisit the validity of Assumption 2 and 3 in concrete using the validated model for geo-

polymer concrete members. 

As mentioned in Section 6.3.2, Assumption 2 is known as the Born approximation. This 

approximation fails when the wavelength is much smaller than the diameter of scatterers 

(Weaver 1990). The scattering regime is defined by the relationship between the wave-

number k and diameter of coarse aggregates ra using kra. Wavenumber k is linked to fre-

quency f and velocity v by k=2πf/v. In elastic wave-based concrete monitoring, frequen-

cies typically range from 50 kHz to 400 kHz. For a constant frequency, transverse waves 

have a larger wavenumber due to their lower velocity vS in concrete, typically around 

2700 m/s. Given that the maximum diameter of coarse aggregates (ra) is 16 mm and the 

maximum wavenumber of transverse waves (kS) with a maximum frequency of 400 kHz 

is around 930 m-1 (2×π×400×103/2700), it is evident that the maximum kSra is around 10. 

Please note that this is the upper bound estimation, and the value for longitudinal and 

transverse waves in reality should be smaller than 10. Therefore, the scattering of elastic 

waves is generally in the Rayleigh regime (Papadakis 1965), where kSra is smaller than 

one, or Rayleigh-Gans regime (Margerin, Campillo et al. 2000), where kSra and 1 are in 

the same order of magnitude. In both regimes, the Born approximation is applicable 

(Stanke and Kino 1984, Calvet and Margerin 2018). 

Assumption 3 is to avoid the occurrence of bulk wave transport in concrete falling within 

the localization regime. Given the inherent challenge in directly evaluating the existence 

of localization of bulk waves in concrete, which requires the measurement of the 

backscattering effect (Sheng 2006), the validity of this assumption is assessed through 

checking the self-consistency of the proposed model, in which the strong backscattering 

effect should not be observed from the results predicted by the model.  

Scattering cross-sections serve to illustrate the differential amount of energy lost by the 

propagating wave into another direction from one mode into another. Figure 6.8 displays 

the dimensionless scattering cross-sections predicted by the fitted model when kPra=0.709, 

which corresponds to the frequency component of 50 kHz. Other frequency components 

are not considered here since the increase of wave frequency will facilitate the forward-

scattering tendency, which can also be observed from the work reported by Margerin et 

al. (2000). The scattering event occurs at the origin, with the incident wave assumed to 

approach from the left. Since these scattering cross-sections are normalized by their total 

scattering cross-sections, the dimensionless P-S and S-P scattering cross-sections are 

identical. Observations from Figure 6.8(a) depict that the predominant portion of energy 

from an incident longitudinal wave is scattered in the forward direction. A similar phe-

nomenon can be observed in the S-S scattering cross-section shown in Figure 6.8(b). In 

the case of P-S (or S-P) scattering, the maximum scattering occurs around 30° relative to 
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the incident direction and is minimal in the forward-scattering direction. There is no sig-

nificant backscattering observed. Given the established link between backscattering and 

localization (Sheng 2006), the findings from scattering cross-sections suggest that the 

localization is unlikely to occur in this model. 

The scattering cross-sections presented here are produced by the model and may not ac-

curately reflect real-world events. These cross-sections serve only to verify the con-

sistency of the model, and no conclusions related to reality should be drawn from them. 

Notably, Ramaniraka et al. (2019) also report the scattering cross-sections in their article 

acquired from the numerical simulations, and the strong backscattering effect can be ob-

served in their results (refer to Fig. 5 in their paper with kPra around 8). In the case shown 

in Figure 6.8, the backscattering is very limited. These inconsistent outcomes probably 

due to the setup of simulation done by Ramaniraka et al. (2019), where only the single 

scattering is simulated. In our case, the scattering cross-section is derived from the spatial 

correlation of the medium. Therefore, this scattering cross-section represents the multiple 

scattering process in the medium, which involves a dense set of single scattering angles 

(De Abajo, Van Hove et al. 2001). To have a better understanding of scattering cross-

sections in concrete, a well-designed experiment is needed to measure the pressure field 

of elastic waves inside concrete, as proposed by Tourin et al. (2000). 

     

                    (a) P-P.                                          (b) S-S.                                  (c) P-S or S-P. 

Figure 6.8 Polar plot of dimensionless scattering cross-section when kPra = 0.709. 

Another essential metric in characterizing energy transport is the transport mean free path. 

In Figure 6.9, the transport mean free path of longitudinal and transverse waves is de-

picted as functions of wavelength. For longitudinal waves, the wavelength is typically 

larger than the corresponding transport mean free path, signifying strong interactions be-

tween longitudinal waves and scatterers. Conversely, with transverse waves, these inter-

actions appear weaker due to the relatively larger transport mean free path. The strong 

interaction between longitudinal waves and scatters may lead to localization, in which the 

diffusivity of longitudinal wave needs to be renormalized (Sheng 2006). 
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Figure 6.9 Transport mean free path of longitudinal and transverse waves as functions of 
wavelength calculated using Equation (6.45). 

To further verify the potential presence of localization, the diffusivity is renormalized 

using the following equation proposed by Sheng (Sheng 2006): 

( )0

M M Mδ ,D D D −                                                       (6.48) 

where DM represents the corrected or renormalized diffusivity, and D(0)
M is the elastic 

diffusivity, which is equal to l*
M×vM/3. The parameter M denotes the wave mode 

(M∈{P,S}). The term δDM is defined as: 

3

M
M 2 *

M M

1 1
δ ,

v
D

l L

 
= − 

 

                                                  (6.49) 

where ω represents the angular frequency, and L denotes the energy transport distance. 

The condition DM=0 defines the localization length, beyond which diffusive transport is 

no longer an accurate description (Sheng 2006). Additionally, the condition for localiza-

tion is determined by setting D(0)
M=δDM with L=∞ (Sheng 2006). Consequently, the cri-

terion for localization becomes l*
MωM/vM≤sqrt(3/π)≅1, which is also known as the Ioffe–

Regel criterion (Ioffe and Regel 1960). Please note that the mean free path in Equation 

(6.49) is the transport mean free path, which corresponds to the minimum length scale of 

the diffusive behaviour (Sheng 2006). 

The comparison between elastic diffusivities and renormalized diffusivities for longitu-

dinal and transverse waves, assuming an infinite energy transport distance, is shown in 

Figure 6.10. Upon comparing the data illustrated in these figures, there is no discernible 

distinction between the elastic diffusivity and the renormalized diffusivity for both longi-

tudinal and transverse waves. This suggests that transport properties predicted by the the-

oretical model are unlikely to fall within localization regime. While these specific out-

comes do not conclusively establish that bulk waves in concrete are definitively outside 

the localization regime, they do, however, indicate the self-consistency of the theory con-

cerning localization. 
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(a) Longitudinal wave. 

 

(b) Transverse wave. 

Figure 6.10 Comparison of elastic diffusivity and renormalized diffusivity with infinite energy 
transport distance calculated using Equation (6.48) and (6.49). 

6.7.4 Possible approaches to improve the performance of the model 

As introduced in previous sections, the model relies on many assumptions that could po-

tentially affect its performance. In this section, we will introduce two potential approaches 

that can be used to improve the performance of the model. 

The first approach focuses on enhancing the normalized correlation function. In this dis-

sertation, we assume that the normalized correlation function R(r) follows an exponential 

form. However, this assumption may not hold for the two-phase concrete assumed in this 

paper. To obtain a more accurate estimation of the correlation function, a numerical model 

specific to concrete is required. Those interested in this topic can refer to the article by 

Liu and Turner (2008) for further details. 

The second approach employs fitting the model using experimental data to enhance align-

ment between model outputs and experimental results. The discrepancy between experi-

mental and theoretical results may arise from the use of Equation (6.35), which tends to 
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overestimate total scattering cross-sections. To address this, the model fitting can be im-

proved by adjusting the volume fraction of coarse aggregates in concrete (ϕs) and the 

characteristic radius of coarse aggregates (rs) to achieve better consistency between ex-

perimental and theoretical results. This can be done by intentionally neglecting the effect 

of smaller coarse aggregates on scattering, which is anticipated to result in a lower total 

scattering cross-section, compensating for the overestimation caused by Equation (6.35) 

and potentially leading to better alignment between theoretical and experimental results. 

To illustrate this approach, three cases are utilized to fit the theoretical predictions. It is 

crucial to note that the maximum radius in each grading interval is considered as the 

characteristic radius for that interval in subsequent calculations in this section. In Case I, 

encompassing all grading intervals of coarse aggregates serves as the baseline for fitting. 

In Case II and Case III, only coarse aggregates with diameters larger than 5.6 mm and 8 

mm, respectively, are taken into account, as shown in Table 6.5. Consequently, the vol-

ume fractions for Case II and Case III are 0.230 and 0.158 in geopolymer concrete spec-

imens, respectively. In the concrete cylinder, the volume fractions in Case II and Case III 

are 0.249 and 0.171, respectively.  

Table 6.5 Sieving of coarse aggregates in Case I, Case II and Case III for model fitting. 

Aggregate di-

ameter 

Volume ratio of gravel in 

Case I 

Volume ratio of gravel in 

Case II 

Volume ratio of gravel in 

Case III 

12 - 16 mm 22.6% 25.2% 36.75% 
8 - 12 mm 38.9% 43.4% 63.25% 

5.6 - 8 mm 28.1% 31.4% - 

4 - 5.6 mm 10.4% - - 

 

Figure 6.11 illustrates the comparison between diffusivity values obtained from experi-

ments and those predicted by the theoretical model under different sieving cases in Table 

6.5. Notably, the theoretical diffusivities derived from Case II exhibit the closest agree-

ment with the experimental data in both geopolymer concrete members and concrete cyl-

inder. Consequently, parameters from this case can be considered as the fitted input for 

the model. 
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(a) Geopolymer concrete members. 

 

 

(b) Concrete cylinder. 

Figure 6.11 Comparison of experimental results and theoretical predictions using different sieving 
cases. Theoretical predictions are calculated using Equation (6.46), where the transport mean free 

paths are calculated through Equation (6.45), (6.44) and (6.43). The characteristic aggregate 
distance is calculated using Equation (6.41) and (6.42). 

6.7.5 Effect of boundary conditions on diffusivity in concrete cylinder 

In Section 4.3.5, we examine the diffusive behaviour of bulk waves within a concrete 

cylinder. During the curve fitting process, we account for primary reflections and Type I 

secondary reflections from the top and bottom surfaces, as well as primary through qua-

ternary reflections from the circular surface. However, since these diffusive properties are 

measured under loading conditions, where the top and bottom surfaces are in contact with 

loading plates rather than ideal air-solid boundaries, including these reflections might lead 

to an overestimation of diffusivity. To address this, a comparison was made in Section 

4.4.4 to assess the impact of reflected energy from the top and bottom surfaces on diffu-

sivity. 
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In Figure 6.11(b), we present a comparison of diffusivities in the concrete cylinder ob-

tained from experiments and theoretical predictions across different sieving scenarios. 

These experimental results account for reflections from the top and bottom surfaces. Fig-

ure 6.12 shows diffusivities acquired from experiments without considering reflections 

from the top and bottom surfaces. Additionally, we compare the experimentally obtained 

diffusivities with theoretical predictions for three sieving cases outlined in Table 6.5. As 

shown in Figure 6.12, the theoretical predictions overestimate diffusivity at 50 kHz when 

reflections from the top and bottom surfaces are excluded. However, at frequencies above 

100 kHz, the theoretical predictions align more closely with the experimental results. 

Therefore, we consider the proposed model to be reliable. 

 

Figure 6.12 Comparison of experimental results acquired from the concrete cylinder without 
considering reflections from top and bottom surfaces, and theoretical predictions using different 

sieving cases.  

6.8 Summary 

This chapter introduces a theoretical framework for modelling the transport of bulk wave 

energy in concrete. The proposed model requires three independent inputs: the angular 

frequency of bulk waves, the volume fraction of coarse aggregates, and the characteristic 

radius of coarse aggregates. This model is capable of estimating the equilibrated energy 

ratio and the time required to achieve equilibration, which can help us interpret travel 

time changes of multiply scattered bulk waves in stressed concrete combined with the 

acoustoelastic theory introduced in Chapter 5. For the applications of this model in the 

next chapter, there are four main steps: 

1. Determine the frequency of interest, the characteristic radius of coarse aggre-

gates (through Equation (6.42b)), the volume fraction of coarse aggregates, and 

the average longitudinal and transverse wave velocities. 

2. Calculate the total scattering cross-sections and weighted total scattering cross-

sections using Equations (6.43) and (6.44). 
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3. Estimate energy evolution using Equation (6.20). The time required to reach 

bulk wave energy equilibration can be predicted through this energy evolution. 

4. Determine the equilibrated energy ratio using Equation (6.23), taking into ac-

count the dissipation. 

 

 

 

 

 



Chapter 7 Response of travel time in diffuse bulk waves to stresses 

 167 

7. Response of travel time in diffuse bulk waves to stresses 

7.1 Introduction 

In Chapter 5, we introduced the acoustoelastic theory and examined how the travel time 

of ballistic bulk waves responds to stress. Since the trajectory of ballistic waves is a 

straight line from sender to receiver, evaluating spatial changes in the medium with high 

resolution requires a dense sensor array. In contrast, diffuse waves travel through much 

longer paths and can detect medium changes with larger spatial reach using a sparser 

sensor array (Planès and Larose 2013). Additionally, due to their longer wave paths, these 

waves are more sensitive to minor changes in the medium compared to ballistic waves. 

As mentioned in Chapter 6, diffuse waves exhibit two key characteristics: the equilibra-

tion of body wave energy and the arrival of waves from all directions with equal strength. 

Furthermore, the time required to reach equilibration is important, as it determines the 

validity of the diffusion approximation, where the two previously mentioned characteris-

tics of diffuse waves are applicable.  

In Section 4.2.4.4, we qualitatively demonstrated that the travel time changes in diffuse 

waves vary linearly with stress changes. Yet, this qualitative insight does not suffice to 

infer specific stress changes based on observed travel time changes. It is important to note 

that coda waves represent the tail of the waveform, which undergo multiple scattering but 

may not necessarily be in the diffusive regime. If it is confirmed by the equilibration time 

that coda waves are in the diffusive regime, then only in this context can the terms coda 

wave and diffuse wave be used interchangeably.  

The knowledge gap that hinders the interpretation of stress-induced travel time changes 

in concrete is related to the scattering process of bulk waves. Specifically, we do not know 

when bulk waves reach equilibration or what the equilibration ratio is. To address this, 

we introduced a model in Chapter 6 that describes bulk wave energy transport in concrete, 

including the energy equilibration process and the time required to achieve this. 

Building upon previous chapters, our aim in this chapter is to interpret the travel time 

changes of waves within the diffusive regime, defined as coda wave, by leveraging the 

acoustoelastic theory and energy transport model. This process entails two primary steps: 

(1) estimating equilibrated energy ratio of the diffuse wave and the time required to reach 

equilibration using the energy transport model, and (2) integrating the diffuse wave prop-

erties with acoustoelastic theory to construct stress-induced travel time changes in coda. 

Understanding how travel time in diffuse waves reacts to applied stress can provide the 

theoretical basis to further apply diffuse wave-based stress monitoring in concrete struc-

tures. 

The wavefield in the diffuse regime is usually considered to be isotropic, which implies 

that all propagation and polarization directions are equally represented in space (Paul, 
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Campillo et al. 2005). Therefore, the acquired travel time change is a sum of changes 

from waves traveling in various directions, which forms a uniform distribution in space. 

