Malware Evolution

Unraveling Malware Genomics: Synergistic
Approach using Deep Learning and Phylogenetic
Analysis for Evolutionary Insights

M. SC—%—IS o
> Q) 16 aSh T Ilfrllfliﬁfﬂqﬂiam

/.E_ 20 AU WHOE

(S T RIATATT :

| LAEHIALO K & 4
B 1O HRIGIL

P

cogeol |
LIFE BE |
mviElag
GORIED
ilnAL .
samfi) 3

mfmmnm . enis i o T AT . : i
_I @ DOCUINOIAORLONM . 1 ! 1 L g | :

O 00|+ ; o |8 | :
. —s

%
TUDelft

Malware Evolution

Unraveling Malware Genomics: Synergistic
Approach using Deep Learning and
Phylogenetic Analysis for Evolutionary Insights

by

Akash Amalan

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on May 24, 2024

Student Number 4682505
Project Duration November, 2023 - May 2024
Thesis Committee: Prof. G. Smaragdakis, TU Delft
Dr. Tom Viering, TU Delft
Dr. Harm Griffoen, TU Delft

o]
TUDelft

Preface

During my studies, | often found myself torn between pursuing courses in cybersecurity and artificial
intelligence. Fortunately, | had the opportunity to attend Prof. Georgios Smaragdakis’s lectures on
network security, which | thoroughly enjoyed. When | approached him about combining my passion for
Al with cybersecurity, he enthusiastically supported the idea and even accepted my proposal to use Al
to trace the evolution of malware samples. Despite his initial doubts, he embraced the challenge.

| was fortunate to have Dr. Tom Viering, an expert in deep learning, on my committee as a daily
supervisor. Regardless of the time, he was always available to address my questions, whether they
pertained to machine learning or phylogenetics. His unwavering support and willingness to engage in
discussions were invaluable, and | am deeply grateful for his guidance, which was instrumental to the
success of my work. | would also like to thank Stefan Op de Beek and Dr. Harm Giriffioen for reading
my thesis and being part of the committee.

I would also like to extend my gratitude to VirusTotal for allowing me to use some of their samples for
research and providing metadata for all the samples. Additionally, | appreciate AnyRun for granting me
a license to perform dynamic analysis on their platform using their API. Without these tools, validating
my approach would have been impossible. Finally, | would like to thank my parents for their constant
support, my close friends Daniel, Luke, and Tony for their unwavering support, and Karthik and Yugian
for their constructive criticism of the "blackbox” nature of my approach.

Akash Amalan
Delft, May 2024

Abstract

The rapid advancement of artificial intelligence technologies has significantly increased the complex-
ity of polymorphic and metamorphic malware, presenting new challenges to cybersecurity defenses.
Our study introduces a novel bioinformatics-inspired approach, leveraging deep learning and phylo-
genetic analysis to understand the evolutionary dynamics of such malware. By analyzing a dataset
of 103,883 malware samples, we transformed extracted features using pseudo-static, dynamic, and
image analyses into embeddings with deep learning techniques, combining them into what we refer
to as the "genome” of malware. These combined embeddings were used to construct phylogenetic
trees employing the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) and the Neighbor-
Joining (NJ) method.We were the first to utilize OpenAl’s state-of-the-art embeddings for converting
pseudo-static and dynamic features into embeddings. In addition, we discovered that transfer learning
with ResNet-50 is highly effective compared to traditional CNNs, producing better image embeddings
that outperform others in terms of classification accuracy.

We also introduced new validation techniques for phylogenetic trees, making use of VirusTotal times-
tamps and embedding drift analysis. These methods confirmed that the NJ method was more accu-
rate. Furthermore, we developed techniques to simplify the analysis of these extensive phylogenetic
trees, enabling efficient derivation of relationships within and between malware families. The insights
from our NJ-built phylogenetic trees closely align with public data and lay a foundation for generating
evolutionary-informed signatures that enhance tailored detection strategies. Our method has signifi-
cantly expedited the process of identifying connections among 538 malware families by dramatically
reducing the timeframe from months or years to just weeks — much faster than traditional reverse engi-
neering approaches for tracing malware evolution.

11

Preface

1 Introduction

1.1 Motivation
1.2 Researchquestion
1.3 Contributions
1.4 ReportStructure oo

2 Background

21 Malware Fundamentals
211 TypesOfMalware
212 FileFormats,

2.2 High-Level Overview of Machine Learning Techniques
221 Fundamentals
222 CrossValidation
2.2.3 Hyperparameters.
2.2.4 Nested Cross Validation
225 SupervisedLearning L
2.2.6 Unsupervised Techniques
2.2.7 Dimensionality Reduction Techniques
228 Deeplearning,

2.3 Related Works: Malware Analysis
231 StaticAnalysis L.
232 ImageAnalysis
2.3.3 Main Limitation: Static and Image Analysis
2.34 DynamicAnalysis
2.3.5 Practical Applications L.

2.4 Open Source Datasets of Malware Executables

2.5 PhylogeneticTrees
2.5.1 High level overview of Phylogenetic Tree
2.5.2 Phylogenetic Tree Buildingmethods
2.5.3 Rooting PhylogeneticTrees

2.5.4 Application of Phylogenetic Trees in Malware Research

2.5.5 Related Works: Validating Phylogenetic Trees

3 MalwareGenome Dataset

3.1 S0Urces
3.1.1 Validationof Samples
3.1.2 Preprocessingof Samples
3.1.3 Class Distribution

3.2 Public Datasets for Image Analysis
3.2.1 High level overview of Image Dataset
3.2.2 Class Distribution

4 Methodology

41 Pipeline
4.2 Embedding Extraction

11

contents

O©C O OO, WWN-a=

Contents v

421 Motivation 28
4.2.2 Overview of Different Analysis Methods 28
4.2.3 Extraction of Memory Dumps 29
4.2.4 Features Extraction From Psuedo-Static Analysis 30
4.2.5 Embedding Extraction From Pseudo-Static Analysis 32
4.2.6 Features Extraction From Dynamic Analysis 34
4.2.7 Embedding Extraction From Dynamic Analysis 34
4.2.8 Embedding Extraction From Image Analysis 35
4.3 Embedding Concatenation and Reduction 37
4.3.1 Current Approaches e 37
4.3.2 Ourapproach e 37
4.4 Distance Matrix Generation 39
441 KnownApproaches 39
442 Distance Matrix 39
4.4.3 Converting Distance Matrix, 39
4.5 Building Phylogenetic Trees 40
451 UPGMA . . . 40
452 NeighborJoining 41
453 RapidNJ. 41
4.6 Validating Large-Scale Phylogenetic Trees. 42
4.6.1 Timestamps L 42
46.2 RootingTrees e 42
46.3 UnderstandingTrees. 44
4.6.4 Time Divergence Analysis 45
4.6.5 Embedding Drift Analysis 46
4.7 Visualizing Large-Scale Phylogenetic Trees 46
4.7.1 Inter and Intra Family Analysis 46
5 Results 50
5.1 Embedding Validation 50
5.1.1 Experiment 1: Which analysis type yields the best embeddings and does com-
bining them improve performance? 50
5.2 Extending EmbeddingstoNew Tasks 51

5.3

54

5.5

5.2.1 Experiment 2: Are embeddings, merged or individual, useful for downstream tasks? 51
5.2.2 Experiment 3: How does our approach on classifying malware based on images
compare to previous Work? L e 52
Tree Validation 53
5.3.1 Experiment 4: Which phylogenetic tree construction method using distances pro-
duces the most accurate representation of malware evolution using VirusTotal

timestamps? 53
5.3.2 Experiment 5: How can embedding drift analysis be employed as an alternative

method for validating phylogenetictrees? 54
Patterns and Topology L 55

5.4.1 Experiment 6: How do clusters formed by visualizing malware embeddings with
t-SNE, UMAP, and PCA align with lateral(leaf to leaf) distances in a phylogenetic

542 WpBruteBot. 57
5.4.3 Experiment 7 : Do outliers alter the topology of a phylogenetic tree constructed
using the Neighbour Joining method by changing the Most Recent Common An-
cestor (MRCA)? 59
Inter-Family Analysis 60
5.5.1 Experiment 8: Do the relationships identified through inter-family analysis using
NJ method correlate with public cybersecurity insights and with the psuedo-static

and dynamic features of the malware? 60
5.5.2 Speculative Assessment of Potential Connections Between Mirai and Other Mal-
ware Families 64

5.5.3 High-Level Overview of SmokeLoader’s Operation 65

Contents v
5.5.4 Pseudo-staticand Dynamicanalysis 65

5.5.5 |Inter-family analysis 66

6 Discussion 69
6.1 KeyResults e 69
6.2 Reflection 69
6.3 Factors that could influencetheresults 73
6.3.1 Packing 73

6.3.2 DataSplitting e 73

6.3.3 Labelling 73

6.3.4 Approximation of Neigbour Joining Method 74

6.3.5 Assumptions in inter and intra-family analysis 74

6.4 Production e e 75
6.5 Future Works e 75

7 Conclusion 76
References 77
A Types of Malware 88
B Executable Formats 90
B.1 PEFormat e 0
B.2 ELF Format e 94
B.3 DOS Format e 95

C Hypeparameters 97
D Extraction of PE Features 99
E Extraction of DOS Features 108
F Extraction of ELF Features 116
G Embedding Validation 123
H Downstream Tasks 126
H.1 VirusTotal Timestamp Validation 127

I Hyperparameters & Validation 128
1.1 Hyperparameter Configuration for embedding validation 128

I.2 Hyperparameter Configuration for -SNE, UMAP and PCA 128

J Phylogenetic Tree Algorithms 129
J.1 Validation e 129
J.1.1 Virustotal Timestamps o 129

J.1.2 Embedding Drift Analysis 130

J.2 Inter-family analysis algorithms 131
J.2.1 Without Outlier Thresholding 131

J.2.2 With Outlier Thresholding 132

K Correlation Analysis 133
K.1 Global Structure e 133
K.2 DiscrepancCies e e e e e 134
K.2.1 7eV3N . . e 134

K22 WpBruteBot 136

K2.3 lecedld o 138

K.3 Tightly Clustered Families 140
K.3.1 Bashlite e 140

K.4 Heterogeneous Clusters e 141
K.4.1 Bazarbackdoor 141

K4.2 KRBanker e 142

K4.3 GrandCrab e 143

K.5 Wide-Spread Clusters e 144

K.5.1 Lokibot e 144
K.5.2 Blacksoul e 145
K.5.3 Online Spambot 146
Case Studies 147
L.0.1 Pseudo-staticand Dynamicanalysis 147
L.0.2 Key Characteristics of DiscordTokenStealers 149
Pseudo-static and Dynamic Analysis 153
M1 Mirai e 153
M.1.1 Pseudo-staticanalysisfeatures L. 153
M.1.2 Dynamic Analysis features 155
M.2 Gafgyt e 157
M.2.1 Pseudo-staticanalysisfeatures 157
M.2.2 Dynamic Analysisfeatures 159
M.3 OKiru e 160
M.3.1 Psuedo-staticanalysisfeatures 160
M.3.2 Dynamic Analysis Features 162
M.4 MooBot e 163
M.4.1 Pseudo-staticanalysisfeatures 163
M.4.2 Dynamic Analysis Features 165
M.5 EnemyBot e 169
M.5.1 Pseudo-staticanalysisfeatures 169
M.5.2 Dynamic Analysis Features 171
M.6 Netwire Rat e 172
M.6.1 Pseudo-staticanalysisfeatures 172
M.7 Bashlite e 174
M.7.1 Psuedo-staticfeatures 174
M.7.2 Dynamicfeatures 176
M.8 SmokelLoader e 177
M.8.1 Psuedo-staticfeatures 177
M.8.2 Dynamic Analysis Features 178
M.9 IcedID e 180
M.9.1 Dynamicfeatures 180
M.10RacoonStealer 181
M.10.1 Dynamic Analysis Features 181
M.1TASYNCRAT e 184
M.11.1 Dynamic Analysis Features 184
M.12BotenaGo e 188
M.12.1 Static Analysis Features 188
M.12.2Dynamic Analysis Features 191
M.A3FritzFrog e e 194
M.13.1Pseudo-Staticanalysis 194
M.13.2Dynamic Analysis Features 196
M.14DiscordTokenStealers L 199
M.14.1 Dynamic Analysis Features o 199
M.15AkiraRansomware 203
M.15.1 Dyanmic Analysis Features 203
M.16SundownEK 208
M.16.1 Dyanmic Analysis Features 208
MATKIONOS o e e 210
M.17.1 Dyanmic Analysis Features 210

vi

List of Figures vii

List of Figures

2.1 Example of Nested Crossvalidation with 4 outer folds and 3 innerfolds 10
2.2 Neural Network with 3 input neurons, 1 hidden layer with 4 neurons and 3 output neurons 12

3.1 Flowchart of how we validate oursamples 25
3.2 Imbalanced Family Distribution Of Our Dataset 25
3.3 Imbalanced Family distribution of Malimg Dataset 26
3.4 Imbalanced Family distribution of Malevis Dataset 26
3.5 (Top 25)Imbalanced Family distribution of Malnet Dataset 26
4.1 HighLevel Pipeline e 28
4.2 1Image Analysis Pipeline L 35
4.3 Representation Pipeline showing how we reduce embedding dimensions 38
4.4 Malware Timestamps showing mismatch between Creation Date and First Submission
Date e 43
4.5 Simple Phylogenetic Tree 44
4.6 Embedding Drift Analysis: Comparing the euclidean distance between malware from
differentyears 46
4.7 Median Distance to MRCA Analysis 47
4.8 Median With Thresholding 48
5.1 Mutation Rates(euclidean distance over year) Barchart: This shows varying rates be-
tween families. 54
5.2 Embeddings Projected to 2D using t-SNE shows that embeddings from same family
clustertogether L 55
5.3 Embeddings Projected to 2D using PCA shows that PCA is unable to capture non-linear
relationships L 56
5.4 Embeddings Projected to 2D using UMAP shows that embeddings from same family
clustertogether 56
5.5 Oultliers based on lateral distance ofthe Tree 56
5.6 Distribution of Lateral Distances for WpBruteBot shows 3 to 4 main modes with not many
outliers L 58
5.7 t-SNE Plot for WpBruteBot shows mainly 2 prominentclusters 58
5.8 UMAP Plot for WpBruteBot shows 3to4clusters 58
5.9 PCA Plot for WpBruteBot mainly shows 2 clusters 59
5.10 Inter-family analysis of Mirai shows that Mirai is the progenitor of many families. 60
5.11 Interfamily analysis of smokeloader shows that it is the progenitor of a many families . . 66
B.1 PEFormat 91
B.2 lllustrationofthe ELF Format 95
H.1 Future Timestamps 127
K.1 Embeddings Projectedto 2D usingt-SNE 133
K.2 Embeddings Projected to 2D usingPCA L., 133
K.3 Embeddings Projected to 2D usingUMAP L oL 134

K.4 Outliers based on lateral distance of the Tree highlights that some families have consid-
erably more outliersthanothers o 134

List of Figures viii

K.5 Distribution of Lateral Distances for 7ev3n show one mainmode 135
K.6 t-SNE Plot for 7ev3n show two distinctclusters 135
K.7 UMAP Plot for 7ev3n shows 2 to 3 clusters while the rest could be interpreted as outliers 136
K.8 Distribution of Lateral Distances for WpBruteBot shows 3to4 modes 136
K.9 t-SNE Plot for WpBruteBot show two mainclusters 137
K.10 UMAP Plot for WpBruteBot show two to three clusters 137
K.11 PCA Plot for WpBruteBot show twoclusters 138
K.12 t-SNE Plot for Icedld shows 3to4 mainmodes 138
K.13 t-SNE Plot for Icedld show two mainclusters 139
K.14 t-SNE Plot for Icedld show multiple clutsters, possibly 3 139
K.15 PCA Plot for Icedld shows possibly 2 clusters 140
K.16 Distribution of for bashlite shows one mainmode 140
K.17 t-SNE Lateral Distances for Bashlite shows one maincluster 141
K.18 Distribution of Lateral Distances for Bazarbackdoor shows twomodes 141
K.19 t-SNE Plot for Bazarbackdoor shows two mainclusters 142
K.20 Distribution of Lateral Distances for KRBanker shows two mainmodes 142
K.21 t-SNE Plot for KRBanker shows two mainclusters 143
K.22 Distribution of Lateral Distances for GradCrab shows 3modes 143
K.23 t-SNE Plot for GradCrab shows 3 clusters 144
K.24 Distribution of Lateral Distances for Lokibot shows2modes 144
K.25 t-SNE Plot for Lokibot shows 2 clusters 145
K.26 Blacksoul showsonemainmode 145
K.27 t-SNE Plot for BlackSoul o 146
K.28 PCA Plot for BlackSoul shows one main mode with possible outliersat1. 146
K.29 Distribution of Lateral Distances for OnlinerSpambot shows increasing modes from 40 ,
B0t080 e e 146
L.1 FritzFrogis fromBotenaGo 148
L.2 AkiraRansomware is from DiscordTokenStealers 150

L.3 Kronos is from SundownEK 152

List of Tables

2.1 Classification of Malware Based on Evasion Techniques 5
2.2 Detailed Components of PE, ELF,and DOS Formats 6
2.3 Overview of the Neighbor Joining Method 20
2.4 Overview of the UPGMA Method 21
4.1 We use all of the features across PE, ELF, DOSformats 30
4.2 Extraction Processes for Generic Features 31
4.3 Hyperparameters for Validation of Embeddings 33
4.4 We use all of the features from Dynamic Analysis as listed inthetable 34
4.5 Hyperparameters forModelsV1iandV2 36
4.6 Hyperparameters for Supervised Dimensionality Reduction 38
4.7 Comparison of t-SNE, UMAP, and PCA Hyperparameters 49
5.1 Accuracy Metrics for Malware Family Classification 50
5.2 Summary of Model Performances for Temporal ShiftsinYears 52
5.3 Summary of Model Performance for benign/malicious classification using Image embed-
dingS . . . 52
5.4 Comparison of Architectures 52
5.5 Summary of Validation Results using Year Timestamps 53
5.6 Summary of Validation Results using Month Timestamps 53
5.7 Clustering and Mode Analysis Across Malware Families 57
5.8 Comparison of Tree Characteristics 59
5.9 Speculative Analysis of Other Families 64
5.10 Analysis of Malware Family Relationships Accordingto UPGMA 68
A.1 Comprehensive Classification of Malware Based on Evasion Techniques 88
G.1 Accuracy Differences Relative to the Combined Embeddings 123
G.2 Validation of Concatenated Model 124
G.3 Validation for Pseduo-Static(Complex) Analysis 124
G.4 Validation for Pseudo-Static (Numerical) Analysis 124
G.5 Validation for Dynamic Analysis 125
G.6 Validation for Image Analysis 125
H.1 Detailed Accuracy Comparison AcrossFolds 126
H.2 Embeddings binned into years and validated 126
.1 Grid Search Parameters 128
I.2 Grid Search Values for t-SNE, UMAP, and PCA Hyperparameters. 128

ix

Introduction

1.1. Motivation

The ongoing struggle against malware is commonly compared to a perpetual "cat and mouse game”,
in which security measures often find themselves in a position of catching up to newly emerged mali-
cious variants. These variants are usually inherently polymorphic, metamorphic, or both, consistently
undergoing evolution to present new challenges to security analysts [1]. Traditionally, efforts to coun-
teract such malware have relied heavily on static analysis [2], an approach that focuses on evaluating
the components of a file. Static analysis led to signatures using attributes, such as the information
contained within Portable Executable (PE) headers, the organizational layout of code, and entropy.

While these signatures are helpful, their effectiveness depends on accessing the original, unaltered
code. However, as malware developers increasingly use packing techniques to obscure the original
code and functionalities, signatures generated from static analysis may prove insufficient [3]. To ad-
dress packing, malware researchers have turned to dynamic analysis. Dynamic analysis has proven
highly effective by adding precise behavioural indicators as signatures. These signatures are widely
used in most antivirus software; for example, they are implemented in Avira and Windows Defender
disguised as Yara rules [4].

Over the past decade, researchers have shown a growing interest in utilizing machine learning
methodologies to classify malware based on static and dynamic features. Several studies [5] [6] [7] [8]
have used decision trees, random forests, and gradient boosting to achieve state-of-the-art accuracy
in malware classification. Likewise, others have delved into deep learning architectures [9] [10] [11]
such as deep belief networks and LSTMs. Interestingly, some endeavours [12] [13] have focused
on integrating computer vision into malware detection by transforming malware into images. These
advancements have not only improved classification accuracy but also offered a more comprehensive
understanding of the unique traits exhibited by malware families.

Yet, these approaches frequently overlook the evolutionary characteristics of malware, typically
lagging in the ongoing "cat and mouse game”. Instead, understanding and mapping the evolutionary
trends of malware could benefit both proactive and reactive security tactics.

Firstly, modelling malware evolution enables specialists to develop predictive frameworks that pre-
dict potential mutations. This forward-thinking strategy permits defenders to improve or adjust their pro-
tective measures before the arrival of new variants. As a result, defences that are successful against
parent strains could also be effective against their offspring, attributed to the shared genetics. Secondly,
identifying the genealogical ties among malware families can enhance the formulation of detection sig-
natures. By embedding features unique to a malware lineage within these signatures, it's possible
to protect against later variants, especially those that maintain key functionalities or code fragments
from their forebears. This approach may subsequently reduce false positives, addressing a common
challenge in malware detection.

Grasping the nuanced differences between a parent malware and its subsequent variants also en-
ables the development of tailored detection strategies. Such strategies can be adjusted to recognize
the slight modifications characteristic of new malware variants, significantly increasing the precision
and reliability of detection mechanisms. Lastly, studying the evolution of malware over time provides

1.2. Research question 2

valuable insights into the tactics, techniques, and procedures used by cyber adversaries. Understand-
ing these strategies is vital not only for creating effective technical defences against malware but also
for developing broader security strategies that can anticipate and counteract evolving threats. This
holistic approach may allow organizations to stay one step ahead in the ongoing battle against cyber
threats.

Beyond the potential benefits, a critical aspect that is often overlooked is the impact of Artificial In-
telligence on malware development, particularly the challenge it presents in terms of scale. Generative
models[14] [15] [16], including ChatGPT, have facilitated the creation of scalable and polymorphic mal-
ware. For example, BlackMamba[17] employs a large language model(LLM) to produce a keylogger
that evolves with each iteration, eluding predictive antivirus software. Additionally, the emergence of
”zero-click” worms[18] is especially troubling; these worms propagate without any user interaction. Re-
searchers such as Ben Nassi from Cornell Tech have illustrated how these worms exploit generative
Al systems to autonomously conduct malicious activities[19]. Ben Nassi notes that such worms can
harvest and utilize sensitive data to compromise new hosts through ordinary activities like email replies,
subsequently storing and spreading the data without activating standard defenses.

Similarly, Dark Al, which repurposes LLMs for malicious purposes, significantly accelerates the cre-
ation of complex malware [20] [21]. This technology automates the coding process, quickly producing
malware variants that exploit new vulnerabilities. An example of Dark Al at work is DarkBert, a variant
of Google Bert tailored for malicious use [22] [23]. DarkBert integrates with other malware components
to dynamically generate attack code, orchestrating sophisticated multi-stage breaches and adapting
attack strategies to be highly effective against current cybersecurity measures. Moreover, Dark Al en-
ables malware to adapt during deployment based on its environment. For example, if malware senses
it is being analyzed in a virtual machine or sandbox, it can change its behavior to avoid detection or
even disable itself to conceal its mechanisms. These advancements indicate that malware creators are
capable of producing malware at scale. Therefore, it is essential to track the evolution of malware on
a similar scale. Traditional methods like reverse engineering often take months or even years, making
them insufficient for keeping pace with the rapid evolution of malware.However, as shown later in this
study, utilizing techniques from Al and Bioinformatics can improve our ability to trace these develop-
ments effectively and at scale.

Despite these concerns, there has been little to no research on modelling the evolution of malware.
A frequently underestimated analogy lies in the parallels between biological viruses and computer mal-
ware, as both exhibit mutation and inheritance of traits from their progenitors. Beyond these basic
similarities, biological viruses and computer malware engage in adaptive responses to environmental
pressures, such as host immunity or cybersecurity measures, respectively. Additionally, they both can
exhibit rapid rates of evolution, facilitated by their ability to generate numerous variants in a short period.
This rapid evolution is often driven by the competitive necessity to circumvent defences—biological
viruses evolving to breach cellular defences and malware to evade detection software. Understand-
ing these analogies enriches the conceptual framework for modelling malware evolution, suggesting
that strategies employed in mapping the evolution of virology could serve a foundation for malware
evolution.

1.2. Research question

This paper introduces the use of phylogenetic trees in studying malware evolution. Constructing phylo-
genetic trees involves input sequences or a similarity matrix between species. In our method, we first
extract representations called embeddings from features collected through pseudo-static, dynamic, and
image analyses. These individual embeddings are combined to create a comprehensive yet compact
representation, conceptually similar to DNA. This concatenated embedding is used to generate a simi-
larity matrix, which serves as the basis for constructing a phylogenetic tree using Neigbout Joining(NJ)
and Unweighted Pair Group Method with Arithmetic Mean(UPGMA).

The primary research question guiding this study is: How can deep learning be used to trace the
evolution of malware families by identifying shared software and behavioural components through static,
dynamic, and image analysis methods using phylogenetic trees?

1.3. Contributions 3

To address this overarching question, several subquestions will be explored:

Which analysis type yields the best embeddings and does combining them improve performance?
Are embeddings, merged or individual, useful for downstream tasks?
How does our approach on classifying malware based on images compare to previous work?

Which phylogenetic tree construction method using distances produces the most accurate repre-
sentation of malware evolution using VirusTotal timestamps?

5. How can embedding drift analysis be employed as an alternative method for validating phyloge-
netic trees?

6. How do clusters formed by visualizing malware embeddings with t-SNE, UMAP, and PCA align
with lateral(leaf to leaf) distances in a phylogenetic tree built with NJ method?

7. Do outliers alter the topology of a phylogenetic tree constructed using the NJ method by changing
the Most Recent Common Ancestor (MRCA)?

8. Do the relationships identified through inter-family analysis using the NJ method correlate with
public cybersecurity insights and with the pseudo-static and dynamic features of the malware?

9. Are there any similarities between the inter-family relationships of UPGMA and NJ?

HPoOoDd =

1.3. Contributions
In this work, we make the following contributions:

» We demonstrate how static analysis can be used with dynamic analysis(psuedo- static analysis)
to overcome some of the effects of packing.

» We provide a dataset of features derived from pseudo-static analysis of 103,883 malware sam-
ples.

» We showcase the application of deep learning to generate embeddings from malware samples. To
our knowledge, this is the first study to employ OpenAl’s advanced embeddings for transforming
malware features into embeddings.

* We explore how the resultant embeddings can be used for downstream tasks such as malware
clustering and detection by finetuning only the last layer.

» We implement two main ways, NJ and UPGMA, for constructing phylogenetic trees from distance
matrices.

» We introduce new techniques to validate phylogenetic trees using VirusTotal timestamps, as there
are currently no known methods to validate phylogenetic trees when applied to malware.

* We introduce methods to simplify the tree, which consists of 103,883 leaves, making it challenging
to visualize or derive any relationships. This simplification is crucial for targeted analysis within
and between malware families.

» Our method scales effectively, allowing us to derive relationships from 538 families within a matter
of weeks.

1.4. Report Structure

The rest of this paper is structured as follows:

Chapter 2, titled Background, explores the use of machine learning in malware analysis and dis-
cusses conventional malware analysis techniques. It also examines different methods for constructing
phylogenetic trees to set the stage for understanding the subsequent chapters in this paper.In chapter
3, we introduce our dataset MalwareGenome and other public datasets we use.

In Chapter 4, Methodology, we introduce a pipeline that starts with extracting embeddings and ends
with constructing phylogenetic trees. This chapter provides in-depth insight into the pipeline, including
details about the datasets used and additional information necessary to replicate our work. Chapter
5, Results, presents the outcomes of various experiments aimed at addressing the subquestions out-
lined in the introduction. Looking ahead to Chapter 6, the Discussion reflects on the implications of
our findings in the context of related works. This chapter explores the practicality and limitations of
using embeddings and phylogenetic trees to understand malware evolution and proposes future works.
Finally, Chapter 7 summarizes the key findings and contributions of our approach.

Background

This chapter introduces the foundational concepts essential for understanding malware analysis. We
start by examining the different types of malware and the common file types they typically target. Then,
we explore how machine learning and deep learning techniques are used to classify malware. Lastly,
we highlight various methods of constructing phylogenetic trees that map the evolutionary relationships
among species to trace their development and spread.

2.1. Malware Fundamentals

Before we delve into the intricacies of malware analysis, it's essential to have a basic understanding of
malware. This section will cover various types of malware and their file formats.

2.1.1. Types Of Malware
The classification of malware into specific categories can be somewhat vague, but literature commonly
divides malware into two broad types based on their evasion tactics: polymorphic and metamorphic[1].

Polymorphic Malware

Polymorphic malware poses a major challenge for cybersecurity defenses as it constantly alters a part of
its code or signature with each new infection [3]. This type of malware employs different evasion tactics,
such as modifying encryption keys and the order of subroutines, to effectively conceal its presence. A
critical component of polymorphic malware is its reliance on distinct encryption keys for each instance.
These keys are used to encrypt the malware payload, ensuring that each version appears different to
antivirus systems. By utilizing these encryption keys and regularly reordering subroutines, the malware
creates difficulty for antivirus software in detecting consistent patterns [3]. Importantly, these alterations
are automatically carried out by the malware rather than being manually orchestrated.

Metamorphic Malware

Metamorphic Malware differs significantly from its polymorphic counterpart due to its unique evasion
methods. Unlike polymorphic malware, which relies on encryption keys to alter parts of its code or
signature, metamorphic malware completely rewrites its entire codebase with each iteration [24]. This
extensive self-modification leads to fundamentally unique instances upon each infection, rendering
traditional detection methods based on established patterns or signatures ineffective.

Metamorphic malware achieves this through the use of sophisticated metamorphic engines. These
engines enable the malware to translate its code into a temporary representation, modify this represen-
tation, and then re-translate it back into machine code. Notably, these transformations do not require
the use of encryption keys, which are a hallmark of polymorphic malware techniques.Metamorphic en-
gine employs advanced techniques such as instruction substitution, register renaming, and dead code
insertion to significantly alter its code structure, making detection difficult . It also uses control flow alter-
ation and code integration with obfuscation to disrupt standard pattern recognition [3]. These strategies
ensure each iteration of the malware is distinct enough to evade traditional signature-based antivirus
defenses, posing substantial challenges to cybersecurity measures.

4

2.1. Malware Fundamentals 5

Advanced Evasive Malware

In recent years, malware has been using both polymorphic and metamorphic evasion techniques
[25]. These advanced evasive malware variants utilize the adaptability of polymorphic malware, which
changes parts of its code or signatures with each infection, and merge it with the metamorphic strategy
of completely rewriting their entire codebase without the use of encryption keys.

This strategic and sophisticated integration not only enables the malware to alter superficial aspects
of its code to avoid detection but also to fundamentally reconstruct its entire structure. As a result,
these malware variants significantly enhance their capability to evade traditional and modern detection
systems. Table 2.1 shows recent examples of different types of malware classified by their evasion
techniques. For a more extensive list of examples, refer to Appendix A

Table 2.1: Classification of Malware Based on Evasion Techniques

Type Malware Description

Polymorphic Mirai [26] Known for its devastating DDoS attacks, Mirai’s polymor-
phic variants complicate the detection process, leading to
increased infection rates across loT devices.

Polymorphic Gafgyt [27] Specializes in launching DDoS attacks, continuously
changing attack vectors and evolving encryption, making
it hard to trace and neutralize.

Polymorphic MooBot [28] As a direct offshoot of Mirai, exploits vulnerabilities quickly,
adapting its scanning and exploitation techniques, infecting
a wide array of devices.

Metamorphic ZMist (ZMistfall) [29] Integrates into and modifies executable files using ad-
vanced metamorphic techniques to rearrange and rewrite
its code.

Metamorphic Win95/Regswap [30] Targets Windows 95/98 files, swaps code segments to ob-
scure its presence, making detection challenging.

Advanced Evasive IcedID [31] A banking Trojan that employs injection techniques and
evasion tactics to avoid detection, spreading via malspam
campaigns.

Advanced Evasive Emotet [32] Initially a banking Trojan, now a sophisticated malware de-
livery service, known for its rapid spread and delivery of
various payloads.

Advanced Evasive GandCrab [33] A ransomware-as-a-service that evolved through continu-
ous updates, utilizing both polymorphic and metamorphic
techniques.

Note that in our research, we analyze a wide range of malware from both public and private datasets
without categorizing them by evasion technique. Our methodology is based on the observation that
malware often inherits traits from its predecessors - traits that are crucial to our study and will be further
discussed in subsequent chapters. While we acknowledge the categorization of malware, it is primarily
to illustrate the diverse evolutionary paths of malware, not as a focal point of our analysis.

2.1.2. File Formats

Our primary focus is on the three most prevalent malware formats: the Portable Executable (PE) format
for Windows, the Executable and Linkable Format (ELF) for Unix/Linux systems, and the DOS format
for older DOS environments. Including the DOS format is particularly important for tracing the evolution
of malware, as some variants display characteristics reminiscent of DOS-based architectures. Each
format has its sections and headers, which are essential for the executable’s operation, facilitating
security analyses and aiding in the identification and breakdown of malware. An overview of important
aspects of the different formats are presented in Table 2.2.

2.1. Malware Fundamentals

Table 2.2: Detailed Components of PE, ELF, and DOS Formats

Aspect PE Format ELF Format DOS Format
Signature MZ followed by PE\O\O \x7FELF "MZ” Signature
Header PE Header ELF Header DOS Header

MS-DOS Compati-
bility

MS-DOS 2.0 Compatible
EXE Header, Stub Pro-
gram

Not applicable

Entire format

OEM Information

OEM Identifier and OEM
Information

Not applicable

Not applicable

Section Headers

Section Headers for code,
data, resources

Section Headers for .text,
.data, etc.

Not explicitly defined

Program Headers

Not directly applicable

Program Headers for seg-
ment loading

Not applicable

Import/Export Info

Import Table, Export Ta-
ble

Symbol Table (imports/-
exports through dynsym)

Not applicable

Dynamic Linking

Import Table, Export Ta-
ble, Base Relocations

Dynamic Section, Reloca-
tion Sections

Not applicable

Debug Information

Debug Directory

Debug Section

Not standard

TLS Support Thread Local Storage Sectional support (e.g., Not applicable
tdata, .tbss)
Resources Resources Section Not standard, managed Not applicable
externally
Symbol Table COFF Symbol Table Symbol Table for linking Not applicable
Relocations Base Relocations Sec- Relocation Sections Relocation Table
tion (.rela, .rel)
Entry Point Defined in Optional Entry pointin ELF Header Defined in Header
Header

Raw Data Sections

Code, Data, Resources

text, .data, .bss, etc.

Program Code and Data

Microsoft COFF

COFF Header, Section
Headers, Raw Data

Not applicable

Not applicable

Dynamic Symbol Ta-
ble

Not directly applicable

Dynamic Symbol Table
(dynsym)

Not applicable

32-bit vs. 64-bit

Optional Header (PE32
vs. PE32+)

e_ident [EI_CLASS]
(ELFCLASS32 vs.
CLASS64)

ELF-

Not applicable

DLL vs. Executable

Characteristics field in
COFF Header

e_type field (ET_DYN vs.
ET_EXEC)

Not applicable

Subsystem Informa-
tion

Specifies subsystem
(e.g., Windows GUI or
console)

Not applicable

Not applicable

Alignment of Sec-
tions

Section alignment details
in Optional Header

Section alignment con-
straints in ELF Header

Not applicable

Permissions

Permissions for code and
data sections

Permissions detailed in
Program Headers

Not applicable

Continued on next page

2.1. Malware Fundamentals

Table 2.2 — Continued from previous page

Aspect PE Format ELF Format DOS Format
Checksums Checksum in Optional Optional checksum for in- Not applicable
Header tegrity

Virtual Address vs.
Physical Address

Manages both virtual and
physical addressing

Virtual addressing in Pro-
gram Headers

Not applicable

Compression and

Encryption

Supports encrypted or
compressed sections

May contain compressed
sections

Not applicable

File Extension Asso-
ciation

.exe, .dll, etc.

.0, .s0, .elf, etc.

.exe, .com, etc.

Loadable vs. Link- Distinguishes between Differentiates loadable Not applicable
able loadable sections from linkable sections
Versioning Informa- Version numbers in Op- Version fields in ELF Not applicable
tion tional Header Header
Endianness Endianness specified in Endianness field Not applicable
Optional Header in ELF Header
(e_ident [EI_DATA])
Built-in Support for Thread Local Storage de- Support for thread- Not applicable
Threads tails specific storage in
sections
Usage in Industry Widely used in Windows Common in Unix/Linux Historically used in DOS
environments systems systems

Portable Executable format(PE)

PE[34] format is the foundation of file execution in Windows, encompassing applications packaged as
executables and dynamic link libraries. Designed for versatility, it supports a wide range of applications
built for the operating system. The 64-bit PE format structure, outlined in Figure B.1, includes vital
components such as the program’s code, data sections, and metadata that are crucial for the Windows
loader to effectively manage program execution.

At the start of each PE file, there is a distinctive signature sequence acting as an identifier: the
'MZ' signature signifies its executable nature, while the 'PE\0\0' signature marks the beginning of the
actual PE header. Following this, the Machine field specifies which system architecture or processor
type is intended for running that particular executable. The key difference between 64-bit and 32-bit
PE formats lies in the optional header. In 32-bit PE files, the optional header’s Magic humber is 0x10b
to ensure compatibility with 32-bit memory address spaces. Conversely, for 64-bit PE files, the Magic
number is 0x20b signaling the use of expanded field sizes for addressing, including support for larger
memory space. For additional information, please see the first section of Appendix B.

Executable and Linkable Format(ELF)

ELF[35] is the standard for executables in Unix and Linux systems, featuring an ELF Header that is
essential for providing metadata to prepare the operating system for execution. This metadata includes
the file type—whether it's an executable, a relocatable file, or a shared object file (similar to DLLs in
Windows), the machine architecture (specifying whether the file is compiled for 32-bit or 64-bit sys-
tems), and the program’s entry point (the initial memory address for execution). The header also helps
differentiate between executable files (ET_EXEC) and shared object files (ET_DYN), which are crucial for
dynamic linking, akin to DLLs. The ELF signature, represented as \x7fELF, clearly marks the file as an
ELF format. These details are vital for ensuring the system correctly manages and executes files, with
their distinctions visually depicted in Figure B.2, underscoring the ELF format’s critical role in system
operations. For more details refer to the second section of Appendix B.

2.2. High-Level Overview of Machine Learning Techniques 8

Disk Operating System (DOS)

The DOS format[34] stands out for its straightforward design and pivotal role in the historical devel-
opment of computer software, acting as a fundamental precursor to the more sophisticated Portable
Executable (PE) format prevalent in Windows systems. Its unique architecture, designed for DOS envi-
ronments, is easily identified by the DOS Header, which bears the distinctive "MZ” signature in homage
to its developer, Mark Zbikowski. For more details, refer to the last section of Appendix B.

2.2. High-Level Overview of Machine Learning Techniques

This section covers basic machine learning methods, starting with an explanation of model parameters
and the processes of training and testing. It also discusses the importance of cross-validation and
double cross-validation for fine-tuning hyperparameters and providing a fair evaluation of models. Next,
it introduces supervised learning techniques, including logistic regression and k-nearest neighbors,
and unsupervised methods such as hierarchical clustering, all of which are used in our study. Finally,
it looks at dimensionality reduction strategies such as t-SNE, PCA, and UMAP, which help visualize
high-dimensional data in simpler, lower-dimensional spaces.

2.2.1. Fundamentals
This section briefly covers the concept of parameters, outlines the training and testing phases, and
discusses the most commonly used train-test split.

Parameters

Parameters in a machine learning model are the adjustable elements that the model fine-tunes dur-
ing training [36]. These internal variables, whose values are derived from the training data, enable
the model to adapt and make predictions.For instance, in logistic regression, the parameters are the
weights (coefficients) and biases. Weights adjust the influence of each input feature (variables that
are fed into the model) on the prediction, while biases offer an additional offset, improving the model’s
ability to fit the data.

Training

Training[37] is the process of teaching a machine learning model to make predictions or decisions
from the training data.This data consists of features (input variables) and labels (desired outcomes).
During training, the model uses the features to make predictions and iteratively adjusts its parameters
to minimize the difference between these predictions and the actual labels (outcomes) of the data.
This adjustment is typically done through a loss function which quantifies the error between the true
labels(ground truth) and predictions, and an optimization algorithm, such as gradient descent, that
iteratively reduces this error.

Testing

During the testing phase, we assess the performance of the trained model on unseen data to evaluate
its generalization capabilities [37]. The main goal of testing is to measure how well the model can apply
learned patterns to new instances. Unlike during training, the model parameters stay constant during
testing and no further learning takes place. We use various metrics such as accuracy, F1 score, ROC
AUC score to measure the model’s generalization performance. In cybersecurity research, there is
often a focus on accuracy and the F1 score, as evident in the following sections. Therefore, we will use
these same metrics to assess the generalization performance of our models.

Train/Test Split

To accommodate the phases mentioned above, we typically split our dataset into training and testing
sets using a stratified 70/30 [38] train-test split for preliminary evaluation in our study. This stratified
approach is important because the malware datasets we use in this study are highly imbalanced, with
some classes of malware being much less frequent than others. A stratified split ensures that each
class is represented proportionally in both training and test sets, according to its original distribution in
the complete dataset [39]. This method is beneficial for ensuring that minority classes are represented
and evaluated in both train and test set.

2.2. High-Level Overview of Machine Learning Techniques 9

Overfitting Versus Underfitting
Overfitting and underfitting can significantly affect the performance of machine learning models. Overfit-
ting occurs when a model is overly complex, fitting the training data closely but struggling to generalize
well to new, unseen data [37] . To address overfitting, strategies include simplifying the model by choos-
ing simpler models or fewer features, using regularization techniques like L1 or L2 to penalize large
weights, and increasing the amount of training data to help the model learn more general patterns [37].
On the other hand, underfitting occurs when a model is too simple to capture the data’s underlying
patterns [37]. To address underfitting, one can select a more powerful model with more parameters,
add more or better-quality features to expose the model and reduce constraints that might be limiting
the model’s learning capacity. These adjustments help ensure that the model can both fit the training
data adequately and perform well on new data [37].

2.2.2. Cross Validation
In this study, we extensively use cross-validation to conduct a comprehensive evaluation of machine
learning models. This technique [40] systematically assesses the model’s performance by segmenting
the dataset into various subsets, known as folds. Each fold is utilized as a test set once, with the other
folds used for training. The folds are systematically rotated to ensure each one serves as the test set.
As will be discussed in our methodology, we typically opted for £k = 10 for our cross-validation,
balancing the trade-off between computational time and the thoroughness of the evaluation. This ap-
proach ensures that each of the ten parts is rotated to serve as the test set in turn, allowing us to use
the entire dataset for both training and testing. A key aspect of this process is that the model is reinitial-
ized for every fold. This ensures that each training and testing cycle is conducted with a fresh model,
preventing any learning from previous folds from influencing the outcomes. This method maintains the
integrity of the evaluation by ensuring that each data point contributes independently to both training
and testing phases.

2.2.3. Hyperparameters

Hyperparameters are parameters whose values are set before the training process begins and are
not derived from the data. Unlike model parameters, which are learned automatically during training,
hyperparameters are used to control the learning process itself, directly influencing the behavior of the
training algorithm and the performance of the model [37]. Common examples include the learning rate,
which dictates how quickly a model adjusts its parameters during training; or the number of hidden
layers and neurons in a neural network.These settings are important as they affect how well the model
learns. To train hyperparameters we mainly use Grid Search [41]. Grid Search is a technique used to
identify the best hyperparameters for a machine learning model. It involves defining a grid of possible
values for each hyperparameter and systematically testing different combinations of these values.

2.2.4. Nested Cross Validation

Nested cross-validation is a robust approach employed to tune hyperparameters and thoroughly assess
machine learning models. This method functions through two layers: an outer loop, which evaluates
model performance across outer segments (folds), and an inner loop, responsible for fine-tuning hyper-
parameters within each outer fold. This is illustrated in figure 2.1.

In our study, we employ a stratified cross-validation method consisting of 10 outer folds and 5 inner
folds, which helps maintain a nearly equal class distribution within each fold. The outer loop divides
the dataset into ten folds, where each fold serves as a unique test set on a rotational basis, and the
remaining folds form the training set. Concurrently, the inner loop further splits the training set into five
folds using the same stratified approach, creating inner training and validation folds. Within these inner
training folds, the model is initialized with various hyperparameters determined by a grid search and
subsequently evaluated on the inner validation folds.

After determining the best hyperparameter configuration from the inner loop, the model is reinitial-
ized with these parameters and trained on the full training subset of the outer loop. Subsequently, it is
tested on the corresponding outer test subset to evaluate key performance metrics. Once all outer folds
are processed, the metrics from each test are aggregated to provide a comprehensive assessment of
the model’s performance across the entire dataset.

2.2. High-Level Overview of Machine Learning Techniques 10

OU TER FOLD
INNER FOLD
Ilteration 01 U 2 3 < é Iteration 01 1 2 3
Iteration 02 1 - 2 3 4 E E seration 02 1 2 3

lteration 02 1 2 3 4 - ° lteration 02 1 2 3
Iteration 04 1 2 3

Find best parameters
| using
< Inner Fold Train Set
tested on Inner Fold
Validation Set

Test on outer
Validation Set |

Figure 2.1: Example of Nested Crossvalidation with 4 outer folds and 3 inner folds

2.2.5. Supervised Learning

In supervised learning, the training data provided to the algorithm contains desired solutions, known
as labels [37]. This method is mainly used when the labels are well defined and directly linked to the
input data.

Classification is a typical example of supervised learning in which the objective is to predict categor-
ical labels (classes) of new instances (samples) based on a dataset of labeled examples. The process
involves training a model to identify the relationships between the features of the samples and their
respective classes, which are predefined. Once trained, the model can then apply these learned rela-
tionships to classify new unseen instances into predefined classes. Classification can be divided into
two primary types. Binary classification involves categorizing a sample into one of two classes, while
multi-class classification entails categorizing samples into more than two classes. In our work, we will
primarily use multi-class classification to distinguish between malware families by treating the families
as distinct classes. However, we will also employ binary classification to distinguish between benign
and malicious malware later in this study.

Logistic Regression

Logistic Regression is a machine learning technique traditionally used for binary classification. It models
the probability that a given input—which includes the features of a data point—belongs to a specific
class (the output) [42]. The algorithm outputs a probability score indicating how likely it is that the input
falls into that class.To determine the class, a threshold, often set at 0.5 for binary classification, is used.
If the probability score is greater than or equal to the threshold, the input is classified into the respective
class; if below, it is assigned to the alternative class.

For situations involving more than two classes, Logistic Regression can be adapted using the One-
vs-Rest (OvR) strategy or multinomial logistic regression [43]. In our work, we use multinomial logistic
regression. Multinomial logistic regression extends the binary technique directly to handle multiple
classes, providing a probability score for each class simultaneously without splitting the problem into
several binary classifications [37]. In this case, the class with the highest probability score is selected
as the final ouptut.

k-Nearest Neighbours

In the k-NN algorithm, the input consists of the features of a data point whose label needs to be deter-
mined [37]. The "k” represents the count of nearest neighbors that the algorithm consults to arrive at its
prediction. It calculates the distance between the input data point and other points in the dataset using
metrics like Euclidean or Manhattan distance. The prediction outputs the most frequent class among
the nearest neighbors. For a detailed list of hyperparameters considered for these calculations, please
see Appendix C.

2.2. High-Level Overview of Machine Learning Techniques 1

2.2.6. Unsupervised Techniques

On the other hand, unsupervised learning algorithms learn patterns exclusively from unlabeled data
[37].These methods automatically discover the underlying structure of the data without any supervision.
Clustering is a typical example of unsupervised learning, where data points are grouped into clusters
such that items within the same cluster are more similar to each other than to those in other clusters.

Heirachial Clustering

In our work we use a clustering method called UPGMA which is a Heirachial Clustering algorithm with
average linkage[44]. Hierarchical clustering creates a multilevel hierarchy of clusters through either
agglomerative "bottom-up” approach—where each observation starts as its own cluster and pairs are
merged as one moves up the hierarchy—or a divisive "top-down” approach, which starts with all obser-
vations in one cluster and performs recursive splits as one moves down [45]. The process hinges on
the linkage method used to determine the distance between sets of observations, based on pairwise
distances. The most common types of linkage methods include Single Linkage, where the minimum dis-
tance between pairs of points from two clusters dictates merging; Complete Linkage, which considers
the maximum distance between pairs; Average Linkage, using the average distance [46].

2.2.7. Dimensionality Reduction Techniques

Dimensionality reduction is the transformation of data from a high-dimensional space into a suitable low-
dimensional space. In our study, we will use these techniques to visualize high-dimensional data (1000-
dimensional data) in 2 dimensions. More specifically, we will use t-Distributed Stochastic Neighbor
Embedding (t-SNE), Principal Component Analysis (PCA), and Uniform Manifold Approximation and
Projection (UMAP).

t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE is a non-linear technique used to reduce the dimensionality of high-dimensional data for effective
exploration and visualization, typically mapping the data into two or three dimensions. Its primary
objective is to preserve the local structure of the data, meaning that points close to each other in the
high-dimensional space are projected to be close in the lower-dimensional representation [47].

Principal Component Analysis (PCA)

PCA is a linear dimensionality reduction technique that transforms high-dimensional data into low di-
mensions while attempting to capture as much variability in the data as possible [37]. It achieves this
by identifying the directions, called principal components, along which the variation of the data is max-
imized.

Uniform Manifold Approximation and Projection (UMAP)

UMAP is a non-linear reduction technique known for preserving local and the broader global structures
within high-dimensional data [48]. This method balances the retention of local structures, which encap-
sulate the proximities and interactions among neighboring data points, with the preservation of global
structures, which represent the overall distribution and spatial organization of data clusters across the
dataset. The ability to fine-tune this balance is critically dependent on the selection and adjustment of
the UMAP algorithm’s hyperparameters. By modulating these parameters, UMAP can be tailored to
prioritize more granular local details or more expansive global relationships.

2.2.8. Deep Learning

Deep learning has gained significant popularity in malware analysis due to its sophisticated approach to
handling data. In contrast to traditional machine learning, which often relies on manual feature selection
and relatively simple predictive models, deep learning automates the process of feature extraction and
typically utilizes multi-layered neural networks. These complex networks are capable of learning rich
and hierarchical replresentations of data, making them highly effective at detecting subtle and intricate
patterns in malware that may evade simpler models.

This subsection gives a high-level overview of the deep learning architectures that have become
influential in the development of malware detection and classification systems. First, we will introduce
Neural Networks(NNs), which form the foundation of many deep learning models, then move on to
Convolutional Neural Networks(CNNs), and finally discuss transformers.

2.2. High-Level Overview of Machine Learning Techniques 12

Neural Networks (NNs)

Neural networks are sophisticated computational models inspired by the intricate networks of neurons
in biological brains [37]. These artificial networks are structured with an input layer, which receives the
input features, hidden layers that process these features, and an output layer that delivers the final
predictions as shown in figure 2.2 .

The hidden layers are where the majority of computation within a neural network occurs. Each
neuron in these layers takes the output from the previous layer’s neurons, applies a set of weights that
signify the importance of this input, and adds a bias, which allows the model to better fit the data. The
result is then passed through an activation function -often a non-linear function like ReLU, sigmoid, or
tanh. This step is crucial as it introduces non-linearity to the model, enabling it to capture complex and
abstract patterns. Without non-linear activation functions, the neural network would be incapable of
solving problems beyond the scope of linear classification and regression.

The output layer receives the transformed data from the last hidden layer and translates it into a
format suitable for the problem at hand. In the case of classification tasks, which are the focus of our
study, this layer outputs a series of output scores, called logits, corresponding to each class. These
scores are subjected to a softmax function—an operation that converts raw scores into a probability
distribution, ensuring that the sum of probabilities for all classes equals one. The predicted class is
then determined by selecting the one with the maximum probability from this distribution.

\5

Figure 2.2: Neural Network with 3 input neurons, 1 hidden layer with 4 neurons and 3 output neurons

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a specialized type of neural network designed for process-
ing data with a grid-like topology, such as images [37]. Unlike standard fully connected networks where
each input is connected to every neuron, CNNs utilize a unique architecture that includes convolutional
layers to efficiently handle spatial data. The convolutional layers use small, square matrices of weights,
known as filters or kernels, which move across the input data performing elementwise multiplications
and summing them up, thus capturing spatial hierarchies and features such as edges and textures.

A key feature of convolutional layers is parameter sharing, where the same filter (and hence the
same set of weights) is used across the entire input. This approach not only drastically reduces the
number of parameters the network needs to learn but also decreases computational requirements,
making CNNs significantly more efficient than fully connected networks. This efficiency comes from the
ability of a single filter to detect the same feature throughout the entire input, promoting translational
invariance and helping the network generalize better to new, unseen data.

Beyond convolutional layers, CNNs typically employ pooling layers, which reduce the spatial dimen-
sions (height and width) of the input volumes, further simplifying the network computations. Commonly
used pooling methods include max pooling and average pooling, which summarize the features de-
tected in patches of the feature map. Following the convolutional and pooling layers, CNNs usually
conclude with one or more fully connected layers, which integrate the learned features into predictions
or classifications [49]. These layers are similar to those in standard neural networks, processing the

2.2. High-Level Overview of Machine Learning Techniques 13

flattened output of the previous layers to produce the final output.In computer vision, CNNs have be-
come the architecture of choice due to their effectiveness in handling and interpreting visual data. A
well known architecture that use many CNNs is ResNet (Residual Network), which we use in this study
for image analysis [50].

Transformers

Transformers are an advanced architecture in deep learning, particularly prominent for processing se-
quential data such as text and time series [51]. Unlike models that rely on sequential processing (like
RNNs and LSTMs [52]), transformers use a mechanism called attention, which allows the model to
weigh the significance of different parts of the input data simultaneously. This parallel processing ca-
pability enables them to learn the context of any part of the sequence in relation to all other parts,
improving efficiency and performance in tasks that involve understanding the entire sequence as a
whole. For example, in language tasks, this means a transformer can evaluate the relevance of earlier
words in a sentence when interpreting the meaning of a word later in the sequence.

Transformers typically consist of an encoder and a decoder. The encoder processes the input data
into a continuous representation that holds all the learned insights about the input. The decoder then
uses this representation, along with previous output elements, to generate the final output sequence.
This architecture has proven highly effective, particularly in natural language processing tasks such as
translation, text summarization, and content generation, setting new benchmarks for accuracy and flex-
ibility in handling diverse and complex datasets.There are many examples of application of transfomers.
Some of the recent examples include :

» BERT (Bidirectional Encoder Representations from Transformers) is a model in natural language
processing (NLP) developed by Google [53]. It is able to train language representations bidirec-
tionally. This means that for each word in a sentence, BERT looks at the words before and after
it—rather than in just one direction—to get the full context, allowing it to understand language in a
more nuanced manner . BERT has been applied successfully in numerous NLP tasks, including
question answering sentiment analysis, and language translation.

» Longformer extends the capabilities of BERT by tackling one of its main limitations: handling
long documents [53]. Standard BERT implementations are typically constrained to sequences of
512 tokens due to memory limitations of the attention mechanisms in transformers. Longformer
introduces an attention mechanism that scales linearly with sequence length making it efficient for
processing documents like legal texts or scientific papers that can be thousands of words long.
It achieves this by combining a sliding window approach with global attention mechanisms on
selected tokens, which allows the model to maintain a broader context over longer texts.

In our study, we employ OpenAl’s state-of-the-art embeddings for text and code, which are devel-
oped using a method called contrastive pre-training on unsupervised data [54]. These embeddings are
created through a process where a Transformer encoder processes the input data to generate dense
vector representations. These representations are specifically designed to capture the semantic core
of the text or code, which is crucial for tasks that depend on a deep understanding of content and con-
text. The efficacy of these embeddings is demonstrated by their improved performance across various
applications, such as linear-probe classification, semantic search, and large-scale information retrieval.

2.3. Related Works: Malware Analysis 14

2.3. Related Works: Malware Analysis

There are three principal approaches to malware analysis: static, dynamic, and image-based. In our
methodology, we will individually utilize each approach to generate embeddings, which will then be
concatenated to form a comprehensive final embedding. In this section, we will review recent advance-
ments in all three key analysis techniques. Although methods in literature are typically employed for
malware classification rather than generating embeddings, they are pertinent to our study as we utilize
classification techniques to validate the embeddings.

2.3.1. Static Analysis

Static analysis is a fundamental technique in malware analysis, involving inspecting a program’s code
without running it [55]. This method helps to identify specific functionalities such as function calls and
hardcoded elements like domains or IP addresses, which are then used to develop detection signa-
tures for identifying malware. In this section, we will first explore traditional rule-based approaches,
highlighting tools such as Yara. We will then discuss the key features employed in malware detection
and classification, and examine how these features are integrated with machine learning(ML) and deep
learning(DL) models.

Rule Based Approaches

Rule-based approaches, exemplified by tools such as YARA, play a crucial role in static analysis by
allowing analysts to create customized rules that identify and classify malware based on specific textual
or binary patterns [56]. These methods are integral to detecting known malware types and are commonly
used by antivirus programs as part of their signature-based detection systems.

However, rule-based approaches have limitations, primarily due to their reliance on static indicators,
which renders them less effective against evolving malware variants [57]. To address these shortcom-
ings, our approach does not depend on rule-based methods. Instead, we ultimately build a phylogenetic
tree that facilitates the creation of signatures that consider potential evolutionary pathways, including
the spread of variants.

Machine Learning and Deep Learning Approaches

In this subsection, we will initially discuss the key features commonly used in machine learning and
deep learning for malware classification. Subsequently, we will explore models used in both machine
learning and deep learning approaches.

Features Used for Classification

Previous studies have established a strong foundation for extracting features in malware detection from
binary executables. Ahmadie et al.[58] and Alazab et al.[59] focused on bytegrams, opcode grams, API
calls, section-based features, and the frequency of static API calls in Windows binaries, specifically to
detect malware, including zero-day threats. Similarly, other studies [60] [61][62][63] [64] [65] proposed
using PE file headers, opcode frequency, byte entropy, function lengths, and strings from disassembled
executables, among others, as features, to classify different types of malware.Each of these studies
claim that that such features are highly effective in detecting or classifying malware.

Therefore, in our study we incorporate these features—byte histograms,byte entropy, opcode fre-
quencies, and function lengths, pe header features, to name a few. Rather than exhaustively cataloging
all API calls, we refine our focus to target entry, exit points, imports and exports. Similarly, for string
analysis, inspired by shafiq et al [66] and Rama et al. [67] , we employ a composite feature vector
that includes the total number of strings, their average length, distributions of printable characters, and
counts of specific patterns such as URLs and file paths. This strategy efficiently condenses the infor-
mation, maintaining key data in a form that is readily applicable to our model as will be discussed later
in methodology.

Machine Learning Approaches

Numerous studies have applied supervised learning techniques to malware classification. For example,
Ahmadi et al.[58] used an XGBoost classifier and achieved high accuracy on the Microsoft Malware
Classification Challenge dataset. Alazab et al.[59] employed supervised learning algorithms such as
KNNs and NNs to analyze malware using the frequency of static API calls. Similarly, Babbar et al.[68]

2.3. Related Works: Malware Analysis 15

focused on using the K-Nearest Neighbors algorithm for Android malware detection by studying inter-
actions with system APIs. Others, like Sahs et al. [69], utilized a one-class Support Vector Machine to
profile benign behavior and identify malware based on a binary vector representing Android application
permissions.

Other works preferred using ensemble models. For example, Santos et al.[61] utilized Polynomial
Kernel classifiers and Random Forests to differentiate between benign and malicious samples using
opcodes. Zhu et al. [70] implemented an ensemble Rotation Forest model for Android malware clas-
sification, demonstrating the effectiveness of combining multiple classifiers for improved classification
accuracy.

While these models report high accuracy they primarily handle numerical or categorical data, our re-
search integrates a broader array of features including both string and numerical data. The challenges
posed by diverse data types are not as effectively addressed by traditional models like SVMs or Random
Forests. To address these challenges, we use deep learning, specifically leveraging state-of-the-art em-
beddings from OpenAl that are adept at processing diverse data formats. These embeddings convert
diverse features into a vector of floats, which can subsequently be employed as input for malware clas-
sification using any supervised learning technique. For classification, we employ logistic regression—a
linear model—to validate our embeddings. This approach is chosen because good-quality embeddings
should facilitate effective classification even with simple linear models. Logistic regression is advanta-
geous as it generally involves fewer hyperparameters than more complex models like neural networks
or ensemble methods as used in prior work.

There also have been works that use unsupervised methods. For example, Tian et al.[62] use clus-
tering in combination with statistical tests to analyze function length patterns, enabling them to classify
seven Trojan families. They choose clustering to delve into deeper insights regarding function lengths,
despite having access to ground truth data that could support supervised learning. Conversely, Suarez
et al. [71] created "Dendroid,” a system that combines text mining and information retrieval with hierar-
chical clustering to produce dendrograms which they claim to mimic phylogenetic trees. Their approach
employs single linkage clustering, which they liken to phylogenetic analysis, to provide evolutionary in-
sights into malware families.

Our research recognizes the advantages of clustering but primarily utilizes supervised learning tech-
nigues, making use of available ground truth data, to validate the embeddings sourced from OpenAl.
Moreover, for a more precise analysis of evolutionary relationships among malware, we adopt estab-
lished bioinformatics techniques like UPGMA and Neighbour Joining, instead of single linkage cluster-
ing, which is uncommon in phylogenetic studies [44] [72] [73]. These methods better align with the
standard practices in phylogenetic analysis, providing a more accurate framework for building phyloge-
netic trees.

Deep Learning Approaches

In our previous discussion, we highlighted our intention to use deep learning techniques. It is beneficial
to explore the work of others in this field to understand the various approaches that have been employed.
In deep learning, it's often feasible to convert a feature classifier into a feature extractor, making the
approaches in literature applicable for both generating embeddings and classifying malware.

Dahl et al. [74] use random projections to compress sparse binary features through neural networks,
improving classification performance compared to traditional models. Others such as Krcal et al. [75]
and Raff et al. [76] employ convolutional neural networks (CNNs) for analyzing raw byte sequences of
executable files. Kr&al’s architecture [75] is designed to reduce false positives, whereas CNN of Raff
et al. adeptly handles long sequences and diverse data types.

Our approach differs from those that use convolutional neural networks to process raw byte se-
quences. Instead of employing CNN based architectures for this, we reserve them for image analysis,
where executable files are converted into byte sequences and then transformed into image formats—a
method that shows more promise, as will be discussed in the next subsection. Instead, our strategy
mirrors that of Rizvi et al. [63], who extract features like strings and byte entropy and utilize attention-
based networks to classify malware executables. However, rather than using attention-based networks
directly, we employ sota embeddings from OpenAl, which internally uses transformer architectures[54].

2.3. Related Works: Malware Analysis 16

2.3.2. Image Analysis

Computer vision, a technique that enables computers to interpret and analyze visual data, has become
increasingly popular in malware analysis. In this section, we will initially review the algorithms that
convert binary files into image formats, mainly PNGs. Subsequently, we will examine how these images
are transformed to be compatible with different models. Finally, we will explore the diverse architectural
approaches employed by studies to classify these images.

Malware To Image conversion

Several studies have focused on transforming executable files into grayscale images to classify mal-
ware.For example, Ni et al. [77] extract opcodes from malware, apply SimHash to generate binary
hashes, and convert these into grayscale values to visualize malware fingerprints. Similarly, Nataraj
et al. [78], Kancherla and Mukkamala [79] treat binary data as arrays of 8-bit unsigned integers that
are reorganized into two-dimensional arrays to produce grayscale images. Similarly, approaches by
Gaikwad et al. [80], and Kumar et al.[81] involve direct mapping of binary file bytes onto visual formats
to highlight malware structures. Han et al. [82] map bytes directly onto bitmap images, while Gaikwad
et al. [80] and Kumar et al. [81] arrange binary code of executable files into two-dimensional arrays,
converting these arrays into grayscale images.

On the other hand, Demmese et al.[83] argue that rgb-based encoding, as opposed to grayscale,
produces more compact images by reducing pixel space by a third, thereby minimizing distortion during
image resizing. Similarly, other studies [84] [85] [86] highlight that rgb images may be better than gray
scale for malware classification. Building on this, Han et al.[82] adopt a more colorful approach by
extracting opcode sequences from malware samples and assigning specific RGB colors to different
opcode sequences. Demensce et al.[83] use a technique where each pixel represents three sequential
bytes, effectively capturing more data per row and ensuring consistent byte-level alignment across the
image. Similarly, Vu et al.[85] assign rgb colors based on byte value categorization and Shannon
entropy calculations. This technique transforms binary data into color images where different colors
denote various data types and entropy levels.

Surprisingly, many studies [84] [87] [88] [89] [90] adopted ’bin2png’ method developed by Sultanik
to create RGB images from binaries[91]. This method processes the binary data in three-byte chunks,
where each chunk represents one RGB pixel: the first byte for red, the second for green, and the third
for blue. To ensure the byte count aligns with this segmentation, all files are zero-padded at the end to
make them divisible by three. The dimensions of the resulting image are automatically determined to
be as close as possible to a multiple of three. Given the use of bin2png in the public dataset Malevis
and its adapted versions in MalNet, which we also utilize, we have opted to employ this method for
converting our malware executables to maintain consistency.

Image Transformations

In the literature, a few studies choose not to use any transformations and adapt their methodologies to
work with original image sizes [78] [79] [81]. Conversely, many works implement resizing techniques.
Some [92] [86] [93] [94] [95] explicitly utilize bilinear interpolation while others employ PIL [96] [97]
[98] [99] , which typically involves either bilinear or nearest neighbor methods according to the code.
Additionally, a few studies[100] [101] [102] [102] specify the use of LANCZOS interpolation.

Given the lack of detailed explanations about the benefits or effects of various resizing methods
in studies, we have chosen bilinear interpolation. This decision is primarily because it is the default
resizing method in the transformers library that we utilize for processing our images.

Architectures

In the field of image analysis, CNNs (Convolutional Neural Networks) are widely employed. Studies
such as those by Sang et al.[77] focus on analyzing malware through grayscale visual fingerprints
using CNNs. Similarly, Gilbert et al. [103] and Kumar et al. [81] apply CNNs to examine grayscale im-
ages created from binary executables, achieving high accuracy in malware detection and classifcation.
Others such as Han et al.[82] and He et al.[86] use CNNs on RGB-colored pixel images for malware
detection. Differing from these approaches, Yakura et al. [104] enhance their CNN with an attention
mechanism to pinpoint critical regions within binary sample images.

Some works [105] [106] have taken it a step further by utilizing transfer learning with pre-trained
models like VGGNet, initialized with ImageNet weights, to classify malware. A study conducted by

2.3. Related Works: Malware Analysis 17

Bhodia et al. [107] shows that transfer learning with architectures such as VGGNet and InceptionV3
generally yields better results than traditional CNNs especially when handling large public datasets.

Motivated by this, we use a ResNet-50 model, initialized with ImageNet weights, as the foundational
architecture for image analysis. Our approach involves initially training this model on publicly available
datasets, then further refining it by fine-tuning on our specific dataset.

2.3.3. Main Limitation: Static and Image Analysis

Works in both static and image analysis work with the assumption that the malware executables are
unpacked or do not take that into consideration. There are studies such that of kumar et al. [105]
who claim that their architecture is resilient to packing by showing that it can still classify UPX packed
samples but do not extend this analysis to other packers.

In our work, we address this limitation by extracting memory dumps from running the malware
and subsequently retrieving the executable from memory—a process we will elaborate on later. This
approach is effective as it typically captures the executable when most forms of runtime obfuscation or
encryption have been resolved to facilitate execution.

Furthermore, the literature we reviewed mainly focuses on malware in Windows executables or An-
droid applications, but it largely overlooks ELF samples. An analysis by Michael Potuck [108] shows
that, in 2023, around 52% of malware attacks have targeted Windows platforms. Meanwhile, Linux sys-
tems have experienced 47% of attacks, mainly involving ELF formats like Mirai and Bashlite, indicating
a rising interest in Linux because of its growing exposure and advanced attack methods. In contrast,
only a marginal 1% of attacks were directed at macOS. Therefore, our study includes samples from PE,
DOS, and ELF formats, reflecting our aim to facilitate a comprehensive study of malware evolution.

2.3.4. Dynamic Analysis

In this subsection, we will initially discuss features commonly used in machine learning and deep learn-
ing for malware classification in dynamic analysis. Subsequently, we will explore models used in both
machine learning and deep learning approaches.

Features used for Classification

Many behavioral features are utilized for malware classification. Mohaisen et al. [109] analyze system,
network, and registry behaviors to detect anomalies. Simiarly, Galal et al. [110] focuses on process
creation, process termination and registry.

Other studies [111] [112] [113], [114] focus primarily on leveraging API calls for behavioral classifi-
cation. In contrast, research by Phode et al. [115] adopts a more extensive approach, encompassing
a variety of metrics including the number of processes, CPU usage, packet sizes, and memory usage,
alongside API calls, to provide a thorough analysis of system impact.

Drawing inspiration from these works, our research involves monitoring API calls and extends this
by indirectly assessing command executions through the examination of processes that are initiated or
terminated. We also give special consideration to registry behaviors, including tracking changes, addi-
tions, or deletions of registry keys. While we do not explicitly monitor network behaviors or the quantity
of processes, we focus on file interactions, tracking files that are opened, written to, and deleted.

Machine Learning Architectures

Most studies employing machine learning in malware detection have predominantly utilized Support
Vector Machines(SVMs) and Random Forests (RFs). For example, both Liang et al. [112] and Galal et
al. [110] have implemented SVMs and RFs to assess their feature sets. While studies like Mohaisen
et al.[109] have investigated Decision Trees and KNNs, these techniques are relatively less prevalent
in the field.

Deep Learning Architectures

In deep learning applications for malware detection, sequential networks like Recurrent Neural Net-
works(RNNs) and Long short-term memory(LSTMs) are frequently used. For example, Maniath et al.
[116] leveraged LSTMs to classify ransomware, while Rhode et al. [115] utilized RNNs for broader
malware classification tasks. Less frequently used methods involve denoising autoencoders, as imple-
mented by David et al. [117] and Stacked AutoEncoders, utilized by Hardy et al. [118], for malware
detection.

2.4. Open Source Datasets of Malware Executables 18

Our approach

Similar to static analysis, many architectures in previous work transform textual features into categorical
or numerical features before feeding it traditional machine learning algorithms like Random Forest or
decision trees. Instead of following these conventional methods, we use state-of-the-art embeddings
from OpenAl, which leverage Transformers—considered an advancement over LSTMs and RNNs, to
process the textual features into embeddings.We believe our approach is not only notably simpler than
feature transformation but also offers greater expressiveness. This is because it allows us to directly
use complex dependencies within the text that may be lost when reduced to categorical as done in
prior works.

2.3.5. Practical Applications
Despite the perception that machine learning and deep learning might not be widely used in real-world
applications, many antivirus (AV) vendors effectively employ these technologies for malware detection
and classification. For instance, Avira [119] leverages deep learning for feature extraction and malware
classification, while Kaspersky [120] utilizes supervised learning throughout its detection pipeline, pri-
marily employing ensemble methods like Random Forests and Gradient Boosted Trees. Kaspersky
also implements clustering to identify hidden data structures and group similar objects or features.
Similarly, Windows Defender [121], utilizes deep learning models such as Deep CNN-BILSTM to
effectively handle sequential tasks encountered in natural language processing. This model is used to
detect various attacker tactics, including the identification of malicious PowerShell scripts associated
with malware. Other AV vendors like Sophos [122] and MalwareBytes [123] also employ machine
learning to boost their malware detection capabilities. Therefore, both machine and deep learning are
widely utilized by these private antivirus vendors.

2.4. Open Source Datasets of Malware Executables

Open source datasets are often limited and can quickly become outdated due to the rapidly evolving
nature of malware. In this section, we will review a selection of available open source datasets and
highlight the public datasets that we will use for our research.

Binaries for static and behavior analysis

Nadeem et al.[124] recently highlighted the scarcity of open-source malware datasets and the rapid
obsolescence of existing collections such as VX Heavens, Drebin, and MalGenome. While these
datasets were initially comprehensive, they have struggled to keep pace with the evolving nature of
malware threats. Projects like Stratosphere IPS [125] have produced datasets like CTU-13 and 10T-23
focusing on network traffic from botnets and loT malware; however, these do not meet our needs as
our research requires binary data rather than network traffic analysis.

Prominent datasets like the Kaggle Microsoft Malware dataset[126] present significant challenges.
Alterations such as modifying the header to hinder malware execution and removing SHA hashes com-
promise the reliability of these datasets. These changes prevent dynamic analysis due to malformed
headers and complicate validation with tools like VirusTotal, making it unusable for our research.

Other specialized databases, like the Motif collection compiled by Joyce et al. [127], offer extensive
information through modified PE malware samples and detailed metadata. However, they also modify
their samples to prevent execution.

Similarly, the EMBER dataset [128] provides humerous PE samples primarily as features, including
byte entropy and strings. While these features contain rich content, we cannot use them directly; we
need the binary to create images and execute the malware. Other private datasets [129] [130] [131]
have only 20-30 malware samples with claimed family labels and do not have a sha for verification
purposes. These factors render such datasets unreliable for this study’s objectives.

The majority of these datasets primarily focus on PE files, often neglecting crucial formats like DOS
and ELF that are essential for tracking malware evolution in our study. Malware Bazaar[132], on the
other hand, offers a broad range of malware samples and metadata across various formats. Despite
challenges with accurate ground truth data and a high incidence of false positives, we carefully select
samples from Malware Bazaar for our research, as detailed further in our methodology.

Another noteworthy dataset is VX Underground[133], sourced from the darknet and claimed to be
the internet’s largest repository of malware source code, samples, and scholarly articles. This dataset

2.5. Phylogenetic Trees 19

includes SHA signatures for all samples covering multiple formats, which generally correspond well
with the ground truth labels provided by VirusTotal AV vendors. After confirming these SHA signatures
through VirusTotal, we have incorporated a substantial number of their samples in our study.

Datasets for Image Analysis

We use 3 primary public datasets used for image analysis. The Malimg Dataset, introduced by Nataraj
et al., consists of 9,339 gray scale images derived from malware samples across 25 distinct families
and is commonly used to explore and develop machine learning models [134] [135] [136] [137].

Similarly, the MaleVis Dataset,an open-set collection of RGB images generated from 25 different
classes of malware, is also commonly used in the literature [138] [136] [139] [140].

Lastly, MalNet [141], developed with the support of Androzoo, is a hierarchical RGB image and
graph database aimed at aiding machine learning and security researchers in identifying malicious
software. It stands out by providing a large collection of 1,262,024 images and graphs across 696
families organized according to the Euphony Hierarchy. We use all these datasets to initially train our
resnet-50 model, and then we finetune it on our specific dataset, as detailed later in the methodology.

Our selection of the Malimg dataset, which uses a unique encoding method to create grayscale
images, along with the Malevis dataset that employs bin2png encoding for RGB images, and the MalNet
dataset that uses an adapted version of bin2png encoding, is requently observed in the literature. For
example, Panda et al. [142] and Guven et al. [143] have both employed the Malevis and Malimg
datasets for transfer learning to enhance malware detection capabilities in loT environments despite
the different encodings.

2.5. Phylogenetic Trees

Phylogenetic trees [44] [72] [73] are a recognized method in bioinformatics used to trace the evolution-
ary history of species. These trees graphically depict the evolutionary relationships among biological
entities based on their physical or genetic similarities and differences. In our research, we adapt this
method to create phylogenetic trees from our malware embeddings. The detailed process will be de-
scribed in the methodology section of our paper. This section will begin with a high-level overview of
phylogenetic trees, followed by a detailed explanation of the construction methods we employ, focus-
ing particularly on Unweighted Pair Group Method with Arithmetic Mean(UPGMA) and NeighbourJoin-
ing(NJ) techniques. We will also review related work on other methods for constructing phylogenetic
trees and discuss approaches used in rooting and validating these trees.

2.5.1. High level overview of Phylogenetic Tree

Phylogenetic trees are graphical representations comprising nodes and branches that delineate the
evolutionary relationships among taxa. In biological terms, "taxa” (plural of "taxon”) are groups of or-
ganisms recognized as distinct entities by taxonomists, such as species or genera. In our study, each
taxon represents an individual malware sample, and collectively, these are referred to as "taxa.” Termi-
nal nodes in these trees represent the specific entities under study—malware samples in our case—
while internal nodes denote their theoretical common ancestors. These trees effectively map out the
evolutionary trajectories of the taxa, illustrating their divergence from common origins over time [44].

2.5.2. Phylogenetic Tree Building methods

Developing phylogenetic trees involves various computational methods, each making its own assump-
tions about evolution’s nature and strategies for modeling evolutionary processes. This section will
initially explore tree construction methods before showing some of its application in bioinformatics.

There are many ways to build phylogenetic trees. The common ones are Maximum Parsimony(MP),
Neighbour Joining(NJ), Unweighted Pair Group Method with Arithmetic Mean(UPGMA), Maximum Like-
lihood(ML) and Bayesian method.

These methods can be grouped into Sequence-Based Methods and Distance-Based Methods. Among
the Sequence-Based Methods, Maximum Parsimony (MP) seeks the simplest explanation for evolution-
ary changes by minimizing the total number of evolutionary events [44]. Maximum Likelihood (ML) eval-
uates the probability of different phylogenetic trees by applying specific statistical models of sequence
evolution [44]. Bayesian Inference calculates probabilities of phylogenetic trees by integrating prior
knowledge with the observed data, allowing for complex model specifications and providing measures

2.5. Phylogenetic Trees 20

of uncertainty [44]. These techniques are essential in studies where direct sequence comparisons
illuminate evolutionary histories.

On the other hand, distance-based methods construct phylogenetic trees by analyzing the genetic
distance between sequences rather than the sequences themselves. These methods are generally
faster and simpler compared to sequence-based methods. Neighbor-Joining (NJ) is a popular ap-
proach that builds trees by iteratively clustering the closest pairs of operational taxonomic units based
on genetic distance, optimizing tree topology for minimal total branch length [44]. Another method, Un-
weighted Pair Group Method with Arithmetic Mean (UPGMA), assumes a constant rate of evolution and
creates a tree by grouping taxa based on the average distance to other taxa, resulting in an ultrametric
tree where the distances from the root to every tip are equal [44]. These distance-based methods are
particularly useful when sequence data is scarce or when rapid tree estimation is required.

In our research, we utilize distance-based methods to construct phylogenetic trees, which effec-
tively visualize evolutionary relationships using embeddings derived from malware samples. Although
sequence-based methods are used in some studies[144]—such as those employing the Needleman-
Wunsch global alignment technique for opcode sequences—they prove less efficient for our objectives.
These methods involve time-consuming alignment processes and introduce complexities and poten-
tial inaccuracies when converting malware into a suitable sequence format for alignment. Conversely,
distance-based methods are straightforward when applied to embeddings, which are central to our
methodology.

Neighbor Joining Method

The Neighbor Joining (NJ) method is a distance-based algorithm used in the construction of phyloge-
netic trees. Table 2.3 gives a detailed overview of the neighbour joining method.

Table 2.3: Overview of the Neighbor Joining Method

Aspect Details

Method Overview The Neighbor Joining (NJ) method is a distance-based algorithm
efficient for constructing phylogenetic trees by minimizing total
branch length, ideal for large datasets.

Data Preparation Input: Matrix of pairwise distances reflecting the evolutionary di-
vergence between taxa.
Leaves: Represent the taxa being analyzed, forming the terminal
nodes of the tree.

Tree Construction Merging: Begins with a star-like tree, where all taxa are directly
connected to a central node without any internal structure. At
each iteration, a pair of taxa that minimally increases the total
branch length is identified and merged into a new node.
Distance Matrix Update: After merging, the distance matrix is
updated to reflect the new distances between the new node and
other taxa, setting up for the next iteration.

Tree Finalization Termination: The iterative process continues until all taxa have
been merged into a single phylogenetic tree that reflects the evolu-
tionary relationships among the input taxa with the minimum total
branch length.

Unrooted Tree: The final phylogenetic tree is unrooted, where
the length of each branch is proportional to the estimated evolu-
tionary distance between nodes.

Assumptions Distance Matrix Accuracy: Assumes input distances accurately
reflect the evolutionary divergences.
Minimization of Tree Length: Seeks to construct a tree that min-
imizes the total branch length.
Starlike Phylogeny: Initially assumes a starlike phylogeny, sim-
plifying early algorithm stages.

2.5. Phylogenetic Trees 21

UPGMA Method

The Unweighted Pair Group Method with Arithmetic Mean (UPGMA\) is a classic hierarchical clustering
method with average linkage used to construct phylogenetic trees. Unlike distance-based methods
that seek to minimize tree length, UPGMA assumes a constant rate of evolution across all lineages,
producing a rooted tree that reflects the temporal sequence of divergences. This process is detailed in
table 2.4

Table 2.4: Overview of the UPGMA Method

Aspect Details

Method Overview The UPGMA (Unweighted Pair Group Method with Arithmetic
Mean) method is a distance-based algorithm used for construct-
ing phylogenetic trees, characterized by its use of an arithmetic
mean to calculate the distance between clusters, making it suit-
able for ultrametric trees where the same amount of evolutionary
change is assumed along each branch.

Data Preparation Input: A matrix of pairwise distances, representing the evolution-
ary divergence between each pair of taxa.
Leaves: Each leaf represents a taxon (species or sequence) from
the input distance matrix, forming the observed endpoints of the
tree.

Tree Construction Cluster Formation: UPGMA iteratively joins the two closest taxa
or clusters of taxa, based on the arithmetic mean of their dis-
tances. This process continues until all taxa are included in a
single hierarchical tree.
Height Calculation: Calculates the ’height’ of each node (the
distance to the leaves), reflecting the time of divergence under
the molecular clock assumption.

Tree Finalization Rooted Tree: The resulting UPGMA tree is rooted, indicating the
most recent common ancestor of all taxa. Branch lengths are
proportional to the estimated time of divergence.

Molecular Clock: Assumes a constant rate of evolution, where
evolutionary change occurs uniformly across all branches.

Assumptions Molecular Clock: Assumes mutations accumulate at a constant
rate over time across all lineages.
Accuracy of Distance Measures: Assumes that the provided
pairwise distances accurately reflect the evolutionary time be-
tween taxa.
Equal Rates Across Lineages: Assumes uniform evolutionary
rates across all branches, which can lead to inaccuracies when
different lineages have experienced varying rates of evolution.

Applications of UPGMA and NJ

While UPGMA and Neighbor Joining are both distance-based methods, their popularity in bioinformat-
ics remains significant. For instance, Hillis et al.[145] explore the application of UPGMA in studying
molecular phylogenies, while Andriani et al.[146] utilize it to track the identification and spread of the
Ebola Virus. Additionally, Andrei et al.[147] employ UPGMA for analyzing type || CRISPR RNA-guided
endonuclease Cas9 homologues.

Neighbor Joining is notably more prevalent due to its flexibility in not assuming a constant rate
of evolution, making it suitable for a wider range of studies [148] [149] [150] [151]. Some notable
examples inlcude Snrzlic et al.[152] who apply it to molecular characterization of Anisakidae larvae
from the Adriatic Sea, Thangaraj et al.[153] use it to analyze four Aspergillus species, and Comas et
al.[154] leverage it for DNA sequencing of monomorphic bacteria.

2.5. Phylogenetic Trees 22

2.5.3. Rooting Phylogenetic Trees

Rooting a phylogenetic tree is fundamental for accurately depicting the evolutionary history of the taxa
under study, as it provides directionality to the tree. This process distinguishes between ancestral and
descendant relationships, essential for interpreting the sequence of evolutionary events. By establish-
ing a temporal framework, rooted trees facilitate the reconstruction of evolutionary history and enable
the analysis of evolutionary dynamics over time[155].

Among the methods discussed, UPGMA uniquely produces a rooted tree inherently due to its as-
sumption of a molecular clock. This assumption implies that evolution occurs at a constant rate across
all lineages, allowing the method to infer the timing of divergence events and thus establish a root
automatically [73].

Methods for Rooting Trees

For methods that do not inherently produce a rooted tree, such as Neighbor Joining, rooting techniques
must be employed to root the tree. We use two main methods to root our phylogenetic tree:

» Outgroup Rooting: This method involves including an outgroup in the analysis, which is known
to be distantly related to the rest of the taxa (the ingroup). The root is placed on the branch that
leads to the outgroup, assuming that the outgroup diverged earlier from the ancestral lineage
than any of the ingroup taxa [156].

» Midpoint Rooting: In the absence of a clear outgroup, trees can be rooted at the midpoint of the
longest path between any two taxa on the unrooted tree. This method assumes that the root lies
equidistant from the tree’s furthest points, aiming to minimize the variance in the distance from
the root to all leaves[155].

2.5.4. Application of Phylogenetic Trees in Malware Research
As highlighted in the introduction, there is limited research on the use of phylogenetic trees in malware
analysis. Nonetheless, three pioneering studies have utilized phylogenetic trees on malware samples.

Vinod et al.[144] address metamorphic malware by using the Needleman-Wunsch method to align
opcode sequences, facilitating signature development. Although they incorporate phylogenetic con-
cepts, they do not detail their tree construction techniques or analyze evolutionary relationships be-
tween malware families. Instead, their focus is on enhancing malware detection through the develop-
ment of opcode sequence-based signatures, informed by phylogenetic tree evolution.

Cozzi et al.[157] explore the lineage among loT malware families by employing binary diffing and
Minimum Spanning Tree (MST) analysis as proxies for phylogenetic trees. Their approach clusters
malware from similar families but does not provide a timeline of evolutionary relationships, nor does it
root the trees to specify directional ancestry.

He et al.[158] introduce an efficient method for performing neighbor joining, though their work is lim-
ited to methodological development without applying it to understand relationships between malware.

Collectively, these studies demonstrate limited applications of phylogenetic trees in malware anal-
ysis. Our research is unique in its approach to use phylogenetic trees to illuminate the evolutionary
dynamics of malware, integrating both inferential and validation techniques based on established bioin-
formatics literature.

2.5.5. Related Works: Validating Phylogenetic Trees

Validating phylogenetic trees ensures reliability of evolutionary relationships inferred from genetic or
morphological data. In bioinformatics, three main approaches are commonly used to validate phyloge-
netic trees: cross-validation, congruence testing, and the use of temporal data.In this section we will
discuss these methods and their relevance to our approach.

Several studies[159] [160] [161][162] [163] employ cross-validation techniques like jackknife and
leave-one-out methods to validate phylogenetic trees. These methods assess tree robustness by sys-
tematically omitting parts of the data, examining how tree topologies change in response. These meth-
ods work under the assumption that consistent tree topologies despite data exclusion signify reliable
evolutionary relationships. While primarily applied to sequence-based data, these methods present
challenges: they require significant computational resources for large datasets and the removal of taxa
can unexpectedly alter the tree topology.

2.5. Phylogenetic Trees 23

Phylogenetic congruence tests are also utilized to validate phylogenetic trees [164] [165] [166].
These work by comparing trees derived from various data partitions or genes to ensure consistency
across these different sources. High congruence supports the tree’s reliability. Predominantly requiring
sequence data, these tests are challenging to adapt for other data types due to their reliance on specific
gene or partition comparisons.

Both cross-validation techniques and phylogenetic congruence tests present practical challenges
for our purposes. While cross-validation could theoretically be applied, it is computationally intensive,
especially given the large collection of malware samples in our study. Phylogenetic congruence, on
the other hand, relies on sequence data, which is not applicable to our dataset.

Other studies [167] [168] [169] use temporal data to validate trees by considering the chronological
order of species divergences. This approach often relies on molecular clock assumptions to estimate
divergence times and typically requires sequence data. It calculates the timing of evolutionary events
by analyzing the genetic differences between sequences, using known rates of mutation to infer how
long ago these divergences occurred based on temporal data.

In our study, we are not interested in estimating the divergence times. Instead, we introduce a new
method that relies on analyzing relative recent divergence times—a fundamental aspect of the temporal
method which will be elaborated in the methodology section of our study.

MalwareGenome Dataset

This chapter presents our dataset, MalwareGenome, which forms the basis of our study. It includes a
detailed discussion of the data sources, encompassing both public and private collections. Additionally,
this chapter describes the methods we employed to verify and preprocess the samples.

3.1. Sources

The background section underscored several key challenges in using public datasets for malware anal-
ysis, such as the unreliability of ground truth, rapid obsolescence of datasets, and the modification of
headers to inhibit execution.

Our public samples are sourced from MalwareBazaar and Vx-underground. Additionally, following
recommendations from Nadeem et al.[124], we have also gathered private samples from entities such
as VirusTotal—whom we thank—as well as other other private collections.

To address the challenges mentioned, all samples from these sources are verified to be valid, with
no header modifications that could inhibit execution, and are regularly updated to stay relevant to the
current malware landscape. Despite these precautions, the inherent unreliability of ground truth re-
mains a concern, as some samples may still be mislabeled or not malicious at all. To mitigate this
issue, we have established a rigorous validation process for the samples, details of which are outlined
in the following subsection. This process is designed to overcome the obstacles identified in the initial
discussion and ensure the integrity of our dataset.

3.1.1. Validation of Samples
To validate the samples, we rely on VirusTotal as a trusted source. The criteria for including or excluding
a sample are outlined in a flowchart presented in Figure 3.1.

Referring to figure 3.1, there are two primary reasons for excluding a sample if it is not present in
VirusTotal. Firstly, if a SHA hash is not identified as malicious by multiple sources, including various
Antivirus(AV) vendors on VirusTotal, we consider it unreliable. Secondly, while we could upload the
sample to VirusTotal to obtain a label, the temporal metadata—especially the first submission date—is
crucial for validating our phylogenetic tree. Uploading the sample ourselves would incorrectly set our
upload date as the initial submission date undermining the accuracy of our validation approach.

To verify the family labels, we primarily use labels from VirusTotal AV vendors. Our method involves
a straightforward heuristic: if the family label does not align with the most common label from VirusTotal,
we then check if at least 30 % of the AV vendor labels on VirusTotal concur. If they do, we accept the
sample; otherwise, we reject it as shown in figure 3.1.

3.1.2. Preprocessing of Samples

The samples in our collection are not just executables; they are stored in folders that contain various
file types including JPEGs, PEGs, Word documents, shortcut files, and DLLs. We removed these
extraneous files as part of our data cleaning process. Following this cleanup, our refined dataset
contained 103,883 samples, representing 538 distinct malware families across PE, ELF, and DOS
formats.

24

3.1. Sources 25

Obtain Sha

from Collection

i

Is sha False
in VirusTotal?

Z
=
h 4
Family Label Family Label
matches False N agrees P
Mast Popular *| with 30% Virustotal AV Dismiss Sample
VirusTotal label? labels?

True

A

Accept Sample

Figure 3.1: Flowchart of how we validate our samples

3.1.3. Class Distribution
In figure 3.2 we highlight that the top 10 families in terms of the number of samples we have.

Top 10 Malware Families by Count

20000 -

17500

15000

12500

10000

Counts

7500

5000 4

2500 4

Family Name

Figure 3.2: Imbalanced Family Distribution Of Our Dataset

It is immediately apparent from 3.2 that we have quite an imbalanced dataset. When dealing with
such a dataset it is important to ensure both the training and testing tests are representation in terms
of the distribution of the data. Therefore, we adopt our training and testing methodologies accordingly
as will be pointed in the methodology section.

3.2. Public Datasets for Image Analysis 26

3.2. Public Datasets for Image Analysis
We briefly mentioned the public datasets used for image analysis in the background. In this section we
will highlight some high level statistics of these datasets.

