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Abstract

Decision-theoretic planning techniques are increasingly being used to obtain (optimal) plans
for domains involving uncertainty, which may be present in the form of the controlling agent’s
actions, its percepts, or exogenous factors in the domain. These techniques build on detailed
probabilistic models of the underlying system, for which Markov Decision Processes (MDPs)
have become the de facto standard formalism. However, handcrafting these probabilistic
models is usually a daunting and error-prone task, requiring expert knowledge on the domain
under consideration. Therefore, it is desirable to automate the process of obtaining these
models by means of learning algorithms presented with a set of execution traces from the
system. Although some work has already been done on crafting such learning algorithms,
the state of the art lacks an automated method of configuring their hyperparameters, so
to maximize the performance yielded from executing the derived plans. In this work we
present a method that employs the Bayesian Optimization (BO) framework to learn MDPs
autonomously from a set of execution traces, optimizing the expected value and performance
in simulations over a set of tasks the underlying system is expected to perform. The approach
has been tested on learning MDPs for mobile robot navigation, motivated by the significant
uncertainty accompanying the robots’ actions in this domain.
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Introduction

In numerous real-world settings, such as traffic light control [80], mobile robot navigation [49]
or decision making in medical treatment [67], it is quite common to be faced with uncertainty
about the effect of an action which may have been performed on the basis of incomplete or
faulty observations. Therefore, when plans are provided to impose a course of action for such
settings, they need to be more sophisticated, anticipating for the observations that might be
made and being able to act accordingly. That is, a proper trade-off should be made between
the different possible outcomes and the costs of executing a plan.

A general approach for planning under uncertainty is to model the dynamics of the sys-
tem under consideration, defining transition probabilities for moving between attainable
states through the selection of actions. The resulting probabilistic models are used in offline
planning to compute policies that can be leveraged to automate the sequential decision mak-
ing in the underlying system. In this thesis our main objective is to automate the development
of probabilistic models which maximize the performance of underlying system’s in the exe-
cution of their tasks. In this chapter we present our motivations for investigating techniques
for developing probabilistic models and the overall problem it poses. Accordingly, we identify
and rationalize the research questions that we aim to answer in this thesis. Further, we
summarize our main contributions, define the scope and limitations of our research, and
finally present an outline for the remainder of this thesis.

1.1. Motivation

There exist several practical applications in which the (sequential) actions of systems are
coordinated by decision makers or agents to achieve long-term goals. In particular these
agents need to take into account the uncertainty in these systems that may be present in the
form of action failures, exogenous events and noisy observations. To devise optimal plans
for those systems whose dynamics are stochastic, Decision-Theoretic Planning (DTP) aims to
account for uncertainty by exploiting the considerable structure these systems pose through
the development of probabilistic models which reflect this uncertainty. These probabilistic
models serve as a system representation which describe a system’s state and its evolution
over time after a sequence of actions has been executed. The advantage of having such
(accurate) probabilistic models at one’s disposal is that agents can act according to different
policies derived from one and the same model to perform multiple tasks.

In recent years, particularly Markov Decision Processes (MDPs) have become a significant
popular formalism for modeling DTP problems [8]. That is, first of all, due to their firm
foundation in decision theory and successes of Markovian approaches in speech recognition
[3, 27, 64] and the closely-related field of Reinforcement Learning (RL) [9, 41]. Furthermore,
over the years various computationally efficient solution techniques have been devised for
obtaining optimal plans for MDP models which maximize expected value (e.g., [40, 63]).
Considering the expediency of MDPs, it seems worthwhile to investigate methods of develop-
ing accurate probabilistic models for the purpose of planning under uncertainty.

1
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Figure 1.1: Diagram showing a typical iterative procedure followed in the development of probabilistic models for planning
under uncertainty. Given a problem description for the real-world system under consideration, a designer refines the model until
satisfactory performance is observed.

1.2. Problem Statement

The problem this thesis is concerned with is the development of probabilistic models, which
are used for obtaining plans for automated control of systems whose dynamics are stochastic.
Setting up such models is an important, though difficult and time-costly, process for a human
designer that might not always have (enough) expertise to craft a suitable, well-generalizing
model that can be used to plan for the execution of different tasks. In practice, this problem
is tackled by domain experts by iteratively tweaking the model parameters until the desired
performance is achieved.

Figure 1.1 shows a typical procedure followed in the design of a probabilistic model. In
this procedure, the human designer is presented a problem description and handcrafts an
initial model for the system. The model is then evaluated by performing tasks following
the plans that are derived from the model in simulations or even in the real world. The
assessed performance steers the designer towards what model parameters appear to work
well. The designer uses the obtained knowledge to iteratively refine the model parameters
until ultimately satisfactory performance is yielded in the execution of the derived plans.