The uniformity of this propagation will be simulated using Monte Carlo methods. The 

methodology for obtaining the acoustoelastic effect of diffuse waves is detailed in Section 

7.2. Section 7.3 will outline the experimental validation design, while Section 7.4 and 7.5 

will provide estimations of diffuse wave properties and stress-induced travel time changes 

of diffuse waves with the help of experimental results. Finally, Section 7.6 will focus on 

constructing time-lapse effective acoustoelastic parameters for diffuse waves, utilizing 

acquired diffuse wave properties and travel time changes. It is important to emphasize 

that acoustoelastic parameters are properties of the medium itself. In the case of diffuse 

waves, what we refer to as the effective acoustoelastic parameters are not true acoustoe-

lastic parameters but rather a related concept. They serve to quantitatively describe the 

relationship between wave velocity and stress of diffuse waves using methods that are 

similar to those used for calculating acoustoelastic parameters. 

7.2 Travel time changes of spatially isotropic diffuse bulk waves 

This section presents a method of computing travel time changes of diffuse bulk waves. 

First, we will introduce a simulation method that is capable of calculating the acoustoe-

lastic effect of diffuse bulk waves in Section 7.2.1. Subsequently, in Section 7.2.2, we 

will introduce a simplified response function tailored for this simulation method. 

7.2.1 Choice of simulation method for acoustoelastic effect of diffuse 

waves 

The acoustoelastic effect of a bulk wave propagating in an arbitrary direction in a stressed 

medium can be calculated by rotating the coordinate system in alignment with its propa-

gation direction. The coordinate rotation is achieved using the following stress matrix 

transformation equation: 

T , =σ QσQ                                                              (7.1) 

where σ and σ' denote the stress matrix in the original stress state and the stress state after 

coordinate rotation, respectively. The superscript ‘T’ denotes the transpose operation ap-

plied to a matrix. The transformation matrix Q is defined as: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

cos sin 0 cos 0 sin 1 0 0

: sin cos 0 0 1 0 0 cos sin ,

0 0 1 sin 0 cos 0 sin cos

   

   

   

−     
     

= −     
     −     

Q
    (7.2) 

where α, β, and γ are rotation angles as elucidated in Figure 7.1. In the first step, the 

coordinate system undergoes a rotation around the z-axis, as depicted in Figure 7.1(a), 

with the rotation angle denoted as -γ. The negative sign corresponds to the rotation adher-

ing to the right-hand rule, where right thumb pointing in the positive direction of the axis 
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and right fingers curled in the direction of rotation. Therefore, counterclockwise rotation 

is considered positive. Following this step, the coordinate system transits from (x,y,z) to 

(x',y',z'), or equivalently, to (x',y',z). In the second step, the entire system is then rotated 

around the y'-axis, resulting in the new coordinate system (x'',y'',z''), or equivalently, 

(x'',y',z''), as shown in Figure 7.1(b). Finally, the rotation is applied around the x''-axis, 

defining the new coordinate system as (X,Y,Z), or equivalently, (x'',Y,Z), as illustrated in 

Figure 7.1(c). In the following calculation, the propagation direction of the wave remains 

consistently fixed along the X-axis. 

 

(a) Step 1. 

 

(b) Step 2. 

 

(c) Step 3. 

Figure 7.1 Visualisation of coordinate rotation (blue arrow: axes of rotation; black arrow: axes 
before rotation; red arrow: axes after rotation). 

 

The new stress matrix, σ', can be substituted into Equation (5.52) and (5.54)—the gov-

erning equations for acoustoelasticity in the initial and natural frames for wave propaga-

tion along the X-axis—to determine the velocity in that particular propagation scenario in 

the initial or natural frame of acoustoelasticity. Theoretically, one can simulate all prop-

agation scenarios in arbitrary stress states when combining Equation (7.1) and acoustoe-

lasticity. 

When it comes to estimating the velocity change of diffuse bulk waves, there are two 

possible methods that can be used to simulate the acoustoelastic effect of the spatially 

isotropic waves. The first method is the exhaustive search, wherein all conceivable com-

binations of rotation angles from predefined rotation angle sets are systematically ex-

plored. Given that the energy flux of the diffuse bulk waves is uniformly distributed in 

space, this method scrutinizes all potential scenarios. The observed velocity change, 

which can be determined through experiments using wave interferometry, is an average 

of velocity changes across all scenarios. The second method employs the Monte Carlo 

simulation (Metropolis and Ulam 1949), wherein a group of waves propagating in random 

directions, following a uniform distribution in space, is generated to estimate the velocity 

change based on these random results. 
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In this section, the performance of the exhaustive search and Monte Carlo simulation are 

compared numerically. The numerical calculations are based on a test in which a uniaxial 

principal stress is applied along the original x-axis. The wave propagation direction is 

determined by rotating the coordinate system through three angles: α, β, and γ, as shown 

in Figure 7.1. The pseudocodes for these two approaches are presented in Algorithm 7.1 

and Algorithm 7.2, respectively.  

In the exhaustive search, rotation angles α, β, and γ are uniformly sampled at a fixed 

interval for different cases within the range of 0 to 2π, allowing for different sampling 

points by adjusting the interval. A velocity change can be determined for each rotation 

scenario, and the observed velocity change is computed by averaging these individual 

changes. Rotation angle intervals and the total number of rotation angle combinations or 

samples, denoted as M3 in Algorithm 7.1, utilized in different calculation cases for ex-

haustive search can be found in Table 7.1.  

In the Monte Carlo simulation, rotation angles α, β, and γ are randomly selected from 0 

to 2π for varying sample sizes, which can be found in Table 7.1. The observed velocity 

change is also determined by averaging these individual changes. The uniaxial compres-

sive stress is applied along the original x-axis before rotation with a constant magnitude 

of 9.93 MPa in both exhaustive search and Monte Carlo simulation. Equation (5.52) 

(acoustoelasticity in the initial frame) is used as the response function to estimate velocity 

changes since the acoustoelastic moduli matrix can be directly calculated through strains 

or stresses. The material parameters are from Specimen 1 reported by Nogueira and Rens 

(2019). 

Algorithm 7.1 Estimating observed velocity changes of longitudinal waves propagating in arbitrary directions  

                         using exhaustive search 

 Initialization:  
1: Initialize principal stress matrix σ 

  σ←[-9.93e6 0 0;0 0 0;0 0 0] 

2: Initialize elastic constants λ, μ, l, m, and n based on Concrete mixture 1 in Table 2.2 

3:  Generate rotation angles: 

    Generate M sets for α values with an interval of 2π/(M-1) in the range of [0,2π] 

   Generate M sets for β values with an interval of 2π/(M-1) in the range of [0,2π] 

   Generate M sets for γ values with an interval of 2π/(M-1) in the range of [0,2π] 

4:  Repeat for all possible values of (αp,βq,γr) using nested loops, where p ∈ [1,M], q ∈ [1,M], r ∈ [1,M] 

   The total number of combinations (αp,βq,γr) is M3  

   Each individual combination is identified by a unique index k, where k ∈ [1,M3] 

5:   Compute transformation matrix based on rotation angles: 

   Q←Eq.7.2((αp,βq,γr)) 

6:  Compute new stress matrix based on transformation matrix: 

   σ'←Eq.7.1(σ,Q) 
7:   if (i==j) 

   e'ij←σ'ij/[μ(3λ+2μ)/(λ+μ)], i and j ∈ {1,2,3} 

8:   else 

   e'ij←σ'ij/2μ, i and j ∈ {1,2,3} 

9:   Set the wave propagation direction as (1,0,0): 

   N←(1,0,0) 
10:   Compute the acoustoelastic modulus matrix: 

   B←Eq.5.53(e'ij), i and j ∈ {1,2,3} 

11:   Compute eigenvalues of B: 
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   BI←ComputeEigenvalues(B), I ∈ {1,2,3} 

12:   Compute three eigenvectors of the acoustoelastic modulus matrix: 

   VI←ComputeEigenvectors(B), VI = (VI,1,VI,2,VI,3), I ∈ {1,2,3} 

13:   Compute the velocity change of longitudinal wave using the eigenvalue: 

   V1←Find VI with maximum |VI ∙ N| 

   B1←Find the eigenvalue corresponding to V1 

   (dv/v)(P)
k←[(B1)

1/2-(λ+2μ)1/2]/(λ+2μ)1/2 

14:  Until all (α,β,γ) sets are iterated over 
15:  Compute the average of longitudinal wave velocity change: 

   (dv/v)(P_ob)←average((dv/v)(P)
k) 

16:  Result: Return the observed velocity change for longitudinal wave, (dv/v)(P_ob). 

 

Algorithm 7.2 Estimating observed velocity changes of longitudinal waves propagating in arbitrary directions  

                         using Monte Carlo simulation 

 Initialization:  

1: Initialize principal stress matrix σ 

  σ←[-9.93e6 0 0;0 0 0;0 0 0] 

2: Initialize elastic constants λ, μ, l, m, and n based on Concrete mixture 1 in Table 2.2 

3:  Generate N random sets for (α,β,γ) values, where α, β, and γ ∈ [0,2π] 

4:  Repeat for each random set of (αk,βk,γk), k ∈ [1,N] 

5:   Compute transformation matrix based on rotation angles: 

   Q←Eq.7.2(αk,βk,γk) 

6:  Compute new stress matrix based on transformation matrix: 

   σ'←Eq.7.1(σ,Q) 

7:   if (i==j) 

   e'ij←σ'ij/[μ(3λ+2μ)/(λ+μ)], i and j ∈ {1,2,3} 

8:   else 

   e'ij←σ'ij/2μ, i and j ∈ {1,2,3} 

9:   Set the wave propagation direction as (1,0,0): 

   N←(1,0,0) 

10:   Compute the acoustoelastic modulus matrix: 

   B←Eq.5.53(e'ij), i and j ∈ {1,2,3} 

11:   Compute eigenvalues of B: 

   BI←ComputeEigenvalues(B), I ∈ {1,2,3} 

12:   Compute three eigenvectors of the acoustoelastic modulus matrix: 

   VI←ComputeEigenvectors(B), VI = (VI,1,VI,2,VI,3), I ∈ {1,2,3} 

13:   Compute the velocity change of longitudinal wave: 

   V1←Find VI with maximum |VI ∙ N| 

   B1←Find the eigenvalue corresponding to V1 

   (dv/v)(P)
k←[(B1)

1/2-(λ+2μ)1/2]/(λ+2μ)1/2 

14:  Until all (α,β,γ) sets are iterated over 

15:  Compute the average of longitudinal wave velocity change: 
   (dv/v)(P_ob)←average((dv/v)(P)

k) 

16:  Result: Return the observed velocity change for longitudinal wave, (dv/v)(P_ob). 

 

Table 7.1. Parameters for exhaustive search and Monte Carlo simulation. 

ES* 1 2 3 4 5 6 7 8 9 10 11 

2π/(M-
1) ** 

[-] 

2π/1

9 
2π/39 2π/59 2π/79 2π/99 

2π/11

9 

2π/13

9 

2π/15

9 

2π/17

9 

2π/19

9 

2π/21

9 

M3 
[×106] 

0.008 0.064 0.22 0.51 1 1.73 2.74 4.09 5.83 8.00 10.64 

MC* 1 2 3 4 5 6 7 8 9 10  

N 
[×106] 

0.001 
0.002

8 

0.007
7 

0.022 0.060 0.17 0.46 1.29 3.59 10  

Note: * ES indicates exhaustive search, and MC indicates Monte Carlo simulation 

          **  π  M-                                              . .                              π                     

              exhaustive search and Monte Carlo simulation. M indicates the amount of samples for each rotation steps  

              shown in Figure 7.1. 
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In Figure 7.2, we present a comparison of these two methods in terms of calculating the 

velocity change of spatially isotropic longitudinal waves and the corresponding calcula-

tion time. The computational efficiency of both methods is comparable, as evidenced by 

the nearly linear relationship observed between the number of samples and the logarithm 

of the calculation time. However, the Monte Carlo simulation converges much faster than 

the exhaustive search, as indicated by blue circles in Figure 7.2. This faster convergence 

arises from the stochastic nature of the Monte Carlo simulation, which inherently pro-

vides a better representation of diffuse waves propagating in arbitrary directions with iso-

tropic energy flux in space simulated here. Consequently, in the remainder of this chapter, 

the Monte Carlo simulation is adopted as the simulation method for acquiring the acous-

toelastic effect of diffuse waves. 

 

Figure 7.2 Comparison of the velocity change for spatially isotropic longitudinal waves obtained 
through Monte Carlo simulation (Algorithm 7.2) and exhaustive search (Algorithm 7.1). The 
mechanical properties of concrete utilized in the calculation is from Specimen 1 reported by 

Nogueira and Rens (2019). 

7.2.2 Response function for Monte Carlo simulation 

In Section 7.2.1, we demonstrated the efficiency of the Monte Carlo simulation for sim-

ulating the acoustoelastic effect of diffuse bulk waves. Moreover, the integration of these 

random propagation directions with acoustoelastic theory allows us to further estimate 

the velocity change of spatially isotropic waves. However, the earlier calculations em-

ployed a response function that necessitates seven elastic constants: two static Lamé pa-

rameters, two dynamic Lamé parameters, and three Murnaghan constants. In this section, 

we will simplify the previous response function and introduce an approximate response 

function that involves only five acoustoelastic parameters Aijkk, two for longitudinal waves 

and three for transverse waves. The advantage of using these acoustoelastic parameters is 

that they can be directly obtained through experiments with applied uniaxial loads. The 

efficiency of the approximate response function will be checked by comparing it with the 

exact response function adopted in Section 7.2.1. The acoustoelasticity in the initial frame 

will be used in this section.  
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It is important to distinguish between the exact and approximate velocity changes dis-

cussed in this section. The exact velocity change is derived by solving the eigenvalues of 

the acoustoelastic moduli matrix (the B-matrix in Equation (5.52)), which includes both 

normal and shear stresses. On the other hand, the approximate velocity change is deter-

mined using only five acoustoelastic parameters and accounts solely for normal stresses. 

The exact one offers the most precise theoretical results by incorporating both shear and 

normal stresses. In contrast, the approximate one, which disregards shear stresses, pro-

vides a less accurate estimate of the acoustoelastic effect. Nonetheless, because shear 

stress-induced velocity changes are difficult to measure experimentally, the calculation 

of approximate velocity changes requires simplified calculation and calibration, making 

it a practical alternative when applying acoustoelastic theory to diffuse waves in concrete. 

The approximate response function of a longitudinal wave propagating in an arbitrary 

direction, considering only normal stresses, can be formulated based on Equation (D.3) 

in Appendix D as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

i i i i i i i(r) (r) (r) (0) (0) (0)

1111 11 1122 22 1122 33 1111 11 1122 22 1122 33

i i i(0) (0) (0)
P

1111 11 1122 22 1122 33

1 1
,

1

A A A A A Adv

v A A A

     

  

+ + + − + + + 
= 

  + + +

   (7.3) 

where (dv/v)(i)
P represents the velocity change of longitudinal wave in the initial frame; 

σ11
(r), σ22

(r) and σ33
(r) denote the three normal stresses in the current stress state after rota-

tion using Equation (7.1) along X-, Y-, and Z-direction (as shown in Figure 7.1(c)), re-

spectively; σ11
(0), σ22

(0) and σ33
(0) represent three normal stresses in the original stress state 

along x-, y-, and z-direction, respectively. Please note that in an isotropic material, the 

acoustoelastic parameters A1122
(i) and A1133

(i) are equal. The details of acoustoelastic pa-

rameters, Aijkk
(i), in Equation (7.3) can be found in Appendix D. 