3.2.1. High level overview of Image Dataset

In our study, we employ three public image datasets: Malimg, Malevis, and MalwareNet. We combine
these datasets into a single, concatenated dataset referred to as ImageDataset. This dataset will serve
as the initial training set for our image analysis model, as detailed in the methodology section of our
work. The Malimg Dataset is comprised of grayscale byteplot images from 25 unique malware families,
processed using the grayscale conversion technique developed by Nataraj et al. [78]. Meanwhile, the
Malevis Dataset includes RGB images from 25 different malware classes, and the MalNet Dataset con-
tains images from 696 families, both of which use adapted versions of bin2png conversion technique.
Collectively, these datasets represent 746 unique classes, all distinct and non-overlapping with our
MalwareGenome dataset.

We also employ a benign image dataset processed using the same encoding techniques as those
used for the MalNet dataset from Androzoo. To construct a new dataset for our analysis, we first extract
embeddings from the benign dataset, as detailed in the methodology section. We then combine these
embeddings with those from our malicious dataset, the MalwareGenome dataset. The final dataset
contains 34.77% benign samples and 65.23% malicious samples.

3.2.2. Class Distribution

The distibution of classes of these datasets are presented in the figures 3.3, 3.4 and only 25 classes
of 3.5. The distributions within these datasets show a pronounced imbalance, resulting in a combined
dataset that is also imbalanced. This issue of dataset imbalance is a common occurrence even in
publicly available datasets and will be discussed in detail in the methodology section.

Number of Samples per family Number of Samples per family

750 1000 1250
Number of samples(only top 25 famiies)

Figure 3.3: Imbalanced Family distribution of Figure 3.4: Imbalanced Family distribution of
Malimg Dataset Malevis Dataset

Top 25 Families by Number of Samples

nnnnnnnnnnnnnnnnnn

Figure 3.5: (Top 25)Imbalanced Family distribution of Malnet Dataset

Methodology

This chapter outlines our methodology for analyzing the evolution of malware. We start by introduc-
ing our main pipeline, which involves transforming malware into embeddings and then constructing a
phylogenetic tree.The explanation of this pipeline is divided into two sections.

The first part details our approach to generating embeddings from malware samples through static,
dynamic, and image analyses.lt also discusses how these different types of analyses are combined into
a single embedding. Additionally, we describe the experiments conducted to validate each individual
embedding as well as the overall combined embedding. The second part delves into the construction
of our phylogenetic tree using the combined embedding. In this section, we also explain our techniques
for interpreting the tree in order to discern relationships within and among different malware families.
Lastly, we highlight the experiments used to validate the accuracy of this tree.

4.1. Pipeline

Transforming malware instances into embeddings and then converting them into trees is a fairly intricate
process. Our goal is to simplify this method by introducing a pipeline for creating phylogenetic trees
from malware samples. Throughout each phase of the pipeline we will highlight tools, and approaches
required to reproduce our approach.Our methodology is structured around four key phases, as depicted
in Figure 4.1:

1. Embedding Extraction (Embedding): The first phase focuses on extracting embedding what
we call "DNA”, of malware aiming to capture genetic profiles from pseudo-static(static analysis
on memory dumps), Dynamic and image analyses.

2. Embedding Concatenation and Dimensionality Reduction: Following extraction, the next
step involves merging these sub-embeddings into a unified embedding for each malware sample.
We do this along with reducing the total embedding dimension in a supervised fashion. This make
it computationally feasible to build trees.

3. Distance Matrix Development: Next, we create a similarity matrix using the combined embed-
dings from different malware samples. This matrix quantifies the genetic divergences among
various malware families, laying the groundwork for evolutionary analysis.

4. Phylogenetic Tree Creation: Using the distance matrix, the last step involves creating the phy-
logenetic tree. Two primary approaches, Neighbour Joining and UPGMA, are examined for con-
structing the phylogenetic tree.

27

472. Embedding Extraction 28

Embedding Distance Matrix
Extraction Development
1 (3)
Use features to Create a distance matrix
extract embeddings from the combined
embeddings
Reduce the Create a tree
dimensionality of from the distance
embeddings matrix
SriEiie Phylogenetic

Concatenation and
Dimensionality
Reduction

Tree
Creation

Figure 4.1: High Level Pipeline

Part 1: Creation of Embeddings

In the first part, our approach involves extracting embeddings from malware samples through pseudo-
static, dynamic, and image analyses. We then combine these diverse embeddings while applying
dimensionality reduction to obtain the final embeddings, which we refer to as the genome of malware.

4.2. Embedding Extraction

This section outlines our methodology for extracting embeddings from malware through static analysis
on dumps (pseudo-static), Dynamic analysis, and image analysis.

4.2.1. Motivation

We liken the embeddings we collect from (pseudo-static), Dynamic analysis, and image analysis to
individual "DNA” strands that collectively form the genome of a malware sample, similar to how the
collective strands of DNA define biological species.

While we are pioneers in using embeddings for this comparison, organizations such as Intezer[170]
have been utilizing genetic analysis for some time. Intezer identifies small code fragments as genes,
which are then transformed into "searchable tokens” for malware classification. Their analysis reveals
that most examined malware shares over 50% of its code with previously identified strains[170], high-
lighting that the essence of malware identification lies in the preserved traits within a family. Therefore,
even though we categorize malware into polymorphic, metamorphic, and evasive types based on be-
havior patterns—our approach is rooted in the observation that many malwares often retain significant
traits from their ancestors across all categories.

4.2.2. Overview of Different Analysis Methods

We use three different analysis methods in our study. Pseudo-Static Analysis involves examining the
malware’s code from memory dumps to identify its structure, operations, and potential threats. This
method is akin to sequencing a strand of DNA to understand its genetic blueprint, providing a detailed
look into the underlying mechanics of the malware.

In Image Analysis, we create visual representations of the malware’s code based on memory dumps.
Although more abstract, this approach can uncover patterns, structures, or anomalies that aren’t im-
mediately apparent, similar to using electron microscopy to visualize a virus’s physical structure and
protein arrangements. This method offers a unique perspective on the malware’s composition.

On the other hand, dynamic Analysis observes the malware in action within a controlled environ-
ment, such as a sandbox, to study its behavior, mechanisms of spread, and the effects it has on the host
system. It mirrors the study of a virus’s interaction with host cells in a lab setting, providing real-time
insights into the malware’s operational tactics and its immediate impact on systems.

472. Embedding Extraction 29

4.2.3. Extraction of Memory Dumps

Before we delve into the extraction of embeddings from various analysis methods, it's important to
address how we first obtain the executable file from memory dumps. This step is crucial due to the
challenges associated with packing, as discussed in the background section.

Our approach tries to mitigates these issues by directly extracting the executable file from memory
dumps.We apply this method to both pseudo-static and image analysis. In pseudo-static analysis,
we perform static analysis on executable files extracted from memory dumps, which better reveals
obfuscated and decrypted code. For image analysis, we use the executable file from memory rather
than the raw executable, providing a clearer view of the malware’s codebase rather than the packer.
In this subsection we will highlight how we extract memory dumps using different tools from malware
samples.

Tooling

We use several tools for malware analysis to enhance our investigation across various systems. Dig-
italOcean is one of the foundational tools we utilize, as it's a cloud infrastructure provider that allows
us to scale and manage our computing resources efficiently. We emulate VirtualBox inside a digital
ocean environment in order to create and manage virtual machines that emulate different operating
systems. This enables safe execution of malware in a controlled environment, allowing us to observe
its behavior without risking the integrity of the host system.

When analyzing memory, we use specialized tools tailored to the specific operating systems. On
Windows, our primary tool is Procdump, a command-line utility developed by Sysinternals (now part of
Microsoft). It generates memory dumps of processes based on specific triggers such as CPU spikes
or unhandled exceptions. This tool is essential for capturing the memory state of a process during or
after malware execution and provides deep insights into the operations of the malware. In contrast,
for Linux or Darwin systems, we utilize Gcore—an efficient utility that creates core dumps of running
processes without interrupting them. Both these tools can capture memory dumps without stopping
process execution and are valuable for our monitoring and logging activities.

To futher analyze the structure of malware, we use Lief, a tool for parsing and manipulating binary
files in ELF, PE, or Mach-O formats. We us lief to identifying and extracting executable sections within
these files marked by Mz for PE files or \x7£ELF for ELF files. By isolating these executable components,
lief enables a more targeted and efficient analysis of the malware’s binary structure.

Methodology

we begin by configuring a VirtualBox virtual machine on a Digital Ocean platform to emulate the target
operating system for malware analysis. A snapshot of the VM’s clean state is captured to serve as a
restoration point for post-analysis cleanup. After executing the malware within this controlled environ-
ment, we monitor all system processes for five minutes to capture behavior and network interactions.
Appropriate tools are employed to generate memory dumps: Windows systems use procdump -ma for
complete memory dumps, while Linux systems use gcore to produce core dumps without stopping
processes. These dumps are securely transferred to the host machine for analysis.

Sequential analysis of the memory dumps is conducted using the 1ief library to parse and identify
binary formats and to determine the size of the binary from its header, which aids in establishing the
endpoint of the executable within the dump. The executable segment is then extracted from the dump
using the start and end points identified with 1ief, and the isolated executable is saved to a file for
further detailed analysis.

Finally, the VM is restored to its pre-execution snapshot to eliminate all traces of malware and
prepare the system for subsequent analyses. We operate under the strong assumption that the initial
memory dump resembling a PE/DOS or ELF format is considered the main executable, allowing us to
automate the extraction process across an extensive dataset of 103,883 samples.

472. Embedding Extraction 30

4.2.4. Features Extraction From Psuedo-Static Analysis
This section begins by detailing the features used in our analysis. It then proceeds to explain the
methods employed to extract these features from PE, ELF, and DOS executables.

High Level overview of all features

Before delving into the specifics of our feature extraction process, we present a comprehensive overview
in Table 4.1, summarizing all the features utilized in our study. Additionally, we indicate whether these
features have been employed in related research. It is important to note that previous studies have
only focused on PE formats. In our analysis, we have extended these techniques to include ELF and
DOS formats as well.

Table 4.1: We use all of the features across PE, ELF, DOS formats

Feature PE ELF DOS Prior Work
ByteHistogram v v v [58] [60] [64] [66][65] [67]
ByteEntropyHistogram v v v [64] [66] [65] [67]
Strings v v v [69, 71] [64] [66] [67] [65]
GeneralFilelnfo v v v [60] [64] [66] [65]
HeaderFileInfo v v v [62]
Sectioninfo v v [60] [67] [66]
Importsinfo v v [59]
Exportsinfo v v [60]
EntryPoints v v v [58]
ExitPoints v v v [62]
Opcodes v v v [61]
OpcodeOccurrences v v v [61]
ImageSize v v v [63]
HeaderSize v v v [63]
StackReserveSize v [63]
StackCommitSize v [63]
HeapSize v v [63]
LoaderFlags v v [63]
KolmogorovCompression v v v [171]
DataDirectories v [66] [64] [65] [63]
MemorySize v [63]
BlockEntropy v

Interruptinfo v

StackSize v

Segmentinfo v

GNUStackPhysicalSize v

SectionEntropy v v [63]

Feature Extraction Across Different Executable Formats

All of our Portable Executable (PE) features, as detailed in Table 4.1, are derived from related work.
For DOS and Executable and Linkable Format (ELF) executables, we aimed to maintain a consistent
feature set with PE files. However, DOS, being an older format, inherently lacks the capacity for as
detailed feature extraction as PE. In the case of ELF, certain adaptations were necessary; for example,
instead of the StackReserveSize and StackCommitSize features common in PE, we use GNUStack-
PhysicalSize as detailed in Table 4.1. Generic extraction methods for all features are outlined in Table
4.2. For detailed extraction processes specific to each feature type, refer to Appendix D for PE features,
Appendix F for ELF features, and Appendix E for DOS features.

472. Embedding Extraction

31

Table 4.2: Extraction Processes for Generic Features

Feature Extraction Process

ByteHistogram Uses LIEF to target sections with MEM_EXECUTE and NumPy to com-
pute byte frequency histograms.

ByteEntropyHistogram Analyzes entropy within executable sections using LIEF for sec-
tion targeting and NumPy for entropy calculation.

Strings Employs regex and disassembly using Capstone to extract ASCII

GeneralFileInfo
HeaderFilelnfo
SectionInfo
Importsinfo
Exportsinfo
EntryPoints
ExitPoints

Opcodes
OpcodeOccurrences
ImageSize
HeaderSize
StackReserveSize
StackCommitSize
HeapSize
LoaderFlags
KolmogorovComplexity
DataDirectories
MemorySize (DOS)

BlockEntropy (DOS)

Interruptinfo (DOS)

StackSize (DOS)

Segmentinfo (ELF)

GNUStackPhysicalSize (ELF)

SectionEntropy

strings and identify significant patterns like URLs and file paths.
Leverages LIEF to parse and extract general file metadata, such
as size, and security attributes from headers.

Utilizes LIEF to gather detailed metadata from COFF and optional
headers, focusing on architecture and system version.

Uses LIEF to analyze properties like name, size, and entropy of
each section, identifying roles and security features.

Uses LIEF to parse the import address table, detailing external
library dependencies and associated API functions.

Employs LIEF to access and list functions in the export table, re-
vealing capabilities offered to other processes.

Utilizes LIEF to identify main and secondary entry points from
headers and export tables.

Combines LIEF for structure analysis and Capstone for disassem-
bly to locate and analyze exit function calls.

Uses Capstone to disassemble executable sections marked with
MEM_EXECUTE and list operational codes.

Follows opcode extraction with a frequency analysis using Python
dictionaries to tally opcode occurrences.

Computes total virtual size by aggregating section sizes using
LIEF or PEfile to parse the PE format.

Summarizes the combined size of all headers using LIEF or
PEfile for a detailed structural assessment.

Extracts reserved stack size directly from the optional header us-
ing LIEF or PEfile.

Retrieves memory committed to the stack at start-up from the op-
tional header using PEfile.

Parses the optional header with PEfile to calculate the sizes re-
served and committed for the heap.

Checks loader flags set during executable loading using PEfile
to parse the optional header.

Applies z1ib compression to executable sections identified by
LIEF to measure data redundancy.

Iterates with LIEF over data directories detailing import and export
tables and resource sections.

Parses the DOS header with struct to extract memory size spec-
ifications, including maximum and minimum allocation.

Divides the file into blocks and calculates entropy for each using
Python’s standard libraries to assess data randomness and com-
plexity.

Employs Capstone for disassembly of the DOS executable to
identify and document software interrupt instructions, providing
insight into system interactions.

Extracts stack size directly from the DOS header using struct,
offering insights into the initial stack setup and memory manage-
ment.

Uses LIEF to parse ELF segments, collecting details on segment
type, physical size, and virtual address to analyze the binary’s
memory layout and security characteristics.

Utilizes LIEF to identify the GNU_STACK segmentin ELF binaries
and extracts its physical size, indicating memory allocation for the
stack.

Calculates entropy within file sections across formats to detect
encryption or obfuscation using tools like NumPy.

472. Embedding Extraction 32

4.2.5. Embedding Extraction From Pseudo-Static Analysis

This section outlines our methodology for extracting embeddings from Pseudo-Static Analysis . We
begin by justifying our choice of the text-embedding-3-large model over other available text-embedding
model variants. Next, we adjust the format of features extracted through pseudo-static analysis to align
with the input specifications of the OpenAl text-embedding-3-large model, herein referred to as the GPT-
Text model. We then detail the process for generating embeddings from these adjusted features and
discuss the techniques we employ to validate these embeddings.

Model

In our study, we opted for OpenAl’'s GPT-Text text-embedding-3-large(GPT-Text) model over alterna-
tives such as text-embedding-ada-002 and text-embedding-3-small, due to its advanced capabilities
and enhanced performance, which are crucial for efficiently handling complex JSON-formatted data.
OpenAl’s text embedding models are engineered to convert text into numerical vectors, facilitating a
broad spectrum of applications from semantic search to multilingual information retrieval, underscoring
OpenAl’s dedication to improving text processing technologies.

The text-embedding-3-large model excels significantly beyond its predecessors, achieving impres-
sive results in benchmark tests with scores of 54.9% on the MIRACL benchmark and 64.6% on the
MTEB benchmark[172]. Capable of generating embeddings with up to 3072 dimensions, this model
offers a richer representation of text, which is essential for analyzing intricate data structures.

Additionally, its use of Matryoshka Representation Learning[172] enables an efficient trade-off be-
tween performance and computational expense, allowing for the reduction of embedding dimensions
without substantial loss of accuracy. This feature makes the text-embedding-3-large model particularly
suitable for our research objectives.

Formatting

We opted to store features as JSON strings, despite the fact that the GPT-Text model accepts text.
Our decision was based on our belief that using JSON helps the model correlate features with their
corresponding values more effectively. In addition, JSON not only simplifies storage but also enables
efficient conversion back to original data formats such as strings, numbers, arrays, or dictionaries which
is useful in truncation, as we will see later.

Embedding Extraction

To generate embeddings from Pseudo-Static features, we categorize the features into two types: sim-
ple features, consisting of numerical arrays, and complex features, which encompass structures like
dictionaries and lists containing both strings and numbers.

Numerical Features as Direct Embeddings

ByteHistogram and ByteEntropyHistogram are directly used for embeddings because they are in nu-
merical array form, unlike other features such as Entrylnfo, which contains a mix of strings and numbers.
Simple numerical features like StackSize or KolmogorovComplexity, despite being scalar values, are
not directly suitable for embeddings since they are not vectors. Instead, we utilize GPT-Text model to
convert these single values into embeddings, as detailed later.

Additionally, using ByteHistogram and ByteEntropyHistogram as direct embeddings offers further
benefits. The distinct signature provided by ByteHistogram outlines the frequency of byte values within
a file, helping to identify malware through recognition of unique or anomalous patterns. Similarly, By-
teEntropyHistogram evaluates the randomness or entropy in byte distribution, crucial for detecting ad-
vanced malware employing compression,or obfuscation techniques to evade detection. These features
can thus be used directly as embeddings to differentiate malware. These two features were combined
to create a composite 512-dimensional 1D embedding, with each feature contributing 256 dimensions.
This forms the initial segment of the pseudo-static embedding derived from pseudo-static analysis.

Complex Features

For complex features, we input them directly into the GPT-Text model. However, the model has a
truncation limit of 8191 tokens, necessitating the truncation of JSON strings. To manage this, we
convert the JSON strings back into their original data structures, allowing us to apply truncation where
needed, as explained next.

472. Embedding Extraction 33

Truncation

Several techniques can effectively truncate JSON structures, drawing from established strategies in
algorithms and data structures. These strategies include hierarchical truncation, sliding window, top-K
elements, recursive truncation, and tail timming. Hierarchical truncation prioritizes elements based on
their importance to ensure that key data is preserved for longer durations. Sliding window divides text
into overlapping segments to accommodate the token limit while maintaining contextual coherence.

Top-K elements selectively retain the most critical components within lists or dictionaries by con-
sidering factors like frequency or relevance. Recursive truncation applies truncation strategies to sub-
elements within JSON, particularly beneficial for deeply nested structures. Tail trimming involves re-
moving elements from the end of lists or sequences under the assumption that initial data holds greater
relevance.

In our truncation strategy, we implement a straightforward greedy approach using tail trimming,
which, despite its simplicity, proves to be effective. Initially, we determine the necessary token counts
using the TikToken tokenizer utilized by OpenAl. We then focus on key features; entrylnfo, exitinfo,
imports, exports, and information about sections or segments of the executable. These features are
targeted due to their extensive lists that significantly contribute to the overall token count. To optimize
token reduction, we evaluate each feature by temporarily removing its last element, recording the de-
crease in tokens, and then restoring it. If the removal of elements from a particular feature results in
more token reduction compared to other features, we prioritize its truncation by permanently removing
the last elements.

As we truncate these features, we impose a minimum length requirement of 5 entries for each to
retain fundamental detail. If the token count still remains above the limit, we iteratively decrease the
opcodes feature, removing 10 at each step while preserving critical information with a minimum length
of 20. Overall, this strategy enables us to efficiently manage the token limit constraint by systematically
reducing the size of token-heavy elements and opcodes. By doing so in a controlled manner, we ensure
that the reduction in tokens is achieved with minimal impact on the features’ content.

Embedding Generation

The embeddings, which are 1D vectors, were created by inputting complex features into the GPT-Text
model with the dimensionality set to 3000. This specific dimension was chosen because it adequately
captures the context of the features. To obtain the final embedding, we combined both direct and
complex embeddings, resulting in a composite one-dimensional embedding of length 3512.

Validation
To validate the Numerical and Complex embeddings derived from pseudo-static analysis, we employ
logistic regression. This approach is predicated on the assumption that robust embeddings should
enable a simple linear model to outperform a baseline classifier, which predicts based solely on the
most frequent class without using any features. A significant improvement in logistic regression’s per-
formance over the baseline would imply good embeddings.

To test this, we modeled Logistic Regression as a linear network using cross entropy loss in PyTorch.
To address class imbalances and achieve a robust evaluation, we employed stratified nested cross-
validation across 10 outer folds and 5 inner folds. The grid search, which consists of values for L1 and
L2 regularisation and initial learning rates, is presented in Appendix | in table 1.1. Note that the learning
rate is adjusted in each fold using the learning Rate Scheduler that decreases the learning rate based
on the patience of validation fold. The results of this experiment are outlined in the results chapter
under Experiment 1.

Table 4.3: Hyperparameters for Validation of Embeddings

Hyperparameter Setting

Regularization L1

Initial Learning Rate 0.01

Learning Rate Scheduler ReduceLROnPlateau (mode: max)
Patience 10 epochs using validation accuracy
Batch Size 64

Random State 42

Optimizer Adam

472. Embedding Extraction 34

4.2.6. Features Extraction From Dynamic Analysis
This section outlines the features derived from dynamic analysis, describes the extraction process using
our sandbox environments, and details how these features are transformed into embeddings.

High Level Overview of all features
Features that we used for dynamic analysis was inspired from several prior works as seen in table 4.4.
This table also specifies the maximum number of entries retained for each list-based feature.

Table 4.4: We use all of the features from Dynamic Analysis as listed in the table

Feature Entry Limit Prior Work
Files Opened 30 [109] [110]
Files Written 30 [110] [111]
Files Deleted 30 [110]
Command Executions 20 [113][112]
Files Attribute Changed 20 [114] [115]
Processes Terminated 20 [109]
Processes Killed 20 [113]
Processes Injected 20 [111][112]
Services Opened 20 [115]
Services Created 20 [115]
Services Started 20 [110]
Services Stopped 20 [110]
Services Deleted 20 [110]
Windows Searched 20 [111]
Registry Keys Deleted 10 [109] [114]

Feature Extraction Process

To extract features, we ran the malware samples using Any.Run and systematically collected behav-
ioral data through its API. In cases where the Any.Run API failed, we used VirusTotal Api to obtain the
behavioral data. All extracted features are list-based and include both strings and numbers. We estab-
lished entry limits for each feature, as outlined in table 4.4, in order to meet the token requirements of
the GPT-Text model, which will be discussed in the next subsection.

4.2.7. Embedding Extraction From Dynamic Analysis

This section describes our approach to extracting embeddings from dynamic analysis features, using
the same GPT-Text model as in the pseudo-static analysis. We explain the rationale behind truncating
our features according to the limits specified in Table 4.4. Following this, we detail the process of
converting these truncated features into embeddings using the GPT-Text model.

Truncation

The truncation strategy in Table 4.4 was implemented to keep feature lengths within the token limit of the
GPT-Text model. Unlike the greedy strategy used in pseudo-static analysis, we set fixed entry limits for
each feature to expedite processing, as dynamic analysis often generated extensive list-based features.
For features that still exceeded the token limit after applying these entry limits, manual truncation was
employed to meet the constraints of the GPT-Text model.

Final Embedding

The final embeddings were generated as 1000-dimensional vectors by feeding the dynamic analysis
features into the GPT-text model with the dimensionality parameter set to 1000. Although this dimen-
sionality was chosen arbitrarily, initial logistic regression tests comparing performance between 1000
and 2000 dimensions showed minimal difference, prompting us to opt for the lower dimensionality.

472. Embedding Extraction 35

Exceptions

When analyzing malware from specific families, such as MagicRat , AsyncRat, we sometimes found
that AnyRun’s API or Virustotal API did not provide any behavioral data. In these cases, we used the
average embedding for the malware family in question. However, our approach during testing differed:
because we could not identify the family of a test sample in advance, we defaulted to returning a zero
vector.

Validation

We employ the same validation methodology as outlined in section 4.2.5, using the identical hyperpa-
rameters and model described in table 4.3. For gridsearch values, please see table 1.1. The results of
this experiment are outlined in the results chapter under Experiment 1.

4.2.8. Embedding Extraction From Image Analysis

Our approach to extracting embeddings from image analysis differs from the methods used in pseudo-
static and dynamic analysis. We employ a model that automatically extracts features from images,
eliminating the need for manual feature selection. In this section, we motivate our decision to use the
ResNet50 model for image training. We then describe our training pipeline, which begins with initial
training on public datasets—MalwareNet, Malevis, and Malimg i.e ImageDataset followed by fine-tuning
on our MalwareGenome dataset before extracting embeddings.

Model

We evaluated several models, including various ResNet versions and VGGNet, for our image-based
malware classification task. We ultimately chose ResNet50 due to its effective balance between com-
plexity and performance. Testing on the MaleVis dataset showed that ResNet101 quickly reached 98%
validation accuracy within just 5 epochs but demanded considerable computational resources. In con-
trast, ResNet50 achieved the same accuracy over 20 epochs, providing a more manageable trade-off
between time and performance, while simpler version like ResNet-34 achieved 95% accuracy only in
30 epochs.

We ruled out other architectures such as ResNet-110, ResNet-152, ResNet-164, ResNet-1202, and
VGG Net due to hardware constraints. Despite our server’s robust specifications—an A40 GPU and
1TB of RAM—these larger models exceeded the GPU’s memory capacity, making them impractical for
our needs. Thus, ResNet50 was selected as it offered the best compromise between performance and
resource utilization for our application.

Methodology

Our methodology is explained through a 3 step pipeline is shown in Figure 4.2.Initially, we preprocess
the ImageDataset to ensure compatibility with the V1 model, which is initialized with ImageNet weights.
Subsequently, we fine-tune this model on our dataset, referred to as the V2 model. Finally, we extract
embeddings from this fine-tuned model. In the following sections, we will elaborate on each stage of
this pipeline in detail.

Use public image Retrain on our

Train preprocessed
datasets Datasat
|::> Resnet50 |::> Transfer Leaming |::> Embeddings
(Model V1) Remove (Model V2) Remove
Preprocess Classification Classification
Head Head

Initialized with image Initialized with V1
net weights image weights

Figure 4.2: Image Analysis Pipeline

472. Embedding Extraction 36

Training Model V1

The ResNet model in our analysis is initialized with ImageNet weights, designed primarily for RGB im-
ages. To accommodate this, several preprocessing steps, before training model V1, are necessary for
the ImageDataset, particularly for the Malimg Dataset, which consists only of grayscale images. First,
these images are converted to RGB by duplicating the single grayscale channel into three channels,
ensuring that the input format matches what the ResNet model expects.

Second, normalization of the images is performed using predefined mean values ([0.485, 0.456,
0.406]) and standard deviations ([0.229, 0.224, 0.225]) across RGB channels. This process stan-
dardizes pixel intensities, centers the data around zero, and is essential for promoting faster conver-
gence during the training phase. Third, the images are resized to 224x224 pixels to comply with the
input dimensions that ResNet models are optimized for. This uniformity is critical for consistent image
processing through the model. Upon , preprocessing Model V1 was trained with a stratified train test
split of 70/30. Table 4.5 highlights the hyperparameters that was used. With this setup, our model V1,
achieved a 85% accuracy on the test set.

Table 4.5: Hyperparameters for Models V1 and V2

Parameter Value
Optimizer Adam
Patience 10
Batch Size 64
Random State 42
Initial Learning Rate 0.01

Learning Rate Scheduler ReduceLROnPIlateau (mode: max, factor: 0.1, patience: 10 epochs)
Weight decay 0.0001

Training Model V2

Before training on model V2, the executables from memory of MalwareGenomeDataset are first con-
verted to images using the bin2png tool as discussed in the background. Then we apply the same
preprocessing steps as for ImageDataset where we normalize using mean values ([0.485, 0.456,
0.406]) and standard deviations ([0.229, 0.224, 0.225]) and resize the images to 224x224 pixels.
Model V2 is then initialized with the pre-trained weights from modelV1, with the exception of classifica-
tion layer, which has been now replaced to accommodate an output of 538 classes. This modification
is important for the process of transfer learning, as it leverages pre-existing learned patterns while tai-
loring the model’s output to the new classification task. Just as model V1, we use the same stratified
70-30 split for training and validating model V2 using the same hyperparameters as table 4.5. After
training, we found that the accuracy was 93% on the validation dataset.

Comparative Analysis of Our Approach and Traditional CNNs

We assess Model V2 by comparing its performance against the grayscale CNN architecture developed
by Gilbert et al. [103] and a modified version of this architecture, which has been adapted to accept RGB
(3-channel) inputs instead of grayscale (1-channel). These comparisons are conducted on our dataset
using the hyperparameters outlined in Table 4.5. To ensure compatibility with Gilbert et al.’s[103] ar-
chiteture, we convert our images to grayscale using the PIL library, and then compare our architecture
against their architecture using stratified cross-validation with 10 outer folds. The outcomes of this
comparison are discussed in Experiment 3 of the results chapter.

Embedding Generation

The final embedding is obtained by freezing all model weights and performing a forward pass for each
tensor corresponding to its sample SHA. This process produces embeddings with a dimensionality of
2048. We validate the final embedding using the same approach as for pseudo-static and dynamic
analyses, employing stratified nested cross-validation with logistic regression. The hyperparameters
used are consistent with those detailed in table 4.3. The outcomes of this experiment are outlined in
the results chapter under Experiment 1.

4.3. Embedding Concatenation and Reduction 37

Image Embeddings for Benign and Malicious Malware Classification
Interestingly, image embeddings alone can be effectively used for malware detection, categorizing
samples as either benign or malicious. For benign samples, we employ the dataset from Androzoo,
which uses an adapted ’'bin2png’ encoding technique similar to our dataset. We use Model V2 to
process images from Androzoo, freezing the weights for a forward pass to generate benign embeddings.
These benign embeddings are then merged with our malicious embeddings to create a new dataset.
In this dataset, 65.23% of the samples are labeled as malicious and 34.77% as benign.

We apply logistic regression to this binary classification task, utilizing the hyperparameters configu-
ration in Table 4.3. To ensure robust evaluation, we conduct cross validation with 10 outerfolds and 5
inner-folds. The results of this analysis are thoroughly presented in Section 4.2 of the results chapter.

4.3. Embedding Concatenation and Reduction
In this section, we detail how we merge these embeddings into one embedding in a supervised fashion.

4.3.1. Current Approaches
Concatenating embeddings is a widely used technique in machine learning to enhance data represen-
tation by combining features from different models or sources.

Simple Concatenation is the most straightforward approach where feature vectors from different
embeddings are combined into a single comprehensive vector. This technique assumes that each
element of the combined vector independently contributes to the overall data representation, as noted
by Zheng et al.[173]. Weighted Concatenation adjusts the influence of different embeddings before their
integration by assigning specific weights. This approach is particularly useful when the significance of
each embedding varies, such as in Yang et al.[174] where they use hierachial attention networks for
document classification.

Feature Fusion extends beyond simple concatenation by employing operations like addition, multi-
plication, or more complex transformations to blend embeddings together. For instance, Zadeh et al.
[175] uses feature fusion to merge embeddings from diverse modalities for multimodal sentiment anal-
ysis. Neural Networks also facilitate the integration of embeddings by using concatenation followed by
dense layers or by applying attention mechanisms that dynamically assign weights to different embed-
dings. The Transformer model introduced by Vaswani et al.[51] is a prime example, utilizing attention
mechanisms to blend and balance embeddings for various tasks such as translation and text genera-
tion.

4.3.2. Our approach

Our method involves supervised dimensionality reduction, where we stack embeddings from three
different analyses: pseudo-static analysis (3512 dimensions), dynamic analysis (1000 dimensions),
and image analysis (2048 dimensions). This results in a hybrid 1D embedding of 6560 dimensions,
which we then dimensionally reduce through supervised classification based on malware family class
labels. This approach is illustrated in Figure 4.3.

Motivation

The primary reason for reducing the dimensions of merged embeddings is to lessen computational de-
mands. By compressing the dimensionality from 6560 to 1000, we make subsequent tasks, such as 2D
visualization using methods like UMAP or t-SNE, more feasible. This reduction also simplifies valida-
tion with logistic regression and decreases the computational requirements for tree building processes.
Overall, this dimensionality reduction facilitates easier handling and further analysis.

Preprocessing

Before, we reduce and combine our hybrid embeddings. we need to normalize them. Normalization is
a import preprocessing step for hybrid embeddings, especially given the substantially larger magnitude
values of image embeddings compared to behavioral and numerical embeddings. By ensuring all
data types contribute equally, normalization prevents any single feature set from disproportionately
influencing the learning process. This uniform scaling not only enhances model stability and accelerates
convergence but also facilitates meaningful feature comparisons across different scales, crucial for
accurate distance measurements in analyses. Moreover, consistent normalization helps improve model

4.3. Embedding Concatenation and Reduction 38

Old Representation New Representation 538
6560 embeddings 1000 embeddings Classes

A X
=0

...QQQ

e

Figure 4.3: Representation Pipeline showing how we reduce embedding dimensions

generalization, preventing overreliance on specific feature magnitudes which might help it generalize
on new data.

Model

Upon preprocessing, we reduce the dimensions using a 2 layer fully connected neural network with
cross entropy loss, we start with 6560 input neurons, a hidden layer of 1000 and final output layer of
538 corresponding to number of malware families. We train the embeddings with the hyperparameters
as summarized in table 4.6. After training we remove the final classification layer, the last layer in
Figure 4.3. We then proceed to perform a forward pass with the network’s weights frozen for each
malware sample associated with its tensor. This step enables us to extract the final 1000-dimensional
embeddings for each sample.

Table 4.6: Hyperparameters for Supervised Dimensionality Reduction

Parameter Setting

Initial Learning Rate 0.01
Learning Rate Scheduler ReduceLROnPlateau (mode: max, factor: 0.1, patience: 10 epochs)
Patience for Validation 10

Optimizer Adam
L1 Regularization Lambda = 0.0001
Final Embeddings

To generate the final embeddings, the classification layer was removed, and for each malware sha,
the corresponding tensor was retrieved. A forward pass was then used, with the weights freezed, to
produce 1000 final 1D embedding. To evaluate the final embeddings we use a logistic regression model
with the same hyperparameters as in table 1.1. The outcome of this experiment is highlighted in results
chapter under Experiment 1. The grid search parameters are described in Appendix | under table I.1.

Evaluating Embedding Effectiveness for Temporal Classification

We assess the utility of final embeddings for tasks transferred to different contexts. Specifically, we
explore their effectiveness in determining the age of malware. To do this, we organize the malware
embeddings by year and train a logistic regression to predict the year based on these embeddings. The
outcomes of this study are detailed in the results chapter under Experiment 2. The hyperparameters
employed are outlined in in Appendix I.

4.4. Distance Matrix Generation 39

Part 2: Building Phylogenetic trees

Now that we have looked at how we developed our embeddings, this part delves into using the
embeddings to generate a phylogenetic tree. We first highlight how we can build a distance matrix
from the embeddings and convert it into a format that’s usable for building trees. Then, we discuss the
methods and assumptions used to construct our phylogenetic tree using UPGMA and NJ. Lastly, we
focus on validating our results and deriving relationships from our tree.

4.4. Distance Matrix Generation

This section outlines the process of constructing a distance matrix from the embeddings described in
the previous part and then converting it into a PHYLIP-formatted distance matrix required for generating
phylogenetic trees.

4.4.1. Known Approaches
Various approaches exist for computing distances between embeddings, each with unique characteris-
tics suited for different applications. The Euclidean distance is the most straightforward way to measure
the straight-line distance between two points in Euclidean space and is known for its intuitive nature
and simplicity. Conversely, Cosine similarity evaluates the cosine of the angle between two vectors,
making it especially useful for determining directional similarity independent of vector magnitude.
Manhattan distance is another method that computes the sum of the absolute differences of their
coordinates, providing a metric for distance calculation that measures the path along axes at right an-
gles. For categorical data,typically Jaccard similarity index is employed; it measures similarity between
finite sample sets by dividing the size of their intersection by the size of their union. Lastly, Hamming
distance is used primarily to compare strings of equal length by counting how many positions have
corresponding symbols that differ. It offers a critical tool for error correction and detection applications.
When constructing phylogenetic trees, the selection of a distance metric is influenced by the char-
acteristics of the embeddings and the assumed evolutionary model. In numerous situations, Euclidean
distance is favored due to its simplicity, particularly when dealing with continuous vector space embed-
dings that represent measurable traits or genetic distances which can be conceptualized in geometric
terms[176]. Therefore, in our approach we use euclidean distances.

4.4.2. Distance Matrix

When calculating the Euclidean distance between pairs of samples, each represented by a 1000-
dimensional embedding, the process involves making pairwise comparisons across all samples. This
results in O(n?) computational complexity. The procedure entails iterating over each of the n samples
and performing nested iterations for every other sample to compute distances. Specifically, this means
that for each sample, distances to all other samples are calculated based on their embeddings, result-
ingin % total distance calculations. This sequential and nested iteration approach inherently leads
to a computational complexity of O(n?).

4.4.3. Converting Distance Matrix

Phylogenetic analysis tools often require specific data formats for processing, and the PHYLIP format is
widely used for distance matrices [177]. This format is crucial because it allows these tools to accurately
interpret the necessary data to construct phylogenetic trees. As a result, we convert our distance
matrix into the PHYLIP format to ensure compatibility with phylogenetic analysis software, especially
for methods like Neighbor Joining that we plan to use later.

The PHYLIP format consists of a header that indicates the number of taxa, which in our case refers
to malware samples. Following the header, the format details each taxon with its name followed by the
distances to all other taxa. In the next subsection, we will explain the time complexity of converting our
distance matrix to PHYLIP format [178].

Time Complexity

The conversion is done by iterating systematically over an n x n matrix, where n is the number of
malware samples. The conversion includes writing a header line to state the total number of samples
and then formatting each sample along with its computed distances to all other samples in compliance

45. Building Phylogenetic Trees 40

with PHYLIP specifications. The computational complexity of this conversion is O(n?) due to the need
to process each matrix element once. The end result of this conversion process is a PHYLIP-formatted
distance matrix of size 103, 883 x 103, 883, encompassing all pairwise Euclidean distances between the
samples in our dataset, ready for subsequent phylogenetic analysis.

4.5. Building Phylogenetic Trees

In the background we discussed five approaches were examined: Maximum Parsimony, NJ, UPGMA,
Maximum Likelihood, and the Bayesian method. Only Neighbor Joining and UPGMA can be used with
distance matrices, while the other methods require sequences. Therefore, in our approach we will use
NJ and UPGMA.

45.1. UPGMA

The Unweighted Pair Group Method with Arithmetic Mean is a hierarchical clustering technique with
average linkage that is used to construct phylogenetic trees [73] . It groups taxa based on pairwise
distances, progressively merging the closest clusters and recalculating distances until a single cluster
forms. UPGMA makes several assumptions: it requires a consistent mutation rate across all lineages
(molecular clock hypothesis), accurate distance measurements between taxa, and uniform evolutionary
rates across all branches.

Implementation
In our methodology, the UPGMA algorithm is implemented using the SciPy library, which offers com-
prehensive tools for hierarchical clustering.

We start by loading the evolutionary distances and taxa labels from a PHYLIP-formatted distance
matrix to prepare the data for subsequent clustering operations. We employ the cluster.hierarchy
module from SciPy, utilizing the 1inkage function set to the ’average’ method for UPGMA clustering.
This function computes the arithmetic mean distance between clusters to create a linkage matrix, which
outlines the hierarchical structure of the taxa. After completing the clustering, the linkage matrix is
converted into a tree structure through the to_tree function. This conversion enables further analysis
and manipulation of the phylogenetic relationships.

To make the tree compatible with various phylogenetic visualization software, we convert the tree
into a Newick format string using SciPy’s dendrogram function. These visualizations are crucial for
interpreting the evolutionary relationships within the tree, and they form an integral part of the analysis
presented in subsequent sections of our study.

Time Complexity

When assessing the feasibility of applying the Unweighted Pair Group Method with Arithmetic Mean
(UPGMA) to our extensive dataset of 103,883 samples, the inherent time complexity of the algorithmis a
pivotal consideration. UPGMA operates with a quadratic time complexity of O(n?), where n represents
the number of samples involved [179].

The quadratic complexity arises from the algorithm’s procedures. Initially, UPGMA computes pair-
wise distances between all samples, necessitating O(n?) operations. This step establishes the foun-
dation for all subsequent clustering activities. In each iteration, UPGMA identifies and merges the pair
of clusters with the smallest distance, a process that is repeated n — 1 times. Each merge reduces
the number of clusters by one, necessitating the recalculation of distances between the newly formed
cluster and all other remaining clusters.

These recalculations, involving averaging distances from the merging clusters to all other clusters,
if implemented straightforwardly, accumulate computational efforts approaching O(n?) across all itera-
tions, significantly contributing to the total computational demand. To address this, we have integrated
several optimization strategies to streamline the process. Min-heaps are employed to efficiently man-
age the retrieval of the minimum distance during each iteration of the clustering process, ensuring that
the smallest distance is accessible in O(1) time and that updates can be performed swiftly in O(logn)
time. Additionally, we utilize a caching mechanism to store previously calculated distances between
clusters, significantly reducing the need for redundant computations.

45. Building Phylogenetic Trees 41

4.5.2. Neighbor Joining

The Neighbor-Joining (NJ) method is a clustering algorithm used for phylogenetic tree construction that
does not assume a constant rate of evolution across all lineages, accommodating variable evolutionary
rates [158]. It begins with a starlike phylogeny, positioning all taxa equidistant from a central point. NJ
iteratively identifies pairs of taxa that minimally increase the total tree length when joined, recalculat-
ing distances between newly formed clusters and remaining taxa until a single tree is formed. Key
assumptions of NJ include the accuracy of the input distance matrix, minimization of the overall tree
length based on the parsimony principle, and an initial starlike phylogeny to simplify early clustering
steps

Time Complexity

The Neighbor-Joining method, with its O(n?) time complexity, presents significant computational chal-
lenges, particularly for large datasets. Each iterative step in the NJ process involves merging a pair
of taxa and recalculating distances to the remaining taxa, leading to extensive computational require-
ments. For our dataset of 103,883 samples, the cubic complexity of the NJ method results in prohibitive
computational demands. Moreover, the method’s predominantly sequential algorithmic nature restricts
the feasibility of parallelizing processes, further exacerbating the challenges of managing such a large
matrix efficiently. Given these limitations, utilizing the NJ method for our dataset was deemed unfeasi-
ble due to the intensive resource requirements and extended processing times needed.

4.5.3. RapidNJ

Given the high computational complexity of the standard Neighbor-Joining (NJ) method, especially with
large datasets, we employed RapidNJ, an optimized algorithm developed by Simonsen et al.[180] that
enhances computational efficiency for constructing phylogenetic trees using a modified version of NJ.
RapidNJ introduces several key innovations that help reduce the overall time complexity, including op-
timizing the storage and access of the distance matrix using advanced data structures. This minimizes
the computational overhead involved in scanning and updating the matrix. Additionally, RapidNJ does
not exhaustively compare all possible pairs of taxa. Instead, it uses heuristics to quickly identify the
most promising pairs for merging, thereby accelerating the iterative tree construction process.

RapidNJ employs a sparse matrix format to store the distance matrix, which significantly reduces
memory usage and processing time, particularly beneficial when many distances are infinite or un-
defined. Instead of recalculating the entire distance matrix after each merge, RapidNJ only updates
distances that are affected by the merge. This selective updating reduces the number of operations
per iteration. It also uses a min-heap (or priority queue) to efficiently find the pair of clusters with the
smallest distance, allowing the algorithm to quickly access the minimum distance without scanning the
entire matrix. This speeds up each iteration and, combined with heuristic reductions, minimizes the
computational burden of exhaustive search.

To further enhance efficiency, RapidNJ is designed to take advantage of multi-core processors by
parallelizing the distance matrix update process. This parallelization allows simultaneous updates to
different parts of the matrix, thereby accelerating the overall tree construction process. Additionally,
RapidNJ performs computations directly on the matrix without creating additional copies, minimizing
memory overhead and avoiding unnecessary data movement. It also includes options to adjust branch
lengths post-calculation to ensure they are non-negative, crucial for maintaining the biological relevance
and interpretability of the phylogenetic tree.

Implementation

RapidNJ is readily accessible for download as open-source software. However, for our implementation,

we opted to use the BioConda platform for installation. BioConda serves as a dedicated repository

within the Conda package management system, tailored specifically for the bioinformatics community.
To run RapidNJ on our dataset of 103,883 samples, we utilized 20 cores for parallel processing.

The command used to run RapidNJ is:

rapidnj distancematrix.phy -p 20 -o newickoutput.txt -1

This command processes the input distance matrix using 20 cores and outputs the resulting phylo-
genetic tree in Newick format. The inclusion of the ‘-I' option adjusts any negative branch lengths to a
non-negative value, typically zero, ensuring the biological plausibility of the evolutionary distances and
relationships depicted in the phylogenetic tree.

4.6. Validating Large-Scale Phylogenetic Trees 42

Time Complexity and Trade Off

RapidNJ enhances the efficiency of phylogenetic tree construction by reducing the standard Neighbor-
Joining (NJ) method’s cubic time complexity to near quadratic. The worst-case time complexity for
RapidNJ is O(n?), which occurs when the heuristic minimally reduces the number of recalculations
needed after each merge. In the best-case scenario, particularly when the heuristics effectively min-
imize recalculations and quickly identify optimal taxa pairs for merging, RapidNJ can achieve a time
complexity close to O(n?). This significant improvement is due to RapidNJ’s advanced data structures
for efficient distance matrix management and selective updating mechanisms that optimize computa-
tional steps and reduce overall processing time.

While RapidNJ offers substantial improvements in computational efficiency over the traditional Neighbor-
Joining (NJ) method, it introduces certain trade-offs that could affect the accuracy and granularity of
the phylogenetic trees it constructs. One significant compromise is the reduced granularity in pairwise
comparisons. Unlike NJ, which exhaustively evaluates all possible pairs of taxa, RapidNJ employs
heuristics to quickly identify the most promising pairs for merging. This method significantly acceler-
ates the tree construction process but may overlook some taxa pairings that would be considered under
a full NJ analysis. This reduction in granularity can potentially miss subtle evolutionary relationships,
thereby affecting the tree’s overall detail and accuracy. Additionally, RapidNJ’s strategy to minimize
recalculations of the entire distance matrix after each merge leads to the use of approximations rather
than exact recalculations. This approach can result in slight inaccuracies in distance measurements
compared to the more precise calculations performed by the NJ method, potentially altering the fine
details of the phylogenetic tree’s structure.

4.6. Validating Large-Scale Phylogenetic Trees

This section outlines the validation approach for phylogenetic trees derived via UPGMA and Neighbor-
Joining methods. We first identify the timestamps used as reference points, followed by detailing the
rooting process of the trees. The validation involves employing timestamps for time divergence analysis
and embedding drift analysis to assess each tree. Our primary aim is to identify the tree that best
corresponds with the timestamps data.

4.6.1. Timestamps

Our timestamps are sourced from VirusTotal, which provides key metadata fields including the creation
date and the first submission date of malware samples. To assess their reliability, we analyzed these
fields to determine the most dependable indicator of when malware was first detected. Our findings
highlighted notable discrepancies between the creation and first submission dates across different
malware families, underscoring the need for careful selection of the most reliable timestamp. These
variations are documented in Figure 4.4, showcasing data up to 2023.

Figure 4.4 illustrates a noticeable correlation between the creation dates and first submission dates
for most malware samples from 2015 to 2023. Intriguingly, some samples show creation dates as early
as 1991 and even 1970, with significant instances from these early dates linked to the Fareit malware
family, known for stealing system details and application credentials. Although these samples bear
early timestamps, Fareit was not officially documented until 2012 [181] . Additionally, as illustrated in
Figure H.1, certain samples were marked with future timestamps. Later investigation revealed that
creation dates can be altered by VirusTotal users. Given these inconsistencies, we have opted to use
the first submission dates as more reliable metric for our analysis. Although not perfect, these dates
provide a crucial reference point for validating the phylogenetic trees.

4.6.2. Rooting Trees
Before validating our phylogenetic trees, it's imperative to ensure proper rooting. Rooting a phyloge-
netic tree involves identifying a root or reference point on the tree that represents the most ancestral
lineage, which is essential for determining the direction of evolutionary change. This process is crucial
for accurately interpreting the tree’s structure as it defines the evolutionary relationships from the most
ancient to the most recent species.

The UPGMA method automatically produces a rooted tree, but we also apply additional rooting
methods to verify if they align better with the VirusTotal timestamps. Conversely, the NJ method yields
an unrooted tree, requiring explicit rooting steps. We utilize both outgroup rooting and midpoint rooting

4.6. Validating Large-Scale Phylogenetic Trees 43

Malware Seen in Different Years

I Creation Date

250001 N
EEm First Submission Date

20000

15000

Frequency

10000

5000 -

Figure 4.4: Malware Timestamps showing mismatch between Creation Date and First Submission Date

techniques for both types of trees to accurately interpret the evolutionary relationships they represent.

Outgroup Rooting

Outgroup rooting is a method in phylogenetic analysis that identifies a root on a tree by selecting one or
more 'outgroup’ species. These outgroups are closely related to but outside the main group of species
under study (the ’ingroup’). By comparing the ingroup to these outgroups, this method infers the most
basal position on the tree, effectively placing the root and establishing the evolutionary direction from
ancestral to derived lineages.

Outgroup rooting involves several key steps. First, we map our samples to timestamps obtained
from VirusTotal, which reflect the discovery or submission dates of the samples. These dates serve as
proxies for the evolutionary emergence of the samples, with the assumption that older samples may
represent early diverging lineages.

Following this mapping process, we sort the samples in ascending order based on their timestamps
to identify potential outgroups. We then tally the occurrences of each taxon’s family throughout this
sorted list. Families with a minimum representation of 10 samples are eligible for outgroup selection;
satisfyingly, this criterion is met by 98.98% of families in our dataset, ensuring that chosen outgroups
are well-represented. Then to root the tree, we take the common ancestor of all the outgroup samples
and then set that as the root. This is done by ete3 toolkit, a Python framework designed for the analysis
and visualization of trees.

Midpoint Rooting

Midpoint rooting is a method in phylogenetic analysis used to establish the root of a tree without requir-
ing external outgroups. This technique identifies the root by placing it at the midpoint of the longest
path between any two taxa on the tree, providing a balanced root location that does not lean on the
phylogenetic placement of outgroups. Midpoint rooting is especially beneficial when suitable outgroups
are ambiguous or when aiming for a phylogenetically neutral root position.

The process of midpoint rooting involves calculating the midpoint, which is the exact halfway point
along the longest span between two tree leaves. This calculation assumes the tree is ultrametric—
where all leaves are equidistant from the root—but can also be applied as a heuristic in non-ultrametric
trees to find a plausible root position. After determining the midpoint, the tree is reoriented by rooting
at this midpoint. This reorientation aims to minimize assumptions about the direction of evolutionary
change and provides a more balanced view of the relationships within the tree. We use the same ete3
tool as before to implement this.

4.6. Validating Large-Scale Phylogenetic Trees 44

4.6.3. Understanding Trees

To validate the trees using using time divergence analysis and embedding drift analysis we first define
the semantics of these trees in order to facilitate effective analysis and reasoning. This subsection
introduces some notation and semantics to reason about trees.

Notation
A_z Represents variant = within Family A, where A is the family name, and x indicates a specific
variant within that family.

MRC A Refers to the most recent ancestor from which two or more lineages or taxa have diverged.

Li Denotes the evolutionary distance from leaf i to an ancestor, quantifying the divergence time be-
tween a specific leaf (representing a sample in our dataset) and its ancestor.

Root

. / \ MRCA

- T2
L1< L2\

A_1 B_1 C_1 D_1

L3<L4

Figure 4.5: Simple Phylogenetic Tree

In phylogenetic trees, ancestors are conceptualized as theoretical nodes, which serve as inferred
common points of divergence among lineages. These ancestral nodes are not directly observable but
are inferred from genetic, morphological, or other data types that indicate shared lineage traits among
descendants. Due to the impossibility of directly sampling these ancestral states in the present, they
are modeled based on probable scenarios of evolutionary history that account for the observed diversity
among current taxa.

Conversely, leaves on the tree are modeled as concrete samples from the dataset. These leaves
represent actual data points collected from existing organisms, fossils, or genetic sequences and serve
as the endpoints of the tree’s branches; but the conext of our malware samples, the leaves are the
samples . Each leaf directly connects the theoretical model of the tree to empirical evidence, tracing
back to a specific sample in the dataset and thereby establishing a tangible link between the tree’s
structure and the real-world entities it represents. For instance, in our sample phylogenetic tree shown
in Figure 4.5, leaves such as A_1 from Family A, B_1 from Family B, C_1 from Family C, and D_1 from
Family D represent actual data points collected from specific lineages. The MRCA of A_1and B_1 is
denoted as T'1, marking the theoretical node from which both lineages diverge. Similarly, the MRCA of
C_1and D_1is denoted as T2.

4.6. Validating Large-Scale Phylogenetic Trees 45

4.6.4. Time Divergence Analysis

As mentioned in the background section, while there are numerous methods for validating phylogenetic
trees, most of them are designed for sequence data. Methods that can use distance data, such as
jackknife cross-validation, require significant computational resources. When it comes to temporal
data, the literature predominantly focuses on estimating divergence times but lacks comprehensive
methods for validating trees using this type of data.

In our method, we adapt the concept used for estimating divergence times to focus on relative early
divergences instead. This adjustment enables us to evaluate the tree’s structural validity by examining
the sequence and relative timing of divergences rather than their exact chronological order. We will
now discuss our approach in detail.

Our Approach

Our phylogenetic analysis primarily targets early divergences within the tree, particularly those near
the leaves rather than the deeper, more complex branches near the root. This strategy aligns with the
established understanding in phylogenetic research that closer to the root, relationships become less
clear due to extensive genetic changes over time, a concept extensively discussed by Felsenstein et
al. [182].

Unlike typical studies that use a molecular clock to estimate temporal divergences, our approach
employs a first-order assumption by focusing on the most recent common ancestors (MRCAs) of leaf
nodes. We interpret the branch lengths leading to these MRCAs as indicators of early divergence,
assuming that shorter branch lengths imply more recent divergence events. This method is grounded
in the fundamental principles of phylogenetic analysis, where tree topology and branch lengths provide
insights into lineage splits without quantifying exact temporal distances, as noted by Page & Holmes
[183].

For practical illustration, consider the simple phylogenetic tree shown in Figure 4.5. Observations
such as L1 being shorter than L2 lead us to infer that A_1 diverged before B_1, and similarly, C_1
before D_1. However, relationships between A_1and C'_1 or D_1 remain undetermined due to different
MRCAs. We align these inferences with timestamps from VirusTotal for the corresponding leaves and
assess the accuracy of these inferred sequences. To validate the alignment, we utilize a straightforward
metric: the proportion of correct comparisons over the total comparisons within the tree. For example, if
timestamps indicate A_1 appeared before B_1and C_1 after D_1, but our analysis shows C'_1 diverged
first, the result is one correct and one incorrect comparison, yielding 50%.

Implementation

In our approach to validate the chronological order of leaves in a phylogenetic tree, we first initialize
counters for correct pairings and total comparisons. For each leaf, we identify its direct ancestor and
gather all descendant leaves from this ancestor(mrca). Next, we compute the evolutionary distances
between each pair of these descendant leaves.

As we process each pair, we compare the evolutionary distances to the chronological order indi-
cated by timestamps associated with each leaf. If the relative ordering of distances corresponds to
the chronological order of timestamps, the pairing is considered correct. We continue this comparison
across all possible leaf pairs, updating our counts of total comparisons and correct pairings. Finally,
we report the correct pairings by the total number of comparisons. This is detailed in Algorithm 1 of
Appendix J.

47. Visualizing Large-Scale Phylogenetic Trees 46

4.6.5. Embedding Drift Analysis
In our study, we propose another approach to validating phylogenetic trees by examining the concept
of embedding drift, specifically focusing on the comparison of mutation rates between the UPGMA and
Neighbor-Joining (NJ) methods. UPGMA assumes a constant rate of molecular evolution, whereas NJ
does not, making this comparation useful.

Starting with each family, we systematically calculate the Euclidean distances between embeddings
of successive years. Specifically, for each variant in a family, we compare it with other variants in
subsequent years, recording the minimum and maximum distances observed. For example, if we
consider a hypothetical family ‘A’ with variants 0 through 6, as depicted in Figure 4.6, we would measure
distances starting with variant 0 compared to variants 1 to 6. An identical embedding between variant
0 and any subsequent variant, such as variant 5, would result in a minimum distance of zero, indicating
no drift. Conversely, the maximum distance would suggest significant divergence; for instance, the
maximum distance could occur between variant 0 and variant 4 as their embeddings are most dissimilar.

This process is repeated for each variant, where variant 1 would then be compared only to variants
2 through 6, and so forth, ensuring each comparison captures the drift over time from the reference vari-
ant. This step-by-step analysis helps map out the trajectory of genetic drift for each variant, illustrating
how each diverges from its predecessors and contemporaries over time.

Year 1 Year 2

Year 3 Year 4

ADO —— Al A2 — A3

A4 AS A6
0.1 01 00 04 | 00 04| 01
02 02 05 0.3 | 00 03] 02
03 03 00 02 | 00 02| 03
04 04 00 0.1 | 00 01| 09

Figure 4.6: Embedding Drift Analysis: Comparing the euclidean distance between malware from different years

By aggregating these metrics across all families, we aim to determine whether mutation rates are
uniform across the dataset. Uniform mutation rates would imply that both minimum and maximum
distances are consistent across families, indicating a steady rate of change. Significant variations in
these distances would highlight non-uniform mutation rates, challenging the assumptions of constant
molecular evolution and providing crucial insights into the phylogenetic relationships within the data.
This is detailed in Algorithm 2 of Appendix J. The findings from this validation approach are presented
in Experiment 5 of the results chapter.

4.7. Visualizing Large-Scale Phylogenetic Trees

Identifying relationships within a complex phylogenetic tree, especially one encompassing 103,883
leaves, is challenging. Simplifying this tree through strategic assumptions is essential for clearer in-
sights into the inter- and intra-family dynamics among malware samples. In this chapter, we will explain
how with certain simplifications we can make useful observations from our complex tree.

4.7.1. Inter and Intra Family Analysis
The previous analysis on time divergence underscored the importance of identifying the most recent
common ancestor (MRCA) to comprehend the evolutionary relationships among leaves within a family.
This concept extends to discerning the connections between different families by aiming to identify
the MRCA shared between them. We utilize the median distance from the leaves of each family to
this MRCA as a metric to infer their evolutionary relationship. The median distance is chosen for its
robustness to outliers, providing a reliable measure of typical evolutionary divergence between families.
To infer relationships between two families based on the median distance to the MRCA, we employ

47. Visualizing Large-Scale Phylogenetic Trees 47

a second-order assumption: if the median distance from the MRCA to Family A is less than to Family
B, it suggests Family A diverged earlier than Family B. Conversely, a smaller distance to Family B
indicates that Family B diverged earlier. For a practical example, consider the phylogenetic tree shown
in Figure 4.7, featuring two distinct families, Family A and Family C, each with three samples. The
MRCA for both families’ leaves is identified as the tree’s root. The median distances from the leaves
to the root are calculated as follows:

Median Distanceramiya = L2 + LP
Median Distanceramiyc = L5 + LT

These distances imply that if L2 + LP < L5+ LT, then Family A diverged before Family C. This
inference is based on our second order assumption, derived from comparing median distances to the
MRCA. This approach offers a structured way to examine the sequence of divergence events to identify
inter-familial relationships using the phylogenetic tree.

L2 +LP <L5+ LT =>T1 is before T2

MRCA
/ . \
m T2
L4 <=15<=L6
L1<=L2<=L3 /
A1 A2 A3 C_ 1 c.2 C_3
Figure 4.7: Median Distance to MRCA Analysis
Implementation

We start by loading the phylogenetic tree using the ete3 library. After loading the tree, we iterate over
the leaves and group them based on their respective family names.

Once organized by family, we then identify the most recent common ancestor for each pair of fam-
ilies using ete3’s capabilities .After identifying the MRCA, we calculate the median distance from this
ancestral node to each family’s leaves. These calculations help assess evolutionary depth and relat-
edness among the families involved.

To visually represent these relationships, we use the networkx library to construct directed graphs
where nodes represent families and edges denote evolutionary distances to the MRCA. The direction-
ality of edges is determined by relative distances; shorter distance results in an edge pointing from a
family with a shorter distance towards one with a longer distance. Finally, we simplify the graph to only
focus on significant evolutionary paths. To do we iterate through each node and select the node with
with the shortest edge out of all the outgoing edges. This is detailed in algorithm 3 of appendix J.

Median Thesholding

The process of identifying the Most Recent Common Ancestor (MRCA) in phylogenetic trees is impor-
tant for understanding evolutionary relationships as highlighted in the aforementioned method. How-
ever, this identification can be significantly affected by the inclusion of outliers in the dataset. For
instance, consider a scenario where we have three families, A, C, and D, within a phylogenetic tree.
Family C includes a potential outlier, Cy. If Cy is included in the analysis, the MRCA for families A and

47. Visualizing Large-Scale Phylogenetic Trees 48

C is positioned at the root of the tree. If C, is excluded, the MRCA shifts to a lower node, T, potentially
altering the evolutionary interpretations derived from the tree. This example underscores how outliers
can influence the tree’s topology and the resultant distances to the MRCA, as illustrated in Figure 4.8.

MRCA
Root

Qutlier? C 4

T4
TP AN T3

T2
T1

L1 <=L2<=L3

L4 <=L5<=L6

Figure 4.8: Median With Thresholding

From a theoretical standpoint, determining whether a sample like C, qualifies as an outlier involves
assessing how significantly it deviates from the cluster formed by the majority of leaves within its family.
In the context of malware research, this is particularly relevant as samples deviating sharply from others
may indicate artifacts in data collection. To evaluate this, leaf-to-leaf distances within the family are
analyzed. These distances are calculated by summing the individual paths from each leaf to their
nearest shared ancestor and back to one another.

For example, the distance between leaves A; and A, would encompass the total length of paths
L1 and L2, routed through their nearest shared ancestor. A significant difference in the distances from
leaves C4, Cs, and Cs to Cy, compared to the distances among C,, Cs, and C5 themselves, might
suggest that Cj is an outlier. In literature, typically we use an IQR based approach based on boxplots
where a outlier is defined as if it exceeds 1.5 times the interquartile range (IQR)[184]. We adopt the
same method and consider a leaf as an outlier if its distance to the other leaves exceeds 1.5 times the
IQR of median lateral(leaf to leaf) distance within each family. We adopt our previous implementation
where prior to identifying mrca for each family pair, we remove the outliers using median thresholding
method. This is detailed in algorithm 4 of of appendix J.

Influence of Outliers on Tree Topology
It would be intriguing to investigate whether including outliers significantly affects the topology of phy-
logenetic trees, indicating that many mrcas are influences by these outliers.

To determine the impact of outliers on phylogenetic tree topology, we will create two versions of the
trees: one with outliers and one without, using our median thresholding method in NJ. We will then
analyze both trees to assess variations in depth, breadth by depth, average degree, minimum degree,
and maximum degree as indicators of tree complexity and connectivity. These metrics will help us
understand how outliers may influence tree topology. Additionally, we will compare the isomorphism
between the trees or specific sections. If the trees are isomorphic, it suggests that including outliers
does not fundamentally alter evolutionary relationships. However if isomorphic subtrees are found
within differing trees, it could indicate that certain evolutionary paths remain unaffected by outliers

47. Visualizing Large-Scale Phylogenetic Trees 49

despite broader structural changes. The outcome of this experiment is detailed under Experiment 7 of
the results chapter.

Correlation of Interfamily Analysis with Public Cybersecurity Insights and Malware Attributes
We have outlined the technical methodologies used in our study, but it remains essential to validate
these approaches against manual reverse engineering and public sources. To this end, we constructed
a phylogenetic tree using the NJ method with median thresholding and selected six malware families for
analysis: Mirai, SmokelLoader, BotenaGo, DiscordTokenStealer, and SundownEk. We then compare
the inter-family relationships derived from the tree with publicly available insights and examined the
psuedo-static and dynamic features of each malware to corroborate our findings. The outcome of this
experiment is presented in Experiment 8 of the results chapter.

Similarities between the findings of UPGMA and NJ

We also assess whether relationships validated using public sources with a tree constructed via the
neighbor-joining (NJ) method are also observable in a tree built using the UPGMA algorithm. This
serves as a further verification step to determine which method—NJ or UPGMA—produces more ac-
curate phylogenetic trees. We achieve this by analyzing the relationships derived from case studies
involving the malware families Mirai, SmokelLoader, BotenaGo, DiscordTokenStealer, and SundownEk,
first identified using the NJ tree and then verifying if the same relationships are evident in the UPGMA
tree. The detailed findings of this comparison are presented in Experiment 9 of the results chapter.

Alignment of Malware Clustering and Intra-family lateral leaf to leaf(lateral) Distances

In intrafamily analysis, we assess the lateral (leaf-to-leaf) distances within a family, employing methods
similar to those used in inter-family analysis for outlier detection, defined here as distances exceeding
1.5 times the interquartile range (IQR). We visualize these distances with histograms and boxplots. As
an experiment, we examine the correlation between these distributions and clustering patterns from
dimensionality reductions to two dimensions via t-SNE, UMAP, and PCA, implemented using scikit-
learn[185]. To make conclusions about the correlation we only use t-SNE, but if there are discrepancies
we use UMAP and PCA to aid the analysis for additional insights.

To determine the optimal hyperparameters for these dimensionality reduction techniques, we per-
formed a grid search using KNN with k = 1 in a supervised manner, utilizing the labels as the ground
truth. For grid search parameters refer to Appenidx | and the final hyperparameters used are detailed
in Table 4.7. The outcome of this experiment is discussed under Experiment 6 of the results chapter.

Table 4.7: Comparison of t-SNE, UMAP, and PCA Hyperparameters

Parameter t-SNE Value UMAP Value PCA Value
Number of Components 2 2 2
Perplexity 100.0 - -
Number of Iterations 3000 - -
Random State 42 42 42
Learning Rate 100 - -
Number of Jobs -1 - -
Number of Neighbors - 15 -
Minimum Distance - 0.5 -
Metric - Euclidean -
Power lteration Normalization — - auto
Number of Oversamples - - 10

SVD Solver - - auto

Results

First, we will review the results of experiments that validate pseudo-static, dynamic, image, and com-
bined embeddings. Next, we will examine how effective these embeddings are for tasks for which they
were not originally trained. We will then assess how well the trees constructed using temporal times-
tamps from Virustotal. Following this, we’ll delve into identifying interesting patterns in intra-family
analysis. Finally, we will discuss whether the relationships derived from our analysis align with public
sources, and explore what common pseudo-static and behavioral features underpin these relationships.

5.1. Embedding Validation

In the first section, we will analyze the validation results of the embeddings. Our focus will be on de-
termining which type—pseudo-static, behavioral, or image—performs the best and whether combining
these embeddings results in better embeddings.

5.1.1. Experiment 1: Which analysis type yields the best embeddings and does
combining them improve performance?

Table 5.1: Accuracy Metrics for Malware Family Classification

Embedding Type Family Classification Accuracy (avg =+ std) Comparison

Image 94.91 + 0.16% Best Performance
Pseudo Static (Numerical) 86.39 £+ 0.28% Better than Random Guessing
Pseudo Static (Complex) 87.51 + 0.48% Better than Random Guessing
Dynamic 87.23 £ 0.19% Better than Random Guessing
Combined 93.79 +£ 0.19% Second Best Performance

Baseline Model

Random Guessing 19.36 + 0.17% Baseline

The bold result indicates the best embedding compared to all other embedding types, with a statistically
significant difference as determined by the Mann-Whitney U test (o < 0.05).

Experiment 1 aimed to assess if embeddings from pseudo-static, image, and dynamic analyses
yield significantly better results in terms of malware classification accuracy compared to a baseline
dummy model. Table 5.1 shows the average accuracy of different embeddings trained with a Logistic
Regression Model, as well as their comparison to the baseline dummy model.

The image embeddings were developed using a ResNet 50 architecture, initially initialized with
ImageNet, and trained on 3 publicly available malware datasets. They were then further finetuned on
executables derived from memory dumps tailored specifically to our dataset. The Pseudo Static em-
beddings utilize static analysis features applied to memory dumps, divided into two types: Numerical,

50

5.2. Extending Embeddings to New Tasks 51

which consists solely of numerical arrays, and Complex, which includes numerical arrays, lists, and
dictionaries that contain both numbers and strings. On the other hand,dynamic embeddings were gen-
erated from behavioral analysis features. All embeddings were trained using a logistic regression. For
benchmarking, random guessing was employed, which predicts based on the most frequent class, ig-
noring the input features. We anticipated that our embeddings would perform adequately when used
with a linear classifier compared to random guessing.As anticipated, Table 5.1 confirms that all em-
beddings, trained with logistic regression, significantly outperform random guessing. This underscores
their ability to identify unique features essential for differentiating between malware families.

Looking back at Table 5.1 we see that image embeddings perform best, Contrary to our initial as-
sumption that dynamic embeddings would perform better. The improved performance of image embed-
dings may be attributed to two key factors. Firstly, these embeddings may benefit from pre-training on
three public image malware datasets: Malimg, MaleVis, and MalwareNet. This extensive pre-training
may have equiped them with capabilities for robust feature recognition. Secondly, we further refined
the model by training it on executables obtained from memory dumps in our dataset. These memory
dumps are likely unpacked as the malware is already loaded into the system’s memory. This approach
may have allowed the network to detect features specific to executable files more accurately, typically
mitigating challenges posed by obfuscation techniques.

Lastly, to assess the effectiveness of combined embeddings, we analyzed how merged embed-
dings compare to individual ones. The combined embeddings were produced by a neural network
that processed merged embeddings consisting of 6560 dimensions from pseudo-static, dynamic, and
image embeddings. These were then reduced to a 1000-dimensional representation using a hidden
layer of 1000 neurons. The network was trained using classification loss across malware families to
achieve this condensed representation. Table 5.1 illustrates that while combining embeddings signif-
icantly enhances performance compared to pseudo-static and dynamic embeddings alone, they still
do not surpass the performance achieved with image embeddings. Although the difference in perfor-
mance between combined and image embeddings is small, the standard deviation clearly shows that
image embeddings perform substantially better. Further analysis of accuracy differences relative to
image embeddings, as shown in G.1, reinforces that image embeddings are much better than the com-
bined embeddings. This result was rather unexpected because we expected combined embeddings
to improve feature learning. We suspect that this limitation may be due to reducing the dimensions to
1000, which could have led to a loss of accuracy. We believe that maintaining a higher latent dimen-
sion during the reduction may lead to better combined embeddings that outperform image embeddings.
Ideally, the dimensionality of the reduction should be considered a tunable hyperparameter.

5.2. Extending Embeddings to New Tasks

5.2.1. Experiment 2: Are embeddings, merged or individual, useful for downstream
tasks?

Experiment 2 evaluates the effectiveness of embeddings for downstream tasks, focusing on two spe-
cific goals. Firstly, we examine the usefulness of combined embeddings in detecting temporal shifts
over the years in experiment 2.1. Secondly, in Experiment 2.2, we examine the effectiveness of only
image embeddings in differentiating between benign and malicious malware. Considering that image
embeddings demonstrated the best performance, and that generating images from memory dumps is
not only simpler but also potentially more cost-effective compared to the extensive processing required
by large language models for behavioral and pseudo-static analyses, we opted to assess their efficacy
for malware detection.

Experiment 2.1: Are embeddings capable of discerning temporal shifts across years?

In this experiment, we are investigating whether embeddings can be used to determine the age of
malware. We have categorized the malware by year and trained a logistic model using the embeddings
as input and the years as output. Our anticipation is that the logistic model will predict the years with
significantly better accuracy compared to a dummy model, which predicts based on the most frequent
class. This is evident in Table 5.2, where the logistic model significantly outperforms the dummy model,
highlighting its effectiveness in predicting temporal shifts.

5.2. Extending Embeddings to New Tasks 52

Table 5.2: Summary of Model Performances for Temporal Shifts in Years

Model Accuracy (avg + std) Mean Absolute Error (MAE) in years (avg + std)
Dummy Model 0.0740 + 0.0000 5.0674 + 0.0004
Logistic Model 0.6679 + 0.0035 1.0023 £ 0.0167

Logistic Model indicate a statistically significant difference compared to dummy model, as determined by the
Mann-Whitney U test (o« < 0.05).

Experiment 2.2: Are image embedding capable of classifying benign and malicious malware?
In this experiment, we assess the effectiveness of using image embeddings to classify malware as
benign or malicious by training a logistic model. The benign images were sourced from Androzoo
benign dataset, with a similar encoding to ours. Given the strong performance of image embeddings in
previous assessments, we expect them to perform well in differentiating between benign and malicious
malware. As demonstrated in Table 5.3, this hypothesis holds true. The logistic model achieves notably
higher accuracy, AUC score and F1 score compared to the dummy model.

Table 5.3: Summary of Model Performance for benign/malicious classification using Image embeddings

Model Accuracy (avg +std) AUC Score (avg +std) F1 Score (avg *std)
Dummy Model 0.6523 +0.0001 0.5000 +0.0001 0.4900 +0.0001
Logistic Model 0.9999 +0.0001 1.0000 £0.0001 0.9990 +0.0001

Logistic Model indicate a statistically significant difference compared to dummy model, as determined by the
Mann-Whitney U test (o < 0.05).

5.2.2. Experiment 3: How does our approach on classifying malware based on

images compare to previous work?
In our analysis, we examined the comparative efficacy of our image classification approach against
other established architectures. The results, as detailed in Table 5.4, indicate that the CNN model
using grayscale images had the weakest performance as expected since grayscale mapping, as used
by Natarajan et al.[78]as grayscale mapping captures less information than RGB mapping.

Moreover, We anticipated that our more complex architecture, which includes significantly more
layers than the other two models, would capture more robust features. Table 5.4 confirms this hypothe-
sis, showing that our model significantly outperforms the CNNs in processing both grayscale and RGB
images.

Table 5.4: Comparison of Architectures

Accuracy (avg =+ std)

Ours 94% + 0.160
CNN (gray scale) 81% + 0.053
CNN (rgb) 89% + 0.447

Our model indicates a statistically significant difference compared to gray scale and RGB, as determined by the
Mann-Whitney U test (o« < 0.05).

5.3. Tree Validation 53

5.3. Tree Validation

In this section, we will focus on validating the phylogenetic trees. First, we will compare the accuracy of
trees constructed using two methods—UPGMA and NJ—when validated against VirusTotal timestamps.
Next, we will explore how embedding drift analysis can be utilized to validate the phylogenetic trees
generated from both UPGMA and NJ methods.

5.3.1. Experiment 4. Which phylogenetic tree construction method using dis-
tances produces the most accurate representation of malware evolution
using VirusTotal timestamps?

In this experiment, we investigate which phylogenetic tree construction method, UPGMA or Neighbor-

Joining (NJ), provides the most accurate representation of malware family evolution. This comparison

is validated using timestamps from VirusTotal, which serve as a benchmark for assessing the temporal

accuracy of the tree constructions.

Table 5.5: Summary of Validation Results using Year Timestamps

Nominal (Not rooted) Outgroup Midpoint

NJ (Year) 0.811 0.871 0.631
UPGMA (Year, Rooted) 0.860 0.601 0.562
The metric employed is the ratio of correct comparisons to total comparisons, where a higher value indicates
better representation.

Table 5.6: Summary of Validation Results using Month Timestamps

Nominal (Not rooted) Outgroup Midpoint

NJ (Month) 0.793 0.853 0.597
UPGMA (Month, Rooted) 0.569 0.553 0.507
The metric employed is the ratio of correct comparisons to total comparisons, where a higher value indicates
better representation.

The metric presented in the tables 5.6 and 5.5 represents the ratio of correct comparisons to total
comparisons, indicating a higher value as a more accurate representation. We hypothesize that this
ratio will increase from month to year for all tree rooting methods, as rooting provides a necessary
perspective for interpreting the evolutionary relationships among the entities represented in the tree.
This trend is apparent in both tables 5.5 and 5.6.We also hypothesize that UPGMA, which inherently
generates a rooted tree, will not show improved accuracy with additional rooting. This hypothesis is
supported by the data in tables 5.5 and 5.6, where UPGMA achieves its best results with unrooted
rooting for both month and year granularities.

Conversely, we hypothesize that the NJ method, which does not naturally produce a rooted tree,
will show more accurate results when rooting methods are employed. This is confirmed as outgroup
rooting presents higher ratios than nominal for both month and year granularities in tables 5.5 and 5.6.
We also hypothesize that midpoint rooting will not yield more accurate results for either tree type due
to its potential to oversimplify evolutionary relationships. Midpoint rooting assumes that the longest
distance between any two leaves in the tree is across the ‘'midpoint’ of the tree. This assumption can
lead to arbitrary root placement, which might not accurately reflect the evolutionary history of the taxa
involved. This is evident for both month and years in tables 5.5 and 5.6 that irrespective of the tree
building algorithm midpoint rooting does not give better results.

Finally, we hypothesized that NJ would generally yield more accurate results than UPGMA because
it doesn’t assume a constant rate of evolution. This is supported by the data in tables 5.5 and 5.6, where
outgroup-rooted NJ outperforms outgroup-rooted UPGMA across both monthly and yearly granularities.
Although UPGMA shows better results in unrooted scenarios compared to unrooted NJ, it does not
surpass the performance of outgroup-rooted NJ overall.

5.3. Tree Validation 54

5.3.2. Experiment 5: How can embedding drift analysis be employed as an alter-
native method for validating phylogenetic trees?

In this experiment, we explore how embedding drift analysis can also be used in validating the accuracy
of UPGMA and NJ constuction methods. Given that UPGMA assumes a constant rate of evolution, we
test this assumption by analyzing the rates of change in embeddings for different malware families.
Specifically, we categorize embeddings of malware variants into different years based on VirusTotal
timestamps and then calculate the Euclidean distances between these embeddings sequentially over
the years, recording the minimum and maximum rates.

The findings, illustrated in Figure5.1, display the maximum and minimum mutation rates for ten
selected families. Notably, the families Bashlite and SynonGlobal exhibit significantly higher mutation
rates than others, challenging the validity of the constant evolution assumption upheld by UPGMA.

Rates of Selected Families

Rate Type
1750 { W= Min Rate
Max Rate

1500

1250

1000

Rate

750

500

Figure 5.1: Mutation Rates(euclidean distance over year) Barchart: This shows varying rates between families.

These observations suggest that UPGMA’s assumption is significantly violated as illustrated by
Figure 5.1. This may be another reason why NJ performs much better than UPGMA.

5.4. Patterns and Topology 55

5.4. Patterns and Topology

This section explores the different patterns and topologies that arise from analyses within and between
families. First, we will explore if clusters visualized using t-SNE, UMAP, or PCA align with lateral dis-
tances in the phylogenetic tree. Then, we’ll investigate how outliers may impact the topology of the
tree by altering the position of the most recent common ancestor.

5.4.1. Experiment 6: How do clusters formed by visualizing malware embeddings
with t-SNE, UMAP, and PCA align with lateral(leaf to leaf) distances in a

phylogenetic tree built with NJ method?

This experiment explores the patterns exposed by mapping malware embeddings into two dimensions.
We hypothesise that if samples from the same family cluster together in this 2D space, this clustering
should correspond to specific patterns in the frequency distribution of lateral distances (leaf-to-leaf or
sample-to-sample) within the phylogenetic tree. To test this hypothesis, we will examine these dis-
tances across 20 malware families using a tree made from Neighbour joining method, specifically se-
lected because they each consist of over 1,000 samples. This analysis aims to determine whether the
clusters evident in the t-SNE embeddings correspond to intra-family variations as indicated by the phy-
logenetic relationships. Additionally, to explore any discrepancies that emerge from the t-SNE results,
we will employ UMAP and PCA for further examination.

Global Structure

In Figures 5.2, 5.3, and 5.4, the ability of various dimensionality reduction techniques to segregate
malware families into discernible groups is clearly demonstrated. It can be seen that PCA in general
performs very poorly and therefore struggles with complex, non-linear realtionships. On the other hand,
both t-SNE and UMAP excel in clearly defining clusters for families like 7ev3n, Bashlite, NetWireRAT,
BazarBackdoor, and KrBanker. However, other families such as Upatre and Revil exhibit overlapping
embeddings in these plots, suggesting shared characteristics. This overlap may not be directly relevant
to the question at hand but may indicate the presence of common traits among different malware
families.

Outliers

When examining clusters, it's crucial to consider outliers as well. We will delve deeper into whether the
outliers identified in the intra-family analysis of the phylogenetic tree correspond with those seen in the
embedding projections. Figure K.4 provides a detailed overview of outlier counts for particular malware
families. It's important to highlight that only families with outliers are represented in this diagram.

Figure 5.2: Embeddings Projected to 2D using t-SNE shows that embeddings from same family cluster together

5.4. Patterns and Topology

PCA Embeddings with Labels

label

 Onlinerspambot
akBot

o WpBruteBot

Figure 5.3: Embeddings Projected to 2D using PCA shows that PCA is unable to capture non-linear relationships

UMAP Embeddings with Cluster Labels

label
o e
o Bashiite
« Bazarbackdoor
Blacksoul
- Lokibat
* KRBanker
o oy
- Koadic
o Sakila
Leedid
* LokiPasswordstealer
Gandcrab
Revl
o NetwireraT
oot

Figure 5.4: Embeddings Projected to 2D using UMAP shows that embeddings from same family cluster together

Outliers Analysis for Selected Families

611 (30.60%)

25

276 (21.63%)

N
S

429 (15.85%)

=
&5

247 (14.11%)
428 (12.79%)

Percentage of Outliers

10

Figure 5.5: Outliers based on lateral distance of the Tree

5.4. Patterns and Topology 57

Table 5.7: Clustering and Mode Analysis Across Malware Families

Family Observed Clusters (t-SNE) Modes in Lateral Distribution
7Ev3n 2 1
Bashlite 1 1
Bazarbackdoor 2 2
Blacksoul 1 1
GandCrab 3 3
Icedid 2 3
Infy 2 2
Koadic 3 3
KRBanker 2 2
Lokibot 2 2
LokiPasswordStealer 2 2
Sakula 4 4
NetWireRAT 3 3
Ngrbot 3 3
OnlineSpamBot 3 3
QakBot 2 2
QtBot 2 2
Revil 2 2
Upatre 1 1
WpBruteBot 2 3

There is significant correlation between Observed Clusters and Modes according to Spearman and
Kendall’s tests. The bold results are shown as discrepancies between observered clusters and modes in
Lateral Distribution

From Table 5.7, it is evident that there is a significant correlation between the observed clusters
in t-SNE projections and the modes in lateral distributions. This correlation generally supports our
hypothesis, suggesting a consistency between clustering in reduced dimensions and actual genetic
proximity as measured by lateral distances. However, it is crucial to acknowledge that the identifica-
tion of observed clusters can be somewhat subjective, influenced by visual interpretation. Therefore,
while the results are promising, they do not conclusively validate all aspects of our hypothesis. More
rigorous statistical methods and additional analyses are required to further substantiate these findings
with domain knowledge.

Table 5.7 highlights discrepancies between observed clustering via t-SNE and lateral distance distri-
butions for the 7ev3n, WpBruteBot, and Icedld malware families. For 7ev3n, both the lateral histogram
and UMAP indicate a single, closely related cluster, consistent with the Neighbour Joining analysis. In
contrast, while the lateral distribution for WpBruteBot reveals three to four modes, t-SNE shows only
two main clusters, and UMAP suggests two clusters along with additional small outlier groups, suggest-
ing possible misclassification of outliers by the Neighbour Joining method. The Icedld family displays
similar inconsistencies, with three to four modes observed in the lateral histogram, but only 2 to 3 clus-
ters are apparent in t-SNE and UMAP, with outlier data points potentially misclassified as clusters by
the Neighbour Joining algorithm. In the following subsection we will how we derive these insights of for
WpBruteBot, for more example of analysis form Table5.7 refer to appendix K.

5.4.2. WpBruteBot

The WpBruteBot family, as depicted in Figure 5.7, demonstrates three to four modes in the lateral
distance distribution. However, the t-SNE visualization in Figure 5.7 only reveals two prominent clusters.
In contrast, the UMAP plot in Figure 5.8 suggests the presence of two main clusters, with additional
densities at -6 and 20 that could potentially be interpreted as separate clusters. Nevertheless, we
suspect these are merely outliers, especially since the PCA visualization in Figure 5.9 predominantly
shows two dense regions. This discrepancy might be attributed to the neighbor joining method not
classifying these points as outliers in its own feature space.

5.4. Patterns and Topology 58

Distribution of Lateral Distances within Family WpBruteBot Median Distance Box Plot for Family WpBruteBot
= 120
250000 +
m 100
200000 + -
[m o 80
g
H
&' 150000 4 2
H 2
g a
= c
H £ o0
2
100000 - =
40
50000 4
20
o o i
0 20 40 60 80 100 120 1
Median Distance Family

Figure 5.6: Distribution of Lateral Distances for WpBruteBot shows 3 to 4 main modes with not many outliers

Figure 5.7: t-SNE Plot for WpBruteBot shows mainly 2 prominent clusters

Figure 5.8: UMAP Plot for WpBruteBot shows 3 to 4 clusters

5.4. Patterns and Topology 59

Figure 5.9: PCA Plot for WpBruteBot mainly shows 2 clusters

5.4.3. Experiment 7 : Do outliers alter the topology of a phylogenetic tree con-
structed using the Neighbour Joining method by changing the Most Re-
cent Common Ancestor (MRCA)?

We hypothesize that the inclusion of outliers significantly affects the topology of phylogenetic trees,

introducing increased depth and complexity that could alter evolutionary interpretations. Here, outliers

are defined as leaves that are more than 1.5 times the interquartile range (IQR) of the median distance
between all leaf-to-leaf(lateral) distances across families.This hypothesis is examined by comparing
tree characteristics with and without outliers.

Table 5.8: Comparison of Tree Characteristics

Characteristic No Outliers Outliers

Depth 4 8

Breadth by Depth {0:1,1:1,2:1,3: {0:1,1:1,2: 1, 3:
1,4: 1} 1,4:1,5:1,6:1,7:

1,8: 1}

Average Degree 1.996 1.996

Minimum Degree 1 1

Maximum Degree 100 116

Isomorphic No

Isomorphic Subtrees Found No

As shown in Table 5.8, the depth of the tree significantly increases from 4 to 8 when outliers are
included, confirming our hypothesis that outliers contribute to a deeper and more complex tree structure.
The breadth by depth data further supports this, illustrating additional complexity through increased
layers when outliers are considered.

The consistency of the average degree between the two scenarios suggests that the overall con-
nectivity per node remains stable, despite the structural changes induced by outliers. However, the
increase in maximum degree from 100 to 116 when outliers are included indicates that specific nodes,
potentially representing outliers, integrate more connections, thereby influencing the overall tree topol-
ogy. The absence of isomorphism and isomorphic subtrees in both scenarios highlights that the struc-
tural core of the trees is altered by the inclusion of outliers. This disruption in conventional topology is
indicative of the unique evolutionary paths introduced by outliers.

In summary, the evidence provided in Table 5.8 robustly supports our hypothesis, demonstrating
the significant impact of outliers on the topology of phylogenetic trees. This finding underscores the
need for careful consideration of outliers in phylogenetic analyses to ensure accurate evolutionary
interpretations.

5.5. Inter-Family Analysis 60

5.5. Inter-Family Analysis

In this section, we’ll examine whether the connections identified through inter-family analysis using
NJ correspond with public cybersecurity insights. Additionally, we will investigate if the relationships
identified through UPGMA align with those determined by NJ.

5.5.1. Experiment 8: Do the relationships identified through inter-family analy-
sis using NJ method correlate with public cybersecurity insights and with
the psuedo-static and dynamic features of the malware?

To address this question, we will undertake a speculative analysis of six malware case studies: Mi-

rai, SmokeLoader, BotenaGo, DiscordTokenStealer, and SundownEk. We will focus in-depth on two

primary studies—Mirai and SmokelLoader—with the remaining subjects detailed in Appendix L. This
analysis involves reviewing various sources to determine potential connections between each mal-
ware family. We will explore both pseudo-static and behavioral characteristics, with specific examples

detailed in Appendix M.

Our research, based on publicly available data, explores relationships between several malware
families. We have confirmed connections from Mirai to Gafgyt, Moobot, Okiru, EnemyBot, and Bashlite,
as well as connections from SmokelLoader to IcedID, Racoon Stealer, and Async Rat.However, inter-
famuly analysis suggests possible connections between Mirai and other malware families such as Turla,
Conti, and Rdat, marked by high edge weights (over 25). The lack of supporting evidence from existing
literature renders these links unlikely. This doesn’t imply that the graph is inaccurate; instead, these
high-edge-weight connections are considered with very low confidence in our inter-family analysis.

Additionally, we identified connections between BotenaGo and FritzFrog, DiscordTokenStealers and
AkiraRansomware, and SundownEk and Kronos, which also agree with public sources as detailed in
other studies found in Appendix L. Overall, our analysis suggests plausible, albeit speculative, relation-
ships within our network, consistent with public sources.It’s crucial to remember that these findings are
speculative and do not establish definitive relationships.

Case Study: Mirai

Figure 5.10: Inter-family analysis of Mirai shows that Mirai is the progenitor of many families.

5.5. Inter-Family Analysis 61

Figure 5.10 shows an inter-family analysis of Mirai, indicating its role as a progenitor to several malware
families such as Bashlite, Okiru, Moobot, EnemyBot, and Gafgyt. These related families, highlighted in
red in Figure 5.10, will be the focus of our discussion in this section. According to Avast[186], Mirai is a
type of malware that targets Internet of Things (IoT) devices, such as routers and cameras, which run
on the Linux operating system. It exploits default usernames and passwords on these devices to launch
Distributed Denial of Service (DDoS) attacks. The botnet became notorious following its involvement
in some of the largest DDoS attacks, including the attack against DNS provider Dyn in October 2016
that temporarily rendered major websites like Twitter, Netflix, and Reddit inaccessible [187].

The pseudo-static analysis features of Mirai, reveals several operational functions. These include
generic networking functions such as socket, connect, bind, listen, accept, send, recv, recvfrom,
sendto, and setsockopt. These functions are essential for establishing and managing network com-
munications, enabling Mirai to control a vast array of compromised devices across the network. Ad-
ditionally, Mirai utilizes a variety of process and memory management functions including fork, exec,
malloc, calloc, realloc, and free for memory and process management. However, Mirai also uses
more uncommon control functions such as signal, kill, exit, getpid, getppid, and prctl . These
functions allow Mirai to initiate or terminate processes as necessary.

When analyzing Mirai’s dynamic behavior, it is evident that the malware extensively interacts with
system files, a critical aspect of its ability to gather information and manipulate the environment. It
accesses key configuration files such as /etc/group and /etc/mtab, providing essential details about
system settings and current mount points that could be exploited to identify vulnerabilities or optimal
points for maintaining persistence. Additionally, the deletion of files like /tmp/cutie.x86_64 demon-
strates Mirai's efforts to conceal its presence, potentially to evade forensic detection and eliminate
conflicts with other processes.

In terms of command executions, Mirai actively uses shell commands to inspect system processes,
exemplified by commands such as 1s -1 /proc/1/status. This behavior is typically aimed at monitor-
ing and controlling running processes to prevent any interference from competing malware or security
software, thereby ensuring sustained control over compromised devices. Moreover, Mirai utilizes vari-
ous techniques cataloged in the MITRE ATT&CK framework, underscoring its sophistication and the po-
tential breadth of its impact. Notable techniques include executing commands via a shell command-line
interpreter for system manipulation, creating hidden files, links, or directories to conceal its presence,
and employing the uname system call to gather information about the kernel version. These actions
are indicative of Mirai’s strategic approach to evasion and reconnaissance, allowing it to customize its
operations based on the specific characteristics of the environment it infects.