An alternative that one ought to consider, is that of applying RL techniques rather than
planning algorithms. However, although ideas from planning and RL are interchangeable,
these techniques typically demand direct interaction with the environment which is some-
thing that cannot always be readily offered. That is, RL techniques turn out as time-consuming
and sometimes even riskful or dangerous when applied in real-world environments. However,
one should note that at one point potential risks should be accounted for when the system is
employed in the real world, and that algorithms, such as risk-sensitive RL, do exist for this
purpose [28, 52]. Those domains for which plans need to be formulated offline, demand the
acquisition of probabilistic models which accurately define what constitutes the state of the
system, reflect uncertainty through transition probabilities and specify its goals.

An attractive approach of bypassing the daunting and error-prone task of handcrafting
probabilistic models, is that of automating the model development process by applying learn-
ing algorithms on data that describes the dynamics of the system. For this approach the data
is typically presented in the form of execution traces of the system operating in a real-world
environment, which is collected in an exploration phase prior to the actual planning. How-
ever, although one could obtain a model of the system by applying learning algorithms, the
corresponding plans that are inferred from this model might not be effective when applied in
a real-world environment. First of all, this might be due to the parameters of the learning
algorithm not being set properly, signifying the need for proper adjustment of these param-
eters. Another possibility is that the gathered data is incomplete and so does not accurately
describe the dynamics of the system. In this case, one could choose to augment the data
for those areas for which the training data is inadequate, although one should be aware that
this is accompanied by a more cost-expensive model learning process. Therefore, in order to
learn accurate probabilistic models, we are in need of a way of assessing the performance of
a model accompanied by a method for identifying inadequacies due to incomplete data, while
taking into account the corresponding cost of learning and evaluating these system models.
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1.3. Research Questions

The problem statement as presented in the previous section yields the following main re-
search question for this thesis:

Main Research Question. How can the task of obtaining a (discrete) MDP that maximizes
the yielded performance of executing plans that are derived from it, given a dataset about the
system under consideration, be automated?

To answer this main research question, four research questions have been identified which
are presented below. The relevance of each of these research questions is discussed accord-
ingly in the next paragraphs.

Research Question 1. Which learning algorithms exist that can be employed for learning
MDPs from data for systems involving uncertainty that require plans for automated control?

First off, to facilitate the formulation of plans for a system involving uncertainty, we need
to obtain an MDP from the provided dataset. Therefore, we should know what learning
algorithms exist that can be employed to learn the parameters of an MDP. Accordingly, we
should identify the applications for which each of these algorithms are suited, but also what
the shortcomings or vulnerabilities of each of these algorithms are.

Research Question 2. How should a performance measure be defined which can be used to
fairly compare the value of different MDPs?

As various MDPs can be obtained for different parameter settings of the model learning
algorithms, the need for a measure of performance for different MDPs emerges. That is, to
establish which parameter settings yield an MDP that best reflects the underlying system for
the tasks to be executed, we require a way to express and fairly compare the value of the
learned MDPs.

Research Question 3. How can the parameter space of model learning algorithms cost-
effectively be explored towards a global maximizer with only limited knowledge about the
system under consideration?

A model learning algorithm may yield different MDPs depending on the selected param-
eter settings. To establish the most appropriate MDP for the system under consideration,
the performance yielded by multiple MDPs should be compared. As evaluating all possible
parameter settings would be cost-expensive, we need to investigate other ways of explor-
ing the parameter space more cost-effectively. This is under the assumption that we only
have limited to no belief over which parameter settings might work well for the system under
consideration.

Research Question 4. How can the hierarchy of different abstraction levels be exploited to
find a performance-maximizing MDP in a more cost-effective way?

Assessments of performance can be made at different levels of abstraction of the under-
lying system. That is, we could examine how well an agent would perform a task only from
the perspective of the MDP model, but also from simulations or even the real world. On the
one hand, abstracting from the real world typically yields a less accurate representation of
the reality, while on the other hand, assessing the performance from a more abstract level is
accompanied by smaller computational costs. Therefore, it might be valuable to investigate
how this could be exploited to achieve a more cost-effective optimization of the performance.
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1.4. Contributions

We propose a framework for automating the development of probabilistic models in the form of
MDPs by applying learning algorithms on data describing the dynamics of the system under
consideration. The data about the environment that is used by these learning algorithms
is gathered prior to the model learning process in an exploration phase. Although various
algorithms for learning MDPs offline from a dataset [55, 69, 79] do already exist, the state of
the art lacks a method for setting the hyperparameters of these algorithms so to best reflect
the underlying system and maximize the performance in the execution of its tasks.