For transverse waves, it has been shown in Chapter 5 that shear deformations wield a 

substantial influence on their velocities. It is important to note, however, that this obser-

vation is specifically pertinent to the transverse waves in the ballistic regime, where the 

propagation and polarization directions are known. For spatially isotropic transverse 

waves, the effect of shear deformations on transverse wave velocity change might be 

cancelled out due to waves propagating in various directions. Consequently, we introduce 

the following equations based on Equation (D.3) in Appendix D to estimate velocity 

changes of transverse waves propagating in an arbitrary direction considering only nor-

mal stresses: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

i i i i i i i(r) (r) (r) (0) (0) (0)

1211 11 2111 22 2311 33 1211 11 2111 22 2311 33

i i i(0) (0) (0)
S1

1211 11 2111 22 2311 33

1 1
,

1

A A A A A Adv

v A A A

     

  

+ + + − + + + 
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  + + +

(7.4a) 
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  + + +

(7.4b) 
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where (dv/v)(i)
S1 and (dv/v)(i)

S2 represent the velocity change of the first and second trans-

verse wave modes in the initial frame, respectively. The details of acoustoelastic param-

eters, Aijkk
(i), in Equation (7.4) can be found in Appendix D.  

To validate the proposed Equation (7.3) and (7.4), the Monte Carlo simulation is con-

ducted. The details of calculation steps can be found in Algorithm 7.3. The simulation 

comprises 21 uniaxial compressive stress cases ranging from 0 to 10 MPa, with intervals 

of 0.5 MPa. The compressive stress is applied along the x-axis before the rotation of co-

ordinate system. Within each stress case, rotation angles α, β, and γ are randomly selected 

from 0 to 2π across 106 samples. For each sample within a stress case, the wave is set to 

propagate along the X-axis after rotation. The exact velocity change, relative to the ve-

locity without stress applied, is computed using the exact response function by solving 

the eigenvalues and eigenvectors in the acoustoelastic modulus matrix shown in Equation 

(5.52). The observed exact velocity change is calculated by averaging all individual ve-

locity changes across 106 samples within the same stress case. Simultaneously, the ap-

proximate velocity change, also relative to the velocity without stress applied, is calcu-

lated using Equation (7.3) and (7.4). The observed approximate velocity change is also 

calculated by averaging all individual velocity changes across 106 samples within the 

same stress case. The material parameters utilized for these calculations are from the 

measurement given by Nogueira and Rens (2019). It is important to highlight that em-

ploying material parameters from other samples will yield comparable results, as indi-

cated in Appendix G.  

Algorithm 7.3 Estimating observed approximate and observed exact velocity changes of longitudinal and  

                         transverse waves propagating in arbitrary directions using Monte Carlo simulation 

 Initialization:  
1: Initialize elastic constants λ, μ, l, m, and n based on Concrete mixture 1 in Table 2.2 

2: Compute acoustoelastic parameters, Aijkk
(i), using Eq.(D.4) in Appendix D 

3: Initialize stress matrix for iteration: 

  σ(p)←[σ11,p 0 0;0 0 0;0 0 0], σ11,p=[0:-0.5e6:-10e6], p ∈ [1,21] 

4: Repeat for each principal stress matrix σ(p) 

5:   Generate 106 random sets for (α,β,γ) values, where α, β, and γ ∈ [0,2π] 

6:   Repeat for each random set of (αk,βk,γk), k ∈ [1,106] 

7:    Compute transformation matrix based on rotation angles: 

    Q←Eq.7.2((αk,βk,γk)) 
8:   Compute new stress matrix based on transformation matrix: 

    σ'←Eq.7.1(σ(p),Q) 

9:   Compute normal stress components required in Eq.7.3 and Eq.7.4: 

    σ11
(r)←σ'11 

    σ22
(r)←σ'22 

    σ33
(r)←σ'33 

    σ11
(0)←0 

    σ22
(0)←0 

    σ33
(0)←0 

10:    if (i==j) 

    e'ij←σ'ij/[μ(3λ+2μ)/(λ+μ)], i and j ∈ {1,2,3} 

11:    else 

    e'ij←σ'ij/2μ, i and j ∈ {1,2,3} 

12:    Set the wave propagation direction as (1,0,0): 
    N←(1,0,0) 

13:    Compute the acoustoelastic modulus matrix: 
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    B←Eq.5.53(e'ij), i and j ∈ {1,2,3} 

14:    Compute approximate velocity changes: 

     (dv/v)(P, app)
k← Eq.7.3 

     (dv/v)(S1, app)
k← Eq.7.4(a) 

     (dv/v)(S2, app)
k← Eq.7.4(b) 

15:    Compute eigenvalues of B: 

    BI←ComputeEigenvalues(B), I ∈ {1,2,3} 

16:    Compute three eigenvectors of the acoustoelastic modulus matrix: 

    VI←ComputeEigenvectors(B), VI = (VI,1,VI,2,VI,3), I ∈ {1,2,3} 

17:    Compute the exact velocity change of longitudinal wave: 

    V1←Find VI with maximum |VI ∙ N| 
    B1←Find the eigenvalue corresponding to V1 

    (dv/v)(P, exa)
k←[(B1)

1/2-(λ+2μ)1/2]/(λ+2μ)1/2 

18:    Compute the exact velocity change of first-mode transverse wave: 

    V2←Find VI (excluding V1) with |VI,2|>=|VI,3| 

    B2←Find the eigenvalue corresponding to V2 

     (dv/v)(S1, exa)
k←[(B2)

1/2-(μ)1/2]/(μ)1/2 

19:    Compute the exact velocity change of second-mode transverse wave: 

    V3←Find the rest VI (excluding V1 and V2) 
    B3←Find the eigenvalue corresponding to V3 

     (dv/v)(S2, exa)
k←[(B3)

1/2-(μ)1/2]/(μ)1/2 

20:   Until all (α,β,γ) sets are iterated over 

21:   Compute the observed longitudinal wave velocity change in each stress case: 

     (dv/v)(P, exa_ob)
p←average((dv/v)(P, exa)

k) 

    (dv/v)(P, app_ob)
p←average((dv/v)(P, app)

k) 

    (dv/v)(S, exa_ob)
p←average([(dv/v)(S1, exa)

k;(dv/v)(S2, exa)
k]) 

    (dv/v)(S, app_ob)
p←average([(dv/v)(S1, app)

k;(dv/v)(S2, app)
k]) 

22: Until all σ(p) sets are iterated over 

23:  Result: Return observed exact velocity changes in 21×1 vectors for longitudinal waves, (dv/v)(P, exa_ob),  

                                and transverse waves, (dv/v)(S, exa_ob). Also, return observed approximate velocity changes in  

                                21×1 vectors for longitudinal waves, (dv/v)(P, app_ob), and transverse waves, (dv/v)(S, app_ob).  

 

Simulation results are shown in Figure 7.3. As shown in this figure, observed approximate 

velocity changes using Equation (7.3) and (7.4) demonstrate a good agreement with the 

observed exact values in both transverse and longitudinal wave scenarios. The maximum 

error occurs in the longitudinal wave case at 10 MPa, amounting to only 0.08‰ in mag-

nitude. This result suggests that the velocity change of spatially isotropic transverse or 

longitudinal waves can be accurately estimated by using the proposed response equations.  
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Figure 7.3 Comparison of observed exact velocity change obtained from the exact response 
function, Equation (5.52), and observed approximate velocity change obtained from approximate 

response functions, Equation (7.3) and (7.4), in 21 uniaxial stress cases ranging from 0 MPa to 10 
MPa. The calculation steps can be found in Algorithm 7.3. The mechanical properties of concrete 

utilized in the calculation is from Specimen 1 reported by Nogueira and Rens (2019). 

The comparison depicted in Figure 7.3 is based on the acoustoelasticity in the initial frame. 

Given that acoustoelasticity in the natural frame is derived from the same theoretical prin-

ciples as in the initial frame, the conclusions drawn should be similarly applicable to the 

natural frame. The response functions can also be expressed by means of acoustoelastic 

parameters in the natural frame, Aijkk, as follows: 
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 (7.5c) 

For acoustoelastic parameters in the natural frame, only four distinct parameters exist: 

A1111, A2211, A2311, and A2111/A1211, as shown in Appendix D. In Equation (7.5), we employ 

the travel time change dt/t rather than the velocity change dv/v because the velocity in the 

natural frame is inversely proportional to the travel time, and the velocity change can be 

expressed in terms of travel time change in this frame. 

7.3 Experimental validation design and parameters for signal processing 

Following the introduction of the simulation method for obtaining velocity changes of 

diffuse bulk waves in Section 7.2, this chapter will focus on designing a set of Experi-

ments to investigate the acoustoelastic effect of bulk waves in the diffuse regime. 

The specimen employed in this chapter is a cylindrical sample with a diameter of 300 mm 

and a height of 500 mm, the same size as the one shown in Figure 4.1 in Chapter 4. The 
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mixture composition of this specimen can be found in Table 6.3 in Chapter 6. Two tests 

are conducted on this sample, where axial loads are applied on the top and bottom surfaces 

of the cylinder. The chosen compressive stress range varies from 1 MPa to 7 MPa. In Test 

I, the load is applied from 100 kN (1.41 MPa) to 500 kN (7.07 MPa) and then back to 200 

kN (2.83 MPa) with a 20 kN (0.28 MPa) interval. In Test II, the load is applied from 100 

kN (1.41 MPa) to 500 kN (7.07 MPa) and then back to 100 kN (1.41 MPa) with the same 

interval. The load interval is designed based on the observation in Section 4.2.4.3. The 

loading and unloading processes are depicted in Figure 7.4. It is worth noting that Test I 

took place approximately two months after the concrete was cast, with a 40-day interval 

between Test I and Test II. 

 

Figure 7.4 Loading protocol. 

In both tests, three pairs of ultrasonic sensors are employed to generate and detect bulk 

waves in concrete. These pairs include one embedded longitudinal wave sensor pair, one 

longitudinal wave sensor pair on the surface, and one transverse wave sensor pair on the 

surface. The embedded sensors are aligned with their polarization directions parallel to 

the load direction. This longitudinal wave sensor pair is used to determine the acoustoe-

lastic parameter A1111. The polarization direction of longitudinal wave sensors on the sur-

face is perpendicular to the load direction, and these sensors are utilized in both Test I 

and II to determine the acoustoelastic parameter A2211. The polarization direction of trans-

verse wave sensors on the surface is aligned parallel to the load direction in Test I, and 

this transverse wave sensor pair is used to determine the acoustoelastic parameter A2111. 

In Test II, their polarization directions are rotated by 90 degrees to determine the acous-

toelastic parameter A2311. The sensor layout and polarization directions are illustrated in 

Figure 7.5. As mentioned in Section 5.4.2, the velocity changes obtained through the WI 

techniques are linked to the acoustoelasticity in the natural frame, where A2111 is equal to 

A1211. Therefore, the transverse waves propagating along the x-axis with polarization 

along the y- or z-axis are not investigated in the experiment, as these scenarios can theo-

retically be represented by transverse waves propagating along the y- or z-axis with po-

larization along the x-axis. 

                

                

   

   

   

   

   

 
 
 

 
  

 
 
  
 
  
 
  

 
  
 
 
 

 

 

 

 

 

 

 

 

 
 
 

 
  

 
 
  
 
  
  
 
 
 
  
 

 
 
 

      
       



7.3 Experimental validation design and parameters for signal processing 

178 

 

(a) Setup for Test I (longitudinal wave and transverse wave sensors on the surface are polarized in 
y- and x-directions, respectively). 

 

(b) Setup for Test II (longitudinal wave and transverse wave sensors on the surface are polarized in 
y- and z-directions, respectively). 

Figure 7.5 The concrete cylindrical sample with sensor locations and setups for two tests (note that 
there is some vertical exaggeration; the polarization of embedded sensors and the load direction 

are along the x-direction). 

Considering the frequency of interest being higher than 50 kHz, a squared pulse with a 

frequency of 54 kHz is utilized as the excitation signal. For the longitudinal wave and 

transverse wave sensors on the surface, the sampling rate is set at 10 MHz, and only their 

ballistic wave parts are used in the subsequent analysis. For embedded sensors, signals 

are acquired using sampling rates of 1 MHz and 10 MHz, respectively. The signal with a 

sampling rate of 10 MHz is employed for the analysis of the ballistic wave part, while the 

one with 1 MHz is used for the diffuse wave analysis.  

The ballistic waves and diffuse waves are analysed using the stretching technique and the 

WCS technique introduced in Chapter 4, respectively. The stretching technique is applied 

within a time window that encompasses approximately one cycle of the signal, around 15 

μs (corresponds to 66.7 kHz), as shown in Figure 7.6. The utilization of such short time 
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windows is essential for capturing travel times changes of pure wave modes while mini-

mizing the influence of possible wave mode conversions on the results. Additionally, us-

ing a short time window can help reduce the impact of Rayleigh waves on measurements. 

In the cylindrical sample shown in Figure 7.5, the shortest path for Rayleigh waves trav-

eling from the sender to the receiver is half the perimeter, approximately 0.47 m. Given 

that the Rayleigh wave velocity in concrete is about 2300 m/s (Shin, Yun et al. 2007), the 

arrival time of these waves is approximately 204 μs, which is significantly later than the 

time windows selected, as will be shown in Figure 7.6.  

The wavelet cross-spectrum (WCS) technique is operated with a moving window with a 

length of 200 μs starting from 70 μs. For details on this technique, see Section 4.2.2.2 for 

more information. The frequency of interest is chosen from 50 kHz to 80 kHz, aligned 

with the resonant frequency of smart aggregates. The adjacent time windows overlap by 

100 μs (50% overlap) to ensure the continuity of the obtained travel time change. Con-

sidering the low signal-to-noise ratio in the late coda, only the time windows before 6000 

μs are used for the analysis. In addition, only the dv/v of time windows with CC higher 

than 0.9 is adopted in the following calculation. The results of applying WCS will be 

presented in Section 7.6. 

 

(a) Longitudinal waves with propagation directions parallel to the uniaxial stress direction received 
from embedded P-wave sensors in Test I. The longitudinal wave velocity calculated using the 

beginning of the time window is around 4688 m/s. 
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(b) Longitudinal waves with propagation directions perpendicular to the uniaxial stress direction 
received from surface-bonded P-wave sensors in Test I. The longitudinal wave velocity calculated 

using the beginning of the time window is around 4478 m/s. 

 

(c) Transverse waves with polarization directions parallel to the uniaxial stress direction received 
from surface-bonded S-wave sensors in Test I. The transverse wave velocity calculated using the 

beginning of the time window is around 2830 m/s. 

 

(d) Transverse waves with polarization directions perpendicular to the uniaxial stress direction 
received from surface-bonded S-wave sensors in Test II. The transverse wave velocity calculated 

using the beginning of the time window is around 2830 m/s. 

Figure 7.6 Signals received by sensors in Test I and II. Locations of time window for operating the 
stretching technique are indicated as red dotted rectangles. 
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7.4 Estimation of equilibration time and equilibrated ratio using the bulk 

wave energy transport model 

In this section, we aim to calculate the equilibrated energy ratio and determine the equi-

libration time using the bulk wave energy transport model as delineated in Chapter 6.  

To deduce the energy evolution of bulk waves during transport, we employ a longitudinal 

wave source, signifying that the principal energy contribution originates from longitudi-

nal waves. This choice in utilizing a longitudinal wave source directly corresponds to the 

sensor employed for diffuse wave collection - the compressive mode smart aggregate 

(SA). This particular sensor predominantly generates longitudinal waves upon vibration. 