Gafgyt

Numerous sources, including reports from Trend Micro [188], New Jersey Cybersecurity [189], and
Threatpost [190], indicate that Gafgyt is a variant of Mirai. Similar to Mirai, Gafgyt targets loT devices
but employs distinct methods by exploiting specific vulnerabilities instead of merely relying on default
credentials. Devices infected with Gafgyt are used to launch DDoS attacks, and over time, Gafgyt
has evolved into more sophisticated variants with enhanced capabilities to exploit a broader range of
devices and software vulnerabilities.

Gafgyt also demonstrates the ability to eliminate other malware and processes on compromised
devices, asserting its dominance. In terms of thread and process management, Gafgyt utilizes functions
such as pthread _start _thread, pthread_kill_all_threads, pthread _reap_children, and pthread _onexit to
manage and terminate threads effectively. Additionally, it incorporates process lifecycle and control
functions like restart, suspend, and pthread_handle_sigrestart, as well as queue management and
synchronization functions such as enqueue and remove_from_queue, which are vital for coordinating
tasks like DDoS attacks or spreading to additional devices.

The dynamic analysis features of Mirai and Gafgyt shows some similarities, particularly in their use
of basic networking functions like connect, recvfrom, and socket. Mirai is observed extensively probing
various system processes by accessing command line information from the /proc/[pid]/cmdline direc-
tory, suggesting an aggressive strategy to monitor and manipulate running processes. In contrast,
Gafgyt focuses more on network-related information, as seen from its activity in the /proc/net/route
directory, indicating an interest in manipulating the device’s network behavior or scanning for other de-
vices to infect within the network.

5.5. Inter-Family Analysis 62

Both families involve terminating processes, as evidenced by targeted files like ‘/tmp/EB93A6/996E .elf*
being eliminated by process termination commands in both cases. This suggests a common opera-
tional tactic likely aimed at stopping specific security processes or competing malware to ensure their
dominance on the compromised system. While these commonalities do not conclusively prove that
Gafgyt originated from Mirai, multiple sources supporting the claim strengthen the notion of a connec-
tion between the two, as identified in inter-family analysis. This linkage suggests a possible evolutionary
relationship where Gafgyt may have derived certain tactics or operational strategies from Mirai.

Okiru

The cybersecurity group MalwareMustDie has identified a new variant of the Mirai malware, known as
Okiru, which targets loT devices equipped with Argonaut RISC Core (ARC) processors [191]. Similar
to Mirai, Okiru scans for devices with Telnet access using default passwords, reflecting commonalities
in their approach to accessing vulnerable systems. Okiru is notable for being the first piece of malware
specifically designed to exploit ARC processors [192], which are found in a diverse range of system-
on-chip applications including wearable health monitors, smart home appliances, energy management
systems, and automotive and industrial controls. The shared Linux-based software development en-
vironment of these loT devices makes them susceptible to such malware attacks, as highlighted by
TechTarget [192].

In examining the pseudo-static features, Mirai and Okiru display many shared characteristics. Both
malware families make extensive use of core networking functions, including socket, connect, recv,
send, and bind. They also incorporate generic memory and thread management functions such as
fork, exec, malloc, free, and kill. Additionally, they utilize system control functions like prctl, setsockopt,
getsockopt, and ioctl to modify operating system behavior. Other Miscellaneous utilities, mirroring those
used by Mirai, such as time, getpid, sleep, and opendir, further assist in managing operational timing
and processes.

Okiru’s dynamic analysis of imports and exports reveals specific activities. It generates network
traffic on non-standard TCP and UDP ports, possibly as a strategy to evade detection by network secu-
rity systems that typically do not scrutinize non-standard ports as closely. Additionally, it uses network
protocols on non-standard ports, potentially masking its communication within legitimate-looking traf-
fic to avoid standard port-based network filters. Okiru also accesses network configuration files such
as /proc/net/tcp, indicating efforts to monitor or manipulate crucial network communications for its op-
erations and identifying potential targets within the network. While the observed similarities do not
conclusively prove Okiru’s origin from Mirai, multiple sources linking Okiru to Mirai support the idea of
a connection between the two. This suggests a potential evolutionary relationship where Okiru may
have adopted certain tactics and operational strategies from Mirai.

MooBot

According to reports from The Hacker News[193] and SOC Prime[194], MooBot is a derivative of the
foundational Mirai botnet, but it incorporates advanced functionalities and adopts a more focused strat-
egy. MooBot’s primary objective is to exploit security vulnerabilities in 10T devices, including routers,
digital video recorders, and surveillance systems, to gain unauthorized access and control. Once com-
promised, these devices are utilized as part of a botnet to carry out Distributed Denial of Service (DDoS)
attacks. The pseudo-static analysis of MooBot reveals that it imports and exports several critical func-
tions that demonstrate its refined capabilities.

For process and error management, MooBot imports functions such as _cxa_begin_cleanup,
_cxa_call_unexpected, and _pthread _unwind. These functions may be vital for manipulating sys-
tem processes and handling exceptions, enabling the malware to manage the lifecycle of processes
smoothly. In terms of network communication control, MooBot exports functions like _sys recv, sys send,
_Ssys_connect, and _sys_accept. These are pivotal in controlling network interactions and mirror Mirai's
strategy to manipulate traffic and maintain control over compromised devices. Additionally, MooBot’s
exports, such as
attack_method_udpgeneric and attack_udp_ovhhex, highlight its specialized DDoS capabilities. These
features reflect tactical similarities with Mirai in executing network-based attacks.

Further insights are provided by the dynamic analysis features of MooBot, which shows extensive
file operations and command executions. The malware accesses and modifies critical system config-
uration files, such as /etc/mtab and /etc/group, to understand the system’s configuration and identify

5.5. Inter-Family Analysis 63

vulnerabilities or optimal points for persistence. It also deletes files like /tmp/sample or /tmp/base,
likely to eliminate traces that could facilitate forensic analysis or interfere with its activities, mirroring
Mirai's tendency to clean up after itself to avoid detection. Like Mirai, MooBot executes a sequence
of shell commands to inspect system processes, indicative of its attempts to oversee and potentially
control running processes to ensure no competing malware or security processes are active, which
helps maintain its stealthy presence and control over the compromised device. The employment of
techniques categorized under the MITRE ATT&CK framework, such as executing commands through
a shell command-line interpreter, creating hidden files, and querying system information via the uname
system call, underscores MooBot’s sophisticated operational profile aimed at system manipulation, per-
sistence, and evasion. These tactics align closely with those observed in Mirai, highlighting a similar
strategic approach to maintaining a high infection rate while laying low within infected systems.

Although these observations imply that MooBot might be a variant of Mirai, this association remains
speculative. Evidence suggesting a link between MooBot and Mirai supports the idea of a connection;
however, the graph intriguingly shows the edge originating from MooBot to Mirai, rather than vice versa
but this likely stems from inaccuracies in estimating evolutionary distances.

EnermyBot

According to reports from The Hacker News[193] and SOC Prime[194], Enemybot is identified as a
derivative of the Mirai malware, although Figure 5.10 does not establish a direct connection from Mirai
to Enemybot. Instead, it shows a transitive connection via Okiru and Netwire RAT. This indirect linkage
suggests nuanced evolutionary paths in the malware landscape, reflecting sophisticated adaptations
over time.

Enemybot demonstrates advanced network communication capabilities similar to Mirai, as evi-
denced by functions such as setup_connection and port80_setup connection. These functionalities
may indicate Enemybot’s ability to establish connections for command and control (C&C) operations or
to facilitate the spread to additional systems. Furthermore, Enemybot’s handling of string and memory
management through functions such as strcpy, _GI_memchr, and bemp is crucial for data manipulation
within infected devices, mirroring strategies employed by Mirai.

In terms of security tactics, Enemybot incorporates anti-debugging measures with functions such
as anti_debug_shit, reflecting a defensive mechanism against reverse engineering similar to those ob-
served in polymorphic malware. This strategy is complemented by its ability to manage credentials
and user interactions, utilizing functions such as consume_user_prompt and consume_pass_prompt.
These features automate the theft or input of credentials, closely resembling Mirai’s approach to ex-
ploiting devices through default credentials. Moreover, Enemybot employs obfuscation techniques,
demonstrated by the deobf function, to perhaps conceal its operational code and evade detection, a
tactic also prevalent in Mirai’s operational framework.

Dynamic analysis features reveal Enemybot’s persistent and evasive maneuvers. It modifies
/etc/crontab to insert cron jobs, ensuring regular execution to maintain persistence. The use of the
uname system call likely tailors Enemybot’s behavior to the host environment or aids in evading de-
tection. Additionally, its engagement in network communications on non-standard ports is designed to
circumvent typical firewall configurations, a strategy akin to Mirai’'s. The malware’s interaction with crit-
ical system files such as /proc/sys/vm/mmap_min_addr and access to device watchdog mechanisms
through /dev/misc/watchdog and /dev/watchdog suggests a sophisticated approach to system recon-
naissance and attempts to disable system watchdogs. Furthermore, Enemybot’s execution control
functions, such as _do _global ctor _aux and _do_global dtors_aux, reflect a meticulous process for
initializing and cleaning up its environment on new devices, paralleling Mirai’s thorough preparation
and cleanup methods. Its ability to manage processes through _GI_execve and waitpid, along with the
network address resolution capabilities provided by gaih_inet and inet_pton4, equip Enemybot with the
necessary tools for effective C&C communication and target acquisition, underscoring its similarity to
Mirai in operational tactics and technical sophistication.

Bashlite

Later in our analysis, we found that Gafygt and bashlite was the same according to Stamus [195], butin
our dataset there were given different names.However, rather interestingly Figure5.10 does not show
an connection between Gafgyt and Bashlite but only to its parents. This suggests that our approach
focuses more on linking these entities to their antecedents rather than to each other, emphasizing the
tracking of lineage rather than linking those that are very similar together.

5.5. Inter-Family Analysis 64

5.5.2. Speculative Assessment of Potential Connections Between Mirai and Other

Malware Families
We could not find any public evidence to support connections between certain malware families, such
as Conti, Turla, and RDAT, originating from Mirai. Here, we speculate on the likelihood of each of these
families being derived from Mirai based on Figure5.10.

Table 5.9: Speculative Analysis of Other Families

Malware Derived from Reason
Family Mirai
Conti Highly unlikely Targets large organizations through

ransomware, contrasting with Mirai’s loT
device DDoS attacks.

Turla Highly unlikely State-sponsored group using APTs,
different from Mirai’s disruptive loT
exploitation.

RDAT Highly unlikely Used for data exfiltration or remote
access, not aligning with Mirai’'s loT
attacks.

Lallal Unlikely Covertly collects sensitive information,

Stealer contrasting with Mirai’'s DDoS focus.

ZuorRat Unlikely Targeted RAT capabilities contrast with
Mirai’s broad device exploitation.

NgrBot Probable Shares botnet use for DDoS with Mirai,

but different in targeting and spreading.
Royal Ran- Highly unlikely Goals of encryption for extortion differ

somware from Mirai’s network disruption.

XdSpy Unlikely Espionage focus on stealth and access
contrasts with Mirai’s disruptive nature.

Trickbot Probable Both use a DDoS approach

From Table 5.9, it is evident that the connections between four main families—Conti, Turla, Rdat,
and Royal Ransomware—are considered very unlikely, yet they still appear as relationships in our inter-
family analysis. This indicates that the tree has imperfections, largely because it is based on a lot of
assumptions. However, the confidence levels for these families are also quite low, with edge weights of
30, 35, 40, and 35 respectively. This suggests that while connections are noted, they are not strongly
supported.

Case Study: SmokeLoader

SmokelLoader is a sophisticated malware loader recognized for its advanced evasion techniques [196].
Since its discovery in 2011, SmokeLoader has been actively developed, employing a variety of meth-
ods to evade detection, manage execution, and ensure persistence. This malware is particularly noted
for its stealth capabilities, utilizing advanced obfuscation and encryption techniques to circumvent de-
tection by antivirus programs and malware scanners.

SmokelLoader ensures its persistence by implementing mechanisms that maintain its activity even
after system restarts. Its modularity is a key feature, allowing it to download and execute various plugins
and payloads from its command and control (C&C) servers, thereby adapting its functionality to meet
the dynamic needs of its operators. The range of malicious payloads that SmokelLoader can deliver
is broad and varied, encompassing banking Trojans designed to steal financial information from the
affected users. Additionally, it has the capability to deploy ransomware that encrypts victims’ data and
demands ransom payments for decryption.

Furthermore, SmokeLoader can install cryptojacking software that covertly uses the resources of
infected machines to mine cryptocurrency. It is also capable of loading botnet software to incorporate
infected devices into networks that are used for Distributed Denial of Service (DDoS) attacks or spam
campaigns. Operationally, SmokelLoader typically infiltrates systems via phishing emails or through

5.5. Inter-Family Analysis 65

compromised websites that are part of exploit kits. Once established on a device, it communicates
with a C&C server to download additional malware tailored to the specific objectives of its attackers.

5.5.3. High-Level Overview of SmokeLoader's Operation

SmokelLoader’s operations are systematically divided into several stages, each characterized by spe-
cific techniques aimed at compromising systems, evading detection, and executing malicious activities
with stealth. The detailed reverse engineering analysis can be found on Elshinbary’s blog[197]. Here
we present a short summary.

Smokeloader Stages

In the initial stage, SmokeLoader utilizes LocalAlloc() for memory allocation to minimize detection
risks, a less monitored method compared to VirtualAlloc (). It adjusts memory permissions to
PAGE_EXECUTE_READWRITE using VirtualProtect (), which facilitates the direct execution of shellcode.
Moreover, SmokeLoader employs a sophisticated hashing algorithm to dynamically resolve API ad-
dresses, effectively masking its dependencies and evasive intentions. Inits second stage, SmokelLoader
uses process hollowing techniques, creating a new process in a suspended state to inject malicious
code, which then runs under the guise of legitimate processes. It implements complex conditional
operations known as opaque predicates and includes anti-analysis techniques that obfuscate the ac-
tual execution flow, complicating static analysis. Additionally, it incorporates anti-debugging measures,
checking for OS version and debugging status through the Process Environment Block (PEB) to adjust
its behavior in the presence of debugging tools. Communication with command and control servers
is encrypted, obscuring network activities from straightforward monitoring. Lastly, SmokelLoader re-
encrypts functions post-execution to revert to a less detectable state, thus maintaining persistence
and evading detection. It employs anti-hooking strategies by using its own versions of system DLLs
loaded from alternate locations to evade monitoring tools that hook standard API calls. Furthermore,
SmokeLoader applies custom techniques for resolving imports and detecting virtualized environments,
using specialized hashing functions to complicate direct API calls, enhancing its ability to operate un-
detected in a wide range of environments.

5.5.4. Pseudo-static and Dynamic analysis

Integrating the pseudo-static and dynamic analysis details of SmokeLoader with the staged operational
techniques, we can present a more connected and comprehensive narrative that aligns the specific
activities with each stage of the malware’s execution process.

SmokelLoader, an older malware originally based on DOS, presents certain challenges in analysis.
Specifically, Lief was unable to extract import or export data from DOS formats. Nevertheless, it is
still possible to discern potential correlations between certain opcodes and SmokelLoader’s operational
techniques. Arithmetic and data operations such as the opcodes add, sub, and mov are frequently uti-
lized for tasks like loading and decrypting payloads, crucial for the malware’s ability to manipulate and
prepare data. Stack management operations using push and pop are vital for managing function calls
and local variables, particularly during the process hollowing phase, where the malware configures
its operational environment within another host process. System interactions through int and call
opcodes are fundamental for making software interrupts and function calls, crucial in SmokeLoader’s
anti-debugging tactics where it interacts directly with the operating system to detect and evade debug-
ging tools. The xor opcode probably facilitates straightforward encryption or decryption operations,
aiding in the secure handling of the malware’s encrypted functions and communications.

For anti-debugging techniques, the sidt instruction, which stores the interrupt descriptor table regis-
ter’s contents, potentially serves as an anti-debugging measure to identify changes in system interrupt
configurations often altered by debugging environments. Security operations employing xor and and
instructions are commonly used in cryptographic tasks to securely manipulate data, aligning closely
with how SmokeLoader manages its encrypted functions and command and control communications.

Dynamic analysis of SmokelLoader, helps correlate some behaviors to stages of operational tac-
tics as discussed on n1ght-wO0If's blog[197]. The behavior of SmokelLoader involves opening, writing,
and sometimes deleting critical files across the system, accessing crucial system DLLs like ntd11.4d11,
which is essential for a variety of system-level functions, including those required for process manipu-
lation and API hooking. This is consistent with the Initial Compromise and Shellcode Execution stage,
where SmokelLoader allocates memory and adjusts permissions to execute shellcode.

5.5. Inter-Family Analysis 66

In the Evading Detection and Securing Persistence stage, SmokelLoader’s capability to write exe-
cutable files in user directories and startup folders is particularly notable. It creates links and executa-
bles in paths such as %APPDATA\\microsoft\\windows\\start menu\\programs\\startup , which facilitates
autostart capabilities essential for maintaining persistence. This aligns with the process hollowing tech-
niques observed, where new processes are created and existing ones hijacked to inject malicious code,
running it under the guise of legitimate operations.

Moreover, the deletion of registry keys related to startup tasks and browser configurations, along
with the execution of commands that initiate processes with administrative privileges, highlights SmokeLoader’s
efforts to modify system settings to its advantage or potentially disable security measures that could
hinder its operations. These actions support the Anti-Debugging and Anti-VM techniques identified in
the reverse engineering analysis, helping SmokelLoader ascertain the environment and adapt its be-
havior to avoid detection tools and virtualized analysis environments. Changes in file attributes and the
manipulation of file locations to less monitored directories underscore the Encryption of Communica-
tion and Re-encryption of Functions tactics, enhancing its stealth and making static and network-based
analysis more challenging.

5.5.5. Inter-family analysis
Now that have we established a solid understanding of this malware family. We can have a look at the
result of inter-family analysis with smoke loader. This is presented in Figure5.11.

®
Csinshber

EviPlayout

Figure 5.11: Interfamily analysis of smokeloader shows that it is the progenitor of a many families

SmokelLoader appears to be the progenitor of various malware families, likely due to its design as a
versatile loader capable of downloading and executing a diverse array of malware payloads. This flexi-
bility makes it a preferred tool for cybercriminals, allowing them to tailor their attacks based on the target
environment or specific objectives. As a gateway for further exploits, SmokelLoader sets the stage for
subsequent infections. We will focus our analysis on three such families: IcedID, RacoonStealer, and
AsyncRAT highlighted in red in Figure 5.11.

IcedID

According to an article on Medium by Walmart Global Tech[198], IcedID employs SmokelLoader as
an effective private loader. Given SmokelLoader’s function as a generic loader, it's more practical to
focus on dynamic analysis features rather than comparing pseudo-static features between them. The
observed behaviors of IcedID align closely with those expected from SmokelLoader, suggesting its

5.5. Inter-Family Analysis 67

potential role in deploying various malware payloads. IcedID actively engages with both system and
user directories, accessing vital DLLs and writing to directories like \APPDATA. These actions may reflect
SmokeLoader’s methods to discreetly deploy payloads by manipulating the file system, aiming to load
and execute IcedID without drawing attention. Furthermore, IcedID’s operations involving writing to
temporary directories and modifying user profile areas are crucial for staging the malware, ensuring it
is ready for execution upon system restart or user login, a tactic commonly employed by SmokelLoader.

Moreover, IcedID’s strategy includes terminating and manipulating system processes, such as
svchost.exe and wmiadap.exe. This manipulation potentially disables defenses or modifies system
behaviors to facilitate malware activities, which likely mirrors SmokelLoader’s tactics for controlling pro-
cesses. IcedID also creates processes in a suspended state, setting the stage for subsequent code
injection. This method closely aligns with SmokelLoader’s techniques of injecting and running malware
within legitimate processes to enhance stealth and evade detection by security systems. In terms
of registry and system security manipulation, the use of sophisticated encryption and encoding meth-
ods like RC4 and XOR, along with dynamic function linking by IcedID, indicates a concerted effort to
secure communications and functionalities. These traits are potentially essential for maintaining the
stealthy operations of SmokelLoader. Also, IcedID’s modifications to Windows certificates and sys-
tem policies suggest attempts to deepen system integration and ensure persistence, clearly reflecting
SmokelLoader’s capability to conFigureand manipulate system environments to support undetected
operations of malware.

IcedID’s utilization of HTTPS for secure command and control communications and conducting DNS
lookups to manage network interactions demonstrate its capability for sophisticated network manipu-
lation, a characteristic shared with SmokelLoader. Moreover, evasion tactics such as detecting virtu-
alization, employing long sleep cycles, and dynamically adjusting behaviors to counter analysis tools
align with SmokelLoader’s advanced evasion methodologies. These strategies are crucial to ensuring
IcedID’s operation remains undetected which may imply SmokelLoader as the private loader.

Raccoon Stealer

Raccoon Stealer, identified as a type of malware known as an information stealer, was first observed
in April 2019 and quickly gained notoriety for its effectiveness and ease of use. Distributed typically
as a service in underground forums, Raccoon Stealer follows a Malware-as-a-Service (MaaS) model,
allowing even those cybercriminals with limited technical expertise to deploy the malware in exchange
for a fee [199]. According to VMRA[199], Raccoon Stealer also utilizes SmokelLoader as a private
loader.

The dynamic analysis features of Raccoon Stealer reveals its significant interactions with system
files, specifically engineered to access and manipulate sensitive user data. For instance, the mal-
ware opens critical data files such as %LOCALAPPDATA%\google\chrome\user data\default\login
data and %APPDATAY\mozilla\firefox\profiles*.default\cookies.sqlite, indicative of its intent
to harvest credentials and cookies. This behavior mirrors SmokelLoader’'s methods, which typically
modify or access files to deploy or update malicious payloads covertly.Furthermore, Raccoon Stealer
executes strategic manipulation of processes, such as terminating essential system processes like
%windir}\System32\svchost.exe -k WerSvcGroup, and creating new processes in a suspended state
for subsequent code injection. This aligns with SmokelLoader’s process control tactics, aiming to dis-
able defenses or modify system behavior to facilitate malware activities unimpeded.

Advanced evasion techniques employed by Raccoon Stealer include efforts to detect virtualization
through RDTSC time measurements and the implementation of long sleep intervals (>= 3 min), de-
signed to thwart automated analysis tools and virtualized environments. These methods are character-
istic of SmokeLoader’s advanced evasion capabilities. Additionally, Raccoon Stealer’s use of HTTPS
for secure command and control communications and conducting DNS lookups to manage network
interactions reflects sophisticated network manipulation strategies, akin to those of SmokelLoader, en-
hancing the malware’s ability to operate undetected. These observations may indicate that SmokeLoader
is used to deliver Raccoon Stealer.

Async Rat

According to Threathunt[200], there is evidence suggesting that AsyncRAT also utilizes SmokelLoader.
Dynamic analysis features reveal several critical behaviors that align closely with those typically exhib-
ited by SmokelLoader.

5.5. Inter-Family Analysis 68

AsyncRAT engages in significant file and directory manipulation, writing executable files such as
cloud.exe in user-specific directories like AppData and Start Menu. This behavior is consistent with
SmokeLoader’s method of dropping payloads into such locations to establish persistent access and
execution capabilities. Furthermore, AsyncRAT manipulates files across various system and user di-
rectories, including attribute modifications and file deletions post-actions, indicative of SmokelLoader’s
techniques for discreetly deploying and activating secondary payloads like AsyncRAT. Process manip-
ulation and command execution are also central to AsyncRAT’s operations. It executes and injects
into processes such as msbuild.exe and cmd. exe, a tactic for maintaining persistence and execution
without arousing suspicion that mirrors SmokelLoader’s use of process hollowing and other injection
techniques. Additionally, AsyncRAT’s use of system utilities like timeout.exe and cmd.exe suggests
a manipulation of system processes to perform tasks or maintain stealth, a strategy often initiated by
SmokelLoader to conFigureits environment or execute further malicious payloads.

Registry and system configuration manipulation by AsyncRAT involves deleting specific registry
keys related to Internet settings, potentially to modify security settings or clear tracks. This behav-
ior, common to SmokeLoader, aids in persistence and facilitates uninterrupted command and control
(C2) communication. Such registry modifications are crucial for maintaining a stealthy presence and
ensuring the malware’s operations are not easily detected or disrupted. Moreover, AsyncRAT modi-
fies network configurations and utilizes advanced evasion techniques, including running in suspended
modes and creating guard pages, along with employing tactics to evade detection, such as using en-
crypted or packed data. These actions are known characteristics of SmokelLoader, which similarly
uses evasion techniques to avoid detection, including environmental awareness and potentially deliv-
ering payloads in encrypted forms. SmokeLoader’s configuration of systems to communicate securely
with C2 servers aligns with AsyncRAT’s use of HTTPS for secure communication.Both AsyncRAT and
SmokelLoader share several tactics that align with the MITRE ATT&CK framework, such as Process In-
jection (T1055), Scripting (T1064), System Information Discovery (T1082), and Query Registry (T1012).
These activities are crucial for adapting their payloads based on the environment, with Remote File
Copy (T1105) inferred from AsyncRAT’s behavior to write files across the system, potentially facilitated
by SmokelLoader as part of its payload deployment strategy.

Experiment 9: Are there any similarities between the inter-family relationships
of UPGMA and NJ

Table 5.10: Analysis of Malware Family Relationships According to UPGMA

Parent Child Families Likelihood Agrees with NJ?
Ramdo Bashlite Unlikely No

Zloader Smokeloader Likely No

FritzFrog BotenaGo Likely Yes (but order reversed)
SundownEK Neshta Unlikely No

Mirai Bashlite Likely Yes

Zloader Okiru Unlikely No

Lokibot Gafgyt Unlikely No
DiscordTokenStealer BianLianRansomware Unlikely No

In this experiment, we investigate the similarities between relationships exhibited in UPGMA and
NJ for the Mirai, SmokelLoader, BotenaGo, Bashlite, SundownEK and DiscordTokenStealer families.
As shown in Table5.10, it is evident that most relationships from parent to child families of UPGMA do
not align with NJ.

Discussion

This study aimed to show how deep learning and phylogenetic trees can be used the tracing of evolu-
tion of malware. Traditional methods, like reverse engineering, usually take months to years to uncover
these relationships. With the rise in wide-spread malware such as Mirai, this research seeks to sub-
stantially shorten this timeframe.

We will start our discussion by summarizing the key findings from the previous chapter. We will
then reflect on the questions posed in the introduction and discuss their implications for cybersecurity
research. Following this, we will examine the weaknesses identified in our experiments and consider
the factors that may have influenced our results. Next, we will discuss the necessary steps to transition
our research into a real-world application. Finally, we will outline potential future research directions
that emerged from our discussions.

6.1. Key Results

Our key findings reveal that image analysis substantially outperforms traditional static and dynamic
analysis methods in both malware classification and detection. In our efforts to construct phylogenetic
trees, the Neighbor-Joining algorithm has emerged as the most effective as opposed to Unweighted
Pair Group Method with Arithmetic Mean(UPGMA). Furthermore, combining deep learning with phylo-
genetic analysis has proven to be remarkably scalable, allowing us to discern relationships among 546
malware families within a mere month. The resulting phylogenetic tree is consistent with the majority
of our case studies and aligns with most of the VirusTotal timestamps.

6.2. Reflection

In this section, we reflect on the main results by answering the research questions posed in the intro-
duction and then highlights its implications in cybersecurity research.

Q1.Which analysis type yields the best embeddings and does combining them improve perfor-
mance?

Surprisingly, image embeddings significantly outperform both pseudo-static and dynamic features in
malware classification. This finding was unexpected, particularly since dynamic features, which involve
analyzing malware behavior, were anticipated to provide a more accurate assessment of malicious ac-
tivities. However, the literature confirms that such results are not unprecedented but rather common.
For instance, Gilbert et al. [103] and Kumar et al. [105] reported an accuracy of over 95% using CNNs
on the Malimg dataset, indicating that images can be effectively used for malware detection or classifi-
cation.

The reasons why images are effective remain very unclear. Firstly, these images are resized using
interpolation methods, which alter the original encoding of the data. Despite this, the mechanisms
by which these models maintain high accuracy are not well understood but are frequently discussed
in the literature. Secondly, our approach involves initializing our architecture with ImageNet weights,
despite further training on a public dataset. The direct applicability of ImageNet features to malware
detection is questionable, yet this methodology is widely adopted in the field, as evidenced by works

69

6.2. Reflection 70

such as Rustam et al. [106] and Kumar et al. [105], who report high accuracies using similar strategies.
Furthermore, some studies, including those by Kumar et al. [105] and Gilbert et al. [103], do not address
the issue of packing in their methodologies, yet they still achieve high accuracy. Kumar et al. [105]
specifically argue for the robustness of their models against packing, having tested this by packing
samples with UPX and maintaining high performance, without resorting to techniques such as extracting
images from memory dumps.

There have been efforts to enhance the interpretability of models; Yakura et al. [104], for instance,
incorporated an attention layer in their CNN. This layer highlights crucial regions within the images,
guiding more targeted analyses such as byte sequence extraction and disassembly. However, the
efficacy of attention mechanisms as a genuine explanatory tool remains contentious. Studies by Bibal
et al. [201], Wiegreffe & Pinter [202], and Grimsley et al. [203] question whether attention can reliably
indicate interpretive validity. Overall, the reason why images, even when resized, perform so effectively
in malware classification remains elusive.

Another interesting result was that the combined embeddings, which include all three types (pseudo-
static, dynamic, and image), did not perform better than just using image embeddings. We think this
might be due to our choice of setting the number of hidden neurons in our supervised dimensional
reduction to 1000. As we are reducing the dimensionality from 6560 to 1000, it's likely causing a sig-
nificant loss of information.However, we hypothesize that by making the number of hidden neurons an
adjustable hyperparameter that can be fine-tuned, the combined embeddings may potentially outper-
form those from image analysis alone.

Q2.Are embeddings, merged or individual, useful for downstream tasks?

The embeddings are useful, particularly the image embeddings, which have proven to be the best
performing. We found that image embeddings were highly effective for malware detection, achieving
near-perfect accuracy and F1 scores. This should not be surprising, given the previous discussion, as
high accuracy is frequently reported in the literature [103][105] [82] [106], with Rustam et al. [106] citing
a 100% accuracy for malware detection on malimg dataset.

However, relying solely on image-based techniques for malware detection or classification presents
practical challenges. A significant concern is the vulnerability to adversarial attacks, where images can
be manipulated to produce false classifications. For example, Chen et al.[204] demonstrated a 70%
attack success rate in a black box setting using gradient-based attacks. This issue is not unique to
image data; it is a broader problem that affects the entire pipeline of our systems. In scenarios where
the model details are accessible (white box setting), the entire pipeline, including the accuracy of the
phylogenetic tree, could be compromised. Similarly, the entire pipeline can be targeted using gradient-
based inversion attacks, even in a black box setting.

Despite these challenges, there are strategies to mitigate such vulnerabilities. Adversarial training
is one approach that can enhance model robustness by preparing the system to handle manipulated
inputs effectively. Additionally, keeping the model details undisclosed can prevent specific types of
attacks, though this strategy may not always be feasible in practice. Understanding the risks associated
with using deep learning is crucial, particularly as these technologies become integral to more systems.
It is important to continuously explore and implement robust security measures to safeguard against
these vulnerabilities, ensuring the reliability of deep learning applications in cybersecurity.

Moreover, merged embeddings have proven effective for determining the age of malware samples
using VirusTotal timestamps. This capability underscores their ability to detect temporal changes, re-
inforcing their robustness in detection tasks. The ability to track these time-related shifts enhances
their utility in malware detection, even with evolving code changes. The use of these embeddings in
constructing phylogenetic trees through similarity matrices is particularly promising because they allow
for detailed visual representations of the relationships and evolutionary trajectories of various malware
samples.

Q3. How does our approach on classifying malware based on images compare to previous work?
Our architecture perfomrmed better than CNN models in processing both grayscale and RGB images.
This is consistent with the findings of Bhodia et al.[107], who showed that applying transfer learning with
architectures like ResNet enhances feature extraction and improves classification outcomes compared
to traditional CNNs. While the improved performance of ResNet can partially be attributed to its deeper
network structure, which provides more robust learning capabilities, it's important to recognize that

6.2. Reflection 71

simply having more layers does not inherently lead to better performance. ResNet addresses critical
challenges such as the vanishing gradient problem through the use of residual connections. These
connections allow gradients to flow through the network more effectively during training, preventing
the degradation of training performance that often accompanies increased network depth. This design
enables ResNet to leverage deeper architectures without the drawbacks typically associated with them
in traditional CNNs [205].

Q4. Which phylogenetic tree construction method using distances produces the most accurate
representation of malware evolution using VirusTotal timestamps?

Neighbor-Joining (NJ) was found to be the most accurate when rooted, primarily because it does not
make any molecular clock assumption while UPGMA relies on a constant evolution rate. On the other
hand, UPGMA was better than NJ when unrooted mainly because UPGMA inherently produces an
unrooted tree, and introducing a root changes its topology, thereby reducing its accuracy. But overall,
NJ was the better method. This suggests that malware, in general, exhibits heterogeneous mutation
rates.

Q5. How can embedding drift analysis be employed as an alternative method for validating
phyloge- netic trees built from UPGMA nd NJ?

Embedding drift analysis involves examining changes in embeddings over time to gauge mutation rates.
Our findings indicate substantial variability in mutation rates across different malware families, reinforc-
ing the accuracy of Neighbor-Joining (NJ) in producing more precise phylogenetic trees. This analysis
further reveals that some malware families, like Mirai, mutate frequently and on a large scale, while
others, such as the advanced persistent threat (APT) Turla, evolve much slower, with new variants
emerging perhaps only annually. This disparity underscores the necessity for customized detection
strategies tailored to the specific evolutionary rates of different malware families.

Q6. How do clusters formed by visualizing malware embeddings with t-SNE, UMAP, and PCA
align with lateral(leaf to leaf) distances in a phylogenetic tree built with NJ method?
We observed that the clusters formed through 2D visualizations of malware embeddings generally align
with the lateral distribution of distances in phylogenetic trees. This indicates that the evolutionary model
assumes that samples clustered together in the visualization are likely to be near each other on the
tree. This correlation serves as an effective sanity check, as it would be problematic if samples that
appear closely grouped in the visualization were distant on the phylogenetic tree. It's important to note,
however, that we are projecting from a 1000-dimensional space to only 2 dimensions, which means
that not all distances in the 2D projections accurately reflect those in the higher-dimensional space.
We also encountered three out of 20 instances where there was a misalignment between the visual
clusters and the tree distances. This discrepancy could be due to the Neighbor-Joining method treat-
ing certain data points, which we consider outliers, as typical during the modeling process. Another
possibility is that the 2D representation itself is not accurate. While t-SNE prioritizes preserving local
structure, suggesting that points close together in higher dimensions remain close in the reduced di-
mension, UMAP seeks a balance between maintaining fidelity for both close and distant points, aiming
for a more comprehensive representation. Both dimensionality reduction techniques heavily depend
on hyperparameter settings, which might in certain cases not accurately reflect the structure in higher
dimensions.

Q7.Do outliers alter the topology of a phylogenetic tree constructed using the NJ method by
changing the Most Recent Common Ancestor (MRCA)?
Our results demonstrated that including outliers substantially altered the topology of the phylogenetic
tree, making it difficult to identify any isomorphic or isomorphic substructures. This indicates that it is
crucial to consider these outliers prior to constructing the tree, as their presence can fundamentally
change the tree’s topology and, consequently, the interpretations derived from it. One interesting ob-
servation, however, is that the average degree remains the same for trees with and without outliers. We
speculate that this is due to the nature of fully connected trees, where each node maintains connections
to all other nodes, suggesting a balanced connectivity across nodes.

The average degree, a measure of the average number of connections per node, remained con-
sistent regardless of the presence of outliers. This consistency indicates that, on average, each node

6.2. Reflection 72

maintains a similar number of connections. Such stability suggests that the overall distribution of edges
per node across the tree remains relatively balanced, even when the structure undergoes modifications
due to the inclusion of outliers.

Furthermore, the introduction of outliers predominantly affects the tree’s depth and the extremities
by adding more layers or branches. However, these changes do not necessarily alter the average con-
nectivity per node. New nodes, whether added or connected differently due to outliers, tend to maintain
an average degree similar to the original setup. Particularly, outliers that form additional connections
with existing nodes do not disproportionately increase the total number of edges per node. This ob-
servation implies that although the tree’s topology and depth are influenced by outliers, the integral
connectivity per node remains stable, reflecting a robust underlying structure capable of withstanding
significant alterations.

Q8. Do the relationships identified through inter-family analysis using the Neighbour Joining
method correlate with public cybersecurity insights and with the pseudo-static and dynamic
features of the malware?

Most of our case studies align with the relationships depicted in the phylogenetic tree, suggesting that,
despite being somewhat speculative, Our tree accurately reflects relationships corroborated by public
sources. However, in the specific case of Mirai, we observed purported relationships with unrelated
entities such as APTs like Turla and RATs like RDAT. These connections appear highly improbable,
and interestingly, the edge distances to these nodes are also substantial. This observation raises a
critical question: At what point do we determine that certain relationships are valid while others are not?
Currently, our methodology does not directly address this issue. Although we use edge distances as a
form of confidence indicator, we have yet to establish a clear threshold for where to set the boundary.
This ambiguity highlights the need for a more defined criteria to interpret these distances within our
phylogenetic analysis as we will point out later.

Another issue with phylogenetic tree algorithms is their inherent tendency to establish relationships
between families. For instance, even if a hypothetical malware family evolved completely in isolation
from others, the algorithm would still attempt to connect it with some other family. Therefore, it's cru-
cial to develop a heuristic to set a threshold for the weights between the edges, ensuring that only
meaningful connections are considered in the inter-family analysis.

Q9. Are there any similarities between the inter-family relationships of UPGMA and NJ?

The comparative analysis of NJ and UPGMA methodologies in understanding malware relationships re-
veals significant differences that influence the perceived lineage and functionalities of various malware
families. The NJ method aligns Mirai with Bashlite, indicating their shared functionalities in launching
DDoS attacks and targeting loT devices. This logical linkage contrasts sharply with UPGMA’s asso-
ciation of Bashlite with Ramdo, which lacks empirical evidence and coherence, suggesting a critical
oversight in UPGMA's approach. Furthermore, UPGMA’s associations — such as linking Zloader with
Okiru and Lokibot with Gafgyt — deviate from more convincing connections in NJ that link Mirai with
both Gafgyt and Okiru, pointing to a potential misunderstanding of malware functionalities and historical
developments by UPGMA. Additionally, their positioning of Zloader as a precursor to Smokeloader due
to their similar roles in payload delivery starkly contradicts NJ’s portrayal of Smokeloader as a more
central figure in malware distribution. This highlights UPGMAs tendency to oversimplify or misinterpret
complex malware relationships.

Moreover, specific cases such as SundownEK and DiscordTokenStealer further illustrate the incon-
sistencies of UPGMA. For example, UPGMA incorrectly links SundownEK, an exploit kit, with Neshta
- a file infector. NJ more accurately associates SundownEK with Kronos, adhering more closely to the
functional realities of these malware types. Similarly, the UPGMA link between DiscordTokenStealer
and BianLianRansomware contrasts sharply with the connection made by NJ to AkiraRansomware
which demonstrates UPGMA's flaw in not adequately accounting for distinct operational divergences
between malware types. Despite these disparities, both NJ and UPGMA agree on one relationship be-
tween FritzFrog and BotenaGo - peer-to-peer botnets that share operational characteristics like network
resilience and decentralized command structures. Interestingly, NJ connects BotenaGo to FritzFrog,
while UPGMA suggests the opposite. Overall, these analyses suggest that while UPGMA frequently
oversimplifies or inaccurately represents malware relationships potentially leading to erroneous con-
clusions about their evolution; NJ typically offers a more nuanced understanding aligning closely with
operational realities of involved malware families.

6.3. Factors that could influence the results 73

6.3. Factors that could influence the results
In this section we will highlight factors that may influence the results of the experiments.

6.3.1. Packing

Firstly, in pseudo-static analysis, we utilized the approach of running the malware, capturing a memory
dump, and then extracting the executable from that dump. This method hinges on the fundamental
assumption that the first dump containing an executable resembling a PE (Portable Executable) or
ELF (Executable and Linkable Format) file is used. However, this approach can be problematic if the
malware utilizes a .dll (dynamic-link library), which may link multiple executables or objects. During our
preprocessing, we eliminate these linked files, but there is a risk that the malware may not execute at
all unless all components specified in the .dll are present. This scenario could significantly impact the
pseudo-embeddings because, effectively, we might only be extracting features from a static analysis,
without truly mitigating the effects of packing.

Moreover, our analysis does not account for runtime encryption or other dynamic activities that
might conceal the malware’s true behavior until it is executed. Such runtime operations can change
the executable’s characteristics in ways that are not apparent through static analysis, potentially leading
to significant discrepancies in our findings. Similarly, during our dynamic analysis, we observed that
for some samples from families such as MagicRAT and AsyncRAT, no behavioral information could be
detected. To manage this, we resorted to assigning a zero vector for these families in the dynamic
embeddings during test time and taking the mean embeddings for that family during runtime. But this
could have influenced the results of dyamic embeddings negatively.

6.3.2. Data Splitting

In our methodology, we encountered an issue with data splitting across our pipeline, where we currently
use a 70/30 train-test split to retrieve the embeddings. This approach has led to potential model over-
fitting and resulting in data leakage in two specific instances. First, in our image analysis process, we
sequentially train models V1 and V2 using this split. After training V2, we then apply the embeddings
across the entire dataset, including the test data. Since V2 has already been exposed to the data in
the 70% training subset, the embeddings applied can therefore be biased. Secondly, when we merge
diverse embeddings (pseudo-static, dynamic, and image), we encounter the same issue of bias. We
derive these embeddings using the 70/30 split and apply them across the entire dataset. Thus, 70% of
the data, which was included in the training set, has already been seen, affecting the neutrality of the
embeddings. A more effective approach would have been to employ a 50/50 split for all three types
of embeddings, training on the first half and applying the learned embeddings to the second half. We
would then use this unbiased dataset to run the phylogenetic algorithms, ensuring a more accurate and
fair evaluation.

From a pessimistic perspective, the current approach may lead to biased embeddings, which in
turn could result in a skewed phylogenetic tree. However, if significant bias were present, it would
likely impact the performance of merged embeddings in experiments like our time-binning test, where
we categorized embeddings by year and used them to predict the corresponding years. Typically,
overfitting would manifest as the model learning the labels too specifically, and when tested on tasks
unrelated to those labels — such as assessing whether embeddings can capture temporal concepts
— performance would decline. Contrary to this expectation, we observed robust performance in these
tests. Moreover, if our phylogenetic tree were indeed compromised by data leakage, it would be sur-
prising to find that it aligns well with external validations such as VirusTotal, and that most of the familial
relationships derived from the tree correlate with those recognized by public sources. Thus from an
optimistic standpoint, these observations suggest that any potential data leakage did not substantially
influence the overall validity of our results.

6.3.3. Labelling

Relying heavily on labels for constructing phylogenetic trees means that the accuracy of these labels
is crucial. If the labels are incorrect, the resulting phylogenetic tree will misrepresent the relationships
between malware samples, potentially leading to flawed interpretations and strategies based on these
inaccuracies. Although validating labels with VirusTotal is a common approach[206] since it aggregates
information from multiple antivirus engines, there are still inherent risks if VirusTotal’s data is incomplete

6.3. Factors that could influence the results 74

or biased.

6.3.4. Approximation of Neigbour Joining Method

From our experiments, we concluded that Neighbor Joining was the best method compared to UPGMA.
However, due to computational complexity in our work, we opted for an optimized or rather approximate
version known as RapidNJ. Employing RapidNJ introduces certain limitations that need to be consid-
ered. While RapidNJ increases computational efficiency, this can come at the expense of reduced
accuracy and detail, especially in complex datasets. This approximation may not capture all nuances
that a full Neighbor Joining analysis would, potentially leading to less precise phylogenetic trees. Addi-
tionally, the simplifications made to speed up calculations might introduce systematic biases in the way
distances between sequences are calculated and clustered, potentially affecting the overall quality of
the phylogenetic analysis. These factors could lead to oversimplified interpretations of the relationships
between malware variants, which might not be representative of their true evolutionary paths.

6.3.5. Assumptions in inter and intra-family analysis

The second-order assumptions, which suggest using the most recent common ancestor (MRCA) of
leaves from two different families to determine relationships based on early divergences in the phylo-
genetic tree, may not always be accurate. This is particularly the case when one malware family is
closely connected to the root, and another is significantly further away. During traversal up the tree,
inaccuracies in branch lengths can become increasingly pronounced, leading to compounded errors.
These inaccuracies can distort interpretations of both intra-family and inter-family relationships and may
violate the principle of relative early divergences. One potential solution to mitigate these issues is to
implement a high-confidence simplification strategy. This approach would involve limiting the traver-
sal to a specific number of ancestral levels, denoted as X, from a given leaf node. If the most recent
common ancestor (MRCA) is not identified within those X levels, it would be concluded that a relation-
ship cannot be confidently established at that level of confidence. This method helps to contain the
propagation of errors in branch length estimation and provides a clearer, more reliable framework for
analyzing phylogenetic relationships.

In our analysis, we also inherently assumed that hybridization events, where a gene transfers its
properties to two different genes, do not occur. This assumption does not hold in all cases, particularly
in the context of malware, where hybridization can be a common phenomenon. Phylogenetic trees
are inherently limited in modeling such hybrids because they are structured to represent evolutionary
relationships in a bifurcating tree-like form, where each split or node traditionally represents divergence
into two distinct and non-recombining lineages. This framework is excellent for tracing lineage splits
but fails to adequately represent more complex scenarios where there is convergent evolution, recom-
bination, or horizontal gene transfer — events that are analogous to hybridization in biological contexts.
To more accurately represent these relationships, one should use phylogenetic networks instead of
trees. Phylogenetic networks are specifically designed to capture the complexities of evolutionary his-
tories that include recombination, gene flow, or horizontal gene transfer. These networks allow for the
depiction of multiple parental nodes at specific points, effectively illustrating hybridization events. This
approach provides a deeper insight into the evolutionary dynamics among malware families. However,
it is important to note that phylogenetic networks are more computationally demanding than traditional
tree models.

Lastly, In our analysis, both for validation and for comparing relationships within and between mal-
ware families, we often rely on the distance to the most recent common ancestor (MRCA) as a crucial
metric. However, we have not thoroughly addressed scenarios where these distances are very close
to each other. If distances to the MRCA among different nodes are nearly identical, drawing robust
conclusions about the relationships can be challenging, and under very strict criteria, might even be
deemed unreliable. Despite this, our current methodology does not account for such nuances.

To improve our approach, we could introduce a tunable hyperparameter called tolerance, which
adjusts how we interpret proximity to the MRCA. This can be achieved by constructing trees with varying
tolerances and selecting the one that best aligns with external timestamps. This parameter would
enable us to define what constitutes a significant or meaningful difference in MRCA distances, allowing
for a tailored analysis that meets the specific sensitivity requirements of the study. By incorporating this
adjustment, we would improve the reliability of our conclusions.

6.4. Production 75

6.4. Production

Our pipeline, beginning with the generation of embeddings, lacks full interpretability, which is a common
challenge in the field of artificial intelligence. Despite efforts to clarify why methods like image classifi-
cation perform well, significant gaps in understanding remain. Yet, the critical question is whether this
lack of interpretability significantly impacts the utility of our approach. For antivirus vendors, whose
primary goal is malware detection, our methodology is highly practical. The main advantage lies in the
ability of our phylogenetic tree to generate more reliable behavioral signatures by leveraging mutation
rates and branch distances between malware families, a method that offers an alternative to traditional
approaches such as those proposed by Vinod et al.[144], who use opcodes to build signatures from
evolutionary insights.

Additionally, for stakeholders prioritizing interpretability, our work provides a valuable structured
framework that aids security analysts in manually testing relationships through rigorous reverse engi-
neering. Without such a framework, pinpointing a starting point for detailed analysis would be much
more challenging.From an artificial intelligence perspective, employing "black box” models does not
present inherent disadvantages in this context. Malware creators typically overlook the interpretability
of the Al systems they utilize, often employing Al to generate malware on a large scale. Leveraging Al-
based strategies is likely our most effective option for counteracting these threats, making our research
a crucial early effort in developing robust defenses against evolving cyber threats.

Furthermore, our pipeline can generate relationships faster than traditional methods. However, it
is not yet optimized for production use, and processing times can be extensive, depending on the
executable’s size. For instance, analyzing a large file like Microsoft Word could take between 4 to 6
hours at a minimum. That said, one important consideration is that in our methodology the tree currently
needs to be rebuilt with each new sample. Recent advancements, such as the algorithm proposed by
He et al.[207], allow for online processing of samples, which is practical as it eliminates the need to
rebuild the tree with each new sample. This online processing capability significantly enhances the
efficiency and applicability of our approach in a real-world setting.

6.5. Future Works

This study has highlighted several promising areas for future research that are essential for advancing
the application of artificial intelligence in malware analysis. One immediate need is the practical imple-
mentation and validation of theoretical algorithms such as those proposed by He et al.[207]. These
algorithms hold potential for real-world application, yet they require rigorous testing to evaluate their
effectiveness in dynamic settings.

Moreover, as our understanding of the impact of different features in both pseudo-static and dynamic
malware analysis deepens, it becomes imperative to conduct sensitivity analyses. Such analyses would
help identify the most impactful features, thereby refining our prediction models and enhancing their
accuracy.The effectiveness of image-based classification methods, particularly when preprocessing
involves resizing or pretraining on datasets unrelated to malware, like ImageNet, also warrants further
exploration. Investigating the resilience of these methods against common obfuscation techniques
such as packing could lead to more robust malware detection systems.

Additionally, the opacity of data preparation methods in public malware datasets poses a significant
challenge. Advocating for transparency and standardization in how these samples are prepared could
greatly enhance the reproducibility and reliability of machine learning applications in this field.Exploring
the transformation of malware samples into binary sequences opens the door to applying sophisticated
phylogenetic algorithms, including maximum likelihood and Bayesian methods. These approaches are
well-known for their precision and robust validation mechanisms[148] but are underutilized due to their
reliance on sequences.

Finally, considering the complexity and hybrid nature of malware evolution, it is pertinent to shift from
traditional phylogenetic trees to more comprehensive phylogenetic networks. Such networks could
provide a more nuanced representation of intra- and inter-family relationships among malware varieties,
accommodating the hybridization events that are often seen in malware development.Addressing these
areas will not only help overcome current limitations but also significantly advance the use of Al and
machine learning tools in cybersecurity, enhancing our defences against evolving cyber threats.

Conclusion

This thesis has demonstrated the potent capabilities of deep learning in generating combined embed-
dings from static, dynamic, and image analysis to address various aspects of malware detection and
analysis. By adapting static analysis to function on memory dumps—termed pseudo-static analysis—
we mitigated some effects of packing, enhancing the robustness of our models. Our results consistently
showed that image analysis produces superior embeddings compared to pseudo-static or dynamic
analysis, underscoring its effectiveness. Further, we explored the utility of these embeddings in tasks
beyond their initial training scope, such as identifying the age of malware and detecting malware using
image embeddings. In both cases, these embeddings achieved high accuracy, surpassing baseline
random guesses. When compared with traditional CNN architectures processing grayscale and RGB
images, our architecture significantly outperformed, highlighting its advanced capability in classifying
malware.

Moreover, we successfully constructed phylogenetic trees using embeddings derived from pseudo-
static, dynamic, and image analysis, with Neighbor Joining (NJ) providing the most accurate represen-
tation of malware evolution. This was validated against timestamps from VirusTotal, and supplemented
by Embedding Drift Analysis, which indicated heterogeneous mutation rates across malware families—
thus validating that NJ, which does not assume a constant evolutionary clock unlike Unweighted Pair
Group Method with Arithmetic Mean(UPGMA), offers a more accurate model. Visualization techniques
like t-SNE, UMAP and PCA were employed to analyze how clusters formed by malware embeddings
align with the lateral distances in a phylogenetic tree built with the NJ method. These clusters largely
corresponded with the phylogenetic tree’s lateral distributions, reinforcing the validity of our methodolo-
gies. We also examined the impact of outliers on the topology of the phylogenetic tree, discovering
that they significantly alter the tree’s structure, often preventing the identification of isomorphic sub-
structures.

Our inter-family analysis using the NJ method corroborated with public insights for several case stud-
ies including Mirai, SmokeLoader, and BotenaGo, confirming that our phylogenetic assessments are
generally aligned with known malware relationships. Additionally, while comparing the inter-family re-
lationships derived from UPGMA and NJ methods, few similarities were found, which suggests distinct
differences in how these methods conceptualize evolutionary relationships. In conclusion, employing
deep learning and phylogenetic trees to trace malware evolution proves to be an effective strategy. Al-
though our approach lacks inherent interpretability, it scales well and provides a structured framework
for validating malware relationships. Furthermore, the generated phylogenetic trees offer valuable in-
sights that can be used to develop evolutionary-based signatures for malware detection, offering a
novel toolset for cybersecurity professionals in combating malware threats.

76

(1]

(2]

(3]

[4]

[3]

(6]

[7]

(8]

[9]

[10]

(1]

[12]

[13]

[14]

References

Ashu Sharma and Sanjay Kumar Sahay. “Evolution and Detection of Polymorphic and Meta-
morphic Malwares: A Survey”. In: CoRR abs/1406.7061 (2014). arXiv: 1406.7061. URL: http:
//arxiv.org/abs/1406.7061.

Zahid Akhtar. Malware Detection and Analysis: Challenges and Research Opportunities. Jan.
2021. DOI: 10.48550/arxiv.2101.08429. URL: https://arxiv.org/pdf/2101.08429v1.pdf.

Andreas Moser, Christopher Kruegel, and Engin Kirda. “Limits of Static Analysis for Malware
Detection”. In: Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007).
2007, pp. 421-430. DOI: 10.1109/ACSAC.2007.21.

Efstratios Chatzoglou et al. “Bypassing antivirus detection: old-school malware, new tricks”. In:
Proceedings of the 18th International Conference on Availability, Reliability and Security. ARES
'23. New York, NY, USA: Association for Computing Machinery, 2023. ISBN: 9798400707728.
DOI: 10.1145/3600160.3605010.

Qasem Abu Al-Haija, Ammar Odeh, and Hazem Qattous. “PDF Malware Detection Based on
Optimizable Decision Trees”. In: Electronics 11.19 (2022). ISSN: 2079-9292. DOI: 10. 3390/
electronics11193142. URL: https://www.mdpi.com/2079-9292/11/19/3142.

Huu-Danh Pham, Tuan Dinh Le, and Thanh Nguyen Vu. “Static PE Malware Detection Using
Gradient Boosting Decision Trees Algorithm”. In: Future Data and Security Engineering. Ed. by
Tran Khanh Dang et al. Cham: Springer International Publishing, 2018, pp. 228-236. ISBN:
978-3-030-03192-3.

Daniele Ucci, Leonardo Aniello, and Roberto Baldoni. “Survey of machine learning techniques
for malware analysis”. In: Computers Security 81 (2019), pp. 123—147. ISSN: 0167-4048. DOI:
https://doi.org/10.1016/j.cose.2018.11.001. URL: https://www.sciencedirect.com/
science/article/pii/S0167404818303808.

Charles LeDoux and Arun Lakhotia. “Malware and Machine Learning”. In: Intelligent Methods for
Cyber Warfare. Ed. by Ronald R. Yager, Marek Z. Reformat, and Naif Alajlan. Cham: Springer
International Publishing, 2015, pp. 1—-42. ISBN: 978-3-319-08624-8. DOI: 10.1007/978-3-319-
08624-8_1. URL: https://doi.org/10.1007/978-3-319-08624-8_1.

Xin Su et al. “DroidDeep: using Deep Belief Network to characterize and detect android mal-
ware”. In: Soft Computing 24.8 (Jan. 2020), pp. 6017-6030. DOI: 10.1007/s00500-019-04589-

w.

Yuxin Ding, Sheng Chen, and Jun Xu. “Application of Deep Belief Networks for opcode based
malware detection”. In: 2016 International Joint Conference on Neural Networks (IJCNN). 2016,
pp. 3901-3908. DOI: 10.1109/IJCNN.2016.7727705.

Zhangjie Fu, Yongjie Ding, and Musaazi Godfrey. “An LSTM-based malware detection using
transfer learning”. In: Journal of Cybersecurity 3.1 (2021), p. 11.

Andre Karamanian. “The Application of Computer Vision to Detect Malware”. In: European Con-
ference on Cyber Warfare and Security. Academic Conferences International Limited. 2018,
pp. 240-243.

Ahmet Selman Bozkir et al. “Catch them alive: A malware detection approach through mem-
ory forensics, manifold learning and computer vision”. In: Computers Security 103 (2021),
p. 102166. ISSN: 0167-4048. DOI: https://doi.org/10.1016/j.cose.2020.102166. URL:
https://www.sciencedirect.com/science/article/pii/S0167404820304399.

Martin Lutz. How hackers use Artificial Intelligence to create malware: Unveiling the new threat
of wormgpt. July 2023. URL: https://www.linkedin.com/pulse/how-hackers-use-artific
ial-intelligence-create-malware-martin-lutz/.

77

https://arxiv.org/abs/1406.7061
http://arxiv.org/abs/1406.7061
http://arxiv.org/abs/1406.7061
https://doi.org/10.48550/arxiv.2101.08429
https://arxiv.org/pdf/2101.08429v1.pdf
https://doi.org/10.1109/ACSAC.2007.21
https://doi.org/10.1145/3600160.3605010
https://doi.org/10.3390/electronics11193142
https://doi.org/10.3390/electronics11193142
https://www.mdpi.com/2079-9292/11/19/3142
https://doi.org/https://doi.org/10.1016/j.cose.2018.11.001
https://www.sciencedirect.com/science/article/pii/S0167404818303808
https://www.sciencedirect.com/science/article/pii/S0167404818303808
https://doi.org/10.1007/978-3-319-08624-8_1
https://doi.org/10.1007/978-3-319-08624-8_1
https://doi.org/10.1007/978-3-319-08624-8_1
https://doi.org/10.1007/s00500-019-04589-w
https://doi.org/10.1007/s00500-019-04589-w
https://doi.org/10.1109/IJCNN.2016.7727705
https://doi.org/https://doi.org/10.1016/j.cose.2020.102166
https://www.sciencedirect.com/science/article/pii/S0167404820304399
https://www.linkedin.com/pulse/how-hackers-use-artificial-intelligence-create-malware-martin-lutz/
https://www.linkedin.com/pulse/how-hackers-use-artificial-intelligence-create-malware-martin-lutz/

References 78

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]
[31]
[32]

[33]

[34]

[35]

Veronica Chierzi Threat Researcher. A closer look at CHATGPT's role in Automated Malware
Creation. Nov. 2023. URL: https://www.trendmicro.com/en_us/research/23/k/a-closer-
look-at-chatgpt-s-role-in-automated-malware-creation.html.

Alex Blake. Hackers are using Al to create vicious malware, says FBI. July 2023. URL: https:
//www.digitaltrends.com/computing/hackers-using-ai-chatgpt-to-create-malware/.

URL: https://www.impactmybiz . com/blog/how-ai-generated-malware-is-changing-
cybersecurity/.

Victor Tangermann. Researchers create Al-powered malware that spreads on its own. Mar.
2024. URL: https://futurism.com/researchers-create-ai-malware.

Matt Burgess. Here come the ai worms. Mar. 2024. URL: https://www.wired.com/story/here-
come-the-ai-worms/.

Yair Herling. From CHATGPT to Redline Stealer: The Dark Side of OpenAl and google bard.
Dec. 2023. URL: https://veriti.ai/blog/veriti-research/from-chatgpt-to-redline-
stealer-the-dark-side-of-openai-and-google-bard/.

Zvelo. Feb. 2024. URL: https://zvelo.com/malicious-ai-the-rise-of-dark-1lms/.

Contributing Writer Elizabeth Montalbano. “Darkbert” GPT-based malware trains up on the entire
dark web. Dec. 2023. URL: https://www.darkreading . com/application-security/gpt-
based-malware-trains-dark-web.

URL: https://foxdata.com/en/blogs/gptpowered-malware-darkbert-exploring-the-
depths-of-the-dark-web/.

Andrew Walenstein et al. “The design space of metamorphic malware”. In: 2nd International
Conference on i-Warfare and Security (ICIW 2007). 2nd International Conference on i-Warfare
and Security (ICIW 2007)(2007). 2007, pp. 241-248.

Raj Badhwar. “Polymorphic and Metamorphic Malware”. In: The CISO’s Next Frontier: Al, Post-
Quantum Cryptography and Advanced Security Paradigms. Cham: Springer International Pub-
lishing, 2021, pp. 279-285. ISBN: 978-3-030-75354-2. DOI: 10.1007/978-3-030-75354-2_35.
URL: https://doi.org/10.1007/978-3-030-75354-2_35.

Hamid Darabian et al. “An opcode-based technique for polymorphic Internet of Things malware
detection”. In: Concurrency and Computation: Practice and Experience 32.6 (2020), e5173.

Huanran Wang et al. “An evolutionary study of loT malware”. In: IEEE Internet of Things Journal
8.20 (2021), pp. 15422-15440.

Anastasiia Yevdokimova. New mirai botnet variant detection: Moobot sample targets D-link
routers. Sept. 2022. URL: https : //socprime . com/blog/new-mirai - botnet - variant -
detection-moobot-sample-targets-d-link-routers/.

Qinghua Zhang and Douglas S Reeves. “Metaaware: ldentifying metamorphic malware”. In:
Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007). IEEE. 2007,
pp. 411-420.

Ashu Sharma and Sanjay Kumar Sahay. “Evolution and detection of polymorphic and metamor-
phic malwares: A survey”. In: arXiv preprint arXiv:1406.7061 (2014).

Alan Mills and Phil Legg. “Investigating anti-evasion malware triggers using automated sandbox
reconfiguration techniques”. In: Journal of Cybersecurity and Privacy 1.1 (2020), pp. 19-39.

Oleg Boyarchuk et al. “Keeping up with the emotets: Tracking a multi-infrastructure botnet”. In:
Digital Threats: Research and Practice 4.3 (2023), pp. 1-29.

Vyom Kulshreshtha, Deepak Motwani, and Pankaj Sharma. “A Study of Crypto-ransomware Us-
ing Detection Techniques for Defense Research”. In: Congress on Intelligent Systems. Springer.
2022, pp. 127-146.

Karl-Bridge-Microsoft. PE format - win32 apps. URL: https://learn.microsoft . com/en-
us/windows/win32/debug/pe-format.

URL: https://wiki.osdev.org/ELF.

https://www.trendmicro.com/en_us/research/23/k/a-closer-look-at-chatgpt-s-role-in-automated-malware-creation.html
https://www.trendmicro.com/en_us/research/23/k/a-closer-look-at-chatgpt-s-role-in-automated-malware-creation.html
https://www.digitaltrends.com/computing/hackers-using-ai-chatgpt-to-create-malware/
https://www.digitaltrends.com/computing/hackers-using-ai-chatgpt-to-create-malware/
https://www.impactmybiz.com/blog/how-ai-generated-malware-is-changing-cybersecurity/
https://www.impactmybiz.com/blog/how-ai-generated-malware-is-changing-cybersecurity/
https://futurism.com/researchers-create-ai-malware
https://www.wired.com/story/here-come-the-ai-worms/
https://www.wired.com/story/here-come-the-ai-worms/
https://veriti.ai/blog/veriti-research/from-chatgpt-to-redline-stealer-the-dark-side-of-openai-and-google-bard/
https://veriti.ai/blog/veriti-research/from-chatgpt-to-redline-stealer-the-dark-side-of-openai-and-google-bard/
https://zvelo.com/malicious-ai-the-rise-of-dark-llms/
https://www.darkreading.com/application-security/gpt-based-malware-trains-dark-web
https://www.darkreading.com/application-security/gpt-based-malware-trains-dark-web
https://foxdata.com/en/blogs/gptpowered-malware-darkbert-exploring-the-depths-of-the-dark-web/
https://foxdata.com/en/blogs/gptpowered-malware-darkbert-exploring-the-depths-of-the-dark-web/
https://doi.org/10.1007/978-3-030-75354-2_35
https://doi.org/10.1007/978-3-030-75354-2_35
https://socprime.com/blog/new-mirai-botnet-variant-detection-moobot-sample-targets-d-link-routers/
https://socprime.com/blog/new-mirai-botnet-variant-detection-moobot-sample-targets-d-link-routers/
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://wiki.osdev.org/ELF

References 79

[36] Solveig Badillo et al. “An introduction to machine learning”. In: Clinical pharmacology & thera-
peutics 107.4 (2020), pp. 871-885.

[37] Aurelien Geron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Con-
cepts, Tools, and Techniques to Build Intelligent Systems. 2nd. O’Reilly Media, Inc., 2019. ISBN:
1492032646.

[38] Afshin Gholamy, Vladik Kreinovich, and Olga Kosheleva. “Why 70/30 or 80/20 relation between
training and testing sets: A pedagogical explanation”. In: Int. J. Intell. Technol. Appl. Stat 11.2
(2018), pp- 105—111.

[39] Azal Ahmad Khan. “Balanced Split: A new train-test data splitting strategy forimbalanced datasets”.
In: arXiv preprint arXiv:2212.11116 (2022).

[40] Xinchuan Zeng and Tony R Martinez. “Distribution-balanced stratified cross-validation for ac-
curacy estimation”. In: Journal of Experimental & Theoretical Artificial Intelligence 12.1 (2000),
pp. 1-12.

[41] Petro Liashchynskyi and Pavlo Liashchynskyi. “Grid search, random search, genetic algorithm:
a big comparison for NAS”. In: arXiv preprint arXiv:1912.06059 (2019).

[42] Michael P LaValley. “Logistic regression”. In: Circulation 117.18 (2008), pp. 2395-2399.
[43] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[44] Geetika Munjal, Madasu Hanmandlu, and Sangeet Srivastava. “Phylogenetics algorithms and
applications”. In: Ambient Communications and Computer Systems: RACCCS-2018. Springer.
2019, pp. 187-194.

[45] Maurice Roux. “A comparative study of divisive and agglomerative hierarchical clustering algo-
rithms”. In: Journal of Classification 35 (2018), pp. 345—-366.

[46] Angur Mahmud Jarman. “Hierarchical cluster analysis: Comparison of single linkage, complete
linkage, average linkage and centroid linkage method”. In: Georgia Southern University 29
(2020).

[47] Laurens Van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE.” In: Journal of
machine learning research 9.11 (2008).

[48] Tim Sainburg, Leland Mclnnes, and Timothy Q Gentner. “Parametric UMAP embeddings for
representation and semisupervised learning”. In: Neural Computation 33.11 (2021), pp. 2881—
2907.

[49] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. “Understanding of a convolutional
neural network™. In: 2017 International Conference on Engineering and Technology (ICET).
2017, pp. 1-6. DOI: 10.1109/ICEngTechnol.2017.8308186.

[50] Asifullah Khan et al. “A survey of the recent architectures of deep convolutional neural networks”.
In: Artificial intelligence review 53 (2020), pp. 5455-5516.

[51] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information processing
systems 30 (2017).

[52] S Zargar. “Introduction to sequence learning models: RNN, LSTM, GRU”. In: Department of
Mechanical and Aerospace Engineering, North Carolina State University (2021).

[53] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing”. In: North American Chapter of the Association for Computational Linguistics. 2019.
URL: https://api.semanticscholar.org/CorpusID:52967399.

[54] Arvind Neelakantan et al. “Text and Code Embeddings by Contrastive Pre-Training”. In: ().

[55] Marcus Nachtigall, Lisa Nguyen Quang Do, and Eric Bodden. “Explaining Static Analysis - A
Perspective”. In: 2019 34th IEEE/ACM International Conference on Automated Software Engi-
neering Workshop (ASEW). 2019, pp. 29-32. DOI: 10.1109/ASEW.2019.00023.

[56] Siti Rahayu Selamat, Thiam Tet Ng, et al. “An Automated Tool for Malware Analysis and Clas-
sification”. In: Journal of Advanced Computing Technology and Application (JACTA) 1.1 (2019),
pp. 33-39.

https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://api.semanticscholar.org/CorpusID:52967399
https://doi.org/10.1109/ASEW.2019.00023

References 80

[57]
[58]
[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]
[68]
[69]

[70]

[71]

[72]
[73]
[74]

[75]

[76]
[77]

Nitin Naik et al. “Embedded YARA rules: strengthening YARA rules utilising fuzzy hashing and
fuzzy rules for malware analysis”. In: Complex & Intelligent Systems 7 (2021), pp. 687—702.

Mansour Ahmadi et al. “Novel Feature Extraction, Selection and Fusion for Effective Malware
Family Classification”. In: Mar. 2016. DOI: 10.1145/2857705.2857713.

Mamoun Alazab et al. “Zero-day Malware Detection based on Supervised Learning Algorithms
of API call Signatures”. In: vol. 121. Dec. 2011.

Samuel Kim. “PE header analysis for malware detection”. In: (2018).

Igor Santos et al. “Opcode sequences as representation of executables for data-mining-based
unknown malware detection”. In: Information Sciences 231 (2013). Data Mining for Information
Security, pp. 64-82. ISSN: 0020-0255. DOI: https://doi.org/10.1016/j.ins.2011.08.020.
URL: https://www.sciencedirect.com/science/article/pii/S0020025511004336.

Ronghua Tian, Lynn Batten, and S.C. Versteeg. “Function length as a tool for malware classifi-
cation”. In: Nov. 2008, pp. 69-76. DOI: 10.1109/MALWARE. 2008.4690860.

Syed Khurram Jah Rizvi et al. “PROUD-MAL: static analysis-based progressive framework for
deep unsupervised malware classification of windows portable executable”. In: Complex & In-
telligent Systems (2022), pp. 1-13.

Matthew G Schuliz et al. “Data mining methods for detection of new malicious executables”. In:
Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001. IEEE. 2000, pp. 38—
49.

Joshua Saxe and Konstantin Berlin. “Deep neural network based malware detection using two
dimensional binary program features”. In: 2015 10th international conference on malicious and
unwanted software (MALWARE). IEEE. 2015, pp. 11-20.

Muhammad Zubair Shafiq et al. “A Framework for Efficient Mining of Structural Information to
Detect Zero-Day Malicious Portable Executables”. In: 2009. URL: https://api.semanticscho
lar.org/CorpusID:17545434.

Karthik Raman et al. “Selecting features to classify malware”. In: InfoSec Southwest 2012
(2012), pp. 1-5.

H Babbar et al. “Detection of Android Malware in the Internet of Things through the K-Nearest
Neighbor Algorithm.” In: Sensors (Basel, Switzerland) 23.16 (2023), pp. 7256-7256.

Justin Sahs and Latifur Khan. “A Machine Learning Approach to Android Malware Detection”.
In: 2012 European Intelligence and Security Informatics Conference.

Ziyun Zhu and Tudor Dumitras. “Featuresmith: Automatically engineering features for malware
detection by mining the security literature”. In: Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security. 2016, pp. 767-778.

Guillermo Suarez-Tangil et al. “Dendroid: A text mining approach to analyzing and classifying
code structures in android malware families”. In: Expert Systems with Applications 41.4 (2014),
pp. 1104-1117.

Richard M Kliman. Encyclopedia of evolutionary biology. Academic Press, 2016.

Jin Xiong. Essential bioinformatics. Cambridge University Press, 2006.

George Dahl et al. “Large-Scale Malware Classification Using Random Projections and Neural
Networks”. In: Proceedings IEEE Conference on Acoustics, Speech, and Signal Processing

(ICASSP). May 2013. URL: https://www.microsoft.com/en-us/research/publication/lar
ge-scale-malware-classification-using-random-projections-and-neural-networks/.

Marek Krcal et al. “Deep Convolutional Malware Classifiers Can Learn from Raw Executables
and Labels Only”. In: (2018).

Edward Raff et al. “Malware Detection by Eating a Whole EXE”. In: stat 1050 (2017), p. 25.

Sang Ni, Quan Qian, and Rui Zhang. “Malware identification using visualization images and
deep learning”. In: (2018).

https://doi.org/10.1145/2857705.2857713
https://doi.org/https://doi.org/10.1016/j.ins.2011.08.020
https://www.sciencedirect.com/science/article/pii/S0020025511004336
https://doi.org/10.1109/MALWARE.2008.4690860
https://api.semanticscholar.org/CorpusID:17545434
https://api.semanticscholar.org/CorpusID:17545434
https://www.microsoft.com/en-us/research/publication/large-scale-malware-classification-using-random-projections-and-neural-networks/
https://www.microsoft.com/en-us/research/publication/large-scale-malware-classification-using-random-projections-and-neural-networks/

References 81

[78]

[79]

[80]

[81]

(82]
[83]

[84]

[85]

[86]

[87]

[88]
[89]

[90]

[91]

[92]

(93]

[94]

[99]

[96]

Lakshmanan Nataraj et al. “Malware images: visualization and automatic classification”. In: Pro-
ceedings of the 8th international symposium on visualization for cyber security. 2011, pp. 1-
7.

Kesav Kancherla and Srinivas Mukkamala. “Image visualization based malware detection”. In:
2013 IEEE Symposium on Computational Intelligence in Cyber Security (CICS). IEEE. 2013,
pp. 40—44.

Sharmila Gaikwad and Jignesh Patil. “Malware Detection in Deep Learning”. In: Convergence
of Deep Learning In Cyber-loT Systems and Security (2022), pp. 269—284.

Sushil Kumar et al. “MCFT-CNN: Malware classification with fine-tune convolution neural net-
works using traditional and transfer learning in Internet of Things”. In: Future Generation Com-
puter Systems 125 (2021), pp. 334-351.

Kyoung Soo Han et al. “Malware analysis using visualized images and entropy graphs”. In:
International Journal of Information Security 14 (2015), pp. 1-14.

Fikirte Ayalke Demmese et al. “Machine learning based fileless malware traffic classification
using image visualization”. In: Cybersecurity 6.1 (2023), p. 32.

Ahmet Selman Bozkir, Ahmet Ogulcan Cankaya, and Murat Aydos. “Utilization and comparision
of convolutional neural networks in malware recognition”. In: 2019 27th signal processing and
communications applications conference (SIU). IEEE. 2019, pp. 1-4.

Duc-Ly Vu et al. “A Convolutional Transformation Network for Malware Classification”. In: arXiv
preprint arXiv:1909.07227 (2019).

Ke He and Dong-Seong Kim. “Malware detection with malware images using deep learning tech-
niques”. In: 2019 18th IEEE international conference on trust, security and privacy in computing
and communications/13th IEEE international conference on big data science and engineering
(TrustCom/BigDataSE). IEEE. 2019, pp. 95-102.

Anh-Duy Tran et al. “Os-independent malware detection: Applying machine learning and com-
puter vision in memory forensics”. In: 2021 17th International Conference on Computational
Intelligence and Security (CIS). |IEEE. 2021, pp. 616-620.

Islam Obaidat et al. “Jadeite: A novel image-behavior-based approach for java malware detec-
tion using deep learning”. In: Computers & Security 113 (2022), p. 102547.

Shruti Patil et al. “Improving the robustness of ai-based malware detection using adversarial
machine learning”. In: Algorithms 14.10 (2021), p. 297.

Mohd Zamri Osman et al. “Pixel-based feature for android malware family classification using
machine learning algorithms”. In: 2021 International Conference on Software Engineering &
Computer Systems and 4th International Conference on Computational Science and Informa-
tion Management (ICSECS-ICOCSIM). IEEE. 2021, pp. 552-555.

ESultanik. Esultanik/bin2png: A simple cross-platform script for encoding any binary file into a
lossless PNG. URL: https://github.com/ESultanik/bin2png?tab=readme-ov-file.

Jongkwan Lee and Jongdeog Lee. “A Classification System for Visualized Malware Based on
Multiple Autoencoder Models”. In: IEEE Access 9 (2021), pp. 144786-144795. DOI: 10.1109/
ACCESS.2021.3122083.

Tran The Son et al. “An enhancement for image-based malware classification using machine
learning with low dimension normalized input images”. In: Journal of Information Security and
Applications 69 (2022), p. 103308.

Hyun-Jong Cha et al. “Intelligent Anomaly Detection System through Malware Image Augmen-
tation in lloT Environment Based on Digital Twin”. In: Applied Sciences 13.18 (2023), p. 10196.

Sara Sartoli, Yong Wei, and Shane Hampton. “Malware classification using recurrence plots
and deep neural network”. In: 2020 19th IEEE International Conference on Machine Learning
and Applications (ICMLA). IEEE. 2020, pp. 901-906.

Jueun Jeon, Jong Hyuk Park, and Young-Sik Jeong. “Dynamic Analysis for loT Malware De-
tection With Convolution Neural Network Model”. In: IEEE Access 8 (2020), pp. 96899-96911.
DOI: 10.1109/ACCESS.2020.2995887.

https://github.com/ESultanik/bin2png?tab=readme-ov-file
https://doi.org/10.1109/ACCESS.2021.3122083
https://doi.org/10.1109/ACCESS.2021.3122083
https://doi.org/10.1109/ACCESS.2020.2995887

References 82

[97]
[98]
[99]

[100]

[101]
[102]

[103]

[104]

[105]

[106]
[107]

[108]

[109]

[110]

[111]

[112]
[113]
[114]
[115]

[116]

Fangtian Zhong et al. “Malware-on-the-brain: llluminating malware byte codes with images for
malware classification”. In: IEEE Transactions on Computers 72.2 (2022), pp. 438-451.

MDHU Sharif et al. “A deep learning based technique for the classification of malware images”.
In: Journal of Theoretical and Applied Information Technology 101.1 (2023), pp. 135-160.

S Abijah Roseline et al. “Intelligent vision-based malware detection and classification using deep
random forest paradigm”. In: IEEE Access 8 (2020), pp. 206303-206324.

Ahmet Selman Bozkir et al. “Catch them alive: A malware detection approach through mem-
ory forensics, manifold learning and computer vision”. In: Computers & Security 103 (2021),
p. 102166.

Luxin Zheng, Jian Zhang, et al. “A new malware detection method based on vmcadr in cloud
environments”. In: Security and Communication Networks 2022 (2022).

Abir Laouadi, Djamel Eddine Menacer, and Karima Benatchba. “A Machine Learning Approach
for Malware Detection based on Image Conversion”. In: (2024).

Daniel Gibert et al. “Using convolutional neural networks for classification of malware repre-
sented as images”. In: Journal of Computer Virology and Hacking Techniques 15 (2019), pp. 15—
28.

Hiromu Yakura et al. “Malware Analysis of Imaged Binary Samples by Convolutional Neural
Network with Attention Mechanism”. In: Nov. 2017, pp. 55-56. DOI: 10.1145/3128572.3140457.

Sanjeev Kumar and B. Janet. “DTMIC: Deep transfer learning for malware image classification”.
In: Journal of Information Security and Applications 64 (2022), p. 103063. ISSN: 2214-2126.
DOI: https://doi.org/10.1016/j.jisa.2021.103063. URL: https://www.sciencedirect.
com/science/article/pii/52214212621002465.

Furgan Rustam et al. “Malware detection using image representation of malware data and trans-
fer learning”. In: Journal of Parallel and Distributed Computing 172 (2023), pp. 32-50.

Niket Bhodia et al. “Transfer learning for image-based malware classification”. In: arXiv preprint
arXiv:1903.11551 (2019).

Michael Potuck. Malware threat report reveals risk on Mac compared to windows and linux. Apr.
2023. URL: https://9tobmac. com/2023/04 /27 /malware-threat-report-mac-risk-vs-
windows - and-linux/#: ~: text =However ,2C% 20when’ 201looking’20at % 20just , 1%25%
20being}20found%200on%20macOs..

Abedelaziz Mohaisen and Omar Alrawi. “Unveiling zeus: automated classification of malware
samples”. In: Proceedings of the 22nd International Conference on World Wide Web. 2013,
pp. 829-832.

Hisham Shehata Galal, Yousef Bassyouni Mahdy, and Mohammed Ali Atiea. “Behavior-based
features model for malware detection”. In: Journal of Computer Virology and Hacking Tech-
niques 12 (2016), pp. 59-67.

Youngjoon Ki, Eunjin Kim, and Huy Kang Kim. “A novel approach to detect malware based
on API call sequence analysis”. In: International Journal of Distributed Sensor Networks 11.6
(2015), p. 659101.

Guanghui Liang, Jianmin Pang, and Chao Dai. “A behavior-based malware variant classification
technique”. In: International Journal of Information and Education Technology 6.4 (2016), p. 291.

Syed Zainudeen Mohd Shaid and Mohd Aizaini Maarof. “Malware behaviour visualization”. In:
Jurnal Teknologi 70.5 (2014).

Philipp Trinius et al. “Visual analysis of malware behavior using treemaps and thread graphs”.
In: 2009 6th International Workshop on Visualization for Cyber Security. IEEE. 2009, pp. 33—-38.

Matilda Rhode, Pete Burnap, and Kevin Jones. “Early-stage malware prediction using recurrent
neural networks”. In: computers & security 77 (2018), pp. 578-594.

Sumith Maniath et al. “Deep learning LSTM based ransomware detection”. In: 2017 Recent
Developments in Control, Automation & Power Engineering (RDCAPE). IEEE. 2017, pp. 442—
446.

https://doi.org/10.1145/3128572.3140457
https://doi.org/https://doi.org/10.1016/j.jisa.2021.103063
https://www.sciencedirect.com/science/article/pii/S2214212621002465
https://www.sciencedirect.com/science/article/pii/S2214212621002465
https://9to5mac.com/2023/04/27/malware-threat-report-mac-risk-vs-windows-and-linux/#:~:text=However%2C%20when%20looking%20at%20just,1%25%20being%20found%20on%20macOS.
https://9to5mac.com/2023/04/27/malware-threat-report-mac-risk-vs-windows-and-linux/#:~:text=However%2C%20when%20looking%20at%20just,1%25%20being%20found%20on%20macOS.
https://9to5mac.com/2023/04/27/malware-threat-report-mac-risk-vs-windows-and-linux/#:~:text=However%2C%20when%20looking%20at%20just,1%25%20being%20found%20on%20macOS.

References 83

[117]

[118]

[119]

[120]

[121]

[122]
[123]
[124]

[125]
[126]
[127]

[128]
[129]
[130]
[131]

[132]
[133]
[134]

[135]

[136]

[137]

[138]

Omid E David and Nathan S Netanyahu. “Deepsign: Deep learning for automatic malware signa-
ture generation and classification”. In: 2015 International Joint Conference on Neural Networks
(IJCNN). IEEE. 2015, pp. 1-8.

William Hardy et al. “DL4MD: A deep learning framework for intelligent malware detection”. In:
Proceedings of the International Conference on Data Science (ICDATA). The Steering Commit-
tee of The World Congress in Computer Science, Computer ... 2016, p. 61.

URL: https://oem.avira.com/en/technology/machine-learning,.

URL: https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepape
r-Machine-Learning.pdf.

Microsoft Defender Security Research Team. Seeing the big picture: Deep Learning-based fu-
sion of behavior signals for threat detection. May 2023. URL: https://www.microsoft.com/en-
us/security/blog/2020/07/23/seeing-the-big-picture-deep-learning-based-fusion-
of-behavior-signals-for-threat-detection/.

Sophos Ltd. Deal with malware detected by Deep Learning. Jan. 2024. URL: https://docs.
sophos.com/central/customer/help/en-us/ManageYourProducts/Alerts/ThreatAdvice/
MalwareAdviceDeepLearning/index.html.

Oct. 2023. URL: https://www.malwarebytes.com/blog/detections/malware.

Azqga Nadeem et al. “Intelligent malware defenses”. In: Security and artificial intelligence: A
crossdisciplinary approach. Springer, 2022, pp. 217-253.

URL: https://wuw.stratosphereips.org/.
URL: https://www.kaggle.com/c/malware-classification.

Robert J. Joyce et al. “MOTIF: A Malware Reference Dataset with Ground Truth Family Labels”.
In: Computers Security 124 (2023), p. 102921. ISSN: 0167-4048. DOI: https://doi.org/10.
1016/j.cose.2022.102921. URL: https://www.sciencedirect.com/science/article/pii/
S0167404822003133.

Hyrum S Anderson and Phil Roth. “Ember: an open dataset for training static pe malware ma-
chine learning models”. In: arXiv preprint arXiv:1804.04637 (2018).

fabrimagic72. Fabrimagic72/malware-samples: A collection of malware samples caught by sev-
eral honeypots | manage. URL: https://github.com/fabrimagic72/malware-samples.

InQuest. Malware-samples/miscellaneous at master - inquest/malware-samples. URL: https :
//github.com/InQuest/malware-samples/tree/master/miscellaneous.

Jstrosch. Malware-samples/binaries at master - JSTROSCH/malware-samples. URL: https :
//github.com/jstrosch/malware-samples/tree/master/binaries.

URL: https://bazaar.abuse.ch/.
URL: https://vx-underground.org/.

Mahmoud Kalash et al. “Malware classification with deep convolutional neural networks”. In:
2018 9th IFIP international conference on new technologies, mobility and security (NTMS). IEEE.
2018, pp. 1-5.

Musaad Darwish AlGarni et al. “An efficient convolutional neural network with transfer learning
for malware classification”. In: Wireless Communications and Mobile Computing 2022 (2022),
pp. 1-8.

Omer Aslan and Abdullah Asim Yilmaz. “A new malware classification framework based on
deep learning algorithms”. In: leee Access 9 (2021), pp. 87936-87951.

Aziz Makandar and Anita Patrot. “Detection and retrieval of malware using classification”. In:
2017 International Conference on Computing, Communication, Control and Automation (IC-
CUBEA). IEEE. 2017, pp. 1-5.

Wei Kitt Wong, Filbert H Juwono, and Catur Apriono. “Vision-based malware detection: A trans-
fer learning approach using optimal ecoc-svm configuration”. In: leee Access 9 (2021), pp. 159262—
159270.

https://oem.avira.com/en/technology/machine-learning
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-Whitepaper-Machine-Learning.pdf
https://www.microsoft.com/en-us/security/blog/2020/07/23/seeing-the-big-picture-deep-learning-based-fusion-of-behavior-signals-for-threat-detection/
https://www.microsoft.com/en-us/security/blog/2020/07/23/seeing-the-big-picture-deep-learning-based-fusion-of-behavior-signals-for-threat-detection/
https://www.microsoft.com/en-us/security/blog/2020/07/23/seeing-the-big-picture-deep-learning-based-fusion-of-behavior-signals-for-threat-detection/
https://docs.sophos.com/central/customer/help/en-us/ManageYourProducts/Alerts/ThreatAdvice/MalwareAdviceDeepLearning/index.html
https://docs.sophos.com/central/customer/help/en-us/ManageYourProducts/Alerts/ThreatAdvice/MalwareAdviceDeepLearning/index.html
https://docs.sophos.com/central/customer/help/en-us/ManageYourProducts/Alerts/ThreatAdvice/MalwareAdviceDeepLearning/index.html
https://www.malwarebytes.com/blog/detections/malware
https://www.stratosphereips.org/
https://www.kaggle.com/c/malware-classification
https://doi.org/https://doi.org/10.1016/j.cose.2022.102921
https://doi.org/https://doi.org/10.1016/j.cose.2022.102921
https://www.sciencedirect.com/science/article/pii/S0167404822003133
https://www.sciencedirect.com/science/article/pii/S0167404822003133
https://github.com/fabrimagic72/malware-samples
https://github.com/InQuest/malware-samples/tree/master/miscellaneous
https://github.com/InQuest/malware-samples/tree/master/miscellaneous
https://github.com/jstrosch/malware-samples/tree/master/binaries
https://github.com/jstrosch/malware-samples/tree/master/binaries
https://bazaar.abuse.ch/
https://vx-underground.org/

References 84

[139] Safa Ben Atitallah, Maha Driss, and Iman Almomani. “A novel detection and multi-classification
approach for loT-malware using random forest voting of fine-tuning convolutional neural net-
works”. In: Sensors 22.11 (2022), p. 4302.

[140] Ismail Taha Ahmed et al. “Binary and multi-class malware threads classification”. In: Applied
Sciences 12.24 (2022), p. 12528.

[141] Scott Freitas, Rahul Duggal, and Duen Horng Chau. “MalNet: A large-scale image database of
malicious software”. In: Proceedings of the 31st ACM International Conference on Information
& Knowledge Management. 2022, pp. 3948-3952.

[142] Pratyush Panda et al. “Transfer learning for image-based malware detection for iot”. In: Sensors
23.6 (2023), p. 3253.

[143] Mesut GUVEN. “Leveraging deep learning and image conversion of executable files for effec-
tive malware detection: A static malware analysis approach”. In: AIMS Mathematics 9.6 (2024),
pp. 15223—-15245.

[144] P Vinod et al. “MOMENTUM: MetamOrphic malware exploration techniques using MSA signa-
tures”. In: 2012 International Conference on Innovations in Information Technology (IIT). IEEE.
2012, pp. 232-237.

[145] David M Hillis, John P Huelsenbeck, and Clifford W Cunningham. “Application and accuracy of
molecular phylogenies”. In: Science 264.5159 (1994), pp. 671-677.

[146] Tri Andriani and Mohammad Isa Irawan. “Application of unweighted pair group methods with
arithmetic average (UPGMA) for identification of kinship types and spreading of ebola virus
through establishment of phylogenetic tree”. In: AIP Conference Proceedings. Vol. 1867. 1. AIP
Publishing. 2017.

[147] Andrei A Zimin, Alexandra N Karmanova, and Yinhua Lu. “UPGMA-analysis of type || CRISPR
RNA-guided endonuclease Cas9 homologues from the compost metagenome”. In: E3S web of
conferences. Vol. 265. EDP Sciences. 2021, p. 04010.

[148] Xiaomeng Wu et al. “Phylogenetic analysis using complete signature information of whole genomes
and clustered Neighbour-Joining method”. In: International journal of bioinformatics research
and applications 2.3 (2006), pp. 219-248.

[149] Peter M Hollingsworth and RA Ennos. “Neighbour joining trees, dominant markers and popula-
tion genetic structure”. In: Heredity 92.6 (2004), pp. 490—-498.

[150] Martin Simonsen, Thomas Mailund, and Christian NS Pedersen. “Inference of large phyloge-
nies using neighbour-joining”. In: Biomedical Engineering Systems and Technologies: Third In-
ternational Joint Conference, BIOSTEC 2010, Valencia, Spain, January 20-23, 2010, Revised
Selected Papers 3. Springer. 2011, pp. 334-344.

[151] Kenneth W Cullings and Detlev R Vogler. “A 5.8 S nuclear ribosomal RNA gene sequence
database: applications to ecology and evolution”. In: Molecular Ecology 7.7 (1998), pp. 919—
923.

[152] Irena Vardi¢ Smrzli¢ et al. “Molecular characterisation of Anisakidae larvae from fish in Adriatic
Sea”. In: Parasitology research 111 (2012), pp. 2385-2391.

[153] M Thangaraj, B Valentin Bhimba, and J Meenupriya. “Phylogenetic relationship in four As-
pergillus species based on the secondary structure of internal transcribed spacer region of
rDNA”. In: Journal of Advanced Bioinformatics Applications and Research ISSN 2.3 (2011),
pp. 200-205.

[154] Inaki Comas et al. “Genotyping of genetically monomorphic bacteria: DNA sequencing in My-
cobacterium tuberculosis highlights the limitations of current methodologies”. In: PloS one 4.11
(2009), e7815.

[155] Tonny Kinene et al. “Rooting trees, methods for”. In: Encyclopedia of Evolutionary Biology
(2016), p. 489.

[156] Sean W Graham, Richard G Olmstead, and Spencer CH Barrett. “Rooting phylogenetic trees
with distant outgroups: a case study from the commelinoid monocots”. In: Molecular biology and
evolution 19.10 (2002), pp. 1769-1781.

References 85

[157]
[158]

[159]

[160]

[161]

[162]
[163]
[164]

[165]

[166]
[167]
[168]
[169]
[170]
[171]

[172]
[173]

[174]

[175]

[176]

[177]

[178]

Emanuele Cozzi et al. “The tangled genealogy of loT malware”. In: Proceedings of the 36th
Annual Computer Security Applications Conference. 2020, pp. 1-16.