To address this problem, the proposed framework poses the adjustment of the learning
algorithm parameters as an optimization task of maximizing the performance that follows
from executing plans derived from learned MDPs. The optimization is performed by applying
a technique known as Bayesian Optimization (BO), such that we define a probability distri-
bution over functions to model the performance measure and iteratively sample parameter
settings towards a global maximizer of the performance. Although algorithms that employ
the same framework for optimizing the parameters of probabilistic models [30, 34] or policy
search [21, 81] do exist, these are online approaches that do not utilize the available data
prior to interacting with the real world environment.

To achieve a more cost-effective optimization, the parameter search space is first narrowed
down by a ‘pre-processing’ phase. In this phase assessments of the model value are made
on a more abstract level (i.e., based on the value functions computed from an MDP). The
posterior that follows is then used to steer the acquisition in the main optimization phase.

In attempt to further improve the learned models, a ‘post-processing’ step is performed
that aims to identify and fix discrepancies between the model and the real world. This post-
processing step increases the resolution for those areas of the state space for which it identi-
fies the outcomes of actions in simulations do not match the learned transition probabilities.

The framework is applied, tested and evaluated in the domain of mobile robot navigation,
as the robots in this domain tend to operate under significant uncertainty in their actions.
A solution in this context is a policy which maps discretized robot poses into fine-grained
navigation actions so to move a mobile robot to a certain goal location. Probabilistic mod-
els are acquired by applying unsupervised machine learning algorithms on execution traces
(consisting of odometry data describing robot poses) obtained in an exploration phase. The
optimization is based on the performance under acquired models in simulations, expressed
in terms of the number of discrete time-steps needed to reach multiple goal locations.

1.5. Scope and Limitations

First of all, we restrict ourselves to learning fully observable discrete MDPs from data. How-
ever, our framework could possibly be extended to deal with applications where the states
cannot be directly observed and should be inferred from observations. That is, the learning
algorithm forms an interchangeable component in the framework, which means it is possible
to instead employ an algorithm for learning these partially observable models. Though for
now, our endeavor is to give a clear view of our methodology for learning MDPs which can, as
such, serve as a foundation for future work that employs more complex learning algorithms
(e.g., [44, 54, 55, 69]) for partially observable models.

Secondly, we note that all experiments and corresponding results are based on data that
is solely obtained from simulations of a mobile robot. Reasons for this are that we make the
assumption that the environment is fully observable, which is typically not the case for real-
world applications. Another motivation of this is that the framework is not solely intended
for the domain of mobile robot navigation and data from simulations is therefore deemed
adequate for our experiments.

Finally, we focus on the domain of mobile robot navigation to evaluate and test our ap-
proach. One of the important aspects to consider, is which data should be collected to de-
scribe the dynamics of the system to learn models from this data. For our implementation
we choose to collect data about the robot’s poses from internal odometry, but for other ap-
plications we might not be able to describe the states and transitions of the system through
a geometric model and may need other learning algorithms than the clustering algorithms
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we use for our application. An example of such an application may be that of learning MDPs
for traffic light control [23, 80], in which, for instance, lane-turn probabilities are learned
from a dataset. Note that this application seems particularly appropriate to be approached
in combination with RL techniques, so that the system is able to adapt to changes that occur
over time.

1.6. Outline

In this chapter we presented our motivations and defined the problem this thesis is concerned
with. To approach this problem we propose a framework that is aimed at automating the
development of probabilistic models for the purpose of automated control by agents through
planning under uncertainty. This section describes the topics of the remaining chapters and
how they relate to our problem statement and research questions presented earlier.

In Chapter 2 we discuss the required background for both the planning and optimization
aspect of this thesis. First of all, the chapter concretizes the type of problems dealt with
in DTP and how probabilistic models are employed in this field to construct plans for these
problems. Secondly, the chapter discusses the BO framework which is used optimize cost-
expensive functions by sampling new observations effectively based on earlier observations.

In Chapter 3 we explore other existing techniques for the development of MDP models for
systems involving uncertainty. Apart from this, we explore methods that takes advantage of
techniques from the closely-related field of RL to approach SDM problems where possible.
Further, the chapter reviews techniques that overcome the infeasibility of accurately defining
transition probabilities by accounting for uncertainty in these probabilities.

A solution to the problem we described, is proposed in Chapter 4, in which we put the the-
ory and algorithms discussed in the earlier chapters together into an optimization framework.
This chapter presents a base framework and a multi-phase extension of this framework,
which optimize for a performance-maximizing MDP model to be used for offline planning.
The proposed solution is exemplified by a running example problem of path planning for a
mobile robot in an uncertain environment.