Figure 7.7 illustrates the evolution of the energy ratio for a longitudinal wave source cal-

culated using Equation (6.49), where the scattering cross-section ΣPS is calculated based 

on wave frequency of 65 kHz, aligning with the centre frequency of the frequency band 

utilized in the WCS technique. As depicted, the energy ratio attains equilibration at ap-

proximately 100 μs. Notably, this time is within the first time window, from 70 μs to 270 

μs. In conjunction with the accelerated attainment of equilibration facilitated by dissipa-

tion, it is expected that the bulk wave energy within the second time window will reach 

equilibration, regardless of whether dissipation is considered. 

 

Figure 7.7 Evolution of the energy ratio for a longitudinal wave source predicted by the fitted model 
using Equation (6.49). 

The equilibration ratio, depicted in Figure 7.7, remains consistently at approximately 8.81 

across all three cases in the absence of dissipation. Accordingly, the proportion of longi-

tudinal wave energy within the overall energy is 10.2%. Upon introducing the dissipation 

of transverse waves, which is approximately equal to 9000 s-1 at 65 kHz according to 

Figure 4.27, and the dissipation of longitudinal waves, which can be estimated through 

the dissipation of transverse waves using the relationship of τ(a)
P/τ(a)

S=10/3 (Margerin, van 

Tiggelen et al. 2001), the equilibration ratio can be calculated numerically by solving the 

eigenvectors in Equation (6.23). In this case, the equilibration ratio is equal to 8.18, equiv-

alent to a 10.9% proportion of longitudinal wave energy. It is important to acknowledge 
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here that the impact of dissipation on the proportion of longitudinal wave energy within 

the total energy is limited. In subsequent chapter, we will utilize the 10.90% proportion 

for further calculations. 

7.5 Estimation of travel time changes of diffuse bulk waves 

7.5.1 Inputs of the response function 

In Section 7.2.2, we introduced the response functions, designed to estimate the velocity 

change of spatially isotropic longitudinal or transverse waves. The calculation of these 

response functions requires the determination of five acoustoelastic parameters. These 

parameters can be obtained by fitting the stress-velocity relationship obtained from ex-

periments, as illustrated in Section 5.6.2.  

The compressive stress-square of relative velocity relationships for the four wave modes 

obtained in experiments are illustrated in Figure 7.8. Acoustoelastic parameters in this 

figure are acquired using the following equation: 

11

1,1

,
1

ij

s
A

s
=

−

                                                         (7.6) 

where i and j represent the wave propagation and polarization directions, respectively. 

The term σ1,1 denotes the principal compressive stress in the x-direction, as shown in Fig-

ure 7.5, at the first stress level of -1.41 MPa. The slope s is determined by performing a 

linear fit of the square of relative velocity, (dv/v+1)2, with respect to the compressive 

stress. As depicted, longitudinal waves propagating parallel to the uniaxial stress direction 

acquired using embedded sensors exhibit the most significant acoustoelastic effect, with 

consistent experimental results from two tests. Acoustoelastic parameters acquired from 

experiments are shown in Table 7.2. Notably, the difference in magnitudes of A1111 ac-

quired in Test I and Test II is 0.186 GPa-1 (approximately 0.9% of the magnitude of A1111), 

which is comparable to the observation in Section 5.7, where the fluctuation from Test I 

to Test II with a time interval of one month is 0.260 GPa-1. However, magnitudes of A1111 

in Test I and II are approximately 10 times greater than those reported in Table 5.4. This 

will be further discussed in Section 7.7.1. In subsequent calculations, we utilize the mean 

value of A1111 and A2211 acquired from two tests. The acoustoelastic parameters used in 

the follow-up study in this section can be found in Table 7.2. 
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(a) All four wave modes. 

 

(b) Three wave modes except longitudinal waves propagating parallel to uniaxial principal stress 
direction. 

Figure 7.8 Compressive stress-square of relative velocity relationship of four wave modes acquired 
in experiments. 

Table 7.2 Acoustoelastic parameters acquired from experiments used in the follow-up study in this 
section. 

Acoustoelastic parameter A1111 A2211/A3311 A2111/A3111 A2311/A3211 A1211/A1311 

Value [GPa-1] -20.294 -0.163 -1.097 -0.061 -1.097 
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7.5.2 Travel time changes determined from the Monte Carlo simulation   

This section presents Monte Carlo simulation results illustrating travel time changes of 

diffuse bulk waves, utilizing response functions shown in Equation (7.5) and acoustoe-

lastic parameters in Table 7.2. To ensure comparability with travel time changes of dif-

fuse waves acquired from experiments, identical loading steps as those employed in the 

experiment are utilized, and the travel time change is computed relative to the travel time 

at the previous load step. It is important to note that this section focuses solely on the 

loading process; nevertheless, the conclusion drawn is equally applicable to the unloading 

process. The calculation follows steps listed in Algorithm 7.4. 

Algorithm 7.4 Estimating observed travel time changes of longitudinal and transverse waves propagating in  

                         arbitrary directions using Monte Carlo simulation and simplified response function 

 Initialization:  

1: Initialize acoustoelastic parameters, Aijkk, from Table 7.2 
2: Initialize stress matrix for iteration: 

  σ(p)←[σ11,p 0 0;0 0 0;0 0 0], σ11,p=[-1.41e6:-0.28e6:-7.07e6], p ∈ [1,21] 

3: Repeat for each principal stress matrix σ(p) 

4:   Generate 106 random sets for (α,β,γ) values, where α, β, and γ ∈ [0,2π] 

5:   Repeat for each random set of (αk,βk,γk), k ∈ [1,106] 

6:    Compute transformation matrix based on rotation angles: 

    Q←Eq.7.2((αk,βk,γk)) 

7:   Compute reference stress matrix based on transformation matrix: 

    σ'(p)←Eq.7.1(σ(p),Q) 
8:   Compute current stress matrix based on transformation matrix: 

    σ'(p+1)←Eq.7.1(σ(p+1),Q) 

9:   Compute normal stress components required in Eq.7.5: 

    σ11
(r)←σ'11,p+1 

    σ22
(r)←σ'22,p+1 

    σ33
(r)←σ'33,p+1 

    σ11
(0)← σ'11,p 

    σ22
(0)← σ'22,p 

    σ33
(0)← σ'33,p 

10:    Set the wave propagation direction as (1,0,0): 

    N←(1,0,0) 

11:    Compute travel time changes: 

     (dv/v)(P)
k← Eq.7.5(a) 

     (dv/v)(S1)
k← Eq.7.5(b) 

     (dv/v)(S2)
k← Eq.7.5(c) 

12:   Until all (α,β,γ) sets are iterated over 

13:   Compute the average of longitudinal wave velocity change in each stress case: 

     (dt/t)(P_ob)
p←average((dv/v)(P)

k) 

    (dt/t)(S_ob)
p←average([(dv/v)(S1)

k;(dv/v)(S2)
k]) 

14: Until all σ(p) sets are iterated over 

15:  Result: Return observed velocity changes in 20×1 vectors for longitudinal wave, (dt/t)(P_ob), and  

                                 transverse waves, (dt/t)(S_ob). 

 

Figure 7.9 depicts Monte Carlo simulation results of spatially isotropic longitudinal and 

transverse waves, with two noteworthy observations. Firstly, the travel time change is not 

constant despite identical loading intervals. This variability arises from the non-linear 

correlation between normal stresses and travel time change, as indicated in Equation 

(5.86). Furthermore, there are some minor fluctuations in the results from Monte Carlo 

simulation, i.e., around -4.8 MPa for transverse waves in Figure 7.9. This variability is 
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likely due to the fact that the samples used in the simulation are randomly generated. 

Although the large number of data points (106) helps to reduce this effect, some minor 

variations remain. Additionally, the travel time change of longitudinal waves is higher 

than that of transverse waves, which is attributed to the much more pronounced acousto-

elastic effect of longitudinal waves propagating parallel to the stress direction, as shown 

in Table 7.2. 

 

Figure 7.9 Travel time changes of spatially isotropic longitudinal and transverse waves acquired 
through Monte Carlo simulation. The calculation steps can be found in Algorithm 7.4. 

To estimate the travel time change of diffuse bulk waves due to stresses change, we 

weight the travel time changes of longitudinal and transverse waves in Figure 7.9 using 

the equilibrated energy ratio given in Section 7.4. In this context, longitudinal waves con-

tribute to a total travel time change of 10.9%, with the remaining portion attributed to 

transverse waves. The weighted results are presented in Figure 7.10. Please note that 

while travel time changes do vary across different load levels, the extent of this variation 

is minimal, with a maximum difference of only 4.6×10-6. The travel time changes of dif-

fuse bulk waves can be used to construct effective acoustoelastic parameters for diffuse 

waves, which will be shown in the next section. 

 

Figure 7.10 Travel time changes of diffuse bulk waves. 
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7.6 Effective acoustoelastic parameters of diffuse waves  

In Section 7.4, we determined the time required for bulk wave energy to reach equilibra-

tion and established the equilibrated energy ratio using the bulk wave energy transport 

model. Building upon this energy ratio, Section 7.5 involved calculating travel time 

changes of diffuse bulk waves through a Monte Carlo simulation grounded in acoustoe-

lastic theory. In this section, we will leverage the results from these two sections to for-

mulate the time-lapse effective acoustoelastic parameters of diffuse bulk waves.  

It is crucial to reiterate that the applied stress change first induces velocity changes in the 

medium due to the acoustoelastic effect. Subsequently, these velocity changes result in 

travel time changes of bulk waves. As the waves propagate, the travel time changes ac-

cumulate along their paths, with longer wave paths resulting in more significant travel 

time changes. In practice, waves traveling along longer paths are typically detected in 

later time windows. Once the bulk waves reach the diffusive regime, the travel time dif-

ference per unit lag time, dt/t, becomes constant, as discussed in Section 7.5. In this sec-

tion, t in the denominator represents the centre time of the time window. It is also im-

portant to note that the time windows in this study are distributed uniformly along the lag 

time. Therefore, in the diffusive regime under a specific load interval, the travel time 

difference between two consecutive time windows should remain constant. This differ-

ence in travel time is referred to as the net travel time difference in this section. 

To examine the net travel time difference dt(net) in each time window, we subtract the 

travel time difference in the previous window from that in the current window using the 

following equation: 

( )net

1 ,i i idt dt dt −= −                                                         (7.7) 

where i denotes the ith time window. The net travel time difference in Test I is presented 

in Figure 7.11, exhibiting substantial fluctuations. When bulk waves reach the diffusive 

regime, also implying the energy equilibration, we anticipate that the net travel time dif-

ference should fluctuate around the theoretical value for spatially isotropic diffuse bulk 

waves obtained in Section 7.5.2. This theoretical result, averaged across different load 

steps, is depicted as a dotted black line in Figure 7.11. However, due to the considerable 

fluctuation across different load steps, drawing a direct conclusion from this figure is 

challenging. 
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Figure 7.11 Box plot of the net travel time difference dt(net) in each time window during the loading 
process in Test I (black dotted line indicates the theoretical net travel time difference of diffuse bulk 

waves). 

The significant fluctuations seen in Figure 7.11 are also evident in the travel time differ-

ences, dt, in each time window, as shown in Figure 7.12. Each box in Figure 7.12 repre-

sents travel time differences in the same time window at different load steps with the same 

interval during the loading process. Consequently, the observed fluctuation in the indi-

vidual boxplots stem from variations in travel time differences among different loading 

steps. These variations may stem from the nonlinear behaviour of travel time changes at 

different load levels, as shown in Figure 7.9 and Figure 7.10, or from noise-induced fluc-

tuations during the application of the WCS technique. However, given that the travel time 

changes across different load levels exhibit minimal variation—e.g., the theoretical fluc-

tuation at 1070 μs is approximately 1070 μs×4.6×10-6=0.0049 μs, which is much smaller 

than the fluctuations observed in Figure 7.12—the observed fluctuations are likely due to 

the latter factor.  

 

Figure 7.12 Box plot of the travel time difference dt in each time window during the loading process 
in Test I. 

As previously mentioned, the significant fluctuation of travel time differences observed 

in Figure 7.12 is attributed to their fluctuations among load steps. To mitigate this impact 
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on observations, we calculate the effective acoustoelastic parameter, representing the 

change in wave velocity within a specific time window concerning the applied stress. 

This computation is based on the travel time change, or equivalently, velocity change 

within the respective time window. Figure 7.13 shows the relationship between square of 

relative velocity and compressive stress for time windows with centre time of 170 μs, 

1070 μs, 2070 μs, 3070 μs, 4070 μs, 5070 μs, and 6070 μs in Test I. Two symbols at the 

same load level indicate two measurements: one during loading and the other during un-

loading. Coefficients of determination for linear fits of the relationship between the square 

of relative velocity and compressive stress across different time windows are shown in 

Figure 7.14. It is important to note that all coefficients of determination exceed 0.93, in-

dicating the linear relationship between the square of relative velocity and compressive 

stress. Notably, the slopes during both loading and unloading phases exhibit consistency. 

Consequently, the subsequent analysis of effective acoustoelastic parameters focuses 

solely on the loading phase, with implications equally relevant to the unloading process. 

 

Figure 7.13 Square of relative velocity vs. compressive stress for time windows with centre time of 
170 μs, 1070 μs, 2070 μs, 3070 μs, 4070 μs, 5070 μs, and 6070 μs in Test I during loading and 

unloading stages, as shown in Figure 7.4. Two symbols at the same load level indicate two 
measurements: one during loading and the other during unloading. 

 

Figure 7.14 Coefficients of determination for linear fits of the relationship between the square of 
relative velocity and compressive stress across different time windows. 
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The effective acoustoelastic parameters from two tests are presented in Figure 7.15, as 

represented by black circles and black diamond, respectively. In accordance with Section 

7.4, energy equilibration occurs in the second time window, as indicated by the red dotted 

line. Consequently, it becomes feasible to predict the evolution of time-lapse effective 

acoustoelastic parameters by utilizing theoretical travel time changes of diffuse bulk 

waves provided in Figure 7.10. When bulk waves reach equilibrium, the travel time 

change between two consecutive load steps should remain constant. As a result, in the 

diffusive regime, the travel time difference becomes linearly proportional to the centre 

time of the time window. This travel time difference can be accumulated to the travel 

time difference in the initial time windows to predict travel time changes in later time 

windows after reaching equilibration and, ultimately, determine the effective acoustoe-

lastic parameters for diffuse waves. The use of effective acoustoelastic parameters also 

helps to mitigate fluctuations in travel time differences, as observed in Figure 7.12. This 

is because the fitting process, which determines these parameters, involves a set of data 

that averages out individual fluctuations. The pseudocode for this calculation is presented 

in Algorithm 7.5. 

 

Figure 7.15 Effective acoustoelastic parameters in each time window together with theoretical 
predictions. The calculation steps can be found in Algorithm 7.5. 

 

Algorithm 7.5 Estimating time-lapse effective acoustoelastic parameters of diffuse bulk waves 

 Initialization:  

1: Initialize theoretical travel time changes of diffuse bulk waves at each load step (Figure 7.10) 

  (dt/t)i ← Theoretical travel time changes of diffuse bulk waves at each load step i, i ∈ [1,20]  

                                                     (only loading process is considered here) 

2: Initialize travel time changes in different time windows acquired using WCS at each load step 
3: Determine the travel time difference at different load steps in the n-th time window, after which the  

 energy flux of bulk waves are spatially isotropic: 

  tn ← Centre time of the n-th time window 

  (dtn/tn)i ← Travel time change in the n-th time window retrieved using the WCS technique  

                    at load step i, i ∈ [1,20] (only loading process is considered here; the travel time  

                    change is averaged across Test I and Test II) 

  (dtn)i ← tn×(dtn/tn)i 

4: Repeat for each time window j, j ∈ [n+1,60] (60 time windows in total) 

5:  Compute the centre time of time window j: 

   tj ← Centre time of time window j 
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6:  Compute the theoretical travel time difference of diffuse bulk waves between time window  

  n and j at each load step i: 
    (dt)i ← (tj-tn)×(dt/t)i 

7:   Repeat for each load step i, i ∈ [1,20] 

8:    Compute the theoretical velocity change of diffuse bulk waves: 
    (dv/v)i ← [(dt)i + (dtn)i]/tj 

9:   Until all load steps are iterated over 

10:   Compute the theoretical effective acoustoelastic parameters in time window j: 

    Aj ← Eq.7.6 

11: Until all time windows are iterated over 

12:  Result: Return theoretical effective acoustoelastic parameters in a (61-n)×1 vector. 