Tianxiang He et al. “A Fast Algorithm for Constructing Phylogenetic Trees with Application to
loT Malware Clustering”. In: Dec. 2019, pp. 766—778. DOI: 10.1007/978-3-030-36708-4_63.

Francgois-Joseph Lapointe, John AW Kirsch, and Robert Bleiweiss. “Jackknifing of weighted
trees: validation of phylogenies reconstructed from distance matrices”. In: Molecular Phyloge-
netics and Evolution 3.3 (1994), pp. 256-267.

David R Roberts et al. “Cross-validation strategies for data with temporal, spatial, hierarchical,
or phylogenetic structure”. In: Ecography 40.8 (2017), pp. 913-929.

V Berry, O Gascuel, and G Caraux. “Choosing the tree which actually best explains the data:
another look at the bootstrap in phylogenetic reconstruction”. In: Computational Statistics & Data
Analysis 32.3-4 (2000), pp. 273-283.

Md Rashidul Hasan and James Degnan. “Testing Tree-Likeness of Phylogenetic Network Data
with Cross-Validation”. In: (2023).

Sebastian Duchéne et al. “Cross-validation to select Bayesian hierarchical models in phyloge-
netics”. In: BMC evolutionary biology 16 (2016), pp. 1-8.

Michael M Miyamoto and Walter M Fitch. “Testing species phylogenies and phylogenetic meth-
ods with congruence”. In: Systematic Biology 44.1 (1995), pp. 64—76.
Francgois-Joseph Lapointe and Leslie J Rissler. “Congruence, consensus, and the comparative

phylogeography of codistributed species in California”. In: The American Naturalist 166.2 (2005),
pp. 290-299.

Bryan C Carstens et al. “Testing nested phylogenetic and phylogeographic hypotheses in the
Plethodon vandykei species group”. In: Systematic biology 53.5 (2004), pp. 781-792.

Aylwyn Scally and Richard Durbin. “Revising the human mutation rate: implications for under-
standing human evolution”. In: Nature Reviews Genetics 13.10 (2012), pp. 745-753.

Michael Worobey et al. “Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960”.
In: Nature 455.7213 (2008), pp. 661-664.

Sebastian Duchene et al. “Temporal signal and the phylodynamic threshold of SARS-CoV-2".
In: Virus evolution 6.2 (2020), veaa061.

Roy Halevi. What is genetic malware analysis? May 2022. URL: https://intezer.com/blog/
malware-analysis/defining-genetic-malware-analysis/.

Stephanie Wehner. “Analyzing worms and network traffic using compression”. In: Journal of
Computer Security 15.3 (2007), pp. 303—-320.

URL: https://openai.com/index/new-embedding-models-and-api-updates.

Alice Zheng and Amanda Casari. Feature engineering for machine learning: principles and tech-
niques for data scientists. ” O’Reilly Media, Inc.”, 2018.

Zichao Yang et al. “Hierarchical attention networks for document classification”. In: Proceedings
of the 2016 conference of the North American chapter of the association for computational
linguistics: human language technologies. 2016, pp. 1480-1489.

Amir Zadeh et al. “Tensor fusion network for multimodal sentiment analysis”. In: arXiv preprint
arXiv:1707.07250 (2017).

Damien M. de Vienne, Gabriela Aguileta, and Sébastien Ollier. “Euclidean Nature of Phyloge-
netic Distance Matrices”. In: Systematic Biology 60.6 (July 2011), pp. 826-832. ISSN: 1063-
5157. DOI: 10.1093/sysbio/syr066. eprint: https://academic.oup.com/sysbio/article-
pdf/60/6/826/24559644/syr066.pdf. URL: https://doi.org/10.1093/sysbio/syr066.

Ahmed Mansour. “Phylip and phylogenetics”. In: Focus on Bioinformatics: Genes, Genomes
and Genomics 3 (2009), pp. 46—49.

URL: https://mothur.org/wiki/phylip-formatted_distance_matrix/.

https://doi.org/10.1007/978-3-030-36708-4_63
https://intezer.com/blog/malware-analysis/defining-genetic-malware-analysis/
https://intezer.com/blog/malware-analysis/defining-genetic-malware-analysis/
https://openai.com/index/new-embedding-models-and-api-updates
https://doi.org/10.1093/sysbio/syr066
https://academic.oup.com/sysbio/article-pdf/60/6/826/24559644/syr066.pdf
https://academic.oup.com/sysbio/article-pdf/60/6/826/24559644/syr066.pdf
https://doi.org/10.1093/sysbio/syr066
https://mothur.org/wiki/phylip-formatted_distance_matrix/

References 86

[179]

[180]

[181]

[182]
[183]

[184]
[185]

[186]
[187]
[188]
[189]
[190]

[191]

[192]

[193]

[194]

[195]
[196]
[197]
[198]

[199]

Ravi Kumar Yadav Dega and Gunes Ercal. “A comparative analysis of progressive multiple
sequence alignment approaches using UPGMA and neighbor joining based guide trees”. In:
arXiv preprint arXiv:1509.03530 (2015).

Martin Simonsen, Thomas Mailund, and Christian NS Pedersen. “Rapid neighbour-joining”. In:
Algorithms in Bioinformatics: 8th International Workshop, WABI 2008, Karlsruhe, Germany,
September 15-19, 2008. Proceedings 8. Springer. 2008, pp. 113-122.

URL: https://success.trendmicro.com/dcx/s/solution/1118407-emerging-threat-on-
fareit-resurgence?language=en_US.

Joseph Felsenstein. “Inferring phylogenies”. In: Inferring phylogenies. 2004, pp. 664—664.

Roderick DM Page and Edward C Holmes. Molecular evolution: a phylogenetic approach. John
Wiley & Sons, 2009.

John Wilder Tukey et al. Exploratory data analysis. Vol. 2. Springer, 1977.

F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine Learning
Research 12 (2011), pp. 2825-2830.

Oliver Buxton. Mar. 2024. URL: https://www.avast.com/c-mirai.

Guest Author et al. Inside the infamous Mirai IOT Botnet: A retrospective analysis. Sept. 2021.
URL: https: //blog . cloudflare . com/ inside -mirai - the - infamous - iot - botnet - a-
retrospective-analysis.

URL: https://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-expl
oits/patch-now-new-mirai-gafgyt-variants-target-16-flaws-via-multi-exploits.
URL: https://www.cyber.nj.gov/alerts-advisories/new-mirai-and-gafgyt-botnet-
variants-target-apache-struts—and-sonicwall-gms.

Author:Tara Seals and Tara Seals. Gafgyt botnet lifts ddos tricks from Mirai. URL: https://
threatpost.com/gafgyt-botnet-ddos-mirai/165424/.

Bylonut Arghire. Mirai variant targets arc CPU-based devices. Jan. 2018. URL: https://www.
securityweek.com/mirai-variant-targets—-arc-cpu-based-devices/#:~:text=January’,
2016%2C%202018-, A%20newly%20discovered20variant%200f%20the’,20Mirai’%20Internet?,
https://www.securityweek.com/mirai-variant-targets—-arc-cpu-based-devices/#:~:
text=January’%2016%2C%202018~, A% 20newly%20discovered’,20variant%200f %20the’20Mi
rai%20Internet’200£%20Things, called’200kiru%20by%20its?20author.200f%20Things,
called’,200kiru%20by%20its%20author..

Nick Lewis. Okiru malware: How does this mirai malware variant work?: TechTarget. Aug. 2018.
URL: https://www.techtarget.com/searchsecurity/answer/0Okiru-malware-How-does-
this - Mirai-malware - variant - work# : ~ : text =MalwareMustDie %, 20reported’, 20that %
20the%200kiru, these’20devices’20are’,20being)20targeted..

Sept. 2022. URL: https://thehackernews.com/2022/09/mirai-variant-moobot-botnet-
exploiting.html.

Anastasiia Yevdokimova. New mirai botnet variant detection: Moobot sample targets D-link

routers. Sept. 2022. URL: https : //socprime . com/blog/new-mirai - botnet - variant -
detection-moobot-sample-targets-d-link-routers/.

Inc. Stamus Networks. Threat detection update 27-september-2022: Stamus Networks. URL.:
https://www.stamus-networks.com/stamus-labs/detection-update-2022-09-27.

Aziz Farghly. Smoke loader analysis. Mar. 2024. URL: https://medium.com/@farghly.mahmo
d66/smoke-loader-analysis-1£1442809802.

Abdallah Elshinbary. Deep analysis of smokeloader. June 2020. URL: https://nlght-w0lf.
github.io/malware’,20analysis/smokeloader/.

Jason Reaves. IcedID leverages PrivateLoader. Aug. 2022. URL: https://medium. com/walm
artglobaltech/icedid-leverages-privateloader-7744771bf87f.

VMRay Labs. Malware analysis spotlight: Smoke loader. Feb. 2024. URL: https://www.vmray.

com/malware-analysis-spotlight-smoke-loader/.

https://success.trendmicro.com/dcx/s/solution/1118407-emerging-threat-on-fareit-resurgence?language=en_US
https://success.trendmicro.com/dcx/s/solution/1118407-emerging-threat-on-fareit-resurgence?language=en_US
https://www.avast.com/c-mirai
https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis
https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis
https://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/patch-now-new-mirai-gafgyt-variants-target-16-flaws-via-multi-exploits
https://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/patch-now-new-mirai-gafgyt-variants-target-16-flaws-via-multi-exploits
https://www.cyber.nj.gov/alerts-advisories/new-mirai-and-gafgyt-botnet-variants-target-apache-struts-and-sonicwall-gms
https://www.cyber.nj.gov/alerts-advisories/new-mirai-and-gafgyt-botnet-variants-target-apache-struts-and-sonicwall-gms
https://threatpost.com/gafgyt-botnet-ddos-mirai/165424/
https://threatpost.com/gafgyt-botnet-ddos-mirai/165424/
https://www.securityweek.com/mirai-variant-targets-arc-cpu-based-devices/#:~:text=January%2016%2C%202018-,A%20newly%20discovered%20variant%20of%20the%20Mirai%20Internet%https://www.securityweek.com/mirai-variant-targets-arc-cpu-based-devices/#:~:text=January%2016%2C%202018-,A%20newly%20discovered%20variant%20of%20the%20Mirai%20Internet%20of%20Things,called%20Okiru%20by%20its%20author.20of%20Things,called%20Okiru%20by%20its%20author.
https://www.securityweek.com/mirai-variant-targets-arc-cpu-based-devices/#:~:text=January%2016%2C%202018-,A%20newly%20discovered%20variant%20of%20the%20Mirai%20Internet%https://www.securityweek.com/mirai-variant-targets-arc-cpu-based-devices/#:~:text=January%2016%2C%202018-,A%20newly%20discovered%20variant%20of%20the%20Mirai%20Internet%20of%20Things,called%20Okiru%20by%20its%20author.20of%20Things,called%20Okiru%20by%20its%20author.
https://www.securityweek.com/mirai-variant-targets-arc-cpu-based-devices/#:~:text=January%2016%2C%202018-,A%20newly%20discovered%20variant%20of%20the%20Mirai%20Internet%https://www.securityweek.com/mirai-variant-targets-arc-cpu-based-devices/#:~:text=January%2016%2C%202018-,A%20newly%20discovered%20variant%20of%20the%20Mirai%20Internet%20of%20Things,called%20Okiru%20by%20its%20author.20of%20Things,called%20Okiru%20by%20its%20author.
https://www.securityweek.com/mirai-variant-targets-arc-cpu-based-devices/#:~:text=January%2016%2C%202018-,A%20newly%20discovered%20variant%20of%20the%20Mirai%20Internet%https://www.securityweek.com/mirai-variant-targets-arc-cpu-based-devices/#:~:text=January%2016%2C%202018-,A%20newly%20discovered%20variant%20of%20the%20Mirai%20Internet%20of%20Things,called%20Okiru%20by%20its%20author.20of%20Things,called%20Okiru%20by%20its%20author.
https://www.securityweek.com/mirai-variant-targets-arc-cpu-based-devices/#:~:text=January%2016%2C%202018-,A%20newly%20discovered%20variant%20of%20the%20Mirai%20Internet%https://www.securityweek.com/mirai-variant-targets-arc-cpu-based-devices/#:~:text=January%2016%2C%202018-,A%20newly%20discovered%20variant%20of%20the%20Mirai%20Internet%20of%20Things,called%20Okiru%20by%20its%20author.20of%20Things,called%20Okiru%20by%20its%20author.
https://www.securityweek.com/mirai-variant-targets-arc-cpu-based-devices/#:~:text=January%2016%2C%202018-,A%20newly%20discovered%20variant%20of%20the%20Mirai%20Internet%https://www.securityweek.com/mirai-variant-targets-arc-cpu-based-devices/#:~:text=January%2016%2C%202018-,A%20newly%20discovered%20variant%20of%20the%20Mirai%20Internet%20of%20Things,called%20Okiru%20by%20its%20author.20of%20Things,called%20Okiru%20by%20its%20author.
https://www.securityweek.com/mirai-variant-targets-arc-cpu-based-devices/#:~:text=January%2016%2C%202018-,A%20newly%20discovered%20variant%20of%20the%20Mirai%20Internet%https://www.securityweek.com/mirai-variant-targets-arc-cpu-based-devices/#:~:text=January%2016%2C%202018-,A%20newly%20discovered%20variant%20of%20the%20Mirai%20Internet%20of%20Things,called%20Okiru%20by%20its%20author.20of%20Things,called%20Okiru%20by%20its%20author.
https://www.techtarget.com/searchsecurity/answer/Okiru-malware-How-does-this-Mirai-malware-variant-work#:~:text=MalwareMustDie%20reported%20that%20the%20Okiru,these%20devices%20are%20being%20targeted.
https://www.techtarget.com/searchsecurity/answer/Okiru-malware-How-does-this-Mirai-malware-variant-work#:~:text=MalwareMustDie%20reported%20that%20the%20Okiru,these%20devices%20are%20being%20targeted.
https://www.techtarget.com/searchsecurity/answer/Okiru-malware-How-does-this-Mirai-malware-variant-work#:~:text=MalwareMustDie%20reported%20that%20the%20Okiru,these%20devices%20are%20being%20targeted.
https://thehackernews.com/2022/09/mirai-variant-moobot-botnet-exploiting.html
https://thehackernews.com/2022/09/mirai-variant-moobot-botnet-exploiting.html
https://socprime.com/blog/new-mirai-botnet-variant-detection-moobot-sample-targets-d-link-routers/
https://socprime.com/blog/new-mirai-botnet-variant-detection-moobot-sample-targets-d-link-routers/
https://www.stamus-networks.com/stamus-labs/detection-update-2022-09-27
https://medium.com/@farghly.mahmod66/smoke-loader-analysis-1f1442809802
https://medium.com/@farghly.mahmod66/smoke-loader-analysis-1f1442809802
https://n1ght-w0lf.github.io/malware%20analysis/smokeloader/
https://n1ght-w0lf.github.io/malware%20analysis/smokeloader/
https://medium.com/walmartglobaltech/icedid-leverages-privateloader-7744771bf87f
https://medium.com/walmartglobaltech/icedid-leverages-privateloader-7744771bf87f
https://www.vmray.com/malware-analysis-spotlight-smoke-loader/
https://www.vmray.com/malware-analysis-spotlight-smoke-loader/

References 87

[200] JouniMi. Asyncrat - threat hunting with hints of incident response. Jan. 2023. URL: https://
threathunt.blog/asyncrat/.

[201] Adrien Bibal et al. “Is attention explanation? an introduction to the debate”. In: Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). 2022, pp. 3889-3900.

[202] Sarah Wiegreffe and Yuval Pinter. “Attention is not not explanation”. In: arXiv preprint arXiv:1908.04626
(2019).

[203] Christopher Grimsley, Elijah Mayfield, and Julia Bursten. “Why attention is not explanation: Sur-
gical intervention and causal reasoning about neural models”. In: (2020).

[204] Bingcai Chen et al. “Adversarial examples for cnn-based malware detectors”. In: IEEE Access
7 (2019), pp. 54360-54371.

[205] Anish Shah et al. “Deep residual networks with exponential linear unit”. In: Proceedings of the
third international symposium on computer vision and the internet. 2016, pp. 59—65.

[206] Aleieldin Salem, Sebastian Banescu, and Alexander Pretschner. “Maat: Automatically analyz-
ing virustotal for accurate labeling and effective malware detection”. In: ACM Transactions on
Privacy and Security (TOPS) 24.4 (2021), pp. 1-35.

[207] Tianxiang He et al. “Scalable and fast algorithm for constructing phylogenetic trees with appli-
cation to loT malware clustering”. In: IEEE Access 11 (2023), pp. 8240-8253.

[208] Andy Young. Here we botenago again! URL: https://www.keysight.com/blogs/en/tech/
nwvs/2022/02/01/here-we-botenago-again.

[209] Princy Victor et al. “loT malware: An attribute-based taxonomy, detection mechanisms and chal-
lenges”. In: Peer-to-peer Networking and Applications 16.3 (2023), pp. 1380-1431.

[210] Anna Szalay Sean Gallagher. The 2024 sophos threat report: Cybercrime on main street. Mar.
2024. URL: https://news.sophos.com/en-us/2024/03/12/2024-sophos-threat-report/.

[211] Furkan Ozturk. Akira: Undetectable stealer unleashed. Oct. 2023. URL: https://threatmon.

io/blog/akira-undetectable-stealer-unleashed/.

[212] Nick Biasini. Sundown Ek: You better take care. Aug. 2022. URL: https://blog.talosintell
igence.com/sundown-ek/

[213] Malwarebytes Labs. Inside the kronos malware - part 1: Malwarebytes labs. Aug. 2017. URL:
https://www.malwarebytes.com/blog/news/2017/08/inside-kronos-malware.

https://threathunt.blog/asyncrat/
https://threathunt.blog/asyncrat/
https://www.keysight.com/blogs/en/tech/nwvs/2022/02/01/here-we-botenago-again
https://www.keysight.com/blogs/en/tech/nwvs/2022/02/01/here-we-botenago-again
https://news.sophos.com/en-us/2024/03/12/2024-sophos-threat-report/
https://threatmon.io/blog/akira-undetectable-stealer-unleashed/
https://threatmon.io/blog/akira-undetectable-stealer-unleashed/
https://blog.talosintelligence.com/sundown-ek/
https://blog.talosintelligence.com/sundown-ek/
https://www.malwarebytes.com/blog/news/2017/08/inside-kronos-malware

Types of Malware

Table A.1: Comprehensive Classification of Malware Based on Evasion Techniques

Type

Malware

Description

Polymorphic

Polymorphic

Polymorphic

Polymorphic

Polymorphic

Polymorphic

Polymorphic

Metamorphic

Metamorphic

Advanced Evasive

Advanced Evasive

Advanced Evasive

Virlock

Storm Worm

Mariposa Botnet

XOR.DDoS

Mirai

Gafgyt

MooBot

ZMist (ZMistfall)

Win95/Regswap

IcedID

Emotet

GandCrab

This ransomware not only encrypts files but also infects
them, changing its code with each infection to evade de-
tection.

Known for its widespread email campaign, this trojan horse
employs polymorphic techniques to create numerous vari-
ants, complicating its detection and removal.

Originating from Butterfly Bot, it steals financial and sensi-
tive data, leveraging polymorphic capabilities to avoid de-
tection.

Targeting Linux systems for DDoS attacks, XOR.DDoS
uses polymorphism to evade traditional detection methods.
Known for its devastating DDoS attacks, Mirai’s polymor-
phic variants complicate the detection process, leading to
increased infection rates across loT devices.

Specializes in launching DDoS attacks, continuously
changing attack vectors and evolving encryption, making
it hard to trace and neutralize.

As a direct offshoot of Mirai, exploits vulnerabilities quickly,
adapting its scanning and exploitation techniques, infecting
a wide array of devices.

Integrates into and modifies executable files using ad-
vanced metamorphic techniques to rearrange and rewrite
its code.

Targets Windows 95/98 files, swaps code segments to ob-
scure its presence, making detection challenging.

A banking Trojan that employs injection techniques and
evasion tactics to avoid detection, spreading via malspam
campaigns.

Initially a banking Trojan, now a sophisticated malware de-
livery service, known for its rapid spread and delivery of
various payloads.

A ransomware-as-a-service that evolved through continu-
ous updates, utilizing both polymorphic and metamorphic
techniques.

Continued on next page

88

89

Table A.1 continued from previous page

Type

Malware

Description

Advanced Evasive

Advanced Evasive

Advanced Evasive

Advanced Evasive

Advanced Evasive

Advanced Evasive

Petya/NotPetya

Ryuk

Locky

Dridex

WannaCry

Agent Tesla

Initially a ransomware, NotPetya was later revealed to be
a wiper malware disguised as ransomware. It leveraged
sophisticated spreading mechanisms, including the use of
EternalBlue and additional credentials stealing techniques,
to infect and spread across networks rapidly.

A ransomware that typically targets enterprises, Ryuk is
known for its use after initial access has been gained via
other malware, such as TrickBot or Emotet. It demon-
strates advanced evasion techniques by disabling security
tools and encrypting network devices to maximize damage.
A ransomware that became notorious for its widespread
distribution via email campaigns and its use of polymorphic
encryption techniques to evade detection.

Known for targeting financial information, Dridex is a bank-
ing Trojan that uses advanced evasion techniques, includ-
ing polymorphic and macro-laced documents, to infect sys-
tems.

Notorious for its global ransomware outbreak, WannaCry
incorporates evasive maneuvers by exploiting network vul-
nerabilities for propagation and employing techniques that
hinder static and dynamic analysis.

An advanced spyware that exemplifies evasive malware
through its polymorphic encryption mechanisms, enabling
it to stealthily harvest and exfiltrate sensitive information
while evading standard detection methods.

Executable Formats

B.1. PE Format

In this section, we highlight the composition of the entire PE file, encompassing the DOS Header, DOS
Stub, PE Header proper, and the Optional Header. Each component plays a pivotal role in defining the
executable file’s structure, behavior, and compatibility within the Windows operating system’s ecosys-
tem as illustrated in figure B.1.

DOS Header
+ Signature (‘MZ°): Identifies the file as an executable.

» Timestamp: Marks when the file was created (often not used).
» Pointer to PE Header: Directs to the PE header.

DOS Stub
» Used when the executable is run under DOS.

* Displays a message that the program cannot run in DOS mode.

PE Header
» Signature: PE\0\O Identifies the start of the PE header.

* Machine: Indicates the architecture the executable is intended for.
* Number of Sections: Specifies how many sections are in the file.

» TimeDateStamp: The low 32 bits of the number of seconds since 00:00 January 1, 1970 (a Unix
timestamp), that indicates when the file was created.

» Pointer to Symbol Table: Used for debugging.

* Number of Symbols: Used with the pointer to the symbol table.

+ Size of Optional Header: Specifies the size of the optional header.
» Characteristics: Indicates the characteristics of the file.

Optlonal Header
* Magic: A signature that identifies the optional header format.

* Linker Version: Version of the linker that produced the file.

» Size of Code: Size of the code (text) section, or the sum of all such sections if there are multiple
text sections.

Size of Initialized Data: Size of the initialized data section, or the sum of all such sections if there
are multiple data sections.

+ Size of Uninitialized Data: Size of the uninitialized data section.

» Address of Entry Point: Pointer to the entry point function, relative to the image base when the
executable file is loaded into memory.

90

B.1. PE Format

91

0X0000
0x0008
0x0010
0x0018
0X0020
0x0028
0xX0030
0x0038
0xX0040
0x0048
0xX0050
0x0058
0X0060
0x00685
0X0070

64 bit

Signature 0x50450000

Machine #lumbe rifSections

3 PointerTosymbolTable
TimeDates tamp (dep)
HunberofsymbolTahle SizeofoptionalMeader| Characteristics
(deprecated)
MinarLinker Sizeofcode

fsam of all sectiens)

SizeofInitializedData

SizeofuninitializedData

AddressofEntryPoint Basedfcode
(EAL (EAL
Base0fData
iy InageBase
SectionAlignment Filealignment
MajorOptrating MinorOperating Majorinage | MinorInage
Systenversion Systemversion Wersiom Wersion
FajorSubsysten AinorSubsysten Wwin32versionvValue
wersion wersion (2eros Tilled)
SizedfImage SizedfHeaders
Checksum Subsystem | DllCharacteristics
(images rot chicked)
SizeofstackReserve Sizeo fstackcommit
SizeofHeapReserve SizeofHeapCommit
LoaderrFlags
Al ‘:9 # NumberofRvaAndsizes
Expo‘:ﬁ;rshle sizeofExportTable
Inpu‘:ﬁ;rahle sizeofImportTable
ResourceTable sizeofResourceTable
Excep ti.*onTnhle SizeofExceptionTable

certificateTable
(Ea)

SizeofcertificateTable

BaseRelocationTable

SizedfBaseRelocationTahle

(Ea]
D:‘;::]JQ sizeofDebug
HFCHit&ﬁHreDﬂtﬂ sizeofArchitectureData
51""::-}" tr 6o oo o0 oo
T'—fl:ble size0fTLSTable
Loadl:c::f].i.gstle sizeofiLoadconfigrahle
H““"“E:‘p‘"t sizeofBoundInport
I“P“rt“:’:*§°5579ble sizeofImportaddressTable
De-‘-ﬂl'Iﬂl??;};DBE': riptor SizeofDelayInportbescriptor
|¢L"“""‘t.t';'="°ﬂd" si#enfcmuuntimu#aﬂer
(1c] ¢1c) cc) ¢1c) (1c] cc) a0 cc)
Hane
virtualsize Il.i.rturin;d:lress
SizedfRawData FointerToRawData
FointerToRelocations FointerToLinenumbers
NumberOfRfelocations |NumberOfLinenumbers Characteristics

Figure B.1: PE Format

COFF
Header

Standard
COFF
Figlds

Windows
Specific
Fields

Data
Directaries

‘ Section
Table

Optional
Header

B.1. PE Format 92

Base of Code: Pointer to the beginning of the code section, relative to the image base.

Image Base: Preferred address of the first byte of image when loaded into memory; must be a
multiple of 64K.

Section Alignment: The alignment (in bytes) of sections when they are loaded into memory. It
must be greater than or equal to FileAlignment.

File Alignment: The alignment factor (in bytes) that is used to align the raw data of sections in
the image file.

Size of Image: The size (in bytes) of the image, including all headers, as the image is loaded in
memory. It must be a multiple of SectionAlignment.

Size of Headers: The combined size of the MS-DOS stub, PE header, and section headers
rounded up to a multiple of FileAlignment.

CheckSum: The image file checksum.
Subsystem: The subsystem that is required to run this image.
DLL Characteristics: The flags that indicate the attributes of the DLL.

Size of Stack Reserve: The size of the stack to reserve. Only SizeOfStackCommit is committed;
the rest is made available one page at a time until the reserve size is reached.

Size of Stack Commit: The size of the stack to commit.

Size of Heap Reserve: The size of the local heap space to reserve.

Size of Heap Commit: The size of the local heap space to commit.
Loader Flags: The flags that indicate the attributes of the loading process.

Number of RVA and Sizes: The number of data-directory entries in the remainder of the Optional
Header. Each describes a location and size.

Data Directories

Data Directories provide essential configuration for the executable and are located in the Optional
Header. Each directory entry points to a table or string that is crucial for the execution of the PE file.
The standard Data Directories are:

Export Table: Contains information about functions and variables that are available for use by
other executables or dynamic-link libraries (DLLs).

Import Table: Holds a list of functions and variables that the executable imports from other DLLs,
which are necessary for the dynamic linking process.

Resource Table: Aggregates the resource information, such as icons, menus, and dialog boxes,
which are used by the executable’s user interface.

Exception Table: Stores the exception handling and unwinding information, used primarily in
structured exception handling.

Certificate Table: Contains the certificates used for authenticating the executable.

Base Relocation Table: Holds the relocation information if the executable cannot be loaded at
its preferred base address.

Debug: Provides debug information, which is not necessary for the executable to run, but is
useful during development and troubleshooting.

Architecture Data: Reserved for architecture-specific data and generally not used.

Global Pointer: Stores the value of the global pointer register.

Thread Local Storage (TLS) Table: Contains information about thread-local storage, which is
used to create thread-specific data.

Load Configuration Table: Includes configuration settings related to the loading of the exe-
cutable, such as security checks.

Bound Import: Contains information about bound imports, which are used to speed up the load-
ing process of the executable.

Import Address Table (IAT): Used by the loader to resolve the addresses of imported functions
at runtime.

B.1. PE Format 93

» Delay Import Descriptor: Holds information about DLLs that are not loaded during startup but
on demand during runtime.

* CLR Runtime Header: Contains information relevant to the Common Language Runtime (CLR)
for executables that require the .NET framework to run.

* Reserved: Reserved for future use.

Microsoft COFF

The Microsoft Common Object File Format (COFF) is an adaptation of the traditional COFF format,
which is extensively utilized in Unix systems. It has been customized to meet the requirements of
Windows operating systems for structuring binary executable files, object code, and Dynamic Link
Libraries (DLLs). Below are the key features and enhancements that Microsoft COFF brings to the
Windows environment:

» Structure: Maintains a standard layout for binary files, which includes a header followed by sec-
tions like .text (executable code), .data (initialized data), and .bss (uninitialized data allocated
at runtime).

+ Extended Headers: Incorporates additional headers, notably the Image Header, which contains
Windows-specific flags, addresses, and sizes, supporting features unique to Windows.

» Section Alignment: Allows for specific alignments of sections in memory, which may differ from
their alignments on disk. This feature improves access speed and efficiency in the Windows
operating environment.

» Debugging Information: Rich debugging information is included, formatted to integrate seam-

lessly with Microsoft’'s Visual Studio development environment. This includes enhanced symbol

tables and file line number information critical during the linking phase and useful for debuggers
to provide source-level debugging.

Compatibility: Ensures compatibility with Microsoft Visual C++ linker and loader tools, which is

essential for seamless development and execution within the Windows ecosystem.

* Linker and Loader Support: Specifically designed to optimize the efficiency of the Windows
linker and loader, supporting features like incremental linking and fast loading, which are beneficial
for managing large software projects.

+ Symbol Table Management: Features a detailed symbol table that describes function and vari-
able names along with their attributes in an optimized manner for quick lookups during the linking
stage of program compilation.

This tailored COFF version by Microsoft provides a robust framework for application development
and execution within Windows environments, reflecting a significant evolution from its Unix origins to
cater specifically to the complexities of modern Windows systems.

Section Headers and Sections

The section headers follow the PE header and describe the characteristics and locations of the data
and code within the file. Each section can contain code, data, or both and has attributes like readable,
writable, and executable. Each section header contains:

+ Name: An 8-byte, null-padded UTF-8 encoded string. If the string is exactly 8 characters long,
there is no terminating null. For longer names, this field contains a slash (/) followed by an ASCII
representation of a decimal number that is an offset into the string table. Executable images do
not use a string table and do not support section names longer than 8 characters.

+ Virtual Size: The total size of the section when loaded into memory.

Virtual Address: For executable images, the address of the first byte of the section relative to
the image base when the section is loaded into memory.

» Size of Raw Data: The size of the section (for object files) or the size of the initialized data on
disk (for images).

Pointer to Raw Data: The file pointer to the first page of the section within the COFF file. For
executable images, this is the address of the first byte before relocation is applied; for object files,
this is the address of the first byte after relocation is applied.

B.2. ELF Format 94

» Pointer to Relocations: The file pointer to the beginning of relocation entries for the section.
This is set to zero for executable images.

» Pointer to Linenumbers: The file pointer to the beginning of line-number entries for the section.

* Number of Relocations: The number of relocation entries for the section. This is set to zero for
executable images.

* Number of Linenumbers: The number of line-number entries for the section.

» Characteristics: The flags that describe the characteristics of the section.

The actual sections of the executable, which contain code (.text), initialized data (.data), uninitialized
data (.bss), and other data, are structured as follows:

+ .text: Contains the executable instructions.

+ .data: Stores initialized data, including global variables.

+ .rdata: Contains read-only data, such as import and export directory tables.
+ .bss: Holds uninitialized data that is zeroed when the program starts.

« .idata: Includes import function tables and import lookup tables.

+ .edata: Holds the export function tables.

« .rsrc: Contains resource data, such as icons, cursors, and menus.

» .reloc: Provides relocation information.

Note: While the .rdata section typically contains the import and export directory tables, these are
logically part of the Data Directories within the Optional Header. The sections themselves are allocated
and aligned in memory based on the Section Alignment specified in the PE header.

B.2. ELF Format

The Executable and Linkable Format (ELF) is the primary format for executables in Unix and Linux
systems. It begins with an ELF Header that supplies essential metadata to prepare the operating
system for file execution. This metadata includes:

* File Type: Specifies whether the file is an executable, a relocatable file, or a shared object file,
akin to DLLs in Windows.

» Machine Architecture: Indicates the hardware for which the file is compiled, crucial for deter-
mining compatibility with 32-bit or 64-bit systems.

* Entry Point: The memory address where program execution begins.

Distinguishing Between 32-bit and 64-bit
The difference between 32-bit and 64-bit ELF files is marked by the e_ident [EI_CLASS] field in the
ELF Header:

» ELFCLASS32 (0x01): Indicates a 32-bit ELF file.
» ELFCLASS64 (0x02): Indicates a 64-bit ELF file.

Differentiating Shared Objectes from Executables
The differentiation between shared objects in Linux(.so) and executable files is defined by the e_type
field in the ELF Header:

» ET_EXEC (0x02): Denotes the file as an executable.
» ET_DYN (0x03): Indicates the file is a shared object file, used by other programs during runtime.

As illustrated in Figure B.2, two critical structures are the Program Header Table and the Section
Header Table, essential for the operating system to process the file correctly.

B.3. DOS Format 95

ELF header

Program header table

Text

rodata

data)

Section header table

Figure B.2: lllustration of the ELF Format

Program Header Table
The Program Header Table is pivotal for execution and loading, containing entries that describe seg-
ments of the process’s image in memory:

» Code Segment: Contains executable code of the program.

» Data Segment: Includes global variables and static data, storing initialized data for runtime mod-
ification.

» Dynamic Segment: Holds information necessary for dynamic linking, including references to
shared libraries.

Section Header Table
The Section Header Table details the file’s structure, instrumental in debugging and linking processes,
and facilitates modular software development:

» .text section: Contains executable instructions of the program.

* .data section: Stores initialized data such as global and static variables.

* .bss section: Used for uninitialized data that starts with zero or null values.

» .dynsym section: Lists dynamic linking symbols essential for resolving symbols in shared libraries.

B.3. DOS Format

The DOS format, primarily used in legacy computing environments, represents a foundational archi-
tecture for executable files designed to operate within the DOS (Disk Operating System) system. This
format is structured to efficiently handle the constrained resources typical of earlier personal computing
systems. The key components of the DOS format include:

DOS Header ("MZ" Signature)

Marked by the "MZ” signature, this header is the gateway to DOS executables. It carries critical meta-
data necessary for the DOS operating system to correctly manage the executable. This includes the
number of bytes in the last block of the program, the total number of blocks in the file, the number of

B.3. DOS Format 96

relocation entries stored after the header, the size of the header itself in paragraphs, and the minimum
and maximum allocation paragraphs needed by the program. This header also specifies the initial
relative stack segment, which is pivotal for setting up the program’s stack in memory.

Program Code

Following the header, this segment contains the executable machine code. In the DOS format, the
code is often optimized for execution in the limited and direct memory access environment typical of
DOS systems. It includes both the instructions that the processor will execute and the mechanism for
interrupt handling, directly interacting with the hardware.

Data Sections

These segments store the static data utilized by the program, including constants, variables, and strings
necessary for the program’s operation. Unlike more modern executable formats, which may separate
data into multiple distinct sections based on access needs and initialization status, DOS executables
often contain a single data section that includes both initialized and uninitialized data.

Relocation Table

Essential for ensuring the program’s flexibility, the relocation table contains pointers that adjust the
program’s hard-coded memory addresses. This feature allows DOS executables to adapt to differ-
ent memory addresses dynamically, accommodating variations in system configuration. Each entry in
the relocation table specifies parts of the code and data that must be modified when the program is
loaded at an address other than its preferred starting address. This capacity is crucial for running DOS
applications on a variety of hardware setups without the need for recompilation.

Overlay Management
DOS executables may also include overlays—additional code and data loaded on demand. This
method is particularly useful in memory-constrained environments, as it allows applications to load
additional functionality only when needed, rather than consuming memory continuously. Overlays
follow the main program block and are managed by a combination of the operating system and the
executable’s own code.

End-of-File Marker
A specific marker that indicates the end of the executable file. In DOS, this is often a series of null bytes
followed by an end-of-file character, typically used to mark the boundary of the file for both loading and
execution purposes.

Hypeparameters

These are the hyperparameter that we use in this work. For all the hyperparameters please refer to
scikit-learn [185]

Logistic Regression

* Regularization strength (C): Influences the degree of regularization. Lower values indicate
stronger regularization to prevent overfitting.

» Solver: Determines the optimization algorithm used (e.g., newton-cg, 1bfgs, liblinear, sag,
saga). Certain solvers support multinomial loss for multiclass problems.

» Multi-class: Specifies the approach for multiclass classification (ovr for One-vs-Rest, multinomial
for multinomial logistic regression).

* Max iterations: Sets the maximum number of iterations for the solvers to converge.

k-Nearest Neighbors(KNN)
* Number of Neighbors (k): Determines the number of nearest neighbors to consider when mak-
ing classification or regression decisions.
+ Distance Metric: Specifies the method used to calculate the distance between points (e.g., Eu-
clidean, Manhattan).
» Weights: Defines how much influence each neighbor has on the final decision (e.g., uniform,
distance-weighted).

t-Distributed Stochastic Neighbor Embedding (t-SNE)

» Perplexity: A key hyperparameter that balances attention between local and global aspects of
your data, typically chosen between 5 and 50. It can be thought of as the expected number of
neighbors.

* Learning Rate: Determines the step size at each iteration while moving toward a minimum of
the cost function. Typical values range from 10 to 1000. Setting this too high or too low can lead
to poor results.

* Number of Iterations: The maximum number of iterations for the optimization. Sufficiently high
to allow convergence.

» Early Exaggeration: Controls how tightly natural clusters in the original space are in the em-
bedded space and how much space will be between them. Larger values result in more space
between clusters.

Principal Component Analysis (PCA)
* Number of Components : Specifies the number of principal components to compute. This
determines the dimensionality of the output space.
» SVD Solver: Specifies the method used for the singular value decomposition (SVD), which can
be auto, full, arpack, Or randomized.

97

98

Uniform Manifold Approximation and Projection (UMAP)

* Number of Neighbors: Controls how UMAP balances local versus global structure. Larger val-
ues promote a more global view of the data, while smaller values prioritize local data aspects.

* Min Distance: The minimum distance between points in the low-dimensional representation.
Smaller values will result in tighter clusters.

» Metric: The metric used to measure distance in the input space, such as Euclidean, Manhattan,
cosine, etc.

» Learning Rate: Sets the learning rate for the optimization algorithm, influencing how rapidly the
model fits the data.

* Number of Components: Determines the number of dimensions in which to embed the data,
usually 2 for visualization.

Extraction of PE Features

1. ByteHistogram:

» Extraction Process:
The ByteHistogram feature extraction employs the LIEF library to methodically analyze PE
files, concentrating on sections marked with the MEM_EXECUTE flag, indicative of executable
content. This flag's presence, discerned through inspection of section headers, signifies
areas within the PE file meant for execution, contrasting with those allocated for data storage
orresources. Upon identifying these executable sections, their byte sequences are compiled
into a collective array. Following this, a bin count is conducted using NumPy, categorizing
each byte within the 0-255 range based on its occurrence.
Targeting MEM_EXECUTE sections aligns the analysis with the executable components of the
PE file, essential for malware analysis. This focus is pivotal, as the characteristics of the
executable code often reveal malicious functionalities.
This technique streamlines the analysis by concentrating on sections most relevant to the
file’s executable behavior, thereby enhancing efficiency. By examining just the executable
sections, the process becomes more efficient without overlooking crucial insights into the
PE file’s behavior. The aggregation of bytes from these sections and subsequent bin count
operation ensures a focused and efficient analysis, yielding features directly reflective of the
file’s executable nature.
* Importance:
This feature provides insights into the distribution of byte values within the executable sec-
tions of the file, aiding in anomaly detection, signature identification, and understanding the
file's structure. It is particularly useful for identifying packed or obfuscated code, a common
trait in malicious software.
Final Vector:
The ByteHistogram results in a 256-dimensional numerical array, where each dimension rep-
resents the normalized frequency of a corresponding byte value in the executable sections.
This normalization ensures comparability across PE files of different sizes by focusing on
distribution patterns rather than absolute counts.
* Tooling:
— LIEF
— NumPy

2. ByteEntropyHistogram:

» Extraction Process:
The ByteEntropyHistogram extraction similarly leverages the LIEF library for parsing PE files
but adds an additional layer of analysis by examining the entropy within executable sections.
Using NumPy, this process involves sliding a window across the bytes of each executable
section and calculating the entropy for segments of bytes within that window. This method

99

100

allows for a more granular analysis of the byte distribution, capturing both the frequency of
byte values and the local entropy, or randomness, of bytes in the section, which can indicate
compression or encryption within the executable code.
Importance:
This feature captures the complexity and variability within executable sections, offering a
nuanced view of the code’s structure that can reveal attempts at obfuscation or packing. High
entropy regions may suggest encrypted or compressed code, characteristics often found in
malware seeking to evade detection. By analyzing the byte entropy histogram, researchers
and automated systems can identify these traits, enhancing the detection of sophisticated
threats.
Final Vector:
The ByteEntropyHistogram results in a two-dimensional array shaped by the entropy levels
and byte values, typically sized 256x256. Each element in this matrix represents the count
of byte occurrences at different entropy levels, providing a detailed landscape of the file’s
complexity and variability.
Tooling:

— LIEF

— NumPy

3. Strings:

Extraction Process:
The extraction of strings from a PE file involves scanning its binary content for sequences of
printable characters, typically ASCII values ranging from 0x20 to Ox7f. This process not only
includes the extraction of plain text strings but also seeks to identify patterns or indicators of
interest, such as file paths, URLSs, registry keys, and potential MZ headers within the data.
The identification of these elements can hint at the file’s interactions with the system, network
communications, or even embedded payloads.
Importance:
Extracting strings from executable files is crucial for several reasons. First, it can reveal
direct indicators of malicious behavior or intent, such as command and control (C2) server
URLs, suspicious file paths, or registry keys commonly associated with persistence mecha-
nisms. Additionally, the presence of an unusually high number of strings, particularly those
resembling code or obfuscated data, can indicate an attempt to embed malicious payloads
or use steganographic techniques.
Final Vector:
The result of the string extraction process is a multi-dimensional feature set encompassing
the total number of strings, their average length, distributions of printable characters, and
counts of specific string patterns (e.g., URLSs, file paths). This complex feature set provides
a comprehensive overview of the textual content within the PE file, serving as a basis for
further analysis and classification tasks.
Tooling:

— NumPy

4. GeneralFilelnfo:

Extraction Process:

The GeneralFileInfo feature captures fundamental attributes of the PE file, providing a high-
level overview of its structure and properties. This includes the file’s size, the presence of
debugging information, the count of exports and imports, and indicators of security features
like relocations, resources, signatures, and thread local storage (TLS). By leveraging LIEF,
we parse the PE file to extract these attributes, each offering a snapshot into different aspects
of the file’s compilation and intended behavior.

Importance:

The general information extracted is critical for understanding the context in which the file
was created and how it is expected to interact with its environment. For example, the pres-
ence of a digital signature might suggest a semblance of legitimacy, while the number of

101

imports can indicate the file’s dependency on external libraries, potentially revealing its func-
tionality or malicious intent. Similarly, debug information can provide insights into the devel-
opment process of the file, possibly unearthing vulnerabilities or hidden features.

+ Final Vector:

This feature set culminates in a compact vector encapsulating the extracted general infor-
mation attributes. Each attribute contributes to a dimensional element of the vector, ranging
from binary flags indicating the presence or absence of certain features to integer counts
reflecting the complexity or connectivity of the file within its ecosystem.

* Tooling:

— LIEF

5. HeaderFilelnfo:

« Extraction Process:

The extraction of HeaderFilelnfo involves a detailed analysis of the PE file’s header, using
LIEF to access and interpret the data. This process focuses on extracting key information
from both the COFF (Common Object File Format) header and the optional PE header, which
together provide critical insights into the architecture, compilation, and capabilities of the PE
file. Attributes such as the compilation timestamp, target machine architecture, and system
version numbers are extracted, along with characteristics defining the file’s behavior, such
as subsystem and DLL characteristics. This header information paints a detailed picture of
the file’s intended execution environment and compatibility.
* Importance:

Understanding the header information is vital for identifying the file’s target architecture (e.g.,
x86, x64), which influences how it will execute. The compilation timestamp can indicate the
file’s age, potentially correlating with specific malware campaigns. System version numbers
and subsystem information help in assessing compatibility issues or targeting specific op-
erating systems, which is crucial for tailoring defensive measures. The DLL characteristics
can signal advanced functionalities or defense evasion techniques employed by the file.

+ Final Vector:

The resulting feature vector from the HeaderFilelnfo is a mix of categorical and numerical
data reflecting the extracted header attributes. Categorical data, such as the target machine
architecture, are typically encoded to facilitate analysis, while numerical data are directly
utilized, providing a multifaceted view of the file’s header configuration.
* Tooling:
— LIEF

6. SectionInfo:

» Extraction Process: The extraction of SectionInfo begins with the identification and analy-
sis of each section within a PE file using LIEF. This process entails examining the properties
of each section, such as its name, size, entropy, virtual size, and characteristics, to gather a
comprehensive overview of the file’s structure. For each section, these details are compiled
into a structured format, highlighting aspects like section names, their sizes (both raw and
virtual), and their entropy values. This detailed enumeration of section attributes provides
insight into the organization, purpose, and security features of the PE file, such as which
sections contain executable code, data storage, or are marked as writable or readable.

* Importance: Understanding the characteristics of each section is crucial for malware analy-
sis, as it can reveal patterns, anomalies, or signatures indicative of malicious intent. Sections
with unusual sizes, high entropy, or unexpected permissions may signal attempts to hide ma-
licious code, implement anti-debugging measures, or exploit vulnerabilities. By systemati-
cally analyzing these attributes, SectionlInfo contributes to the comprehensive assessment
of a PE file’s potential threats and behaviors.

 Final Vector: The output is a composite feature vector that encapsulates the diverse prop-
erties of all sections within the PE file. This vector includes aggregated and hashed values
for section sizes, entropies, and permissions, providing a multi-dimensional representation
of the file’s layout and characteristics.

102

Tooling:
— LIEF

7. Importsinfo:

Extraction Process: The Importsinfo feature extraction process delves into the import ad-
dress table (IAT) of a PE file, harnessing LIEF to parse and enumerate all imported libraries
and their associated functions. This step is pivotal, as it reveals the external dependencies
and API calls a PE file makes, which are indicative of its behavior and functionality. Each
imported library, along with its imported functions, is meticulously cataloged, providing a
detailed view of the file’s interaction with the operating system and other binaries.
Importance:
The analysis of imported functions and libraries is a cornerstone of malware detection, offer-
ing insights into the file’s potential capabilities, such as network communication, file manip-
ulation, or system surveillance. Anomalies or suspicious patterns in AP| usage can signal
malicious intent, especially when considering the context of known malware signatures or
behaviors. Thus, Importsinfo plays a crucial role in the identification and classification of PE
files.
Final Vector:
The feature vector for Importsinfo encapsulates the diversity of imported functions and li-
braries in a high-dimensional space, using hashing techniques to manage the variability in
the number of imports. This vector, typically hashed to a fixed size, represents the unique
footprint of a PE file’s external interactions, serving as a significant marker for analysis.
Tooling:

— LIEF

8. Exportsinfo:

« Extraction Process: Exportsinfo focuses on identifying and cataloging the functions a PE

file makes available for other binaries to use. Utilizing LIEF, the process involves parsing the
PE file to access its export table, which lists all functions that the file exports. This analysis is
crucial for understanding the PE file’s potential to influence or interact with other processes,
indicating its role within a larger software ecosystem or a malware campaign. Each exported
function is recorded, providing insight into the file’s capabilities and its intended interactions
with other system components.

Importance:

The exported functions of a PE file can reveal significant aspects of its functionality, such
as offering services or functionalities to other processes. In the context of malware anal-
ysis, exported functions can hint at the malware’s capabilities, including backdoor hooks,
utility functions, or custom APIs for controlling infected systems. Recognizing unusual or
suspicious exports is therefore integral to detecting and understanding malware operations.
Final Vector:

The resulting feature vector from Exportsinfo represents the set of functions exported by the
PE file, encoded into a fixed-size vector through hashing. This approach allows for a uniform
representation of exports across PE files, facilitating comparison and analysis regardless of
the number of exported functions.

* Tooling:

- LIEF

9. EntryPoints:

+ Extraction Process: EntryPoints analysis targets the initial execution points within a PE

file, which are pivotal in determining how the program starts its execution. This process
leverages LIEF to examine the PE file’s headers to locate the main entry point as specified
in the optional header. Additionally, it identifies entry points provided by the export table,
which could serve as alternate execution paths. Special attention is given to extracting entry
points from executable sections, which may indicate embedded executables or additional
malicious payloads. This comprehensive examination sheds light on the various ways a PE
file can be invoked, highlighting potential mechanisms for stealth execution or persistence.

103

* Importance:
Understanding the entry points of a PE file is crucial for mapping its execution flow and
predicting its behavior. For malware analysts, identifying unconventional or hidden entry
points can reveal sophisticated evasion techniques or unpacking routines. Entry points can
also signify the presence of embedded executables, contributing to a layered analysis of
complex malware samples.

* Final Vector:
The extracted entry points are synthesized into a list that captures the addresses and, where
available, the names of the entry functions. This list forms the basis of a feature vector that
encapsulates the PE file’s execution initiation points, contributing to the behavioral fingerprint
of the file.

» Tooling:

— LIEF

10. ExitPoints:

» Extraction Process: Identifying exit points within a PE file involves pinpointing functions
that terminate the process or alter its execution flow significantly, potentially signaling the
end of a malicious payload’s activity. This process employs a combination of static analy-
sis tools, including LIEF for structural examination and Capstone for disassembly, to scan
the PE file for known exit functions (e.g., ‘ExitProcess’, ‘TerminateProcess’). These tools
allow for the inspection of both imported functions, which might directly call such termination
functions, and the disassembled executable sections, searching for direct calls to these exit
routines. This dual approach ensures a comprehensive coverage of both static and dynamic
indications of process termination or alteration points.

* Importance:

Analyzing exit points is essential for understanding the cleanup or evasion techniques em-
ployed by malware. By identifying how and where a program intends to terminate its exe-
cution, analysts can infer the malware’s operational strategy, including attempts to evade
detection or analysis post-execution. It also aids in understanding the malware’s life cycle,
particularly how it ensures persistence or clears its tracks after completing its tasks.

+ Final Vector:

The information gathered from the exit points analysis culminates in a feature vector com-
prising the names and, where possible, the addresses of the termination functions employed
by the PE file. This vector provides a concise summary of the exit strategies encoded within
the file, offering valuable insights into its intended operational behavior.

* Tooling:

— LIEF
— Capstone

11. Opcodes:

» Extraction Process: The extraction of opcodes, or operational codes, within a PE file is
achieved through disassembling its executable sections. Utilizing Capstone, a robust disas-
sembly framework, the process involves parsing the binary to identify machine-level instruc-
tions executed by the program. This step is critical, as it unveils the low-level operations
that dictate the malware’s behavior. The analysis targets executable sections defined by
MEM_EXECUTE flags, similar to the ByteHistogram extraction process, ensuring a focus on the
operational aspects of the binary. Through disassembly, each instruction is broken down
to its opcode, the fundamental operation it performs, thus creating a comprehensive list of
opcodes present in the executable code.

* Importance:

Opcodes offer a granular view of the binary’s execution logic, enabling the identification of
malicious patterns, algorithms, and behaviors encoded at the instruction level. By examining
the opcodes, analysts can detect specific sequences indicative of malware, such as code
injection, encryption routines, or evasion mechanisms. This feature is particularly valuable
for signature-based detection and understanding the binary’s functionality without executing
it.

104

Final Vector:

The result of the opcode analysis is a list or array of opcodes extracted from the binary’s
executable sections. This collection may be further processed into a frequency vector, rep-
resenting the occurrence of each opcode within the analyzed sections, or used as-is for
pattern recognition and classification tasks. This vector serves as a foundational compo-
nent for malware detection models, providing a detailed account of the binary’s executable
instructions.
Tooling:

— Capstone

— LIEF

12. Opcode Occurrences:

Extraction Process: Following the disassembly and opcode extraction, the analysis ad-
vances to quantifying each opcode’s occurrences within the PE file’'s executable sections.
This procedure entails iterating through the list of opcodes previously gathered and tallying
each instance. The focus remains on executable sections, where operational codes directly
influence the program’s behavior. By employing a dictionary or hashmap, each opcode’s fre-
quency is meticulously recorded, offering a quantitative measure of the binary’s instruction
use.

Importance:

The occurrence frequency of opcodes sheds light on the binary’s operational emphasis, high-
lighting the use of certain instructions over others. This data is instrumental in detecting
anomalies or patterns distinctive to malware, such as an unusual frequency of jump instruc-
tions that may indicate obfuscation or evasion techniques. The opcode occurrences serve
as a signature of the binary’s execution logic, facilitating both detection and classification of
malware based on instruction usage patterns.

Final Vector:

The outcome of this analysis is a frequency vector or dictionary mapping each opcode to
its occurrence count within the executable sections. This vector encapsulates the instruc-
tion profile of the PE file, enabling comparisons across binaries and identifying outliers or
signatures indicative of malicious intent.

Tooling:

— Capstone

13. ImageSize:

Extraction Process: ImageSize is determined by analyzing the PE file’s total virtual size,
inclusive of all headers and sections. This metric encapsulates the entire memory footprint
of the PE file when loaded into memory. To compute this, the tool iterates over each section
within the PE file, accumulating their sizes while also accounting for header sizes. This
comprehensive summation provides a full picture of the file’s size as it would appear during
execution.

Importance:

The total image size of a PE file is a fundamental characteristic, offering insights into the file’s
complexity and potential load on system resources. Larger files may indicate the presence
of embedded resources or functionalities, whereas anomalously small sizes could suggest
a file designed to be stealthy or serve as a loader for additional malicious payloads. Under-
standing the image size assists in gauging the file’s scope and potential impact.

Final Vector:

The result of this analysis is a single value representing the total image size of the PE file.
This scalar value reflects the file’s comprehensive size, combining executable code, data
sections, and metadata into one metric.

Tooling:

— PEfile

14. HeaderSize:

105

» Extraction Process: The HeaderSize feature quantifies the combined size of the PE file’s
headers, including the DOS, file, optional, and section headers. This is accomplished by
parsing the PE file to calculate the sizes of these individual components.

* Importance:

Analyzing the header size of a PE file is critical for understanding the overhead introduced by
metadata and structural definitions. It can indicate the complexity of the file’s structure and
the presence of additional functionalities encapsulated within the headers. Large header
sizes may suggest extensive use of section definitions or the presence of additional meta-
data, while unusually small header sizes could indicate attempts to minimize the file’s foot-
print or manipulate header information for obfuscation purposes.

+ Final Vector:

This analysis yields a scalar value representing the total size of all headers within the PE
file. This value is crucial for assessing the overhead and structural complexity of the file,
contributing to a holistic understanding of its construction.

* Tooling:

— LIEF
— PEfile

15. StackReserveSize:

+ Extraction Process: StackReserveSize measures the amount of memory space reserved
for the stack in a PE file. This feature is extracted by parsing the PE file’s optional header,
specifically focusing on the SizeOfStackReserve field.

* Importance:

The reserved stack size is an indicator of the anticipated memory usage for the stack during
execution. It can signal the complexity and potential memory demands of the application. Ab-
normally high or low values may suggest unusual behaviors or potential evasion techniques
designed to manipulate execution environments or evade detection.

* Final Vector:

The feature is represented as a scalar value indicating the reserved stack size in bytes.
This quantitative measure is vital for assessing the PE file’'s memory allocation patterns and
understanding its operational requirements.

» Tooling:

— LIEF
— PEfile

16. StackCommitSize:

» Extraction Process:
The extraction of the StackCommitSize feature is performed through an analysis of the PE
file’s optional header, specifically targeting the size of memory committed to the stack at
execution start. This process is facilitated by the pefile Python library, which allows for
simplified access to PE file attributes, including those within the optional header where Stack-
CommitSize is located.
* Importance:
The StackCommitSize provides critical insight into the application’s memory usage patterns,
focusing on stack allocation. This feature is instrumental in identifying abnormal memory
allocation practices that could indicate malicious intent or exploitation attempts by malware,
thus serving as a significant indicator in the distinction between benign and malicious files.
* Final Vector:
This feature produces a singular numerical value representing the memory committed for the
stack, measured in bytes. It forms an integral component of a broader feature set, enriching
the analysis with details on the application’s memory management and execution behaviors.
* Tooling:
— PEfile

17. HeapSize:

106

Extraction Process:

The HeapSize is determined by parsing the PE file’s optional header to obtain the sizes of
both heap reserve and heap commit. Utilizing the pefile Python library, we access the
SizeOfHeapReserve and SizeOfHeapCommit fields within the optional header, which indi-
cate the total size reserved for the heap and the size of the heap space initially committed,
respectively.
Importance:

Understanding the HeapSize, encompassing both reserve and commit sizes, is crucial for
malware analysis. It offers insights into how an application plans to use memory dynamically.
Unusually large heap sizes can suggest an application’s potential to engage in memory-
intensive operations or exploit techniques, making this feature a valuable indicator for de-
tecting malicious activities.

Final Vector:

This feature yields two numerical values representing the reserved and initially committed
heap sizes in bytes. These values contribute to a multi-dimensional feature vector, providing
a nuanced view of the application’s memory allocation patterns and their implications for
security.
Tooling:

— PEfile

18. LoaderFlags:

Extraction Process:

To determine the LoaderFlags, we examine the PE file’s optional header, specifically target-
ing the LoaderFlags field. This task is accomplished using the pefile library, which allows
for direct access to PE structure and fields. The LoaderFlags field provides insight into
specific flags set during the loading of the executable, which can affect the behavior of the
loader.

Importance:

While LoaderFlags are typically set to zero in most PE files and might seem ftrivial, any non-
standard value could indicate unusual or potentially malicious loader behavior. Analyzing
these flags helps in detecting anomalies or techniques employed by malware to manipulate
the loading process, contributing to a broader understanding of the executable’s character-
istics.

Final Vector:

The feature results in a single numerical value representing the LoaderFlags set within the
PE file’s optional header. This value enriches the feature vector by adding a dimension
that reflects the executable’s loader behavior, even if it's commonly zero for most benign
applications.

Tooling:

— PEfile

19. Kolmogorov Complexity:

Extraction Process: The extraction of the Kolmogorov Complexity for a PE file involves
evaluating the compressibility of the file’s executable sections. each executable section
identified within the PE file—through parsing with the lief library—is compressed. The
process aims to measure the amount of redundancy in the data, which is indicative of the
file’s complexity.

Importance:

Kolmogorov Complexity serves as a proxy for understanding the file’s complexity and po-
tential obfuscation levels. Highly compressed sections suggest redundancy and lower com-
plexity, while less compressible sections might indicate sophisticated obfuscation techniques
commonly employed by malware to evade detection. This feature is instrumental in distin-
guishing between simple, benign applications and complex, potentially malicious executa-
bles.

107

Final Vector:
This analysis yields a numerical value representing the compressed size of the executable
sections, normalized against the original size to provide a measure of the file’s Kolmogorov
Complexity. This scalar value enriches the feature vector, offering insights into the exe-
cutable’s structural complexity.
Tooling:

— lief

- zlib
Through the application of these tools, the Kolmogorov Complexity feature encapsulates a
critical aspect of the PE file’s nature, distinguishing between varying levels of complexity and
obfuscation that may hint at malicious intent.

20. DataDirectories:

Extraction Process:

The extraction of DataDirectories involves iterating over the data directories present in a PE
file, facilitated by the LIEF library. Each data directory within the PE format serves a distinct
purpose, such as import tables, export tables, and resource sections.

Importance:

Data directories are critical for understanding the structural and functional aspects of a PE file.
They contain metadata and pointers to important sections of the executable, such as where
to find imported functions, exported functions, and resources. Analyzing these directories
helps in identifying how an executable interacts with external libraries, manages resources,
and potentially, how it might behave when executed.

Final Vector:

The feature produces a list of dictionaries for each data directory, with keys for the directory’s
name, size, and virtual address. This structured format preserves the detailed information
about each directory, contributing to a comprehensive analysis of the PE file’s structure and
capabilities.

Tooling:

— LIEF

Extraction of DOS Features

1. ByteHistogram (DOS):

Extraction Process: The ByteHistogram for DOS executables is obtained by analyzing
the file’s byte content starting from a specific offset indicative of the executable code’s com-
mencement. Initially, the DOS header is parsed with Python’s struct module to extract rel-
evant fields for the executable section, notably the initial stack settings (initialss, initialspy),
the instruction pointer (initial;;), and the code segment (initial.;). This parsing delineates
the offset (code, t5c¢) for analyzing executable bytes, calculated as initial., x 16 + initial;p.
Should this offset surpass the file’s size, suggesting an abnormal or unconventional file struc-
ture, the entire file is then considered for analysis. Bytes from the calculated offset to the
file’s conclusion are cumulatively analyzed.
Subsequently, a bin count is performed on these aggregated bytes using NumPy, effectively
mapping each byte value within the 0-255 range to its frequency of occurrence in the ex-
ecutable section. This nuanced approach allows for a detailed byte-level analysis of the
executable part of the DOS file, providing insights into its composition and potential behav-
iors.
Importance: The ByteHistogram is instrumental in understanding the distribution of byte val-
ues within the DOS executable’s code section. Such analysis can reveal patterns indicative
of specific programming practices, compression, or obfuscation techniques. This feature
becomes particularly valuable in malware analysis, where deviations from normative byte
distributions can signal malicious intent or sophisticated evasion mechanisms embedded
within the executable.
Final Vector: The result of this process is a 256-dimensional numerical array, with each
dimension reflecting the frequency of occurrence of a corresponding byte value in the ana-
lyzed executable section. This representation captures a fundamental aspect of the DOS
file's content, serving as a critical feature for subsequent analysis phases, including machine
learning-based malware classification.
Tooling:

— struct

— NumPy

2. ByteEntropyHistogram (DOS):

Extraction Process: Following the initial procedures employed for ByteHistogram extrac-
tion, the ByteEntropyHistogram for DOS files begins with decoding the DOS header fields
(initialss, initialsy, initial;p, initial.s). This information aids in pinpointing the commence-
ment of the executable content. Commencing from this determined offset, the bytes undergo
analysis in designated blocks to construct a 2D entropy histogram. This histogram delineates
the combined distribution of byte values and their respective entropy levels, utilizing NumPy
to enhance the efficiency of these numerical operations and the structuring of data.

108

109

» Importance: ByteEntropyHistogram serves as a nuanced feature that encapsulates the
variability and complexity of byte distributions within the DOS executable’s code section. By
examining both the byte values and their associated entropies, this feature provides deeper
insights into the code’s structure and potential obfuscation methods. It is especially useful
in malware analysis for identifying packed or encrypted sections within the code, aiding in
the detection of sophisticated threats.

+ Final Vector: The output of this process is a flattened, 256-dimensional array derived from
the 2D histogram, with each element representing the frequency of a specific byte-entropy
pair. This representation captures the intricacies of the code’s composition and entropy
characteristics, offering a rich feature for subsequent analysis stages.

» Tooling:

— struct

— NumPy
Employing these tools, the ByteEntropyHistogram is extracted, reflecting the combined dis-
tribution of byte values and their entropy within the DOS executable, thus enriching the
analytical framework with a sophisticated feature.

3. Strings (DOS):

« Extraction Process: This process is the same as that for the PE with the resulting vector.

* Importance: Extracting strings provides insights into the executable’s functionality, poten-
tial interactions with the system or network, and hardcoded values, which are crucial for
analyzing the behavior and identifying potential threats within a DOS executable.

+ Final Vector: The final vector includes the number of strings, average string length, distribu-
tion of printable characters, and occurrences of specific patterns such as paths, URLs, and
registry keys. This comprehensive data aids in understanding the content and context of the
strings within the executable.

* Tooling:

- re
— NumPy

4. GeneralFilelnfo (DOS):

« Extraction Process: The GeneralFilelnfo for DOS executables is derived directly from read-
ing the file’s attributes and its DOS header. The process involves first determining the file’s
size through the os.path.getsize function. Subsequently, the DOS header is parsed to ex-
tract critical fields, including the magic number, blocks in the file, relocation entries, and ini-
tial stack and code segment values, among others. This comprehensive extraction from the
DOS header provides a detailed snapshot of the file’s structure and foundational attributes.

» Importance: Extracting general file information is crucial for a basic yet comprehensive
understanding of the DOS executable. This includes insights into the file size, layout, and
initial execution settings, which are foundational for further analysis. Such information can
be pivotal in identifying file integrity, compatibility, and potential malicious alterations.

» Final Vector: The extracted information culminates in a structured representation encom-
passing various attributes of the DOS executable, including file size, header paragraphs, re-
location counts, and initial execution parameters (stack and code segments). This structured
data forms an essential part of the feature vector, enabling detailed analysis and comparison
across executables.

» Tooling:

— struct

Leveraging these tools and methods, the extraction process for GeneralFilelnfo effectively
deciphers and structures key attributes of DOS executables, setting the stage for in-depth
analysis and insights.

5. HeaderFilelnfo (DOS):

110

« Extraction Process: The HeaderFilelnfo for DOS executables focuses on extracting de-
tailed information from the DOS header. This process involves parsing the header, which
is typically the first 28 to 64 bytes of the file, to retrieve information about the file’s structure
and initial execution environment. Key fields such as the magic number (‘'MZ’), bytes on the
last page, number of pages, relocations, header size in paragraphs, and initial stack and
code segment settings are extracted using struct.unpack. This method allows for direct
translation of binary data into Python data structures.

* Importance: Understanding the header information of DOS executables is fundamental for
analyzing the file’s layout, compatibility, and execution parameters. These attributes provide
insights into how the operating system will load and run the file, including memory allocation
and initial execution points. Such information is invaluable for both historical analysis of
legacy software and the examination of potentially malicious DOS executables.

» Final Vector: The resulting data from the DOS header extraction process is a structured
representation that encapsulates essential attributes of the executable. This includes, but is
not limited to, the file’s page structure, memory allocation requirements, and initial execution
context. This comprehensive breakdown contributes to the overall feature set, enriching the
analysis with detailed structural insights.

* Tooling:

— struct

Through the application of these parsing techniques, HeaderFilelnfo meticulously extracts
and organizes critical structural details from DOS executables, providing a foundational layer
for further analysis and insights.

6. MemoryLayout (DOS):

+ Extraction Process: To extract the MemoryLayout feature for DOS executables, we delve
into the DOS header to pinpoint the Initial SP (Stack Pointer)and Max Allocation values.
Utilizing Python’s struct.unpack, we navigate to the specified offsets within the header:
Initial SP is located at offset 0x10 (16) and Max Allocation at offset 0x02 (2). These
values are critical for understanding the executable’s memory setup and its stack initiation
point.

* Importance: This feature provides insight into the memory blueprint and stack configuration
of DOS executables, reflecting on how the program was intended to manage and utilize
memory. Such insights are invaluable for understanding the executable’s interaction with
the DOS operating environment and hardware resources.

» Final Vector: The extraction results in a vector capturing the Initial SPandMax Allocation
values, enriching the analysis with details on the executable’s memory layout and allocation
requirements.

* Tooling:

— struct

By employing these tools, we effectively uncover and interpret key memory layout param-
eters from DOS executables, enhancing our analytical framework with deeper insights into
their operational characteristics and memory usage patterns.

7. EntryPoints (DOS):

» Extraction Process: Entry points in DOS executables are determined by initially inspecting
the DOS header for the CS (Code Segment) and IP (Instruction Pointer) fields, if the header is
adequately sized. This inspection is conducted through struct . unpack on the bytes located
at offsets O0x14 and 0x16 (initial.s and initial;,, respectively), indicative of the initial execu-
tion point. The process then advances to disassembly, utilizing the Capstone disassembler
in 16-bit mode, to detect interrupt (int) instructions within the executable’s code starting from
offset 0x100, signaling additional entry points critical to understanding the execution flow.

* Importance: The identification of entry points is fundamental for analyzing the DOS exe-
cutable’s flow, especially for insights into the software’s initial execution phase and interrupt-
based operations. This knowledge is pivotal in legacy system analyses and malware inves-
tigation within DOS environments.

111

« Final Vector: The feature set includes the initial CS:IP entry point extracted from the DOS
header and any further entry points identified through the disassembly process. This com-
prehensive enumeration of entry points serves as a crucial element in the feature vector,
offering a deeper understanding of the executable’s behavior.

» Tooling:

— struct
— Capstone

8. EntryPoints (DOS):

« Extraction Process: The extraction process for EntryPoints in DOS executables begins
by reading the first 28 bytes from the DOS header, aiming to uncover the initial execution
point marked by the CS (Code Segment) and IP (Instruction Pointer) fields. This is executed
through Python'’s struct .unpack method, which interprets the DOS header bytes to retrieve
the essential fields. The specific fields extracted include e, (pages in file), e.;, (bytes on
the last page of the file), among others, leading to initial;, and initial.s, which collectively
indicate the entry point of the executable. The DOS header, being a crucial part of the exe-
cutable’s metadata, contains these fields at predefined offsets, facilitating the identification
of the program’s entry point as designated by the original developer.

» Importance: EntryPoints is critical in DOS executable analysis as it signifies where the ex-
ecution starts within the binary. This information is vital for reverse engineering, malware
analysis, and understanding the executable’s behavior on a DOS system. Unlike more mod-
ern PE formats, DOS executables utilize a simpler structure, where the entry point directly
informs about the beginning of the program execution.

» Final Vector: The feature comprises a single string encapsulating the entry point, denoted
by the CS and IP values extracted from the DOS header. This singular data point enriches
the feature vector with crucial execution start information, contributing to a comprehensive
understanding of the DOS executable’s initial behavior.

* Tooling:

struct
The utilization of these tools and methodologies effectively surfaces the EntryPoints from
DOS executables, spotlighting the starting point of the program’s execution within the binary
structure.

9. ExitPoints (DOS):

» Extraction Process: |dentifying ExitPoints within DOS executables involves utilizing the
Capstone disassembly framework to analyze the binary in 16-bit mode, reflecting the DOS
architecture. The analysis commences from an assumed offset (typically 0x100, a common
entry point in DOS executables), where the search for interrupt (int) instructions that signify
exit points begins. These interrupts include INT 20h, signaling program termination, and
INT 21h, which encompasses a broader range of system calls, including program exit with
a return code when accompanied by the AH=4Ch register value. The disassembly process
reveals these interrupts, capturing the instruction’s address and the specific exit or system
call it represents.

* Importance: ExitPoints play a pivotal role in understanding the termination behavior of DOS
executables, offering insights into how and where a program concludes its execution. This
can be crucial for malware analysis, where unconventional exit points may be used as part
of the malware’s execution flow to evade detection or perform cleanup routines.

» Final Vector: The analysis results in a collection of strings, each detailing an exit point’s
location (address) and the type of exit or system call it invokes. This collection enriches
the feature set with specific insights into the program’s termination behavior, highlighting
potential areas of interest for further analysis or reverse engineering.

» Tooling:

— Capstone

10. Opcodes (DOS):

112

Extraction Process: The extraction of Opcodes for DOS files employs a process to dis-
assemble the executable’s code to retrieve the opcodes. This is initiated by determining
the executable’s architecture to ensure accurate disassembly. The binary is examined to
identify the executable sections, after which each section’s content is disassembled using
Capstone, a disassembly framework that supports 16-bit DOS mode. The disassembly re-
sults in a list of instructions from which opcodes are extracted and aggregated across all
executable sections.
Importance: Opcodes provide a granular view of the executable’s operations, offering in-
sights into its functionality. Analyzing the distribution and types of opcodes can reveal pat-
terns indicative of benign or malicious intent, including the presence of common malware
techniques or constructs.
Final Vector: The extraction yields an array or list of opcode mnemonics, representing the
low-level operations performed by the executable. This array forms part of the feature set,
enabling machine learning models or analytical tools to discern patterns or anomalies within
the executable code.
Tooling:

— Capstone

— pefile

11. Opcode Occurrences (DOS):

Extraction Process: The process for determining Opcode Occurrences closely follows the
approach described for Opcodes in DOS files, with an added layer to count the frequency
of each opcode across the executable sections. After disassembling the code to identify op-
codes, a mapping is created to tally occurrences of each opcode. This process involves an-
alyzing opcode information extracted from executable sections, as outlined in the Opcodes
(DOS) extraction, and aggregating their occurrences into a comprehensive dictionary.
Importance: Counting opcode occurrences offers insights into the prevalence of certain
operations within the DOS executable, which can be indicative of its behavior. Patterns
in opcode usage, especially those that deviate from typical benign software patterns, can
signal the presence of malware or the use of obfuscation and anti-analysis techniques.
Final Vector: This process yields a dictionary or associative array where keys represent
opcode mnemonics and values denote their frequency of occurrence within the executable.
This structured representation enriches the feature set with quantitative insights into the
opcode distribution, enhancing the analysis of the executable’s characteristics.

Tooling and References: The tooling employed is identical to that utilized in the extraction
of Opcodes for DOS files, with the addition of Python’s defaultdict for efficient counting and
aggregation of opcode occurrences. The methodology and tools referenced under Opcodes
(DOS) are directly applicable here, emphasizing the operational consistency between these
feature extraction processes.

12. Image Size (DOS):

Extraction Process:

The Image Size for DOS executables is determined simply by assessing the file’s total size.
This straightforward approach involves utilizing the os.path.getsize method in Python,
which returns the file size in bytes. This metric directly reflects the physical size of the DOS
executable on disk, offering a basic yet critical dimension of the file’s characteristics.
Importance:

The size of an executable can provide initial hints about its complexity and the breadth of
functionality it might encompass. In the context of malware analysis, unusually large or small
file sizes, relative to typical DOS executables, can serve as indicators of potential malicious
intent or obfuscation attempts.

Final Vector:

The outcome of this process is a single numerical value representing the file size in bytes.
This scalar value forms an essential component of the feature vector, encapsulating a fun-
damental attribute of the executable that aids in its overall evaluation and comparison with
other files.

113

» Tooling:
— Struct
13. Memory Size (DOS):

» Extraction Process: The process for determining memory size specifications in DOS files
involves parsing the DOS header to extract key parameters related to the executable’s mem-
ory usage, including the Initial Stack Segment (SS), Stack Pointer (SP), and memory allo-
cation requirements (mingiocation @Nd MaZajiocation) - Python’s struct.unpack function is
utilized to read these values from specific offsets within the file: 0xOE for initial,s, 0x10 for
both initials, and mazaiiocation, aNA 0x0C for mingocation -

* Importance: These memory specifications are crucial for understanding the DOS executable’s
memory footprint and operational requirements. They provide insights into how the exe-
cutable is expected to interact with system memory, including stack initialization and mem-
ory reservation which are pertinent for both routine analysis and the identification of potential
anomalies or malicious patterns.

« Final Vector: This analysis yields a structured representation of the executable’s memory
size specifications, encapsulating initial_ss, initial_sp,min_allocation, andmax_allocation.
These attributes contribute to a multi-dimensional feature vector that aids in the comprehen-
sive characterization of the DOS file.

* Tooling:

— struct

14. Header Size (DOS):

+ Extraction Process: To ascertain the size of the DOS header, the process commences
with the binary opening of the file, followed by the retrieval of the magic number from the first
two bytes to validate the DOS ('MZ’) signature. Subsequently, attention is directed to the
offset at position 0x3C (601¢), which points to the new executable header, indicating the end
boundary of the DOS header. This offset is decoded using Python’s struct.unpack with a
format specifier of '<H', denoting a little-endian unsigned short.

* Importance: The DOS header size is fundamental for delineating the boundary between
the DOS stub and the subsequent sections of an executable. This demarcation aids in
parsing and analyzing the file’s structure, especially when investigating legacy or dual-mode
executables that commence with a DOS header before transitioning to a more advanced
format.

 Final Vector: The result is a singular value representing the size of the DOS header, which,
when non-zero, delineates the initial segment of the executable dedicated to the DOS stub.
This metric enriches the feature set with structural insights into the DOS executable.

* Tooling:

— open
— struct

15. Block Entropy (DOS):

+ Extraction Process: The Block Entropy for DOS files is calculated by segmenting the file
into blocks of a specified size (default is 1024 bytes) and computing the entropy for each
block. This process begins with a file integrity check to ensure its presence. Following
the successful opening of the file, its contents are read into memory. Each block is then
individually assessed for entropy using a calculation that measures the unpredictability or
randomness of the data within. The function iterates over all possible byte values (0-255),
calculating the probability of each and summing their contributions to the entropy of the
block. This step is crucial for identifying sections of the file that may exhibit unusual patterns,
potentially indicative of obfuscation or data encoding.

* Importance: Understanding the entropy of different blocks within a DOS file can reveal
insights into the file’s complexity and areas of potential data packing or encryption. High
entropy regions may indicate obfuscated or compressed code, common in malware attempt-
ing to evade detection. Conversely, low entropy might suggest regular, uncompressed data.
This differentiation is pivotal in forensic and malware analysis contexts, where anomalies in
file structure can lead to significant findings.

114

Final Vector: The entropy analysis results in a set of statistics including the minimum, max-
imum, total, and mean entropy values across all blocks. This collection of metrics forms
a composite picture of the file’s entropy landscape, serving as a multi-dimensional feature
within the analysis vector.
Tooling:

— Python Standard Library

16. Kolmogorov Complexity (DOS):

Extraction Process: The method for deriving the Kolmogorov Complexity for DOS executa-
bles is analogous to that described for PE files. It entails assessing the compressibility of
the file’s data to gauge its complexity.

Importance: Similar to its application in PE analysis, the Kolmogorov Complexity for DOS
files provides insights into the file’s complexity and obfuscation levels. It serves as an in-
dicator of the sophistication of the code, including the presence of potential obfuscation
techniques.

Final Vector: The outcome is a scalar value that reflects the Kolmogorov Complexity, offer-
ing a quantifiable measure of the file’s complexity based on its compressibility.

Tooling:

lief

zlib

17. Interrupt Info (DOS):

Extraction Process: Interrupt information is derived by disassembling the DOS executable
and identifying instances where software interrupt instructions (int) are used. This pro-
cess begins with the entire contents of the DOS file being read into memory. Utilizing the
Capstone disassembly framework set for 16-bit x86 mode, the file is disassembled start-
ing from a predefined offset, commonly 0x100, which is a conventional location for the start
of executable code in DOS files. Each int instruction encountered during disassembly is
recorded, capturing both its memory address and interrupt vector. This approach is cru-
cial for understanding the software’s interaction with the operating system, particularly for
identifying system calls and potential interrupt-based functionalities or exploits.
Importance: Analyzing interrupts within a DOS executable provides insights into how the
application interfaces with the DOS operating system, including any system services it may
request. Certain interrupts can be indicative of specific behaviors or functionalities, such as
file operations, I/O interactions, or termination requests. This information can be particularly
valuable in malware analysis, where specific interrupt calls might suggest malicious intent
or techniques.

Final Vector: The extracted interrupt information results in a list of dictionaries, each detail-
ing an interrupt’s address and its vector (op_str). This structured representation allows for
easy integration into feature vectors, contributing to a comprehensive understanding of the
DOS executable’s behavior and its system-level interactions.

* Tooling:

— Capstone

18. Stack Information (DOS):

» Extraction Process: The stack information, specifically the Initial Stack Pointer (SP) and

Stack Segment (SS), is extracted by accessing the DOS header of the executable. Upon
verifying the file as a valid DOS executable through the magic number check (Mz), the pro-
cess seeks to the offsets where the Initial SP and SS values are stored. These values are
then read and decoded, providing direct insight into the initial stack configuration upon the
program’s start. This method relies on the structured format of DOS headers, where specific
offsets (0xOE for SS and 0x10 for SP) universally denote the location of these stack settings.
Importance: Understanding the initial stack settings of a DOS executable is crucial for sev-
eral reasons. It aids in comprehending how the program was designed to manage its mem-
ory and provides context for the execution environment prepared by the loader. For security
analysis, anomalies or peculiar configurations in these values could indicate unconventional
use of the stack, which might be a sign of exploitation techniques or obfuscation.

115

Final Vector: The outcome is a simple dictionary containing numerical values for the Initial
SP and SS, reflecting the stack’s initial state. This information contributes to the broader
feature set, enriching the dataset with details pertinent to the executable’s runtime configu-
ration.

Tooling:

— struct

T 1

Extraction of ELF Features

1. Byte Histogram (ELF):

« Extraction Process: The process involves iterating through each segment within an ELF bi-
nary, identifying segments marked as executable by examining their flags. Utilizing the LIEF
library, the process checks for the presence of the executable flag ELFSEGMENT_FLAGS.X
in the segment’s flag attribute. For each executable segment encountered, its content is ag-
gregated into a cumulative byte array. This array is then subjected to a bin count operation,
performed with NumPy, to quantify the frequency of each byte value, ranging from 0 to 255,
within these executable segments.

» Importance: The Byte Histogram feature for ELF binaries is instrumental in understand-
ing the distribution and frequency of byte values across executable segments. This insight
is valuable for malware analysis, allowing researchers to detect patterns or anomalies in-
dicative of malicious content. Moreover, it provides a basis for comparing and contrasting
binaries, assisting in the identification of similarities that could link different samples to the
same family or source.

» Final Vector: The output of this process is a 256-dimensional numerical array, where each
index corresponds to a byte value and its value represents the frequency of that byte across
the executable segments of the ELF binary. This numerical representation serves as a direct
and compact summary of the byte composition within the binary’s executable parts.

* Tooling:

— LIEF
— NumPy

2. ByteEntropyHistogram (ELF):

« Extraction Process: This procedure begins by iterating through each segmentin an ELF bi-
nary, utilizing the 1ief library to check for executable segments marked by the ELF.SEGMENT_FLAGS.X
flag. For every segment determined to be executable, its byte content is transformed into a
NumPy array. The entropy of each byte block within the window size is calculated, contribut-
ing to a two-dimensional histogram that maps byte values to their respective entropy levels
as illustrated below:

— Checking each segment for the executable flag.

— Transforming segment content into a NumPy array.

— Calculating entropy for blocks within the defined window size.

— Aggregating these entropy values into a 2D histogram.
» Importance: The ByteEntropy Histogram is vital for identifying the level of randomness or
complexity within executable segments of ELF files, providing insights into potential obfus-
cation or encryption that could indicate malicious intent.
Final Vector: The output is a flattened numerical array derived from the 2D entropy his-
togram, offering a detailed representation of entropy distribution across the executable seg-
ments of the ELF file.

116

117

Tooling:

— lief
— NumPy

3. Section Information(ELF):

Extraction Process: The ELF Section Information extraction begins with verifying the pres-
ence of the ELF binary. If present, the process retrieves the entry point from the binary’s
header. Subsequently, it iterates through each section within the binary, collecting detailed
information such as the section’s name, size, entropy, file offset, and properties. These
properties are determined through a custom method that interprets the section’s attributes.
Importance: Understanding the specifics of each section within an ELF binary is crucial
for various aspects of cybersecurity analysis. It aids in identifying the purposes of different
sections, detecting anomalies, and understanding the binary’s layout. The entropy value,
in particular, can indicate sections that may contain encrypted or compressed data, often a
characteristic of malicious software.

Final Vector: The output is a structured object containing the entry point address in hex-
adecimal format and a list of dictionaries. Each dictionary holds information about a specific
section, providing a clear and organized overview of the binary’s sections.

Tooling:

— lief

4. Segments Information(ELF):

Extraction Process: The process initiates with the parsing of the ELF file using the LIEF
library. It meticulously gathers information from each section and segment within the ELF
file. For sections, details such as name, size, and virtual address are compiled into a list.
Similarly, for segments, the type, physical size, and virtual address are collated. This com-
prehensive extraction highlights the structural components of the ELF file, delineating the
sections’ and segments’ roles and attributes.

Importance: The information garnered on segments is vital for a nuanced understanding
of the ELF file’s architecture and operational blueprint. Sections detail the file’s division into
areas with specific functionalities, while segments describe how these sections are mapped
into memory. Analyzing this information can reveal insights into the file’s layout, security
measures, and potential areas of vulnerability.

Final Vector: The result of this extraction is a vector containing two lists: one for sections
and another for segments. Each list comprises dictionaries with key information about each
segment.

Tooling:

— lief

5. Import Information(EIF):

Extraction Process: The extraction commences with an inspection of the ELF binary for
dynamic and regular symbols utilizing the LIEF library. Dynamic symbols, often indicative
of external dependencies or shared libraries, are identified by their undefined section index.
Similarly, regular symbols that are external (having a section index of SHN_UNDEF) are
cataloged. This process distinguishes between symbols used within the binary and those
that are external, highlighting the binary’s external dependencies.

Importance: This feature delineates the binary’s interactions with external libraries and sym-
bols, shedding light on its dependencies and potential external calls. Such information is cru-
cial for understanding the binary’s functionality, external interactions, and potential reliance
on shared libraries, which could be vectors for exploitation or indicators of functionality.
Final Vector: The outcome is a dictionary that groups symbols into "DynamicSymbols” and
"SymbolTable”, depending on their nature. This structured approach allows for easy identifi-
cation and analysis of the binary’s external symbol dependencies.

Tooling:

— lief

118

6. General ELF File Information:

Extraction Process: This involves a comprehensive examination of the ELF binary to
gather general information, such as file size, presence of debug symbols, counts of exported
and imported functions, existence of relocations, and the total number of symbols. The LIEF
library is utilized to directly access this metadata from the ELF binary. If the binary data
is unavailable (indicated by self.lief_binary being None), zeroes are provided as default
values for these attributes.

Importance: The collected information offers an overview of the ELF file’s structural and
functional attributes. It provides insight into the binary’s complexity, dependencies, and in-
teraction with the operating environment. For example, debug symbols can indicate a non-
production version, while the number of imports and exports shows the level of interaction
with other binaries or libraries.

Final Vector: The output is a dictionary containing the binary’s general attributes, including
size, virtual size, and counts of various elements like debug symbols, exports, and imports.
This dictionary is part of the comprehensive feature set for analysis or machine learning
applications.

Tooling:

— lief

7. ELF Header Information:

Extraction Process: The ELF binary’s header information is meticulously extracted, focus-
ing on both the general header and the specifics of program and section headers. This
procedure employs the LIEF library to access and interpret the ELF binary’s header, extract-
ing key details such as file type, entry point, machine type, and header size. Additionally, it
delves into each segment and section within the binary, collecting information on their types,
addresses, sizes, and, for sections, their entropy.

Importance: Analyzing the ELF header offers critical insights into the binary’s architecture,
purpose, and operational details. For instance, the file type can indicate whether the binary is
an executable or a library, the machine type reveals the intended hardware architecture, and
the entry point addresses the binary’s starting point upon execution. The details of program
and section headers further enrich this understanding by outlining the binary’s layout and
how it is mapped into memory.

Final Vector: The result is a detailed dictionary encompassing the ELF header’s broad
attributes alongside nested lists for both program and section headers. Each of these lists
contains dictionaries describing the individual headers, providing a comprehensive profile of
the binary’s structure.

Tooling:

— lief

8. String Features Extraction:

Extraction Process:

String features are extracted by conducting a thorough analysis of the binary’s raw byte
content, similar to PE Strings feature extraction. This process includes searching for ASCII
strings, paths, URLSs, registry entries, and MZ headers using regular expressions. The length
of each discovered string is calculated to determine the average string length. Furthermore,
a histogram is produced to illustrate the distribution of printable ASCII characters and mea-
sure the entropy of these characters in order to assess randomness within the strings.
Importance: Extracting string features provides crucial insights into the binary’s content,
revealing potential indicators of its functionality or malicious intent. Paths and URLs can
point to network communication or file interaction, registry entries may suggest configura-
tion changes, and the presence of MZ headers could indicate embedded executables. The
entropy measurement helps identify obfuscation or encryption within the strings, which are
common in malware to evade detection.

119

» Final Vector: The resulting feature set comprises numerical values and arrays, including
the total number of strings, average string length, distribution of printable characters, total
number of printable characters, entropy, and counts of paths, URLs, registry entries, and
MZ headers found. This comprehensive set offers a multi-dimensional view of the binary’s
string usage patterns.

» Tooling:

— Python Regular Expressions (re)
— NumPy

9. Entry Points Extraction (ELF):

« Extraction Process: The extraction of entry points from an ELF binary involves identifying
the initial entry point and additional entry points presented by symbols and executable seg-
ments. The primary entry point is directly obtained from the binary’s header. Furthermore,
symbols of type FUNC (functions) are considered as potential entry points due to their exe-
cutable nature. Lastly, segments flagged with execution permissions (SEGMENT_FLAGS.X)
are scrutinized to locate additional entry points, which might indicate executable code seg-
ments.

* Importance: |dentifying entry points in an ELF binary is crucial for understanding the exe-
cution flow and the binary’s structure. These entry points can reveal significant execution
paths within the binary, including the primary starting point and functions intended for exe-
cution. This information is particularly valuable in malware analysis for uncovering potential
malicious functionalities embedded within the binary.

» Final Vector: The derived feature set consists of a list detailing each identified entry point,
encompassing the main entry point, function-based entry points with their names and ad-
dresses, and addresses of executable segments. This collection of entry points enriches
the feature vector with insights into the binary’s execution structure.

» Tooling:

— LIEF

10. Exit Points Extraction (ELF):

« Extraction Process: Identifying exit points within an ELF binary encompasses analyzing
both dynamic symbols and executable segments. Dynamic symbols akin to import func-
tions in PE binaries are scrutinized for common exit function names (e.g., exit, _exit,
abort). Concurrently, executable segments flagged with SEGMENT_FLAGS.X are disassem-
bled to search for calls to these exit functions, indicating potential termination points in the
binary’s execution flow.

* Importance: Exit points are pivotal in understanding how a binary concludes its execution.
In malware analysis, identifying such points can uncover how malware attempts to terminate
processes, potentially to evade detection or disrupt system operations. This analysis con-
tributes to a deeper understanding of the malware’s behavior and potential impact on the
infected system.

« Final Vector: The resulting feature set is a list of identified exit points, categorized into
dynamic symbols and specific locations within executable segments where exit functions
are called. This structured approach to exit point extraction provides a detailed overview of
how and where the binary may terminate its execution.

» Tooling:

— LIEF
— Capstone

11. Opcode Extraction (ELF):

« Extraction Process: The extraction of opcodes from an ELF file involves parsing the binary
to identify executable sections, where opcodes, indicative of the binary’s instruction set, re-
side. This task utilizes the lief library to parse the ELF file and determine its architecture
(32-bit or 64-bit) based on the machine_type field. Executable sections are pinpointed for
analysis, and a disassembly process is applied to each, facilitated by a disassembler. The
mnemonics of the opcodes are then collected from these sections, offering a comprehensive
overview of the executable instructions within the binary.