To test and evaluate our solution, an implementation has been developed for the optimiza-
tion of probabilistic models for the path planning of a mobile robot in office environments.
In Chapter 5 we present the performed experiments and discuss the results obtained from
testing the proposed solution with this implementation of the framework.

Finally, in Chapter 6 we summarize and evaluate the proposed solution. In this chapter
we revisit our research questions and conclude this thesis with our recommendations and
suggestions for future work.






Background

In this chapter the background on both the planning and optimization aspect of this thesis
is presented. The concepts and techniques discussed in this chapter are employed in the
framework we propose in Chapter 4 with the aim of optimizing for a probabilistic model that
can be used to obtain plans which maximize the performance of a system that is in need of
automated control.

First of all, in Section 2.1, the chapter discusses how Decision-Theoretic Planning (DTP)
deals with the central problem of planning under uncertainty using probabilistic models of
a system under consideration. In this thesis we put our attention to modeling DTP prob-
lems as Markov Decision Processes (MDPs) and accordingly discuss the existing algorithmic
techniques for obtaining plans for automated Sequential Decision Making (SDM). We employ
these techniques in the framework presented in Chapter 4 to compute optimal plans from
the MDP models learned from data, and accordingly assess the value of these models.

Then, in Section 2.2, the chapter elaborates upon a method known as Bayesian Optimiza-
tion (BO), which is used to automate the process of optimizing the parameters of an unknown
objective while minimizing the number of function evaluations. This method is particularly
suited for the optimization task dealt with in the framework proposed in Chapter 4, where the
parameters of model learning algorithms are adjusted so to yield maximum performance in
a system’s execution. That is, in our framework we assess the value of different MDP models
by performing expensive simulations, which is why we would like to minimize the number
of these simulations. Therefore, in this section we describe how the BO framework achieves
this and present some of its applications to related SDM problems.

2.1. Decision-Theoretic Planning

Automated Sequential Decision Making (SDM) comprises the central problem of planning
under uncertainty. Decision-Theoretic Planning (DTP) is concerned with the design of plans
or policies for settings in which uncertainty exists about the effects of actions, where the
decision maker or agent has incomplete information about the environment and its initial
conditions, and where trade-offs need to be made between potentially conflicting objectives
to determine an optimal course of action. This section gives an introduction to the type of
problems faced in DTP and explains how specialized probabilistic models can be used to solve
these problems efficiently. First of all, in Section 2.1.1 the goal of DTP and how the problems
that are considered are generally approached are discussed. Subsequently, Section 2.1.2
gives an overview of the probabilistic models that are used to make the structure of problems
in DTP explicit. Then, Section 2.1.3 discusses the algorithms that enable us to learn these
models from a dataset describing the dynamics of the system under consideration. Finally,
in Section 2.1.4 some of the most common algorithmic planning techniques are discussed,
which either learn a plan directly or through interaction.

7
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2.1.1. General Problem Formulation

The class of problems that are considered in Decision-Theoretic Planning are those that
require optimal stochastic control through the actions of decision maker(s), referred to as
agent(s), in systems whose dynamics can be modeled as stochastic processes [8]. The agent(s)
in these systems sequentially need to choose from a set of actions that influence the system’s
behavior, consequently making the system switch from one state to another. In these set-
tings the system’s current state and the agent’s choice of action determines the probability
distribution over the states the system might reach next. In addition, the agent(s) might be
uncertain about the system’s current state, implying the need to infer from observations and
making decisions based on probabilistic estimates of the system’s state.

Typically the problems under consideration involve certain objectives to be achieved (e.g.,
tasks to be fulfilled) or properties to be satisfied (e.g., avoiding certain system states). There-
fore, the agent should decide on an optimal plan or policy which makes it most likely for the
system to reach its targets, while minimizing the risk of producing undesirable states and
the accompanied costs of the policy. To find such a policy for Sequential Decision Making
problems, a typical approach is to first setup a probabilistic model of the system and then
apply a DTP algorithm on this model. This probabilistic model comprises a system repre-
sentation which defines the state space in terms of a set of multi-valued features, the set of
actions the agent may select together with the associated uncertainty defined by transition
probabilities, and a goal specification or performance metric typically expressed by means of
a reward structure.

Overall DTP aims to devise planning algorithms for planning under uncertainty, a problem
that is addressed in numerous different fields of research such as Al planning and control
theory. In particular difficulties arise when planning techniques are applied to determine
courses of action for real-world settings, such as motion or path planning in robotics which
both involve the possibility of action failures and disturbances caused by exogenous events.