 

According to the theoretical prediction in Section 7.4, energy equilibration occurs in the 

second time window. Consequently, the calculation begins with the first time window, 

corresponding to n=1 in Algorithm 7.5. These predicted results are depicted as red circles 

in Figure 7.15. However, as evident in the figure, the magnitudes of effective acoustoe-

lastic parameters in the second and third time windows are considerably larger than the 

theoretical result. This observation implies an underestimation of the quantity of longitu-

dinal waves propagating parallel to the principal stress direction, which exhibits the most 

significant acoustoelastic effect. A possible explanation is that the wavefield becoming 

isotropic lags behind energy being equilibrated (Paul, Campillo et al. 2005). Hence, even 

after energy equilibration between longitudinal and transverse waves, a substantial pres-

ence of longitudinal waves propagating parallel to the stress direction persists within the 

longitudinal wave component, which results in the effective acoustoelastic parameters 

remaining at a high magnitude.  

Therefore, we construct effective acoustoelastic parameters in later time windows by as-

suming a fully isotropic wavefield starting from the fourth time window (n=3), seventh 

time window (n=6), and tenth time window (n=9), respectively. These predictions are 

represented as red diamonds, red plus sign, and red cross in Figure 7.15, and they align 

well with the experimental results. Hence, it becomes conceivable to predict the effective 

acoustoelastic parameters of diffuse bulk waves through the utilization of acoustoelastic 

parameters of pure wave modes calibrated using ballistic waves. 

7.7 Discussion 

7.7.1 Inconsistencies in acoustoelastic parameters obtained using 

embedded sensors and surface-bonded sensors 

The acoustoelastic parameters presented in Table 7.2 for longitudinal waves traveling 

parallel to the uniaxial stress direction exhibit greater magnitudes compared to those listed 

in Table 5.4. In Table 7.2, the parameter is -20.294 GPa-1, whereas in Table 5.4, it is 

around -2.7 GPa-1. This discrepancy complicates the calculation of the Murnaghan con-

stants from the acoustoelastic parameters, as it becomes difficult to find constants that 

align with all the parameters listed in Table 7.2. This is why the Murnaghan constants 

from other researchers were used in Section 7.2. The experiments detailed in Chapter 5 
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and 7 were conducted on the same sample but on different dates and with sensors installed 

at different locations. The longitudinal waves in Table 7.2 are acquired using the embed-

ded sensors, while those in Table 5.4 are based on the surface-bonded sensors. Consider-

ing the magnitude of difference between these two results are much higher than the pos-

sible errors induced by the stretching technique, as discussed in Section 5.9.2, the emer-

gence of this phenomenon may stem from two aspects. 

Firstly, the age of the concrete may have an impact on the measurements. To assess this 

impact, an additional test was conducted after Test I and II. In Figure 7.16, we present the 

longitudinal wave signals received by embedded sensors at 106 days (Test I), 147 days 

(Test II), and 385 days (additional test). It is important to note that the tests conducted in 

Chapter 5 were carried out at 463 days (Test 1), 496 days (Test 2), and 497 days (Test 3) 

on the same sample using surface-bonded sensors. The acoustoelastic parameters for lon-

gitudinal waves traveling parallel to the uniaxial stress direction are -20.387 GPa-1, -

20.201 GPa-1, and -12.526 GPa-1 for Test I, Test II, and the additional test, respectively. 

While there are indeed some changes in the acoustoelastic parameters during concrete 

hydration, the magnitude of these changes is not significant enough to account for the 

observed discrepancy between Table 5.4 and Table 7.2. 

 

(a) Received signal during Test I (concrete age: 106 days; acoustoelastic parameter A1111: -20.387 
GPa-1). 
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(b) Received signal during Test II (concrete age: 147 days; acoustoelastic parameter A1111: -20.201 
GPa-1). 

 

(c) Received signal during the additional test (concrete age: 385 days; acoustoelastic parameter 
A1111: -12.526 GPa-1). 

Figure 7.16 Longitudinal waves propagating parallel to the uniaxial stress direction received by 
embedded sensors on different concrete age. 

Second, it is likely that the measurements from the embedded sensors are much more 

sensitive to the stress change than the surface-bonded sensors in concrete, which can also 

be observed from the waveforms shown in Figure 5.12 and Figure 7.6. This is an inaugu-

ral instance of observing such a phenomenon, with no pertinent literature to reference. In 

this chapter, acoustoelastic parameters for transverse waves are determined utilizing sur-

face-bonded sensors. Given the information presented in this paragraph, acoustoelastic 

parameters for transverse waves employed in constructing effective acoustoelastic pa-

rameters for diffuse waves might be underestimated. Even if acoustoelastic parameters 

are indeed underestimated, this discrepancy will not affect the validity of the method pro-

posed in this chapter for constructing effective acoustoelastic parameters. To demonstrate 

this argument, we present another representation of the constructed acoustoelastic param-

eters in Figure 7.17. The key distinction between Figure 7.15 and Figure 7.17 lies in the 

magnitude of A2311 and A2111/A1211, which in this calculation is assumed to be 5 times 
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greater than those measured from surface-bonded sensors as detailed in Table 7.2. Addi-

tionally, the construction process commences from the 4th time window. As depicted in 

this figure, even in this extreme scenario, the constructed result remains reasonable, albeit 

with relatively higher errors evident in the later coda after 4000 μs. From this discussion, 

it is clear that while the acoustoelastic parameters measured using surface and embedded 

sensors may differ, these differences do not impact the effectiveness of the proposed 

method in constructing the effective acoustoelastic parameters.  

 

Figure 7.17 Effective acoustoelastic parameters in each time window together with theoretical 
predictions using the acoustoelastic parameters of transverse waves with higher magnitudes. 

7.7.2 Fluctuations of effective acoustoelastic parameters among different 

samples 

This dissertation involves three cylinders, each detailed in Table 7.3. Cylinders 2 and 3 

share the same mixture, while Cylinder 1 is cast using an unknown commercial mixture. 

It is important to note that the measurements of Cylinder 3 has not been utilized in previ-

ous chapters; its loading protocol is outlined in Figure 7.18. Effective acoustoelastic pa-

rameters for these three samples across five experiments are provided in Figure 7.19. 

Significantly, the additional test for Cylinder 2 highlights notable discrepancies in effec-

tive acoustoelastic parameters during the initial time windows when compared to Tests I 

and II. A possible explanation is that the additional test shows a lower A1111 magnitude 

than Tests I and II, as shown in Figure 7.16. The reduced magnitude of the acoustoelastic 

parameter for longitudinal waves has a significant influence on the initial time windows, 

given the substantial longitudinal wave energy they contain. However, effective acousto-

elastic parameters across these three tests on Cylinder 2 converge in the later coda, par-

ticularly after 1000 μs, indicating repeatability in diffuse wave scenarios. Despite of the 

different mixture compositions, tests on Cylinder 1 and 3 demonstrate similar effective 

acoustoelastic parameters in the coda. This similarity is currently difficult to explain, par-

ticularly with only two tests conducted. Since Cylinders 2 and 3 have the same mixture 

composition but were subjected to different loading protocols and magnitudes, the varia-

tions in their effective acoustoelastic parameters may be attributed to these differences. 
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Therefore, to ensure accuracy, it is recommended not to extrapolate effective acoustoe-

lastic parameters obtained from a specific stress range to ranges beyond that in future 

research.  

Table 7.3 Concrete cylinders employed in this dissertation. 

Sample name Related chapter(s) 
Mixture composi-

tion 
Loading protocol Test date 

Cylinder 1 Section 4.2 
Commercial mix-
ture (unknown) 

See Figure 4.3 2021/03/25 

Cylinder 2 
Section 4.3.5; Sec-

tion 5.6; Chapter 7 
See Table 6.3 

Test I: 

See Figure 7.4 
2021/07/09 

Test II: 

See Figure 7.4 
2021/08/19 

Additional test: 
See Figure 7.4 

2022/04/14 

Cylinder 3 Section 7.7.2 See Table 6.3 See Figure 7.18 2021/05/20 

 

 

Figure 7.18 Loading protocol for Cylinder 3. 

 

Figure 7.19 Effective acoustoelastic parameters in each time window among different samples. 

Due to the limited number of samples, mixtures, and experiments discussed in this sec-

tion, it is challenging to draw definitive conclusions about the impact of materials and 
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load steps on effective acoustoelastic parameters. In the future, further testing is necessary 

to evaluate their impact on these parameters in concrete samples. 

7.7.3 Travel time change of diffuse longitudinal and transverse waves in 

biaxial or triaxial stress states 

In Section 7.5, we demonstrated how to obtain the travel time change of diffuse longitu-

dinal and transverse waves using the Monte Carlo simulation, as outlined in Algorithm 

7.4. The proposed method can be extended to biaxial or triaxial stress states by modifying 

the initial stress matrix, denoted as σ(p) in Algorithm 7.4. However, we have not validated 

the effectiveness of this method under biaxial or triaxial stress conditions. Therefore, we 

recommend experimentally validating its performance in these stress states using embed-

ded sensors before applying it to such scenarios.  

7.7.4 Long-lasting anisotropy of the wavefield 

In Section 7.6, we observed that the effective acoustoelastic parameters based on theoret-

ical equilibration time do not fully align with experimental results. We suggest that this 

discrepancy is due to the prolonged presence of spatially anisotropic wave energy, which 

lags behind the equilibration of the overall energy.  

In seismology, a possible explanation for long-lasting wavefield anisotropy is the uneven 

distribution of epicentres (Paul, Campillo et al. 2005), leading to a preferential energy 

flow direction in diffuse waves. In this dissertation, SAs are used as both transducers and 

receivers. However, as indicated by Zhao et al. (2020), smart aggregates are not equally 

sensitive to spatial changes in all directions, showing a preference for deformations from 

certain directions. To better understand the long-lasting anisotropy of the wavefield in 

concrete using smart aggregates, this directional preference must be considered. 

7.8 Summary 

In this chapter, we introduce a framework that integrates theories and models introduced 

in Chapter 5 and 6 to interpret the changes in travel time of diffuse waves in uniaxially 

stressed concrete. We proposed the following steps to estimate the effective acoustoelas-

tic parameters for diffuse waves: 

• Estimate the energy ratio of equilibrated longitudinal and transverse waves in 

concrete, as well as the time required for equilibration, using the bulk wave en-

ergy transport model introduced in Chapter 6. 

• Obtain four acoustoelastic parameters from experiments: two for longitudinal 

waves and two for transverse waves. 

• Use Monte Carlo simulations, combined with the acoustoelastic parameters, to 

estimate travel time changes in diffuse longitudinal and transverse waves. 
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• Weight the travel time changes of diffuse longitudinal and transverse waves by 

the equilibrated wave energy from the energy transport model to predict the 

travel time change for diffuse bulk waves. 

• Utilize the travel time changes of diffuse bulk waves to derive time-lapse effec-

tive acoustoelastic parameters for diffuse waves. 
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8. Recommendations for applications in concrete structures  

8.1 Introduction 

In previous chapters, we have laid out the theoretical frameworks concerning acoustoe-

lasticity and the energy equilibration process of bulk waves in concrete. Now, our focus 

shifts towards exploring the practical applications of these frameworks in monitoring 

stress changes in concrete structures. 

8.2 Estimating stress-induced velocity changes in concrete using the 

stretching technique and the WCS technique 

The stretching technique can be used to retrieve velocity changes in both ballistic and 

coda waves. When applying this technique to ballistic waves for determining acoustoe-

lastic parameters, the time window should include at least one period of the signal but no 

more than three. Longer time windows may contain multiply scattered waves, reducing 

the accuracy of the measured acoustoelastic parameters compared to shorter windows. 

For applications of the stretching technique in the coda waves, it is recommended to de-

termine the time window length by considering the frequency of interest. The time win-

dow should encompass at least ten periods (the reciprocal of the frequency of interest) to 

mitigate cycle skipping in the coda. Additionally, the stress difference between consecu-

tive measurements should be kept low. In the case reported in Section 4.2.4.3, this differ-

ence was 0.57 MPa. 

For the WCS technique, this technique can be used to retrieve velocity changes in coda 

waves. It is recommended to determine the operational frequency band by considering 

the expected magnitude of travel time differences and the energy present within the fre-

quency band. The maximum travel time difference at the frequency of interest should be 

less than half a period (the reciprocal of the frequency of interest). Furthermore, velocity 

changes should be averaged over a time window spanning at least ten periods (the recip-

rocal of the frequency of interest) to reduce fluctuations in the measured velocity changes 

at different lag times. Additionally, the energy within the operational frequency band 

should be significantly higher than the noise level, as shown in Figure 4.5. To reduce the 

risk of cycle skipping in the coda, the stress difference between consecutive measure-

ments should be kept low, particularly for waves in the high-frequency range, such as 

those above 80 kHz, as noted in Section 4.2.4.3. Given that the computational efficiency 

of the WCS technique is much higher than that of the stretching technique, it is also suit-

able for quickly calculating velocity changes in concrete. 

8.3 Estimating diffusive properties in concrete members with boundaries 

For future acquisitions of diffusivity and dissipation in concrete, the following steps are 

recommended: 



8.4 Estimating bulk wave energy transport properties in concrete members 

198 

1. Filter the raw signals obtained from experiments to focus on the frequency of 

interest. In this dissertation, we utilized the continuous wavelet transform 

(CWT) for this purpose. 

2. Determine the appropriate time window length for acquiring ensemble-averaged 

energy. The time window should be at least the reciprocal of the frequency of 

interest. 

3. Determine the ending time window based on the declining trend of the logarith-

mic energy, which should exhibit linearity or approximate linearity. 

4. Determine the locations of time windows to ensure that data points in the maxi-

mum energy arrival and energy decay portions are comparable. 

5. Calculate the logarithm of ensemble-averaged energy in each time window. 

6. Evaluate the maximum contribution of reflected energy from image sources by 

using exp{-[(r’)2-r2]/(4Dt)} (refer to Section 4.3.2.2). Image sources with low 

contribution can be neglected. In the case shown in Section 4.3.4.2, the threshold 

was 0.30. 

7. Construct the new diffusion equation using Equation (4.19) and (4.25). 

8. Fit the constructed diffusion equation to the logarithm of ensemble-averaged en-

ergy to determine the diffusivity and dissipation. 

9. Verify the arrival time of maximum energy using Equation (4.12) to avoid anom-

alous results. 

Given the significant fluctuations in diffusivity and dissipation, it is essential to analyse 

their characteristics statistically, as individual observations may hold limited significance. 

8.4 Estimating bulk wave energy transport properties in concrete 

members 

For future applications of bulk wave energy transport model, the following steps are rec-

ommended: 

1. Determine the frequency of interest, the characteristic radius of coarse aggre-

gates (through Equation (6.42b)), the volume fraction of coarse aggregates, and 

the average longitudinal and transverse wave velocities. 

2. Calculate the total scattering cross-sections and weighted total scattering cross-

sections using Equations (6.43) and (6.44). 