120

Importance: Opcodes are fundamental to understanding the behavior of a binary. They
represent the lowest level of instructions executed by the CPU, providing insights into the
binary’s functionality, potential malicious activities, and techniques used for obfuscation or
evasion. Analyzing opcodes can reveal patterns or anomalies that aid in malware detection
and classification.
Final Vector: The resulting feature set comprises a list of all mnemonics derived from the
executable sections of the ELF file. This list encapsulates the instruction set utilized by the
binary, serving as a fingerprint for its operational behavior.
Tooling:

— lief

— Capstone)

12. Opcode Occurrences (ELF):

Extraction Process: Counting opcode occurrences in ELF files begins with the identification
of executable sections from which to extract opcodes. This process uses the lief library to
parse the ELF file and discern its architecture, crucial for selecting the appropriate disassem-
bly technique. For each executable section identified, the disassembly is carried out, and
opcodes are extracted along with their associated addresses and parameters. This infor-
mation is aggregated into a dictionary that maps each opcode to its occurrences, capturing
both the frequency and context of each opcode within the binary.
Importance: Understanding the frequency and context of opcode occurrences is vital for
malware analysis and classification. This data can highlight common execution patterns
or rare instructions that might indicate sophisticated obfuscation or evasion mechanisms.
Moreover, the detailed mapping of opcodes to their occurrences aids in constructing a com-
prehensive behavioral profile of the ELF binary, enriching the analysis with deeper insights
into its operational mechanics.
Final Vector: The outcome is a detailed dictionary where keys are opcodes and values are
lists of dictionaries detailing each occurrence’s address and parameters. This structured ap-
proach retains the richness of the opcode data, facilitating nuanced analyses of the binary’s
behavior and characteristics.
Tooling:

— lief

— Capstone)

13. Image Size(ELF):

Extraction Process: To calculate the ELF image size, the 1ief library is employed to parse
the ELF file and isolate loadable segments (PT_LOAD). This step is critical as loadable seg-
ments contribute directly to the image size when the binary is loaded into memory. After
identifying all loadable segments, the size is approximated by summing the virtual address
and the physical size of the final loadable segment, representing the end boundary of the
ELF binary in memory.
Importance: Estimating the ELF image size is essential for understanding the memory foot-
print of the binary. It provides insights into how the binary is structured in memory, aiding in
both routine analysis and security assessments. Particularly, it can help identify anomalies
or features indicative of complex loading mechanisms or obfuscation tactics.
Final Vector: The process yields a single numerical value representing the estimated ELF
image size. This value serves as a scalar feature within the broader set, contributing to the
understanding of the binary’s memory allocation and loading behavior.
Tooling:

— lief

14. Header Sizes(ELF):

Extraction Process: The determination of ELF header sizes involves parsing the ELF bi-
nary using the 1ief library, from which the size of the ELF header is directly retrieved. Addi-
tionally, the total size of all program headers (segments) is calculated by aggregating their
individual physical sizes. This process highlights the structural aspects of the ELF binary,
specifically focusing on its header and the segments defined within.

121

* Importance: Knowing the sizes of the ELF header and program headers is crucial for under-
standing the binary layout and its allocation in memory. These metrics can provide insights
into the binary’s compilation and linking properties, potentially revealing optimization tech-
nigues or signs of manipulation indicative of malware.

* Final Vector: The result is encapsulated in a dictionary containing two key-value pairs: one
for the ELF header size and another for the cumulative size of all program headers. This
concise representation offers valuable information about the binary’s overhead and memory
usage during loading.

* Tooling:

— lief
15. GNU Stack Size(ELF):

« Extraction Process: The size of the GNU stack segment in an ELF binary is discerned
through parsing the binary with the 1ief library. The process entails iterating over the pro-
gram headers to identify the GNU_STACK segment. Once found, the segment’s physical
size (physical_size) is retrieved, providing an estimate of the stack reserve size allocated
for the binary.

* Importance: The GNU stack segment size is a critical attribute for understanding the mem-

ory footprint and security posture of an ELF binary. It not only reflects the memory allocation

for the stack but also informs about stack execution permissions, which are pivotal for as-
sessing the binary’s vulnerability to stack-based buffer overflow attacks.

Final Vector: The outcome is a singular value representing the GNU stack segment’s size

within the ELF binary. This information augments the dataset with a direct measure of stack

allocation, contributing to a comprehensive analysis of the binary’s memory usage and se-
curity characteristics.

» Tooling:

— lief
16. Heap Information(ELF):

» Extraction Process: The extraction of heap information from an ELF binary involves parsing
the binary with 1ief and then applying heuristics to identify segments and sections relevant
to the heap. Specifically, segments with LOAD type and writable (W) flags are considered
potential candidates for heap segments, whereas sections with names containing ”.heap” are
considered indicative of heap sections. This method acknowledges the inherent ambiguity in
precisely identifying heap-related areas due to the diverse ways heaps can be implemented
or referenced within ELF binaries.

* Importance: Heap information is crucial for understanding the memory layout and usage

patterns of an ELF binary, especially with regards to dynamic memory allocation. Insights

into heap size and configuration can reveal aspects of the binary’s runtime behavior, potential
for memory optimization, and susceptibility to heap-based exploits.

Final Vector: The extracted heap information results in a dictionary containing two key

metrics: the size of the identified heap segment and the size of the identified heap section.

This structured data provides a snapshot of heap allocation within the binary, enriching the

analysis with specific memory usage insights.

* Tooling:

— lief

17. Loading Flags(ELF):

« Extraction Process: The process involves parsing an ELF binary to identify the loading
flags associated with each segment. Through the 1lief library, the binary’s segments are
enumerated, and their flags are examined to classify them based on their permissions: Read
(R), Write (W), and Execute (X). These permissions are indicative of the segment’s intended
use and security implications, such as whether a segment can be written to or executed.

122

* Importance: Understanding the loading flags of ELF segments is vital for assessing the bi-
nary’s security posture. Segments marked as executable but also writable could be potential
vectors for code injection attacks, while read-only segments might contain critical constants
or configuration data. Thus, analyzing these flags aids in identifying security risks and un-
derstanding the binary’s structure.

* Final Vector: The extracted information culminates in a dictionary where each key repre-
sents a segment, mapped to its type and a descriptive string of its flags. This representation
offers a concise overview of the segment permissions within the binary, facilitating quick
security assessments and structural insights.

* Tooling:

— lief
18. Section Entropies(ELF):

» Extraction Process: To compute the entropy for each section in an ELF binary, the 1lief
library is employed to parse the file and access its sections. Each section’s content is then
analyzed to calculate its entropy, a measure of randomness or complexity. This calculation
is performed using a function that iterates over byte values, assessing the distribution of
data within the section. The entropy for each section is computed and stored, along with
statistics on the minimum, maximum, total, and mean entropy values for all sections.

* Importance: Analyzing section entropies provides insights into the binary’s content char-
acteristics, such as the presence of encrypted or compressed data, which typically exhibit
high entropy. This analysis aids in malware detection and understanding the binary’s com-
plexity, as sections with unusually high or low entropy may indicate obfuscation, packing, or
unconventional data storage practices.

* Final Vector: The output is a structured collection, typically a dictionary, where each key
represents a section name, and the associated value is another dictionary detailing the en-
tropy statistics for that section. This format encapsulates comprehensive entropy metrics for
each section, enabling detailed analysis of the binary’s content.

* Tooling:

— lief
19. Kolmogoro Compression (ELF):

+ Extraction Process: The compression of executable sections within an ELF binary is achieved
by first parsing the binary using the 1ief library. This allows for the identification and extrac-
tion of sections flagged for execution. These sections are then concatenated into a single
byte stream, which is subsequently compressed using the z1ib library. The compression
process aims to quantify the redundancy within the executable code, providing an indirect
measure of the binary’s complexity.

* Importance: This compression metric offers valuable insights into the binary’s nature, par-
ticularly in the context of malware analysis. Highly compressible code suggests a degree
of redundancy or simplicity, while less compressible sections may indicate complex, poten-
tially obfuscated code. This distinction is crucial for identifying sophisticated malware that
employs evasion techniques.

« Final Vector: The resulting compression is represented as a single value, denoted in kilo-
bytes (KB), reflecting the compressed size of the executable sections. This scalar value
contributes to the overall feature set, providing a succinct yet powerful indicator of the bi-
nary’s complexity and potential obfuscation.

» Tooling:

— lief
- zlib

Embedding Validation

Comaprative Validation Of All Embeddings

Table G.1: Accuracy Differences Relative to the Combined Embeddings

Outer Fold Pseudo-Static (Numerical) Pseudo-Static (Complex) Dynamic Image

1 -6.95% -8.04% -7.79% -0.20%
2 -71.57% -8.19% -7.79% -0.03%
3 -71.76% -8.33% -7.33% +0.20%
4 -7.07% -8.10% -7.84% -0.22%
5 -6.73% -8.77% -7.09% +0.52%
6 -6.90% -7.17% -6.82% +0.84%
7 -7.50% -9.35% -7.83% -0.24%
8 -7.25% T77% -713% +0.08%
9 -7.16% -8.03% -7.56% +0.33%
10 -7.53% -8.14% -7.56% -0.08%
Average -7.34% -8.38% -7.60% +0.03%
Std Dev 0.28% 0.64% 0.32% 0.25%

All three embeddings except image show significant lower accuracy across folds compared to Combined
embedding , as determined by the Mann-Whitney U test (« < 0.05).

123

124

Combined Embeddings Validation

Table G.2: Validation of Concatenated Model

Outer Fold Dummy Accuracy (%) Concatenated Model Accuracy (%)

1 19.36 93.73
2 19.36 93.99
3 19.35 93.72
4 19.35 93.83
5 19.35 93.51
6 19.36 93.00
7 19.36 93.97
8 19.36 93.58
9 19.36 93.64
10 19.36 93.95
Average 19.36 93.84
Std Dev 0.01 0.17

Pseduo-Static(Complex) Embeddings Validation

Table G.3: Validation for Pseduo-Static(Complex) Analysis

Outer Fold Dummy Accuracy (%) Real Model Accuracy (%)

1 19.36 85.69
2 19.36 86.80
3 19.35 86.39
4 19.35 86.73
5 19.35 85.74
6 19.36 86.83
7 19.36 85.62
8 19.36 86.81
9 19.36 86.61
10 19.36 86.81
Average 19.36 86.39
Std Dev 0.01 0.48

Pseduo-Static(Numerical) Embeddings Validation

Table G.4: Validation for Pseudo-Static (Numerical) Analysis

Outer Fold Dummy Accuracy (%) Logistic Model Accuracy (%)

1 19.36 87.78
2 19.36 87.42
3 19.35 86.96
4 19.35 87.76
5 19.35 87.78
6 19.36 87.10
7 19.36 87.47
8 19.36 87.33
9 19.36 87.76
10 19.36 87.42
Average 19.36 87.51

Std Dev 0.01 0.28

125

Dynamic Embeddings Validation

Table G.5: Validation for Dynamic Analysis

Outer Fold Dummy Accuracy (%) Logistic Model Accuracy (%)

1 19.36 86.94
2 19.36 87.20
3 19.35 87.53
4 19.35 86.99
5 19.35 87.42
6 19.36 87.18
7 19.36 87.14
8 19.36 87.45
9 19.36 87.08
10 19.36 87.39
Average 19.36 87.23
Std Dev 0.01 0.19

Image Embeddings Validation

Table G.6: Validation for Image Analysis

Outer Fold Dummy Accuracy (%) Logistic Model Accuracy (%)

1 19.36 94.53
2 19.36 94.96
3 19.35 94.92
4 19.35 94.61
5 19.35 95.03
6 19.36 94.84
7 19.36 94.73
8 19.36 94.66
9 19.36 94.97
10 19.36 94.87
Average 19.36 94.91

Std Dev 0.01 0.16

Downstream Tasks

Benign/Malicious Classification

Table H.1: Detailed Accuracy Comparison Across Folds

Outer Fold Model Accuracy (%) Standard Model Accuracy (%)

1 99.99 65.23

2 99.99 65.23

3 99.98 65.23

4 99.99 65.22

5 100.00 65.22

6 99.99 65.22

7 99.98 65.23

8 99.99 65.23

9 100.00 65.23

10 99.99 65.23
Mean CV Accuracy 99.99 65.23
Std Dev 0.01% 0.01%

Time Divergence Analysis Validation

Table H.2: Embeddings binned into years and validated

Outer Fold Dummy Classifier Logistic Model
Accuracy MAE Accuracy MAE
1 0.0740 5.0677 0.6697 0.9967
2 0.0740 5.0677 0.6661 1.0174
3 0.0740 5.0677 0.6614 1.0290
4 0.0740 5.0676 0.6712 0.9794
5 0.0740 5.0674 0.6732 0.9763
6 0.0740 5.0676 0.6681 0.9976
7 0.0740 5.0676 0.6717 0.9969
8 0.0740 5.0671 0.6640 1.0108
9 0.0741 5.0669 0.6686 1.0235
10 0.0741 5.0665 0.6654 0.9958
Average 0.0740 5.0674 0.6679 1.0023
Std Dev 0.0000 0.0004 0.0035 0.0167

126

127

H.1. VirusTotal Timestamp Validation

Frequency of Future Timestamps in Creation Date

H.1. VirusTotal Timestamp Validation

350
300
250

z

9 200
150
100

50

anbay

Year

Figure H.1: Future Timestamps

Hyperparameters & Validation

I.1. Hyperparameter Configuration for embedding validation

Table I.1: Grid Search Parameters

Parameter Type

Values Tested

L1 Regularization
L2 Regularization

initial Learning Rate

0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01,

0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1,
1,0.1,0.01,0.001, 0.0001, 0.00001

0.1,0,1
0.1,0,1

The optimal hyperparameters for various embeddings and temporal classification were identified
as follows: L1 regularization and initial learning rate of 0.0001 and 0.01, respectively, for image em-
beddings; 0.00001 and 0.001 for pseudo-static and dynamic analysis embeddings; 0.001 and 0.01 for
combined embeddings; and the same values for temporal classification using years.

1.2. Hyperparameter Configuration for t-SNE, UMAP and PCA

Table 1.2: Grid Search Values for t-SNE, UMAP, and PCA Hyperparameters

Parameter t-SNE Values UMAP Values PCA Values
Number of Components {2} {2} {2}
Perplexity {5, 30, 50, 100} - -
Number of Iterations {1000, 3000, 5000} - -
Learning Rate {10, 100, 200} - -
Number of Jobs {-1,1,2, 4} - -
Number of Neighbors - {5, 10, 15, 30} -
Minimum Distance - {0.1,0.3, 0.5, 0.7} -
Metric - {Euclidean, Manhattan, Cosine} -
Power lteration Normalization - - {0, 1}
Number of Oversamples - - {5, 10, 20}

SVD Solver

{auto, full, arpack}

128

Phylogenetic Tree Algorithms

J.1. Validation
J.1.1. Virustotal Timestamps

Algorithm 1: Validate Chronological Order of Phylogenetic Tree Leaves

Input: Phylogenetic tree, timestamps associated with each leaf
Output: Proportion of correctly ordered leaf pairs

correct_pairs < 0

total_comparisons < 0

foreach leaf in tree do

ancestor < get_direct_ancestor(leaf)

leaves_from_ancestor < get_leaves_from_ancestor(ancestor)

foreach (leaf1,leaf2) in leaves_from_ancestor do

distancel <+ get_distance(ancestor,leaf1)

distance2 + get_distance(ancestor,leaf?2)

timestampl + timestamps|lea f1]

timestamp?2 <+ timestamps|lea f2]

if (distancel < distance2 and timestampl < timestamp?2) or (distancel > distance2
and timestampl > timestamp2) then
‘ correct_pairs < correct_pairs + 1

end

total_comparisons < total_comparisons + 1

end

end

accuracy < correct_pairs/total_comparisons

return accuracy

129

J.1. Validation 130

J.1.2. Embedding Drift Analysis

Algorithm 2: Calculate Mutation Rates

Input: distances, family_variant_binning
Output: mutation_rates_results
Initialize family_min_max_rates as an empty dictionary;
Set global_min_rate to oc;
Set global_max_rate to —oc;
Initialize global_min_details and global_max_details to None;
for each family and its associated years_data in family_variant_binning do
Sort family_years based on year;
Initialize family_min_rate to oo and family_max_rate to —oc;
Initialize family_min_details and family_max_details to None;
for each year in family _years except the last do
for each next_year greater than current year in family _years do
for each variant in years_data[year] do
Create taxon1 as family_variant if variant is not "0”, else just family;
for each next_variant in years_datafnext _year] do
Create taxon2 similarly as for taxon1;
if distance between taxon1 and taxonZ2 exists in distances then
Retrieve the distance using the Euclidean function;
if distance is a new min or max then
\ Update family and global min/max rates and details;
end
end
end
end
end
end
Store family-specific min and max rates and details in family_min_max_rates;
end
Compile the results into mutation_rates_results with family and global rates and details;
return mutation_rates_results;

J.2. Inter-family analysis algorithms 131

J.2. Inter-family analysis algorithms
J.2.1. Without Outlier Thresholding

Algorithm 3: Analyze Phylogenetic Tree

Input: Phylogenetic tree file path tree_path
Output: Graph representing evolutionary relationships
Function AnalyzeTree (free_path):
tree, family_to_leaves < load_tree_and_aggregate_leaves(free_path)
distances + CalculateDistances(free, family to leaves)
graph < BuildGraph (distances)
SimplifiedGraph <+ SimplifyGraph(graph)
return
Function load_tree_and_aggregate_leaves(tree_path):
tree < LoadTree(tree_path)
family_to_leaves « {}
foreach leaf in tree do

family <— ExtractFamilyName(leaf)

if not family in family _to_leaves then

| family_to_leaves[family] < []

end

family_to_leaves[family].append(leaf)
end
return tree, family to_leaves
return
Function CalculateDistances(tree, family_to leaves):
distances + {}
families + GetFamilyList(family_to_leaves)
foreach family1 in families do
foreach family2 in families if family2 # family1 then

end

do
MRCA <« FindMRCA((family1, family2)
distances1 « [CalculateDistance(MRCA, leaf) for leaf in family_to_leaves[family1]]
distances2 «+ [CalculateDistance(MRCA, leaf) for leaf in family_to_leaves[family2]]
median1 < CalculateMedian(distances1)
median2 < CalculateMedian(distances?2)
distances[(family1, family2)] < (median1, median2)

end

end

return distances
return

Function BuildGraph (distances):
graph < new Graph()
foreach (family1, family2, distance) in distances do

if distance[0] < distance[1] then

| AddEdge(graph, family1, family2, distance[0])
else
| AddEdge(graph, family2, family1, distance[1])

end
end
return graph
return
Function SimplifyGraph(graph):
new_graph < new Graph()
foreach node in graph do

min_edge « FindMinEdge(node)

AddEdge(new_graph, node, min_edge.target, min_edge.weight)
end
return new_graph
return
Main execution block:
tree_path < "tree.nwk”
tree, family_to_leaves < load_tree_and_aggregate_leaves(free_path)
distances «+ CalculateDistances(tree, family_to_leaves)
G + BuildGraph (distances)

J.2. Inter-family analysis algorithms 132

J.2.2. With Outlier Thresholding

Algorithm 4: Analyze Phylogenetic Tree

Input: Phylogenetic tree file path tree_path
Output: Graph representing evolutionary relationships
Function AnalyzeTree (free_path):
tree, family_to_leaves < load_tree_and_aggregate_leaves(tree_path)
filtered_family_to_leaves < remove_intra_family_outliers_iqr(free, family_to leaves)
distances + CalculateDistances (free, filtered _family to leaves)
dump_distances_to_json(distances)
graph < BuildGraph (distances)
SimplifiedGraph < SimplifyGraph(graph)
return
Function load_tree_and_aggregate_leaves(free_path):
tree < LoadTree(tree_path)
family to leaves < {}
foreach leaf in tree do
family «— ExtractFamilyName(leaf)
if not family in family _to_leaves then
| family_to_leaves[family] < []
end
family _to_leaves[family].append(leaf)
end
return tree, family to_leaves
return
Function remove_intra_family_outliers_iqr (tree, family_to_leaves):
filtered_family to_leaves «+ {}
foreach family, leaves in family to leaves do
if len(leaves) > 2 then
distances <+ ComputelLeafTolLeafDistances(tree, leaves)
median_distances «+ Median(distances)
IQR + ComputelQR(median_distances)
filtered_leaves «+ FilterLeavesUsinglQR(median_distances, IQR)
filtered_family to_leaves[family] «+ filtered_leaves
end
else
| filtered_family_to_leaves[family] < leaves
end
end
return filtered_family to leaves
return
Main execution block:
tree_path < "tree.nwk”
tree, family_to_leaves < load_tree_and_aggregate_leaves(tree_path)
filtered_family_to_leaves < remove_intra_family_outliers_iqr (free, family_to leaves)
distances + CalculateDistances(free, filtered family to leaves)
G + BuildGraph (distances)

Correlation Analysis

K.1. Global Structure

SNE Embeddings with Cluster Labels

label

I

P, i - DR
B S FeT - 3 :

o LokasswordStesler
Gandersb

Reil
NetwireRaT

arbot
onlnerspambot

pBrutesor

100 s o E 100

Figure K.1: Embeddings Projected to 2D using t-SNE

PCA Embeddings with Labels

label

o 7evn

o Bashite

« Bazarbackdoor
Blacksoul

« Lokibat

« KRBanker

o iy

- Koadic

o Sakila
Teedid

* LokiPasswordstealer

20

Onlinerspambot
Qakgot

upatre
ipBruteBot

Figure K.2: Embeddings Projected to 2D using PCA

133

K.2. Discrepancies 134

UMAP Embeddings with Cluster Labels

Figure K.3: Embeddings Projected to 2D using UMAP

Outliers Analysis for Selected Families

611 (30.60%)

25

276 (21.63%)

N
°

181 (15.97%) 429 (15.85%) 911 (16.02%)

-
G

247 (14.11%)
428 (12.79%)

Percentage of Outliers

10

Family

Figure K.4: Outliers based on lateral distance of the Tree highlights that some families have considerably more outliers than
others

K.2. Discrepancies

K.2.1. 7ev3n

The t-SNE and UMAP visualizations demonstrate a clear clustering within the 7ev3n malware family,
depicted in red, indicating a high degree of similarity across its members. Although two clusters are
evident in the t-SNE plot, the intra-family lateral distance histogram in Figure K.5 indicates a single
mode, possibly suggesting that the observed separation in t-SNE does not reflect significant differences
in the data’s higher-dimensional structure. It is important to note that while t-SNE effectively captures
local proximities, it may not accurately represent more distant relationships.

In contrast, the UMAP plot in Figure K.7 shows closer proximity between clusters, consistent with the
single-mode distribution observed in Figure K.5, and suggests that Neighbour Joining method used for
phylogenetic analysis identifies these clusters as closely related. Moreover, when looking at the relative
outliers from figure K.4, it is also apparent that 20% of these samples are considered outliers. While
these outliers may not be immediately obvious in these 2D projections, a closer examination of the
t-SNE plot of 7ev3n as shown in Figure K.6

K.2. Discrepancies 135

1e6 Distribution of Lateral Distances within Family 7ev3n Median Distance Box Plot for Family 7ev3n
164 o
17.5 4 °
14 o
15.0 4
1.2 ©
12.5 4
10 g
H
oy Il
2]
g £ 100
g 08 5
£ % 75
g 715
0.6 4
5.0
0.4
254
024
0.0

0 5 10 15 20 1
Median Distance Family

Figure K.5: Distribution of Lateral Distances for 7ev3n show one main mode

t-SNE Embeddings with Cluster Labels

label
o 7evan

- .
T .
100 —90 80 -7 —50 —s0 -a0 -30 -20

Figure K.6: t-SNE Plot for 7ev3n show two distinct clusters

K.2. Discrepancies 136

UMAP Embeddings with Cluster Labels

\

Figure K.7: UMAP Plot for 7ev3n shows 2 to 3 clusters while the rest could be interpreted as outliers

K.2.2. WpBruteBot

The WpBruteBot family, as depicted in Figure K.8, demonstrates three to four modes in the lateral
distance distribution. However, the t-SNE visualization in Figure K.9 only reveals two prominent clusters.
In contrast, the UMAP plot in Figure K.10 suggests the presence of two main clusters, with additional
densities at -6 and 20 that could potentially be interpreted as separate clusters. Nevertheless, we
suspect these are merely outliers, especially since the PCA visualization in Figure K.11 predominantly
shows two dense regions. This discrepancy might be attributed to the neighbor joining method not
classifying these points as outliers in its own feature space.

Distribution of Lateral Distances within Family WpBruteBot Median Distance Box Plot for Family WpBruteBot

— 1201
250000 4

200000

80
150000 1

60 -

Frequency
Median Distance

100000 1

40

50000 q

0 20 40 60 80 100 120 1
Median Distance Family

Figure K.8: Distribution of Lateral Distances for WpBruteBot shows 3 to 4 modes

K.2. Discrepancies 137

t-SNE Embeddings with Cluster Labels

‘&

UMAP Embe

P

Figure K.10: UMAP Plot for WpBruteBot show two to three clusters

K.2. Discrepancies 138

PCA Embeddings with Labels

wwwww

Figure K.11: PCA Plot for WpBruteBot show two clusters

K.2.3. Icedld

Similarly, the Icedld family presents a complex scenario. Figure K.12 suggests the presence of three to
four modes in the lateral distance distribution. However, the t-SNE visualization (Figure K.13) primarily
shows two clusters, with potential additional clusters at x-axis values of 102 and 40, though these
may be outliers. The UMAP plot (Figure K.14) indicates the possibility of three clusters located at x-
axis values of 15, 5, -5, and 10, yet this remains speculative. The PCA plot (Figure K.15) displays
a seemingly random dispersion of points, with two denser areas possibly representing clusters at 1
on the x-axis and -0.2. These observations suggest a pattern where lateral distance modes may not
align perfectly with visual clusters, possibly due to the method’s treatment of outliers, underscoring a
recurring theme across different visualization techniques.

Itis challenging to determine if the modes in the lateral distance distributions are influenced by what
might be considered outliers in the visual projections, a question that recurs across various families
analyzed. This ambiguity points to the complexity of aligning high-dimensional genetic relationships
with their 2D visual representations.

Distribution of Lateral Distances within Family Icedid Median Distance Box Plot for Family Icedid

6000001 7] °

500000 —
160 4

400000 140

120 4

Frequency

300000

Median Distance

100 4

200000 4
80

100000 4 60
T
—h__r 407
0 T T T T T
0 50 100 150 200 1
Median Distance Family

Figure K.12: t-SNE Plot for Icedld shows 3 to 4 main modes

K.2. Discrepancies 139

t-SNE Embeddings with Cluster Labels

Figure K.13: t-SNE Plot for Icedld show two main clusters

UMAP Embeddings with Cluster Labels

Figure K.14: t-SNE Plot for Icedld show multiple clutsters, possibly 3

K.3. Tightly Clustered Families 140

PCA Embeddings with Labels

Figure K.15: PCA Plot for Icedld shows possibly 2 clusters

K.3. Tightly Clustered Families

K.3.1. Bashlite

Figure K.16 shows a concentration of lateral distances near zero for the Bashlite family, indicating a
close relationship within the phylogenetic tree. This pattern is also evident in the t-SNE and UMAP
visualizations, reinforcing our findings. However, the box plot reveals a significant presence of outliers,
representing 15.97% of observations. A closer look at the t-SNE plot in Figure K.17 confirms that
several samples are dispersed away from the core cluster.

1es Distribution of Lateral Distances within Family Bashlite Median Distance Box Plot for Family Bashlite
404 8
1400 4
35 4
1200 4
3.0 4
1000 4
254 g
g
> 5
H @ 800
& 2 600
=
15
400
1.0
200
0.5
o —_—
0.0 T T T T r r T , v
0 200 400 600 800 1000 1200 1400 1600 1

Median Distance Family

Figure K.16: Distribution of for bashlite shows one main mode

K.4. Heterogeneous Clusters 141

t-SNE Embeddings with Cluster Labels

Figure K.17: t-SNE Lateral Distances for Bashlite shows one main cluster

K.4. Heterogeneous Clusters

K.4.1. Bazarbackdoor

In contrast to the families previously analyzed, BazaarBackdoor manifests a distinct clustering pattern,
as seen in Figure K.18. There is a pronounced primary cluster, whereas a secondary grouping lacks
clear definition within the t-SNE and UMAP frameworks (Figures K.1 and K.3). A closer look at the
lateral distance histogram in Figure K.18 unveils two notable peaks: one around the value of 10, and
a second, subtler peak near 83, suggesting a potential cluster with a lower density at the higher value.
Delving deeper into BazaarBackdoor’s specific t-SNE portrayal (as presented in Figure K.19), the pres-
ence of outliers becomes apparent. These findings coincide with the lateral distance distribution, hinting
at a more intricate intra-family structure than initially apparent.

1e7Distribution of Lateral Distances within Family Bazarbackdoor Median Distance Box Plot for Family Bazarbackdoor
124 704

50 -

o
@

40 4

Frequency
o
@
Median Distance

30 4
0.4

204
0.2+

104

0.0

0 20 40 60 80 100 120 1

Median Distance Family

Figure K.18: Distribution of Lateral Distances for Bazarbackdoor shows two modes

K.4. Heterogeneous Clusters 142

t-SNE Embeddings with Cluster Labels

Figure K.19: t-SNE Plot for Bazarbackdoor shows two main clusters

K.4.2. KRBanker

Similarly, Inspection of the KRBanker family reveals distinct clustering patterns in Figure K.21, with a
dense cluster positioned at 100 and a less dense one at 80. These observations closely correspond to
the two modes identified in Figure K.20.

1e6 Distribution of Lateral Distances within Family KRBanker Median Distance Box Plot fer Family KRBanker
— o
175 300 4
150 250
125
o 200
g
2
o =
]
g Loo 8
E; § 150
075 H
100
0.50
50 4
0.25
0.00 — - '_l—r - - - - - 01 v
0 50 100 150 200 250 300 350 1
Median Distance Family

Figure K.20: Distribution of Lateral Distances for KRBanker shows two main modes

K.4. Heterogeneous Clusters

143

t-SNE Embeddings with Cluster Labels

a0

—a0

Figure K.21: t-SNE Plot for KRBanker shows two main clusters

K.4.3. GrandCrab
The GrandCrab family presents an intriguing tri-cluster formation in its t-SNE visualization, as observed
in Figure K.23. Despite the clear emergence of three clusters in the visual representation, the distri-
bution of lateral distances for GrandCrab, illustrated in Figure K.22, primarily shows two concentrated
modes: one at the zero mark and another near 10. While a third cluster isn’t directly discernible, the
presence of points around the 40 mark on the x-axis may hint at its existence. This could account for the
tri-cluster arrangement seen in the t-SNE plot, with the notable outliers identified in the corresponding
boxplot (Figure K.22) possibly representing peripheral samples surrounding these clusters.

Frequency

@

-

1e6 Distribution of Lateral Distances within Family GandCrab

Median Distance Box Plot for Family GandCrab

80

Median Distance
o
S

IS
S

3
:
i
i
!

label

40 60 80 100 120 1
Median Distance Family

Figure K.22: Distribution of Lateral Distances for GradCrab shows 3 modes

KRBanker

K.5. Wide-Spread Clusters 144

t-SNE Embeddings with Cluster Labels

Gandcrab

Figure K.23: t-SNE Plot for GradCrab shows 3 clusters

K.5. Wide-Spread Clusters

K.5.1. Lokibot
Lokibot exhibits similar characteristics, yet its lateral distances reveal two distinct modes, one near 0

and another around 70, as depicted in Figure K.24.

Median Distance Box Plot for Family Lokibot

Distribution of Lateral Distances within Family Lokibot

80

800000

60

600000

40 1

Frequency
Median Distance

400000
20

0 20 40 60 80 100 120
Median Distance

200000

Family
Figure K.24: Distribution of Lateral Distances for Lokibot shows 2 modes

However, these modes are not immediately apparent in the t-SNE or UMAP plots. A closer exam-
ination of the t-SNE plot in Figure K.25 provides a clearer view of the local structure, revealing two
clusters positioned significantly apart at -60 and 60 on the x axis. These clusters correspond well with

the modes observed in Figure K.24.

K.5. Wide-Spread Clusters 145

t-SNE Embeddings with Cluster Labels

Figure K.25: t-SNE Plot for Lokibot shows 2 clusters

K.5.2. Blacksoul

Blacksoul is a malware family that does not show distinct clustering in the overall t-SNE and UMAP
visualizations (Figures K.1 and K.3). However, a more detailed analysis of the t-SNE plot specifically
for Blacksoul (Figure K.26) reveals a spread of data points around a main cluster at an x-axis value
of -30. Although there appears to be a potential cluster near the x-axis at 100, it lacks clear definition.
Conversely, the PCA plot of Blacksoul (Figure K.28) primarily shows a density gradient at -0.4 on
the x-axis, with a subtle indication of another density around 1.1 x-axis. This pattern is somewhat
mirrored in the lateral distance distribution (Figure K.26), where there is a predominant mode with a
less pronounced secondary mode around 50, suggesting a complex intra-family structure.

Distribution of Lateral Distances within Family Blacksoul Median Distance Box Plot for Family Blacksoul

— 804
300000

250000 701

[:]
E
o
200000 u 1
150000 - 4
100000 - |
1

o
=]

Median Distance
e
2

Frequency

IS
S

50000 4
304

o 1 + 1 T
40 60 80 100 120
Median Distance Family

o
~
=)

Figure K.26: Blacksoul shows one main mode

K.5. Wide-Spread Clusters 146

Figure K.27: t-SNE Plot for BlackSoul

Figure K.28: PCA Plot for BlackSoul shows one main mode with possible
outliers at 1

K.5.3. Online Spambot

In the t-SNE and PCA visualizations represented by Figures K.1 and K.2, the Online Spambot embed-
dings form a distinctive linear pattern(straight line). This regularity across both visualization methods
suggests a progressive differentiation of attributes within this malware family, hinting at possible evo-
lutionary development or systematic changes in the malware’s traits over time. The lateral distance
distribution for Online Spambot, while varied, displays notable peaks at intervals of 20, which could
hint at a stepwise evolution in the family’s characteristics. Nevertheless, this observation is tentative,
and without further evidence, it is hard to draw any conclusions.

Distribution of Lateral Distances within Family OnlinerSpambot Median Distance Box Plot for Family OnlinerSpambot

120000

100000

®
g

80000

N
3

60000

Frequency
Median Distance

a2
g

40000

20000 %07

80 100 120

0 20 0 60
Median Distance Family

Figure K.29: Distribution of Lateral Distances for OnlinerSpambot shows increasing modes from 40 , 60 to 80

Case Studies

Case Study: BotenaGo

BotenaGo is a relatively new malware that primarily targets Linux-based systems, exploiting vulnera-
bilities to launch distributed denial-of-service (DDoS) attacks [208]. Developed using the Go program-
ming language, BotenaGo is known for its efficiency and capability to handle concurrent operations
effectively, which is crucial for its role in network disruption.

A key characteristic of BotenaGo is its specific focus on Internet of Things (IoT) devices. These
devices often run on Linux and are recognized for having less stringent security measures, making
them prime targets for this type of malware. The malware includes dozens of different exploits for
known vulnerabilities, enabling it to automatically scan for and infect vulnerable devices across the
internet or within a local network. Once a device is compromised, BotenaGo can execute arbitrary
code or commands as dictated by the malware operator.

One of the primary functions of BotenaGo is to conduct DDoS attacks. It is capable of sending a
massive amount of traffic to targeted servers or networks, overwhelming them and potentially causing
them to shut down or disrupt their services. The architecture of BotenaGo is modular, which allows its
operators to easily update or modify its capabilities with new exploits or functionalities. This adaptability
makes BotenaGo particularly dangerous, as it can evolve quickly in response to countermeasures or
new opportunities.

After infecting an initial device, BotenaGo uses that device to further scan and propagate itself
to other vulnerable devices, rapidly increasing the scale of the infection. This network propagation
demonstrates the malware’s sophisticated design and its potential for widespread impact on networks,
particularly those incorporating loT devices.

L.0.1. Pseudo-static and Dynamic analysis

The pseudo-static analysis features of the malware reveals several operational strategies based on the
imported and exported functions identified, indicating sophisticated capabilities within its design. Key
networking functions such as getaddrinfo and freeaddrinfo are pivotal for resolving domain names
to IP addresses and managing network resources. This underlines the malware’s potential to con-
nect with command and control servers, spread across networks, or perform network reconnaissance.
The dynamic generation of network traffic emphasizes the malware’s adaptability to various network
environments and its capability to scan for new targets.

Robust error handling is facilitated through functions like __errno_location, ensuring thread-safe
access to system error codes. This is crucial for the malware to function reliably under diverse system
configurations, enhancing its stealth and resilience. Additionally, the malware utilizes Go’s runtime man-
agement capabilities, evident from exported functions such as _cgo_panic and _cgo_topofstack, €s-
sential for handling exceptions and managing memory in malicious operations. The function crosscall?2
facilitates calls between Go and C code, enabling complex tasks that require interaction with low-level
system APIs, thus enhancing the malware’s functional complexity.

Further analysis shows that the malware has the ability to control execution flow dynamically. Ex-
ports like runtime.text and runtime.etext, which define the executable code segment’s start and

147

148

Figure L.1: FritzFrog is from BotenaGo

BotenaGo

FritzFrog

end points, suggest that the malware can alter its execution to inject code or modify behavior in real-
time. This capability is particularly significant as it allows the malware to evade static analysis tools
and adapt to operational countermeasures.

Behavioral analysis features of BotenaGO indicates extensive interactions with system files and
directories, suggesting deep system integration and manipulation attempts. The malware accesses
critical system configuration and log files, such as /etc/fstab and /etc/gai.conf, and engages with
various logrotate configurations. These actions likely aim to understand system settings and manip-
ulate log management to potentially disable logging or alter logs to hide malicious activities. Access
to /dev/mem and firmware update configurations points to attempts to manipulate or intercept low-level
device interactions or firmware behaviors, possibly embedding the malware more deeply into the sys-
tem or causing harm to physical device components. Furthermore, BotenaGO’s operations include
deleting files in /var/log and temporary files in /var/1ib, which are clear attempts to remove traces
of its activities and maintain stealth within the host system. System maintenance commands such as
/sbin/fstrim and /usr/sbin/logrotate suggest attempts to optimize the system to better suit its
needs or manipulate system logs to conceal its presence. Additionally, using systemctl to query or
modify the state of services like CUPS indicates potential efforts to disable security services or modify
service states to prevent detection.

Performing DNS lookups as part of its operation implies that BotenaGO engages in external com-
munications with C2 servers or scans the network to identify new targets, facilitating the spread of the
malware or the execution of coordinated attacks. These behaviors highlight the sophisticated nature
of BotenaGO and its capabilities for widespread impact and system manipulation.

FritzFrog

Figure ?? reveals that FristzFrog is from BotenaGo according to inter-family analysis. According to Vic-
tor et al.[209], FritzFroz is a malware written in Go that targets IoT devices, akin to BotenaGo. Despite
being a DOS executable, which limits the ability to analyze imports or exports using tools like Lief, a
detailed examination of the opcodes used by FritzFroz and BotenaGo offers someu insights into their
operational strategies.

BotenaGo demonstrates advanced processing capabilities, utilizing SIMD instructions such as movdqu,
movups, and punpcklbw. These instructions are crucial for optimizing the processing of large data
blocks, which could be employed in network packet handling or cryptographic functions. FritzFroz, in
contrast, shows less reliance on SIMD, which suggests that it may use alternative optimization strate-
gies or focus on different functionalities within its malware operations.

Both malware families also make use of system-specific instructions, including cpuid and xgetbv,
to detect the environment or enhance execution based on hardware capabilities. Additionally, Bote-
naGo’s use of atomic and locking instructions, such as lock cmpxchg and lock xadd, highlights its
sophisticated handling of concurrency issues. This capability is particularly relevant in scenarios in-
volving network communications or multi-threaded operations.

The dynamic analysis features of FritzFrog highlights considerable similarities with BotenaGo, es-
pecially in their operational tactics concerning file manipulation, network interactions, security evasion,
command execution, and the use of advanced system commands.

Both FritzFrog and BotenaGo exhibit extensive interactions with system and configuration files, sig-
naling a concerted effort to manipulate network behavior. This includes accessing critical SSH configu-

149

ration files, with FritzFrog reaching into libraries like 1ibpam.so.0 and BotenaGo into 1ibc.so.6. Their
engagement with daemon configurations, such as FritzFrog’s modifications to /etc/pam.d/sshd and
BotenaGo’s adjustments in /etc/fwupd/daemon.conf, underscores their capability to alter essential
system functionalities to facilitate their malicious activities. Network-related behaviors are prominently
displayed by both malware families. They manipulate network configuration files such as /etc/gai . conf
to affect how network addresses are resolved, indicating a deep involvement in network behavior ma-
nipulation. Additionally, their interactions with device random number generation files—/dev/urandom
for FritzFrog and /dev/mem for BotenaGo—point to potential cryptographic operations. These actions,
combined with SSH key interactions, are crucial for gaining network access and ensuring persistence.

In terms of security evasion and stealth, both malware families take measures to remain unde-
tected. This includes modifying log files—FritzFrog writing to /var/log/btmp and BotenaGo erasing
/var/log/syslog.1—and manipulating process managementfiles like /proc/self/oom_score_adj to
avoid termination. Their interaction with daemon configuration files further suggests attempts to modify
log behaviors or disable certain security features, enhancing their stealth within compromised systems.
Command execution is another area where FritzFrog and BotenaGo show similar strategies. Both
execute system commands that affect service management and configurations, such as FritzFrog’s
execution of /usr/sbin/sshd and BotenaGo’s use of /usr/sbin/logrotate /etc/logrotate.conf.
Their use of commands to refresh or manage service configurations highlights their ability to manipulate
system services effectively.

Moreover, the usage of advanced system commands and scripts for deeper system integration and
functionality is evident in both malware families. They execute scripts related to log management, with
FritzFrog utilizing /usr/lib/rsyslog/rsyslog-rotate and BotenaGo manipulating logrotate scripts.
Their commands for cryptographic management, such as /usr/bin/gpg --version used by FritzFrog,
and similar security-related commands by BotenaGo, underline their focus on securing their operations
or encrypting data. Their interaction with system service controllers like systemctl further affects how
services are loaded and managed, underscoring their sophisticated approach to system control and
manipulation. These parallels between FritzFrog and BotenaGo suggest a shared methodology in their
approach to compromising and controlling infected systems.

Case Study:DiscordTokenStealers

DiscordTokenStealers are a type of malware specifically designed to target users of the Discord plat-
form, a popular chat application widely used by gamers and various online communities[210]. These
malicious programs aim to steal Discord authentication tokens from infected machines. A Discord to-
ken is essentially a user’s authentication key, which allows seamless access to Discord without the
need to re-enter a password. If a token is stolen, it grants the attacker the same level of access to
the victim’s Discord account, including their personal messages, server memberships, and potentially
sensitive information shared on the platform.

L.0.2. Key Characteristics of DiscordTokenStealers

The stealers targeting Discord focus on a specific attack vector: extracting Discord tokens from users’
systems. These tokens are typically stored in local storage areas utilized by web browsers and the
Discord desktop application. Once installed on a device, the stealer actively searches known file paths
and system storage locations related to Discord to locate and extract these authentication tokens. The
implementation of these stealers varies widely, ranging from simple scripts written in languages like
JavaScript or Python to more sophisticated malware. These advanced versions incorporate additional
functionalities designed to evade detection and ensure persistence within the host system, making
them more dangerous and harder to eradicate.

Distribution methods for these malicious tools are diverse and often insidious. They are commonly
spread through phishing attacks and malicious links or as components of larger compromised soft-
ware packages. Additionally, they may be distributed on hacking forums or through social engineering
schemes specifically targeting Discord users, exploiting the trust within social circles to propagate the
malware.The consequences of token theft are severe. Possession of a Discord token grants an at-
tacker remote access to the victim’s Discord account, allowing them to impersonate the victim, access
private communications, and potentially leverage this access to spread the malware further. This can
lead to significant breaches of privacy and security for the affected users and their contacts, underlining
the critical nature of securing such digital tokens against theft.

150

To effectively analyze this malware, it's important to note that it is a DOS-based executable. Tools
like Lief are unable to identify import or export features in such DOS executables, including FritzFrog.
Therefore, concentrating on a behavioral analysis is crucial to comprehensively understand its impact
and how it operates on infected systems. The malware extensively interacts with system files and
directories, manipulating ‘.dll files within C:\Windows\assembly and ‘.docx’ files in user directories.
Such behavior is indicative of attempts to locate and extract stored Discord tokens or to inject malicious
code into executable or script files to ensure persistence and spread within the network.

Command executions such as %windir%\Microsoft.NET\Framework\v4.0.30319\AppLaunch.exe
and C: \Windows\SysWOW64\WerFault . exe demonstrate the malware’s exploitation of system processes
to execute malicious payloads or disrupt system error reporting services, aiding its undetectability.
Memory manipulation and process injections, particularly into processes like WMIADAP.EXE, allow the
malware to operate within the security context of legitimate system processes, thus evading detection
by security software and gaining elevated privileges. The malware’s interactions with network-related
system files, such as wsock32.d11, and its monitoring of network processes potentially enable it to
intercept network traffic to and from the Discord application to capture authentication tokens.

Moreover, the malware employs various persistence and evasion techniques, manipulating error
reporting files and directories and performing extensive operations on system and application logs to
erase traces of its presence and manipulate system responses for sustained stealth. Tactics such as
repeatedly deleting files, particularly within Windows Error Reporting directories, are likely aimed at pre-
venting forensic analysis or automatic error reports that could reveal the malware’s presence.Additionally,
the malware interferes with essential system processes, such as terminating and manipulating svchost . exe
and interfering with Windows Update processes (wuapihost.exe), to weaken the system’s defenses.
Frequent usage of Windows Management Instrumentation (WMI) to gather system information, check
for antivirus installations, or detect virtual machines highlights the malware’s efforts to assess its envi-
ronment to optimize evasion strategies and payload delivery, enhancing its effectiveness and minimiz-
ing detection risk.

Figure L.2: AkiraRansomware is from DiscordTokenStealers

P—

DiscordTokenStealers

AkiraRansomware

AkiraRansomware
Figure L.2 reveals that FristzFrog is from BotenaGo according to inter-family analysis. According to
Threatmon[211], AkiraRansomware employs the same attack vector as DiscordTokenStealers, with
both being DOS format malware. This necessitates a focus on dynamic analysis features for effective
understanding. AkiraRansomware extensively interacts with system files, notably by creating readme
files in various directories such as c:\akira_readme.txt and c:\program files\akira_readme.txt.
This behavior is characteristic of ransomware, aiming to inform users of the encryption of their data and
to demand a ransom. Conversely, DiscordTokenStealers specifically manipulate files associated with
the Discord application to stealthily extract authentication tokens, focusing on covert operations rather
than overt system disruption.

Both malware types utilize PowerShell extensively, albeit for different purposes. AkiraRansomware
uses PowerShell scripts for tasks such as encryption and system reconnaissance, evidenced by files

151

such as \PSHost.133268678561975959.2708.DefaultAppDomain.powershell, which suggest auto-
mated script execution within the system. Meanwhile, DiscordTokenStealers use PowerShell to search
and extract stored Discord tokens from local storage and browser data, leveraging PowerShell’s deep
integration with Windows systems to facilitate data extraction. Command execution is another com-
monality; AkiraRansomware executes system-altering commands, such as powershell.exe -Command
"Get-WmiObject Win32_Shadowcopy | Remove-WmiObject", intended to delete shadow copies and
hinder data recovery. Similarly, DiscordTokenStealers may execute commands to discreetly adjust
environment settings to aid in token theft without triggering security alerts.

Behavioral patterns also highlight their strategies for evasion and persistence. AkiraRansomware
may operate processes in hidden modes or manipulate system files to complicate restoration efforts.
Similarly, DiscordTokenStealers engage in stealthy operations to avoid detection while harvesting and
exfiltrating Discord tokens. Furthermore, both malware types implement MITRE ATT&CK techniques
to enhance their effectiveness and stealth. They perform actions such as querying process information
and detecting virtual environments, which demonstrate their sophisticated capability to assess and
adapt to their operating environments. For instance, AkiraRansomware’s queries of sensitive disk
information via WMI or Win32_DiskDrive, often done to detect virtual machines, are techniques also
favored by DiscordTokenStealers to ensure optimal execution conditions. These parallels may suggest
that both of these malware are related.

Case Study: SundownEk

The Sundown Exploit Kit (SundownEK) is a malicious toolkit used by cybercriminals to exploit vulnera-
bilities in web browsers and other software to deliver malware, categorizing it among the broader range
of threats known as exploit kits. These kits automatically probe for software vulnerabilities on a visitor’s
computer and exploit these vulnerabilities to deliver malware [212].

SundownEK typically operates through compromised or malicious websites that users might visit
inadvertently. It can also spread through malvertising campaigns, where malware is disseminated
via malicious advertisements placed on legitimate websites. This method of distribution enables Sun-
downEK to reach a broad audience without requiring direct interaction from the target. The exploit kit
includes a variety of exploits that target common vulnerabilities in widely used applications, such as
Adobe Flash, Java, and various web browsers. SundownEK is frequently updated with new exploits as
soon as they become known and available, allowing it to stay effective against unpatched systems.To
evade detection by antivirus and other security software, SundownEK employs various obfuscation
techniques. These may include encrypting the exploit code, using polymorphic malware, or implement-
ing methods specifically designed to avoid triggering security mechanisms in browsers.

Once it successfully exploits a vulnerability, SundownEK delivers a payload, which could be any
type of malware, including ransomware, spyware, or bots. The specific type of malware delivered can
vary depending on the attackers’ objectives and the specifics of the campaign they are running.Unlike
other more well-known exploit kits such as Angler or Neutrino, SundownEK tends to maintain a lower
profile. This is possibly an intentional strategy to avoid the scrutiny of security researchers and law en-
forcement, allowing it to operate under the radar and continue its malicious activities without significant
interference.

SundownEK, recognized as a DOS-based malware, presents challenges in analyzing pseudo-static
features due to its format. Consequently, a focus on dynamic analysis features is essential to uncover its
operational behaviors. SundownEK extensively interacts with system and application files, indicative
of exploit kits designed to manipulate or monitor system functions. It accesses significant Windows
system files such as winime32.d11, ws2_32.411, and shel1132.d411. Moreover, it engages in behaviors
such as writing to and modifying files, notably creating Samian.d11 in a temporary directory—a tactic
commonly employed by exploit kits to execute malicious payloads discreetly.The kit's exploitation of
Dynamic Link Libraries (DLLs) is evident, as it opens multiple DLL files potentially to inject malicious
code or exploit existing vulnerabilities. This method is typical in exploit kit operations that involve DLL
hijacking or exploiting vulnerabilities.

Furthermore, SundownEK makes extensive use of temporary files and directories, a strategy exploit
kits utilize to minimize detection. These locations are less monitored and provide a transient space for
conducting malicious activities without leaving long-term evidence.Command executions are another
critical aspect of SundownEK’s behavior. It executes specific commands, such as running 996E. exe
from a temporary directory, which indicates the kit's process to activate downloaded or dropped pay-

152

loads, enabling further malicious operations within the infected system.

Process interactions include terminating processes related to its operations, likely serving as a
cleanup mechanism post-exploit to avoid detection and analysis or to stop processes that might in-
terfere with its activities.Registry interactions are also significant; SundownEK modifies the system’s
registry, including deleting keys associated with error reporting. This behavior aims to undermine sys-
tem defenses and erase traces of the kit's presence to enhance stealth and ensure persistence. Lastly,
SundownEK manipulates services related to network access and routing. This manipulation is typi-
cally linked to establishing remote access capabilities or preparing the system for further exploitation
and lateral movements, aligning with the typical behavior of exploit kits aimed at spreading or enabling
command and control activities.

Figure L.3: Kronos is from SundownEK

Kronos

Figure L.3 reveals that FristzFrog is from BotenaGo according to inter-family analysis. The dynamic
analysis features of Kronos, as suggested by Malwarebytes[213], reveals significant operational similar-
ities with SundownEK, particularly highlighting their approaches in manipulating and exploiting system
resources. Both being DOS-based malware, this analysis is crucial given the limitations in pseudo-
static feature extraction. Kronos interacts extensively with critical system files such as winime32.4d11,
ws2_32.d11, and shell32.d11, integral to system operations and commonly targeted for vulnerabilities
or malicious manipulations. Similarly, SundownEK exploits these system files to alter system behaviors
or facilitate malware delivery, showcasing parallel tactics in exploiting system vulnerabilities.

Moreover, Kronos frequently manipulates temporary files, using locations like C:\Documents and
Settings\Administrator\Local Settings\Temp\nsc3.tmp for staging and executing malicious pay-
loads discreetly. This mirrors SundownEK’s strategy of using temporary files as a staging area for
executing malicious scripts or storing components, minimizing detection and facilitating cleanup post-
execution.Command execution is another shared tactic between Kronos and SundownEK. Kronos em-
ploys system utilities such as svchost . exe to blend in with normal system processes or stealthily man-
age its operations, akin to SundownEK’s use of command execution to trigger exploits or load malware
following a successful exploit.

Process manipulations are evident in Kronos, where it terminates its own processes to evade detec-
tion or clear traces after executing malicious activities. This strategy reflects SundownEK’s approach
to terminating processes to disable security software or clear the path for its payload without interfer-
ence.Stealth and evasion are also central to Kronos’ operations, with changes in file attributes designed
to hide its files from simple searches or make them harder to delete. SundownEK uses similar tactics,
employing file obfuscation or polymorphism to complicate the detection of its components by antivirus
software.

Furthermore, while Kronos may not manipulate system services as extensively as SundownEK, it
interacts with services like "TRemoteAccess” to potentially adjust network settings favorably for remote
control or data exfiltration. This selective interaction with system services underlines the malware’s
strategic use of system resources to support its malicious objectives.

Pseudo-static and Dynamic Analysis

M.1. Mirai

M.1.1. Pseudo-static analysis features

1 section: {'entry': '0x401060', 'sections': [{'name': '', 'size': 0, 'entropy': -0.0, '

file_offset': O, 'props': ['Type: NULL'l}, {'mname': '.interp', 'size': 20, 'entropy':
3.684183719779189, 'file_offset': 244, 'props': ['Type: PROGBITS', 'ALLOC']}, {'name': '.
hash', 'size': 376, 'entropy': 1.4667777070926495, 'file_offset': 264, 'props': ['Type:
HASH', 'ALLOC']}, {'mame': '.dynsym', 'size': 880, 'entropy': 3.1509644214886543, '
file_offset': 640, 'props': ['Type: DYNSYM', 'ALLOC']l}, {'name': '.dynstr', 'size': 420,
'entropy': 4.1612991185289365, 'file_offset': 1520, 'props': ['Type: STRTAB', 'ALLOC'l},
{'name': '.rela.plt', 'size': 588, 'entropy': 2.9045781679847202, 'file_offset': 1940, '
props': ['Type: RELA', 'ALLOC'l}, {'name': '.init', 'size': 48, 'entropy':
4.365601562950723, 'file_offset': 2528, 'props': ['Type: PROGBITS', 'ALLOC', 'EXECINSTR
']}, {'name': '.plt', 'size': 1400, 'entropy': 4.227768835761367, 'file_offset': 2576, '
props': ['Type: PROGBITS', 'ALLOC', 'EXECINSTR']}, {'name': '.text', 'size': 34976, '
entropy': 6.696022855285639, 'file_offset': 4000, 'props': ['Type: PROGBITS', 'ALLOC', '
EXECINSTR']}, {'mame': '.fini', 'size': 36, 'entropy': 4.5588138903312, 'file_offset':
38976, 'props': ['Type: PROGBITS', 'ALLOC', 'EXECINSTR'J]}]}

2 Segment Information: {'Sections': [{'Name': '', 'Size': 0, 'Virtual Address': 0}, {'Name': '.
interp', 'Size': 20, 'Virtual Address': 4194548}, {'Name': '.hash', 'Size': 376, 'Virtual
Address': 4194568}, {'Name': '.dynsym', 'Size': 880, 'Virtual Address': 4194944}, {'Name
': '.dynstr', 'Size': 420, 'Virtual Address': 4195824}, {'Name': '.rela.plt', 'Size':
588, 'Virtual Address': 4196244}, {'Name': '.init', 'Size': 48, 'Virtual Address':
4196832}, {'Name': '.plt', 'Size': 1400, 'Virtual Address': 4196880}, {'Name': '.text', '
Size': 34976, 'Virtual Address': 4198304}, {'Name': '.fini', 'Size': 36, 'Virtual Address
': 4233280}, {'Name': '.rodata', 'Size': 888, 'Virtual Address': 4233316}, {'Name': '.
ctors', 'Size': 8, 'Virtual Address': 4299744}, {'Name': '.dtors', 'Size': 8, 'Virtual
Address': 4299752}, {'Name': '.dynamic', 'Size': 152, 'Virtual Address': 4299764}, {'Name
': '.data', 'Size': 32, 'Virtual Address': 4299916}, {'Name': '.got', 'Size': 208, '
Virtual Address': 4299948}, {'Name': '.bss', 'Size': 412, 'Virtual Address': 4300156}, {'
Name': '.shstrtab', 'Size': 116, 'Virtual Address': 0}], 'Segments': [{'Type': '
SEGMENT_TYPES.PHDR', 'Size': 192, 'Virtual Address': 4194356}, {'Type': 'SEGMENT_TYPES.
INTERP', 'Size': 20, 'Virtual Address': 4194548}, {'Type': 'SEGMENT_TYPES.LOAD', 'Size':
39900, 'Virtual Address': 4194304}, {'Type': 'SEGMENT_TYPES.LOAD', 'Size': 412, 'Virtual
Address': 4299744}, {'Type': 'SEGMENT_TYPES.DYNAMIC', 'Size': 152, 'Virtual Address':
4299764}, {'Type': 'SEGMENT_TYPES.GNU_STACK', 'Size': 0, 'Virtual Address': 0}]}

3 imports: {'DynamicSymbols': ['', 'ioctl', 'recv', 'connect', 'sigemptyset', 'memmove',
getpid', 'prctl', 'memcpy', 'readlink', 'malloc', 'sleep', 'recvfrom', 'socket', 'select
', 'readdir', 'sigaddset', 'send', 'abort', 'accept', 'calloc', 'write', 'kill', 'bind',
'inet_addr', 'setsockopt', 'signal', 'read', 'sendto', 'realloc', 'listen', 'fork', '
__uClibc_main', 'memset', 'getppid', 'time', 'opendir', 'getsockopt', '__errno_location',

'exit', 'open', 'clock', 'setsid', 'closedir', 'fcntl', 'close', 'raise', 'free', '
sigprocmask', 'getsockname'], 'SymbolTable': ['', 'ioctl', 'recv', 'connect', '
sigemptyset', 'memmove', 'getpid', 'prctl', 'memcpy', 'readlink', 'malloc', 'sleep',
recvfrom', 'socket', 'select', 'readdir', 'sigaddset', 'send', 'abort', 'accept', 'calloc
', 'write', 'kill', 'bind', 'inet_addr', 'setsockopt', 'signal', 'read', 'sendto', '
realloc', 'listen', 'fork', '__uClibc_main', 'memset', 'getppid', 'time', 'opendir',
getsockopt', '__errno_location', 'exit', 'open', 'clock', 'setsid', 'closedir', 'fcntl',
'close', 'raise', 'free', 'sigprocmask', 'getsockname']}

[

[

1

153

M.1. Mirai

154

4 exports: ['ioctl', 'recv', 'connect', 'sigemptyset', 'memmove', 'getpid', 'prctl', 'memcpy',

'readlink

', 'malloc', 'sleep', 'recvfrom', 'socket', 'select', 'readdir', 'sigaddset',6 '

send', 'abort', 'accept', 'calloc', 'write', 'kill', 'bind', 'inet_addr', 'setsockopt', '

_start',
memset ',
'clock',

'signal', 'read', 'sendto', 'realloc', 'listen', 'fork', '__uClibc_main', '

'getppid', 'time', 'opendir', 'getsockopt', '__errno_location', 'exit', 'open',

'setsid', 'closedir', 'fcntl', 'close', 'raise', 'free', 'sigprocmask',6 '

getsockname ']

5 general: {'size': 41152, 'virtual_size': O, 'has_debug': 0, 'exports': 55, 'imports': 19, '
has_relocations': 0, 'symbols': 55}

6 header: {'file_type': 'EXECUTABLE', 'entry_point': 4198496, 'machine_type': 'SH', '
header_size': 52, 'program_headers': [{'type': 'PHDR', 'virtual_address': 4194356, '
physical_address': 4194356, 'physical_size': 192, 'virtual_size': 192, 'flags':
SEGMENT_FLAGS.???, 'alignment': 4}, {'type': 'INTERP', 'virtual_address': 4194548, '
physical_address': 4194548, 'physical_size': 20, 'virtual_size': 20, 'flags':
SEGMENT_FLAGS.R, 'alignment': 1}, {'type': 'LOAD', 'virtual_address': 4194304, '
physical_address': 4194304, 'physical_size': 39900, 'virtual_size': 39900, 'flags':
SEGMENT_FLAGS.??77, 'alignment': 65536}, {'type': 'LOAD', 'virtual_address': 4299744, '
physical_address': 4299744, 'physical_size': 412, 'virtual_size': 824, 'flags':
SEGMENT_FLAGS.??77, 'alignment': 65536}, {'type': 'DYNAMIC', 'virtual_address': 4299764, '
physical_address': 4299764, 'physical_size': 152, 'virtual_size': 152, 'flags':
SEGMENT_FLAGS.?77, 'alignment': 4}, {'type': 'GNU_STACK', 'virtual_address': 0, '
physical_address': 0, 'physical_size': O, 'virtual_size': 0, 'flags': SEGMENT_FLAGS.?777,
'alignment': 4}], 'section_headers': [{'name': '', 'type': 'NULL', 'virtual_address': O,
'size': 0, 'entropy': -0.0}, {'name': '.interp', 'type': 'PROGBITS', 'virtual_address':

4194548,

'size': 20, 'entropy': 3.684183719779189}, {'mame': '.hash', 'type': 'HASH', '

virtual_address': 4194568, 'size': 376, 'entropy': 1.4667777070926495}, {'name': '.dynsym

[

, 'type':

'DYNSYM', 'virtual_address': 4194944, 'size': 880, 'entropy':

3.1509644214886543}, {'name': '.dynstr', 'type': 'STRTAB', 'virtual_address': 4195824, '
size': 420, 'entropy': 4.1612991185289365}, {'name': '.rela.plt', 'type': 'RELA', '
virtual_address': 4196244, 'size': 588, 'entropy': 2.9045781679847202}, {'name': '.init',
'"type': 'PROGBITS', 'virtual_address': 4196832, 'size': 48, 'entropy':
4.365601562950723}, {'name': '.plt', 'type': 'PROGBITS', 'virtual_address': 4196880, '
size': 1400, 'entropy': 4.227768835761367}, {'name': '.text', 'type': 'PROGBITS', '
virtual_address': 4198304, 'size': 34976, 'entropy': 6.696022855285639}, {'name': '.fini

[

, 'type':

'PROGBITS', 'virtual_address': 4233280, 'size': 36, 'entropy':

4.5588138903312}, {'name': '.rodata', 'type': 'PROGBITS', 'virtual_address': 4233316, '
size': 888, 'entropy': 5.098093887248329}, {'name': '.ctors', 'type': 'PROGBITS', '
virtual_address': 4299744, ‘'size': 8, 'entropy': 1.0}, {'name': '.dtors', 'type': '
PROGBITS', 'virtual_address': 4299752, 'size': 8, 'entropy': 1.0}, {'name': '.dynamic', '
type': 'DYNAMIC', 'virtual_address': 4299764, 'size': 152, 'entropy': 2.046700321855241},

{'name':

'.data', 'type': 'PROGBITS', 'virtual_address': 4299916, 'size': 32, 'entropy':

2.746696364505181}, {'name': '.got', 'type': 'PROGBITS', 'virtual_address': 4299948, '
size': 208, 'entropy': 3.958263738966142}, {'name': '.bss', 'type': 'NOBITS', '
virtual_address': 4300156, 'size': 412, 'entropy': 3.1384341723299536}, {'name': '.
shstrtab', 'type': 'STRTAB', 'virtual_address': O, 'size': 116, 'entropy':
3.915745112170353}]1}

7 strings: {'numstrings': 123, 'avlength': 6.195121951219512, 'printabledist': [14, 41, 42, 45,

5, 3, 10, 12, 10, 23, 6, 11, 12, 2, 3, 7, 6, 25, 11, 18, 3, 1, 1, 4, 1, 5, 7, 9, 2, 1,
o, 1, 5, 25, 15, 10, 1, O, 2, 4, 1, 0, 2, 1, 5, 0, O, 7, 10, 7, 4, 11, 2, 4, 3, 1, 1, O,

1, 3, 3,

o, 5, 4, 4, o0, 27, 47, 26, 38, 7, 8, 7, 6, 3, 2, 7, 2, 7, 11, 3, O, 6, 8, 4, 13, 4, 1,

2, 6, 10, 16, 1, 0, 3], 'printables': 762, 'entropy': 5.705211162567139, 'paths

': 0, 'urls': 0, 'registry': 0, 'MZ': O}
8 EntryPoint: [['Main ', 4198496], ['ioctl', 4196908], ['recv', 4196936], ['conne', 4196964],

['sigem',
41971041,
41972161,
['send',
41974687,
['_star',
4197692] ,
['getpp',
41979441,
['close',
41981967,
9 ExitPoint: [['
10 Opcodes: ['add

4196992], ['memmo', 41970201, ['getpi', 4197048], ['prctl', 4197076], ['memcp',
['readl', 4197132], ['mallo', 4197160], ['sleep', 4197188], ['recvf',
['socke', 41972441, ['selec', 41972721, ['readd', 41973001, ['sigad', 41973281,
4197356], ['abort', 41973841, ['accep', 4197412], ['callo', 4197440], ['write',
['kill', 41974961, ['bind', 41975241, ['inet_', 4197552], ['setso', 41975801,
41984961, ['signa', 41976081, ['read', 4197636], ['sendt', 41976641, ['reall’,
['liste', 4197720], ['fork', 4197748], ['__uCl', 4197776], ['memse', 4197804],
4197832], ['time', 4197860], ['opend', 4197888], ['getso', 41979161, ['__err',
['exit', 4197972], ['open', 4198000], ['clock', 4198028], ['setsi', 4198056],
4198084], ['fcntl', 4198112], ['close', 4198140], ['raise', 41981681, ['free',
['sigpr', 4198224]]
Dynamic Symbol', 'abort'], ['Dynamic Symbol', 'exit']]
', 'das', 'add', 'add', 'inc', 'mul', 'add', 'add', 'add', 'inc', 'add', 'add',

'shr', 'inc', 'adc', 'shr', 'inc', 'or', 'adc', 'inc', 'add', 'add', 'add', 'add', 'shr

', ‘'inc',
inc', 'adc
v’ 'add',

‘adc', 'shr', 'inc', 'or', 'adc', 'inc', 'add', 'add', 'add', 'add', 'shr', '
', 'shr', 'inc', 'or', 'adc', 'inc', 'add', 'pushfd', 'inc', 'add', 'add', 'add
'shr', 'inc', 'adc', 'shr', 'inc', 'or', 'adc', 'inc', 'add', 'pushfd', 'inc',

'add', 'add', 'add', 'add', 'shr', 'inc', 'adc', 'shr', 'inc', 'or', 'adc', 'inc', 'add',

18

M.1. Mirai 155

'pushfd', 'inc', 'add', 'add', 'add', 'add', 'shr', 'inc', 'adc', 'shr', 'inc', 'or', '
adc', 'inc', 'add', 'pushfd', 'inc', 'add', 'add', 'add', 'add', 'shr', 'inc', 'adc', '
shr', 'inc', 'or', 'adc', 'inc', 'add', 'pushfd', 'inc', 'add', 'add', 'add', 'add', 'shr
', 'inc', 'adc', 'shr', 'inc', 'or', 'adc', 'inc', 'add', 'pushfd', 'inc', 'add', 'add',
'add', 'shr', 'inc', 'adc', 'shr', 'inc', 'or', 'adc', 'inc', 'add', 'pushfd', 'inc', '
add', 'add', 'add', 'add', 'shr', 'inc', 'adc', 'shr', 'inc', 'or', 'adc', 'inc', 'add',
'pushfd', 'inc', 'add', 'add', 'add', 'shr', 'inc', 'adc', 'shr', 'inc', 'or', 'adc', '
inc', 'add', 'pushfd', 'inc', 'add', 'add', 'add', 'add', 'shr', 'inc', 'adc', 'shr', '
inc', 'or', 'adc', 'inc', 'add', 'pushfd', 'inc', 'add', 'add', 'shr', 'inc', 'adc', 'shr
', 'inc', 'or', 'adc', 'inc', 'add', 'pushfd', 'inc', 'add', 'rol', 'pushal', 'add', 'sub

', 'pushal', 'add']

Opcode-Occurrence: {'add': 223, 'das': 2, 'inc': 170, 'mul': 1, 'shr': 88, 'adc': 89, 'or':
49, 'pushfd': 16, 'rol': 5, 'pushal': 10, 'sub': 10, 'in': 1, 'hlt': 1, 'popfd': 10, 'cmp
': 1, 'dec': 1, 'xchg': 2, 'out': 1, 'mop': 1, 'popal': 1, 'and': 2}

Image Size: 4300156

Header Size: {'ELF Header Size': 52, 'Program Headers Total Size': 40676}

GNU Physical Size: O

Heap Size: {'Heap Segment Size': 412, 'Heap Section Size': 0}

Loader Flags: {'Segment 0': {'Type': 'SEGMENT_TYPES.PHDR', 'Flags': 'READ | EXECUTE'}, '
Segment 1': {'Type': 'SEGMENT_TYPES.INTERP', 'Flags': 'READ'}, 'Segment 2': {'Type': '
SEGMENT_TYPES.LOAD', 'Flags': 'READ | EXECUTE'}, 'Segment 3': {'Type': 'SEGMENT_TYPES.
LOAD', 'Flags': 'READ | WRITE'}, 'Segment 4': {'Type': 'SEGMENT_TYPES.DYNAMIC', 'Flags':
'READ | WRITE'}, 'Segment 5': {'Type': 'SEGMENT_TYPES.GNU_STACK', 'Flags': 'READ | WRITE
| EXECUTE'}}

Section Entropy: {'': {'min': O, 'max': O, 'total': O, 'count': 1, 'mean': 0.0}, '.interp':
{'min': 3.684183719779189, 'max': 3.684183719779189, 'total': 3.684183719779189, 'count':

1, 'mean': 3.684183719779189}, '.hash': {'min': 1.4667777070926495, 'max':
1.4667777070926495, 'total': 1.4667777070926495, 'count': 1, 'mean': 1.4667777070926495},

'.dynsym': {'min': 3.1509644214886543, 'max': 3.1509644214886543, 'total':
3.1509644214886543, 'count': 1, 'mean': 3.1509644214886543}, '.dynstr': {'min':
4.1612991185289365, 'max': 4.1612991185289365, 'total': 4.1612991185289365, 'count': 1, '
mean': 4.1612991185289365}, '.rela.plt': {'min': 2.9045781679847202, 'max':
2.9045781679847202, 'total': 2.9045781679847202, 'count': 1, 'mean': 2.9045781679847202},

'.init': {'min': 4.365601562950723, 'max': 4.365601562950723, 'total':
4.365601562950723, 'count': 1, 'mean': 4.365601562950723}, '.plt': {'min':
4.227768835761367, 'max': 4.227768835761367, 'total': 4.227768835761367, 'count': 1, '
mean': 4.227768835761367}, '.text': {'min': 6.696022855285639, 'max': 6.696022855285639,
'total': 6.696022855285639, 'count': 1, 'mean': 6.696022855285639}, '.fini': {'min':
4.5588138903312, 'max': 4.5588138903312, 'total': 4.5588138903312, 'count': 1, 'mean':
4.5588138903312}, '.rodata': {'min': 5.098093887248329, 'max': 5.098093887248329, 'total
': 5.098093887248329, 'count': 1, 'mean': 5.098093887248329}, '.ctors': {'min': 1.0, 'max
': 1.0, 'total': 1.0, 'count': 1, 'mean': 1.0}, '.dtors': {'min': 1.0, 'max': 1.0, 'total
': 1.0, 'count': 1, 'mean': 1.0}, '.dynamic': {'min': 2.046700321855241, 'max':
2.046700321855241, 'total': 2.046700321855241, 'count': 1, 'mean': 2.046700321855241}, '.
data': {'min': 2.746696364505181, 'max': 2.746696364505181, 'total': 2.746696364505181, '
count': 1, 'mean': 2.746696364505181}, '.got': {'min': 3.958263738966142, 'max':
3.958263738966142, 'total': 3.958263738966142, 'count': 1, 'mean': 3.958263738966142}, '.
bss': {'min': 3.1384341723299536, 'max': 3.1384341723299536, 'total': 3.1384341723299536,

'count': 1, 'mean': 3.1384341723299536}, '.shstrtab': {'min': 3.915745112170353, 'max':
3.915745112170353, 'total': 3.915745112170353, 'count': 1, 'mean': 3.915745112170353}}

Kolmogorov Complexity: 21 KB

M.1.2. Dynamic Analysis features

"Family Name": "Mirai",
"Behavior": {

"files_opened": [
"/dev/misc/watchdog",
"/dev/watchdog",
"/etc/UPower/UPower.conf",
"/etc/group",
"/etc/gtk-3.0/settings.ini",
"/etc/locale.alias",
"/etc/mtab",
"/home/lonestar/.Xdefaults-buffalo",
"/pIOC/",

"/proc/3676/mounts",
"/proc/filesystems",
"/run/udev/data/+input:inputil",
"/run/udev/data/+input:input3",

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

M.1. Mirai

156

1,

"/run/udev/data/+power_supply:ACAD",

"/run/udev/data/c13:32",

"/run/udev/data/c13:63",

"/run/udev/data/c13:65",

"/run/user/1000/ICEauthority",

"/run/user/1000/gdm/Xauthority",

"/sys/bus",

"/sys/bus/usb/devices/",

"/sys/class",

"/sys/class/input/",

"/sys/class/leds",

"/sys/class/power_supply/",
"/sys/devices/LNXSYSTM:00/LNXPWRBN:00/input/input0O/capabilities/sw",
"/sys/devices/LNXSYSTM:00/LNXPWRBN:00/input/inputO/event0/../capabilities/sw
"/sys/devices/LNXSYSTM:00/LNXPWRBN:00/input/input0/event0/uevent",
"/sys/devices/LNXSYSTM:00/LNXPWRBN:00/input/input0/uevent",
"/sys/devices/LNXSYSTM:00/LNXSYBUS:00/ACPI0003:00/power_supply/ACAD/online",
"/sys/devices/LNXSYSTM:00/LNXSYBUS:00/ACPI0003:00/power_supply/ACAD/type",
"/sys/devices/LNXSYSTM:00/LNXSYBUS:00/ACPI0003:00/power_supply/ACAD/uevent",
"/sys/devices/platform/i8042/serio0O/input/inputl/capabilities/sw",
"/sys/devices/platform/i8042/serio0/input/inputl/eventl/../capabilities/sw",
"/sys/devices/platform/i8042/serio0/input/inputl/eventl/uevent",
"/sys/devices/platform/i8042/serio0/input/inputl/uevent",
"/sys/devices/platform/i8042/seriol/input/input3/capabilities/sw",
"/sys/devices/platform/i8042/seriol/input/input3/event2/../capabilities/sw",
"/sys/devices/platform/i8042/seriol/input/input3/event2/uevent",
"/sys/devices/platform/i8042/seriol/input/input3/mouse0/../capabilities/sw",
"/sys/devices/platform/i8042/seriol/input/input3/mouse0/uevent",
"/sys/devices/platform/i8042/seriol/input/input3/uevent",
"/sys/devices/virtual/input/mice/uevent",
"/usr/lib/x86_64-1linux-gnu/gconv/gconv-modules.cache",
"/usr/share/X11/locale/en_US.UTF-8/XLC_LOCALE",
"/usr/share/X11/locale/locale.alias",

"/usr/share/X11/locale/locale.dir",
"/usr/share/icons/Adwaita/icon-theme.cache",
"/usr/share/icons/Adwaita/index.theme",
"/usr/share/icons/elementary-xfce-dark/icon-theme.cache"

"files_written": [],
"files_deleted": [

"/tmp/cutie.x86_64"

Js
"command_executions": [
"/sbin/fstrim --fstab --verbose --quiet",
"sh -c \"1ls -1 /proc/2/status\"",
"ls -1 /proc/2/status",
"sh -c \"1ls -1 /proc/1/status\"",
"ls -1 /proc/1/status",
"sh -c¢ \"1s -1 /proc/3/status\"",
"ls -1 /proc/3/status",
"sh -c \"1ls -1 /proc/4/status\"",
"ls -1 /proc/4/status",
"sh -c \"1ls -1 /proc/5/status\"",
"ls -1 /proc/5/status",
"sh -c¢ \"1ls -1 /proc/6/status\"",
"ls -1 /proc/6/status",
"sh -c \"1ls -1 /proc/7/status\"",
"ls -1 /proc/7/status",
"sh -c¢ \"1s -1 /proc/9/status\"",
"ls -1 /proc/9/status",
"sh -c \"1s -1 /proc/10/status\"",
"ls -1 /proc/10/status",
"sh -c \"1s -1 /proc/11/status\""
T
"files_attribute_changed": [],
"processes_terminated": [],
"processes_killed": [],
"processes_injected": [],
"services_opened": [],

"services_created": [],

87
88
89
90
91
92
93
94
95
96
97

98

99
100
101
102
103
104
105

1

M.2. Gafgyt 157

"services_started": [],
"services_stopped": [],
"services_deleted": [],
"windows_searched": [],
"registry_keys_deleted": [],
"mitre_attack_techniques": [

"Executes commands using a shell command-line interpreter",

"Creates hidden files, links and/or directories",

"Sample deletes itself",

"Executes the \"rm\" command used to delete files or directories",

"Uses the \"uname\" system call to query kernel version information (possible
evasion)",

"Sample reads /proc/mounts (often used for finding a writable filesystem)",

"Detected TCP or UDP traffic on non-standard ports",

"Performs DNS lookups",

"Performs DNS lookups",

"Sample tries to kill multiple processes (SIGKILL)"

M.2. Gafgyt

M.2.1. Pseudo-static analysis features

2 section: {'entry': '0Ox8048164', 'sections': [{'name': '', 'size': 0, 'entropy': -0.0, '

file_offset': O, 'props': ['Type: NULL']}, {'mame': '.init', 'size': 28, 'entropy':
3.6375375112660517, 'file_offset': 148, 'props': ['Type: PROGBITS', 'ALLOC', 'EXECINSTR
']}, {'name': '.text', 'size': 92584, 'entropy': 6.419944555244165, 'file_offset': 176, '
props': ['Type: PROGBITS', 'ALLOC', 'EXECINSTR']}, {'mame': '.fini', 'size': 23, 'entropy
': 4.001822825622232, 'file_offset': 92760, 'props': ['Type: PROGBITS', 'ALLOC', '
EXECINSTR']}, {'mame': '.rodata', 'size': 33187, 'entropy': 6.407619484825426, '
file_offset': 92800, 'props': ['Type: PROGBITS', 'ALLOC']}, {'mame': '.eh_frame', 'size':
4, 'entropy': -0.0, 'file_offset': 125988, 'props': ['Type: PROGBITS', 'ALLOC']}, {'name
': '.ctors', 'size': 12, 'entropy': 2.251629167387823, 'file_offset': 126976, 'props': ['
Type: PROGBITS', 'ALLOC', 'WRITE']}, {'name': '.dtors', 'size': 8, 'entropy': 1.0, '
file_offset': 126988, 'props': ['Type: PROGBITS', 'ALLOC', 'WRITE']l}, {'mname': '.jcr', '
size': 4, 'entropy': -0.0, 'file_offset': 126996, 'props': ['Type: PROGBITS', 'ALLOC', '
WRITE'l}, {'name': '.got.plt', 'size': 12, 'entropy': -0.0, 'file_offset': 127000, 'props
': ['Type: PROGBITS', 'ALLOC', 'WRITE'J]}]}

3 Segment Information: {'Sections': [{'Name': '', 'Size': 0, 'Virtual Address': 0}, {'Name': '.

init', 'Size': 28, 'Virtual Address': 134512788}, {'Name': '.text', 'Size': 92584, '
Virtual Address': 134512816}, {'Name': '.fini', 'Size': 23, 'Virtual Address':
134605400}, {'Name': '.rodata', 'Size': 33187, 'Virtual Address': 134605440}, {'Name': '.
eh_frame', 'Size': 4, 'Virtual Address': 134638628}, {'Name': '.ctors', 'Size': 12, '
Virtual Address': 134639616}, {'Name': '.dtors', 'Size': 8, 'Virtual Address':
134639628}, {'Name': '.jcr', 'Size': 4, 'Virtual Address': 134639636}, {'Name': '.got.plt
', 'Size': 12, 'Virtual Address': 134639640}, {'Name': '.data', 'Size': 18776, 'Virtual
Address': 134639680}, {'Name': '.bss', 'Size': 35496, 'Virtual Address': 134658464}, {'
Name': '.comment', 'Size': 4374, 'Virtual Address': 0}, {'Name': '.shstrtab',6 'Size':
111, 'Virtual Address': 0}, {'Name': '.symtab', 'Size': 22032, 'Virtual Address': 0}, {'
Name': '.strtab', 'Size': 19593, 'Virtual Address': 0}], 'Segments': [{'Type': '
SEGMENT_TYPES.LOAD', 'Size': 125992, 'Virtual Address': 134512640}, {‘Type‘: !
SEGMENT_TYPES.LOAD', 'Size': 18840, 'Virtual Address': 134639616}, {'Type': '
SEGMENT_TYPES.GNU_STACK', 'Size': 0, 'Virtual Address': 0}1}

4 imports: {'SymbolTable': ['', '__register_frame_info_bases', '__deregister_frame_info_bases',

5 exports: ['

' _Jv_RegisterClasses ']}

__do_global_dtors_aux', 'frame_dummy', '__do_global_ctors_aux', 'printchar', '
prints', 'printi', 'print', 'thread_self', 'pthread_kill_all_threads', '
pthread_start_thread', 'pthread_start_thread_event', 'pthread_free', 'restart',6 '
pthread_reap_children', 'pthread_insert_list', 'pthread_call_handlers', 'enqueue', '
remove_from_queue', '__pthread_set_own_extricate_if', 'thread_self',6 '
new_sem_extricate_func', 'suspend', 'pthread_null_sighandler', 'thread_self', '
pthread_sighandler_rt', 'pthread_sighandler', 'wait_node_dequeue', '__pthread_acquire', '

wait_node_free', 'restart', 'thread_self', 'suspend', 'pthread_handle_sigdebug', 'suspend
', 'thread_self', 'pthread_onexit_process', 'pthread_initialize', '
pthread_handle_sigrestart', 'pthread_handle_sigcancel', 'thread_self', 'enqueue',6 '
remove_from_queue', '__pthread_set_own_extricate_if', 'restart', 'thread_self',6 '

M.2. Gafgyt

158

cond_extricate_func',
join_extricate_func',
6 general: {'size': 192569,
has_relocations': O,

7 header: {'file_type':
header_size': 52,
physical_address':
SEGMENT_FLAGS .?777,
physical_address':
SEGMENT_FLAGS.?77,
physical_address':
'alignment ': 4}],
'size': 0, 'entropy':
134512788, 'size':
PROGBITS',
name': '.fini',
4.001822825622232},
'size': 33187,
'virtual_address':
PROGBITS',
'.dtors',
{'name ':

0,

name ':
1.0},
entropy':
size': 12,
134639680,
NOBITS',
name': '.comment',
3.6143694458867563},
': 111, ‘'entropy':
virtual_address':
type': 'STRTAB',
8 strings: {'numstrings':
77, 11, 1, 3, 10, 3
i1, 5, 3, 0, 4, 37,
11, 12, 12, 7, 14,
14, 1, 6, 6, 1, 0,
paths': 0, 'urls':
9 EntryPoint: [['Main ',
134605360] , ['print',
134514749], ['threa',
1345453611, ['pthre',
134547532], ['pthre',
134548042], ['threa',
134549336], ['threa',
134550484], ['__pth',
134550830] , ['suspe',
13455636121, ['pthre',
1345552141, ['threa',
134557118], ['resta’,
1345573911, ['__pth',
10 ExitPoint: []

'.jer!

'entropy':
'size':

0,

3,
8,
0,

0,

28,
'virtual_address

'type':

'entropy':
134638628,
'virtual_address':

'type':
-0.0}, {'name':

18776,
'virtual_address':

'type':
{'name':

134512996] ,

'suspend’,
connect ',

'virtual_size':

'symbols ':

'EXECUTABLE ',
'program_headers ':
134512640,
'alignment ':
134639616,
'alignment ':

'entropy'

, 'type':

'size':

'virtual_address
130,
0, 1

> 1, 14,
2, 3, 6,
1’ 4) 1’
9, 5, 2,
'registry’

134514183]
134544816]
134545406]
134547568]
134548342]
1345493371
134550524]
1345508931
134553675]
134556224]
1345571771
1345582361

'avlength':
1,
0,
5,
ol,

['__do_",

! __pthread_set_own_extricate_if',

'sigemptyset',
0,
1377}

'entry_point':
[{'type':

'physical_size':
4096}, {'type':
'physical_size':
4096}, {'type':
'physical_size':
'section_headers':
-0.0}, {'name':
: 3.63753751126605171},
': 134512816,
'PROGBITS ',
{'name':

0,
[{'name':
'.init',

'type':

4,
'size’

ltypel: 1
'.data’',

'size':

{'name"'
'entropy':
': 0, 'size':

2, 11, 14,
1, 3, 4, 0,
2, 0, 4, 0,

0,

: 0, 'MZ': 0}
, ['print',
, ['pthre',
, ['resta',
, ['enque',
, ['new_s"',
, ['pthre',

, ['pthre',
, ['pthre',
, ['enque',
, ['threa',
, ['threa',

'has_debug':

'virtual_size':

'size':
'virtual_address':
'.rodata',
6.407619484825426},
'size':
134639616,
'PROGBITS ',
'PROGBITS',
'.got.plt',
-0.0}, {'name':
'entropy':

134658464,
'PROGBITS ',
'.shstrtab',
3.94640553869732941},
22032,

'entropy ':

'virtual_address':
'virtual _address

0.5847502356535077},

'virtual_address':
'type':

5.392307692307693,

1,
32,
'printables':

1345128327 ,
1345142417 ,
1345450927 ,
1345456007 ,
1345479567 ,
1345484057 ,
1345494007 ,
, ['wait_', 134550600],
1345531597 ,
1345540937 ,
1345569647 ,
1345572687 ,
13455829511

'memmove ', 'recvfrom',
0, 'exports':

134512996,
"LOAD ',
125992,
'"LOAD ',
18840,
"GNU_STACK ',
0,
'type': 'NULL',
'type': 'PROGBITS',
{'name':
'entropy':
134605400,
"PROGBITS ',
{'name': '.eh_frame',
-0.0}, {'name':
'entropy':
134639628, '

'virtual_size

(]
s

92584,

: 12,

PROGBITS',
'type': 'PROGBITS',
{'name': '
35496, 'entropy':
0, 'size':
'STRTAB',
: '.symtab', 'type':
4.332352458289653},
19593, ‘'entropy':

1,
2,
2)
701,

1, 4, 3,
52, 26, 13, 22,
21, 0, 1, 1, 1,
'entropy':

0, 1,9,

['frame',
['print',
['pthre',
['pthre',
['remov',
['suspe',
['pthre',
['resta',
['suspe',
['pthre',
['remov',
['cond_"',

'machine_type':
'virtual_address':

'virtual_address':
'virtual_size':

'flags':

'.text',

': 134639636,
'virtual_address':

{'name':
4.5644808522575895}]%}
'printabledist ':

1345129127,
134514456] ,
134545154] ,
1345456137,
134547985] ,
134548465] ,
1345494747,
134550643] ,
1345535747,
134555359] ,
1345569937,
13455733117,

'socket ',
1377, 'imp

'i38
': 125992,

54344, '

'virtual_address':
SEGMENT _
'virtual _address':
'virtual_address':
'type': '

6.419944555244165},
'size':
'virtual_address':

23,

ltype| : ll
'.ctors',

2.251629167387823},

size': 8,

'size

.bss',

4374,

"SYMTAB ',

[10,
0, 24,
7, 16,
2, 1,

7,
8,
1,

[

['

mov 'call',

'add',

'‘call',

'call',

'thread_self', '

'select']
orts': 0, '

6', !