2.1.2. System Representations: Markov Models

As the class of problems considered in DTP tend to present considerable structure, there
exist various proposed solutions for planning under uncertainty that apply model-based ap-
proaches. This type of decision-theoretic planner uses a stochastic model of the environment
in which the agent operates, which compasses the uncertainty that is associated with the
agent’s actions, observations and the exogenous events that might occur. Typically the un-
certainty is modeled by establishing a state space for the system accompanied by a set of
possible transitions between the states that might be induced with a certain probability by
an agent executing actions. The most common types of stochastic models that are used in
DTP are called Markov Models (sometimes also referred to as Markovian Models), which has
been motivated by their success in other fields such as speech recognition [3, 27, 64] and Re-
inforcement Learning (RL) techniques [9, 41]. A Markov Model is a stochastic model in which
the future states only depend on a limited number of prior observations. In fact, mostly
processes or systems are modeled by Markov Models that satisfy the Markov Property, which
means that the state transitions are independent of any previous states or agent actions.

In the remainder of this section the most common types of discrete-state Markov Models
are discussed, starting from the fundamental models known as Markov Chains and their
extension known as Hidden Markov Models (HMMs). These fundamental models however
only describe the evolution of a system and do not allow for stochastic control. Therefore,
this is followed by a discussion of the discrete-state Markov Models known as Markov Decision
Processes (MDPs) and their extension known as Partially Observable MDPs (POMDPs), which
add the possibility of influencing the behavior of the system through sequential decisions.
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Figure 2.1: Graphical representation of Markov Chains of different order.

Markov Chains

The evolution of system or processes can be viewed as so-called time-series, in which a set
of datapoints can be ordered using an underlying physical dimension, typically time [4].
Formally, time-series can be defined as a series x,.;, of datapoints, with x,.;, = x4, X441, --» Xp-
By means of these time-series, probabilistic models can be devised for real-world systems or
processes, by introducing the notion of states as a description of the system at a particular
point in time or stage.

On the basis of the class of Markov Models lies the simplifying assumption that each state
is only dependent on a limited number of previous states. Under this assumption a Markov
Chain (or Markov Process) can be defined as a model of a series g,.; of transitions between
states g; drawn from a state space § = {sy,..,s,}. The initial state q; of a Markov Chain
typically is either fixed or drawn from § using a probability distribution over initial states.
For the states or variables of a Markov Chain, the earlier mentioned assumption implies the
following conditional independence to hold:

p(q¢lq1, - qe-1) = Qel9e-1) - » Ge-1) (2.1)

where L is the so-called order of the Markov Chain.

As depicted in Figure 2.1, Markov Chains of different order can be defined. Figure 2.1a
exemplifies a first-order Markov Chain in which each state only depends on the previous
state, and Figure 2.1b shows a second-order Markov Chain in which each state depends on
the two prior states of the Markov Chain. In the special case where the transition distribution
is independent of the stage of the system, but solely on the prior state(s), one speaks of a
stationary or homogeneous Markov Chain.

Though, mostly first-order Markov Chains, as depicted in Figure 2.1a, which are said to
satisfy the Markov Property, are widely applied for modeling stochastic processes, such as
physical phenomena and economic time-series [2]. In addition, mostly compact, stationary,
discrete-time, finite-space Markov Chains are used, bearing in mind the computational ad-
equacy of the model (i.e., the larger the state space and order, the more computational cost
might be incurred). Some concrete examples of practical applications include assessing the
reliability and/or safety of appliances in engineering [17, 20, 25], modeling water flows [57],
or modeling loan defaults [32] in the financial world (for an overview see [58]).

In these chains the state transition probabilities can be stored in an n X n transition
matrix A = [a;;] with each entry

a;j = p(qe+1 = Silqe = s5) (2.2)

denoting the probability of state s; following state s;. Similarly, the initial state probabilities
can be recorded in an n X 1 initial state vector & = [r;] with each entry

m; = p(q1 = 5;) (2.3)

denoting the probability of state s; being the initial state of the model. Putting these compo-
nents together yields Definition 1 below, which formally defines a (discrete-time) stationary
first-order Markov Chain.

Definition 1. A stationary first-order Markov Chain is a 3-tuple (S,A,m) where § = {s4, ..., s, } is a finite
set of states, A a transition (probability) matrix and  an initial state (probability) vector.
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Figure 2.2: Graphical representation of an HMM with hidden states h; € § and observations o, € Vfort =1:T.