3. Fit the model using the approach mentioned in Section 6.7.4 if it is necessary. 
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4. Estimate energy evolution using Equation (6.20). The time required to reach 

bulk wave energy equilibration can be predicted through this energy evolution. 

5. Determine the equilibrated energy ratio using Equation (6.23), taking into ac-

count the dissipation fitted through the diffusion equation in Section 8.3. 

8.5 Determining acoustoelastic parameters for ballistic waves and 

effective acoustoelastic parameters for diffuse waves 

In this section, we outline the key steps and considerations to determine acoustoelastic 

parameters from ballistic waves and effective acoustoelastic parameters from diffuse 

waves in future studies: 

1. Sample and sensor preparation:  

a. The sample can be either cylindrical or prismatic in shape, with dimensions 

tailored to the frequency of interest. The dimensions should be at least twice 

the wavelength to accommodate the propagation of transverse waves at this 

frequency. For a transverse wave frequency of 50 kHz and a velocity of 2700 

m/s, the wavelength is 54 mm. Thus, the diameter and height of the cylindrical 

sample, or the width and height of the prismatic sample, should be at least 108 

mm. 

b. Compression mode (d33 mode) piezoelectric-based embedded sensors are rec-

ommended to reduce the influence of Rayleigh waves. The distance between 

sensors should be at least twice the wavelength of the transverse waves at the 

frequency of interest. Given a transverse wave frequency of 50 kHz and a ve-

locity of 2700 m/s, the wavelength is 54 mm, so the sensor spacing should be 

at least 108 mm. 

c. The compressive load should be applied uniaxially. Four pairs of ultrasonic 

sensors are required (refer to Figure 7.5):  

i. One longitudinal wave sensor pair with a propagation direction parallel to 

the uniaxial load direction. 

ii. One longitudinal wave sensor pair with a propagation direction perpendic-

ular to the uniaxial load direction. 

iii. One transverse wave sensor pair with a propagation direction perpendicular 

to the uniaxial load direction and a polarization direction parallel to the uni-

axial load direction. 

iv. One transverse wave sensor pair with propagation direction perpendicular 

to the uniaxial load direction while polarization direction perpendicular to 

the uniaxial load direction. 
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2. Loading protocol and testing: 

a. The loading protocol should be designed according to the stress range relevant 

to the concrete structure. As mentioned in Section 8.2, the stress difference be-

tween consecutive measurements should be kept less than 0.57 MPa. 

b. There is no strict requirement on the loading speed. Signals should be collected 

at each load step when the load is stabilized, which can be ensured by checking 

the load cell in the jack. 

3. Diffusivity (will be utilized in Step 4 for model validation): 

a. Diffusivity can be determined from the signals obtained during loading, fol-

lowing the procedures outlined in Section 8.3.  

4. Equilibrated ratio for bulk waves(will be used in Step 6 to weight the travel time 

changes of longitudinal and transverse waves) and the time required for the equi-

libration (will be used in Step 7 to determine the if the wavefield has become 

isotropic): 

a. The equilibrated ratio for bulk waves and the time required for the equilibration 

can be obtained using the methodology described in Section 8.4.  

5. Acoustoelastic parameters for ballistic waves: 

a. Acoustoelastic parameters can be calculated using Equation (7.6).  

b. The slope s in Equation (7.6) can be acquired by performing a linear fit of the 

square of relative velocity, (dv/v+1)2, with respect to the compressive stress. 

Please note that the relative velocities include those retrieved from two longi-

tudinal wave sensor pairs and two transverse wave sensor pairs, as previously 

mentioned. 

6. Travel time changes of diffuse bulk waves: 

a. Travel time changes of diffuse bulk waves can be obtained by weighting the 

travel time changes of spatially isotropic longitudinal and transverse waves us-

ing the Monte Carlo simulation outlined in Algorithm 7.4. 

7. Effective acoustoelastic parameters: 

a. Determine if the wavefield has become isotropic by checking the energy equi-

libration time. 

b. Effective acoustoelastic parameters can be acquired using the method described 

in Algorithm 7.5.  
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8.6 Estimating biaxial principal stress changes in concrete members 

One of the potential applications of the proposed theories in this dissertation is monitoring 

changes in principal stresses under the plane stress state. In Equation (5.77), we intro-

duced the acoustoelastic expression for the longitudinal wave propagating parallel to the 

principal stress direction as: 

( )0natural

11 11 1111 11 .v v A = +                                                   (8.1) 

The velocity change for longitudinal waves propagating in the same direction as the prin-

cipal stress direction with the uniaxial stress changing from σ1,1 to σ1,2, is shown as: 
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where vnatural
11,1 and vnatural

11,2 indicate the velocity of longitudinal waves in the natural 

frame at the first stress level, σ1,1, and the second stress level, σ1,2, respectively. Please 

note that the subscripts before and after comma represent the tensor index and the load 

step, respectively. For example, σ1,1 denotes the principal stress in the 1 (or x) direction 

at load step 1, while v11,2 represents the wave velocity with both propagating and polari-

zation in the 1 (or x) direction at load step 2. Taylor expansion is utilized in the derivation 

from step 1 to step 2 in Equation (8.2), and the approximation from step 2 to step 3 is 

based on the assumption that the term A1111σ1,1/2 is much smaller than 1, a condition 

deemed valid except when σ1,1 holds considerable magnitude.  

Similarly, for the case that longitudinal waves propagating perpendicular to the uniaxial 

stress direction, a similar expression as to Equation (8.2) can be obtained as 
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where σ2,1 and σ2,2 denote the uniaxial stresses applied along the y-axis in the first and 

second load levels, respectively. Equation (8.2) and (8.3) can be utilized to calibrated the 

acoustoelastic parameters A1111 and A1122 through laboratory tests. 
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Equation (8.2) and (8.3) are acoustoelastic expressions for longitudinal waves under uni-

axial stress conditions. The acoustoelastic expression for biaxial stress conditions is pre-

sented in Equation (5.82). This equation can be formatted similarly to Equation (5.77) 

and (5.79) as: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0natural 2 2 2 2

11 11 1 2 1111 1 2 1122

0 2 2 2 2

11 1111 1122 1 1111 1122 2

1 cos sin sin cos

1 cos sin sin cos .

v v A A

v A A A A

       

     

   = + + + +   

   = + + + +   

 (8.4) 

The velocity change of longitudinal waves propagating in an inclined direction shown in 

Figure 5.9(b) while the biaxial stresses are applied in the y- and x-axis shown in Figure 

5.9(a) is then: 
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where σi,1 and σi,2 indicate the principal stresses in the i direction at the first stress level, 

and the second stress level, respectively. Following the calibration to obtain the acousto-

elastic parameters A1111 and A1122, Equation (8.5) involves six unknowns. Theoretically, a 

system of six equations is necessary to determine all unknowns, achievable by adjusting 

sensor configurations in various inclinations. In practice, given that the magnitude of A1122 

is significantly smaller than that of A1111, as demonstrated in earlier chapters, the term 

involving A1122 can be disregarded. This simplification reduces the number of unknowns 

to four, allowing for the theoretical determination of changes in principal stress magni-

tudes and their orientations in a biaxial stress state. It is important to note that this ap-

proach can only detect changes in principal stresses and cannot be used to determine their 

absolute magnitudes or orientation. 

Furthermore, it is important to note that (i) the principal stresses estimated through the 

ballistic wave portion represent mean principal stresses along the ballistic wave trajectory, 

and (ii) the preceding equations in this chapter are solely applicable to the elastic stage of 

concrete, where no visible crack exists in the medium under examination. 
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8.7 Applications in monitoring concrete infrastructures 

The methodology proposed in this dissertation is designed for monitoring stress changes 

in concrete infrastructures. Depending on the specific monitoring goals, these applica-

tions can be categorized into two primary types: 

1. monitoring changes in magnitudes and directions of principal stresses; 

2. mapping spatial variations of stress in a given area. 

The first application utilizes the ballistic wave component and is relatively straightfor-

ward in its implementation. A simplified approach for monitoring a biaxial principal 

stress state is presented in Section 8.6. For concrete bridges, which typically operate under 

a plane stress state, the proposed approach can be directly applied. 

For cases requiring analysis of stress changes in a triaxial state, additional sensor pairs 

are necessary. In such scenarios, Equation (7.1) should be employed to compute the stress 

matrix. However, due to the complexity of the acoustoelastic equations in a triaxial stress 

state, analytical solutions may not always be feasible. In these instances, numerical cal-

culations are recommended. 

Unlike the first application, which utilizes ballistic waves, the second application relies 

on diffuse waves. Diffuse waves have the advantage of traveling longer distances and 

exhibiting higher sensitivity to subtle changes in the medium. This dissertation investi-

gates diffuse wave acoustoelasticity under a uniaxial stress state. While the proposed 

framework can theoretically be extended to biaxial and triaxial stress states by modifying 

the stress matrix in Equation (7.1), experimental validation for these scenarios remains 

incomplete. Consequently, further experimental work is necessary before applying the 

method to real-world structures. 

To effectively map spatial stress changes, the diffuse wave acoustoelasticity should be 

combined with the sensitivity kernel (Larose, Planes et al. 2010). However, this disserta-

tion does not include experimental work incorporating the sensitivity kernel, and its per-

formance in conjunction with diffuse wave acoustoelasticity is yet to be determined. Two 

potential strategies for translating velocity change maps into stress change maps are pro-

posed: 

1. Use the sensitivity kernel to generate a velocity change map, which is then con-

verted to a stress change map using the diffuse wave acoustoelasticity. 

2. Convert velocity changes into stress changes directly using diffuse wave acous-

toelasticity, then map these stress changes spatially using the sensitivity kernel. 

As neither approach has been implemented by the authors, the most effective method for 

concrete structures remains undetermined. 
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While the proposed methodology is promising, several challenges must be addressed be-

fore applying to in-situ monitoring of concrete infrastructures. The first challenge is the 

sensitivity to environmental factors. The high sensitivity of the stretching and WCS tech-

niques can be a double-edged sword. In addition to detecting stress changes, they are 

significantly affected by environmental factors such as temperature and humidity, leading 

to potential inaccuracies during in-situ monitoring. Additionally, the resonant frequency 

of sensors may introduce non-negligible effects on monitoring results, necessitating care-

ful calibration, testing and interpretation. 

These challenges are difficult to fully resolve in a controlled laboratory environment, 

highlighting the importance of practical applications to refine the methodology. To vali-

date and enhance the proposed methodology in this dissertation, several ongoing projects 

focus on the monitoring of concrete infrastructure using smart aggregates and bulk waves. 

These projects include: 

• Monitoring the Maastunnel in Rotterdam, the Netherlands. 

• Monitoring the N69 bridges near Dommelen, the Netherlands. 

• Monitoring the Kowebrêge road bridge in Friesland, the Netherlands. 

• Monitoring the Fehmarn Belt fixed link between Denmark and Germany. 

• Monitoring the bridge on Balladelaan in Amersfoort, the Netherlands. 

• Monitoring prestressed inverted T-girders in the Netherlands. 

The results of these long-term monitoring efforts are not included in this dissertation, and 

some of the findings are unpublished. These developments will be presented in future 

publications.  
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9. Conclusions and recommendations for the future work 

9.1 Conclusions 

The main objective of this study is to improve the knowledge about the mechanism and 

evolution of velocity changes in concrete retrieved from bulk waves. Given that such 

velocity changes may result from a combination of concrete heterogeneity and the acous-

toelastic effect, this study aims to develop a means-end approach grounded in acoustoe-

lasticity and scattering theory. To facilitate the problem-solving process, the main objec-

tive is divided into five specific sub-goals: 1. tailoring data processing techniques (Chap-

ter 4); 2. refining the acoustoelastic theory (Chapter 5); 3. interpreting velocity changes 

in stressed concrete retrieved via ballistic bulk waves (Chapter 5); 4. modelling bulk wave 

propagation in concrete (Chapter 6); and 5. interpreting velocity changes in stressed con-

crete retrieved via diffuse bulk waves (Chapter 7). 

The conclusions of this dissertation are summarized as follows: 

A comparison of the stretching technique and the WCS technique for retrieving stress-

induced velocity changes in concrete shows that both methods demonstrate comparable 

accuracy, underscoring their reliability and effectiveness for precise velocity change 

measurements. (Sub-goal 1) 

• In the experiment detailed in Section 4.2, the stabilities of the stretching tech-

nique and the WCS technique are comparable for wave frequencies ranging from 

50 kHz to 80 kHz. 

• The stretching technique is more effective when handling signals with short du-

ration. 

• It is recommended to determine the suitable time window length for the stretch-

ing technique by considering both the wave frequency and the expected magni-

tude of velocity change. 

• For the WCS technique, it is advisable to determine the operational frequency 

band by considering the expected magnitude of velocity change and the energy 

present within the frequency band. 

The diffusion equation for an infinite medium is modified to account for the influence 

of boundaries on the diffusive properties of elastic bulk waves in concrete by incorpo-

rating boundary-reflected energy. This adjustment improves the accuracy of measuring 

both diffusivity and dissipation in concrete structures. (Sub-goal 1) 

• Neglecting reflected energy during the fitting process leads to underestimated 

diffusivity and dissipation. 
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• In concrete, as wave frequency increases, diffusivity decreases while dissipation 

increases. 

• Determining the amount of reflected energy to be included in the diffusion equa-

tion requires evaluating its contribution to the main energy. 

The theoretical framework of acoustoelasticity is refined to include bulk waves propa-

gating in arbitrary directions. The modes and velocities of these waves are determined 

by solving the equation of motion with the specified propagation direction and the up-

dated acoustoelastic modulus matrix, derived from the stress matrix. The refined 

framework provides a tool for comprehensively understanding wave behaviour under 

complex stress conditions. (Sub-goal 2) 

• In concrete, the polarization direction of longitudinal waves is relatively unaf-

fected by the stress matrix, whereas the polarization direction of transverse 

waves is highly sensitive to it. 

• The magnitudes of normal strains have a significant impact on the velocities of 

both longitudinal and transverse waves in concrete. 

• The magnitudes of shear strains have a minimal effect on longitudinal wave ve-

locities in concrete but significantly influence the velocities of transverse waves. 

The acoustoelastic effect on ballistic waves is characterized by two distinct parame-

ters—one for longitudinal waves propagating parallel to the uniaxial stress direction 

and another for those propagating perpendicular to it—providing a comprehensive un-

derstanding of how stress influences ballistic wave velocity depending on its propaga-

tion direction. (Sub-goal 3) 

• This approach is based on the theoretical analysis indicating that shear strains 

have a minimal impact on longitudinal wave velocities in concrete. 

• The acoustoelastic parameters should be defined in the natural frame to account 

for the static deformation resulting from the static stress. 

• Although there may be some transverse waves in the ballistic wave regime, it is 

predominantly dominated by longitudinal waves. 

A new approach is proposed for modelling the energy transport of bulk waves in con-

crete by incorporating scattering theory into a probability-based energy equilibration 

model, considering bulk wave frequency, the characteristic radius of coarse aggregates, 

and their volume fraction. The proposed modelling approach provides a reasonable 

representation of wave energy evolution in concrete. (Sub-goal 4) 
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• The time required for S-S equilibration is notably shorter than that required for 

P-S equilibration. 

• Presence of dissipation accelerates P-S equilibration and alters the equilibrated 

energy ratio between longitudinal and transverse waves. 

• Actual time for energy equilibration may exceed theoretically predicted global 

equilibration time significantly.  