134512640, '

'flags':

134639616, '

flags':
0, '
FLAGS .?77,
0,

{]
'entropy':

134605440,
PROGBITS ',
'type': '
{l
'entropy':
v 4, '

134639640, '
'virtual_address
'type': '
5.200474765192193},
'entropy':
'virtual_address':

{l

0, 'size

strtab', '

2, 0,
11,
14,
1)

1,
1,

12,
14,

3,
5,
23,

5.4746551513671875, '

do"',
['print',
['pthre',
['pthre',
['__pth',
['pthre',
['wait_"',
['threa',
['threa',
['pthre',
['__pth',
['suspe',

11 Opcodes:
ret',

['push',
'nop',

'push’',

‘pop ',

"pop ',

'ret',

'mov ',

Inopl,

|nop|’

|n0p|,

lnopl’

'push’,
jne', 'mov',
lea', 'push'
push',
call',
push',
l’ 'mov',
'mov ',
'jle

'add'

mov ',

'cmp',
'inc', 'and'
mul', 'add',
'mov ',
, 'mov',
mov', 'sub',
xor' 'leave

[

12 Opcode-0Occurrence:

'nop':
leave':

21,
27,

'mov ',

'push’',
3

'push’',
'sub’',

'mov ',
'mov ',

'test'

1 1l
, 'mov

'm
'sub',
1
s
'mov ',

'mov

'push’
', 'ret
'sub':
'lea':

'sub',

'call',
'leave ',
'push’',

'leave ',
, 'mov'

'sub',

{'push':

'cmp', [
, 'je', 'sub
, 'mov', 'su
'add', 1
'ret',
'push’',
ov', 'mov',
'mov ',
'ret',
, 'mov', 'mo
'mov', 'mov
'lea’',
'mov ',
, 'call',
'push’',
1994,
775, 'cmp':
267, 'xor':

'mov

sal

Jje s
'
s

b',

mov ',
lnopl’
'push’',
'mov ',

]
>

v',

'
s

'mov ',
'add',
'mov ']
'mov ':

314,
19,

'ij'

'push’',

'call'’

'mov ',

'add',
'mov ',

'mov '
'and'
3120

'je':
'and':

'test ',
'nop',
'push’',
'sub',
'sub',

'push', 'mov',

'add',

>

IHOP',

, 'add', '

'call

, 'pop',
'je',
lnopl’ 1

'mov ',
'mov
'adc',

, 'cmp',
|popl .
, 'mov',

120,
73,

'mov ',

'
s

'‘call':

'nop',

'push’

'xor'

'push’',
'imul',
'mov ',

'mov '

'ij':

'hlt':

mov
'add',
‘add',
'mov ',
xor

>

>

>

'jae',

'POP',

‘call',
887,

1,

'HOP',

'nop',

'HOP',

'nop',

'nop',

', 'call',
'mov ',
'test',
'test',
'pop’,
'call',

[
>

'mov ',
'mov',
'sub',

[

[

254,

mov

'mov ',

'add':

'inc':

'add',

'
s

'ret',

'test':
91,

'mov ',
inc',

984,

'mov ',
'leave',
Ijel,

'je‘,

'mov ',
'hlt"',
'mov ',
'xor',
'mov ',
'imul',

'push’',
'mov ',

175,

'mov ',

lpopl:
'jne':
'jle':

'mov

'ret',
'push’',
'sub',
'and',
'nOp',
'mov '
'xor',

55,

56,

'
3

'DOP',

'mov ',
'mov ',
‘add',
'mov ',
'mov ',

'mov ',
inc',
'mov ',
'not ',

'test!', '
|n0p|, '
'push', [
'push', '
'push', [
'push
s Ijmp', [
'inc',
'mov ',
'mov‘, [
'xor',
'mov ',
'sub', 1

'and', [

'mov

'ret':
194, '
'imul':

49,

4,

M.2. Gafgyt 159

'mul': 4, 'adc': 7, 'jae': 3, 'mot': 14, 'jge': 1, 'dec': 31, 'cld': 56, 'repne scasb':
12, 'movsx': 33, 'jl': 30, 'jg': 38, 'jns': 9, 'meg': 8, 'div': 3, 'or': 40, 'shl': 51,
jbe': 20, 'setae': 1, 'rep stosb': 5, 'rep stosd': 4, 'shr': 26, 'bts': 4, 'setg': 1, '
shld': 2, 'jb': 12, 'ja': 7, 'movzx': 2, 'shrd': 2, 'repe cmpsb': 30, 'seta': 30, 'setb':
30, 'rep movsd': 5, 'sar': 9, 'idiv': 4, 'js': 3, 'setl': 1, 'setne': 1}

13 Image Size: 134658456

14 Header Size: {'ELF Header Size': 52, 'Program Headers Total Size': 144832}

15 GNU Physical Size: 0

16 Heap Size: {'Heap Segment Size': 18840, 'Heap Section Size': 0}

17 Loader Flags: {'Segment 0': {'Type': 'SEGMENT_TYPES.LOAD', 'Flags': 'READ | EXECUTE'}, '
Segment 1': {'Type': 'SEGMENT_TYPES.LOAD', 'Flags': 'READ | WRITE'}, 'Segment 2': {'Type
': 'SEGMENT_TYPES.GNU_STACK', 'Flags': 'READ | WRITE'}}

18 Section Entropy: {'': {'min': O, 'max': 0O, 'total': O, 'count': 1, 'mean': 0.0}, '.init': {'

min': 3.6375375112660517, 'max': 3.6375375112660517, 'total': 3.6375375112660517, 'count
': 1, 'mean': 3.6375375112660517}, '.text': {'min': 6.419944555244165, 'max':

6.419944555244165, 'total': 6.419944555244165, 'count': 1, 'mean': 6.419944555244165}, '.
fini': {'min': 4.001822825622232, 'max': 4.001822825622232, 'total': 4.001822825622232,

count': 1, 'mean': 4.001822825622232}, '.rodata': {'min': 6.407619484825426, 'max':
6.407619484825426, 'total': 6.407619484825426, 'count': 1, 'mean': 6.407619484825426}, '.
eh_frame': {'min': 0.0, 'max': 0.0, 'total': 0.0, 'count': 1, 'mean': 0.0}, '.ctors': {'

min': 2.251629167387823, 'max': 2.251629167387823, 'total': 2.251629167387823, 'count':
1, 'mean': 2.251629167387823}, '.dtors': {'min': 1.0, 'max': 1.0, 'total': 1.0, 'count':
1, 'mean': 1.0}, '.jer': {'min': 0.0, 'max': 0.0, 'total': 0.0, 'count': 1, 'mean': 0.0},
'.got.plt': {'min': 0.0, 'max': 0.0, 'total': 0.0, 'count': 1, 'mean': 0.0}, '.data': {'
min': 0.5847502356535077, 'max': 0.5847502356535077, 'total': 0.5847502356535077, 'count
': 1, 'mean': 0.5847502356535077}, '.bss': {'min': 5.200474765192193, 'max':
5.200474765192193, 'total': 5.200474765192193, 'count': 1, 'mean': 5.200474765192193}, '.
comment ': {'min': 3.6143694458867563, 'max': 3.6143694458867563, 'total':
3.6143694458867563, 'count': 1, 'mean': 3.6143694458867563}, '.shstrtab': {'min':
3.9464055386973294, 'max': 3.9464055386973294, 'total': 3.9464055386973294, 'count': 1,
mean': 3.9464055386973294}, '.symtab': {'min': 4.332352458289653, 'max':
4.332352458289653, 'total': 4.332352458289653, 'count': 1, 'mean': 4.332352458289653}, '.
strtab': {'min': 4.5644808522575895, 'max': 4.5644808522575895, 'total':
4.5644808522575895, 'count': 1, 'mean': 4.5644808522575895}}
19 Kolmogorov Complexity: 46 KB

M.2.2. Dynamic Analysis features

1 "Behavior": {

2 "files_opened": [

3 "/proc/net/route"

4 1

5 "files_written": [],

6 "files_deleted": [],

7 "command_executions": [],

8 "files_attribute_changed": [],
9 "processes_terminated": [

10 "/tmp/EB93A6/996E.elf"

11 1,

12 "processes_killed": [],

13 "processes_injected": [],

14 "services_opened": [],

15 "services_created": [],

16 "services_started": [],

17 "services_stopped": [],

18 "services_deleted": [],

19 "windows_searched": [],

20 "registry_keys_deleted": [],
21 "mitre_attack_techniques": [
22 "get system information on Linux"
23]

M.3. Okiru 160

M.3. Okiru

M.3.1. Psuedo-static analysis features

1 section: {'entry': '0Ox110f4', 'sections': [{'mame': '', ‘'size': 0, 'entropy': -0.0, '

file_offset': O, 'props': ['Type: NULL']}, {'name': '.interp', 'size': 20, 'entropy':
3.684183719779189, 'file_offset': 308, 'props': ['Type: PROGBITS', 'ALLOC'l}, {'mname': '.
note.ABI-tag', 'size': 32, 'entropy': 1.498778124459133, 'file_offset': 328, 'props': ['
Type: NOTE', 'ALLOC']}, {'name': '.hash', 'size': 372, 'entropy': 1.4538268956397733, '
file_offset': 360, 'props': ['Type: HASH', 'ALLOC']}, {'name': '.dynsym', 'size': 864, '
entropy': 2.4834977274409598, 'file_offset': 732, 'props': ['Type: DYNSYM', 'ALLOC'Il}, {'
name': '.dynstr', 'size': 411, 'entropy': 4.173851640731175, 'file_offset': 1596, 'props
': ['Type: STRTAB', 'ALLOC']}, {'name': '.rela.plt', 'size': 600, 'entropy':
2.83614668956366, 'file_offset': 2008, 'props': ['Type: RELA', 'ALLOC'l}, {'mame': '.init
', 'size': 34, 'entropy': 3.4104172527605194, 'file_offset': 2608, 'props': ['Type:
PROGBITS', 'ALLOC', 'EXECINSTR']}, {'mame': '.plt', 'size': 624, 'entropy':
3.9770756122374173, 'file_offset': 2644, 'props': ['Type: PROGBITS', 'ALLOC', 'EXECINSTR
']}, {'name': '.text', 'size': 26112, 'entropy': 6.781177741932852, 'file_offset': 3268,
'props': ['Type: PROGBITS', 'ALLOC', 'EXECINSTR']}]}

2 Segment Information: {'Sections': [{'Name': '', 'Size': 0, 'Virtual Address': 0}, {'Name': '.
interp', 'Size': 20, 'Virtual Address': 65844}, {'Name': '.note.ABI-tag', 'Size': 32, '
Virtual Address': 65864}, {'Name': '.hash', 'Size': 372, 'Virtual Address': 65896}, {'
Name': '.dynsym', 'Size': 864, 'Virtual Address': 66268}, {'Name': '.dynstr', 'Size':
411, 'Virtual Address': 67132}, {'Name': '.rela.plt', 'Size': 600, 'Virtual Address':
67544}, {'Name': '.init', 'Size': 34, 'Virtual Address': 68144}, {'Name': '.plt',6 'Size':

624, 'Virtual Address': 68180}, {'Name': '.text', 'Size': 26112, 'Virtual Address':
68804}, {'Name': '.fini', 'Size': 22, 'Virtual Address': 94916}, {'Name': '.rodata', '
Size': 14348, 'Virtual Address': 94940}, {'Name': '.eh_frame', 'Size': 4, 'Virtual
Address': 109288}, {'Name': '.ctors', 'Size': 8, 'Virtual Address': 122692}, {'Name': '.
dtors', 'Size': 8, 'Virtual Address': 122700}, {'Name': '.dynamic', 'Size': 168, 'Virtual

Address': 122708}, {'Name': '.got.plt', 'Size': 212, 'Virtual Address': 122876}, {'Name
': '.data', 'Size': 448, 'Virtual Address': 123088}, {'Name': '.bss', 'Size': 196, '
Virtual Address': 123536}, {'Name': '.comment', 'Size': 71, 'Virtual Address': 0}, {'Name
': '.ARC.attributes', 'Size': 50, 'Virtual Address': 0}, {'Name': '.shstrtab', 'Size':
169, 'Virtual Address': 0}], 'Segments': [{'Type': 'SEGMENT_TYPES.PHDR', 'Size': 256, '
Virtual Address': 65588}, {'Type': 'SEGMENT_TYPES.INTERP', 'Size': 20, 'Virtual Address':

65844}, {'Type': 'SEGMENT_TYPES.LOAD', 'Size': 43756, 'Virtual Address': 65536}, {'Type
': 'SEGMENT_TYPES.LOAD', 'Size': 844, 'Virtual Address': 122692}, {'Type': 'SEGMENT_TYPES
.DYNAMIC', 'Size': 168, 'Virtual Address': 122708}, {'Type': 'SEGMENT_TYPES.NOTE', 'Size
': 32, 'Virtual Address': 65864}, {'Type': 'SEGMENT_TYPES.GNU_STACK', 'Size': 0, 'Virtual

Address': 0}, {'Type': 'SEGMENT_TYPES.GNU_RELRO', 'Size': 188, 'Virtual Address':
122692}1%

3 imports: {'DynamicSymbols': ['', 'ioctl', 'sysconf', 'getdtablesize', 'recv', 'connect',
memmove', 'getpid', 'prctl', 'memcpy', 'readlink', 'getuid', 'malloc', 'sleep', 'recvfrom
', 'socket', 'select', 'readdir', 'send', 'abort', 'accept', 'calloc', 'write',6 'kill', '
bind', 'inet_addr', 'setsockopt', 'signal', 'read', 'sendto', 'realloc',6 'listen', 'fork
', '__uClibc_main', 'memset', 'inet_ntoa', 'getppid', 'time', 'opendir', 'getsockopt',6 '
__errno_location', 'exit', 'atoi', 'open', ‘'clock', 'setsid', 'closedir', 'fcntl', 'close
', 'free'l, 'SymbolTable': ['', 'ioctl', 'sysconf', 'getdtablesize', 'recv', 'connect', '
memmove', 'getpid', 'prctl', 'memcpy', 'readlink', 'getuid', 'malloc', 'sleep', 'recvfrom
', 'socket', 'select', 'readdir', 'send', 'abort', 'accept', 'calloc', 'write', 'kill', '
bind', 'inet_addr', 'setsockopt', 'signal', 'read', 'sendto', 'realloc', 'listen', 'fork
', '__uClibc_main', 'memset', 'inet_ntoa', 'getppid', 'time', 'opendir', 'getsockopt',
__errno_location', 'exit', 'atoi', 'open', 'clock', 'setsid', 'closedir', 'fcntl', 'close
', 'free'l}

4 exports: ['ioctl', 'sysconf', 'getdtablesize', 'recv', 'connect', 'memmove', 'getpid', 'prctl
', 'memcpy', 'readlink', 'getuid', 'malloc', 'sleep', 'recvfrom', 'socket', 'select',6 '
readdir', 'send', 'abort', 'accept', 'calloc', 'write', 'kill', 'bind', 'inet_addr',
setsockopt', 'signal', 'read', 'sendto', 'realloc', 'listen', 'fork', '__uClibc_main',
memset ', 'inet_ntoa', 'getppid', 'time', 'opendir', 'getsockopt',

[

[

[

errno_location', '

exit', 'atoi', 'open', 'clock', 'setsid', 'closedir', 'fcntl', 'close',6 'free',6 '
getsockname ']

5 general: {'size': 50980, 'virtual_size': 122880, 'has_debug': O, 'exports': 54, 'imports':
21, 'has_relocations': 0, 'symbols': 54}

6 header: {'file_type': 'EXECUTABLE', 'entry_point': 69876, 'machine_type': 'ARC_COMPACT', '
header_size': 52, 'program_headers': [{'type': 'PHDR', 'virtual_address': 65588, '
physical_address': 65588, 'physical_size': 256, 'virtual_size': 256, 'flags':
SEGMENT_FLAGS.??77, 'alignment': 4}, {'type': 'INTERP', 'virtual_address': 65844, '
physical_address': 65844, 'physical_size': 20, 'virtual_size': 20, 'flags': SEGMENT_FLAGS
.R, 'alignment': 1}, {'type': 'LOAD', 'virtual_address': 65536, 'physical_address':

65536, 'physical_size': 43756, 'virtual_size': 43756, 'flags': SEGMENT_FLAGS.?7?77, '

M.3. Okiru

161

alignment ':
122692,
alignment ':
122708, 'physical_si
': 4}, {'type':
physical_size':
': 'GNU_STACK',
virtual_size': O,
virtual_address':
': 188, 'flags':
type': 'NULL',
type': 'PROGBITS',
{'name':
': 1.498778124459133
': 372, 'entropy':
virtual_address':
'type': 'STRTAB',
{'name': '.rela.plt'
2.836146689563661},
': 34, 'entropy':
virtual_address':
type': 'PROGBITS',
6.781177741932852},
': 22, 'entropy':
virtual_address':
eh_frame', 'type':
name': '.ctors',
1.0}, {'name':
entropy': 1.0},
': 168, 'entropy':
virtual_address
type': 'PROGBITS',
3.5866852802054248},
': 196, 'entropy':
virtual _address': O,
', 'type': 'ARM_EXID
{'name': '.shstrtab'
4.206684723226437}]1}
7 strings: {'numstrings':
6, 5, 4, 12, 1, 2,
5, 2, 13, 5, 1, 1,
o, 1, o0, 2, 0, 0, 3,
0, 4, 1, 0],
registry': 0, 'MZ':

8 EntryPoint: [['Main ',

68240], ['conne',
', 68300], ['readl',
recvf', 68360],
abort', 68420],
bind', 68480],
sendt ', 68540],
memse ', 68600],
getso', 686601,
clock', 68720],
['free', 68780]]

9 ExitPoint:

10 Opcodes: ['add',
and', 'add', 'fild’',
and', 'cmp', 'or',
l’ 'jne', 'add',
'fst', 'add', 'test'
'fdiv', 'or', 'add',

'jno', 'add', 'push
', 'bswap', 'dec',
fcomp', 'pxor', 'add
'rol']

11 Opcode-0Occurrence:
6, 'fild': 1,
fsub': 1, 'jne': 2,
fdivr': 1, 'jb': 1,
iretd': 2, 'bswap':

'physical_si

32,

'add',

{'add
'daa':

8192}, {'type':
ze':
8192}, {'type':
ze':
'NOTE',
'virtual_size':
'virtual_address':

'flags':

122692,
SEGMENT_FLAGS .R,
'virtual_address':
'virtual_address':

'.note.ABI-tag', 'type':

1,

66268,

'
5>

{'name': '
3.4104172527605194},
'size':
'virtual_address
{'name':
3.57262366389516341%,
'size':

68180,

94940,

'PROGBITS ',
'PROGBITS ',
'type':
'.dynamic',
2.062889341399933},

'size':

'type':
'.dtors',
{'name ':

': 122876,
'virtual_address':
'.bss',
5.288541914062246},
'size':

{I

X',
s 1

48,

0,

4,
O’

'printables':

0}

698761 ,
68252] ,
68312],
['socke',
['accep',
['inet_"',
['reall"',
['"inet_
['__err
['setsi',

[['Dynamic Symbol',
'intl',
‘add',
'add',
'add',

]
s

844,

168,

'virtual_address':

{'name'

type':

name ':

type':

'avlength':
4,
0,

2,
0,
1,

1,
8,
4,

1,
0,

'LOAD',
'virtual_size':
'DYNAMIC',
'virtual_size':

SEGMENT_FLAGS .?777,
'physical_address':

1.4538268956397733},
'size':
'virtual_address':
'RELA"',
.init"',

'.fini',

'virtual_address':

71,
'virtual_address':
'STRTAB',

O’

275, !

['ioctl"',
['memmo ',
['getui', 68324],
683721,
68432] ,
68492] ,
685521 ,

', 68612],

'jno',
add ',

'fdivr',

'
s

'jbe',

1,

'jno':
'out':

1,

‘out',

'salc’',

34,

'rcr
3,
3,
'dec':

, 68672],
68732] ,

'abort'],
'rol',
'daa',

'movups ',

'add',

'pushal’,
'jne',
'inc',

'add',

'or',

'int1l':

1,

'xchg':
inc

[

1,

'virtual_address 0g
1040,
'virtual_address':
168,
65864,
32, 'flags':

0, 'physical_address':

': 122692, 'physical_address
'flags': SEGMENT_FLAGS.?7?7, '
122708, 'physical_address':
'flags': SEGMENT_FLAGS.?7?7, 'alignment
'physical_address': 65864, '
SEGMENT_FLAGS.R, 'alignment': 4}, {'type
0, 'physical_size': 0, '
'alignment': 16}, {'type': 'GNU_RELRO', '
122692, 'physical_size': 188, 'virtual_size
1}], 'section_headers': [{'name': '', '
0, 'size': 0, 'entropy': -0.0}, {'name': '.interp', '
65844, 'size': 20, 'entropy': 3.684183719779189},
'NOTE', 'virtual_address': 65864, 'size': 32, 'entropy
.hash', 'type': 'HASH', 'virtual_address': 65896, 'size
{'name': '.dynsym', 'type': 'DYNSYM', '

'entropy': 2.4834977274409598}, {'name': '.dynstr',
67132, 'size': 411, 'entropy': 4.173851640731175},
'virtual_address': 67544, 'size': 600, 'entropy':
'type': 'PROGBITS', 'virtual_address': 68144, 'size
{'name': '.plt', 'type': 'PROGBITS', '
624, 'entropy': 3.9770756122374173}, {'name':
': 68804, 'size': 26112, 'entropy':
'type': 'PROGBITS', 'virtual_address': 94916,
{'name': '.rodata', 'type': 'PROGBITS', '
'entropy': 5.3546136920220055}, {'name': '.
109288, 'size': 4, 'entropy': -0.0},
'virtual_address': 122692, 'size': 8, 'entropy':
'PROGBITS ', 'virtual_address': 122700, 'size': 8, '
'type': 'DYNAMIC', 'virtual_address': 122708, 'size
{'name': '.got.plt', 'type': 'PROGBITS', '
'entropy': 2.030485858892551}, {'name': '.data', '
123088, 'size': 448, 'entropy':

'type': 'NOBITS', 'virtual_address': 123536,
{'name': '.comment', 'type': 'PROGBITS', '
4.709763584891619}, {'nmame': '.ARC.attributes
0, 'size': 50, 'entropy': 4.578171939471838},
'virtual_address': 0, 'size': 169, 'entropy':

'alignment ':

864,

'.text', '
'size

14348,
{ 1

212,
'size

'entropy':
[24,

0, 0,
0, 5,

5.729166666666667 ,
4, 0, 0, 0, O, 1, O,
0o, 2, 3, 4, 1, 0, 3, 3, 4, 2, 0, 1,
4, 2, 0, 0, 1, O, 17, 5, 4, 3, 0, 8,
entropy': 5.393893241882324, 'paths':

'printabledist ':
0, 0, 2, 5, 0,

5’
0,

682041,
68264] ,

['recv',
['memcp
[1

68408] ,
68468] ,

['sysco', 68216], ['getdt',6 68228],
['getpi', 682761, ['prctl', 682881,
['mallo', 68336], ['sleep', 68348],
68384], ['readd', 68396], ['send',
68444], ['write', 684561, ['kill',
['setso', 68504], ['signa', 68516], ['read', 68528],
['liste', 68564], ['fork', 68576], ['__uCl', 685881,
['getpp', 68624], ['time', 68636], ['opend', 68648],
['exit', 68684], ['atoi', 68696], ['open', 68708], ['
['close', 68744], ['fcntl', 68756], ['close', 68768],

P
[
P
[
[]

['selec',
['callo"',

'exit']]
'loopne’,

['Dynamic Symbol',
'add', 'or', 'add',
'intl', 'rcr', 'and', 'test', 'and', 'sub',
‘or', 'add', 'mov', 'fsub', 'add', 'add', 'add', 'add
'add', 'xchg', 'push', 'add', 'push', 'or', 'add',
'add', 'add', 'lodsd', 'xchg', 'or', 'or', 'add',
'jb', 'push', 'out', 'inc', 'fadd', 'fcmove',
'loopne', 'add', 'jle', 'iretd', 'inc', 'add
'loop', 'cmpsb', 'pxor', 'add', 'and', 'out', 'inc', '
'add', 'iretd', 'jmp', 'and', 'add', 'add', 'intl',

'push', 'or', 'add', '

'push', 1

'jno',
‘fcom',

'and':
1, 'mov': 1, '
'fdiv': 1, '
'jle': 1, !
2, 'fcomp':

'rol':

2,
'fst':
'fadd':
1,

3)
'test':
2,
' 4,
'jbe':

2)
'sub':
1,
1,
'loop':

‘or': 9,
1, 'cmp':
'pushal ':
'fcmove ':
1,

'loopne': 2,
1, 'movups':
1, 'lodsd': 1,
1, 'fcom': 1,
'cmpsb': 1, 'pxor':

'push': 6,

1,

M.3. Okiru 162

'salc': 1, 'jmp': 1}
12 Image Size: 123536
13 Header Size: {'ELF Header Size': 52, 'Program Headers Total Size': 45264}
14 GNU Physical Size: O
15 Heap Size: {'Heap Segment Size': 844, 'Heap Section Size': 0}

16 Loader Flags: {'Segment 0': {'Type': 'SEGMENT_TYPES.PHDR', 'Flags': 'READ | EXECUTE'}, '
Segment 1': {'Type': 'SEGMENT_TYPES.INTERP', 'Flags': 'READ'}, 'Segment 2': {'Type': '
SEGMENT_TYPES.LOAD', 'Flags': 'READ | EXECUTE'}, 'Segment 3': {'Type': 'SEGMENT_TYPES.
LOAD', 'Flags': 'READ | WRITE'}, 'Segment 4': {'Type': 'SEGMENT_TYPES.DYNAMIC', 'Flags':
'READ | WRITE'}, 'Segment 5': {'Type': 'SEGMENT_TYPES.NOTE', 'Flags': 'READ'}, 'Segment
6': {'Type': 'SEGMENT_TYPES.GNU_STACK', 'Flags': 'READ | WRITE'}, 'Segment 7': {'Type': '
SEGMENT_TYPES.GNU_RELRO', 'Flags': 'READ'}}

17 Section Entropy: {'': {'min': O, 'max': O, 'total': O, 'count': 1, 'mean': 0.0}, '.interp':

{'min': 3.684183719779189, 'max': 3.684183719779189, 'total': 3.684183719779189, 'count':
1, 'mean': 3.684183719779189}, '.note.ABI-tag': {'min': 1.498778124459133, 'max':
1.498778124459133, 'total': 1.498778124459133, 'count': 1, 'mean': 1.498778124459133}, '.
hash': {'min': 1.4538268956397733, 'max': 1.4538268956397733, 'total':
1.4538268956397733, 'count': 1, 'mean': 1.4538268956397733}, '.dynsym': {'min':
2.4834977274409598, 'max': 2.4834977274409598, 'total': 2.4834977274409598, 'count': 1, '
mean': 2.4834977274409598}, '.dynstr': {'min': 4.173851640731175, 'max':
4.173851640731175, 'total': 4.173851640731175, 'count': 1, 'mean': 4.173851640731175}, '.
rela.plt': {'min': 2.83614668956366, 'max': 2.83614668956366, 'total': 2.83614668956366,
'count': 1, 'mean': 2.83614668956366}, '.init': {'min': 3.4104172527605194, 'max':
3.4104172527605194, 'total': 3.4104172527605194, 'count': 1, 'mean': 3.4104172527605194},
'.plt': {'min': 3.9770756122374173, 'max': 3.9770756122374173, 'total':
3.9770756122374173, 'count': 1, 'mean': 3.9770756122374173}, '.text': {'min':
6.781177741932852, 'max': 6.781177741932852, 'total': 6.781177741932852, 'count': 1, '
mean': 6.781177741932852}, '.fini': {'min': 3.5726236638951634, 'max':
3.5726236638951634, 'total': 3.5726236638951634, 'count': 1, 'mean': 3.5726236638951634},
'.rodata': {'min': 5.3546136920220055, 'max': 5.3546136920220055, 'total':
5.3546136920220055, 'count': 1, 'mean': 5.3546136920220055}, '.eh_frame': {'min': 0.0, '
max': 0.0, 'total': 0.0, 'count': 1, 'mean': 0.0}, '.ctors': {'min': 1.0, 'max': 1.0, '
total': 1.0, 'count': 1, 'mean': 1.0}, '.dtors': {'min': 1.0, 'max': 1.0, 'total': 1.0, '
count': 1, 'mean': 1.0}, '.dynamic': {'min': 2.062889341399933, 'max': 2.062889341399933,
'total': 2.062889341399933, 'count': 1, 'mean': 2.062889341399933}, '.got.plt': {'min':
2.030485858892551, 'max': 2.030485858892551, 'total': 2.030485858892551, 'count': 1, '
mean': 2.030485858892551}, '.data': {'min': 3.5866852802054248, 'max':
3.5866852802054248, 'total': 3.5866852802054248, 'count': 1, 'mean': 3.5866852802054248},
'.bss': {'min': 5.288541914062246, 'max': 5.288541914062246, 'total': 5.288541914062246,
'count': 1, 'mean': 5.288541914062246}, '.comment': {'min': 4.709763584891619, 'max':
4.709763584891619, 'total': 4.709763584891619, 'count': 1, 'mean': 4.709763584891619}, '.
ARC.attributes': {'min': 4.578171939471838, 'max': 4.578171939471838, 'total':
4.578171939471838, 'count': 1, 'mean': 4.578171939471838}, '.shstrtab': {'min':
4.206684723226437, 'max': 4.206684723226437, 'total': 4.206684723226437, 'count': 1, '
mean': 4.206684723226437}}
18 Kolmogorov Complexity: 16 KB

M.3.2. Dynamic Analysis Features

4
2 {

3 "Behavior": {

4 "files_opened": [

5 "/proc/net/tcp"

6 "/dev/FTWDT101\\ watchdog",
7 "/dev/FTWDT101_watchdog",

8 "/dev/misc/watchdog",

9 "/dev/watchdog"

10 1,

1 "files_written": [],

12 "files_deleted": [],

13 "command_executions": [],

14 "files_attribute_changed": [],
15 "processes_terminated": [

16 "/tmp/EB93A6/996E.elf",

17 "-sh"

18 [

19 "processes_killed": [],

20 "processes_injected": [],

21 "services_opened": [],

22
23
24
25
26
27
28
29
30
31
32
33

1

M.4. MooBot 163

"services_created": [],
"services_started": [],
"services_stopped": [],
"services_deleted": [],
"windows_searched": [],
"registry_keys_deleted": [],
"mitre_attack_techniques": [

"Detected TCP or UDP traffic on non-standard ports",
"Uses network protocols on non-standard ports"

M.4. MooBot
M.4.1. Pseudo-static analysis features

2 section: {'entry': '0x8194', 'sections': [{'name': '', 'size': 0, 'entropy': -0.0, '

file_offset': O, 'props': ['Type: NULL'l}, {'mame': '.init', 'size': 16, 'entropy': 3.75,

'file_offset': 212, 'props': ['Type: PROGBITS', 'ALLOC', 'EXECINSTR'l]}, {'name': '.text
', 'size': 78632, 'entropy': 6.043327442975583, 'file_offset': 240, 'props': ['Type:
PROGBITS', 'ALLOC', 'EXECINSTR']}, {'mame': '.fini', 'size': 16, 'entropy': 3.75, '
file_offset': 78872, 'props': ['Type: PROGBITS', 'ALLOC', 'EXECINSTR']}, {'mname': '.
rodata', 'size': 3224, 'entropy': 4.979348101368475, 'file_offset': 78888, 'props': [’
Type: PROGBITS', 'ALLOC']}, {'name': '.ARM.extab',6 'size': 24, 'entropy':

3.0016291673878226, 'file_offset': 82112, 'props': ['Type: PROGBITS', 'ALLOC'l}, {'name':

'.ARM.exidx', 'size': 280, 'entropy': 4.494767067674535, 'file_offset': 82136, 'props':
['Type: ARM_EXIDX', 'ALLOC'l}, {'name': '.eh_frame',6 'size': 4, 'entropy': -0.0, '
file_offset': 82416, 'props': ['Type: PROGBITS', 'ALLOC', 'WRITE']}, {'name': '.tbss', '
size': 8, 'entropy': 2.0, 'file_offset': 82420, 'props': ['Type: NOBITS', 'ALLOC', 'WRITE
']}, {'name': '.init_array', 'size': 4, 'entropy': 1.5, 'file_offset': 82420, 'props': ['
Type: INIT_ARRAY', 'ALLOC', 'WRITE'1}1}

3 Segment Information: {'Sections': [{'Name': '', 'Size': 0, 'Virtual Address': 0}, {'Name': '.

init', 'Size': 16, 'Virtual Address': 32980}, {'Name': '.text', 'Size': 78632, 'Virtual
Address': 33008}, {'Name': '.fini', 'Size': 16, 'Virtual Address': 111640}, {'Name': '.
rodata', 'Size': 3224, 'Virtual Address': 111656}, {'Name': '.ARM.extab',6 'Size': 24, '
Virtual Address': 114880}, {'Name': '.ARM.exidx', 'Size': 280, 'Virtual Address':
114904}, {'Name': '.eh_frame', 'Size': 4, 'Virtual Address': 147952}, {'Name': '.tbss', '
Size': 8, 'Virtual Address': 147956}, {'Name': '.init_array', 'Size': 4, 'Virtual Address
': 147956}, {'Name': '.fini_array', 'Size': 4, 'Virtual Address': 147960}, {'Name': '.jcr
', 'Size': 4, 'Virtual Address': 147964}, {'Name': '.got', 'Size': 168, 'Virtual Address

': 147968}, {'Name': '.data', 'Size': 516, 'Virtual Address': 148136}, {'Name': '.bss', '
Size': 12588, 'Virtual Address': 148652}, {'Name': '.comment',6 'Size': 2434, 'Virtual
Address': 0}, {'Name': '.debug_aranges', 'Size': 192, 'Virtual Address': 0}, {'Name': '.
debug_pubnames', 'Size': 531, 'Virtual Address': 0}, {'Name': '.debug_info', 'Size':
7459, 'Virtual Address': 0}, {'Name': '.debug_abbrev', 'Size': 1682, 'Virtual Address':
0}, {'Name': '.debug_line', 'Size': 2503, 'Virtual Address': 0}, {'Name': '.debug_frame',

'Size': 696, 'Virtual Address': 0}, {'Name': '.debug_str', 'Size': 2250, 'Virtual
Address': 0}, {'Name': '.debug_loc', 'Size': 4495, 'Virtual Address': 0}, {'Name': '.
debug_ranges', 'Size': 1368, 'Virtual Address': 0}, {'Name': '.ARM.attributes', 'Size':
22, 'Virtual Address': 0}, {'Name': '.shstrtab', 'Size': 279, 'Virtual Address': 0}, {'
Name': '.symtab', 'Size': 18144, 'Virtual Address': 0}, {'Name': '.strtab', 'Size': 8859,

'Virtual Address': 0}], 'Segments': [{'Type': 'SEGMENT_TYPES.ARM_EXIDX', 'Size': 280, '
Virtual Address': 114904}, {'Type': 'SEGMENT_TYPES.LOAD', 'Size': 82416, 'Virtual Address
': 32768}, {'Type': 'SEGMENT_TYPES.LOAD', 'Size': 700, 'Virtual Address': 147952}, {'Type
': 'SEGMENT_TYPES.TLS', 'Size': 0, 'Virtual Address': 147956}, {'Type': 'SEGMENT_TYPES.
GNU_STACK', 'Size': 0, 'Virtual Address': O0}]}

4 imports: {'SymbolTable': ['', '__cxa_begin_cleanup', '__cxa_call_unexpected', '
__nptl_deallocate_tsd', '__deregister_frame_info', '__cxa_type_match', '__pthread_unwind
', '__nptl_nthreads', '__h_errno_location', '__gnu_Unwind_Find_exidx"', '
_Jv_RegisterClasses', '__register_frame_info'l}

5 exports: ['__do_global_dtors_aux', 'frame_dummy', 'anti_gdb_entry', 'resolve_cnc_addr', '
ensure_single_instance', 'setup_connection', 'add_auth_entry', '__syscall_select', '
fd_to_DIR', '__sys_accept', '__sys_connect', '__sys_recv', '__sys_recvfrom', '__sys_send
', '__sys_sendto', '__malloc_largebin_index', '__malloc_trim', 'mnprocessors_onln', '
__pthread_return_O', '__check_one_fd', '__syscall_nanosleep', 'init_static_tls', '
get_eit_entry', 'unwind_phase2_forced', 'unwind_phase2', '__gnu_unwind_pr_common', '
___Unwind_ForcedUnwind', '__gnu_Unwind_RaiseException', '__libc_sigaction', '

_GI_sigaddset', '__GI_fopen', 'getrlimit', 'doctl', '__GI_initstate_r', '__GI_sigaction

M.4. MooBot 164

', '__GI_time', 'getgid', '__aeabi_read_tp', '__getpid', 'sysconf', 'random', '
__GI_getpagesize', 'getdtablesize', 'fdopendir', 'recv', 'connect', '__GI___uClibc_fini',
'sigemptyset', '__pthread _mutex_lock', '__sigdelset']

6 general: {'size': 135195, 'virtual_size': 0O, 'has_debug': O, 'exports': 1134, 'imports': 0, '
has_relocations': 0, 'symbols': 1134}

7 header: {'file_type': 'EXECUTABLE', 'entry_point': 33172, 'machine_type': 'ARM', 'header_size
': 52, 'program_headers': [{'type': 'ARM_EXIDX', 'virtual_address': 114904, '
physical_address': 114904, 'physical_size': 280, 'virtual_size': 280, 'flags':
SEGMENT_FLAGS.R, 'alignment': 4}, {'type': 'LOAD', 'virtual_address': 32768, '
physical_address': 32768, 'physical_size': 82416, 'virtual_size': 82416, 'flags':
SEGMENT_FLAGS.???7, 'alignment': 32768}, {'type': 'LOAD', 'virtual_address': 147952, '
physical_address': 147952, 'physical_size': 700, 'virtual_size': 13288, 'flags':
SEGMENT_FLAGS.???, 'alignment': 32768}, {'type': 'TLS', 'virtual_address': 147956, '
physical_address': 147956, 'physical_size': 0, 'virtual_size': 8, 'flags': SEGMENT_FLAGS.
R, 'alignment': 4}, {'type': 'GNU_STACK', 'virtual_address': 0, 'physical_address': 0, '
physical_size': 0, 'virtual_size': 0, 'flags': SEGMENT_FLAGS.?77, 'alignment': 4}], '
section_headers': [{'name': '', 'type': 'NULL', 'virtual_address': O, 'size': 0, 'entropy
': -0.0}, {'name': '.init', 'type': 'PROGBITS', 'virtual_address': 32980, 'size': 16, '
entropy': 3.75}, {'name': '.text', 'type': 'PROGBITS', 'virtual_address': 33008, 'size':
78632, 'entropy': 6.043327442975583}, {'mame': '.fini', 'type': 'PROGBITS', '
virtual_address': 111640, 'size': 16, 'entropy': 3.75}, {'mame': '.rodata', 'type': '
PROGBITS', 'virtual_address': 111656, 'size': 3224, 'entropy': 4.979348101368475}, {'name
't '.ARM.extab', 'type': 'PROGBITS', 'virtual_address': 114880, 'size': 24, 'entropy':
3.0016291673878226}, {'name': '.ARM.exidx', 'type': 'ARM_EXIDX', 'virtual_address':
114904, 'size': 280, 'entropy': 4.494767067674535}, {'name': '.eh_frame', 'type': '
PROGBITS', 'virtual_address': 147952, 'size': 4, 'entropy': -0.0}, {'name': '.tbss', '
type': 'NOBITS', 'virtual_address': 147956, 'size': 8, 'entropy': 2.0}, {'mame': '.
init_array', 'type': 'INIT_ARRAY', 'virtual_address': 147956, 'size': 4, 'entropy': 1.5},

{'name': '.fini_array', 'type': 'FINI_ARRAY', 'virtual_address': 147960, 'size': 4, '
entropy': 1.5}, {'mame': '.jcr', 'type': 'PROGBITS', 'virtual_address': 147964, 'size':
4, 'entropy': -0.0}, {'name': '.got', 'type': 'PROGBITS', 'virtual_address': 147968, '
size': 168, 'entropy': 3.3050193770970253}, {'name': '.data', 'type': 'PROGBITS', '
virtual_address': 148136, 'size': 516, 'entropy': 3.8899937364255988}, {'name': '.bss', '
type': 'NOBITS', 'virtual_address': 148652, 'size': 12588, 'entropy': 5.516411687837259},

{'name': '.comment', 'type': 'PROGBITS', 'virtual_address': 0, 'size': 2434, 'entropy':
3.74982617971519}, {'name': '.debug_aranges', 'type': 'PROGBITS', 'virtual_address': 0, '
size': 192, 'entropy': 2.0660523192543327}, {'name': '.debug_pubnames', 'type': 'PROGBITS
', 'virtual_address': 0, 'size': 531, 'entropy': 4.7663720680363095}, {'name': °'.
debug_info', 'type': 'PROGBITS', 'virtual_address': 0, 'size': 7459, 'entropy':
5.141757006174466}, {'name': '.debug_abbrev', 'type': 'PROGBITS', 'virtual_address': 0, '
size': 1682, 'entropy': 4.581741703113143}, {'name': '.debug_line', 'type': 'PROGBITS', '
virtual_address': 0, 'size': 2503, 'entropy': 5.8404665183166395}, {'name': '.debug_frame
', 'type': 'PROGBITS', 'virtual_address': 0, 'size': 696, 'entropy': 4.168323002102134},
{'name': '.debug_str', 'type': 'PROGBITS', 'virtual_address': 0, 'size': 2250, 'entropy':

5.044492868897249}, {'name': '.debug_loc', 'type': 'PROGBITS', 'virtual_address': 0, '
size': 4495, 'entropy': 3.2169624594073363}, {'name': '.debug_ranges', 'type': 'PROGBITS
', 'virtual_address': 0, 'size': 1368, 'entropy': 2.840044198252748}, {'name': '.ARM.
attributes', 'type': 'ARM_ATTRIBUTES', 'virtual_address': 0, 'size': 22, 'entropy':
3.259141984247901}, {'name': '.shstrtab', 'type': 'STRTAB', 'virtual_address': 0, 'size':

279, 'entropy': 4.306943408525259}, {'name': '.symtab', 'type': 'SYMTAB', '
virtual_address': 0, 'size': 18144, ‘'entropy': 3.408498530455322}, {'name': '.strtab', '
type': 'STRTAB', 'virtual_address': O, 'size': 8859, 'entropy': 4.546139438667893}]1}

8 strings: {'numstrings': 1, 'avlength': 5.0, 'printabledist': [1, 1, 1, O, O, O, O, O, O, O,
o, o, o, o, o, 0, 0, &, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, ,
o, o, o, o, o, o, 0o, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,
o, o, o, o, o, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O], '
printables': 5, 'entropy': 2.321928024291992, 'paths': O, 'urls': 0, 'registry': O, 'MZ':
0}

9 EntryPoint: [['Main ', 33172], ['__do_', 33008], ['frame', 33076], ['anti_', 57932], ['resol
', 58312], ['ensur', 57956], ['setup', 62496], ['add_a', 62696], ['__sys', 755761, ['
fd_to', 763641, ['__sys', 779521, ['__sys', 782041, ['__sys', 78592], ['__sys', 787721,
['__sys', 78980], ['__sys', 79160], ['__mal', 79916], ['__mal', 83676], ['mnproc', 87520],

['__pth', 92180], ['__che', 92372], ['__sys', 94748], ['init_',k 104052], ['get_e',
106420], ['unwin', 106964], ['unwin', 107328], ['__gnu', 108072], ['___Un', 109600], ['
__gnu', 107532], ['__1lib', 93716], ['__GI_', 79512], ['__GI_', 973961, ['getrl', 94476],
['ioctl', 751641, ['__GI_', 86308], ['__GI_', 937161, ['__GI_', 759801, ['getgi', 94416],

['__aea', 93888], ['__get', 90628], ['sysco', 87852], ['rando', 85244], ['__GI_',
94436], ['getdt', 94332], ['fdope', 76768], ['recv', 78660], ['comnne', 78272], ['__GI_',
92248], ['sigem', 79592], ['__pth', 92180]]

10 ExitPoint: []

11 Opcodes: ['or', 'fild', 'loop', 'scasd', 'sbb', 'adc', 'jmp', 'add', 'aam', 'add', 'push', '

M.4. MooBot 165

] [[

jecxz', 'add', 'sbb', 'xor', 'jecxz', 'add', 'adc', 'jmp', 'adc', 'xor', 'in', 'inc',
mov', 'loope', 'inc', 'add', 'add', 'add', 'or', 'fild', 'loop', 'scasd', 'sbb'l]

12 Opcode-Occurrence: {'or': 2, 'fild': 2, 'loop': 2, 'scasd': 2, 'sbb': 3, 'adc': 3, 'jmp': 2,
'add': 7, 'aam': 1, 'push': 1, 'jecxz': 2, 'xor': 2, 'in': 1, 'inc': 2, 'mov': 1, 'loope
' 1}

13 Image Size: 148652

14 Header Size: {'ELF Header Size': 52, 'Program Headers Total Size': 83396}

15 GNU Physical Size: 0

16 Heap Size: {'Heap Segment Size': 700, 'Heap Section Size': 0}

17 Loader Flags: {'Segment 0': {'Type': 'SEGMENT_TYPES.ARM_EXIDX', 'Flags': 'READ'}, 'Segment
1': {'Type': 'SEGMENT_TYPES.LOAD', 'Flags': 'READ | EXECUTE'}, 'Segment 2': {'Type': '
SEGMENT_TYPES.LOAD', 'Flags': 'READ | WRITE'}, 'Segment 3': {'Type': 'SEGMENT_TYPES.TLS',

'Flags': 'READ'}, 'Segment 4': {'Type': 'SEGMENT_TYPES.GNU_STACK', 'Flags': 'READ |
WRITE | EXECUTE'}}
18 Section Entropy: {'': {'min': O, 'max': O, 'total': O, 'count': 1, 'mean': 0.0}, '.init': {'

min': 3.75, 'max': 3.75, 'total': 3.75, 'count': 1, 'mean': 3.75}, '.text': {'min':
6.043327442975583, 'max': 6.043327442975583, 'total': 6.043327442975583, 'count': 1, '
mean': 6.043327442975583}, '.fini': {'min': 3.75, 'max': 3.75, 'total': 3.75, 'count': 1,
'mean': 3.75}, '.rodata': {'min': 4.979348101368475, 'max': 4.979348101368475, 'total':
4.979348101368475, 'count': 1, 'mean': 4.979348101368475}, '.ARM.extab': {'min':
3.0016291673878226, 'max': 3.0016291673878226, 'total': 3.0016291673878226, 'count': 1,
mean': 3.0016291673878226}, '.ARM.exidx': {'min': 4.494767067674535, 'max':
4.494767067674535, 'total': 4.494767067674535, 'count': 1, 'mean': 4.494767067674535}, '.
eh_frame': {'min': 0.0, 'max': 0.0, 'total': 0.0, 'count': 1, 'mean': 0.0}, '.tbss': {'
min': 2.0, 'max': 2.0, 'total': 2.0, 'count': 1, 'mean': 2.0}, '.init_array': {'min':
1.5, 'max': 1.5, 'total': 1.5, 'count': 1, 'mean': 1.5}, '.fini_array': {'min': 1.5, 'max
': 1.5, 'total': 1.5, 'count': 1, 'mean': 1.5}, '.jecr': {'min': 0.0, 'max': 0.0, 'total':
0.0, 'count': 1, 'mean': 0.0}, '.got': {'min': 3.3050193770970253, 'max':
3.3050193770970253, 'total': 3.3050193770970253, 'count': 1, 'mean': 3.3050193770970253},
'.data': {'min': 3.8899937364255988, 'max': 3.8899937364255988, 'total':
3.8899937364255988, 'count': 1, 'mean': 3.8899937364255988}, '.bss': {'min':
5.516411687837259, 'max': 5.516411687837259, 'total': 5.516411687837259, 'count': 1, '
mean': 5.516411687837259}, '.comment': {'min': 3.74982617971519, 'max': 3.74982617971519,
"total': 3.74982617971519, 'count': 1, 'mean': 3.74982617971519}, '.debug_aranges': {'
min': 2.0660523192543327, 'max': 2.0660523192543327, 'total': 2.0660523192543327, 'count
': 1, 'mean': 2.0660523192543327}, '.debug_pubnames': {'min': 4.7663720680363095, 'max':
4.7663720680363095, 'total': 4.7663720680363095, 'count': 1, 'mean': 4.7663720680363095},
'.debug_info': {'min': 5.141757006174466, 'max': 5.141757006174466, 'total':
5.141757006174466, 'count': 1, 'mean': 5.141757006174466}, '.debug_abbrev': {'min':
4.581741703113143, 'max': 4.581741703113143, 'total': 4.581741703113143, 'count': 1, '
mean': 4.581741703113143}, '.debug_line': {'min': 5.8404665183166395, 'max':
5.8404665183166395, 'total': 5.8404665183166395, 'count': 1, 'mean': 5.8404665183166395},
'.debug_frame': {'min': 4.168323002102134, 'max': 4.168323002102134, 'total':
4.168323002102134, 'count': 1, 'mean': 4.168323002102134}, '.debug_str': {'min':
5.044492868897249, 'max': 5.044492868897249, 'total': 5.044492868897249, 'count': 1, '
mean': 5.044492868897249}, '.debug_loc': {'min': 3.2169624594073363, 'max':
3.2169624594073363, 'total': 3.2169624594073363, 'count': 1, 'mean': 3.2169624594073363},
'.debug_ranges': {'min': 2.840044198252748, 'max': 2.840044198252748, 'total':
2.840044198252748, 'count': 1, 'mean': 2.840044198252748}, '.ARM.attributes': {'min':
3.259141984247901, 'max': 3.259141984247901, 'total': 3.259141984247901, 'count': 1, '
mean': 3.259141984247901}, '.shstrtab': {'min': 4.306943408525259, 'max':
4.306943408525259, 'total': 4.306943408525259, 'count': 1, 'mean': 4.306943408525259}, '.
symtab': {'min': 3.408498530455322, 'max': 3.408498530455322, 'total': 3.408498530455322,
'count': 1, 'mean': 3.408498530455322}, '.strtab': {'min': 4.546139438667893, 'max':
4.546139438667893, 'total': 4.546139438667893, 'count': 1, 'mean': 4.546139438667893}
19 Kolmogorov Complexity: 39 KB
20 }

M.4.2. Dynamic Analysis Features

"Behavior": {

"files_opened": [
"/etc/mtab",
"/proc/",
"/proc/5318/mounts",

"/proc/sys/vm/mmap_min_addr",
"/tmp/base",
"/proc/5041/mounts",
"/tmp/sample",

10 li//"’

© ® N o g A W N =

61
62

63
64
65
66
67
68
69
70
7

72

73

74

75

M.4. MooBot

166

1

"//lib/multipath",
"//lib/multipath/libchecktur.so",
"//lib/multipath/libforeign-nvme.so",
"//1lib/multipath/libprioconst.so",

"/dev/loop-control",

"/dev/loopO",
"/dev/loopl",
"/dev/loopl0O",
"/dev/loopil",
"/dev/loopl2",
"/dev/loop2",
"/dev/loop3",
"/dev/loop4",
"/dev/loop5",
"/dev/loop6",
"/dev/loopT7",
"/dev/loop8",
"/dev/loop9",
"/dev/sda",
"/dev/sdal",
"/dev/sda22",

"/etc//localtime",

"/etc/adjtime",
"/etc/apparmor
"/etc/apparmor
"/etc/apparmor
"/etc/apparmor
"/etc/apparmor
"/etc/apparmor
"/etc/apparmor.
"/etc/apparmor
"/etc/apparmor
"/etc/apparmor
"/etc/apparmor
"/etc/apparmor
"/etc/apparmor
"/etc/apparmor.
"/etc/apparmor
"/etc/apparmor.
"/etc/apparmor
"/etc/apparmor
"/etc/apparmor

"files_written": [
"/etc/udev/rules.d/70-snap.snapd.rules.YJ6Mvq39yODV~",

.d/abstractions/base",
.d/abstractions/consoles",
.d/abstractions/dbus-strict",
.d/abstractions/kerberosclient",
.d/abstractions/ldapclient",
.d/abstractions/likewise",

d/abstractions/mdns",

.d/abstractions/nameservice",
.d/abstractions/nis",
.d/abstractions/openssl",
.d/abstractions/perl",
.d/abstractions/python",
.d/abstractions/ssl_certs",

d/abstractions/winbind",

.d/tunables/alias",

d/tunables/global",

.d/tunables/home",
.d/tunables/home.d",
.d/tunables/home.d/site.local"

00/LNXPWRBN

"/sys/devices/LNXSYSTM:
"/sys/devices/LNXSYSTM:
"/sys/devices/LNXSYSTM:
"/sys/devices/LNXSYSTM:
"/sys/devices/LNXSYSTM:

uevent",

"/sys/devices/LNXSYSTM:
"/sys/devices/LNXSYSTM:

uevent",

"/sys/devices/LNXSYSTM:
"/sys/devices/LNXSYSTM:
"/sys/devices/LNXSYSTM:
"/sys/devices/LNXSYSTM:
"/sys/devices/LNXSYSTM:
"/sys/devices/LNXSYSTM:
"/sys/devices/LNXSYSTM:
"/sys/devices/LNXSYSTM:
:00/LNXSYBUS

"/sys/devices/LNXSYSTM
uevent",

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

00/LNXPWRBN
00/LNXPWRBN
00/LNXPWRBN
00/LNXSYBUS

00/LNXSYBUS
00/LNXSYBUS

00/LNXSYBUS
00/LNXSYBUS
00/LNXSYBUS
00/LNXSYBUS
00/LNXSYBUS
00/LNXSYBUS
00/LNXSYBUS
00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

:00/input/input0/event0/uevent",
:00/input/inputO/uevent",

:00/uevent",

:00/wakeup/wakeup40/uevent",
:00/ACPI0003:00/power_supply/ACAD/hwmonO/

:00/ACPI0003:00/power_supply/ACAD/uevent",
:00/ACPI0003:00/power_supply/ACAD/wakeup4l/

:00/ACPI0003:00/uevent",
:00/INTOEOC:00/uevent",
:00/LNXCPU:00/uevent",
:00/LNXCPU:01/uevent",

:00/PNPOAO3
:00/PNPOAO3
:00/PNPOAO3
:00/PNPOAO3
:00/PNPOAO3
:00/PNPOAO3
:00/PNPOAO3
:00/PNPOAO3

:00/PNPOAO3

:00/device

:00/device

:00/device

:00/device

:00/PNP0C02:02/uevent",
:00/PNP0C02:03/uevent",
:00/VMWO001:00/uevent",
:00/device:00/uevent",

:00/device

:00/wakeup/wakeup0/

:01/APP0001:00/uevent
:01/PNP0001:00/uevent
:01/PNP0100:00/uevent

:01/PNP0103:00/uevent

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

1

112

113

114

115

116
17

M.4. MooBot

167

1

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

s
"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

s
"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"/sys/devices/LNXSYSTM:

"files_deleted": [

"/tmp/base",
"/tmp/sample",

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

:00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

:00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

00/LNXSYBUS

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/PNPOAO3

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

:00/device

"/etc/udev/rules
"/etc/udev/rules
"/etc/udev/rules
"/etc/udev/rules

.d/70-snap.
.d/70-snap.
.d/70-snap.
.d/70-snap.
"/run/snapd-snap.

socket",

"/run/snapd.socket",
"/tmp/sanity-mountpoint-724243119",
"/tmp/sanity-squashfs-212460176",
"/var/lib/snapd/features/refresh-app-awareness",

corel8.rules",
core20.rules",
1xd.rules",
powershell.rules",

:01/PNP0200

:01/PNP0303

:01/PNP0400

:01/PNP0400

:01/PNP0O501

:01/PNP0O501

:01/PNP0O501

:01/PNP0O501

:01/PNP0501

:01/PNP0O501

:01/PNP0O501

:01/PNP0O501

:01/PNP0O501

:01/PNP0O501

:01/PNP0O501

:01/PNP0O501

:01/PNP0501

:01/PNP0O501

:01/PNP0O501

:01/PNP0O501

:01/PNP0O501 :

:01/PNP0O501 :

:01/PNP0501 :

:01/PNP0501 :

:01/PNP0501 :

:01/PNP0501 :

:01/PNP0501 :

:01/PNP0501 :

:01/PNP0O501 :

:00/uevent

:00/uevent

:00/uevent

:01/uevent

:00/uevent

:01/uevent

:02/uevent

:03/uevent

:04/uevent

:05/uevent

:06/uevent

:07/uevent

:08/uevent

:09/uevent

:0a/uevent

:0b/uevent

:0c/uevent

:0d/uevent

:0e/uevent

:0f/uevent

10/uevent

11/uevent

12/uevent

13/uevent

14/uevent

15/uevent

16/uevent

17/uevent

18/uevent"

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144
145
146

147

148

149

150

151

152

153

154

155
156
157

159
160
161
162
163
164
165
166
167
168
169
170

M.4. MooBot

168

"/var/lib/snapd/maintenance. json",
"/var/lib/snapd/seccomp/bpf/snap.lxd.activate.bin",
"/var/lib/snapd/seccomp/bpf/snap.1lxd.benchmark.bin",
"/var/lib/snapd/seccomp/bpf/snap.lxd.buginfo.bin",
"/var/lib/snapd/seccomp/bpf/snap.1lxd.check-kernel.bin",
"/var/lib/snapd/seccomp/bpf/snap.1lxd.daemon.bin",
"/var/lib/snapd/seccomp/bpf/snap.1lxd.hook.configure.bin",
"/var/lib/snapd/seccomp/bpf/snap.lxd.hook.install.bin",
"/var/lib/snapd/seccomp/bpf/snap.1lxd.hook.remove.bin",
"/var/lib/snapd/seccomp/bpf/snap.1lxd.lxc-to-1xd.bin",
"/var/lib/snapd/seccomp/bpf/snap.lxd.lxc.bin",
"/var/lib/snapd/seccomp/bpf/snap.1lxd.1lxd.bin",
"/var/lib/snapd/seccomp/bpf/snap.lxd.migrate.bin",
"/var/lib/snapd/seccomp/bpf/snap.powershell.powershell.bin",
"/var/lib/snapd/system-key"

I
"command_executions": [

"fusermount -u -q -z -- /run/user/1000/gvfs",

"/usr/lib/snapd/snap-failure snapd",

"systemctl stop snapd.socket",

"/snap/snapd/15177/usr/1lib/snapd/snapd",

"/usr/sbin/apparmor_parser --preprocess",

"systemctl --version",

"systemd-detect-virt",

"systemd-detect-virt --container",

"mount -t squashfs /tmp/sanity-squashfs-212460176 /tmp/sanity-mountpoint
-724243119",

"umount -1 /tmp/sanity-mountpoint-724243119",

"/snap/snapd/15177/usr/1lib/snapd/snap-seccomp version-info",

"/snap/snapd/15177/usr/1lib/snapd/snap-seccomp compile /var/lib/snapd/seccomp/
bpf/snap.lxd.activate.src /var/lib/snapd/seccomp/bpf/snap.lxd.activate.
bin",

"/snap/snapd/15177/usr/1lib/snapd/snap-seccomp compile /var/lib/snapd/seccomp/
bpf/snap.lxd.benchmark.src /var/lib/snapd/seccomp/bpf/snap.lxd.benchmark.
bin",

"/snap/snapd/15177/usr/1ib/snapd/snap-seccomp compile /var/lib/snapd/seccomp/
bpf/snap.1lxd.buginfo.src /var/lib/snapd/seccomp/bpf/snap.1lxd.buginfo.bin

"/snap/snapd/15177/usr/1lib/snapd/snap-seccomp compile /var/lib/snapd/seccomp/
bpf/snap.lxd.check-kernel.src /var/lib/snapd/seccomp/bpf/snap.1lxd.check-
kernel.bin",

"/snap/snapd/15177/usr/1lib/snapd/snap-seccomp compile /var/lib/snapd/seccomp/
bpf/snap.1lxd.daemon.src /var/lib/snapd/seccomp/bpf/snap.lxd.daemon.bin",

"/snap/snapd/15177/usr/1lib/snapd/snap-seccomp compile /var/lib/snapd/seccomp/
bpf/snap.lxd.hook.configure.src /var/lib/snapd/seccomp/bpf/snap.lxd.hook.
configure.bin",

"/snap/snapd/15177/usr/lib/snapd/snap-seccomp compile /var/lib/snapd/seccomp/
bpf/snap.lxd.hook.install.src /var/lib/snapd/seccomp/bpf/snap.1lxd.hook.
install.bin",

"/snap/snapd/15177/usr/lib/snapd/snap-seccomp compile /var/lib/snapd/seccomp/
bpf/snap.lxd.hook.remove.src /var/lib/snapd/seccomp/bpf/snap.1lxd.hook.
remove.bin",

"/snap/snapd/15177/usr/1lib/snapd/snap-seccomp compile /var/lib/snapd/seccomp/
bpf/snap.lxd.lxc-to-1lxd.src /var/lib/snapd/seccomp/bpf/snap.lxd.lxc-to-
1xd.bin"

]

"files_attribute_changed": [

"/run/mount/utab.lock"

Js
"processes_terminated": [],
"processes_killed": [],
"processes_injected": [],
"services_opened": [],
"services_created": [],
"services_started": [],
"services_stopped": [
"snapd.socket"
1s
"services_deleted": [],
"windows_searched": [],

"registry_keys_deleted": [],

171
172
173

174
175
176
177
178
179

180
181

182
183
184
185

M.5. EnemyBot 169

"mitre_attack_techniques": [

"Sample deletes itself",

"Uses the \"uname\" system call to query kernel version information (possible
evasion)",

"Sample reads /proc/mounts (often used for finding a writable filesystem)",

"Detected TCP or UDP traffic on non-standard ports",

"Performs DNS lookups",

"Performs DNS lookups",

"Sample tries to kill multiple processes (SIGKILL)",

"Executes the \"sed\" command used to modify input streams (typically from
files or pipes)",

"Executes commands using a shell command-line interpreter",

"Executes the \"systemctl\" command used for controlling the systemd system
and service manager",

"Reads CPU information from /sys indicative of miner or evasive malware",

"Reads system information from the proc file system"

M.5. EnemyBot
M.5.1. Pseudo-static analysis features

1 section: {'entry': '0x81b0', 'sections': [{'name': '', 'size': 0, 'entropy': -0.0, '

file_offset': O, 'props': ['Type: NULL'l}, {'mame': '.init', 'size': 16, 'entropy': 3.75,

'file_offset': 180, 'props': ['Type: PROGBITS', 'ALLOC', 'EXECINSTR'l}, {'name': '.text
', 'size': 153136, 'entropy': 5.89356430505523, 'file_offset': 208, 'props': ['Type:
PROGBITS', 'ALLOC', 'EXECINSTR']}, {'mame': '.fini', 'size': 16, 'entropy': 3.75, '
file_offset': 153344, 'props': ['Type: PROGBITS', 'ALLOC', 'EXECINSTR']}, {'mame': '.
rodata', 'size': 38212, 'entropy': 5.640213711474537, 'file_offset': 153360, 'props': ['
Type: PROGBITS', 'ALLOC']}, {'name': '.ARM.extab',6 'size': 24, 'entropy':

3.0016291673878226, 'file_offset': 191572, 'props': ['Type: PROGBITS', 'ALLOC'l}, {'name
': '.ARM.exidx', 'size': 16, 'entropy': 2.4056390622295662, 'file_offset': 191596, 'props
': ['Type: ARM_EXIDX', 'ALLOC'l}, {'name': '.eh_frame', 'size': 4, 'entropy': -0.0, '
file_offset': 192512, 'props': ['Type: PROGBITS', 'ALLOC', 'WRITE']}, {'name': '.
init_array', 'size': 4, 'entropy': 1.5, 'file_ offset': 192516, 'props': ['Type:
INIT_ARRAY', 'ALLOC', 'WRITE'l}, {'mame': '.fini_array', 'size': 4, 'entropy': 1.5, '
file_offset': 192520, 'props': ['Type: FINI_ARRAY', 'ALLOC', 'WRITE']}]}

2 Segment Information: {'Sections': [{'Name': '', 'Size': 0, 'Virtual Address': 0}, {'Name': '.

3 imports: {'SymbolTable': ['', '__deregister_frame_info', '__pthread_initialize_minimal',

4 exports: ['__do_global_dtors_aux', 'frame_dummy', 'can_consume', 'consume_iacs',

init', 'Size': 16, 'Virtual Address': 32948}, {'Name': '.text', 'Size': 153136, 'Virtual
Address': 32976}, {'Name': '.fini', 'Size': 16, 'Virtual Address': 186112}, {'Name': '.
rodata', 'Size': 38212, 'Virtual Address': 186128}, {'Name': '.ARM.extab',6 'Size': 24, '
Virtual Address': 224340}, {'Name': '.ARM.exidx', 'Size': 16, 'Virtual Address': 224364},
{'Name': '.eh_frame', 'Size': 4, 'Virtual Address': 258048}, {'Name': '.init_array', '
Size': 4, 'Virtual Address': 258052}, {'Name': '.fini_array', 'Size': 4, 'Virtual Address
': 258056}, {'Name': '.jcr', 'Size': 4, 'Virtual Address': 258060}, {'Name': '.data.rel.
ro', 'Size': 24, 'Virtual Address': 258064}, {'Name': '.got', 'Size': 124, 'Virtual
Address': 258088}, {'Name': '.data', 'Size': 3636, 'Virtual Address': 258212}, {'Name':
'.bss', 'Size': 28560, 'Virtual Address': 261848}, {'Name': '.comment',6 'Size': 3694, '
Virtual Address': 0}, {'Name': '.debug_aranges', 'Size': 224, 'Virtual Address': 0}, {'
Name': '.debug_info', 'Size': 1200, 'Virtual Address': 0}, {'Name': '.debug_abbrev', '
Size': 140, 'Virtual Address': 0}, {'Name': '.debug_line', 'Size': 1621, 'Virtual Address
': 0}, {'Name': '.debug_frame', 'Size': 88, 'Virtual Address': 0}, {'Name': '.ARM.
attributes', 'Size': 16, 'Virtual Address': 0}, {'Name': '.shstrtab', 'Size': 234, '
Virtual Address': 0}, {'Name': '.symtab', 'Size': 27104, 'Virtual Address': 0}, {'Name':
'.strtab', 'Size': 13878, 'Virtual Address': 0}], 'Segments': [{'Type': 'SEGMENT_TYPES.
ARM_EXIDX', 'Size': 16, 'Virtual Address': 224364}, {'Type': 'SEGMENT_TYPES.LOAD', 'Size
': 191612, 'Virtual Address': 32768}, {'Type': 'SEGMENT_TYPES.LOAD', 'Size': 3800, '
Virtual Address': 258048}, {'Type': 'SEGMENT_TYPES.GNU_STACK', 'Size': 0, 'Virtual
Address': 0}]}

_Jv_RegisterClasses', '__register_frame_info'l}

consume_any_prompt ', 'consume_shell_prompt', 'consume_user_prompt', 'consume_pass_prompt
', 'deobf', 'add_auth_entry', 'random_auth_entry', 'setup_connection', '
consume_resp_prompt', 'port80_setup_connection', 'switch_socket_transport',
anti_debug_shit', 'fd_to_DIR', '_charpad', '_fp_out_narrow', '_promoted_size',6 '
gaih_inet_serv', '__set_h_errno', 'gaih_inet', 'inet_pton4', 'inet_ntop4', '
__malloc_largebin_index', '__malloc_trim', 'mprocessors_onln', '__pthread_return_O',

__check_one_fd', '__initbuf', 'skip_nospace', 'skip_and_NUL_space', '__read_etc_hosts_r',

[

M.5. EnemyBot 170
'__GI_if _freenameindex', '__GI_execve', 'ovtcp', '__libc_sigaction', 'DNSw', '
__aeabi_dcmple', 'strcpy', 'recvlLine', '__cmpdf2', 'cp', '__GI_memchr', 'bcmp', '
adb_status', '__GI___glibc_strerror_r', 'waitpid', 'add_sock']

5 general: {'size': 245518, 'virtual_size': 0, 'has_debug': 0, 'exports': 1694, 'imports': 0, '
has_relocations': 0, 'symbols': 1694}

6 header: {'file_type': 'EXECUTABLE', 'entry_point': 33200, 'machine_type': 'ARM', 'header_size
': 52, 'program_headers': [{'type': 'ARM_EXIDX', 'virtual_address': 224364, '
physical_address': 224364, 'physical_size': 16, 'virtual_size': 16, 'flags':
SEGMENT_FLAGS.R, 'alignment': 4}, {'type': 'LOAD', 'virtual_address': 32768, '
physical_address': 32768, 'physical_size': 191612, 'virtual_size': 191612, 'flags':
SEGMENT_FLAGS.???7, 'alignment': 32768}, {'type': 'LOAD', 'virtual_address': 258048, '
physical_address': 258048, 'physical_size': 3800, 'virtual_size': 32360, 'flags':
SEGMENT_FLAGS.???7, 'alignment': 32768}, {'type': 'GNU_STACK', 'virtual_address': 0, '
physical_address': 0, 'physical_size': O, 'virtual_size': 0, 'flags': SEGMENT_FLAGS.?7?77,
'alignment': 4}], 'section_headers': [{'name': '', 'type': 'NULL', 'virtual_address': O,
'size': 0, 'entropy': -0.0}, {'name': '.init', 'type': 'PROGBITS', 'virtual_address':
32948, 'size': 16, 'entropy': 3.75}, {'mame': '.text', 'type': 'PROGBITS', '
virtual_address': 32976, 'size': 153136, 'entropy': 5.89356430505523}, {'name': '.fini',
'type': 'PROGBITS', 'virtual_address': 186112, 'size': 16, 'entropy': 3.75}, {'name': '.
rodata', 'type': 'PROGBITS', 'virtual_address': 186128, 'size': 38212, 'entropy':
5.640213711474537}, {'name': '.ARM.extab', 'type': 'PROGBITS', 'virtual_address': 224340,

'size': 24, 'entropy': 3.0016291673878226}, {'mame': '.ARM.exidx', 'type': 'ARM_EXIDX',
'virtual_address': 224364, 'size': 16, 'entropy': 2.4056390622295662}, {'name': '.
eh_frame', 'type': 'PROGBITS', 'virtual_address': 258048, 'size': 4, 'entropy': -0.0}, {'
name': '.init_array', 'type': 'INIT_ARRAY', 'virtual_address': 258052, 'size': 4, '
entropy': 1.5}, {'mame': '.fini_array', 'type': 'FINI_ARRAY', 'virtual_address': 258056,
'size': 4, 'entropy': 1.5}, {'mame': '.jcr', 'type': 'PROGBITS', 'virtual_address':
258060, 'size': 4, 'entropy': -0.0}, {'name': '.data.rel.ro', 'type': 'PROGBITS', '
virtual_address': 258064, 'size': 24, 'entropy': 1.5535088547976783}, {'name': '.got', '
type': 'PROGBITS', 'virtual_address': 258088, 'size': 124, 'entropy': 3.944872193865425},

{'name': '.data', 'type': 'PROGBITS', 'virtual_address': 258212, 'size': 3636, 'entropy
': 5.352623296448144}, {'name': '.bss', 'type': 'NOBITS', 'virtual_address': 261848, '
size': 28560, 'entropy': 4.1583556590512885}, {'mame': '.comment', 'type': 'PROGBITS', '
virtual_address': 0, 'size': 3694, 'entropy': 3.711521459541648}, {'name': '.
debug_aranges', 'type': 'PROGBITS', 'virtual_address': 0, 'size': 224, 'entropy':
1.9826414095147717}, {'name': '.debug_info', 'type': 'PROGBITS', 'virtual_address': 0, '
size': 1200, 'entropy': 5.044586995237964}, {'name': '.debug_abbrev', 'type': 'PROGBITS',

'virtual_address': O, 'size': 140, 'entropy': 3.346439344671015}, {'name': '.debug_line
', 'type': 'PROGBITS', 'virtual_address': 0, 'size': 1621, 'entropy':
4.1989518567566115}, {'name': '.debug_frame', 'type': 'PROGBITS', 'virtual_address': 0, '
size': 88, 'entropy': 3.316880986799484}, {'name': '.ARM.attributes', 'type': '
ARM_ATTRIBUTES', 'virtual_address': O, 'size': 16, 'entropy': 2.646782221599798}, {'name
': '.shstrtab', 'type': 'STRTAB', 'virtual_address': 0, 'size': 234, 'entropy':
4.275366364838433}, {'name': '.symtab', 'type': 'SYMTAB', 'virtual_address': 0O, 'size':
27104, 'entropy': 3.5320301941545336}, {'mame': '.strtab', 'type': 'STRTAB', '
virtual_address': 0, 'size': 13878, 'entropy': 4.665672857707997}]1}

7 strings: {'numstrings': 1, 'avlength': 5.0, 'printabledist': [1, 1, 1, O, O, O, O, O, O, O,
o, o, o, o, 0o, 0, 0, &, 0o, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, 1, O, O, O, O,
o, o, o, o, o, 0o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,

o, o, o, o, 0, o, o, o, 0o, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O], '
printables': 5, 'entropy': 2.321928024291992, 'paths': 0, 'urls': 0, 'registry': 0, 'MZ':

0}

8 EntryPoint: [['Main ', 33200], ['__do_', 33036], ['frame', 33104], ['can_c', 81824], ['consu
', 81928], ['consu', 82568], ['consu', 82868], ['consu', 83104], ['consu', 83556], ['
deobf', 83904], ['add_a', 84276], ['rando', 84712], ['setup', 84960], ['consu', 85300],

['port8', 100580], ['switc', 101432], ['anti_', 1178001, ['fd_to', 133696], ['_char'

>

1380841, ['_fp_o', 1381681, ['_prom', 140728], ['gaih_', 1477081, ['__set', 1479041, ['
gaih_', 147932], ['inet_', 151476], ['inet_', 152224], ['__mal',6 155788], ['__mal',
1695001, ['mproc', 163612], ['__pth', 165692], ['__che', 1658841, ['__ini', 1763241, ['
skip_', 181336], ['skip_', 181420], ['__rea', 185052], ['__GI_', 1787441, ['__GI_',
167428], ['ovtcp', 507841, ['__lib', 167148], ['DNSw', 64900], ['__aea', 186040], ['strcp
', 146516], ['recvL', 41620], ['__cmp', 185808], ['cp', 1194961, ['__GI_', 1750721, ['
bcmp', 145600], ['adb_s', 1016761, ['__GI_', 146980], ['waitp', 132300]]

9 ExitPoint: []

10 Opcodes: ['or', 'fild', 'loop', 'scasd', 'sbb', 'add', 'inc', 'or', 'inc', 'adc', 'inc', 'sbb
', 'inc', 'and', 'inc', 'sub', 'inc', 'xor', 'inc', 'cmp', 'inc', 'inc', 'inc', 'rol', '

rol', 'rol', 'rol', 'rol', 'rol', 'rol', 'sub', 'in', 'xor', 'in', 'add', 'push', 'add',
'sbb', 'xor', 'jecxz', 'add', 'adc', 'jmp', 'adc', 'xor', 'in', 'inc', 'mov', 'loope', '
inc', 'add', 'add', 'add', 'lock add', 'add', 'sub', 'in', 'add', 'add', 'dec', 'loop', '

add', 'adc', 'adc', 'das', 'adc', 'add', 'in', 'add', 'add', 'add', 'and', 'lahf',6 '
'add', 'pavgb', 'adc', 'or', 'fild', 'loop', 'scasd', 'sbb'l

in',

18

M.5. EnemyBot 171

Opcode-0Occurrence: {'or': 3, 'fild': 2, 'loop': 3, 'scasd': 2, 'sbb': 4, 'add': 16, 'inc':
12, 'adc': 7, 'and': 2, 'sub': 3, 'xor': 4, 'cmp': 1, 'rol': 7, 'in': 6, 'push': 1, '
jecxz': 1, 'jmp': 1, 'mov': 1, 'loope': 1, 'lock add': 1, 'dec': 1, 'das': 1, 'lahf': 1,
'pavgb': 1}

Image Size: 261848

Header Size: {'ELF Header Size': 52, 'Program Headers Total Size': 195428}

GNU Physical Size: O

Heap Size: {'Heap Segment Size': 3800, 'Heap Section Size': 0}

Loader Flags: {'Segment 0': {'Type': 'SEGMENT_TYPES.ARM_EXIDX', 'Flags': 'READ'}, 'Segment
1': {'Type': 'SEGMENT_TYPES.LOAD', 'Flags': 'READ | EXECUTE'}, 'Segment 2': {'Type': '
SEGMENT_TYPES.LOAD', 'Flags': 'READ | WRITE'}, 'Segment 3': {'Type': 'SEGMENT_TYPES.
GNU_STACK', 'Flags': 'READ | WRITE | EXECUTE'}}

Section Entropy: {'': {'min': O, 'max': O, 'total': O, 'count': 1, 'mean': 0.0}, '.init': {'

min': 3.75, 'max': 3.75, 'total': 3.75, 'count': 1, 'mean': 3.75}, '.text': {'min':
5.89356430505523, 'max': 5.89356430505523, 'total': 5.89356430505523, 'count': 1, 'mean':
5.89356430505523}, '.fini': {'min': 3.75, 'max': 3.75, 'total': 3.75, 'count': 1, 'mean
': 3.75}, '.rodata': {'min': 5.640213711474537, 'max': 5.640213711474537, 'total':
5.640213711474537, 'count': 1, 'mean': 5.640213711474537}, '.ARM.extab': {'min':
3.0016291673878226, 'max': 3.0016291673878226, 'total': 3.0016291673878226, 'count': 1, '
mean': 3.0016291673878226}, '.ARM.exidx': {'min': 2.4056390622295662, 'max':
2.4056390622295662, 'total': 2.4056390622295662, 'count': 1, 'mean': 2.4056390622295662},
'.eh_frame': {'min': 0.0, 'max': 0.0, 'total': 0.0, 'count': 1, 'mean': 0.0}, '.

init_array': {'min': 1.5, 'max': 1.5, 'total': 1.5, 'count': 1, 'mean': 1.5}, '.
fini_array': {'min': 1.5, 'max': 1.5, 'total': 1.5, 'count': 1, 'mean': 1.5}, '.jcr': {'
min': 0.0, 'max': 0.0, 'total': 0.0, 'count': 1, 'mean': 0.0}, '.data.rel.ro': {'min':

1.5535088547976783, 'max': 1.5535088547976783, 'total': 1.5535088547976783, 'count': 1, '
mean': 1.5535088547976783}, '.got': {'min': 3.944872193865425, 'max': 3.944872193865425,
'total': 3.944872193865425, 'count': 1, 'mean': 3.944872193865425}, '.data': {'min':
5.352623296448144, 'max': 5.352623296448144, 'total': 5.352623296448144, 'count': 1, '
mean': 5.352623296448144}, '.bss': {'min': 4.1583556590512885, 'max': 4.1583556590512885,
'total': 4.1583556590512885, 'count': 1, 'mean': 4.1583556590512885}, '.comment': {'min
': 3.711521459541648, 'max': 3.711521459541648, 'total': 3.711521459541648, 'count': 1, '
mean': 3.711521459541648}, '.debug_aranges': {'min': 1.9826414095147717, 'max':
1.9826414095147717, 'total': 1.9826414095147717, 'count': 1, 'mean': 1.9826414095147717},
'.debug_info': {'min': 5.044586995237964, 'max': 5.044586995237964, 'total':
5.044586995237964, 'count': 1, 'mean': 5.044586995237964}, '.debug_abbrev': {'min':
3.346439344671015, 'max': 3.346439344671015, 'total': 3.346439344671015, 'count': 1, '
mean': 3.346439344671015}, '.debug_line': {'min': 4.1989518567566115, 'max':
4.1989518567566115, 'total': 4.1989518567566115, 'count': 1, 'mean': 4.1989518567566115},
'.debug_frame': {'min': 3.316880986799484, 'max': 3.316880986799484, 'total':
3.316880986799484, 'count': 1, 'mean': 3.316880986799484}, '.ARM.attributes': {'min':
2.646782221599798, 'max': 2.646782221599798, 'total': 2.646782221599798, 'count': 1, '
mean': 2.646782221599798}, '.shstrtab': {'min': 4.275366364838433, 'max':
4.275366364838433, 'total': 4.275366364838433, 'count': 1, 'mean': 4.275366364838433}, '.
symtab': {'min': 3.5320301941545336, 'max': 3.5320301941545336, 'total':
3.5320301941545336, 'count': 1, 'mean': 3.5320301941545336}, '.strtab': {'min':
4.665672857707997, 'max': 4.665672857707997, 'total': 4.665672857707997, 'count': 1, '
mean': 4.665672857707997}}
Kolmogorov Complexity: 64 KB

M.5.2. Dynamic Analysis Features

"Behavior": {

"files_opened": [
"/dev/misc/watchdog",
"/dev/watchdog",
"/etc/crontab",
"/etc/rc.local",

"/pIOC/",
"/proc/sys/vm/mmap_min_addr",
"/tmp/AUGXIF",

"/tmp/sample"
1
"files_written": [

"/etc/crontab"
T

"files_deleted": [],
"command_executions": [],

20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35

o g A W N

M.6. Netwire Rat 172
"files_attribute_changed": [],
"processes_terminated": [],
"processes_killed": [],
"processes_injected": [],
"services_opened": [],
"services_created": [],
"services_started": [],
"services_stopped": [],
"services_deleted": [],
"windows_searched": [],
"registry_keys_deleted": [],
"mitre_attack_techniques": [

"Sample tries to persist itself using cron",

"Uses the \"uname\" system call to query kernel version information (possible
evasion)",

"Detected TCP or UDP traffic on non-standard ports"

M.6. Netwire

Rat

M.6.1. Pseudo-static analysis features

{
"strings": {
"numstrings": 4311,
"avlength": 59.429598700997445,
"printabledist": [
1040, 122, 178, 163, 808, 271, 140, 157, 310, 170, 147, 148, 255, 193, 312, 150,
13483, 13132, 13269, 13500, 13422, 13015, 13257, 12907, 13156, 13368, 559, 793,
574, 494, 537, 567, 200, 12949, 12701, 13179, 13401, 12959, 13109, 472, 424, 425,
127, 141, 360, 277, 280, 6862, 708, 286, 435, 706, 360, 273, 375, 714, 335, 357,
180, 180, 342, 166, 167, 832, 191, 1135, 294, 757, 937, 2194, 591, 421, 456,
1289, 545, 215, 981, 488, 1040, 1162, 514, 170, 1257, 1005, 1812, 639, 283, 261,
328, 365, 164, 1195, 215, 133, 139, 146
i
"printables": 256201,
"entropy": 4.962445605417374,
"paths": O,
"urls": O,
"registry": O,
"MZ": 9
To
"general": {
"file_size": 1388664,
"magic_number": "MZ",
"bytes_in_last_block": 144,
"blocks_in_file": 3,
"num_relocs": O,
"header_paragraphs": 4,
"min_extra_paragraphs": O,
"max_extra_paragraphs": 65535,
"initial_ss": O,
"initial_sp": 184,
"checksum": O,
"initial_ip": O,
"initial_cs": O,
"reloc_table_offset": 64,
"overlay_number": 0
T
"header": {
"e_magic ", nwMz" s
"e_cblp": 144,
"e_cp": 3,
"e_crlc": O,
"e_cparhdr": 4,
"e_minalloc": O,
"e_maxalloc": 65535,
"e_ss": O,
"e_sp": 184,

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68
69
70

4l
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

M.6. Netwire Rat

173

"e_csum": O,

"e_ip": O,

"e_cs": O,

"e_lfarlc": 64,

"e_ovno": O,

"e_res": [0],

"e_oemid": O,

"e_oeminfo": O,

"e_res2": [0, O, O, O, O, O, O, O, O, O, O, O,

"e_lfanew": 272

Lo

"Memory Layout": {
"Initial SP": 184,
"Max Allocation": 144

Lo

"EntryPoint": [

["Initi", "0x0:0x0"],

["Inter", "INT Ox21"],

["Inter", "INT 0x21"]

Js
"entry": {

"entry": "IP: 0xb8, CS: 0xO0"

¥o
"ExitPoint": [],
"Opcodes": [

"dec", "pOp", "IlOp", "add", "add", "add", "add", "add", "inc", "add", "add", "add", n
add", "add“, "add", "add", "add", "add", "add", "add", "add", "add", "add", "add",
n add n . n addll . n add n s n addll . n add n s n addll . n adc n s n addll s n p'llSh" s llpopll , llmOV n . llmOV
" "int", "mov", "int", "push", "push", "and", "outsw", "jb", "insw", "and", "outsb
||’ "outsb", "outsw", "je", "bO'llDd", "jb", "outsb", "and", "and", "push", "and", "or
||’ "and", “add", "add", “add", "Sbb", "iret", "jb", "ret", "p'LlShf", "jb", "ret", n
pushf", "jb", "ret”, "pushf", "XOI", “and", "ret", “pushf", "in", "fld", "pushf", n
jae", "ret“, "pllShf", njgu’ "Sbb", "iIlC", "jge", "pushf", "jg", “and", "ret", n
pushf", njgu’ "and", "ret", "pllShf", "jnP", "inc", |Ipushfll’ "jnp", "ret", "pushf",
ujnpu’ "push", "pllShf", "push", "jge", "pushf", "jb", "ret", "jg"y "pllShf"

Js
"Opcode-0Occurrence": {

"dec": 1, "pop": 2, "nop": 1, "add": 30, "inc": 3, "adc": 1, "push": 6, "mov": 3, "int
": 2, "and": 9, "outsw": 2, "jb": 6, "insw": 1, "outsb": 3, "je": 1, "bound": 1, "
or": 1, "sbb": 2, "iret": 1, "ret": 9, "pushf": 14, "xor": 1, "in": 1, "fld": 1, "
jaell: 1’ l|jgll: 4’ lljgell: 2, Iljnpll: 3

}’
"Image Size": 1388664,
"Memory Size": {

"Initial SS": O,

"Initial SP": 184,

"Minimum Allocation": 65535,

"Maximum Allocation": 184

To
"Header Size": {
"DOS Header Size": 272
To
"Block Entropy": {

"min": 0.0,

"max": 7.864885891267435,

"total": 7195.007462231047,

"count": 1357,

"mean": 5.302142566124574

To
"Kolmogorov Complexity": "74 KB",

"Interrupt Info": [

{
"address": "0x147",
"interrupt": "Ox21"
1,
{
"address": "Ox14c",
"interrupt": "Ox21"
}

i
"Stack Info": {

M.7. Bashlite

174

101 "Initial SP": 184,
102 "Initial SS": O
103 }

104 }

M.7. Bashlite
M.7.1. Psuedo-static features

1 section: {'entry': '0x8048164', 'sections': [{'name': '', 'size': 0, 'entropy': -0.0, '
file_offset': O, 'props': ['Type: NULL'l}, {'mame': '.init', 'size': 28, 'entropy':

3.610577243331642, 'file_offset': 148, 'props': ['Type: PROGBITS', 'ALLOC', 'EXECINSTR

']}, {'name': '.text', 'size': 91848, 'entropy': 6.435876216981836, 'file_offset':

176,

props': ['Type: PROGBITS', 'ALLOC', 'EXECINSTR']}, {'mame': '.fini', 'size': 23, 'entropy

': 4.001822825622232, 'file_offset': 92024, 'props': ['Type: PROGBITS', 'ALLOC', '
EXECINSTR']}, {'mame': '.rodata', 'size': 44451, 'entropy': 5.971768358349981, '

file_offset': 92064, 'props': ['Type: PROGBITS', 'ALLOC']}, {'name': '.eh_frame',6 'size':
4, 'entropy': -0.0, 'file_offset': 136516, 'props': ['Type: PROGBITS', 'ALLOC'l}, {'name

Type: PROGBITS', 'ALLOC', 'WRITE']}, {'mame': '.dtors', 'size': 8, 'entropy': 1.0,

'.ctors', 'size': 12, 'entropy': 2.251629167387823, 'file_offset': 136520, 'props': ['

file_offset': 136532, 'props': ['Type: PROGBITS', 'ALLOC', 'WRITE']}, {'name': '.jcr', '
size': 4, 'entropy': -0.0, 'file_offset': 136540, 'props': ['Type: PROGBITS', 'ALLOC', '

WRITE']}, {'name': '.got.plt', 'size': 12, 'entropy': -0.0, 'file_offset': 136544,
': ['Type: PROGBITS', 'ALLOC', 'WRITE']}]}

props

2 Segment Information: {'Sections': [{'Name': '', 'Size': 0, 'Virtual Address': 0}, {'Name': '.

init', 'Size': 28, 'Virtual Address': 134512788}, {'Name': '.text', 'Size': 91848,
Virtual Address': 134512816}, {'Name': '.fini', 'Size': 23, 'Virtual Address':

134604664}, {'Name': '.rodata', 'Size': 44451, 'Virtual Address': 134604704}, {'Name': '.

eh_frame', 'Size': 4, 'Virtual Address': 134649156}, {'Name': '.ctors', 'Size': 12,
Virtual Address': 134653256}, {'Name': '.dtors', 'Size': 8, 'Virtual Address':

[

134653268}, {'Name': '.jcr', 'Size': 4, 'Virtual Address': 134653276}, {'Name': '.got.plt

[

'Size': 12, 'Virtual Address': 134653280}, {'Name': '.data', 'Size': 24120, 'Virtual
Address': 134653312}, {'Name': '.bss', 'Size': 35496, 'Virtual Address': 134677440},

{ '

Name': '.comment', 'Size': 4464, 'Virtual Address': 0}, {'Name': '.shstrtab', 'Size':
111, 'Virtual Address': 0}, {'Name': '.symtab', 'Size': 22448, 'Virtual Address': 0}, {'

Name': '.strtab', 'Size': 19935, 'Virtual Address': 0}], 'Segments': [{'Type': '
SEGMENT_TYPES.LOAD', 'Size': 136520, 'Virtual Address': 134512640}, {'Type': '
SEGMENT_TYPES.LOAD', 'Size': 24176, 'Virtual Address': 134653256}, {'Type': '
SEGMENT_TYPES.GNU_STACK', 'Size': 0, 'Virtual Address': 0}1}

3 imports: {'SymbolTable': ['', '__register_frame_info_bases', '__deregister_frame_info_bases',

_Jv_RegisterClasses ']}

4 exports: ['__do_global_dtors_aux', 'frame_dummy', '__do_global_ctors_aux', 'printchar',
prints', 'printi', 'print', 'thread_self', 'pthread_kill_all_threads', '
pthread_start_thread', 'pthread_start_thread_event', 'pthread_free', 'restart',6 '
pthread_reap_children', 'pthread_insert_list', 'pthread_call_handlers', 'enqueue',
remove_from_queue', '__pthread_set_own_extricate_if', 'thread_self',6 '

new_sem_extricate_func', 'suspend', 'pthread_null_sighandler', 'thread_self', '

pthread_sighandler_rt', 'pthread_sighandler', 'wait_node_dequeue', '__pthread_acquire', '
wait_node_free', 'restart', 'thread_self', 'suspend', 'pthread_handle_sigdebug', 'suspend

', 'thread_self', 'pthread_onexit_process', 'pthread_initialize', '
pthread_handle_sigrestart', 'pthread_handle_sigcancel', 'thread_self', 'enqueue',k '
remove_from_queue', '__pthread_set_own_extricate_if', 'restart', 'thread_self',6 '
cond_extricate_func', 'suspend', '__pthread_set_own_extricate_if', 'thread_self',6 '
join_extricate_func']

5 general: {'size': 208295, 'virtual_size': 0, 'has_debug': O, 'exports': 1403, 'imports':
has_relocations': 0, 'symbols': 1403}

6 header: {'file_type': 'EXECUTABLE', 'entry_point': 134512996, 'machine_type': 'i386', '
header_size': 52, 'program_headers': [{'type': 'LOAD', 'virtual_address': 134512640,

o, '

[

physical_address': 134512640, 'physical_size': 136520, 'virtual_size': 136520, 'flags':
SEGMENT_FLAGS.???7, 'alignment': 4096}, {'type': 'LOAD', 'virtual_address': 134653256, '

physical_address': 134653256, 'physical_size': 24176, 'virtual_size': 59680, 'flags'

SEGMENT_FLAGS.???7, 'alignment': 4096}, {'type': 'GNU_STACK', 'virtual_address': 0, '
physical_address': 0, 'physical_size': O, 'virtual_size': 0, 'flags': SEGMENT_FLAGS.?777,
'alignment': 4}], 'section_headers': [{'name': '', 'type': 'NULL', 'virtual_address': O,
'size': 0, 'entropy': -0.0}, {'name': '.init', 'type': 'PROGBITS', 'virtual_address':
134512788, 'size': 28, 'entropy': 3.610577243331642}, {'name': '.text', 'type': 'PROGBITS
', 'virtual_address': 134512816, 'size': 91848, ‘'entropy': 6.435876216981836}, {'name':
'.fini', 'type': 'PROGBITS', 'virtual_address': 134604664, 'size': 23, 'entropy':
4.001822825622232}, {'mame': '.rodata', 'type': 'PROGBITS', 'virtual_address': 134604704,

'size': 44451, 'entropy': 5.971768358349981}, {'name': '.eh_frame', 'type': 'PROGBITS',

M.7. Bashlite

175

'virtual_address
PROGBITS',

': 134649156,
'virtual_address':
name': '.dtors', 'type': 'PROGBITS
1.0}, {'name': '.jecr', 'type':
entropy': -0.0}, {'name':
size': 12, 'entropy':
134653312, 'size': 24120,
NOBITS', 'virtual_address
name': '.comment', 'type':
3.6143694458867563}, {'name':
': 111, 'entropy':
virtual _address':
type': 'STRTAB',
7 strings: {'numstrings':
75, 11, 0, 3, 9, 3,
o, 3, 3, 0, 4, 34,
11, 13, 12, 8, 16,
12, 1, 6, 5, 1, 0,
paths': 0, 'urls':
8 EntryPoint: [['Main ',
134604624], ['print',
1345140761, ['threa',
134544181], ['pthre',
1345463521, ['pthre',
134546862], ['threa',
134548156], ['threa',
1345493041, ['__pth',
134549650] , ['suspe',
134552432], ['pthre',
134554034], ['threa',
134555938], ['resta',
1345562111, ['__pth',
9 ExitPoint: []
10 Opcodes: ['push', 'mov', 'push', 'call
ret', 'mop', 'mop', 'mop', 'mop',
'push', 'mov', 'sub', 'cmp' 'je!
jne', 'mov', 'test', 'je', 'sub',
lea', 'push', 'mov', 'mov', 'sub',
push', 'push', 'call', 'add',
call', 'add', 'leave', 'ret',
push', 'push', 'push', 'push',
'y 'mov', 'sub', 'mov', 'mov',
mov', 'mov', 'sub', 'mov', 'mov',
'cmp', 'jle', 'leave', 'ret',
'inc', 'and', 'mov', 'mov',
mul', 'add', 'mov', 'mov',
'mov', 'mov', 'mov',
'y, 'mov', 'mov', 'sub',
'sub', 'mov', 'mov',
v, 'dec', 'mov', 'jmp',
11 Opcode-0Occurrence: {'push':
581, 'mop': 402, 'sub':
837, 'leave': 45, 'lea':
'imul': 37, 'mul': 4, 'adc': 9,
't 117, 'movsx': 69, 'jl': 33,
': 98, 'jbe': 136, 'rep stosb': 8,
't 7, 'setg': 3, 'shld': 2, 'jb':
repe cmpsb': 31, 'seta': 31,
'+ 11, 'sete': 18, 'xchg': 27,
rep movsd': 1, 'movsw': 1, 'movsb'
rol': 1, 'bsr': 1, 'cwde': 1,
fxch': 13, 'fld1': 1, 'fdiv':
'+ 1, 'fldcw': 2, 'fistp': 1,
1, 'btr': 1, 'scasb': 1, 'stosd':
Image Size: 134677432
Header Size: {'ELF Header Size':
GNU Physical Size: O
Heap Size: {'Heap Segment Size': 24176
Loader Flags: {'Segment 0': {'Type':
Segment 1': {'Type':
': 'SEGMENT_TYPES.GNU_STACK',

0, 'size':
'virtual_address'
130, 'avlength
o, 1, 12, 3,
14, 2, 3, 6,
9, 2, 1, 0, O,
0, 6, 5, 1, 0]
0, 'registry':
1345129961, ['_
134513510] ,
134543636] ,
134544226] ,
134546388] ,
134547162] ,
1345481571,
1345493447 ,
134549713],
1345524957 ,
134555044] ,
134555997] ,
134557056] ,

0,

'mov ',
'mov ',
'lea’,
'mov ',
'mov ',
'inc',
5002,

1430,
1258,

'mov '
'mov ',

'mov

']

2, !