Hidden Markov Models

The Markov Chain model discussed in Section 2.1.2 requires the modeled system or stochas-
tic process to be fully observable, meaning that each of its states correspond directly to an
observation. However, it is not unusual to encounter real-world systems in which the states
are assumed to be unobservable, though are correlated with observable events produced by
the system. These systems can be modeled by a Hidden Markov Model (HMM) in which the
states, typically referred to as hidden or latent variables h;.;, are unknown. Additionally this
model consists of observations, typically referred to as observed or visible variables v,.;, which
are dependent on the hidden variables through an emission p(o.|h;) graphically depicted in
Figure 2.2. From all of this follows Definition 2 below, formally describing a stationary HMM.

Definition 2. A (discrete-state) stationary Hidden Markov Model (HMM) is a 5-tuple (S,V,m, A,B)
consisting of the following parts:

+ a discrete set of n attainable states § = {s, ..., s}, i.e. the underlying state space
+ a set of m possible observations, V = {v,, ..., v, }, i.e. the observation space

* an n X n transition matrix A = [a;;] defining the models’ transition distribution in which a;; =
p(her1 = silhy = s;) is the probability of state s; following state s; (s;,s; € S)

* an m x n emission matrix B = [b;;] defining the models’ emission distribution in which b;; =
p(o; = vi|h, = s;) the probability of observing v; from state s; (v; €V, s; € S)

» an n X 1 initial state array m = [rr;] in which ©; = p(hy = s;) is the probability of having s; as the
initial state (s; € )

In practice HMMs have a wide range of applications. One example is that of object track-
ing in which inference algorithms for HMMs are used to estimate the (unknown) position
of objects by a sequence of observations [12]. Another well-known application example of
HMMs is that in automatic speech recognition [64].

Markov Decision Processes

Although Markov Chains and HMMs can be used to model the evolution of stochastic pro-
cesses or systems, they do not allow for stochastic control through the actions of a decision
maker or agent which alter the state of the system. The systems of interest in DTP however,
involve agents that are assigned the task of influencing the behavior of the stochastic system
by making sequential decisions to achieve certain goals.

Markov Decision Processes (MDPs) extend on (stationary) Markov Chains by adding a
finite set of actions A available to the agent at each stage or decision epoch. Upon the agent
choosing to perform an action a € A, a state transition occurs in response to the action.
However, due to the uncertainty in the system, the actual transition that occurs might differ
from the transition intended by the chosen action. This uncertainty is captured by defining a
probabilistic transition function § : § XA X § + [0, 1] which maps the combination of a current
state and action to a probability of ending up in a certain next state.
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Figure 2.3: Schematic representation of an MDP agent which repeatedly selects an action a € A based on its current state
s¢ € §, after which it ends up in a state s;,, € § and receives a reward R(s¢, a, S¢41) accordingly.

As the agent of an MDP aims to fulfill certain goals through the selection of actions, it
requires some means of assessing which action is the best to pick. The value measure used
in MDPs is defined by a mapping R : § X A X § — R from states and actions to real-valued
rewards (in case of added value) and/or costs (in case of lost value). Due to the uncertainty
in the modeled system, typically the agent uses the MDP’s transition distribution (defined
by transition function §) to compute expected values, and accordingly selects actions that
maximize this quantity. Putting these components together results in Definition 3 below.

Definition 3. A Markov Decision Process (MDP) is a 5-tuple (S, sy, 4,8, R), where S is a state space,
So € § an initial state, A = {a4, ..., a,,} a finite set of actions to choose from, § : S XA xS = [0,1] a
probabilistic transition functionand R : § X A X § » R a reward function.

In Figure 2.3 a schematic representation is shown of how an agent operates in an envi-
ronment under the MDP framework. That is, in each decision epoch, the agent selects an
action a € A and executes it in the environment causing a state transition from the current
state s € § to some state s’ € § where-after a reward R(s,a,s’) is received accordingly.

In the context of DTP, MDPs are used to find an optimal course of action, often referred to
as a plan or policy t : § » A. For an MDP the optimal policy typically means the policy that
when applied by an agent, maximizes the expected value. However, one can also choose to
express goals in alternative ways which do not require the specification of a reward function.
An example of this can be seen in [6, 45], which replace the reward function of the classic
MDP framework by a (co-safe) Linear Temporal Logic (LTL) formula to be satisfied.

Partially Observable MDPs

An extension of the traditional MDP models, are the Partially Observable MDP (POMDP) mod-
els which account for uncertainty in the observations that are made by agents. That is, while
an MDP is used to model systems that are fully observable, in a POMDP the states are not ob-
servable and can only be inferred from the observations that are perceived. In other words,
we can intuitively view a POMDP as the combination of a HMM and an MDP. As such a
POMDP can be defined as in Definition 4 below.