The acoustoelastic effect on diffuse waves is characterized by four distinct parame-

ters—two for longitudinal waves and two for transverse waves—offering a detailed 

framework for understanding how stress affects diffuse wave velocity. Travel time 

changes for diffuse waves can be estimated by weighting those for diffuse longitudinal 

and transverse waves according to the equilibrated energy ratio, offering a method for 

predicting travel time changes in diffuse waves. (Sub-goal 5) 

• For isotropic materials in the natural frame, there are five independent acousto-

elastic parameters; however, two of these parameters for transverse waves share 

the same theoretical expression. 

• The acoustoelastic effect on diffuse longitudinal or transverse waves can be es-

timated using Monte Carlo simulation. 

The theoretical framework proposed in this dissertation can potentially be applied to 

the structural health monitoring of concrete structures, such as bridges and tunnels, to 

track stress or strain changes using bulk waves detected by embedded ultrasonic sen-

sors. 

9.2 Recommendations for the future work 

9.2.1 Minimum resolution of the stretching technique and the WCS 

technique 

In Section 4.2, we conducted a comparison between the stretching technique and the WCS 

technique. Following this, in Section 5.9.2, we carried out an error analysis to assess the 

precision of the stretching technique. From these initial analyses, it became evident that 

the error magnitude associated with the stretching technique significantly impacts the 

measured velocity change, particularly at low magnitudes around 0.1‰. Notably, this 

magnitude is comparable to the stress-induced velocity change observed when longitudi-

nal waves propagate perpendicular to uniaxial stress. The error utilized in this analysis 

was estimated based on reported errors in the literature. Currently, there is a lack of re-

search specific to concrete in this regard. Future experimental investigations on determin-

ing the minimum resolution of both the stretching and WCS techniques in retrieving ve-

locity changes of the medium can aid in disregarding unreliable measurements with low 
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velocity change magnitudes. For guidance on the design of experimental investigations, 

we recommend the work by Weaver et al. (2011). 

9.2.2 Mitigation of cycle skipping effect while using the WI techniques 

As demonstrated in Section 4.2.4.3, the cycle skipping effect inevitably arises when em-

ploying WI techniques. This effect can significantly compromise the reliability of the 

retrieved velocity changes, potentially leading to erroneous conclusions regarding the in-

tegrity of monitored concrete structures. Thus, enhancing the algorithms of WI techniques 

holds importance for their application in real structure monitoring. 

Mao et al. (2020) propose the utilization of phase unwrapping to mitigate the cycle skip-

ping effect. Phase unwrapping is a signal processing technique designed to eliminate dis-

continuities (or ‘wraps’) in signal phase. Typically, signal phases are measured within a 

range of -π to π, resulting in wrapping around once these boundaries are reached. This 

wrapping, often associated with the cycle skipping effect in the WCS technique, compli-

cates the accurate interpretation of phase information. Phase unwrapping seeks to recon-

struct the original, continuous phase by identifying and rectifying these discontinuities. It 

involves determining the appropriate integer multiples of 2π to add or subtract from 

wrapped phase values, ensuring continuity. Numerous studies exist detailing algorithms 

for phase unwrapping, such as those outlined by Wang and Houseman (1998). However, 

no research has explored incorporating phase unwrapping into the WCS technique to en-

hance its stability against cycle skipping when applied to concrete. Further research 

should investigate the reliability of retrieved velocity changes in concrete utilizing the 

WCS technique incorporating phase unwrapping. 

Regarding the stretching technique, there is currently a dearth of literature addressing this 

aspect. Further investigations are needed to propose an enhanced stretching technique to 

mitigate the cycle skipping effect. 

9.2.3 Response of diffusive properties of bulk waves to stresses 

In Section 4.3, we explored the diffusive properties of bulk waves in concrete. Through-

out this examination, we did not account for the potential influence of applied stress on 

these diffusive properties, diffusivity and dissipation. However, understanding the re-

sponse of diffusive properties to stresses is crucial for enhancing the accuracy of stress 

mapping using the sensitivity kernel-based technique. This is because the sensitivity ker-

nel relies on the diffusion equation for its construction (Pacheco and Snieder 2005). 

Based on findings from previous chapters, stress has a limited impact on wave velocity 

during the elastic stage of concrete. Given the close relationship between diffusivity and 

wave velocity, as depicted in Equation (6.48), we do not anticipate a significant effect of 

applied stress on diffusivity in concrete. Regarding dissipation, it is essential to note that 

the response of dissipations, arising from viscoelasticity and internal friction, to stress 
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may exhibit distinct behaviours (Brunet, Jia et al. 2008). Therefore, an experiment is nec-

essary to assess the response of dissipation to stress changes in concrete. The concrete 

sample used can be the same cylindrical specimen from Section 4.2. 

9.2.4 Determination of Murnaghan constants of concrete 

Another potential avenue for future research involves the precise determination of Murna-

ghan constants for concrete. This endeavour must address three crucial considerations. 

Firstly, the fitting of Murnaghan constants should be accurately performed using expres-

sions of acoustoelasticity in the natural frame. This is essential because stress-induced 

deformations are not accounted for in the expressions of acoustoelasticity in the initial 

frame, despite their presence in experimental conditions. The second key point pertains 

to dynamic and static Lamé parameters. The acoustoelastic theory encompasses two types 

of deformations: static deformations and dynamic deformations. To accurately determine 

static deformations, one should utilize the static elastic modulus and Poisson’s ratio ob-

tained from experiments. Conversely, dynamic deformations, represented as wave veloc-

ities in acoustoelastic theory, require the use of dynamic Lamé parameters for their deter-

mination. Thirdly, the spatial variation of concrete's mechanical properties must be con-

sidered, which necessitates averaging measurements from multiple sensor pairs. Future 

researchers are recommended to design their test setups and curve fitting processes in line 

with these recommendations.  

9.2.5 Mapping stress change field using ballistic waves and tomography 

Mapping the stress field using ballistic wave acoustoelasticity involves a mapping tech-

nique known as the tomography. Tomography is a data processing technique that gener-

ates cross-sectional images, a method that has been extensively developed in geophysics 

(Dines and Lytle 1979) and medical imaging (Kak and Slaney 2001) over the years. To-

mography can be implemented in three primary forms: (i) parallel-scanning, commonly 

used in medical computerized tomography (CT); (ii) two-sided transmission employing 

two linear arrays of sensors; and (iii) four-sided transmission. The theoretical foundations 

of this mapping technique can be found in the literature (Bond, Kepler et al. 2000, Martins, 

Soares et al. 2007, Pursiainen and Kaasalainen 2014, Tant, Galetti et al. 2018), with its 

limitations reviewed by Santamarina and Gheshlaghi (1995). However, due to scope lim-

itations, the theoretical background and limitations will not be extensively discussed in 

this section. By employing tomography, one can generate a velocity map of the specimen, 

as depicted in Fig. 4 of Kepler’s work (2000). This velocity map can be translated into a 

stress map by integrating Equation (8.5) into the mapping process, solving it for each 

individual element divided for tomography. The proper integration of acoustoelasticity 

into the tomography process remains an open topic for exploration. 



9.2 Recommendations for the future work 

210 

9.2.6 Mapping stress change field using diffuse waves and sensitivity 

kernel 

Similar to the tomography technique, another mapping technique capable of mapping ve-

locity changes in the medium is the sensitivity kernel-based mapping technique (Pacheco 

and Snieder 2005, Rossetto, Margerin et al. 2011, Obermann, Froment et al. 2014). This 

technique has been effectively employed in concrete to map velocity changes retrieved 

from diffuse coda waves (Zhang, Planes et al. 2016, Clauss, Epple et al. 2020, Jiang, Zhan 

et al. 2020). Consequently, it is feasible to obtain a stress field map by integrating the 

acoustoelastic effect of diffuse waves, as discussed in Chapter 7, into the inversion pro-

cess of the sensitivity kernel-based technique.  

One of the key challenges in incorporating the acoustoelastic effect of diffuse waves into 

the inversion process of the sensitivity kernel-based technique is interpreting stress 

changes from travel time changes, particularly in biaxial or triaxial stress states. While 

theoretically, these stress states can be accounted for by adjusting the principal stress ma-

trix prior to Monte Carlo simulations, experimental studies involving biaxial or triaxial 

loads are required to validate the simulation results first. 
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Notations 

Roman upper case 

A Total cross-section of the characteristic medium 

A Dissipation matrix 

Aeff Effective acoustoelastic parameter for inclined propagating 

longitudinal waves in the natural frame 

AI Amplitude spectrum of time-domain signal uI (I can refer to 

the unperturbed signal or signal after perturbation) 

Aij  Contrast of the properties for the two phases (i and j can be 

the material parameters ρ, μ and λ) 

Aijkl Acoustoelastic parameter for body waves in the natural frame 

(i, j, k, l ∈ {1,2,3}) 

Aijkl
(i) Acoustoelastic parameter for body waves in the initial frame 

(i, j, k, l ∈ {1,2,3}) 

Ai
(m) Magnitude of the material property of the matrix (i can be ρ, μ 

and λ) 

Ai
(s) Magnitude of the material property of the scatterer (i can be ρ, 

μ and λ) 

Ascatterers Total cross-section of scatterers in the characteristic medium 

Bi Eigenvalue of the acoustoelastic modulus matrix (i ∈ {1,2,3}) 

Bijkl Acoustoelastic modulus in the initial frame (i, j, k, l ∈ {1,2,3}) 

Bijkl
0 Acoustoelastic modulus in the initial frame before coordinate 

rotation (i, j, k, l ∈ {1,2,3}) 

Cijkl Second-order elastic coefficient (i, j, k, l ∈ {1,2,3}) 

Cijklmn Third-order elastic constants (i, j, k, l, m, n ∈ {1,2,3}) 

D Diffusivity 

Dξβkδ Acoustoelastic modulus in the natural frame (ξ, β, k, δ ∈ 
{1,2,3}) 

E Transport energy 

E0 Deposited energy at initial location at time t=0 

Ehigh-frequency Wave energy of the frequency band in the high-frequency re-

gime 

EM Transport energy of wave mode M (M should be either longi-

tudinal waves or transverse waves) 

EM
(0) Deposited energy of wave mode M at initial location at time 

t=0 (M should be either longitudinal waves or transverse 

waves) 

Elow-frequency Wave energy of the frequency band in the low-frequency re-

gime 

Es Static elastic modulus 

ESH Transport energy of horizontal transverse waves 

ESV Transport energy of vertical transverse waves 

Etotal Total transport energy considering the reflected energy from 

boundaries 

H Characteristic correlation length 

H(·) The Heaviside step function 
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Im Random field of matrix phase 

Is Random field of scatterer phase 

J Mode conversion matrix 

Κm Matrix phase in the two-phase medium 

Κs Scatterer phase in the two-phase medium 

Nλ Unit vector normal to the plane wave (λ ∈ {1,2,3}) 

Q Transformation matrix for stress/strain matrix 

R Normalized correlation function 

RC Diameter of the cylinder 

Rij Correlation function of material property fluctuation between i 

and j (i and j can be the material parameters ρ, μ and λ) 
KL

ijR  Power spectral density (PSD) of material property fluctuation 

between i and j (i and j can be the material parameters ρ, μ and 

λ) for incident wave mode K and scattered wave mode L (K 

and L should be either longitudinal waves or transverse 

waves) 

S The scale function in the wavelet filter bank 

Sij
final Second Piola-Kirchhoff stress tensor in the final state (i, j ∈ 

{1,2,3}) 

Sij
incremental Incremental second Piola-Kirchhoff stress tensor (i, j ∈ 

{1,2,3}) 

Sij
initial 

Second Piola-Kirchhoff stress tensor in the initial state (i, j ∈ 
{1,2,3}) 

T Half-length of the time window when operating the stretching 

technique 

Tij
final Cauchy stress tensor in the final state (i, j ∈ {1,2,3}) 

Tij
initial Cauchy stress tensor in the initial state (i, j ∈ {1,2,3}) 

UI Fourier transforms of the time-domain signal uI (I can refer to 

the unperturbed signal or signal after perturbation) 

Uγ Amplitude vector of the plane wave function (γ ∈ {1,2,3}) 

V Total volume of coarse aggregates in concrete 

Vi Eigenvector of the mode conversion matrix (i ∈ {1,2}) 

W Strain energy function 

WI Wavelet spectrum of the time-domain signal uI (I can refer to 

the unperturbed signal or signal after perturbation) 

X, XJ Final coordinates 

 

Roman lower case 

a Normalization coefficient in the equation to account for the 

energy contribution of the image source 

a, aα Natural coordinates (α ∈ {1,2,3}) 

b Coefficient that is related to the nature of the boundary condi-

tion in the equation to account for the energy contribution of 

the image source 

d Distance between the source and receiver in the cylindrical 

sample 
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d1 Distance between the source to the planar boundary 

d2 Distance between the receiver to the planar boundary 

dt Travel time difference 

dt(net) Net travel time difference in a time window 

dt/t Travel time change 

dv/v Velocity change 

dv/v(i) Velocity change in the initial frame of acoustoelasticity 

dv/vP,app Approximate velocity changes of longitudinal wave using the 

first diagonal element in the acoustoelastic modulus matrix in 

the initial frame 

dv/vP,exa Exact velocity changes of longitudinal wave calculated using 

the first eigenvalue of the acoustoelastic modulus matrix in 

the initial frame 

dv/vS,app Approximate velocity changes of transverse wave using the 

second diagonal element in the acoustoelastic modulus matrix 

in the initial frame  

dv/vS,exa Exact velocity changes of transverse wave calculated using 

the second eigenvalue of the acoustoelastic modulus matrix in 

the initial frame 

dv/vunp,per Velocity change spectrum retrieved using the wavelet cross-

spectrum technique 

ei Principal strain (i ∈ {1,2,3}) 

erf(∙) The error function 

eαβ
initial, eαβ Lagrangian finite strain tensors in the initial state (α, β ∈ 

{1,2,3}) 

eαβ
final Lagrangian finite strain tensors in the final state (α, β ∈ 

{1,2,3}) 

eαβ
incremental Lagrangian finite incremental strain tensors (α, β ∈ {1,2,3}) 

f Hertz frequency 

f(c) The centre frequency of the Gassian filter when operating 

wavelet transform using the analytical Morlet wavelet 

fn Frequency components (n is the number of sampling points in 

the time domain) 

fNyquist The Nyquist frequency 

g Total amount of grading intervals for coarse aggregates 

kM Wavenumber of wave mode M (M should be either longitudi-

nal waves or transverse waves) 

kK Incident wave vector (K should be either longitudinal waves 

or transverse waves) 

kL Scattered wave vector (L should be either longitudinal waves 

or transverse waves) 

ls Scattering mean free path 

l* Transport mean free path 

l Murnaghan first constant 

m Murnaghan second constant 

n Murnaghan third constant (dimension of diffusion equation in 

Chapter 4) 
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nd Dimension of the diffusion equation 

ni Volume ratio of coarse aggregate within the grading interval i 

ns Density of scatterers 

p Fraction of total cross-section that is blocked by the scatterers 

pM Probability of wave mode M converting to other wave modes 

(M should be either longitudinal waves or transverse waves) 

pKL Probability of incident wave mode K converting to scattered 

wave mode L (K and L should be either longitudinal waves or 

transverse waves) 

r Distance between the source and receiver 

r’ Distance between the image source and receiver 

ra Radius of a single scatterer 

rs Characteristic radius of coarse aggregates 

ri Characteristic radius of coarse aggregates within the grading 

interval i 

s Wavelet scale 

s Fitted slope on the square of relative velocity-stress relation-

ship 

tc Centre time of the time window when operating the stretching 

technique 

tmaximum energy Arrival time of the maximum energy 

tn Samples in the time domain (n is the number of sampling 

points in the time domain) 

uI Time-domain signal (I can refer to the unperturbed signal or 

signal after perturbation) 

ufinal, ui
final Displacement from the natural to the final state (i ∈ {1,2,3}) 

uincremental, ui
incremental Incremental displacement from the initial to the final state (i ∈ 