52,

'size':
134653256,

'PROGBITS ',
'.got.plt"',
-0.0}, {'name':
'entropy':

': 134677440,
'PROGBITS ',
'.shstrtab',
3.9464055386973294},
22448,

2,

do"',

'mov ',
'nop',
'push’',
'mov ',

'push’',

'mov ',

' cmp
'xor':

'ig':

'setb':
'sbb':

'fucom':

'fild':

'Program Headers Total Size':

'SEGMENT_TYPES.LOAD ',
' SEGMENT _TYPES.LOAD',
'Flags':

4, 'entropy': !
'size': 12,

'virtual_address':

-0.0}, {'name': '.ctors', 'type':

'entropy': 2.251629167387823}, {'
134653268, 'size': 8, 'entropy':
'virtual_address': 134653276, 'size': 4, '

'type': 'PROGBITS', 'virtual_address': 134653280, '

'.data', 'type': 'PROGBITS', 'virtual_address':
1.0846834733737656}, {'name': '.bss', 'type': '
'size': 35496, 'entropy': 5.1893759345254071},
'virtual_address': O, 'size': 4464, 'entropy':
'type': 'STRTAB', 'virtual_address': 0, 'size
{'name': '.symtab', 'type': 'SYMTAB', '
'entropy': 4.325577064204675}, {'name': '.strtab', '
: 0, 'size': 19935, 'entropy': 4.535678049519343}]}

': 5.461538461538462, 'printabledist': [13, 2, 0, 1,
11, 3, 0, 1, 1, 5, 4, 0, 2, 10, 9, 0, 24, 11, 1, 3,
i, 2, 6, 1, 0, o, 63, 30, 17, 26, 8, 5, 15, 15, 10,
i, 0, 6, 0, 30, 2, 21, 0, 3, 1, 1, 1, 3, 1, 1, 13,
, 'printables': 710, 'entropy': 5.403498649597168, '

0, 'MZ': 0}

1345128321, ['frame',
134513568], ['print',
134543912], ['pthre',
134544420], ['pthre',
1345467761, ['remov',
134547225], ['suspe',
134548220], ['pthre',
1345494201, ['resta',
134551979], ['suspe',

'
s

{n

5,
24,

134512912], ['__do_',
1345137831, ['print',
1345439741, ['pthre',
134544433], ['pthre',
134546805], ['__pth',
134547285], ['pthre',
1345482941, ['wait_"',
134549463], ['threa',
134552394], ['threa',
134552913], ['pthre', 1345541791, ['pthre',
134555784], ['remov', 1345558131, ['__pth',
134556088] , ['cond_', 134556151], ['suspe',
134557115]]

['print',
['pthre',
['resta',
['enque',
['new_s"',
['pthre',
['wait_",
['pthre',
['pthre',
['enque',
['threa',
['threa',

'y 'add', 'call', 'call',
lnopl’ |n0p|’ 'nop',
, 'jmp', 'add', 'mov',
'push', 'call', 'add',

'call', 'pop', 'add',
'test', 'je', 'mov',
'nop', 'mop', 'xor',

lpopv, 'pOp', 'ret‘, 'mov', 1
'nop', lnopl’ 'nop', lnopl’ 'nop',
'call', 'mov', 'mov', 'test',K '
'mov', 'leave', 'ret', 'mop', '
'test', 'je', 'push', 'push', '
'test', 'je', 'sub', 'push', '
'pop', 'mov', 'and', 'push', '
'push', 'push', 'call', 'hlt', 'mnop', 'mop', 'push
'sub', 'mov', 'mov', 'add', 'mov', 'mov', 'jmp', '
'sub', 'mov', 'xor', 'mov', 'xor', 'xor', 'mov', 'inc',
'mov', 'push', 'sub', 'mov', 'mov', 'mov', 'mov',
'mov ' 'imul', ' ! ‘add', 'mov', '
'add', 'adc', 'mov', 'mov', 'mov', 'mov', 'xor',
, 'mov', 'cmp', 'jae', 'inc', 'mov', 'inc', 'mov', '
'add', 'pop', 'pop', 'ret', 'push', 'mov', 'push',
'cld', 'mov', 'repne scasb', 'mov', 'mot', 'dec

'mov ', mov 'imul',
'mov ',

mov

'mov ',

'mov ']

'‘call':
'je':

": 8109,
'. 1404,
391,

2113, 'add': 1915,
819, 'jmp': 939,
'and': 333, 'hlt': 3, 'inc':
32, 'cld': 68, 'repne scasb': 26, 'not': 43, 'dec
70, 'jns': 52, 'meg': 66, 'div': 24, 'or': 274, 'shl
sar': 30, 'jge': 21, 'shr': 55, 'rep stosd': 7, 'bts
71, 'ja': 81, 'idiv': 20, 'movzx': 123, 'shrd': 4, '
31, 'js': 43, 'setl': 1, 'setne': 12, 'lock cmpxchg
21, 'int': 56, 'cdq': 16, 'fld': 19, 'fstp': 18, '
'lodsb': 6, 'stosb': 6, 'ror': 4, 'bswap': 20, '
4, 'fnstsw': 9, 'sahf': 9, 'jp': 3, 'fldz': 2, '
fucomp': 5, 'fchs': 1, 'fmul': 3, 'fdivrp': 1, 'fnstcw
1, 'fsubp': 1, 'setge': 1, 'rep movsb': 2, 'std':
'stosw': 1}

'pop': 1221, 'ret':
'test': 824, 'jne':

268, 'jle': 109,
ae':

g g

3,
160696}

0%}

'Flags': 'READ | EXECUTE'}, '
'Flags': 'READ | WRITE'}, 'Segment 2': {'Type
'READ | WRITE'}}

, 'Heap Section Size':

M.7. Bashlite

176

17 Section Entropy: {'': {'min': O, 'max': O, 'total': O, 'count': 1, 'mean': 0.0}, '.init':

{ '

min': 3.610577243331642, 'max': 3.610577243331642, 'total': 3.610577243331642, 'count':

1, 'mean': 3.610577243331642}, '.text': {'min': 6.435876216981836, 'max':

6.435876216981836, 'total': 6.435876216981836, 'count': 1, 'mean': 6.435876216981836}, '.
fini': {'min': 4.001822825622232, 'max': 4.001822825622232, 'total': 4.001822825622232, '

count': 1, 'mean': 4.001822825622232}, '.rodata': {'min': 5.971768358349981, 'max':

5.971768358349981, 'total': 5.971768358349981, 'count': 1, 'mean': 5.971768358349981},
eh_frame': {'min': 0.0, 'max': 0.0, 'total': 0.0, 'count': 1, 'mean': 0.0}, '.ctors':

{ '

min': 2.251629167387823, 'max': 2.251629167387823, 'total': 2.251629167387823, 'count':

1, 'mean': 2.251629167387823}, '.dtors': {'min': 1.0, 'max': 1
1, 'mean': 1.0}, '.jer': {'min': 0.0, 'max': 0.0, 'total': 0.0, 'count': 1, 'mean':
'.got.plt': {'min': 0.0, 'max': 0.0, 'total': 0.0, 'count': 1

.0, 'total': 1.0, 'count':
0.0},
'mean': 0.0}, '.data':

{ '

min': 1.0846834733737656, 'max': 1.0846834733737656, 'total': 1.0846834733737656, 'count

': 1, 'mean': 1.0846834733737656}, '.bss': {'min': 5.189375934525407, 'max':

5.189375934525407, 'total': 5.189375934525407, 'count': 1, 'mean': 5.189375934525407},

comment ': {'min': 3.6143694458867563, 'max': 3.6143694458867563, 'total':
3.6143694458867563, 'count': 1, 'mean': 3.6143694458867563}, '.shstrtab': {'min':
3.9464055386973294, 'max': 3.9464055386973294, 'total': 3.9464055386973294, 'count':
mean': 3.9464055386973294}, '.symtab': {'min': 4.325577064204675, 'max':

4.325577064204675, 'total': 4.325577064204675, 'count': 1, 'mean': 4.325577064204675},

g O

strtab': {'min': 4.535678049519343, 'max': 4.535678049519343, 'total': 4.535678049519343,

'count': 1, 'mean': 4.535678049519343}}
18 Kolmogorov Complexity: 46 KB

M.7.2. Dynamic features

1 "Behavior": {

2 "files_opened": [

3 "/proc/mnet/route"

4]:

5 "files_written": [],

6 "files_deleted": [],

7 "command_executions": [],

8 "files_attribute_changed": [],
9 "processes_terminated": [

10 "/tmp/EB93A6/996E.elf",

1 "/lib/systemd/systemd-udevd --daemon"
12 1,

13 "processes_killed": [],

14 "processes_injected": [],

15 "services_opened": [],

16 "services_created": [],

17 "services_started": [],

18 "services_stopped": [],

19 "services_deleted": [],

20 "windows_searched": [],

21 "registry_keys_deleted": [],
22 "mitre_attack_techniques": []

[I N R

M.8. Smokel.oader 177
M.8. SmokeLoader
M.8.1. Psuedo-static features
"strings": {
"numstrings": 118,
"avlength": 5.9491525423728815,
"printabledist": [
8, 9, 1, 8, 0, 5, 4, 16, 2, 7, 3, 4, 7, 4, 10, 4, 2, 3, 2, 1, 3, 1, 4, 4, 4, 3, 4, 8,
14, 6, 8, 8, 6, 11, 3, 7, 4, 0, 4, 4, 9, 8, 5, 8, 10, 5, 5, 7, 7, 3, 18, 10, 8,
3, 9, 8, 5, 3, 36, 14, 14, 3, 14, 8, 4, 9, 5, 11, 5, 14, 5, 3, 3, 13, 7, 5, 12,
8, 10, 13, 5, 10, 12, 10, 10, 14, 4, 14, 10, 5, 10, 7, 17, 7, 10, 4
s
"printables": 702,
"entropy": 6.289097915508371,
"paths": O,
"urls": O,
"registry": O,
IIMZII: 2
¥o
"general": {
"file_size": 33792,
"magic_number": "MZ",
"bytes_in_last_block": 128,
"blocks_in_file": 1,
"num_relocs": O,
"header_paragraphs": 4,
"min_extra_paragraphs": 16,
"max_extra_paragraphs": 65535,
"initial_ss": O,
"initial_sp": 320,
"checksum": O,
"initial_ip": O,
"initial_cs": O,
"reloc_table_offset": 64,
"overlay_number": O
To
"header": {
"e_magic": "MZ",
"e_cblp": 128,
"e_cp": 1’
"e_crlc": O,
"e_cparhdr": 4,
"e_minalloc": 16,
"e_maxalloc": 65535,
"e_ss": O,
"e_sp": 320,
"e_csum": O,
"e_ip": 0,
"e_cs": O,
"e_lfarlc": 64,
"e_ovno": O,
"e_res": [0],
"e_oemid": O,
"e_oeminfo": O,
"e_res2": [0, O, O, O, O, O, O, O, O, O, O, O],
"e_lfanew": 128
To
"Memory Layout": {
"Initial SP": 320,
"Max Allocation": 128
To
"EntryPoint": [
["Initi", "0x0:0x0"],
["Inter", "INT 0x21"]
Js
"entry": {
"entry": "IP: 0x140, CS: 0xO0"
To
"ExitPoint": [],

"Opcodes": [

65

66
67
68

69
70
4l
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

M.8. Smokel.oader 178
Ildecll , "Pop" . n add n , " add n . Iladd n . n add n . Iladd" . n incll . Iladd" . n add n , n add" . n add n , n
inC n , n add“ . n add n , n add“ . n add n , n add“ . n add n . n addll . n add n . n addll . n add n . n addll .
"add" s "add" s "add" s "add" s "add" s "add" s "add" s "add" s n p'LlSh" s "add" s "and" s "int
n s llpush" , "push" s "and" s "outsw") njbu s "insw") "and" s "outsb" , "outsb" , "outsw" s
lljell s llb0undll . Iljbll s n Outsbll s n andll s n andll s llpush" . n andll s "orll . n addll , lladd" . n add
", "add", "push", "inc", "add", "dec", "add", "add", "fild", "add", "add", "add", "
add" , "loopne" s "sidt") "add" s "dec") "add" s "add" s "add" s "add" s "add" , "mov" s n
add", "adc", "add", "add", "add", "add", "add", "add", "add", "add", "add", "add",
"add" , "add" s "add" s "add" s "mov" , "add" s "add") "scasb" s "and" s "add" s "add" s "add
n s "adc" s "add" s "adc" s "add" s "add" s "add" s "add" s "add" s "add" s "add" s "add" s n
add" s "add" s "add" s "add" s "add" s "add" s "add" , "add" s "add" , "add" s "add") "add" s
"add" s "add" s "add" s "add" s "add" s "add" s "add" s "add" s "add" s "add" s "add" s "add" s
"add", "add", "add", "add", "add", "add", "add", "add", "add", "add", "add", "add
n s n add n . n add n s n add n . n add n s n add n . n add n , n add" . n add n , n addll . n add n , n add" . n
add", "add", "add", "add", "add", "add", "add", "add", "add", "add", "add", "add",
n add n . n addl! . n add n . n add!l . n add n . n addll . n add n . n addll . n add n . n addll s n add n . n j s n ,
n add n . n add" . n add n , n adc" . Iladd n , n add n . Iladd n , " add n . Iladd" . n add n . n add" . n add n ,
n add n . n addll . n and n . n addll . n add n
] 3
"Opcode-0ccurrence": {
"dec": 3, "pop": 1, "add": 204, "inc": 3, "push": 5, "and": 8, "int": 1, "outsw": 2, "
jb": 2, "insw": 1, "outsb": 3, "je": 1, "bound": 1, "or": 1, "fild": 1, "loopne":
1, "sidt": 1, "mov": 3, "adc": 4, "scasb": 1, "js": 1, "jnp": 1
To
"Image Size": 33792,
"Memory Size": {
"Initial SS": O,
"Initial SP": 320,
"Minimum Allocation": 65535,
"Maximum Allocation": 320
To
"Header Size": {
"DOS Header Size": 128
T
"Block Entropy": {
"min": 5.367976256687364,
"max": 7.641454170138814,
"total": 238.1050878964332,
"count": 33,
"mean": 7.215305693831309
T
"Kolmogorov Complexity": "29 KB",
"Interrupt Info": [
{
"address": "Ox14c",
"interrupt": "O0x21"
}
1y
"Stack Info": {
"Initial SP": 320,
"Initial SS": O
}

M.8.2. Dynamic Analysis Features

"Behavi
"fi

or": {

les_opened": [
"<SYSTEM32>\\ntdll.d1l1",
"%HOMEPATH%\\desktop\\dashborder_120.bmp",
"%HOMEPATH%\\desktop\\total commander 64 bit.lnk",
"%HOMEPATH,\\desktop\\mail.ru agent.lnk",
"%HOMEPATH%\\desktop\\168. jpg",
"%HOMEPATHY,\\desktop\\applicantform_en.doc",
"%HOMEPATH,\\desktop\\ovp25012015.doc",
"% HOMEPATH%\\desktop\\qip 2012.1nk",
"C:\\WINDOWS\\system32\\winime32.d11",
"C:\\WINDOWS\\system32\\ws2_32.d11",
"C:\\WINDOWS\\system32\\ws2help.dll",

40

41
42
43
44
45
46
47
48
49
50

51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67

68

69
70
7
72

M.8. SmokeLoader 179

"C:\\WINDOWS\\system32\\psapi.dll",
"C:\\WINDOWS\\system32\\imm32.d11",
"C:\\WINDOWS\\system32\\1lpk.dll",
"C:\\WINDOWS\\system32\\usp10.d11"

]’

"files_written": [

"%APPDATAY%\\microsoft\\windows\\jfdcrauv\\ccsrwarr.exe",
"%APPDATA%\\microsoft\\windows\\start menu\\programs\\startup\\jfdcrauv.lnk",
"<SYSTEM32>\\tasks\\opera scheduled autoupdate 2414526821",
"%APPDATAY\\microsoft\\windows\\ucgbfghb\\sdutjtsr.exe",
"%APPDATA%\\microsoft\\windows\\start menu\\programs\\startup\\ucgbfghb.lnk",
"%APPDATA%\\microsoft\\windows\\ujbrbvrw\\rhriuaff.exe",
"%APPDATA%\\microsoft\\windows\\start menu\\programs\\startup\\ujbrbvrw.lnk",
"%APPDATAY%\\microsoft\\windows\\bcvbaehr\\uihfraij.exe",
"%APPDATA%\\microsoft\\windows\\start menu\\programs\\startup\\bcvbaehr.1lnk",
"%APPDATA%\\microsoft\\windows\\ihhbvewa\\ujrjfuet.exe",
"%APPDATA%\\microsoft\\windows\\start menu\\programs\\startup\\ihhbvewa.lnk"

1

"files_deleted": [

"<PATH_SAMPLE.EXE>"

1,

"command_executions": [

"C:\\Users\\Johnson\\AppData\\Local\\Temp\\23731771.exe",

"C:\\Windows\\Explorer.EXE",

"C:\\Users\\Johnson\\AppData\\Roaming\\Microsoft\\Windows\\wfhcuwdw\\vtahtbgc
.exe",

"C:\\Users\\Johnson\\AppData\\Local\\Temp\\76
d9c9d7a779005f6caeaa72dbdded4nalysis_subject.exe",

1,

"files_attribute_changed": [
"%APPDATAY%\\microsoft\\windows\\jfdcrauv\\ccsrwarr.exe",
"%APPDATA%\\microsoft\\windows\\ucgbfghb\\sdutjtsr.exe",
"%APPDATA%\\microsoft\\windows\\ujbrbvrw\\rhriuvaff.exe",
"%APPDATAY\\microsoft\\windows\\bcvbaehr\\uihfraij.exe",
"%APPDATAY%\\microsoft\\windows\\ihhbvewa\\ujrjfuet.exe",
"C:\\Users\\Johnson\\AppData\\Roaming\\Microsoft\\Windows\\wfhcuwdw",
"C:\\Users\\Johnson\\AppData\\Roaming\\Microsoft\\Windows\\wfhcuwdw\\vtahtbgc

.exe",
"C:\\Users\\Johnson\\AppData\\Roaming\\Microsoft\\Windows\\wfhcuwdw\\vtahtbgc
.exe\\:Zone.Identifier:$DATA"

T
"processes_terminated": [
"<PATH_SAMPLE.EXE>",
"<SYSTEM32>\\wbem\\wniprvse.exe"
1
"processes_killed": [],
"processes_injected": [],
"services_opened": [],
"services_created": [],
"services_started": [],
"services_stopped": [],
"services_deleted": [],
"windows_searched": [],

"registry_keys_deleted": [
"<HKLM>\\SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Schedule\\
CompatibilityAdapter\\Signatures\\Opera scheduled Autoupdate 2414526821.
jOb" s
"<HKLM>\\SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Schedule\\
CompatibilityAdapter\\Signatures\\Opera scheduled Autoupdate 2414526821.
job.fp",
"HKLM\\SOFTWARE\\MICROSOFT\\WINDOWS\\CURRENTVERSION\\EXPLORER\\STARTPAGE\\
NEWSHORTCUTS"
1

"mitre_attack_techniques": []

[I N R

M.9. IcedID

180

M.9. IcedID

M.9.1. Dynamic features

"Behavior": {
"files_opened": [

1,

"C:\\Program Files (x86)\\Common Files\\Oracle\\Java\\javapath\\",
"C:\\Users\\user\\AppData\\LocalLow",
"C:\\Users\\user\\AppData\\LocalLow\\Microsoft\\CryptnetUrlCache\\MetaData\\
AFCF8E76E06245E64045C911C7467EOF",
"C:\\Users\\user\\AppData\\Local\\Temp\\vbxcvhb",
"C:\\Users\\user\\AppData\\Roaming\\ jena\\Pupi3\\uhcosofd.dll",
"C:\\Users\\user\\AppData\\Roaming\\ jena\\Pupi3\\uhcosofd.dl1l.123.Manifest",
"C:\\Users\\user\\AppData\\Roaming\\ jena\\Pupi3\\uhcosofd.dll.124.Manifest",
"C:\\Users\\user\\AppData\\Roaming\\ jena\\Pupi3\\uhcosofd.dll.2.Manifest",
"C:\\Users\\user\\AppData\\Roaming\\ jhghjdfghdfgh",
"C:\\Users\\user\\AppData\\Roaming\\{30241F57-A566-277B-8E94-145700626C9C}\\
Homeca.dat",
"C:\\Users\\user\\AppData\\Roaming\\{30241F57 -A566-277B-8E94-145700626C9C}\\
rokoudbt64.dat",
"C:\\Users\\user\\Desktop\\c3.d11",
"C:\\Users\\user\\Desktop\\c3.d11.123.Manifest",
"C:\\Users\\user\\Desktop\\c3.d11l.124.Manifest",
"C:\\Users\\user\\Desktop\\c3.d1l1l.2.Manifest",
"C:\\Windows\\AppPatch\\sysmain.sdb",
"C:\\Windows\\Globalization\\Sorting\\sortdefault.nls",
"C:\\Windows\\SYSTEM32\\AcLayers.d1l1l",
"C:\\Windows\\SYSTEM32\\CRYPTBASE.d11",
"C:\\Windows\\SYSTEM32\\CRYPTSP.d1l",
"C:\\Windows\\SYSTEM32\\DNSAPI.d1l1l",
"C:\\Windows\\SYSTEM32\\DPAPI.DLL",
"C:\\Windows\\SYSTEM32\\ IPHLPAPI .DLL",
"C:\\Windows\\SYSTEM32\\IPHLPAPI.d1l1l",
"C:\\Windows\\SYSTEM32\\NETAPI32.411",
"C:\\Windows\\SYSTEM32\\NETUTILS.DLL",
"C:\\Windows\\SYSTEM32\\NTASN1.d11",
"C:\\Windows\\SYSTEM32\\PROPSYS.d1ll",
"C:\\Windows\\SYSTEM32\\Secur32.d1l",
"C:\\Windows \\SYSTEM32\\SspiCli.d1ll",
"C:\\Windows\\SYSTEM32\\WINNSI.DLL",
"C:\\Windows\\SYSTEM32\\WINSPOOL.DRV",
"C:\\Windows\\SYSTEM32\\WKSCLI.DLL",
"C:\\Windows\\SYSTEM32\\Winhttp.d1ll",
"C:\\Windows\\SYSTEM32\\apphelp.dll",
"C:\\Windows\\SYSTEM32\\bcrypt.dll",
"C:\\Windows\\SYSTEM32\\cryptnet.d1l1l",
"C:\\Windows\\SYSTEM32\\dhcpcsvc.DLL",
"C:\\Windows\\SYSTEM32\\dhcpcsvc6.DLL",
"C:\\Windows\\SYSTEM32\\en-US\\regsvr32.exe.mui",
"C:\\Windows\\SYSTEM32\\en-US\\rund1132.exe.mui",
"C:\\Windows\\SYSTEM32\\en-US\\winnlsres.dll.mui",
"C:\\Windows\\SYSTEM32\\gpapi .dl1",
"C:\\Windows\\SYSTEM32\\1loaddl1l64.exe",
"C:\\Windows\\SYSTEM32\\mskeyprotect.dll",
"C:\\Windows\\SYSTEM32\\ncrypt.d1ll",
"C:\\Windows\\SYSTEM32\\ntd1l1l.d11",
"C:\\Windows\\SYSTEM32\\o0le32.d11",
"C:\\Windows\\SYSTEM32\\regsvr32.exe",
"C:\\Windows\\SYSTEM32\\rund1132.exe"

"files_written": [

]

"C:\\Users\\user\\AppData\\Local\\Temp\\vbxcvhb",
"C:\\Users\\user\\AppData\\Roaming\\jena\\",
"C:\\Users\\user\\AppData\\Roaming\\ jena\\Pupi3\\",
"C:\\Users\\user\\AppData\\Roaming\\ jena\\Pupi3\\uhcosofd.dll",
"C:\\Users\\user\\AppData\\Roaming\\ jhghj",
"C:\\Users\\user\\AppData\\Roaming\\ jhghjdfghdfgh",
"\\Device\\ConDrv\\\\Connect"

"files_deleted": [],

"command_executions": [],

65
66
67
68
69

70
7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
o1
92
93
94
95

96
97
98
99

101
102
103
104
105
106
107
108
109

110
m
112

M.10. RacoonStealer

181

"files_attribute_changed": [],
"processes_terminated": [

"%windir%\\System32\\svchost.exe -k WerSvcGroup",
"wmiadap.exe /F /T /R",
"rundl1132.exe \"%APPDATAY\\%USERNAME%\\deuldt.d11\"

jhghjdfghdfgh\""
1,
"processes_killed": [],
"processes_injected": [],
"services_opened": [],
"services_created": [],
"services_started": [],
"services_stopped": [],
"services_deleted": [],
"windows_searched": [],
"registry_keys_deleted": [],
"mitre_attack_techniques": [

"encode data using XOR",

"encrypt data using RC4 PRGA",

"get common file path",

"link function at runtime on Windows",
"encrypt data using RC4 KSA",

"encode data using XOR",

"encrypt data using RC4 PRGA",

"get common file path",

"link function at runtime on Windows",
"encrypt data using RC4 KSA",

"Tries to load missing DLLs",

"Spawns processes",

,#1 --uqef=\"

"Creates a process in suspended mode (likely to inject code)",

"System process connects to network (likely due to code injection)",
"Drops files with a non matching file extension (content does not match to

file extension)",
"Creates files inside the user directory",
"Stores large binary data to the registry",
"Adds / modifies Windows certificates",

"May sleep (evasive loops) to hinder dynamic analysis",

"Contains long sleeps (>= 3 min)",
"Registers a DLL",
"Runs a DLL by calling functiomns",

"Tries to detect virtualization through RDTSC time measurements",

"Reads the hosts file",

"Tries to detect virtualization through RDTSC time measurements",

"Queries the cryptographic machine GUID",
"Reads software policies",
"Uses HTTPS",

"Uses HTTPS for network communication, use the SSL MITM Proxy cookbook for

further analysis",
"Performs DNS lookups",
"Uses HTTPS",
"Performs DNS lookups"

M.10. RacoonStealer
M.10.1. Dynamic Analysis Features

"Behavior": {
"files_opened": [
"%LOCALAPPDATAY%\\google\\chrome\\user datal\\local state",
"%LOCALAPPDATA%\\google\\chrome\\user data\\default\\login data",
"%LOCALAPPDATA%\\google\\chrome\\user datal\\default\\cookies",
"%LOCALAPPDATA%\\google\\chrome\\user data\\default\\web data",
"%APPDATA%\\opera software\\opera stable\\local state",

"%APPDATA%\\mozilla\\firefox\\profiles\\gn7ryp3k.default\\cookies.sqlite",

"%LOCALAPPDATA%low\\wffzxleyibue-shm",

"%APPDATA%\\mozilla\\firefox\\profiles\\gn7ryp3k.default\\formhistory.sqlite

"%APPDATA%\\thunderbird\\profiles\\wjj9aet2.default\\cookies.sqlite",

"%LOCALAPPDATAYlow\\1u51009jd81a-shm",
"%HOMEPATH%\\desktop\\icq.1lnk",

63
64
65
66
67
68
69
70
7
72
73
74
75
76
7
78
79
80
81
82
83

M.10. RacoonStealer 182

1

"%WINDIR%\\syswow64\\shdocvw.dll",
"%HOMEPATH%\\desktop\\mail.ru agent.lnk",
"%HOMEPATHY%\\desktop\\qip 2012.1nk",
"%HOMEPATHY\\desktop\\telegram.1lnk",
"%HOMEPATH%\\desktop\\total commander 64 bit.lnk",
"C:\\users\\public\\desktop\\acrobat reader dc.lnk",
"C:\\users\\public\\desktop\\google chrome.lnk",
"C:\\users\\public\\desktop\\mirc.1lnk",
"C:\\users\\public\\desktop\\mozilla firefox.lnk",
"C:\\users\\public\\desktop\\mozilla thunderbird.lnk",
"C:\\users\\public\\desktop\\opera.lnk",
"C:\\users\\public\\desktop\\steam.1lnk",
"C:\\users\\public\\desktop\\winamp.lnk",
"%HOMEPATHY%\\1links\\desktop.1lnk",
"%HOMEPATH%\\1links\\downloads.1lnk",
"%HOMEPATH%\\links\\recentplaces.lnk",
"%APPDATAY%\\microsoft\\windows\\recent\\activator.1lnk",
"%APPDATA%\\telegram desktop\\tdata\\90ef50e22e92cb8c0",
"%APPDATA%\\telegram desktop\\tdata\\d877£783d5d3ef8c\\map0"

"files_written": [

1,

"% LOCALAPPDATA%low\\nss3.d11",
"%LOCALAPPDATAY%low\\msvcp140.d11l",
"%LOCALAPPDATAY%low\\vcruntime140.d11",
"%LOCALAPPDATA%low\\mozglue.d1ll",
"%LOCALAPPDATA%low\\freebl3.d1ll",
"%LOCALAPPDATA%low\\softokn3.d1l1l",
"%LOCALAPPDATA%low\\sqlite3.d1l",
"%LOCALAPPDATA%low\\nssdbm3.d11l",
"%LOCALAPPDATA%1low\\kd9wm9u91hx5",
"%LOCALAPPDATAY%low\\e8ri2215mw3k",
"%LOCALAPPDATA%low\\rhn0dObs39ia",
"%LOCALAPPDATAYlow\\wffzxleyibue",
"%LOCALAPPDATAYlow\\4mud8y62vphn",
"%LOCALAPPDATAY%low\\1u51009jd81a",
"%LOCALAPPDATA%low\\21doo8yukmeg",
"% LOCALAPPDATA%low\\5vj2d6gygfdd",
"%LOCALAPPDATA%1ow\\5£805gq8cypw",
"%LOCALAPPDATA%low\\saecm9jotav4d",
"%LOCALAPPDATAYlow\\e333i1sq24ng",
"%LOCALAPPDATAY%low\\vlmfcOxocol7",
"%ALOCALAPPDATA%low\\zx1ubihalrcv",
"%LOCALAPPDATAYlow\\1r4sreeg8618",
"%LOCALAPPDATA%low\\o6saeel1d8z4m",
"C:\\Users\\<USER>\\AppData\\LocalLow\\nss3.d11l",
"C:\\Users\\<USER>\\AppData\\LocalLow\\msvcp140.d11l",
"C:\\Users\\<USER>\\AppData\\LocalLow\\vcruntime140.4d411",
"C:\\Users\\<USER>\\AppData\\LocalLow\\mozglue.dll",
"C:\\Windows\\ServiceProfiles\\LocalService\\AppData\\Roaming\\Microsoft\\
UPnP Device Host\\upnphost\\udhisapi.dll",
"C:\\Windows...aCollector",
"C:\\Users\\<USER>\\AppData\\LocalLow\\freebl3.d11l"

"files_deleted": [

"%LOCALAPPDATA%1low\\kd9wm9u91hx5",
"%LOCALAPPDATAYlow\\e8ri2215mw3k",
"%LOCALAPPDATA%low\\rhn0dObs39ia",
"%LOCALAPPDATAYlow\\wffzxleyibue-shm",
"%LOCALAPPDATAYlow\\wffzxleyibue",
"%LOCALAPPDATAY%low\\4mud8y62vphn",
"% LOCALAPPDATA%low\\1u51009jd81a-shm",
"%LOCALAPPDATA%1low\\1u51009jd81a",
"%LOCALAPPDATAY,low\\21ldoo8yukmeg",
"% LOCALAPPDATA%low\\5vj2d6gygfdd",
"%LOCALAPPDATA%1low\\5£805gq8cypw",
"%LOCALAPPDATAYlow\\saecm9jotavd",
"%LOCALAPPDATA%1low\\e333ilsq24ng",
"%LOCALAPPDATAYlow\\vlmfcOxocol7",
"%ALOCALAPPDATA%low\\zx1ubihalrcv",
"%LOCALAPPDATAYlow\\1r4sreeg8618",
"%LOCALAPPDATA%low\\o6saeeld8z4m",

84
85
86
87
88
89

90
91
92
93
94
95
96
97
98
99
100
101

102
103
104
105
106
107
108
109
110
1
112
113
114
115
116
17
118
119
120
121
122
123
124
125
126

127
128
129
130

131
132
133

134
135
136

137
138
139
140
141
142

143
144
145
146
147

M.10. RacoonStealer

183

"%LOCALAPPDATAY%low\\nss3.d11",
"%LOCALAPPDATA%low\\sqlite3.d1ll",
"%USERPROFILE%\\AppData\\LocalLow\\I3MH6Xv603U2",
"% USERPROFILEY%\\ AppData\\LocalLow\\d4H246h0iHmp",
"%USERPROFILE%\\AppData\\LocalLow\\f34imopdO7CF",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER347 . tmp.
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER441.tmp.csv",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER470.tmp.txt",
"%USERPROFILE%\\AppData\\LocalLow\\7jOP4171y8M4",
"% USERPROFILEY%\\AppData\\LocalLow\\2r1P6Nm00OdM3",
"%USERPROFILEY%\\AppData\\LocalLow\\nss3.d11l",
"%USERPROFILE%\\AppData\\LocalLow\\sqlite3.d11l",
"C:\\Windows\\System32\\spp\\store\\2.0\\cache\\cache.dat"

1,

"command_executions": [
"% SAMPLEPATHY",
"\"%SAMPLEPATHY\\ae2ba63a82ebe6a75f17a5c7abbc9Ib96.exe\"",
"\"%SAMPLEPATHY%\\

cddclel5fcfcb29cfcb3631f1d478640d228fd9eal38c01d347833567970d04e3.exe\"

"C:\\Windows\\System32\\wuapihost.exe -Embedding"

]

"files_attribute_changed": [

"%LOCALAPPDATAY%\\Microsoft\\Windows\\<INETFILES>\\Content.IE5\\index.dat",
"%APPDATA%\\Microsoft\\Windows\\Cookies\\index.dat",
"%LOCALAPPDATAY%\\Microsoft\\Windows\\History\\History.IE6\\index.dat",
"%LOCALAPPDATAY%1low\\kd9wm9u91hx5",

"%ALOCALAPPDATA%low\\e8ri2215mw3k",

"%LOCALAPPDATAY%low\\rhn0dObs39ia",

"%LOCALAPPDATAY%low\\wffzxleyibue",

"%LOCALAPPDATAYlow\\4mud8y62vphn",

"%LOCALAPPDATA%1low\\1u51009jd81a",

"%LOCALAPPDATAYlow\\21doo8yukmeg",

"% LOCALAPPDATA%low\\5vj2d6gygfdd",

"%LOCALAPPDATAY%low\\5£805gq8cypw",

"%LOCALAPPDATAYlow\\saecm9jotav4d",

"%LOCALAPPDATA%1low\\e333ilsq24ng",

"ALOCALAPPDATA%low\\vlmfcOxocol7",

"%ALOCALAPPDATA%low\\zx1ub5ihalrcv",

"%LOCALAPPDATAY,low\\1r4sreeg8618"

1o
"processes_terminated": [
"%windir%\\System32\\svchost.exe -k WerSvcGroup",
"wmiadap.exe /F /T /R",
"%windir%\\system32\\D11lHost.exe /Processid:{3EB3C877-1F16-487C-9050-104
DBCD666831}",
"% SAMPLEPATHY",
"<PATH_SAMPLE.EXE>",
"%SAMPLEPATHY%\\ae2ba63a82ebeb6a75f17a5c7ab6bc9b96.exe",
"%SAMPLEPATHY\\
cddc1lel5fcfcb29cfcb3631£f1d478640d228fd9ea38c01d347833567970d04e3.exe",
"C:\\Windows\\System32\\wuapihost.exe",
"2892 - C:\\Windows\\system32\\sc.exe start w32time task_started",
"2940 - C:\\Windows\\system32\\rundl132.exe dfdts.dll,
DfdGetDefaultPolicyAndSMART",
"2968 - taskhost.exe SYSTEM",
"3012 - taskhost.exe $(Arg0)",
"3032 - C:\\Windows\\system32\\schtasks.exe /delete /f /TN \"Microsoft\\
Windows\\Customer Experience Improvement Program\\Uploader\"",
"C:\\Users\\user\\Desktop\\software.exe"
1
"processes_killed": [],
"processes_injected": [
"%SAMPLEPATH%\\ae2ba63a82ebe6a75f17abc7abbc9b96.exe",
"%SAMPLEPATH\\
cddc1lel5fcfcb29cfcb3631£1d478640d228£fd9ea38c01d347833567970d04e3.exe",
"\\\\?\\C:\\Windows\\system32\\wbem\\WMIADAP .EXE"
1o
"services_opened": [],
"services_created": [],

"services_started": [],

n
>

148
149
150
151
152

153

154

155

156
157
158
159
160
161
162
163

164
165

166
167
168
169
170
171
172

173
174
175
176
177
178
179
180
181

M.11. AsyncRAT

184

"services_stopped": [],
"services_deleted": [],
"windows_searched": [],

"registry_keys_deleted": [
"<HKCU>\\Software\\Microsoft\\Windows\\CurrentVersion\\Internet Settings\\

ZoneMap\\ProxyBypass",

"<HKLM>\\Software\\Wow6432Node\\Microsoft\\Windows\\CurrentVersion\\Internet

Settings\\ZoneMap\\ProxyBypass",

"<HKCU>\\Software\\Microsoft\\Windows\\CurrentVersion\\Internet Settings\\

ZoneMap\\IntranetName",

"<HKLM>\\Software\\Wow6432Node\\Microsoft\\Windows\\CurrentVersion\\Internet

Settings\\ZoneMap\\IntranetName"

1
"mitre_attack_techniques": [
"encode data using XOR",
"link function at runtime on Windows",
"parse PE header",
"reference anti-VM strings targeting Qemu",
"Creates files inside the user directory",
"Overwrites code with unconditional jumps - possibly settings hooks in
foreign process",
"Creates a DirectInput object (often for capturing keystrokes)",
"May try to detect the virtual machine to hinder analysis (VM artifact
strings found in memory)",
"Tries to detect virtualization through RDTSC time measurements",
"Queries a list of all running processes",
"Queries the cryptographic machine GUID",
"Reads software policies",
"Tries to detect virtualization through RDTSC time measurements",
"Reads the hosts file",
"Uses HTTPS for network communication, use the SSL MITM Proxy cookbook
further analysis",
"Uses HTTPS",
"Posts data to webserver",
"Performs DNS lookups",
"Posts data to webserver",
"C2 URLs / IPs found in malware configuration",
"Performs DNS lookups",
"Uses HTTPS"
]

M.11. AsyncRAT
M.11.1. Dynamic Analysis Features

"Behavior": {

"fil

es_opened": [

for

"C:\\Users\\Admin\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\Programs

\\adobe",

"C:\\Users\\Admin\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\Programs

\\adobe\\cloud.exe",
"%WINDIR%\\assembly\\nativeimages_v4.0.30319_32\\mscorlib\\77
£338d420d067a26b2d34f47445fc51\\mscorlib.ni.dll.aux",
"%WINDIR%\\assembly\\nativeimages_v4.0.30319_32\\system.core\\7
aa0dcace3b5d10b626540709537d280\\system.core.ni.dll.aux",
"AWINDIR%\\assembly\\nativeimages_v4.0.30319_32\\system\\O
b2f69b43a576b9edcc807a30872bd91\\system.ni.dll.aux",
"%WINDIR%\\syswow64\\cmd.exe",
"<SYSTEM32>\\ntdll.d1l",
"YWINDIRY\\syswow64\\ntdll.d11l",
"%WINDIRY\\assembly\\nativeimages_v4.0.30319_32\\system.xml\\
bf505bb2c2b60e7a40740888cd2c3172\\system.xml.ni.dll.aux",
"AWINDIR%\\microsoft.net\\framework\\v4.0.30319\\msbuild.exe",
"%WINDIR%\\syswow64\\timeout.exe",
"%WINDIR%\\assembly\\nativeimages_v4.0.30319_32\\system.configuration\\
ce9750286ad44cbfb2acf176df9df0a2\\system.configuration.ni.dll.aux",

"(6688 - r74kfb8bnx.exe) c:\\users\\xxx\\appdata\\local\\microsoft\\clr_v4.0

_32\\usagelogs\\r74kfb8bnx.exe.log",

29
30
31
32

33
34
35
36
37
38
39
40
41

42

43
44

45
46
47
48
49
50
51
52
53
54
55

56
57

58

59

60

61

62

63

64

65

66

67

68

69

M.11. AsyncRAT

185

" (6688 - r74kfb8bnx.exe) c:\\users\\xxx\\appdata\\roaming\\microsoft\\windows

e
G
ECE
EeE

ne

ne
ne

e
"e:

ne
ne

I@e
s
I@e 0
"C: 0
:\\WINDOWS\\Microsoft.NET\\Framework\\v4.0.30319\\nlssorting.d11l",
0
0

ne
ne

"o

ne:
G

G
I@e
g
:\\WINDOWS\\system32\\clbcatq.d1ll",
:\\WINDOWS\\system32\\comres.dll",

U@e
I@e
G

ne
ne

1,

"files_
ne:

:\\WINDOWS\\Microsoft.NET\\Framework\\v4.
EeE
I@e
5

\\start menu\\programs\\adobe\\cloud.exe",
\\WINDOWS\\system32\\winime32.d11",
\\WINDOWS\\system32\\ws2_32.d11",
\\WINDOWS\\system32\\ws2help.dll",
\\WINDOWS\\system32\\psapi.dll",

:\\WINDOWS\\system32\\mscoree.dll",
"C:
"C:
NG

\\WINDOWS\\system32\\imm32.d411",
\\WINDOWS\\system32\\1pk.d1ll",
\\WINDOWS\\system32\\usp10.d11",

:\\WINDOWS\\Microsoft.NET\\Framework\\v4.0.30319\\mscoreei.d11",
:\\WINDOWS\\Microsoft.NET\\Framework\\v2.0.50727\\mscorwks.d11",
gGE
"e:

\\WINDOWS\\Microsoft.NET\\Framework\\v4.0.30319\\clr.dl1",

\\Documents and Settings\\Administrator\\Local Settings\\Temp\\EB93A6\\996
E.exe",

\\WINDOWS\\system32\\MSVCR100_CLR0400.d11",

\\WINDOWS\\Microsoft.NET\\Framework\\v4.0.30319\\Config\\machine.config",

:\\WINDOWS\\assembly\\NativeImages_v4.0.30319_32\\index18.dat",
:\\WINDOWS\\assembly\\NativeImages_v4.0.30319_32\\mscorlib\\

cece9d0256e18427b64587ba690605d4\\mscorlib.ni.dll",
\\WINDOWS\\system32\\rpcss.dll",
\\WINDOWS\\system32\\MSCTF.d11",
\\WINDOWS\\Microsoft.NET\\Framework\\v4.
\\WINDOWS\\Microsoft.NET\\Framework\\v4.

.30319\\Culture.dll",
.30319\\1locale.nlp",

.30319\\SortDefault.nlp",
\\WINDOWS\\Microsoft.NET\\Framework\\v4.0.30319\\clrjit.d11l",
\\WINDOWS\\assembly\\pubpoll.dat",

\\WINDOWS\\assembly\\NativeImages_v4.0.30319_32\\System\\7169

c473071af03077blcd2a9c1dbcbe\\System.ni.dll",

:\\WINDOWS\\assembly\\NativeImages_v4.0.30319_32\\System.Core\\4

a9f25bff4bb74c9b6a21091923307d2\\System.Core.ni.d4d11l",
\\WINDOWS\\system32\\shell32.d11l",
\\WINDOWS\\WinSxS\\x86_Microsoft.Windows.Common-
Controls_6595b64144ccf1df_6.0.2600.5512_x-ww_35d4ce83\\comctl1l32.d11",
\\WINDOWS\\WindowsShell.Manifest",
\\WINDOWS\\system32\\comct132.d11l",
\\WINDOWS\\system32\\shdocvw.dll",

\\WINDOWS\\Registration\\R000000000007.clb",
\\WINDOWS\\system32\\wininet.d1ll",
\\WINDOWS\\system32\\riched20.d11"

written": [
\\Users\\Admin\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\Programs
\\adobe\\cloud.exe",

"%APPDATA%\\microsoft\\windows\\start menu\\programs\\adobe\\cloud.exe",
"(6688 - r74kfb8bnx.exe) c:\\users\\xxx\\appdata\\local\\microsoft\\clr_v4.0

_32\\usagelogs\\r74kfb8bnx.exe.log",

" (6688 - r74kfb8bnx.exe) c:\\users\\xxx\\appdatal\roaming\\microsoft\\windows

ECE

T

n"e

G

g5

s

9@
G

ne

B

e

\\start menu\\programs\\adobe\\cloud.exe",
\\Documents and Settings\\Administrator\\\u300c\u5f00\u59cb\u300d\u83dc\
u5355\\\u7a0b\u5e8f\\adobe\\cloud.exe",
\\Users\\RDhJOCNFevzX\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\
Programs\\adobe\\cloud.exe",

:\\Windows\\ServiceProfiles\\LocalService\\AppData\\Roaming\\Microsoft\\

UPnP Device Host\\upnphost\\udhisapi.dll",
\\Users\\<USER>\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\
Programs\\adobe",
\\Users\\<USER>\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\
Programs\\adobe\\cloud.exe",
\\Users\\user\\AppData\\Local\\Microsoft\\CLR_v4.0_32\\UsageLogs\\program.
exe.log",
\\Users\\user\\AppData\\Local\\Microsoft\\Windows\\Caches",
\\Users\\user\\AppData\\Roaming",

:\\Users\\user\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\Programs

\\adobe",
\\Users\\user\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\Programs
\\adobe\\cloud.exe",
\\Users\\user\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\Programs

70

7
72
73
74

75
76
7
78

79
80
81

82
83
84

85
86
87
88
89
90
91
92
93

94
95
96
97
98
99

100

101

102
103
104
105

106

107
108

110
111
12
13
14
115

116

17
118
119
120
121
122

123

M.11. AsyncRAT

186

]’

\\adobe\\cloud.exe:Zone.Identifier",

"C:\\Users\\user\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\Programs

\\adobe\\cloud.exe\\:Zone.Identifier:$DATA",
"\\Device\\ConDrv\\\\Connect"

"files_deleted": [

"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp \\WERF5AA . tmp.
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp \\WERF685. tmp.csv",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WERF6D4 . tmp.txt",
"C:\\Windows\\System32\\spp\\store\\2.0\\cache\\cache.dat",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER292E. tmp.
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp \\WER294F . tmp.csv",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER298E. tmp.txt",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER1846 . tmp.
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER1920 . tmp.csv",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER1960 . tmp.txt",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER1ECE. tmp.
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER1EDF . tmp.csv",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER1EFO.tmp.txt"

1
"command_executions": [
"% SAMPLEPATHY",
"\"%ComSpec%\" ",
"\"%ComSpec%\" /c timeout 10",
"timeout 10",
"\"${SamplePath}\\34669
d48168ec6efe33843803070cd984646e6ef4c56198278ee7£f2956a4d36b.exe\" ",
"\"C:\\Windows\\System32\\cmd.exe\" ",
"\"C:\\Windows\\System32\\cmd.exe\" /c timeout 10",
"C:\\Windows\\Microsoft.NET\\Framework\\v4.0.30319\\MSBuild.exe",
"\"%SAMPLEPATH%\\vbc.exe\" ",
"C:\\Windows\\System32\\wuapihost.exe -Embedding",
"\"%SAMPLEPATHY\\34669
d48168ec6efe33843803070cd984646e6ef4c56198278ee7f2956a4d36b.exe\" ",
" (5356 - conhost.exe) \\??\\C:\\Windows\\system32\\conhost.exe Oxffffffff
ForceV1i",
" (8056 - msbuild.exe) C:\\Windows\\Microsoft.NET\\Framework\\v4.0.30319\\
MSBuild.exe",
"(9092 - cmd.exe) \"C:\\Windows\\System32\\cmd.exe\" /c timeout 10",
"(8392 - timeout.exe) timeout 10",
"(9180 - cmd.exe) \"C:\\Windows\\System32\\cmd.exe\" ",
"(6688 - r74kfb8bnx.exe) C:\\Users\\xxx\\AppData\\Local\\Temp\\6
a7267dc0e5889df7f4b88b8323fb628\\r74kFb8BNX.exe \"\"",
"(9136 - conhost.exe) \\??\\C:\\Windows\\system32\\conhost.exe Oxffffffff
ForceVi1",
n n .
"\"C:\\WINDOWS\\system32\\cmd.exe\" "
1o
"files_attribute_changed": [
"%APPDATA%\\microsoft\\windows\\start menu\\programs\\adobe\\cloud.exe"
1
"processes_terminated": [
"%windir’%\\System32\\svchost.exe -k WerSvcGroup",
"%CONHOST%

\"196114867320850120581458316209-930752071-12239441991204104146973047545-870432650" ,

"%CONHOST%

\"-1776689553-199703836817677110036195869801880484998886374142-1310019265-1427296177",

"wmiadap.exe /F /T /R",

"%SAMPLEPATH}"

"\"%ComSpec%\" n s

"\"%ComSpec%\" /c timeout 10",

"timeout 10",

"${SamplePath}\\34669
d48168ec6efe33843803070cd984646e6ef4c56198278ee7f2956a4d36b.exe",

"C:\\Windows\\SysWOW64\\cmd.exe",

124
125
126
127
128
129
130
131
132

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

151

152

153
154
155

157
158
159
160
161
162

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

188

M.11. AsyncRAT

187

"C:\\Windows\\SysWOW64\\timeout .exe",

"C:\\Windows\\Microsoft.NET\\Framework\\v4.0.30319\\MSBuild.exe",

"%WINDIR%\\syswow64\\timeout.exe",

"AWINDIRY%\\syswow64\\cmd.exe",

"<PATH_SAMPLE.EXE>",

"C:\\Windows\\System32\\wuapihost.exe",

"C:\\Windows\\System32\\conhost.exe",

"%SAMPLEPATH%\\vbc.exe",

"%SAMPLEPATH\\34669
d48168ec6efe33843803070cd984646e6ef4c56198278ee7£2956a4d36b.exe",

"(8392 - timeout.exe) c:\\windows\\syswow64\\timeout.exe"

]’

"processes_killed": [
"%4WINDIRY%\\syswow64\\cmd.exe",
"C:\\WINDOWS\\system32\\cmd.exe"

1,

"processes_injected": [
"%WINDIR%\\microsoft.net\\framework\\v4.0.30319\\msbuild.exe"

T

"services_opened": [],

"services_created": [],

"services_started": [],

"services_stopped": [],

"services_deleted": [],

"windows_searched": [],

"registry_keys_deleted": [

]’

"<HKCU>\\Software\\Microsoft\\Windows\\CurrentVersion\\Internet Settings\\
ZoneMap\\ProxyBypass",

"<HKLM>\\Software\\Wow6432Node\\Microsoft\\Windows\\CurrentVersion\\Internet
Settings\\ZoneMap\\ProxyBypass",

"<HKCU>\\Software\\Microsoft\\Windows\\CurrentVersion\\Internet Settings\\
ZoneMap\\IntranetName",

"<HKLM>\\Software\\Wow6432Node\\Microsoft\\Windows\\CurrentVersion\\Internet
Settings\\ZoneMap\\IntranetName"

"mitre_attack_techniques": [

"invoke .NET assembly method",

"load .NET assembly",

"read the memory information of other process",

"get drive type",

"get the current computer name",

"call encryption algorithm library",

"create new process",

"inject other processes by new thread",

"create hidden child process",

"decrypt data",

"modify token privilege",

"get time manytimes",

"get the current user name",

"get the current user name",

"get process token",

"modify user shell folders",

"inject other processes by process hollowing",

"script started by non script file",

"run msbuild",

"run msbuild",

"run msbuild",

"get window text",

"system location discovery",

"Creates an undocumented autostart registry key",

"Stores files to the Windows startup directory",

"Allocates memory in foreign processes",

"Creates a process in suspended mode (likely to inject code)",

"Spawns processes",

"Injects a PE file into a foreign processes",

"Writes to foreign memory regiomns",

"Drops executable to common a third party application directory",

"Creates files inside the user directory",

"Icon mismatch, binary includes an Icon from a different legit application in
order to fool users",

"Creates guard pages, often used to prevent reverse engineering and debugging

189
190
191
192
193
194

195
196
197
198
199
200
201
202
203

204
205
206
207

M.12. BotenaGo 188

"May sleep (evasive loops) to hinder dynamic analysis",

"Contains long sleeps (>= 3 min)",

"Binary may include packed or crypted data",

"Binary may include packed or crypted data",

".NET source code contains potential unpacker",

"PE file has an executable .text section which is very likely to contain
packed code (zlib compression ratio < 0.3)",

"Binary contains a suspicious time stamp",

"Queries a list of all running processes",

"Reads ini files",

"Queries the volume information (name, serial number etc) of a device",

"Checks the free space of harddrives",

"Queries the cryptographic machine GUID",

"Reads software policies",

"Uses HTTPS",

"Uses HTTPS for network communication, use the SSL MITM Proxy cookbook for
further analysis",

"Detected TCP or UDP traffic on non-standard ports"

M.12. BotenaGo
M.12.1. Static Analysis Features

1 section: {'entry': '0Ox46b2e0', 'sections': [{'name': '', 'size': 0, 'entropy': -0.0, '
file_offset': O, 'props': ['Type: NULL']}, {'name': '.text', 'size': 1106484, 'entropy':
5.870752884405834, 'file_offset': 4096, 'props': ['Type: PROGBITS', 'ALLOC', 'EXECINSTR
']}, {'name': '.plt', 'size': 528, 'entropy': 3.980936084806333, 'file_offset': 1110592,
'props': ['Type: PROGBITS', 'ALLOC', 'EXECINSTR']}, {'mame': '.rodata', 'size': 436703, '
entropy': 4.351834860802516, 'file_offset': 1114112, 'props': ['Type: PROGBITS', 'ALLOC
']}, {'name': '.rela', 'size': 24, 'entropy': 1.2220198859116511, 'file_offset': 1550816,

'props': ['Type: RELA', 'ALLOC']}, {'name': '.rela.plt', 'size': 768, 'entropy':

1.6210579369162064, 'file_offset': 1550840, 'props': ['Type: RELA', 'ALLOC'l}, {'name':
'.gnu.version', 'size': 74, 'entropy': 1.740960896496825, 'file_offset': 1551616, 'props
': ['Type: GNU_VERSYM', 'ALLOC']}, {'name': '.gnu.version_r', 'size': 80, 'entropy':
2.5252192137385356, 'file_offset': 1551712, 'props': ['Type: GNU_VERNEED', 'ALLOC'l}, {'
name': '.hash', 'size': 184, 'entropy': 1.8077229039022173, 'file_offset': 1551808, '
props': ['Type: HASH', 'ALLOC'l}, {'name': '.dynstr', 'size': 531, 'entropy':
4.572648045349689, 'file_offset': 1552000, 'props': ['Type: STRTAB', 'ALLOC']}]}

2 Segment Information: {'Sections': [{'Name': '', 'Size': 0, 'Virtual Address': 0}, {'Name': '.

text', 'Size': 1106484, 'Virtual Address': 4198400}, {'Name': '.plt', 'Size': 528, '
Virtual Address': 5304896}, {'Name': '.rodata', 'Size': 436703, 'Virtual Address':
5308416}, {'Name': '.rela', 'Size': 24, 'Virtual Address': 5745120}, {'Name': '.rela.plt
', 'Size': 768, 'Virtual Address': 5745144}, {'Name': '.gnu.version',6 'Size': 74, '
Virtual Address': 5745920}, {'Name': '.gnu.version_r', 'Size': 80, 'Virtual Address':
5746016}, {'Name': '.hash', 'Size': 184, 'Virtual Address': 5746112}, {'Name': '.dynstr'
'Size': 531, 'Virtual Address': 5746304}, {'Name': '.shstrtab', 'Size': 552, 'Virtual
Address': 0}, {'Name': '.dynsym', 'Size': 888, 'Virtual Address': 5747424}, {'Name': '.
typelink', 'Size': 3000, 'Virtual Address': 5748320}, {'Name': '.itablink', 'Size': 464,
'Virtual Address': 5751320}, {'Name': '.gosymtab', 'Size': 0, 'Virtual Address':
5751784}, {'Name': '.gopclntab', 'Size': 605612, 'Virtual Address': 5751808}, {'Name': '.
go.buildinfo', 'Size': 32, 'Virtual Address': 6361088}, {'Name': '.got.plt', 'Size': 280,
'Virtual Address': 6361120}, {'Name': '.dynamic', 'Size': 304, 'Virtual Address':
6361408}, {'Name': '.got', 'Size': 8, 'Virtual Address': 6361712}, {'Name': '.noptrdata',
'Size': 64984, 'Virtual Address': 6361728}, {'Name': '.data', 'Size': 31792, 'Virtual
Address': 6426720}, {'Name': '.bss', 'Size': 196560, 'Virtual Address': 6458528}, {'Name
': '.noptrbss', 'Size': 12392, 'Virtual Address': 6655104}, {'Name': '.tbss', 'Size': 8,
'Virtual Address': 0}, {'Name': '.zdebug_abbrev', 'Size': 281, 'Virtual Address':
6668288}, {'Name': '.zdebug_line', 'Size': 174066, 'Virtual Address': 6668569}, {'Name':
'.zdebug_frame', 'Size': 40738, 'Virtual Address': 6842635}, {'Name': '.zdebug_pubnames',
'Size': 7381, 'Virtual Address': 6883373}, {'Name': '.zdebug_pubtypes', 'Size': 20287, '
Virtual Address': 6890754}, {'Name': '.debug_gdb_scripts', 'Size': 44, 'Virtual Address':
6911041}, {'Name': '.zdebug_info', 'Size': 303025, 'Virtual Address': 6911085}, {'Name':
'.zdebug_loc', 'Size': 165369, 'Virtual Address': 7214110}, {'Name': '.zdebug_ranges', '
Size': 57654, 'Virtual Address': 7379479}, {'Name': '.interp', 'Size': 28, 'Virtual
Address': 4198372}, {'Name': '.note.go.buildid', 'Size': 100, 'Virtual Address':
4198272}, {'Name': '.symtab', 'Size': 103464, 'Virtual Address': 0}, {'Name': '.strtab',

M.12. BotenaGo 189

'Size': 102564, 'Virtual Address': 0}], 'Segments': [{'Type': 'SEGMENT_TYPES.PHDR', 'Size
': 560, 'Virtual Address': 4194368}, {'Type': 'SEGMENT_TYPES.INTERP', 'Size': 28, '
Virtual Address': 4198372}, {'Type': 'SEGMENT_TYPES.NOTE', 'Size': 100, 'Virtual Address
': 4198272}, {'Type': 'SEGMENT_TYPES.LOAD', 'Size': 1111120, 'Virtual Address': 4194304},
{'Type': 'SEGMENT_TYPES.LOAD', 'Size': 1049004, 'Virtual Address': 5308416}, {'Type': '
SEGMENT_TYPES.LOAD', 'Size': 97440, 'Virtual Address': 6361088}, {'Type': 'SEGMENT_TYPES.
DYNAMIC', 'Size': 304, 'Virtual Address': 6361408}, {'Type': 'SEGMENT_TYPES.TLS', 'Size':
0, 'Virtual Address': 0}, {'Type': 'SEGMENT_TYPES.GNU_STACK', 'Size': 0, 'Virtual
Address': 0}, {'Type': 'SEGMENT_TYPES.???', 'Size': 0, 'Virtual Address': 0}]}
imports: {'DynamicSymbols': ['', '__errno_location', 'getaddrinfo', 'freeaddrinfo'], '
SymbolTable': ['', '__errno_location', 'getaddrinfo', 'freeaddrinfo'l}
exports: ['_cgo_panic', '_cgo_topofstack', 'crosscall2', 'runtime.text', 'runtime.etext']
general: {'size': 3241164, 'virtual_size': O, 'has_debug': O, 'exports': 4348, 'imports': 19,
'has_relocations': 0, 'symbols': 4348}
header: {'file_type': 'EXECUTABLE', 'entry_point': 4633312, 'machine_type': 'x86_64', '
header_size': 64, 'program_headers': [{'type': 'PHDR', 'virtual_address': 4194368, '
physical_address': 4194368, 'physical_size': 560, 'virtual_size': 560, 'flags':
SEGMENT_FLAGS.R, 'alignment': 4096}, {'type': 'INTERP', 'virtual_address': 4198372, '
physical_address': 4198372, 'physical_size': 28, 'virtual_size': 28, 'flags':
SEGMENT_FLAGS.R, 'alignment': 1}, {'type': 'NOTE', 'virtual_address': 4198272, '
physical_address': 4198272, 'physical_size': 100, 'virtual_size': 100, 'flags':
SEGMENT_FLAGS.R, 'alignment': 4}, {'type': 'LOAD', 'virtual_address': 4194304, '
physical_address': 4194304, 'physical_size': 1111120, 'virtual_size': 1111120, 'flags':
SEGMENT_FLAGS.???7, 'alignment': 4096}, {'type': 'LOAD', 'virtual_address': 5308416, '
physical_address': 5308416, 'physical_size': 1049004, 'virtual_size': 1049004, 'flags':
SEGMENT_FLAGS.R, 'alignment': 4096}, {'type': 'LOAD', 'virtual_address': 6361088, '
physical_address': 6361088, 'physical_size': 97440, 'virtual_size': 306408, 'flags':
SEGMENT_FLAGS.??77, 'alignment': 4096}, {'type': 'DYNAMIC', 'virtual_address': 6361408, '
physical_address': 6361408, 'physical_size': 304, 'virtual_size': 304, 'flags':
SEGMENT_FLAGS.?7?7, 'alignment': 8}, {'type': 'TLS', 'virtual_address': 0, '
physical_address': 0, 'physical_size': O, 'virtual_size': 8, 'flags': SEGMENT_FLAGS.R, '
alignment': 8}, {'type': 'GNU_STACK', 'virtual_address': 0O, 'physical_address': 0, '
physical_size': 0, 'virtual_size': 0, 'flags': SEGMENT_FLAGS.?77, 'alignment': 8}, {'type
't '???', 'virtual_address': O, 'physical_address': O, 'physical_size': 0, 'virtual_size
': 0, 'flags': SEGMENT_FLAGS.??77, 'alignment': 8}], 'section_headers': [{'mame': '', '
type': 'NULL', 'virtual_address': O, 'size': 0, 'entropy': -0.0}, {'name': '.text', 'type
't 'PROGBITS', 'virtual_address': 4198400, 'size': 1106484, 'entropy':
5.870752884405834}, {'name': '.plt', 'type': 'PROGBITS', 'virtual_address': 5304896, '
size': 528, 'entropy': 3.980936084806333}, {'name': '.rodata', 'type': 'PROGBITS', '
virtual_address': 5308416, 'size': 436703, 'entropy': 4.351834860802516}, {'mname': '.rela
', 'type': 'RELA', 'virtual_address': 5745120, 'size': 24, 'entropy':
1.2220198859116511}, {'name': '.rela.plt', 'type': 'RELA', 'virtual_address': 5745144, '
size': 768, 'entropy': 1.6210579369162064}, {'name': '.gnu.version', 'type': 'GNU_VERSYM
', 'virtual_address': 5745920, 'size': 74, 'entropy': 1.740960896496825}, {'name': '.gnu.
version_r', 'type': 'GNU_VERNEED', 'virtual_address': 5746016, 'size': 80, 'entropy':
2.5252192137385356}, {'name': '.hash', 'type': 'HASH', 'virtual_address': 5746112, 'size
': 184, 'entropy': 1.8077229039022173}, {'name': '.dynstr', 'type': 'STRTAB', '
virtual_address': 5746304, 'size': 531, 'entropy': 4.572648045349689}, {'name': '.
shstrtab', 'type': 'STRTAB', 'virtual_address': 0, 'size': 552, 'entropy':
4.351353948202993}, {'mame': '.dynsym', 'type': 'DYNSYM', ‘'virtual_address': 5747424, '
size': 888, 'entropy': 1.0104030032533726}, {'mname': '.typelink', 'type': 'PROGBITS', '
virtual_address': 5748320, 'size': 3000, 'entropy': 4.352172764173542}, {'name': '.
itablink', 'type': 'PROGBITS', 'virtual_address': 5751320, 'size': 464, 'entropy':
2.260342786820047}, {'name': '.gosymtab', 'type': 'PROGBITS', 'virtual_address': 5751784,
'size': 0, 'entropy': -0.0}, {'name': '.gopclntab', 'type': 'PROGBITS', 'virtual_address
': 5751808, 'size': 605612, 'entropy': 5.599953726591909}, {'mame': '.go.buildinfo', '
type': 'PROGBITS', 'virtual_address': 6361088, 'size': 32, 'entropy':
3.5372301466508205}, {'name': '.got.plt', 'type': 'PROGBITS', 'virtual_address': 6361120,
'size': 280, 'entropy': 2.18951339608244}, {'name': '.dynamic', 'type': 'DYNAMIC', '
virtual_address': 6361408, 'size': 304, 'entropy': 1.6577221539606757}, {'name': '.got',
'type': 'PROGBITS', 'virtual_address': 6361712, 'size': 8, 'entropy': -0.0}, {'name': '.
noptrdata', 'type': 'PROGBITS', 'virtual_address': 6361728, 'size': 64984, 'entropy':
5.1736147485815644}, {'name': '.data', 'type': 'PROGBITS', 'virtual_address': 6426720, '
size': 31792, 'entropy': 1.6332834663111804}, {'mame': '.bss', 'type': 'NOBITS', '
virtual_address': 6458528, 'size': 196560, 'entropy': 7.994400722933447}, {'mame': '.
noptrbss', 'type': 'NOBITS', 'virtual_address': 6655104, 'size': 12392, 'entropy':
7.9170020206866765}, {'name': '.tbss', 'type': 'NOBITS', 'virtual_address': O, 'size': 8,
'entropy': 2.75}, {'name': '.zdebug_abbrev', 'type': 'PROGBITS', 'virtual_address':
6668288, 'size': 281, 'entropy': 7.186678878967747}, {'name': '.zdebug_line', 'type': '
PROGBITS', 'virtual_address': 6668569, 'size': 174066, 'entropy': 7.9955651626178295}, {'
name': '.zdebug_frame', 'type': 'PROGBITS', 'virtual_address': 6842635, 'size': 40738, '

M.12. BotenaGo 190

entropy': 7.931337274423072}, {'name': '.zdebug_pubnames', 'type': 'PROGBITS', '
virtual_address': 6883373, 'size': 7381, 'entropy': 7.960649887021013}, {'name': '.
zdebug_pubtypes', 'type': 'PROGBITS', 'virtual_address': 6890754, 'size': 20287, 'entropy
': 7.984492715530015}, {'name': '.debug_gdb_scripts', 'type': 'PROGBITS', '
virtual_address': 6911041, 'size': 44, 'entropy': 4.220128777433187}, {'name': '.
zdebug_info', 'type': 'PROGBITS', 'virtual_address': 6911085, 'size': 303025, 'entropy':
7.996917784963646}, {'name': '.zdebug_loc', 'type': 'PROGBITS', 'virtual_address':
7214110, 'size': 165369, 'entropy': 7.994350388445776}, {'name': '.zdebug_ranges', 'type
': 'PROGBITS', 'virtual_address': 7379479, 'size': 57654, 'entropy': 7.803982755586464},
{'name': '.interp', 'type': 'PROGBITS', 'virtual_address': 4198372, 'size': 28, 'entropy
': 3.94075983254009}, {'nmame': '.note.go.buildid', 'type': 'NOTE', 'virtual_address':
4198272, 'size': 100, 'entropy': 5.352271034814013}, {'name': '.symtab', 'type': 'SYMTAB
', 'virtual_address': 0, 'size': 103464, 'entropy': 3.2692849180450874}, {'mname': '.
strtab', 'type': 'STRTAB', 'virtual_address': 0, 'size': 102564, 'entropy':
5.0511450072422423}]}

strings: {'numstrings': 1222, 'avlength': 5.816693944353519, 'printabledist': [148, 21, 30,
8, 856, 9, 12, 8, 135, 107, 2, 13, 8, 28, 21, 33, 227, 41, 11, 15, 30, 6, 22, 28, 151,
639, 41, 80, 9, 19, 22, 3, 105, 75, 21, 13, 205, 30, 8, 7, 1092, 32, b1, 7, 228, 33, 11,
8, 82, 18, 7, 15, 190, 35, 5, 3, 75, 5, 8, 10, 76, 15, 6, 9, 67, 60, 15, 91, 126, 67, 50,

24, 66, 74, 4, 14, 116, 43, 71, 37, 113, O, 47, 42, 157, 249, 28, 53, 69, 8, 2, 6, 101,
6, 10, 24], 'printables': 7108, 'entropy': 5.173827171325684, 'paths': O, 'urls': 0, '
registry': 0, 'MZ': 2}

EntryPoint: [['Main ', 4633312], ['_cgo_', 4825536], ['_cgo_', 4627584], ['cross', 4825632],
['runti', 4198400]]

ExitPoint: []

Opcodes: ['push', 'push', 'push', 'push', 'mov', 'sub', 'call', 'mov', 'call', 'mov', 'mov',
'mov', 'mov', 'mov', 'mov', 'call', 'mov', 'mov', 'call', 'sub'l]

Opcode-0Occurrence: {'push': 85, 'mov': 102478, 'sub': 3067, 'call': 17044, 'add': 5613, 'pop
': 66, 'ret': 4403, 'mop': 9995, 'jmp': 10157, 'int3': 39516, 'test': 5340, 'je': 4067, '
movaps': 8, 'lea': 16003, 'jne': 5796, 'xor': 2805, 'cmp': 12764, 'movsxd': 206, 'js': 1,

'rep stosq': 8, 'bt': 214, 'jae': 1000, 'and': 1137, 'cmovne': 104, 'shl': 812, 'or':
234, 'jbe': 2463, 'jge': 502, 'jl': 376, 'ja': 942, 'jb': 606, 'mneg': 369, 'sar': 462, '
movzx': 2694, 'jle': 571, 'movups': 2059, 'inc': 693, 'jg': 308, 'setb': 35, 'cpuid': 3,
'xgetbv': 1, 'shr': 733, 'movabs': 648, 'lock cmpxchg': 134, 'sete': 281, 'xchg': 125,
imul': 355, 'cmove': 77, 'cmovl': 50, 'movdqu': 260, 'pcmpegb': 20, 'pmovmskb': 17, 'bsf
': 23, 'seta': 11, 'bswap': 5, 'bsr': 11, 'setg': 15, 'vmovdqu': 54, 'vpcmpegb': 11, '
vpmovmskb': 9, 'vzeroupper': 17, 'movq': 16, 'punpcklbw': 4, 'pshufd': 2, 'popcnt': 12, '
vpbroadcastb': 2, 'pand': 4, 'vpand': 1, 'pcmpestri': 2, 'vptest': 2, 'movss': 54, 'xorps
't 1421, 'ucomiss': 7, 'jnp': 18, 'movsd': 248, 'ucomisd': 48, 'setnp': 6, 'dec': 239, '
cmova': 20, 'cmovb': 12, 'mul': 51, 'jo': 5, 'setmne': 55, 'cmovg': 54, 'cvtss2sd': 23, '
movsx': 24, 'rol': 91, 'sbb': 102, 'cmovae': 4, 'setae': 4, 'cvtsi2sd': 62, 'addsd': 26,
'subsd': 13, 'mulsd': 30, 'cvttsd2si': 25, 'jno': 1, 'div': 33, 'lock or': 12, 'mot': 41,

'bts': 55, 'lock xadd': 158, 'divsd': 23, 'cmovle': 6, 'setl': 19, 'btr': 25, 'lock and
': 4, 'cqo': 7, 'idiv': 10, 'setbe': 4, 'jp': 4, 'pxor': 62, 'setge': 19, 'cdq': 3, '

setle': 3, 'rcr': 4, 'seto': 1, 'pinsrw': 1, 'pshufhw': 1, 'movdqa': 15, 'aesenc': 111, '
pshufb': 1, 'cld': 2, 'int': 4, 'rep movsb': 27, 'pause': 1, 'lfence': 1, 'mfence': 1, '
rdtsc': 1, 'pinsrd': 1, 'pinsrq': 1, 'vpxor': 1, 'vmovntdq': 12, 'sfence': 3, 'rep movsq
'+ 5, 'std': 1, 'vmovdqa': 8, 'prefetchnta': 4, 'pushfq': 1, 'popfq': 1, 'syscall': 45, '
cmovge': 3, 'cvtsd2ss': 4, 'movd': 1}

Image Size: 6458528

Header Size: {'ELF Header Size': 64, 'Program Headers Total Size': 2258556}
GNU Physical Size: O

Heap Size: {'Heap Segment Size': 97440, 'Heap Section Size': 0}

Loader Flags: {'Segment 0': {'Type': 'SEGMENT_TYPES.PHDR', 'Flags': 'READ'}, 'Segment 1': {'
Type': 'SEGMENT_TYPES.INTERP', 'Flags': 'READ'}, 'Segment 2': {'Type': 'SEGMENT_TYPES.
NOTE', 'Flags': 'READ'}, 'Segment 3': {'Type': 'SEGMENT_TYPES.LOAD', 'Flags': 'READ |
EXECUTE'}, 'Segment 4': {'Type': 'SEGMENT_TYPES.LOAD', 'Flags': 'READ'}, 'Segment 5': {'
Type': 'SEGMENT_TYPES.LOAD', 'Flags': 'READ | WRITE'}, 'Segment 6': {'Type': '
SEGMENT_TYPES.DYNAMIC', 'Flags': 'READ | WRITE'}, 'Segment 7': {'Type': 'SEGMENT_TYPES.
TLS', 'Flags': 'READ'}, 'Segment 8': {'Type': 'SEGMENT_TYPES.GNU_STACK', 'Flags': 'READ |

WRITE'}, 'Segment 9': {'Type': 'SEGMENT_TYPES.?7??', 'Flags': ''}}
Section Entropy: {'': {'min': O, 'max': O, 'total': O, 'count': 1, 'mean': 0.0}, '.text': {'

min': 5.870752884405834, 'max': 5.870752884405834, 'total': 5.870752884405834, 'count':
1, 'mean': 5.870752884405834}, '.plt': {'min': 3.980936084806333, 'max':
3.980936084806333, 'total': 3.980936084806333, 'count': 1, 'mean': 3.980936084806333}, '.
rodata': {'min': 4.351834860802516, 'max': 4.351834860802516, 'total': 4.351834860802516,
'count': 1, 'mean': 4.351834860802516}, '.rela': {'min': 1.2220198859116511, 'max':
1.2220198859116511, 'total': 1.2220198859116511, 'count': 1, 'mean': 1.2220198859116511},
'.rela.plt': {'min': 1.6210579369162064, 'max': 1.6210579369162064, 'total':
1.6210579369162064, 'count': 1, 'mean': 1.6210579369162064}, '.gnu.version': {'min':
1.740960896496825, 'max': 1.740960896496825, 'total': 1.740960896496825, 'count': 1, '

M.12. BotenaGo

191

mean': 1.740960896496825}, '.gnu.version_r': {'min':

2.5252192137385356, 'total': 2.

'.hash': {'min': 1.8077229039022173, 'max': 1.8077229039022173, 'total':
1.8077229039022173, 'count': 1,
4.572648045349689, 'max': 4.572648045349689, 'total':

2.5252192137385356,

[]

max

5252192137385356, 'count': 1, 'mean': 2.5252192137385356},

'mean': 1.8077229039022173}, '.dynstr':

4.572648045349689,

{'min"':
'count ':

mean': 4.572648045349689}, '.shstrtab': {'min': 4.351353948202993, 'max':

4.351353948202993, 'total': 4.351353948202993,

dynsym': {'min': 1.0104030032533726, 'max': 1.0104030032533726, 'total':
'mean': 1.0104030032533726}, '.typelink'

1.0104030032533726, 'count': 1,
4.352172764173542, 'max': 4.352172764173542, 'total':

4.352172764173542,

: {'min"':
'count ':

mean': 4.352172764173542}, '.itablink': {'min': 2.260342786820047, 'max':

2.260342786820047, 'total': 2.260342786820047,

gosymtab': {'min': O, 'max': O,
': 5.599953726591909, 'max': 5.

'total': O, 'count':

599953726591909, 'total':

1,

1,

1, 'mean': 0.0}, '.gopclntab':

mean': 5.599953726591909}, '.go.buildinfo': {'min': 3.5372301466508205,
5372301466508205, 'count': 1, 'mean': 3.5372301466508205},
'.got.plt': {'min': 2.18951339608244, 'max': 2.18951339608244, 'total':

3.5372301466508205, 'total': 3.

2.18951339608244, 'count': 1, 'mean':
1.6577221539606757, 'max': 1.6577221539606757,

'total':

mean': 1.6577221539606757}, '.got': {'min': 0.0, 'max': 0.0, 'total': O.

mean': 0.0}, '.noptrdata': {'min':

': 5.1736147485815644, 'count':

1.6332834663111804, 'max': 1.6332834663111804,

1, 'mean': 5.1736147485815644}, '.data':

'total':

5.599953726591909,

1.6332834663111804,

[]

max

2.18951339608244}, '.dynamic': {'min':
1.6577221539606757 ,

0, 'count

5.1736147485815644, 'max': 5.1736147485815644,

{'min"':

'count ':

'count ':

[

[

'count': 1, 'mean': 2.260342786820047},
{'min

1,

1,
1,

[

'total

'count ':

1,

mean': 1.6332834663111804}, '.bss': {'min': 7.994400722933447, 'max': 7.994400722933447,
{'min"':

"total': 7.994400722933447, 'count': 1, 'mean': 7.994400722933447},
7.9170020206866765, 'max': 7.9170020206866765,

'total':

mean': 7.9170020206866765}, '.tbss': {'min': 2.75, 'max': 2.75, 'total':
1, 'mean': 2.75}, '.zdebug_abbrev': {'min': 7.186678878967747, 'max': 7.186678878967747,

'total': 7.186678878967747, 'count':
': 7.9955651626178295, 'max': 7.9955651626178295,

1, 'mean': 7.9955651626178295%},

7.931337274423072, 'total': 7.931337274423072,

1, 'mean': 7.186678878967747}, '.zdebug_line': {'min
'total': 7.9955651626178295, 'count':
'.zdebug_frame': {'min': 7.931337274423072, 'max':

zdebug_pubnames': {'min': 7.960649887021013, 'max': 7.960649887021013, '

7.960649887021013, 'count': 1,

'mean': 7.960649887021013},

7.984492715530015, 'max': 7.984492715530015, 'total':

mean': 7.984492715530015}, '.debug_gdb_scripts':
4.220128777433187, 'total': 4.220128777433187,
zdebug_info': {'min': 7.996917784963646, 'max': 7.996917784963646,

7.996917784963646, 'count': 1,

7.803982755586464, 'total': 7.803982755586464,

{'min"':

7.984492715530015,

'mean': 7.996917784963646}, '.zdebug_loc'
7.994350388445776, 'max': 7.994350388445776, 'total':
mean': 7.994350388445776}, '.zdebug_ranges': {'min':

7.994350388445776,
7.803982755586464,

'.zdebug_pubtypes':

'.noptrbss':
7.9170020206866765,

'count ':

1,

2.75, 'count':

total':

'count ':

'total':

: {'min"':
'count ':
'max':

1,

4.220128777433187, 'max':
'count': 1, 'mean': 4.220128777433187},

1,

'count': 1, 'mean': 7.931337274423072},

{'min"':

[

[

'count': 1, 'mean': 7.8039827555864641%},

interp': {'min': 3.94075983254009, 'max': 3.94075983254009, 'total': 3.94075983254009,

count': 1, 'mean': 3.94075983254009},

': 5.352271034814013, 'total':

'.symtab': {'min': 3.2692849180450874, 'max': 3.2692849180450874,

3.2692849180450874, 'count': 1,

mean': 5.051145007242242}}

'.note.go.buildid': {'min': 5.352271034814013,

'max

[

'count': 1, 'mean': 4.351353948202993}, '.

5.352271034814013, 'count': 1, 'mean': 5.352271034814013},

'mean': 3.2692849180450874}, '.strtab':
5.051145007242242, 'max': 5.051145007242242, 'total':

M.12.2. Dynamic Analysis Features

"Behavior": {
"files_opened": [
"/etc/1ld.so.cache",

"/1lib/x86_64-linux-gnu/libpthread.so.0",
"/1lib/x86_64-linux-gnu/libc.so.6",

LYV
"/dev/bus/usb",
"/dev/mei",
"/dev/meiO",
"/dev/mem",
"/etc/",
"/etc/fstab",

"/etc/fwupd/daemon.conf",

"/etc/fwupd/redfish.

"/etc/fwupd/remotes
"/etc/fwupd/remotes
"/etc/fwupd/remotes
"/etc/fwupd/remotes

conf",

.d",
.d/dell-esrt.conf",
.d/1lvfs-testing.conf",
.d/1lvfs.conf",

5.051145007242242,

'total':

{'min"':
'count ':

1,

1

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

M.12. BotenaGo

192

]’

"/etc/fwupd/remotes.d/vendor-directory
"/etc/fwupd/remotes.d/vendor.conf",
"/etc/fwupd/thunderbolt.conf",
"/etc/fwupd/upower.conf",

"/etc/gai.conf",

"/etc/gcrypt/hwf.deny",

"/etc/group",

"/etc/host.conf",

"/etc/hosts",

"/etc/locale.alias",

"/etc/logrotate.
"/etc/logrotate.
.d/alternatives",
.d/apport",

.d/apt",

.d/bootlog",

.d/btmp",
.d/cups-daemon",
.d/dpkg",

.d/lightdm",

.d/ppp",

.d/rsyslog",
.d/speech-dispatcher",
.d/ubuntu-advantage-tools",
.d/ufw",

"/etc/logrotate
"/etc/logrotate
"/etc/logrotate
"/etc/logrotate
"/etc/logrotate
"/etc/logrotate
"/etc/logrotate
"/etc/logrotate
"/etc/logrotate
"/etc/logrotate
"/etc/logrotate
"/etc/logrotate
"/etc/logrotate

conf",
dll’

.conf",

"/etc/logrotate.d/wtmp",

"/etc/machine-id",
"/etc/os-release",
"/etc/pki/fwupd",

"/etc/pki/fwupd-metadata",
"/etc/pki/fwupd-metadata/GPG-KEY-Linux-Foundation-Metadata",

"/etc/pki/fwupd-metadata/GPG-KEY-Linux-Vendor-Firmware-Service",

"/etc/pki/fwupd-metadata/LVFS-CA.pemn",
"/etc/pki/fwupd/GPG-KEY-Linux-Foundation-Firmware"

"files_written": [
"/var/cache/fwupd/.goutputstream-ACLH51",

1,

"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.

#1k0x0000558eb7589b80
#1k0x000055988aad3b80
#1k0x000055e78c7deb80
#1k0x0000561b847eeb80
#1k0x00005647e9e63b80
#1k0x000056527d2a9b80

"/var/lib/fwupd/gnupg/pubring.kbx.tmp",
"/var/lib/fwupd/remotes.d/lvfs/metadata.xml.gz.03VE51",

"/var/lib/fwupd/remotes.d/lvfs/metadata.xml.gz.jcat .ML5W41",
"/var/lib/logrotate/status.tmp",

"/var/log/apport.log.1.

gZ" s

"/var/log/auth.log.1l.gz",
"/var/log/cups/access_log.1l.gz",
"/var/log/cups/error_log.1l.gz",
"/var/log/kern.log.1.gz",

"/var/log/syslog.1l.gz",

"/var/log/ubuntu-advantage-timer.log.1.gz"

"files_deleted": [

"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/ .
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/ .
"/var/lib/fwupd/gnupg/.

#1k0x0000558eb7589b80
#1k0x0000558eb7589b80
#1k0x000055988aad3b80
#1k0x000055988aad3b80

#1k0x000055e78c7deb80
#1k0x0000561b847eeb80
#1k0x0000561b847eeb80
#1k0x00005647e9e63b80
#1k0x00005647e9e63b80
#1k0x000056527d2a9b80
#1k0x000056527d2a9b80

"/var/lib/fwupd/gnupg/pubring.kbx.lock",
"/var/lib/fwupd/gnupg/pubring.kbx.tmp",
"/var/lib/logrotate/status.tmp",

.buffalo
.buffalo
.buffalo
.buffalo
.buffalo
.buffalo

.buffalo
.buffalo
.buffalo
.buffalo
#1k0x000055e78c7deb80.
.buffalo
.buffalo
.buffalo
.buffalo
.buffalo
.buffalo
.buffalo

buffalo

.3589",
.3583",
.3577",
.3587",
.3585",
.3579",

.3589",
.3589x",
.3583",
.3583x",
.3577",
.3577x",
.3587",
.3587x",
.3585",
.3585x%",
.3579",
.3579x",

9
91
92
93
9
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110
m
112
113
114
115
116
17
118

119
120
121
122
123
124
125
126
127
128
129

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

M.12. BotenaGo

193

1,

"/var/log/apport.log.1",
"/var/log/apport.log.8.gz",
"/var/log/auth.log.1",
"/var/log/auth.log.5.gz",
"/var/log/btmp.2",
"/var/log/cups/access_log.1",
"/var/log/cups/access_log.8.gz",
"/var/log/cups/error_log.1",
"/var/log/kern.log.1",
"/var/log/kern.log.5.gz",
"/var/log/syslog.1",
"/var/log/syslog.8.gz",
"/var/log/ubuntu-advantage-timer.log.1"

"command_executions": [

1,

"/sbin/fstrim --fstab --verbose --quiet",

"/usr/bin/fwupdmgr refresh",

"/usr/sbin/logrotate /etc/logrotate.conf",

"/bin/gzip",

"sh -c \"\\n\\t\\tinvoke-rc.d --quiet cups restart > /dev/nulll\\n\"
logrotate_script \"/var/log/cups/*log \"",

"invoke-rc.d --quiet cups restart",

"/sbin/runlevel",

"systemctl --quiet is-enabled cups.service",

"ls /etc/rc[S2345].d4/8[0-91[0-9]cups",

"systemctl --quiet is-active cups.service",

"sh -c /usr/lib/rsyslog/rsyslog-rotate logrotate_script /var/log/syslog",

"/usr/lib/rsyslog/rsyslog-rotate",

"systemctl kill -s HUP rsyslog.service",

"sh -c /usr/lib/rsyslog/rsyslog-rotate logrotate_script /var/log/mail.info/
var/log/mail .warn/var/log/mail.err/var/log/mail.log/var/log/daemon.log/
var/log/kern.log/var/log/auth.log/var/log/user.log/var/log/lpr.log/var/
log/cron.log/var/log/debug/var/log/messages",

"/usr/libexec/fwupd/fwupd",

"/usr/bin/gpgconf --list-dirs",

"/usr/bin/gpgconf --list-components",

"/usr/bin/gpg --version",

"/usr/bin/gpgsm --version",

"/usr/bin/gpgconf --version"

"files_attribute_changed": [

"/var/log/apport.log.1l.gz",
"/var/log/apport.log",

"/var/log/btmp",
"/var/log/cups/access_log.1.gz",
"/var/log/cups/error_log.1l.gz",
"/var/log/cups/access_log",
"/var/log/cups/error_log",
"/var/log/syslog.1l.gz",

"/var/log/syslog",
"/var/log/kern.log.1l.gz",
"/var/log/auth.log.1.gz",
"/var/log/kern.log",

"/var/log/auth.log",
"/var/log/ubuntu-advantage-timer.log.1.gz",
"/var/log/ubuntu-advantage-timer.log",
"/var/lib/logrotate/status.tmp",
"/var/cache/fwupd/.goutputstream-ACLH51",
"/run/motd.d/fwupd/.goutputstream-IQ9641",
"/run/motd.d/fwupd/.goutputstream-U50A51"

T

"processes_terminated": [],
"processes_killed": [],
"processes_injected": [],
"services_opened": [],
"services_created": [],
"services_started": [],
"services_stopped": [],
"services_deleted": [],
"windows_searched": [],

"registry_keys_deleted": [],

157
158
159

160
161
162
163

164

165
166
167
168
169
170
171

M.13. FritzFrog 194

M.13.