Definition 4. A Partially Observable MDP (POMDRP) is a 7-tuple (S, sy, 4, 8,0, Q, R) where S is a state
space, sy € § an initial state, A = {a4, ..., a,,,} a finite set of actions to choose from, § : S XA xS ~ [0,1]
a probabilistic transition function, O an observation space, Q : § X A —» O an emission or observation
probability functionand R : § X A x § = R a reward function.

As the true state of a POMDP is unknown, the transition function § is defined over beliefs
of states, and accordingly a policy m maps beliefs to actions. The observation function Q
defines the probability of observations from state-action pairs in the POMDP and is used to
iteratively update the belief state of an agent.
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2.1.3. Learning Markov Models
There exist efficient methods for fitting a discrete stationary first-order Markov Chain pro-
vided a dataset describing the evolution of a stochastic process either by applying likelihood
maximization (e.g., see [2, 4, 46, 75]) or Bayesian inference (e.g., see [4, 46, 51]). These
methods estimate the transition distribution to fit a Markov Chain on a collected sequence
of time-ordered states. One may obtain such a sequence by applying clustering algorithms
such as k-means on the dataset and accordingly make predictions for each of the entries.
The first-mentioned approach of likelihood maximization, works by estimating the tran-
sition probabilities by counting the observed transitions in the state sequence. That is, if we
let n;; denote the number of observed transitions from state s; to state s;, then the maximum-
likelihood estimation of the corresponding transition probability is

Tll’]‘

X nij

p(qt+1 = silq: = s5) = (2.4)

The second-mentioned approach of Bayesian inference is more suitable for many real-life
problems for which state sequences are incomplete, i.e., states are recorded only for certain
stages, meaning there might be gaps in-between. This type of approach aims to make an
estimation of the transition probabilities by adopting a prior for the transition matrix 4, a
convenient choice being a factorized prior from the product of n independent Dirichlet distri-
butions, one for each row 4, such that:

p(A) = 1_[ Dir(A;|a;) (2.5)
j

parametrized by a vector a with a; > 0 [4, 58].

Due to the close nature of MDPs these approaches can be applied almost directly to learn
transition probabilities of discrete-state MDPs, although more data will be required due to
the addition of actions. To learn partially observable models, on the other hand, one requires
algorithms that work with a set of observations and estimate emission probabilities. For
this thesis, however, we limit ourselves to learning fully observable MDPs, but review these
algorithms for learning HMMs and POMDPs in Section 3.1.

2.1.4. Learning Optimal Policies
In SDM problems, the aim, typically, is to compute a policy that maximizes the total expected
value. In algorithmic planning techniques, a probabilistic model of the environment, which
includes estimates of the transition probabilities and rewards, is used to obtain an optimal
policy by exploring its state space towards a goal. On the other hand, in Reinforcement
Learning (RL) the optimal policy is learned while interacting with the environment and is
applied when one does not know the transition probabilities and/or rewards for the system
in advance. Both techniques have in common that they iteratively update estimations of a
value function to derive a policy. The main difference though is that in planning this progress
is carried out based on simulated experience from a model, while in learning techniques this
is based on real experience from executing agents in an environment [74]. All in all, planning
and RL are closely related and various ideas can be exchanged between the two.

In this section, various solutions that utilize the MDP framework for obtaining optimal
policies are discussed. First off, the most common DTP algorithms for (discrete) MDPs are
shown and explained. This is followed by a discussion of the most used algorithms in RL.

Model-Based Planning Techniques

In DTP the algorithms compute their plans or policies based on a probabilistic model of the
environment. Most common is to prepare an MDP and apply exact dynamic programming
solutions to compute an optimal policy for that model. The routine that is typically followed
in MDP planning is depicted in Figure 2.4. The state space, transition function and action
space are usually handcrafted, based on expertise or trial and error. The goal that should
be fulfilled is translated into a reward model, mapping positive highly-valued rewards to
desirable states and low rewards/costs to states that are not desirable or need to be avoided.
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Figure 2.4: Block diagram of the generic routine employed in model-based MDP planning techniques.

Algorithm 1 Value iteration

Require: MDP M = (S, sy, 4, d, R), Discount factor y € [0,1), Threshold ¢ > 0
Ensure: Optimal policy t* : § » A
1: Initialize V; : § » R arbitrarily fort = 0
2.t<0
3: repeat
4 t—t+1
5: foralls € S do
6
7
8
9

Vi(s) « maxges [Zgres 5(5,0,5) - [R(s,0,5") +¥ - Vg (5]
end for
cuntilvs € 8 |Vi(s) —Vii1(s)| < ¢
: foralls € § do
10:  m(s) —argmax,, [Loes 8(s,a,8") - [R(s,a,s") +v - Vi (s)]]
11: end for
12: return r*

These parts together form the MDP which is fed to a planning algorithm, often referred to as
an MDP solver. From this solver, a policy 7 is obtained, which is usually evaluated through
simulations or automated model checking tools to check if the policy will satisfy the set of
goals. After evaluating the current policy, one may choose to stick with the current policy or
adjust the parameter settings of the solver or MDP model and obtain a new policy.