{1,2,3}) 

uinitial, ui
initial Displacement from the natural state to the initial state (i ∈ 

{1,2,3}) 

vij
0 Velocity of the body wave propagating in the i-direction while 

polarizing in the j-direction without external load applied (i, j 

∈ {1,2,3}) 

vij,k Velocity of the body wave propagating in the i-direction while 

polarizing in the j-direction measured at the kth stress level (i, 

j ∈ {1,2,3}) 

vij
(natural) Velocity of the body wave propagating in the i-direction while 

polarizing in the j-direction in the natural frame (i, j ∈ {1,2,3}) 

vM Velocity of wave mode M (M should be either longitudinal 

waves or transverse waves) 

vinitial Wave velocity in the initial frame 

vnatural Wave velocity in the natural frame 

x, xi initial coordinates (i ∈ {1,2,3}) 

xa Mean distance between two adjacent total cross-sections with 

scatterers 

xM Dimensionless frequency for wave mode M (M should be ei-

ther longitudinal waves or transverse waves) 
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Greek upper case 

Γ Wavelet cross-coherency 

ΔAeff Error in the effective acoustoelastic parameters 

Δs Error in the fitted slope on the square of relative velocity-

stress relationship 

ΣM Total scattering cross-section for wave mode M (M should be 

either longitudinal waves or transverse waves) 

ΣKL Total scattering cross-section associated with mode transition 

from incident wave mode K to scattered wave mode L (K and 

L should be either longitudinal waves or transverse waves) 

ΣM’ Weighted total scattering cross-section for wave mode M (M 

should be either longitudinal waves or transverse waves) 

ΣKL’ Weighted total scattering cross-section associated with mode 

transition from incident wave mode K to scattered wave mode 

L (K and L should be either longitudinal waves or transverse 

waves) 

Φ Wavelet filter bank 

 

Greek lower case 

α Dissipation 

δij The Kronecker delta (i, j ∈ {1,2,3}) 

δtunp,per Time difference spectrum obtained through the wavelet cross-

spectrum technique 

ε Stretching factor when operating the stretching technique 

εmax Stretching factor that maximizes the correlation coefficient 

ς{·} The smoothing operator for both time and frequency scales 

θ Rotation angle 

λ Lamé first constant 

λi Eigenvalue of the mode conversion matrix (i ∈ {1,2}) 

μ Lamé second constant 

υ Static Poisson ratio 

ρ0 Mass density in the natural state 

ρfinal Mass density in the final state 

ρinitial Mass density in the initial state 

σ Stress matrix in the original stress state 

σ' Stress matrix in the stress state after coordinate rotation 

σi Principal stress (i ∈ {1,2,3}) 

σij Stress tensor (i, j ∈ {1,2,3}) 

σi,k Principal stress in the i-direction at the stress level at which 

the measurement k is taken (i ∈ {1,2,3}) 

σKL Scattering cross-section associated with mode transition from 

incident wave mode K to scattered wave mode L (K and L 

should be either longitudinal waves or transverse waves) 
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σij
(0) Stress tensor in the original stress state (i, j ∈ {1,2,3}) 

σij
(r) Stress tensor in the stress state after coordinate rotation (i, j ∈ 

{1,2,3}) 

τ(a)
P Characteristic dissipation time for longitudinal wave energy 

τ(a)
S Characteristic dissipation time for transverse wave energy 

τPS Characteristic equilibration time between P-S equilibration 

τSS Characteristic equilibration time between S-S equilibration 

φI Phase spectrum of time-domain signal uI (I can refer to the un-

perturbed signal or signal after perturbation) 

χ Cosine of the scattering angle 

ϕm Volume fraction of matrix 

ϕs Volume fraction of scatterers 

ϕunp,per Phase difference spectrum obtained through the wavelet cross-

spectrum technique 

ω Angular frequency 

ω0 Constant used in designing the wavelet filter bank 
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Appendix A. Derivation of acoustoelastic moduli in the initial frame 

The derivation details of elements in B-matrix is shown in this appendix. The elements in 

the B-matrix is given by: 

initial initial
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           (5.33) 

In the following derivation, the linear part of the strain will be used to simplify the ex-

pressions: 
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Additionally, the second- and third-order elastic coefficients will be represented using 

Voigt notation. Here are the derivation details: 
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Appendix B. Derivation of acoustoelastic moduli in the natural frame 

The derivation details of elements in D-matrix is shown in this appendix. The elements 

in the D-matrix is given by: 
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           (5.43) 

In the following derivation, the linear part of the strain will be used to simplify the ex-

pressions: 
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Additionally, the second- and third-order elastic coefficients will be represented using 

Voigt notation. Here are the derivation details: 
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Appendix C. Numerical results of velocity change using the material 

properties of other specimens reported by Nogueira and Rens (2019) 

In this appendix, we will demonstrate the theoretical calculation of velocity changes for 

quasi-longitudinal and quasi-transverse waves. These velocity changes are computed us-

ing Equation (5.75), taking into account the material properties of concrete, including 

Lamé parameters and Murnaghan constants, which are reported by Nogueira and Rens 

(2019). 

 

Figure C.1 Same as Figure 5.8 but calculated using the properties of Specimen 2. 

 

Figure C.2 Same as Figure 5.8 but calculated using the properties of Specimen 3. 
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Figure C.3 Same as Figure 5.8 but calculated using the properties of Specimen 4. 

 

Figure C.4 Same as Figure 5.8 but calculated using the properties of Specimen 5. 

 

Figure C.5 Same as Figure 5.8 but calculated using the properties of Specimen 6. 
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Figure C.6 Same as Figure 5.8 but calculated using the properties of Specimen 7. 

 

Figure C.7 Same as Figure 5.8 but calculated using the properties of Specimen 8. 

 

Figure C.8 Same as Figure 5.8 but calculated using the properties of Specimen 9. 
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Figure C.9 Same as Figure 5.8 but calculated using the properties of Specimen 10. 

 

Figure C.10 Same as Figure 5.8 but calculated using the properties of Specimen 11. 

 

Figure C.11 Same as Figure 5.8 but calculated using the properties of Specimen 12. 
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Figure C.12 Same as Figure 5.8 but calculated using the properties of Specimen 13. 
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Appendix D. Acoustoelastic parameters in isotropic materials when bulk 

waves propagating along one of the principal deformation directions 

When the bulk wave propagates along one of the principal deformation directions, the 

relationship between bulk wave velocity and applied principal stresses in the natural 

frame-based acoustoelasticity can be expressed as: 

0 1 ,ij ij ijkk kv v A = +                                                       (D.1) 

where i and j represent wave propagation and polarization directions, respectively. The 

parameter σk denotes the principal stress in direction k, and the subscript k follows Ein-

stein’s summation convention. The acoustoelastic parameters in the natural frame Aijkk 

are: 
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Please note that A2111 is equal to A1211 in the natural frame.  

In the initial frame, Equation (D.1) can be expressed into the following form by introduc-

ing the acoustoelastic parameters in the initial frame Aijkk
(i): 

( )i0 1 ,ij ij ijkk kv v A = +                                                       (D.3) 

Where the acoustoelastic parameters in the initial frame are: 
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Appendix E. Correlation function of material property fluctuations in two 

phase material 

For a two-phase material, the entirely occupied three-dimensional space can be divided 

into two nonintersecting phases: Phase 1, Κ1, and Phase 2, Κ2. The random field of Phase 

1 is: 

( ) 1

1

1, if
.

0, otherwise
I


= 


x
x                                                     (E.1) 

Obviously, the random field of Phase 2 is I2(x)=1-I1(x). The ensemble average of I1(x) 

and I2(x) are equivalent to the volume fraction of scatterers ϕ1 and matrix ϕ2: 

( )1 1 ,I =x                                                             (E.2) 

( )2 2 11 .I  = = −x                                                       (E.3) 

The material density, ρ, and Lamé parameters, λ and μ, are assumed to vary spatially and 

to have the form (Turner and Anugonda 2001): 

 ( ) ( )1 ,  = +  x x                                                   (E.4a) 

( ) ( )1 ,  = +  x x                                                   (E.4b) 

( ) ( )1 ,  = +  x x                                                   (E.4c) 

where terms with δ represent a dimensionless measure of the spatial fluctuations about 

the average. The over-bar terms are the average quantities. For example, the average den-

sity in the two-phase materials can be written as: 
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where ρ1 and ρ2 are densities in Phase 1 and Phase 2, respectively. The average Lamé 

parameters are in the same form as the density shown in Equation (E.5). Then, the spatial 

density of the two-phase material can be represented using the densities of Phase 1 and 

Phase 2 in the following form: 

( ) ( ) ( )1 1 2 2 .I I  = +x x x                                                 (E.6) 

The following derivation will use the auto-correlation of density as an example, but the 

entire process applies equally to the auto-correlations of Lamé parameters or the cross-

correlations of Lamé parameters and densities. The auto-correlation of the density is given 

by (Turner and Anugonda 2001): 

( ) ( ) ( ) .R  − =x y x y                                                 (E.7) 
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The average medium is assumed statistically isotropic and statistically homogeneous 

(Turner and Anugonda 2001). These assumptions imply that the correlation functions de-

pend only on the magnitude of the difference of the two positions. Therefore, Equation 

(E.7) can be written as: 
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where r represents the distance between two locations x and y. Based on Equation (E.4a), 

the spatial fluctuations of density can be written as: 
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Substituting Equation (E.9) into Equation (E.8) gives: 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

1 1 2 2 1 1 2 2

2

2 2

1 1 1 2 2 2 1 2 1 2 1 2

2

2

1 1 2 2 1 1 2 2

2

2 2 2

1 1 1 2 2 2 1 2 1 2 1 2

2

1

R r

I I I I

I I I I I I I I

I I I I

I I I I I I I I

  

   



     



   



      



    





=

− −      
=

+ − + −      
=

+ + +  
=

   + + + −   −

+ + + −  
=

=

x y

x y

x x y y

x y x y x y y x

x x y y

x y x y x y y x

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( )

( )
( ) ( )

2 2

1 1 2 1 1

2

2

1 2 1 1 1 1

2

2 2 2 2

1 2 1 1 2 1 2 1 2 1 1 1 1 2

2

2

1 2 2

1 1 12

1 1

1 1

2 2 1

.

I I I I

I I I I

I I

I I





  



           



 




+ − −      

− + − −      
+

− + + − − + −  
=

−
= −

x y x y

x y y x

x y

x y

              (E.10) 

Equation (E.10) can be found at Eq. (8) in the article by Liu and Turner (Liu and Turner 

2008). The general form of Equation (E.10) refers to Equation (6.30) in Section 6.4.1.1. 



Appendix F 

 231 

Appendix F. Geometries and sensor layouts in geopolymer members 

This dissertation involves three geopolymer members. In Section 4.3.4, one beam was 

introduced and used to demonstrate the extraction of diffusive properties in a medium 

with planar boundaries. In this appendix, the remaining geopolymer members will be 

presented. These members are utilized in Chapter 6 to validate the total scattering cross-

sections. 

In the second beam, sensors are positioned close to the end of the beam. This specific 

beam encompasses 12 SAs labelled from BS1 to BS12, as shown in Figure F.1. Exact 

sensor locations are detailed in Table F.1. Similar to the first beam introduced in Section 

4.3.4, measurements are performed between adjacent SAs within each row, resulting in a 

total of ten SA pairs. Therefore, a total of 20 measurements are carried out in this beam. 

 

(a) Cross-sectional view. 

 

(b) Front view. 
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(c) Photo of the second beam. 

Figure F.1 Dimensions and photo of the second geopolymer concrete beam and the sensor layout 
(unit: mm; black arrow on the SA indicates the polarization direction of the sensor). 

Table F.1 Locations of SAs relative to the coordinates in Figure F.1(a) and F.1(b). 

Sensor BS1 BS2 BS3 BS4 BS5 BS6 BS7 BS8 BS9 BS10 BS11 BS12 

x [mm] 260 505 760 1015 1270 1550 1810 505 760 1015 1270 1550 

y [mm] 77 77 77 77 77 77 77 277 277 277 277 277 

z [mm] 550 550 550 550 550 550 550 550 550 550 550 550 

 

The third member is a geopolymer concrete slab. This slab comprises three beams, with 

sensors installed in both the middle beam and one of the edge beams. In the middle beam, 

there are 12 SAs labelled from SB1 to SB12, illustrated in Figure F.2. Sensor locations 

for the middle beam can be found in Table F.2. The edge beam incorporates sensors la-

belled from SS1 to SS10, with their respective locations detailed in Table F.3. Similar to 

the previous beam setups, measurements are performed between adjacent SAs within 

each row. 

 

(a) Cross-sectional view of the slab. 

    

   

 
 
 

 
 
 

 

 

   



Appendix F 

 233 

 

(b) Front view of the middle beam. 

 

(c) Front view of the edge beam. 

 

(d) Photo of the geopolymer concrete slab. 

Figure F.2 Dimensions and photo of the geopolymer concrete slab and the sensor layout (unit: mm; 
black arrow on the SA indicates the polarization direction of the sensor). 

Table F.2 Locations of SAs in the middle beam relative to the coordinates in Figure F.2(a) and F.2(b). 

Sensor SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9 SB10 SB11 SB12 

x [mm] 3030 3290 3550 3795 4050 4300 3030 3290 3550 3795 4050 4300 

y [mm] 77 77 77 77 77 77 77 277 277 277 277 277 

z [mm] 0 0 0 0 0 0 0 0 0 0 0 0 
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Table F.3 Locations of SAs in the edge beam relative to the coordinates in Figure F.2(a) and F.2(c). 

Sensor SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9 SS10 

x [mm] 275 535 795 1015 1265 1535 535 795 1015 1265 

y [mm] 77 77 77 77 77 77 277 277 277 277 
z [mm] 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 
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Appendix G. Comparison between the performance of the exact response 

functions and approximate response functions using the material 

properties of other specimens reported by Nogueira and Rens (2019) 

In this appendix, we will demonstrate the comparison of exact velocity change obtained 

from the exact response functions of Equation (5.52) and approximate velocity change 

obtained from approximate response functions of Equation (7.3) and (7.4) in 21 uniaxial 

stress cases ranging from 0 MPa to 10 MPa, taking into account the material properties 

of concrete, including Lamé parameters and Murnaghan constants, which are reported by 

Nogueira and Rens (2019). 

 

Figure G.1 Same as Figure 7.3 but calculated using the properties of Specimen 2. 

 

Figure G.2 Same as Figure 7.3 but calculated using the properties of Specimen 3. 
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Figure G.3 Same as Figure 7.3 but calculated using the properties of Specimen 4. 

 

Figure G.4 Same as Figure 7.3 but calculated using the properties of Specimen 5. 

 

Figure G.5 Same as Figure 7.3 but calculated using the properties of Specimen 6. 
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Figure G.6 Same as Figure 7.3 but calculated using the properties of Specimen 7. 

 

Figure G.7 Same as Figure 7.3 but calculated using the properties of Specimen 8. 

 

Figure G.8 Same as Figure 7.3 but calculated using the properties of Specimen 9. 
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Figure G.9 Same as Figure 7.3 but calculated using the properties of Specimen 10. 

 

Figure G.10 Same as Figure 7.3 but calculated using the properties of Specimen 11. 

 

Figure G.11 Same as Figure 7.3 but calculated using the properties of Specimen 12. 
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Figure G.12 Same as Figure 7.3 but calculated using the properties of Specimen 13. 
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