"mitre_attack_techniques": [

"Executes commands using a shell command-line interpreter",

"Executes the \"systemctl\" command used for controlling the systemd system
and service manager",

"Sample and/or dropped files symbols with suspicious names",

"Creates hidden files, links and/or directories",

"Deletes log files",

"May try to detect the virtual machine to hinder analysis (VM artifact
strings found in memory)",

"Uses the \"uname\" system call to query kernel version information (possible
evasion)",

"Reads CPU information from /proc indicative of miner or evasive malware",

"Reads system information from the proc file system",

"Performs DNS lookups",

"Performs DNS lookups"

FritzFrog

M.13.1. Pseudo-Static analysis
1 section: {'entry': '0x45d1d0', 'sections': [{'name': '', 'size': 0, 'entropy': -0.0, '
file_offset': 0, 'props': ['Type: NULL']}, {'name': '.text', 'size': 4158883, 'entropy':
5.892871008625818, 'file_offset': 4096, 'props': ['Type: PROGBITS', 'ALLOC', 'EXECINSTR
']}, {'name': '.rodata', 'size': 1793920, 'entropy': 4.279657059185294, 'file_offset':
4165632, 'props': ['Type: PROGBITS', 'ALLOC'l}, {'name': '.shstrtab', 'size': 124, '
entropy': 4.055184950639968, 'file_offset': 5959552, 'props': ['Type: STRTAB']}, {'name':
'.typelink', 'size': 14072, 'entropy': 5.181381557486275, 'file_offset': 5959680, 'props
': ['Type: PROGBITS', 'ALLOC'l}, {'name': '.itablink', 'size': 3384, 'entropy':
2.530798983757644, 'file_offset': 5973752, 'props': ['Type: PROGBITS', 'ALLOC'l}, {'name
': '.gosymtab', 'size': 0, 'entropy': -0.0, 'file_offset': 5977136, 'props': ['Type:
PROGBITS', 'ALLOC']}, {'mame': '.gopclntab', 'size': 2773252, 'entropy':

5.737537728525165, 'file_offset': 5977152, 'props': ['Type: PROGBITS', 'ALLOC'l}, {'name

pro

WRI

'.noptrdata', 'size': 215808, 'entropy': 6.286892199147341, 'file_offset': 8753152, '
ps': ['Type: PROGBITS', 'ALLOC', 'WRITE'l}, {'mame': '.data', 'size': 107056, 'entropy
1.7852031614129318, 'file_offset': 8968960, 'props': ['Type: PROGBITS', 'ALLOC', '
TE'1}]}

2 Segment Information: {'Sections': [{'Name': '', 'Size': 0, 'Virtual Address': 0}, {'Name': '.

tex

t', 'Size': 4158883, 'Virtual Address': 4198400}, {'Name': '.rodata', 'Size': 1793920,

'Virtual Address': 8359936}, {'Name': '.shstrtab', 'Size': 124, 'Virtual Address': 0},

{'N
'Si
Add
101

ame': '.typelink', 'Size': 14072, 'Virtual Address': 10153984}, {'Name': '.itablink',
ze': 3384, 'Virtual Address': 10168056}, {'Name': '.gosymtab', 'Size': 0, 'Virtual
ress': 10171440}, {'Name': '.gopclntab', 'Size': 2773252, 'Virtual Address':

71456}, {'Name': '.noptrdata', 'Size': 215808, 'Virtual Address': 12947456}, {'Name':

'.data', 'Size': 107056, 'Virtual Address': 13163264}, {'Name': '.bss', 'Size': 125296, '

Vir
133

tual Address': 13270336}, {'Name': '.noptrbss', 'Size': 13336, 'Virtual Address':
95648}, {'Name': '.note.go.buildid', 'Size': 100, 'Virtual Address': 4198300}], '

Segments': [{'Type': 'SEGMENT_TYPES.PHDR', 'Size': 392, 'Virtual Address': 4194368}, {'

Typ
SEG
SEG

e': 'SEGMENT_TYPES.NOTE', 'Size': 100, 'Virtual Address': 4198300}, {'Type': '
MENT_TYPES.LOAD', 'Size': 4162979, 'Virtual Address': 4194304}, {'Type': '
MENT_TYPES.LOAD', 'Size': 4584772, 'Virtual Address': 8359936}, {'Type': '

SEGMENT_TYPES.LOAD', 'Size': 322880, 'Virtual Address': 12947456}, {'Type': '
SEGMENT_TYPES.GNU_STACK', 'Size': 0, 'Virtual Address': 0}, {'Type': 'SEGMENT_TYPES.?77',
'Size': 0, 'Virtual Address': 0}]}

imports: {}

exports: []

general: {'size': 9076032, 'virtual_size': O, 'has_debug': O, 'exports': O, 'imports': 0, '
has_relocations': 0, 'symbols': 0}

header: {'file_type': 'EXECUTABLE', 'entry_point': 4575696, 'machine_type': 'x86_64', '
header_size': 64, 'program_headers': [{'type': 'PHDR', 'virtual_address': 4194368, '
physical_address': 4194368, 'physical_size': 392, 'virtual_size': 392, 'flags':
SEGMENT_FLAGS.R, 'alignment': 4096}, {'type': 'NOTE', 'virtual_address': 4198300, '
physical_address': 4198300, 'physical_size': 100, 'virtual_size': 100, 'flags':
SEGMENT_FLAGS.R, 'alignment': 4}, {'type': 'LOAD', 'virtual_address': 4194304, '
physical_address': 4194304, 'physical_size': 4162979, 'virtual_size': 4162979, 'flags':
SEGMENT_FLAGS.???7, 'alignment': 4096}, {'type': 'LOAD', 'virtual_address': 8359936, '
physical_address': 8359936, 'physical_size': 4584772, 'virtual_size': 4584772, 'flags':

SEGMENT_FLAGS.R, 'alignment': 4096}, {'type': 'LOAD', 'virtual_address': 12947456, '

"

M.13. FritzFrog 195

physical_address': 12947456, 'physical_size': 322880, 'virtual_size': 461528, 'flags':
SEGMENT_FLAGS.???7, 'alignment': 4096}, {'type': 'GNU_STACK', 'virtual_address': 0, '
physical_address': 0, 'physical_size': O, 'virtual_size': 0, 'flags': SEGMENT_FLAGS.?777,
'alignment': 8}, {'type': '???', 'virtual_address': 0, 'physical_address': 0, '
physical_size': 0, 'virtual_size': 0, 'flags': SEGMENT_FLAGS.?77, 'alignment': 8}], '
section_headers': [{'name': '', 'type': 'NULL', 'virtual_address': O, 'size': 0, 'entropy
't -0.0}, {'name': '.text', 'type': 'PROGBITS', 'virtual_address': 4198400, 'size':
4158883, 'entropy': 5.892871008625818}, {'name': '.rodata', 'type': 'PROGBITS', '
virtual_address': 8359936, 'size': 1793920, 'entropy': 4.279657059185294}, {'name': '.
shstrtab', 'type': 'STRTAB', 'virtual_address': 0, 'size': 124, 'entropy':
4.055184950639968}, {'mame': '.typelink', 'type': 'PROGBITS', 'virtual_address':
10153984, 'size': 14072, 'entropy': 5.181381557486275}, {'name': '.itablink', 'type': '
PROGBITS', 'virtual_address': 10168056, 'size': 3384, 'entropy': 2.530798983757644}, {'
name': '.gosymtab', 'type': 'PROGBITS', 'virtual_address': 10171440, 'size': 0, 'entropy
': -0.0}, {'name': '.gopclntab', 'type': 'PROGBITS', 'virtual_address': 10171456, 'size':
2773252, 'entropy': 5.737537728525165}, {'name': '.noptrdata', 'type': 'PROGBITS', '
virtual_address': 12947456, 'size': 215808, 'entropy': 6.286892199147341}, {'name': '.
data', 'type': 'PROGBITS', 'virtual_address': 13163264, 'size': 107056, 'entropy':
1.7852031614129318}, {'mname': '.bss', 'type': 'NOBITS', 'virtual_address': 13270336, '
size': 125296, 'entropy': -0.0}, {'name': '.noptrbss', 'type': 'NOBITS', 'virtual_address
': 13395648, 'size': 13336, 'entropy': -0.0}, {'name': '.note.go.buildid', 'type': 'NOTE
', 'virtual_address': 4198300, 'size': 100, 'entropy': 5.297173284770744}]1}

strings: {'numstrings': 4868, 'avlength': 5.942686935086278, 'printabledist': [567, 23, 35,
21, 3733, 14, 8, 15, 484, 395, 18, 95, 38, 113, 35, 24, 624, 217, 86, 197, 65, 28, 41,
23, 475, 3087, 91, 839, 77, 50, 36, 19, 469, 288, 56, 67, 826, 222, 73, 30, 4219, 130,
65, 40, 967, 103, 53, 29, 424, 56, 59, 44, 859, 11, 22, 11, 371, 24, 58, 17, 351, 11, 40,
7, 299, 217, 51, 261, 187, 308, 316, 106, 289, 215, 8, 49, 206, 77, 238, 259, 461, 5,
173, 190, 816, 1103, 39, 98, 276, 39, 16, 2, 908, 35, 36, 71], 'printables': 28929, '
entropy': 5.014535903930664, 'paths': O, 'urls': O, 'registry': O, 'MZ': b5}

EntryPoint: [['Main ', 4575696], ['Execu', 4194304]]

ExitPoint: []

Opcodes: ['mov', 'cmp', 'jbe', 'sub', 'mov', 'lea', 'call', 'mov', 'mov', 'mov', 'mov', 'call
', 'mov', 'add', 'ret', 'call', 'jmp', 'int3', 'int3', 'int3', 'int3', 'int3', 'mov', '
lea', 'cmp', 'jbe', 'sub', 'mov', 'lea', 'mov', 'mov', 'jmp', 'mov', 'mov', 'mov', 'test
' 'je', 'mov', 'mov', 'mov', 'mov', 'mov', 'call', 'mov', 'test', 'jge', 'xor', 'xor', '
mov', 'cmp', 'jl', 'mov', 'cmp', 'jne', 'mov', 'mov', 'mov', 'mov', 'mov', 'mov', 'call',

'mov', 'test', 'jl', 'cmp', 'jb', 'mov', 'cmp', 'ja', 'lea', 'mov', 'meg', 'sar', 'and',

'mov', 'lea', 'lea', 'cmp' 'ja', 'mov', 'mov', 'sub', 'mov', 'neg', 'sar', 'and',6 'lea
', 'cmp', 'jne', 'movzx', 'cmp', 'jne', 'mov', 'cmp', 'jne', 'movzx', 'cmp', 'jne', '
movzx', 'cmp', 'jne', 'mov', 'xor', 'jmp', 'mov', 'lea', 'cmp', 'jge', 'mov', 'cmp', 'jbe
', 'mov', 'shl', 'mov', 'test', 'je', 'mov', 'mov', 'cmp', 'ja', 'jmp', 'mov', 'cmp', '
jbe', 'movzx', 'jmp', 'mov', 'mov', 'jmp', 'mov', 'mov', 'mov', 'xor', 'jmp', 'lea', 'cmp
', 'jge', 'mov', 'cmp', 'jbe', 'mov', 'shl', 'mov', 'mov', 'cmp', 'jne', 'mov', 'mov', '
mov', 'mov', 'mov', 'call', 'cmp', 'jne', 'mov', 'movzx', 'mov', 'mov', 'mov', 'jmp', '
mov', 'mov', 'cmp', 'jbe', 'mov', 'mov', 'mov', 'cmp', 'jbe', 'movzx', 'mov', 'mov', 'mov
'y, 'jmp', 'call', 'lea', 'mov', 'mov', 'call', 'mov', 'mov', 'mov', 'mov', 'call', 'lea',

'mov', 'mov', 'call', 'call', 'mov', 'mov', 'jmp', 'mov', 'mov', 'cmp', 'jne', 'movzx',

'cmp', 'jne', 'movzx']
Opcode-Occurrence: {'mov': 3670, 'cmp': 540, 'jbe': 124, 'sub': 158, 'lea': 575, 'call': 703,
'add': 295, 'ret': 262, 'jmp': 411, 'int3': 1269, 'test': 201, 'je': 193, 'jge': 14, '
xor': 162, 'jl': 30, 'jne': 237, 'jb': 33, 'ja': 50, 'meg': 11, 'sar': 15, 'and': 38, '
movzx': 97, 'shl': 34, 'jle': 9, 'movups': 45, 'inc': 33, 'ud2': 68, 'mop': 179, 'bt':
20, 'setb': 21, 'jae': 22, 'cpuid': 1, 'xgetbv': 1, 'cmove': 2, 'cmovl': 2, 'movdqu': 33,
'pcmpegb': 20, 'pmovmskb': 17, 'bsf': 6, 'seta': 1, 'bswap': 4, 'bsr': 2, 'shr': 30, '
setg': 1, 'sete': 26, 'vmovdqu': 18, 'vpcmpegb': 11, 'vpmovmskb': 9, 'vzeroupper': 11, '
movq': 4, 'punpcklbw': 4, 'pshufd': 2, 'popcnt': 6, 'vpbroadcastb': 2, 'pand': 3, 'vpand
'+ 1, 'pcmpestri': 2, 'vptest': 2, 'lock cmpxchg': 8, 'lock xadd': 1, 'xchg': 12, 'movss

': 16, 'xorps': 31, 'ucomiss': 5, 'jnp': 4, 'movabs': 45, 'imul': 46, 'movsd': 24, '
ucomisd': 5, 'setnp': 6, 'or': 7, 'dec': 6, 'cmova': 4, 'mul': 1, 'jo': 1, 'jg': 3, '
setne': 4, 'cmovg': 4, 'movsxd': 2, 'cvtss2sd': 3, 'movsx': 2, 'rol': 14, 'cmovne': 4, '
cmovae ': 2}

Image Size: 13270336

Header Size: {'ELF Header Size': 64, 'Program Headers Total Size': 9071123}
GNU Physical Size: O

Heap Size: {'Heap Segment Size': 322880, 'Heap Section Size': 0}

Loader Flags: {'Segment 0': {'Type': 'SEGMENT_TYPES.PHDR', 'Flags': 'READ'}, 'Segment 1': {'
Type': 'SEGMENT_TYPES.NOTE', 'Flags': 'READ'}, 'Segment 2': {'Type': 'SEGMENT_TYPES.LOAD
', 'Flags': 'READ | EXECUTE'}, 'Segment 3': {'Type': 'SEGMENT_TYPES.LOAD', 'Flags': 'READ
'}, 'Segment 4': {'Type': 'SEGMENT_TYPES.LOAD', 'Flags': 'READ | WRITE'}, 'Segment 5': {'
Type': 'SEGMENT_TYPES.GNU_STACK', 'Flags': 'READ | WRITE'}, 'Segment 6': {'Type': '

SEGMENT_TYPES.?7?7', 'Flags': ''}}

M.13. FritzFrog

196

[

17 Section Entropy: {'': {'min': O,

max': O, 'total': O, 'count': 1, 'mean': 0.0}, '.text': {'

min': 5.892871008625818, 'max': 5.892871008625818, 'total': 5.892871008625818, 'count':

1, 'mean': 5.892871008625818}, '.rodata': {'min': 4.279657059185294, 'max':

4.279657059185294, 'total': 4.279657059185294, 'count': 1, 'mean': 4.279657059185294}, '.

shstrtab': {'min': 4.055184950639968, 'max': 4.055184950639968, 'total':
4.055184950639968, 'count': 1, 'mean': 4.055184950639968}, '.typelink': {'min':

5.181381557486275, 'max': 5.181381557486275, 'total': 5.181381557486275, 'count':

mean': 5.181381557486275}, '.itablink': {'min': 2.530798983757644, 'max':

1, !

2.530798983757644, 'total': 2.530798983757644, 'count': 1, 'mean': 2.530798983757644}, '.
gosymtab': {'min': O, 'max': O, 'total': O, 'count': 1, 'mean': 0.0}, '.gopclntab': {'min
': 5.737537728525165, 'max': 5.737537728525165, 'total': 5.737537728525165, 'count': 1, '

mean': 5.737537728525165}, '.noptrdata': {'min': 6.286892199147341, 'max':

6.286892199147341, 'total': 6.286892199147341, 'count': 1, 'mean': 6.286892199147341}, '.

data': {'min': 1.7852031614129318, 'max': 1.7852031614129318, 'total':

1.7852031614129318, 'count': 1, 'mean': 1.7852031614129318}, '.bss': {'min': 0.0, 'max':
0.0, 'total': 0.0, 'count': 1, 'mean': 0.0}, '.noptrbss': {'min': 0.0, 'max': 0.0, 'total
': 0.0, 'count': 1, 'mean': 0.0}, '.note.go.buildid': {'min': 5.297173284770744, 'max':

5.297173284770744, 'total': 5.297173284770744, 'count': 1, 'mean': 5.297173284770744}}

18 Kolmogorov Complexity: 1597 KB

M.13.2. Dynamic Analysis Features

1 "Behavior": {

2 "files_opened": [

3 "/proc/self/oom_score_adj",

4 "/etc/ld.so.cache",

5 "/1ib/x86_64-linux-gnu/libwrap.so.0",

6 "/1ib/x86_64-linux-gnu/libpam.so.0",

7 "/1ib/x86_64-linux-gnu/libselinux.so.1",

8 "/usr/1lib/x86_64-1linux-gnu/libck-connector.so.0",
9 "/1ib/x86_64-linux-gnu/libdbus-1.s0.3",

10 "/1ib/x86_64-linux-gnu/libcrypto.so.1.0.0",
1 "/1lib/x86_64-linux-gnu/libutil.so.1",

12 "/1lib/x86_64-linux-gnu/libz.so.1",

13 "/1ib/x86_64-linux-gnu/libcrypt.so.1",

14 "/usr/1ib/x86_64-linux-gnu/libgssapi_krb5.so0.2",
15 "/usr/1lib/x86_64-1linux-gnu/libkrb5.s0.3",
16 "/1ib/x86_64-linux-gnu/libcom_err.so.2",

17 "/1ib/x86_64-linux-gnu/libc.so.6",

18 "/1lib/x86_64-linux-gnu/libnsl.so.1",

19 "/1ib/x86_64-linux-gnu/libaudit.so.1",

20 "/1ib/x86_64-linux-gnu/libdl.so.2",

21 "/1ib/x86_64-linux-gnu/libpcre.so.3",

22 "/1lib/x86_64-linux-gnu/libpthread.so.0",

23 "/1ib/x86_64-linux-gnu/librt.so.1",

24 "/usr/1lib/x86_64-linux-gnu/libk5crypto.so.3",
25 "/usr/1lib/x86_64-linux-gnu/libkrb5support.so.0",
26 "/1ib/x86_64-linux-gnu/libkeyutils.so.1",
27 "/1lib/x86_64-linux-gnu/libresolv.so.2",

28 "/proc/filesystems",

29 "/dev/null",

30 "/usr/lib/ssl/openssl.cnf",

31 "/dev/urandom",

32 "/etc/gai.conf",

33 "/etc/nsswitch.conf",

34 "/1lib/x86_64-linux-gnu/libnss_compat.so.2",
35 "/1ib/x86_64-linux-gnu/libnss_nis.so.2",

36 "/1lib/x86_64-linux-gnu/libnss_files.so.2",
37 "/etc/passwd",

38 "/etc/ssh/ssh_host_rsa_key",

39 "/etc/ssh/ssh_host_rsa_key.pub",

40 "/etc/ssh/ssh_host_dsa_key",

41 "/etc/ssh/ssh_host_dsa_key.pub",

42 "/etc/ssh/ssh_host_ecdsa_key",

43 "/etc/ssh/ssh_host_ecdsa_key.pub",

44 "/etc/ssh/ssh_host_ed25519_key",

45 "/etc/ssh/ssh_host_ed25519_key.pub",

46 "/etc/protocols",

47 "/etc/hosts.allow",

48 "/etc/hosts.deny",

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
7
78
79
80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

107
108
109
110
m
112
113
114
115
116
17
118

M.13. FritzFrog

197

"/etc/localtime",
"/var/log/btmp",
"/etc/pam.d/sshd",

"/etc/pam.d/common-auth"

]’

"files_written": [

"/proc/self/oom_score_adj",

"/var/log/btmp",

"/root/.ssh/authorized_

keys",

"/var/cache/fwupd/.goutputstream-U7LL31",

"/var/lib/fwupd/gnupg/ .
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/1lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.

#1k0x0000557b1bd52b80
#1k0x0000559be0816b80
#1k0x000055ac75868b80
#1k0x000055bec710eb80
#1k0x000055e6bd352b80
#1k0x000055ed080d8b80

"/var/1lib/fwupd/gnupg/pubring.kbx.tmp",
"/var/lib/fwupd/remotes.d/lvfs/metadata.xml.gz.LOUK31",
"/var/lib/fwupd/remotes.d/lvfs/metadata.xml.gz.jcat.W43921",
"/var/lib/logrotate/status.tmp",
"/var/log/auth.log.1l.gz",
"/var/log/kern.log.1.gz",

"/var/log/syslog.1l.gz",

"/var/log/ubuntu-advantage-timer.log.1.gz"

Js
"files_deleted": [

.buffalo
.buffalo
.buffalo
.buffalo
.buffalo
.buffalo

.6124",
.6143",
.6138",
.6128",
.6122",
.6159",

"//tmp/68b86856665f2cc0e0e71668c0b6aac8b14326c623995ba5963£22257619",
"/dev/shm//tmp/68b86856665f2cc0e0e71668c0b6aac8b14326c623995bab963£22257619",
"/etc//tmp/68b86856665f2cc0e0e71668c0b6aac8b14326c623995bab963£22257619",
"/opt//tmp/68b86856665f2cc0e0e71668c0b6aac8b14326c623995bab963£22257619",
"/root//tmp/68b86856665f2cc0e0e71668c0b6aac8b14326c623995bab963£22257619",
"/run/user/1000//tmp/68b86856665f2cc0e0e71668c0b6aac8b14326c623995ba5963£22257619

"

"/tmp/..//tmp/68b86856665f2cc0e0e71668c0b6aac8b14326c623995bab963£22257619",
"/tmp//tmp/68b86856665f2cc0e0e71668c0b6aac8b14326c623995bab963£22257619",
"/tmp/68b86856665f2cc0e0e71668c0bbaac8b14326c623995bab963£22257619",
"/usr//tmp/68b86856665f2cc0e0e71668c0b6aac8b14326c623995bab963£22257619",
"/var//tmp/68b86856665f2cc0e0e71668c0b6aac8b14326c623995bab963£22257619",
"/var/cache//tmp/68b86856665f2cc0e0e71668c0b6aac8b14326c623995ba5963£22257619",

"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/1lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/.
"/var/lib/fwupd/gnupg/ .
"/var/lib/fwupd/gnupg/.

#1k0x0000557b1bd52b80
#1k0x0000557b1bd52b80
#1k0x0000559be0816b80
#1k0x0000559be0816b80
#1k0x000055ac75868b80
#1k0x000055ac75868b80
#1k0x000055bec710eb80

#1k0x000055e6bd352b80
#1k0x000055e6bd352b80
#1k0x000055ed080d8b80
#1k0x000055ed080d8b80

"/var/1lib/fwupd/gnupg/pubring.kbx.lock",
"/var/lib/fwupd/gnupg/pubring.kbx.tmp",
"/var/lib/logrotate/status.tmp",
"/var/local//tmp/68b86856665f2cc0e0e71668c0b6aac8b14326c623995ba5963£22257619",
"/var/log//tmp/68b86856665f2cc0e0e71668c0b6aac8b14326c623995bab963£22257619",

"/var/log/auth.log.1",
"/var/log/kern.log.1",
"/var/log/syslog.1",

"/var/log/ubuntu-advantage-timer.log.1",
"/var/mail//tmp/68b86856665f2cc0e0e71668c0b6aac8b14326c623995bab963£22257619",
"/var/opt//tmp/68b86856665f2cc0e0e71668c0bBaac8b14326c623995bab963£22257619",
"/var/spool//tmp/68b86856665f2cc0e0e71668c0b6aac8b14326c623995bab963£22257619",
"/var/tmp//tmp/68b86856665f2cc0e0e71668c0bBaac8b14326c623995bab963£22257619",
"/var/www//tmp/68b86856665f2cc0e0e71668c0b6aac8b14326c623995bab963£22257619"

Jg

"command_executions": [
"/usr/sbin/sshd",
"/usr/sbin/sshd -D -R",

"/sbin/fstrim --fstab --verbose --quiet",
"/usr/sbin/logrotate /etc/logrotate.conf",

.buffalo
.buffalo
.buffalo
.buffalo
.buffalo
.buffalo
.buffalo
#1k0x000055bec710eb80.
.buffalo
.buffalo
.buffalo
.buffalo

buffalo

.6124",
.6124x",
.6143",
.6143x",
.6138",
.6138x",
.6128",
.6128x",
.6122",
.6122x",
.6159",
.6159x",

M.13. FritzFrog 198

119
120

121
122
123
124
125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

160
161
162
163
164
165

166
167
168
169
170

171

172
173
174
175
176

177
178

179 }
180 }

1,

"/bin/gzip",

"sh -c \"\\n\\t\\tinvoke-rc.d --quiet cups restart > /dev/null\\n\"
logrotate_script \"/var/log/cups/*log \"",

"invoke-rc.d --quiet cups restart",

"/sbin/runlevel",

"systemctl --quiet is-enabled cups.service",
"ls /etc/rc[S2345].d4/S[0-9]1[0-9]cups",
"systemctl --quiet is-active cups.service",

"sh -c /usr/lib/rsyslog/rsyslog-rotate logrotate_script /var/log/syslog",

"/usr/lib/rsyslog/rsyslog-rotate",

"systemctl kill -s HUP rsyslog.service",

"sh -c /usr/lib/rsyslog/rsyslog-rotate logrotate_script /var/log/mail.info/var/
log/mail .warn/var/log/mail.err/var/log/mail.log/var/log/daemon.log/var/log/
kern.log/var/log/auth.log/var/log/user.log/var/log/lpr.log/var/log/cron.log/
var/log/debug/var/log/messages",

"/usr/libexec/fwupd/fwupd",

"/usr/bin/gpgconf --list-dirs",

"/usr/bin/gpgconf --list-components",

"/usr/bin/gpg --version",

"/usr/bin/gpgsm --version"

"files_attribute_changed": [

"/var/log/syslog.1l.gz",

"/var/log/syslog",
"/var/log/kern.log.1l.gz",
"/var/log/auth.log.1.gz",
"/var/log/kern.log",

"/var/log/auth.log",
"/var/log/ubuntu-advantage-timer.log.1.gz",
"/var/log/ubuntu-advantage-timer.log",
"/var/lib/logrotate/status.tmp",
"/var/cache/fwupd/.goutputstream-U7LL31",
"/run/motd.d/fwupd/.goutputstream-0D0OD31",
"/run/motd.d/fwupd/.goutputstream-TCWH31"

]’

"processes_terminated": [
"sshd: [accepted]",
"/usr/sbin/sshd -D -R"

Jg

"processes_killed": [],

"processes_injected": [],

"services_opened": [],

"services_created": [],

"services_started": [],

"services_stopped": [],

"services_deleted": [],

"windows_searched": [],

"registry_keys_deleted": [],

"mitre_attack_techniques": [

"Executes commands using a shell command-line interpreter",

"Executes the \"systemctl\" command used for controlling the systemd system and
service manager",

"Creates hidden files, links and/or directories",

"Deletes log files",

"Sample deletes itself",

"Enumerates processes within the \"proc\" file system",

"Uses the \"uname\" system call to query kernel version information (possible
evasion)",

"May try to detect the virtual machine to hinder analysis (VM artifact strings
found in memory)",

"Executes the \"uname\" command used to read 0S and architecture name",

"Reads CPU information from /proc indicative of miner or evasive malware",

"Reads CPU information from /sys indicative of miner or evasive malware",

"Reads system information from the proc file system",

"Executes the \"free\" command used for querying memory usage (likely indicative
for DDoS or mining capabilities)"

[I N R

20
21
22
23
24

25

26

27

28

29

30
31

32

33

34

35
36

37

38
39
40
41

42

43

44

45

M.14. DiscordTokenStealers 199

M.14. DiscordTokenStealers
M.14.1. Dynamic Analysis Features

"Behavior":

"files_

s

T

e

ne

e

e

ne

G

g5
e

ne

G
IIC
geE
EEE

||C
e

e
g
e
ger
e
||C
G
g
llc
||C

9@
EGE

"o

"C:

ne:

e
i3

i35

"e:
G
llC
G

g5
gl
get

98

{
opened": [
\\Windows\\Globalization\\Sorting\\sortdefault.nls",
\\Windows\\Microsoft.NET\\Framework\\v4.0.30319\\Config\\machine.config",
\\Windows\\assembly\\NativeImages_v4.0.30319_32\\System.Management\\4
dfa27fdd6adcce26£99585e1c744f9b\\System.Management .ni.dll.aux",

:\\Windows\\assembly\\NativeImages_v4.0.30319_32\\System.IdentityModel\\9

d45d2d6b426b57dc732f£567bb32dad\\System. IdentityModel .ni.dll.aux",
\\Windows\\assembly\\NativeImages_v4.0.30319_32\\System.Runteb92aa12#\\
c56771a9cfb87e660d60453e232abe27\\System.Runtime.Serialization.ni.dll.aux

\\Windows\\System32\\en-US\\tzres.dll.mui",

:\\Windows\\assembly\\NativeImages_v4.0.30319_32\\Microsoft.CSharp\\

dd1e55e4b87101888a94f28ce396f2ea\\Microsoft.CSharp.ni.dll.aux",
\\Windows\\assembly\\NativeImages_v4.0.30319_32\\System.Web.28b9ef5a#\\32

£14£d0a5448b124076cd99f9b731dd\\System.Web.Extensions.ni.d1ll.aux",
\\Users\\Virtual\\Documents\\test nopqrst.docx",
\\Windows\\assembly\\NativeImages_v4.0.30319_32\\System.Dynamic\\788

fba784cfc29d8c324d66f6ee4c427\\System.Dynamic.ni.dll.aux",

:\\Windows\\assembly\\NativeImages_v4.0.30319_32\\System.ServiceModel\\

£101d49ff42f71dad4271bfad1dda9bd2\\System.ServiceModel .ni.d1ll.aux",
\\Users\\Virtual\\Desktop\\iiUDWxDuMalX.txt",

:\\Users\\Virtual\\Documents\\test abcdef.docx",

\\Windows\\Microsoft.NET\\Framework\\v2.0.50727\\mscorwks .d11",
\\Windows\\assembly\\NativeImages_v4.0.30319_32\\System.Core\\55560
c2014611e9119£99923c9ebdeef\\System.Core.ni.dll.aux",

:\\Windows\\Microsoft.NET\\Framework\\v4.0.30319\\SortDefault.nlp",

\\Windows\\assembly\\NativeImages_v4.0.30319_32\\System.Windows.Forms\\5
aac750b35b27770dccb1a43f83cced7\\System.Windows.Forms.ni.dll.aux",
\\Users\\Virtual\\Desktop\\thoIgVqzAOWO.docm",
\\Windows\\Microsoft.NET\\Framework\\v4.0.30319\\AppLaunch.exe.Config",
\\Windows\\assembly\\pubpol4l.dat",
\\Users\\Virtual\\Documents\\test.docx",
\\Windows\\assembly\\NativeImages_v4.0.30319_32\\System.Xml\\
d86b080a37c60a872c82b912a2a63dac\\System.Xml.ni.dll.aux",

:\\Windows\\assembly\\NativeImages_v4.0.30319_32\\System.Configuration

\\46957030830964165644b52b0696c5d9\\System.Configuration.ni.dll.aux",
\\Windows\\assembly\\NativeImages_v4.0.30319_32\\System.Security\\11689060

f7aa189e220cf9df9a97254e\\System.Security.ni.dll.aux",
\\Windows\\System32\\tzres.dll",

:\\Users\\Virtual\\Desktop\\mdaxbBmTycg.txt",
:\\Windows\\assembly\\NativeImages_v4.0.30319_32\\System.Web\\14

da86a7ddbf09bd27b30061ff9a4f5e\\System.Web.ni.dll.aux",
\\Users\\Virtual\\Desktop\\bGjjNf1lGGw.txt",
\\Windows\\assembly\\NativeImages_v4.0.30319_32\\System\\52

cca48930e580e3189eac47158c20be\\System.ni.dll.aux",

:\\Windows\\assembly\\NativeImages_v4.0.30319_32\\System.Drawing\\646

b4b01cb29986£f8e076aa65c9e9753\\System.Drawing.ni.dll.aux",
\\Windows\\assembly\\NativeImages_v4.0.30319_32\\mscorlib\\225759
bb87c854c0fff27b1d84858c21\\mscorlib.ni.dll.aux",
\\Users\\Virtual\\AppData\\Roaming\\Mozilla\\Firefox\\Profiles\\p6d36utp.
default\\cookies.sqlite",
\\Users\\Virtual\\Documents\\test2.docx",
\\Windows\\assembly\\NativeImages_v4.0.30319_32\\SMDiagnostics\\4
a2aB848ealfeala74dbaa2f1c21c5ce8\\SMDiagnostics.ni.dll.aux",
\\Windows\\assembly\\NativeImages_v4.0.30319_32\\WindowsBase\\32512
bd09e2231f6eebb15fc17e3ad79\\WindowsBase.ni.dll.aux",
\\Users\\Virtual\\Documents\\test uvwxyz.docx",
\\Users\\Virtual\\Documents\\test ghijklm.docx",

:\\Users\\Virtual\\Desktop\\ywHDbgpLmfeIaYpQq.docm",

\\Windows\\assembly\\NativeImages_v4.0.30319_32\\Presentatiobae0f00f#\\
da36abbeabef456f432434d4d8d835c1\\PresentationFramework.ni.dll.aux",
\\Windows\\Microsoft.NET\\Framework\\v4.0.30319\\clr.d11",
\\Windows\\Microsoft.NET\\Framework\\v4.0.30319\\AppLaunch.exe",
\\Windows\\assembly\\NativeImages_v4.0.30319_32\\PresentationCore\\416
ba33cb980d07643e82c4c45bd5786\\PresentationCore.ni.dll.aux",
\\Windows\\assembly\\NativeImages_v4.0.30319_32\\System.Servdldec626#\\52

46
47
48
49
50
51
52
53
54
55

56

57

58

59

60

61

62
63

64
65
66
67
68
69

70
7
72
73
74
75
76
77

78
79
80
81
82
83
84
85

86

87

88

89

90

91

92
93

M.14. DiscordTokenStealers 200

1,

€9ac689c75dd011f0£f7e827551e985\\System.ServiceModel.Internals.ni.dll.aux
n
"C:\\Users\\Virtual\\Desktop\\wkbGjjNf1GGwcMJUy.docx",
"C:\\Users\\Virtual\\Desktop\\UDWxDuMalX.txt",
"C:\\Users\\Virtual\\Desktop\\tkmdaxbBmTy.txt",
"C:\\Users\\RDhJOCNFevzX\\Desktop\\RunGame . exe",
"C:\\Windows\\system32\\version.dll",
"C:\\Windows\\system32\\wsock32.d11",
"C:\\Users\\<USER>\\Downloads\\"

"files_written": [

"C:\\Windows\\ServiceProfiles\\LocalService\\AppData\\Roaming\\Microsoft\\
UPnP Device Host\\upnphost\\udhisapi.dll",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\ReportArchive\\AppCrash_RunGame.
exe_2c4e7df7914dab9b98258d4557888593634d80_4dfbf061_17f1leb2b",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\ReportArchive\\AppCrash_RunGame.
exe_2c4e7df7914dab9b98258d4557888593634d80_4dfbf061_17fleb2b\\Report.wer
n
"C:\\ProgramData\\Microsoft\\Windows \\WER\\ReportArchive\\AppCrash_RunGame.
exe_4b3666d9d476bc73f9231£f3895155d123532e_4dfbf061_0Oaba3e9a",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\ReportArchive\\AppCrash_RunGame.
exe_4b3666d9d476bc73f9231f3895155d123532e_4dfbf061_Oaba3e9a\\Report.wer",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\ReportQueue\\AppCrash_RunGame.
exe_41d25ef31fb8b7£36a9520329af1821alab50e5_4dfbf061_185e1325",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\ReportQueue\\AppCrash_RunGame.
exe_41d25ef31fb8b7£36a9520329af1821alab50e5_4dfbf061_185e1325\\Report.wer
n
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER122C. tmp",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER122C. tmp.
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER12CA . tmp",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER12CA . tmp.xml",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER3563. tmp",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp \\WER3563. tmp.dmp",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER3AB3. tmp",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER3AB3. tmp.
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER3B41 . tmp",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp \\WER3B41 . tmp.xml",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WERCBD . tmp",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WERCBD . tmp.dmp",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp \\WERDFEO . tmp",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WERDFEO . tmp.dmp",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp \\WERE58F . tmp",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WERE58F . tmp.
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WERE64B. tmp",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp \\WERE64B . tmp.xml",
"C:\\Users\\user\\AppData\\Local\\DBG",
"C:\\Users\\user\\AppData\\Local\\Microsoft\\CLR_v4.0_32\\UsageLogs\\
AppLaunch.exe.log",
"C:\\Users\\user\\AppData\\Local\\Yandex",
"C:\\Users\\user\\AppData\\Local\\Yandex\\YaAddon",
"C:\\Users\\user\\AppData\\Roaming",
"C:\\Windows\\AppCompat\\Programs\\Amcache.hve.tmp",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\ReportArchive\\AppCrash_software.
exe_6c6f1611ea6228£3565c493d29dad453d6fa23ba_8cb75e93_161e74af",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\ReportArchive\\AppCrash_software.
exe_6¢c6f1611ea6228f3565c493d29dadb3d6fa23ba_8cb75e93_161e74af\\Report.wer
n
"C:\\ProgramData\\Microsoft\\Windows\\WER\\ReportArchive\\AppCrash_software.
exe_e4bdf4e37bed47550bf65bd9e5858ffd21db4b_8cb75e93_169e18£f3",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\ReportArchive\\AppCrash_software.
exe_e4bdf4e37be47550bf65bd9e5858ffd21db4b_8cb75e93_169e18f3\\Report.wer",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\ReportQueue\\AppCrash_software.
exe_£f1784d283516c80aab509045eccO0eabbf534f91_8cb75e93_159e44d5",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\ReportQueue\\AppCrash_software.
exe_£1784d283516c80aab509045eccOeabbf534f91_8cb75e93_159e44d5\\Report.wer
n
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER1182. tmp",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER1182. tmp.xml",

94
95
96
97

98
99
100
101
102
103

104
105
106
107
108

109
110

111
12

113
114
115

116
17
118

119

120
121

122
123
124
125
126
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151

M.14. DiscordTokenStealers

201

1,

"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER39F8
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER39F8
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER418A .
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER418A.
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER4322
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER4322
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER6454 .
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER6454 .
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER6B1B
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER6B1B
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER6CB2

"files_deleted": [

"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp \\WEREFDE.

"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp \\WERFEE3
WERInternalMetadata.xml",

"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp \\WERE7EF .

"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WERF628
WERInternalMetadata.xml",

.tmp",
.tmp.dmp",

tmp n ,
tmp.

.tmp",
.tmp.xml",

tmp n s
tmp.dmp",

.tmp",
.tmp.

.tmp"

tmp.dmp",

.tmp.

tmp.dmp",

.tmp.

"C:\\Windows\\System32\\spp\\store\\2.0\\cache\\cache.dat",

"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER22F4.
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER2383
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER2393
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER3DFE.
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER3E02
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER3E12

tmp.

.tmp.csv",
.tmp.txt",

tmp.

.tmp.csv",
.tmp.txt",

"C:\\ProgramData\\Microsoft\\Windows\\WER\\ReportQueue\\AppCrash_Microsoft.

Window_dc7c09b5b22497c66105fec8cf4793ba24a83ae_676£2386_02e510af",

"C:\\ProgramData\\Microsoft\\Windows\\WER\\ReportQueue\\AppCrash_Microsoft.
Window_dc7c09b5b22497c66105fec8cf4793ba24a83ae_676£2386_02e510af \\Report.

wer",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER122C.
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER122C.

WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER12CA.
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER12CA .
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER3563.
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER3563.
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER3AB3.
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER3AB3.

WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER3B41
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER3B41
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER4DA1
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER4DB2
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER7A31
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER7A42
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WERA29B
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WERA2AC

'tmp n ,
tmp.

tmp n ,
tmp.xml",
tmp n s
tmp.dmp",
'tmp n s
tmp.

.tmp",

.tmp.xml",
.tmp.csv",
.tmp.txt",
.tmp.csv",
.tmp.txt",
.tmp.csv",
.tmp.txt",

"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WERCBD . tmp",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WERCBD . tmp.dmp",

"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp \\WERDFEO
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WERDFEOQ
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp \\WERE58F .
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WERE58F .
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WERE64B
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WERE64B
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER1182
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER1182
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER1784 .
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER17A4.
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER39F8
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER39F8
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER418A .
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER418A.
WERInternalMetadata.xml",

.tmp",
.tmp.dmp",

tmp n s
tmp.

.tmp",
.tmp.xml",
.tmp",
.tmp.xml",

tmp.csv",
tmp.txt",

.tmp",
.tmp.dmp",

tmp n ,
tmp.

152
153
154
155
156
157
158
159
160
161
162
163

164
165
166
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

184
185

187
188
189
190
191
192

194
195
196
197
198
199

201
202

203

204
205
206
207
208
209
210
21

212
213
214
215

M.14. DiscordTokenStealers

202

"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER4322.tmp",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER4322. tmp.xml",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER4944 . tmp.csv",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER4965 . tmp.txt",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER6454 . tmp"

P
"command_executions": [
"\"Y%windir%\\Microsoft.NET\\Framework\\v4.0.30319\\AppLaunch.exe\"",
"\"%SAMPLEPATH%\\RunGame . exe\" ",
"\"C:\\Windows\\Microsoft.NET\\Framework\\v4.0.30319\\AppLaunch.exe\"",
"C:\\Windows\\SysWOW64\\WerFault.exe -u -p 3940 -s 380",
"\"%SAMPLEPATH%\\1514
b6e4de20f86adf92c6814dce3100c08459d63249a22a3280e1df80b1569a.exe\" ",
"C:\\Windows\\SysWOW64\\WerFault.exe -u -p 3300 -s 380",
"C:\\Windows\\System32\\wuapihost.exe -Embedding",
"C:\\Windows\\Microsoft.NET\\Framework\\v4.0.30319\\AppLaunch.exe",
"C:\\Users\\Virtual\\AppData\\Local\\Temp\\1514
b6edde20f86adf92c6814dce3100c08459d63249a22a3280e1df80b1569a.exe",
"C:\\Windows\\SysWOW64\\WerFault.exe -u -p 1136 -s 316",
"\"C:\\Users\\RDhJOCNFevzX\\Desktop\\RunGame.exe\" ",
"C:\\Windows\\SysWOW64\\WerFault.exe -u -p 1136 -s 300",
"C:\\Windows\\SysWOW64\\WerFault.exe -u -p 1136 -s 328"
1,

"files_attribute_changed": [],
"processes_terminated": [

"%windir%\\System32\\svchost.exe -k WerSvcGroup",

"wmiadap.exe /F /T /R",

"\"%windir%\\Microsoft.NET\\Framework\\v4.0.30319\\AppLaunch.exe\"",

"C:\\Windows\\Microsoft.NET\\Framework\\v4.0.30319\\AppLaunch.exe",

"C:\\Windows\\System32\\wuapihost.exe",

"c:\\windows\\syswow64\\werfault.exe",

"c:\\windows\\microsoft.net\\framework\\v4.0.30319\\applaunch.exe",

"c:\\users\\rdhjOcnfevzx\\desktop\\rungame.exe",

"25688 - \"C:\\Windows\\Microsoft.NET\\Framework\\v4.0.30319\\AppLaunch.exe
\IIII s

"2776 - C:\\Windows\\SysWOW64\\WerFault.exe -u -p 2588 -s 424",

"2768 - C:\\Windows\\SysWOW64\\WerFault.exe -u -p 2372 -s 392"

Te
"processes_killed": [],
"processes_injected": [
"\\\\?\\C:\\Windows\\system32\\wbem\\WMIADAP .EXE"
T
"services_opened": [],
"services_created": [],
"services_started": [],
"services_stopped": [],
"services_deleted": [],
"windows_searched": [],
"registry_keys_deleted": [],
"mitre_attack_techniques": [

"Queries process information (via WMI, Win32_Process)",

"Queries sensitive disk information (via WMI, Win32_DiskDrive, often done
detect virtual machines)",

"Checks if Antivirus program is installed (via WMI)",

"Queries sensitive video device information (via WMI, Win32_VideoControlle
often done to detect virtual machines)",

"Queries sensitive processor information (via WMI, Win32_Processor, often
done to detect virtual machines)",

"Allocates memory in foreign processes",

"Injects a PE file into a foreign processes",

"Writes to foreign memory regions",

"Creates a process in suspended mode (likely to inject code)",

"Spawns processes",

"Creates files inside the user directory",

"Creates files inside the system directory",

"Creates guard pages, often used to prevent reverse engineering and debugg

"
s

"Contains long sleeps (>= 3 min)",

"May sleep (evasive loops) to hinder dynamic analysis",

"Checks if the current process is being debugged",

"Queries sensitive disk information (via WMI, Win32_DiskDrive, often done

to

r,

ing

to

216

217

218
219

220
221
222
223

224
225

226

227
228
229

230
231
232
233
234
235

236
237
238
239
240

23

24
25
26
27
28

M.15. AkiraRansomware 203

detect virtual machines)",

"Queries sensitive video device information (via WMI, Win32_VideoController,
often done to detect virtual machines)",

"Queries sensitive processor information (via WMI, Win32_Processor, often
done to detect virtual machines)",

"Binary may include packed or crypted data",

"PE file has section (not .text) which is very likely to contain packed code
(zlib compression ratio < 0.011)",

"Binary may include packed or crypted data",

"Tries to harvest and steal browser information (history, passwords, etc)",

"Checks if the current process is being debugged",

"Queries sensitive disk information (via WMI, Win32_DiskDrive, often done to
detect virtual machines)",

"Checks if Antivirus program is installed (via WMI)",

"Queries sensitive video device information (via WMI, Win32_VideoController,
often done to detect virtual machines)",

"Queries sensitive processor information (via WMI, Win32_Processor, often
done to detect virtual machines)",

"Tries to detect virtualization through RDTSC time measurements",

"Queries a list of all running processes",

"Sample monitors Window changes (e.g. starting applications), analyze the
sample with the simulation cookbook",

"Reads the hosts file",

"Queries process information (via WMI, Win32_Process)",

"Queries the volume information (name, serial number etc) of a device",

"Queries the cryptographic machine GUID",

"Reads software policies",

"Queries sensitive disk information (via WMI, Win32_DiskDrive, often done to
detect virtual machines)",

"Tries to detect virtualization through RDTSC time measurements",

"Tries to harvest and steal browser information (history, passwords, etc)",

"Detected TCP or UDP traffic on non-standard ports"

M.15. AkiraRansomware
M.15.1. Dyanmic Analysis Features

"Behavior": {

"files_opened": [

"\\PSHost .
"\\PSHost .
"\\PSHost .
"\\PSHost .
"\\PSHost .
"\\PSHost .
"\\PSHost .
"\\PSHost .
"\\PSHost .
"\\PSHost .
"\\PSHost .
"\\PSHost .
"\\PSHost .
"\\PSHost .
"\\PSHost .
"\\PSHost .
"\\PSHost .

133281746551022938.
133282719736797001.
133285824068170416.
133286932881007403.
133289086137316116.
133293195520062876.
133294552943440169.
133300645080595166.
133305626681675359.
133319168554649880.
133346664075337154.
133348970128827419.
133414652484119965.
133417643899982848.
133424622098157219.
133459508022249821
133510421520694168.

812.DefaultAppDomain.powershell",

3952.
3588.
4060.
2424 .
3140.
4088.
3808.
2564.
4056.

DefaultAppDomain.
DefaultAppDomain.
DefaultAppDomain.
DefaultAppDomain.
DefaultAppDomain.
DefaultAppDomain.
DefaultAppDomain.
DefaultAppDomain.
DefaultAppDomain.

powershell",
powershell",
powershell",
powershell",
powershell",
powershell",
powershell",
powershell",
powershell",

812.DefaultAppDomain.powershell",

2380.
3748.
3144.
3636.
.3268.
2988.

DefaultAppDomain.
DefaultAppDomain.
DefaultAppDomain.
DefaultAppDomain.
DefaultAppDomain.
DefaultAppDomain.

powershell",
powershell",
powershell",
powershell",
powershell",
powershell",

"c:\\program files (x86)\\common files\\microsoft shared\\officel6\\office
setup controller\\infopath.en-us\\setup.xml",

"c:\\program files (x86)\\common files\\microsoft shared\\officel6\\office
setup controller\\infopath.en-us\\infopathmui.xml",

c:\\program files\\javal\jre1.8.0_171\\1ib\\classlist",

c:\\program files\\javal\\jre1.8.0_171\\1lib\\charsets.jar",

"c:\\program files\\java\\jrel1.8.0_171\\1lib\\calendars.properties",

c:\\program files\\java\\jre1.8.0_171\\1lib\\amd64\\jvm.cfg",

c:\\program files (x86)\\common files\\microsoft shared\\officel6\\office
setup controller\\dcf.en-us\\dcfmui.xml",

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

7

72

73

M.15. AkiraRansomware

204

"c:\\program files (x86)\\common files\\microsoft shared\\officel6\\office
setup controller\\excel.en-us\\excelmui.xml",
"c:\\program files (x86)\\common files\\microsoft shared\\officel6\\office
setup controller\\groove.en-us\\setup.xml",
"c:\\program files (x86)\\common files\\microsoft shared\\officel6\\office

setup controller\\groove.en-us\\groovemui.xml",

"c:\\program files\\javal\jrel1.8.0_171\\1lib\\deploy\\messages_it.properties",
"c:\\program files\\java\\jre1.8.0_171\\1ib\\deploy\\messages_fr.properties",
"c:\\program files\\java\\jre1.8.0_171\\1lib\\deploy\\messages_ko.properties",
"c:\\program files\\javal\jre1.8.0_171\\1ib\\deploy\\messages_ja.properties",
"c:\\program files\\java\\jre1.8.0_171\\1lib\\deploy\\messages.properties",
"c:\\program files\\javal\jre1.8.0_171\\1ib\\deploy\\ffjcext.zip",
"c:\\program files\\javal\jre1.8.0_171\\1ib\\deploy\\messages_es.properties",
"c:\\program files\\javal\jrel1.8.0_171\\1lib\\deploy\\messages_de.properties",
"c:\\program files\\java\\jre1.8.0_171\\1ib\\deploy\\messages_sv.properties",
8

"c:\\program files\\java\\jrel.
properties",

.0_171\\1ib\\deploy\\messages_pt_br.

"c:\\msocache\\all users\\{90160000-0011-0000-0000-0000000ffice}-c\\proplusww

.xml",

"c:\\msocache\\all users\\{90160000-0011-0000-0000-0000000ffice}-c\\setup.xml

"
s

"c:\\program files (x86)\\common files\\microsoft shared\\officel6\\msoidclil

.d1i1",

"c:\\program files (x86)\\common files\\microsoft shared\\officel6\\office

setup controller\\excel.en-us\\setup.xml",

"c:\\program files (x86)\\common files\\microsoft shared\\officel6\\aceexch.

d1i1",

"c:\\program files (x86)\\common files\\microsoft shared\\officel6\\1033\\

readme.htm",

"c:\\program files (x86)\\common files\\microsoft shared\\officel6\\acecore.

dii",

"c:\\program files\\java\\jrel1.8.0_171\\1lib\\ext\\localedata.jar",
"c:\\program files\\javal\jre1.8.0_171\\1ib\\ext\\jfxrt.jar",
"c:\\program files\\java\\jrel1.8.0_171\\1lib\\ext\\jaccess. jar",
"c:\\program files\\javal\jre1.8.0_171\\1ib\\ext\\dnsns. jar",
"c:\\program files\\javal\jre1.8.0_171\\1ib\\ext\\sunjce_provider.jar",
"c:\\program files\\javal\jrel1.8.0_171\\1lib\\ext\\sunec.jar"

1,

"files_written": [

"c:\\program files\\windowsapps\\microsoft.net.native.framework.1.0_1
.0.22929.0_x64__8wekyb3d8bbwe\\akira_readme.txt",

"c:\\program files\\windowsapps\\microsoft.net.native.framework.1.0_1
.0.22929.0_x64__8wekyb3d8bbwe\\appxmetadata\\akira_readme.txt",

"c:\\program files (x86)\\common files\\microsoft shared\\officel6\\office

setup controller\\infopath.en-us\\setup.xml",

"c:\\program files (x86)\\common files\\microsoft shared\\officel6\\office

setup controller\\infopath.en-us\\infopathmui.xml",
"c:\\program files\\javal\jre1.8.0_171\\1ib\\classlist",
"c:\\program files\\javal\jre1.8.0_171\\1lib\\charsets. jar",
"c:\\program files\\javal\jrel.8.0_171\\1lib\\calendars.properties",
"c:\\program files\\java\\jre1.8.0_171\\1ib\\amd64\\jvm.cfg",
"c:\\program files\\windowsapps\\microsoft.windowsphone_10.1510.9010.0
_x64__8wekyb3d8bbwe\\html\\1lv-1lv\\akira_readme.txt",
"c:\\program files\\windowsapps\\microsoft.windowsphone_10.1510.9010.0

_x64__8wekyb3d8bbwe\\html\\hi-in\\resources\\css\\akira_readme.txt",

"c:\\program files\\windowsapps\\microsoft.windowsmaps_4.1509.50911.0
_x64__8wekyb3d8bbwe\\assets\\secondarytiles\\directions\\transit\\
akira_readme.txt",

"c:\\program files\\windowsapps\\microsoft.windowsmaps_4.1509.50911.0
_x64__8wekyb3d8bbwe\\assets\\secondarytiles\\directions\\driving\\
contrast-white\\akira_readme.txt",

"c:\\msocache\\all users\\{90160000-0044-0409-0000-0000000ff1ice}-c\\
akira_readme.txt",

"c:\\msocache\\all users\\{90160000-0090-0409-0000-0000000ff1ce}-c\\
akira_readme.txt",

"c:\\msocache\\all users\\{90160000-002c-0409-0000-0000000ffice}-c\\proof.fr

\\akira_readme.txt",

"c:\\msocache\\all users\\{90160000-002c-0409-0000-0000000ffice}-c\\proof.en

\\akira_readme.txt",

"c:\\msocache\\all users\\{90160000-002c-0409-0000-0000000ffice}-c\\proof.es

\\akira_readme.txt",

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

M.15. AkiraRansomware 205

:\\msocache\\all users\\{90160000-001b-0409-0000-0000000ff1ice}-c\\

akira_readme.txt",

:\\msocache\\all users\\{90160000-002c-0409-0000-0000000ff1ice}-c\\

akira_readme.txt",

:\\msocache\\all users\\{90160000-00a1-0409-0000-0000000ffice}-c\\

akira_readme.txt",

:\\msocache\\all users\\{90160000-00ba-0409-0000-0000000ffice}-c\\

akira_readme.txt",

:\\program files\\windowsapps\\microsoft.microsoftsolitairecollection_3

.3.9211.0_x64__8wekyb3d8bbwe\\assets\\gameplayassets\\tripeaks\\respacks
\\akira_readme.txt",

:\\program files\\windowsapps\\microsoft.microsoftsolitairecollection_3

.3.9211.0_x64__8wekyb3d8bbwe\\assets\\gameplayassets\\tripeaks\\
akira_readme.txt",

:\\program files\\windowsapps\\microsoft.microsoftsolitairecollection_3

.3.9211.0_x64__8wekyb3d8bbwe\\assets\\gameplayassets\\theme\\akira_readme
o B 4

:\\program files\\windowsapps\\microsoft.windowsphone_10.1510.9010.0

_x64__8wekyb3d8bbwe\\html\\hi-in\\deeplink\\akira_readme.txt",

:\\program files\\windowsapps\\microsoft.windowsphone_10.1510.9010.0

_x64__8wekyb3d8bbwe\\html\\hi-in\\akira_readme.txt",

:\\program files\\windowsapps\\microsoft.zunemusic_3.6.13251.0

_x64__8wekyb3d8bbwe\\skipmerge\\akira_readme.txt",

:\\program files\\windowsapps\\microsoft.zunemusic_3.6.13251.0

_x64__8wekyb3d8bbwe\\styles\\akira_readme.txt",

:\\program files\\windowsapps\\microsoft.bingfinance_4.6.169.0

_x86__8wekyb3d8bbwe\\ jsonresources\\akira_readme.txt",

:\\program files\\windowsapps\\microsoft.bingfinance_4.6.169.0

_x86__8wekyb3d8bbwe\\configuration\\akira_readme.txt",

:\\program files\\windowsapps\\microsoft.windowscommunicationsapps_17

.6308.42271.0_x64__8wekyb3d8bbwe\\akira_readme.txt",

:\\program files\\windowsapps\\microsoft.windowscamera_2015.1071.40.0

_x64__8wekyb3d8bbwe\\microsoft.system.package.metadata\\akira_readme.txt

:\\program files\\windowsapps\\microsoft.windowscamera_2015.1071.40.0

_x64__8wekyb3d8bbwe\\ _resources\\akira_readme.txt",

:\\program files (x86)\\common files\\microsoft shared\\officel6\\office

setup controller\\dcf.en-us\\dcfmui.xml",

:\\program files (x86)\\common files\\microsoft shared\\officel6\\office

setup controller\\excel.en-us\\excelmui.xml",

:\\program files\\windowsapps\\microsoft.bingsports_4.6.169.0

_x86__8wekyb3d8bbwe\\microsoft.system.package.metadata\\akira_readme.txt

:\\program files\\windowsapps\\microsoft.bingsports_4.6.169.0

_x86__8wekyb3d8bbwe\\microsoft.msn.shell\\themes\\glyphs\\akira_readme.
txt",

:\\program files\\windowsapps\\microsoft.bingsports_4.6.169.0

_x86__8wekyb3d8bbwe\\microsoft.msn.shell\\themes\\glyphs\\font\\
akira_readme.txt",

:\\program files\\windowsapps\\microsoft.bingsports_4.6.169.0

_x86__8wekyb3d8bbwe\\microsoft.msn.shell\\akira_readme.txt",

:\\program files\\windowsapps\\microsoft.bingsports_4.6.169.0

_x86__8wekyb3d8bbwe\\microsoft.msn.shell\\themes\\akira_readme.txt",

:\\program files\\windowsapps\\microsoft.bingsports_4.6.169.0

_x86__8wekyb3d8bbwe\\msadvertisingjs\\akira_readme.txt",

:\\program files (x86)\\common files\\microsoft shared\\officel6\\office

setup controller\\groove.en-us\\setup.xml",

:\\program files (x86)\\common files\\microsoft shared\\officel6\\office

setup controller\\groove.en-us\\groovemui.xml",

:\\program files\\windowsapps\\microsoft.microsoftsolitairecollection_3

.3.9211.0_x64__8wekyb3d8bbwe\\assets\\buttons\\deal\\akira_readme.txt",

:\\program files\\windowsapps\\microsoft.microsoftsolitairecollection_3

.3.9211.0_x64__8wekyb3d8bbwe\\assets\\buttons\\back\\akira_readme.txt",

:\\program files\\windowsapps\\microsoft.microsoftsolitairecollection_3

.3.9211.0_x64__8wekyb3d8bbwe\\assets\\buttons\\akira_readme.txt",

:\\program files\\windowsapps\\microsoft.windowsphone_10.1510.9010.0

_x64__8wekyb3d8bbwe\\html\\sl-si\\deeplink\\akira_readme.txt",

:\\program files\\windowsapps\\microsoft.windowsphone_10.1510.9010.0

_x64__8wekyb3d8bbwe\\html\\sl-si\\akira_readme.txt",

:\\program files\\windowsapps\\microsoft.messaging_1.10.22012.0

_x86__8wekyb3d8bbwe\\skypeapp\\view\\akira_readme.txt",

106

107
108
109
110

m
112
113
114

115
116

17
118

19

120
121
122
123
124
125

126

127
128
129

130
131
132

134

135

136

137

138

139

140

141

142

143

144

145

146

147
148

149

150

151

152

153

154

155

M.15. AkiraRansomware

206

I

"c:\\program files\\windowsapps\\microsoft.microsoftsolitairecollection_3
.3.9211.0_x64__8wekyb3d8bbwe\\environmentintegration\\content\\audio\\

akira_readme.txt"

"files_deleted": [

"%USERPROFILE%\\AppData\\Local\\Temp__PSScriptPolicyTest_wys3elej.
"%USERPROFILEY%\\AppData\\Local\\Temp__PSScriptPolicyTest_edm40khs.
n
"%USERPROFILEY%",
"%USERPROFILE%\\AppData\\Local\\akira_readme.txt",
"%USERPROFILE%\\AppData\\Local\\Temp__PSScriptPolicyTest_sgodrupw.
"%USERPROFILE%\\AppData\\Local\\Temp__PSScriptPolicyTest_4itcgsay.
"%USERPROFILEY%\\AppData\\Local\\Temp__PSScriptPolicyTest_q2uvauzr.
"%USERPROFILE’%\\AppData\\Local\\Temp__PSScriptPolicyTest_bfczmqgkb.
n
"C:\\Windows\\System32\\spp\\store\\2.0\\cache\\cache.dat",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp \\WER7EEF . tmp .
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER7FOF . tmp.
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER7FCA.tmp.csv",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp \\WER7FEB. tmp.txt",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER7FCB.tmp.csv",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp \\WER7FEC. tmp.txt",
"%USERPROFILEY\\AppData\\Local\\Temp__PSScriptPolicyTest_ktwOsxk3.
"%USERPROFILE%\\AppData\\Local\\Temp__PSScriptPolicyTest_mattOtpn.
n
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER9BCD . tmp.
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WERA0O4 . tmp.csv",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WERAO14 . tmp.txt",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WERA227 . tmp.
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WERA228.tmp.csv",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WERA239.tmp.txt",
"%USERPROFILEY%\\AppData\\Local\\Temp__PSScriptPolicyTest_byo5xgkn.
"%USERPROFILE’%\\AppData\\Local\\Temp__PSScriptPolicyTest_z450eubg.
n
"%USERPROFILE%\\AppData\\Local\\Temp__PSScriptPolicyTest_wdofsrzu.
"%USERPROFILE%\\AppData\\Local\\Temp__PSScriptPolicyTest_ljok5cdt.

cj5.psl",
wxg.psml

tgl.psl",
sdt.psml

wsv.psl",
lis.psmi

poi.psi",
lke.psmi

uif.psi",
s1l.psml

sls.psl",
q42.psmi

"%USERPROFILE’\\AppData\\Local\\Microsoft\\CLR_v4.0\\UsageLogs\\powershell.

exe.log",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER8F1B. tmp.
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER90A2.tmp.csv",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp \\WER9OB3 . tmp.txt",
"%USERPROFILE%\\AppData\\Local\\Temp__PSScriptPolicyTest_wxebrkwj
"%USERPROFILE%\\AppData\\Local\\Temp__PSScriptPolicyTest_jljj5zfz
n
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER73D3. tmp.
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER748F . tmp.csv",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER749F . tmp . txt",
"%USERPROFILE%\\AppData\\Local\\Temp__PSScriptPolicyTest_hmhrdvgt.
"%USERPROFILE%\\AppData\\Local\\Temp__PSScriptPolicyTest_oyqfkjol
n
s
"%USERPROFILE’%\\AppData\\Local\\Temp__PSScriptPolicyTest_azesfni3
"%USERPROFILE%\\AppData\\Local\\Temp__PSScriptPolicyTest_cltupnby.
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER7A3C. tmp.
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER7B45 . tmp.csv",
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER7B56 . tmp.txt",
"%USERPROFILE%\\AppData\\Local\\Temp__PSScriptPolicyTest_xzxhtynl
"%USERPROFILE%\\AppData\\Local\\Temp__PSScriptPolicyTest_rkpzszdz
"C:\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER8DB4 . tmp .
WERInternalMetadata.xml",
"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp \\WER8FBS8. tmp.csv",

.ze2.psl",
.wuw.psml

lir.psi",

.nwc.psml

.3h3.psi",

pbn.psml

.uue.psl",
.anv.psmil

156
157
158
159
160
161
162

163

164
165
166
167
168
169
170
171
172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

191
192
193
194
195
196
197
198

199

200
201
202

203
204
205
206
207

209
210
21
212
213
214
215

216
217
218
219

M.15. AkiraRansomware 207

"C:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER8FD8. tmp.txt",
"%USERPROFILE’%\\AppData\\Local\\Temp__PSScriptPolicyTest_b5jgzz15.stx.ps1",
"%USERPROFILE%\\AppData\\Local\\Temp__PSScriptPolicyTest_kztktwwj.aot.psml"
I
"command_executions": [
"\"%SAMPLEPATH/\\win_locker.exe\" ",
"powershell.exe -Command \"Get-WmiObject Win32_Shadowcopy | Remove-WmiObject
\IIII’
"\"%SAMPLEPATH%\\8631
ac37f605daacf47095955837ec5abbd5e98c540ffd58bb9bf873b1685a50.exe\" ",
"C:\\Windows\\System32\\wuapihost.exe -Embedding"
])
"files_attribute_changed": [],
"processes_terminated": [
"%windir%\\System32\\svchost.exe -k WerSvcGroup",
"\"pwsh.exe\" -Command Get-WmiObject Win32_Shadowcopy | Remove-WmiObject",
"C:\\Windows\\System32\\WindowsPowerShell\\v1l.0\\powershell.exe",
"C:\\Windows\\System32\\conhost.exe",
"C:\\Windows\\SystemApps\\ShellExperienceHost_cwbnlh2txyewy\\
ShellExperienceHost.exe",
"C:\\Windows\\System32\\wuapihost.exe"
15
"processes_killed": [],
"processes_injected": [],
"services_opened": [],
"services_created": [],
"services_started": [],
"services_stopped": [],
"services_deleted": [],
"windows_searched": [],
"registry_keys_deleted": [],
"mitre_attack_techniques": [
"contain obfuscated stackstrings",
"encode data using Base64",
"parse PE header",
"get system information on Windows",
"create new key via CryptAcquireContext",
"encrypt or decrypt via WinCrypt",
"enumerate processes on remote desktop session host",
"connect to WMI namespace via WbemLocator",
"get disk information",
"get geographical location",
"link function at runtime on Windows",
"(Process #1) win_locker.exe modifies the content of multiple user files.",
"(Process #1) win_locker.exe resolves 21 API functions by name.",
"(Process #1) win_locker.exe changes the appearance of folder \"C:\\Program
Files\\Common Files\\microsoft shared\\Stationery\".",
"(Process #4) wmiprvse.exe starts (process #6) powershell.exe with a hidden
window.",
"The process attempted to dynamically load a malicious function",
"The process tried to load dynamically one or more functioms.",
"The process has tried to detect the debugger probing the use of page guards

n
L)

"The process attempted to detect a running debugger using common APIs",

"It Tries to detect injection methods",

"Queries process information (via WMI, Win32_Process)",

"Creates processes via WMI",

"Installs a chrome extension",

"Stores files to the Windows startup directory",

"Contains long sleeps (>= 3 min)",

"Contains medium sleeps (>= 30s)",

"May sleep (evasive loops) to hinder dynamic analysis",

"Tries to harvest and steal browser information (history, passwords, etc)",

"AV process strings found (often used to terminate AV products)",

"Queries a list of all running processes",

"Sample monitors Window changes (e.g. starting applications), analyze the
sample with the simulation cookbook",

"Enumerates the file system",

"Queries process information (via WMI, Win32_Process)",

"Queries the volume information (name, serial number etc) of a device",

"Reads software policies",

220
221
222
223
224
225
226
227
228

23

24

25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50

M.16. SundownEK

208

"Public key (encryption) found",

"Installs a chrome extension",

"Tries to harvest and steal browser information (history, passwords, etc)",
"Downloads files",

"Found Tor onion address",

"Writes a notice file (html or txt) to demand a ransom"

M.16. SundownEK
M.16.1. Dyanmic Analysis Features

"Behavior":

"files_

geE
G
"C:
"C:
Gh
955
"e:
GG

g5

ne:
G
9@
G
ECE
g
G
"e:
G
9@

ECE

B

e
me:
G
E
EGE
e
ger
e
"e:
G
9@
G

g
ECE
ier
T
e
G
EeE
g
e

{

opened": [

\\WINDOWS\\system32\\winime32.d11",

\\WINDOWS\\system32\\ws2_32.d11",

\\WINDOWS\\system32\\ws2help.dll",

\\WINDOWS\\system32\\psapi.dll",

\\WINDOWS\\system32\\imm32.d11",

\\WINDOWS\\system32\\1pk.d1l",

\\WINDOWS\\system32\\usp10.4d411",

\\WINDOWS\\WinSxS\\x86_Microsoft.Windows.Common-
Controls_6595b64144ccf1df_6.0.2600.5512_x-ww_35d4ce83\\comctl32.d11",

\\Documents and Settings\\Administrator\\Local Settings\\Temp\\EB93A6\\996
E.exe",

\\WINDOWS\\system32\\shell32.d11l",

\\WINDOWS\\WindowsShell.Manifest",

\\WINDOWS\\system32\\rpcss.dll",

\\WINDOWS\\system32\\MSCTF.d11",

\\WINDOWS\\system32\\shfolder.dll",

\\WINDOWS\\system32\\setupapi.dll",

\\DiskD",

\\Documents and Settings\\Administrator\\Local Settings\\Temp\\nsn2.tmp",

\\Documents and Settings\\Administrator\\Local Settings\\Temp\\nsz4.tmp",

\\Documents and Settings\\Administrator\\Local Settings\\Temp\\nsz4.tmp\\
Samian.dll",

\\Documents and Settings\\Administrator\\Application Datal\\Read Me Info.
txt",

\\Documents and Settings\\Administrator\\Application Data\\jackajeoaer.jpg
n

\\WINDOWS\\system32\\iphlpapi.dll",

\\WINDOWS\\system32\\urlmon.dll",

\\WINDOWS\\system32\\wininet.d1l",

\\WINDOWS\\system32\\MSCTFIME.IME",

\\WINDOWS\\system32\\uxtheme.d1ll",

\\WINDOWS\\system32\\MSIMTF.d11",

\\WINDOWS\\system32\\faultrep.dll",

\\WINDOWS\\system32\\winsta.dll",

\\WINDOWS\\system32\\wtsapi32.d1ll",

\\Documents and Settings\\Administrator\\Local Settings\\Temp\\nsc2.tmp",

\\Documents and Settings\\Administrator\\Local Settings\\Temp\\nsj4.tmp",

\\Documents and Settings\\Administrator\\Local Settings\\Temp\\nsj4.tmp\\
Samian.dll",

\\Documents and Settings\\Administrator\\Local Settings\\Temp\\nss2.tmp",

\\WINDOWS\\system32\\mprapi.dll",

\\WINDOWS\\system32\\activeds.dll",

\\WINDOWS\\system32\\adsldpc.dll",

\\WINDOWS\\system32\\atl.dll",

\\WINDOWS\\system32\\rtutils.d11l",

\\WINDOWS\\system32\\samlib.d1ll",

\\ea67e5a16d58cd3c6cbabcl1213f55caaf4a109c8£5583ad9da9df2e803be0d7e",

\\DOCUME ~1\\<USER>~1\\LOCALS~1\\Temp\\nsv2. tmp",

"jackajeoaer. jpg",

EGE

\\Documents and Settings\\<USER>\\Application Data\\Read Me Info.txt",

"\\\\.\\PIPE\\1lsarpc",
"\\\\.\\MountPointManager",

e

\\DOCUME ~1\\<USER>~1\\LOCALS~1\\Temp\\nsvl.tmp",

51
52
53
54
55
56
57
58
59

60

61
62
63

64
65

66
67
68
69
70
7
72
73
74
75
76
77
78
79
80

81
82
83

84
85
86
87
88
89
90
91

92
93
94
95

96
97
98
99

101
102
103
104
105
106
107
108
109
110
111
112

M.16. SundownEK

209

"C:\\DOCUME~1\\<USER>~1\\LOCALS~1\\Temp\\bin.exe",
and Settings\\<USER>\\Application Datal\tag(2)",
and Settings\\<USER>\\Application Data\\jackajeoaer.jpg"

"C:\\Documents
"C:\\Documents
Js
"files_written": [
"C:\\Documents
"C:\\Documents
"C:\\Documents
"C:\\Documents
txt",

"C:\\Documents

"
s>

"C:\\Documents
"C:\\Documents
"C:\\Documents

and
and
and
and

and

and

and
and

Samian.dll",
"C:\\WINDOWS\\wininit.ini",
"C:\\Documents and Settings\\Administrator\\Local Settings\\Temp\\nsj4.tmp\\

Samian.dll",
"C:\\Documents and Settings\\Administrator\\Local Settings\\Temp\\nsx3.tmp",
"C:\\DOCUME ~1\\<USER>~1\\LOCALS~1\\Temp\\nsv2.tmp",
"C:\\DOCUME~1\\<USER>~1\\LOCALS~1\\Temp\\bin.exe",

"C:\\Documents
"C:\\Documents
"C:\\Documents
"C:\\Documents
"C:\\Documents

and
and
and
and
and

Settings\\Administrator\\Local
Settings\\Administrator\\Local
Settings\\Administrator\\Appli
Settings\\Administrator\\Appli

Settings\\Administrator\\Appli

Settings\\Administrator\\Appli
Settings\\Administrator\\Appli
Settings\\Administrator\\Local

Settings\\<USER>\\Application
Settings\\<USER>\\Application
Settings\\<USER>\\Application
Settings\\<USER>\\Application
Settings\\<USER>\\Application

Settings\\Temp\\nsc3.tmp",
Settings\\Temp\\bin.exe",
cation Datal\tag(2)",
cation Data\\Read Me Info.
cation Datal\\jackajeoaer. jpg
cation Datal\index(11) .php",
cation Data\\photo(5).jpg",
Settings\\Temp\\nsz4.tmp\\

Data\\tag(2)",
Data\\Read Me Info.txt",
Data\\jackajeoaer. jpg",
Datal\\index (11) .php",
Data\\photo(5).jpg",

"C:\\DOCUME ~1\\<USER>~1\\LOCALS~1\\Temp\\nsa3.tmp\\Samian.d1ll"

1s
"files_deleted": [

1

"command_executions":

]

"C:\\Documents and
"C:\\Documents and
"C:\\Documents and
"C:\\Documents and
Samian.dll",
"C:\\Documents and
"C:\\Documents and
"C:\\Documents and
Samian.dll",
"C:\\Documents and
"C:\\Documents and

Settings\\Administrator\\Local
Settings\\Administrator\\Local
Settings\\Administrator\\Local
Settings\\Administrator\\Local

Settings\\Administrator\\Local
Settings\\Administrator\\Local
Settings\\Administrator\\Local

Settings\\Administrator\\Local
Settings\\Administrator\\Local

Settings\\Temp\\nsn2
Settings\\Temp\\nsc3

Settings\\Temp\\nsc2

Settings\\Temp\\nss2
Settings\\Temp\\nsx3

"C:\\DOCUME ~1\\<USER>~1\\LOCALS~1\\Temp\\nsv1.tmp",
"C:\\DOCUME~1\\<USER>~1\\LOCALS~1\\Temp\\nsa3.tmp",
"C:\\DOCUME ~1\\<USER>~1\\LOCALS~1\\Temp\\nsa3.tmp\\Samian.d1ll"

[

.tmp",
.tmp",
Settings\\Temp\\nsz4.
Settings\\Temp\\nsz4.

tmp)
tmp\\

.tmp",
Settings\\Temp\\nsj4.
Settings\\Temp\\nsj4.

tmp n s
tmp\\

.tmp",
.tmp",

"\"C:\\Documents and Settings\\Administrator\\Local Settings\\Temp\\EB93A6

\\996E.exe\""

"processes_terminated":
"C:\\Documents and Settings\\Administrator\\Local Settings\\Temp\\EB93A6\\996

1,

"processes_killed":
"processes_injected":

E.exe"

1,

[

"files_attribute_changed": [],

L

"C:\\Documents and Settings\\Administrator\\Local Settings\\Temp\\EB93A6\\996

"eab67e5a16d58cd3c6cb6abcl1213f55caaf4a109c8f5583ad9da9df2e803be0d7e"

E.exe",
1o
"services_opened": [
"RemoteAccess",
"Router"
i
"services_created": [],
"services_started": [],
"services_stopped": [],
"services_deleted": [],
"windows_searched": [],

"registry_keys_deleted": [
"\\REGISTRY\\MACHINE\\SOFTWARE\\Microsoft\\PCHealth\\ErrorReporting\\DW\\",

113

114
115
116
17

25
26
27
28
29
30
31

32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

M.17. Kronos

210

"\\REGISTRY\\MACHINE\\SOFTWARE\\Microsoft\\PCHealth\\ErrorReporting\\DW\\

1,

"mitre_

M.17. Kronos

DWFileTreeRoot"

attack_techniques": []

M.17.1. Dyanmic Analysis Features

"Behavior":
"files_
"C:

Bk
ECE

B

T

ne
ne

ne

G
9@

ECE

"o
ne

ne

ne

i35

NG
I@e
U@e
G
:\\WINDOWS\\system32\\kernel32.d1ll",
"C:
llC:
||C:
:\\WINDOWS\\system32\\advapi32.dll",
I@e
G

ne

ne

ne

ne

{
opened": [
\\Users\\Admin\\AppData\\Roaming\\Mozilla\\Firefox\\Profiles\\vxmlbk3x.
default\\user.js",
\\Users\\Admin\\Desktop\\Google Chrome.lnk",
\\Users\\Admin\\AppData\\Roaming\\Microsoft\\Internet Explorer\\Quick
Launch\\User Pinned\\TaskBar\\Google Chrome.lnk",
\\Users\\Admin\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\Programs
\\Google Chrome.lnk",
\\WINDOWS\\system32\\winime32.d11l",

:\\WINDOWS\\system32\\ws2_32.411",
:\\WINDOWS\\system32\\ws2help.dll",
"e:
GG
"e:
e
:\\Documents and Settings\\Administrator\\Local Settings\\Temp\\EB93A6\\996

\\WINDOWS\\system32\\psapi.dll",
\\WINDOWS\\system32\\imm32.d411",
\\WINDOWS\\system32\\1pk.d11l",

\\WINDOWS\\system32\\usp10.d11l",

E.exe",
\\WINDOWS\\system32\\shell32.d11l",
\\WINDOWS\\WinSxS\\x86_Microsoft.Windows.Common-
Controls_6595b64144ccf1df_6.0.2600.5512_x-ww_35d4ce83\\comctl32.d11",
\\WINDOWS\\WindowsShell.Manifest",

:\\WINDOWS\\system32\\comct132.d11",
:\\WINDOWS\\system32\\rpcss.dll",

ne:
"e:
ne:
"C:
ne:

\\WINDOWS\\system32\\MSCTF.d11",

\\WINDOWS\\system32\\clbcatq.dll",

\\WINDOWS\\system32\\comres.dll",
\\WINDOWS\\Registration\\R000000000007.clb",

\\Documents and Settings\\Administrator\\\u684c\u9762\\\u817e\u8bafQQ.1lnk

:\\WINDOWS\\system32\\1linkinfo.d1ll",
"C:
"C:
NG
955

\\WINDOWS\\system32\\ntshrui.dll",
\\WINDOWS\\system32\\atl.d1ll",
\\WINDOWS\\system32\\setupapi.dll",
\\DiskD",

:\\Documents and Settings\\All Users\\\u684c\u9762\\Adobe Reader 9.1lnk",
EICE

\\Documents and Settings\\All Users\\\u684c\u9762\\\u62db\u884c\ude13\
ud4ela\u7248.1nk",

\\Documents and Settings\\All Users\\\u684c\u9762\\\u641c\u72d7\u9ads8\
u901f\u6d4f\u89c8\ub668.1nk",

\\WINDOWS\\system32\\svchost.exe",

\\WINDOWS\\system32\\apphelp.dll",

\\WINDOWS\\AppPatch\\sysmain.sdb",

\\WINDOWS\\system32\\ntd1l.d411",

\\WINDOWS\\system32\\unicode.nls",
\\WINDOWS\\system32\\locale.nls",
\\WINDOWS\\system32\\sorttbls.nls",

\\WINDOWS\\system32\\rpcrt4.dll",
\\WINDOWS\\system32\\secur32.d11l",

:\\WINDOWS\\system32\\shimeng.d1l1l",
g
I@e
"C:
U@e
G

\\WINDOWS\\AppPatch\\AcGenral.d1ll",
\\WINDOWS\\system32\\user32.d11",
\\WINDOWS\\system32\\gdi32.d11l",
\\WINDOWS\\system32\\winmm.d11l",
\\WINDOWS\\system32\\ole32.d11",

:\\WINDOWS\\system32\\msvcrt.dll",
ne:

\\WINDOWS\\system32\\oleaut32.d11l",

52
53
54
55

56
57

58

59

60

61

62

63

64

65

66

67

68

69

70

7
72

73

74

75

76
7
78
79

80

81

82
83
84

85
86
87
88

89
90
91

92
93
94

95

96

97
98

M.17. Kronos

211

||C
I
"files

||C

ne
ne

e

ne

G

g

"e:

ne
ne

EEE
EeE
EEE
ier

ne

e

e

"o

ne:

e

ECE

1,

"files

:\\WINDOWS\\system32\\msacm32.411"

_written": [

:\\Users\\Admin\\AppData\\Roaming\\Mozilla\\Firefox\\Profiles\\vxmlbk3x.
default\\user. js",

:\\Users\\Admin\\Desktop\\Google Chrome.lnk",

:\\Users\\Admin\\AppData\\Roaming\\Microsoft\\Internet Explorer\\Quick
Launch\\User Pinned\\TaskBar\\Google Chrome.lnk",

\\Google Chrome.lnk",
:\\Documents and Settings\\Administrator\\Application Data\\Microsoft\\{44
EC26F7-0313-49A4-A379-385505289087}\\71d77268.exe",
\\Documents and Settings\\Administrator\\Local Settings\\Temporary
Internet Files\\Content.IE5\\C10S62RY\\connect[1].php",
\\Users\\<USER>\\AppData\\Roaming\\Mozilla\\Firefox\\Profiles/zh35t979.
default-release\\user.js",
\\Users\\<USER>\\AppData\\Roaming\\Microsoft\\Internet Explorer\\Quick
Launch\\User Pinned\\TaskBar\\Google Chrome.lnk",
:\\Users\\<USER>\\Desktop\\Google Chrome.lnk",
:\\Users\\user\\AppData\\Local\\Microsoft\\Windows\\Caches",
\\Users\\user\\AppData\\Local\\Microsoft\\Windows\\History",
\\Users\\user\\AppData\\Local\\Microsoft\\Windows\\INetCache",
\\Users\\user\\AppData\\Local\\Microsoft\\Windows\\INetCookies",
\\Users\\user\\AppData\\Roaming\\Microsoft\\{F35B4841-C554-4AE3-8110-67
B8F528E7E61}",
:\\Users\\user\\AppData\\Roaming\\Microsoft\\{F35B4841-C554-4AE3-8110-67
B8F528E7E6}\\bac58a5f .exe",
\\Users\\user\\AppData\\Roaming\\Mozilla\\Firefox\\Profiles\\05rdgbi2.
default-release\\user. js",
\\Users\\user\\Desktop\\Google Chrome.lnk",
:\\Users\\user\\AppData\\Roaming\\Microsoft\\{7A779156 -93BD-4CC1-9B72-9
B3E7E59022F}",
\\Users\\user\\AppData\\Roaming\\Microsoft\\{7A7791566-93BD-4CC1-9B72-9
B3E7E59022F }\\bac58abf .exe",
\\Users\\user\\AppData\\Roaming\\Microsoft\\{46695B5A-CDF6-4BD4-8CE3 -
CE87EOEBF6EB}",
\\Users\\user\\AppData\\Roaming\\Microsoft\\{46695B5A-CDF6-4BD4-8CE3-
CE87EOEBF6EB}\\bac58a5f .exe"

_deleted": [

"%USERPROFILE’%\\Desktop\\Google Chrome.lnk",
"%USERPROFILEY%\\AppData\\Local\\Microsoft\\Windows\\Caches\\{3DA71D5A-20CC

ne

"C:

ey
Rk
e

ne

ger
T
ne:

9B
G

ne

B
ier
T

G

B

"o

e

-432F-A115-DFE92379E91F}.3.ver0x0000000000000018.db",
:\\Windows\\ServiceProfiles\\LocalService\\AppData\\Roaming\\Microsoft\\
Crypto\\Keys\\de7cf8a7901d2ad13e5c67c29e5d1662_cbbb49d6-b7ff-44ca-abab5-8
abe250d4d42",
\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WERA3C . tmp .
WERInternalMetadata.xml",
\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WERB45.tmp.csv",
\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WERBA4 . tmp.txt",
\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WERBB4 . tmp.
WERInternalMetadata.xml",
:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WERBB5 . tmp.csv",
\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WERBC5 . tmp . txt",
\\Windows\\System32\\spp\\store\\2.0\\cache\\cache.dat",
\\ProgramData\\Microsoft\\Windows\\WER\\Temnp\\WERF26E. tmp.
WERInternalMetadata.xml",
\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WERF339.tmp.csv",
\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WERF379.tmp.txt",
:\\ProgramData\\Microsoft\\Windows\\WER\\Temp\\WER23E. tmp.
WERInternalMetadata.xml",
\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER24F . tmp.csv",
\\ProgramData\\Microsoft\\Windows \\WER\\Temp\\WER25F . tmp . txt",
\\aad98f57ce0d2d2bb1494d82157d07e1£f80fb6ee02dd5f95cd6ala2dc40141bc: Zone.
Identifier",
\\Users\\<USER>\\Downloads\\

2ad98f57ce0d2d2bb1494d82157d07e1f80fb6ee02dd5f95cd6ala2dc40141bc.exe:Zone

.Identifier",
\\Users\\Public\\Desktop\\Google Chrome.lnk",
:\\Users\\user\\Desktop\\executable.exe:Zone.Identifier",
\\Users\\user\\Desktop\\software.exe:Zone.Identifier",

\\Users\\Admin\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\Programs

99
100
101
102

103
104

105
106
107
108
109

110
m
112

13
14

115
116

17
118
119
120
121
122
123
124
125
126
127
128
129

131
132
133
134

135

136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

M.17. Kronos 212

"C:\\Users\\user\\Desktop\\program.exe:Zone.Identifier"
1
"command_executions": [
"\"${SamplePath}\\
2ad98f57ce0d2d2bb1494d82157d07e1£f80fb6ee02dd5f95cd6ala2dc40141bc.exe\" ",
"\"C:\\Windows\\system32\\svchost.exe\"",
"\"%SAMPLEPATHZ\\
2ad98f57ce0d2d2bb1494d82157d07e1f80fb6ee02dd5f95cd6ala2dc40141bc.exe\" ",
"C:\\Windows\\System32\\wuapihost.exe -Embedding",
"\"C:\\WINDOWS\\system32\\svchost.exe\""
1
"files_attribute_changed": [
"C:\\Documents and Settings\\Administrator\\Application Data\\Microsoft\\{44
EC26F7-0313-49A4-A379-385505289087}\\71d77268.exe"

1,
"processes_terminated": [
"${SamplePath}\\
aad98f57ce0d2d2bb1494d82157d07e1£80fb6ee02dd5f95cd6ala2dc40141bc.exe",
"C:\\Windows\\SysWOW64\\svchost.exe",
"%SAMPLEPATHY\\
aad98f57ce0d2d2bb1494d82157d07e1£80fb6ee02dd5f95cd6ala2dc40141bc.exe",
"C:\\Windows\\System32\\wuapihost.exe",
"C:\\Documents and Settings\\Administrator\\Local Settings\\Temp\\EB93A6\\996
E.exe",
"aad98f57ce0d2d2bb1494d82157d07e1f80fb6ee02dd5f95cd6ala2dc40141bc.exe"
1,
"processes_killed": [],
"processes_injected": [
"C:\\Program Files\\Internet Explorer\\IEXPLORE.EXE",
"C:\\WINDOWS\\system32\\VBoxService.exe",
"C:\\WINDOWS\\system32\\svchost.exe"
Js
"services_opened": [
"RASMAN"
]’
"services_created": [],
"services_started": [],
"services_stopped": [],
"services_deleted": [],
"windows_searched": [],

"registry_keys_deleted": [
"\\REGISTRY\\USER\\S-1-5-21-1482476501-1645522239-1417001333-500\\Software\\
Microsoft\\Windows\\CurrentVersion\\Internet Settings\\ProxyServer",
"\\REGISTRY\\USER\\S-1-5-21-1482476501-1645522239-1417001333-500\\Software\\
Microsoft\\Windows\\CurrentVersion\\Internet Settings\\ProxyOverride",
"\\REGISTRY\\USER\\S-1-5-21-1482476501-1645522239-1417001333-500\\Software\\
Microsoft\\Windows\\CurrentVersion\\Internet Settings\\AutoConfigURL"
I
"mitre_attack_techniques": [
"encode data using XOR",
"access PEB ldr_data",
"encrypt data using blowfish",
"acquire debug privileges",
"set file attributes",
"write process memory",
"get system information on Windows",
"link function at runtime on Windows",
"encrypt data using RC4 PRGA",
"get socket status",
"log keystrokes via polling",
"reference AES constants",
"get common file path",
"enumerate files on windows",
"enumerate files recursively",
"query environment variable",
"get file size",
"enumerate processes",
"enumerate processes",
"modify access privileges",
"parse PE header",
"bypass Mark of the Web",

161
162
163
164
165
166
167
168
169
170
17
172
173
174
175
176
177
178
179
180
181
182
183
184
185

186
187
188
189
190
191
192

M.17. Kronos

213

"check 0S version",

"get socket information",

"get local IPv4 addresses",

"interact with driver via control codes",

"get token membership",

"persist via Run registry key",

"check if file exists",

"reference Base64 string",

"traverse file",

"use com interface",

"create 1lnk file",

"create 1lnk file",

"Sample uses process hollowing technique",
"Creates an autostart registry key",

"Creates autostart registry keys with suspicious
"Maps a DLL or memory area into another process"
"Sample uses process hollowing technique",
"System process connects to network (likely due
"Creates a process in suspended mode (likely to
"Spawns processes",

"Creates files inside the user directory",

names",

>

to code injection)",
inject code)",

"May sleep (evasive loops) to hinder dynamic analysis",

"Contains long sleeps (>= 3 min)",

"Queries disk information (often used to detect

"Hides that the sample has been downloaded from
P

"Tries to harvest and steal browser information

"Monitors registry run keys for changes",

"Queries disk information (often used to detect

virtual machines)",
the Internet (zone.identifier

(history, passwords, etc)",

virtual machines)"

	Preface
	Introduction
	Motivation
	Research question
	Contributions
	Report Structure

	Background
	Malware Fundamentals
	Types Of Malware
	File Formats

	High-Level Overview of Machine Learning Techniques
	Fundamentals
	Cross Validation
	Hyperparameters
	Nested Cross Validation
	Supervised Learning
	Unsupervised Techniques
	Dimensionality Reduction Techniques
	 Deep Learning

	Related Works: Malware Analysis
	Static Analysis
	Image Analysis
	Main Limitation: Static and Image Analysis
	Dynamic Analysis
	Practical Applications

	Open Source Datasets of Malware Executables
	Phylogenetic Trees
	High level overview of Phylogenetic Tree
	Phylogenetic Tree Building methods
	Rooting Phylogenetic Trees
	Application of Phylogenetic Trees in Malware Research
	Related Works: Validating Phylogenetic Trees

	 MalwareGenome Dataset
	Sources
	Validation of Samples
	Preprocessing of Samples
	Class Distribution

	Public Datasets for Image Analysis
	High level overview of Image Dataset
	Class Distribution

	Methodology
	Pipeline
	 Embedding Extraction
	Motivation
	Overview of Different Analysis Methods
	Extraction of Memory Dumps
	Features Extraction From Psuedo-Static Analysis
	Embedding Extraction From Pseudo-Static Analysis
	Features Extraction From Dynamic Analysis
	Embedding Extraction From Dynamic Analysis
	Embedding Extraction From Image Analysis

	Embedding Concatenation and Reduction
	Current Approaches
	Our approach

	Distance Matrix Generation
	Known Approaches
	Distance Matrix
	Converting Distance Matrix

	Building Phylogenetic Trees
	UPGMA
	Neighbor Joining
	RapidNJ

	Validating Large-Scale Phylogenetic Trees
	Timestamps
	Rooting Trees
	Understanding Trees
	Time Divergence Analysis
	Embedding Drift Analysis

	Visualizing Large-Scale Phylogenetic Trees
	Inter and Intra Family Analysis

	Results
	Embedding Validation
	Experiment 1: Which analysis type yields the best embeddings and does combining them improve performance?

	Extending Embeddings to New Tasks
	Experiment 2: Are embeddings, merged or individual, useful for downstream tasks?
	Experiment 3: How does our approach on classifying malware based on images compare to previous work?

	Tree Validation
	Experiment 4: Which phylogenetic tree construction method using distances produces the most accurate representation of malware evolution using VirusTotal timestamps?
	Experiment 5: How can embedding drift analysis be employed as an alternative method for validating phylogenetic trees?

	Patterns and Topology
	Experiment 6: How do clusters formed by visualizing malware embeddings with t-SNE, UMAP, and PCA align with lateral(leaf to leaf) distances in a phylogenetic tree built with NJ method?
	WpBruteBot
	Experiment 7 : Do outliers alter the topology of a phylogenetic tree constructed using the Neighbour Joining method by changing the Most Recent Common Ancestor (MRCA)?

	Inter-Family Analysis
	Experiment 8: Do the relationships identified through inter-family analysis using NJ method correlate with public cybersecurity insights and with the psuedo-static and dynamic features of the malware?
	Speculative Assessment of Potential Connections Between Mirai and Other Malware Families
	High-Level Overview of SmokeLoader's Operation
	Pseudo-static and Dynamic analysis
	Inter-family analysis

	Discussion
	Key Results
	Reflection
	Factors that could influence the results
	Packing
	Data Splitting
	Labelling
	Approximation of Neigbour Joining Method
	Assumptions in inter and intra-family analysis

	Production
	Future Works

	Conclusion
	References
	Types of Malware
	Executable Formats
	PE Format
	ELF Format
	DOS Format

	Hypeparameters
	Extraction of PE Features
	Extraction of DOS Features
	Extraction of ELF Features
	Embedding Validation
	Downstream Tasks
	VirusTotal Timestamp Validation

	Hyperparameters & Validation
	Hyperparameter Configuration for embedding validation
	Hyperparameter Configuration for t-SNE, UMAP and PCA

	Phylogenetic Tree Algorithms
	Validation
	Virustotal Timestamps
	Embedding Drift Analysis

	Inter-family analysis algorithms
	Without Outlier Thresholding
	With Outlier Thresholding

	Correlation Analysis
	Global Structure
	Discrepancies
	7ev3n
	WpBruteBot
	IcedId

	Tightly Clustered Families
	Bashlite

	Heterogeneous Clusters
	Bazarbackdoor
	KRBanker
	GrandCrab

	Wide-Spread Clusters
	Lokibot
	Blacksoul
	Online Spambot

	Case Studies
	 Pseudo-static and Dynamic analysis
	Key Characteristics of DiscordTokenStealers

	Pseudo-static and Dynamic Analysis
	Mirai
	Pseudo-static analysis features
	Dynamic Analysis features

	Gafgyt
	Pseudo-static analysis features
	Dynamic Analysis features

	Okiru
	Psuedo-static analysis features
	Dynamic Analysis Features

	MooBot
	Pseudo-static analysis features
	Dynamic Analysis Features

	EnemyBot
	Pseudo-static analysis features
	Dynamic Analysis Features

	Netwire Rat
	Pseudo-static analysis features

	Bashlite
	Psuedo-static features
	Dynamic features

	SmokeLoader
	Psuedo-static features
	Dynamic Analysis Features

	IcedID
	Dynamic features

	RacoonStealer
	Dynamic Analysis Features

	AsyncRAT
	Dynamic Analysis Features

	BotenaGo
	Static Analysis Features
	Dynamic Analysis Features

	FritzFrog
	Pseudo-Static analysis
	Dynamic Analysis Features

	DiscordTokenStealers
	Dynamic Analysis Features

	AkiraRansomware
	Dyanmic Analysis Features

	SundownEK
	Dyanmic Analysis Features

	Kronos
	Dyanmic Analysis Features