Value Iteration The most well-known algorithm for obtaining optimal policies from MDPs is
Value Iteration (VI), which is a synchronous dynamic programming solution which iteratively
updates a value function V : § » R until convergence, given an MDP model M = (S, sy, 4, 6, R).
The updates are performed through so-called Bellman backups based on the following Bell-
man equation:

V*(s) = max Z P(s'ls,a) - [R(s,a,s") +y -V (s")] VSsES (2.6)
a
s'es
where y € [0,1) is a discount factor which expresses the magnitude of preference of short-

term solutions over long-term solutions. That is, the smaller the factor y, the more important
it is that goals are reached in as few steps as possible.
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Algorithm 2 Policy iteration

Require: MDP M = (S, sy, 4,8, R), Discount factor y € [0,1)
Ensure: Optimal policyn™: S = A

1: Initialize m,
2:.t<0

3. repeat

4 Solve Vs € §: U, (5) « Tyres 6(5,me(5),5") - [R5, (), 8) +7 - Vo (1)
5 te—t+1

6: foralls € § do
7

8

9
10

m,(s) « argmax,, [ZSIES 6(s,a,s") - [R(s, as)+y: V,,t_l(s’)”
end for
cuntilm, =m,_
: return m,

In Algorithm 1, it is shown how the VI algorithm can be used to obtain optimal policies
for an MDP (based on the formulation in [61]). Intuitively, VI can be viewed as estimating
the values starting from the goal-rewards and working backwards. The initial values of the
value function, stored in I}, can be arbitrarily initialized, but to achieve faster convergence
it is customary to do the initialization based on a rough estimation of V*. In every iteration,
the estimates of the value function are updated by the backup operations based on the value
in previous operations. After a finite number of iterations the algorithm will converge (as is
shown in [63]) and after that point V(s) gives us the maximum to be expected sum of rewards
starting from a state s € §. As can be seen in Algorithm 1, convergence is reached as soon
as the change in value gets below a given threshold ¢ > 0. After such convergence has been
reached, the policy can be defined by selecting the action a € A for each state s € § that
is most likely to maximize the collected rewards based on the value of V;(s). All in all, the
algorithm works well when the state space is relatively small, but for large state spaces more
storage is required and it may take longer to reach convergence.

Note that an alternative formulation of the VI algorithm can be given that makes use of a
Q-table instead of a value function V [71]. In this formulation the entries Q(s, a) are updated
in each iteration for each state-action pair. The optimal policy can then be obtained directly
by selecting the action with the maximum value in the Q-table for each action, though it
requires more storage compared to a value function.

Asynchronous Value Iteration An adaptation of the traditional VI algorithm is asynchronous
VI, which is an asynchronous dynamic programming solution. Almost all of the steps in
asynchronous VI are the same except that rather than updating the value function V: § » R
for each state in each iteration, the function is updated only for a single state in each iteration
in no particular order (or even randomized). In the case of a fixed ordering, this algorithm is
usually referred to as Gauss-Seidel VI. Compared to the traditional VI algorithm, the asyn-
chronous adaptation requires less space and converges faster, especially when updates occur
more often for most relevant states and the update ordering is adjusted carefully.

Real-Time Dynamic Programming (RTDP) [5] is a family of asynchronous VI algorithms
which aim to find policies by performing updates and concurrently controlling the MDP (based
on the policy corresponding to the latest estimate of the value function). In contrast to tra-
ditional VI, where solving MDPs with large state spaces is infeasible, RTDP algorithms often
converge without examining all states.

Policy Iteration Another algorithm that is widely applied for obtaining policies from MDPs
is known as Policy Iteration (PI). As shown in Algorithm 2 PI starts off with an initial policy
vector m, which may be arbitrarily initialized, but preferably by an approximation of an op-
timal policy for the input MDP M = (§,5s,4,8,R) to achieve faster convergence. Then, in
each iteration, first the value for each state is computed based on the latest policy m;, which
comes down to solving a set of linear equations. Solving this set of linear equations can be
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Algorithm 3 Backwards induction

Require: MDP M = (S, sy,4, 5, R), horizon h € N
Ensure: Optimal policy t* : § » A
t<h
Vs€S : Vj(s) <0
repeat
te—t—1
forall s € S do
Vi(s) « maxges [Zgrcs 8(5,0,5") - [R(s,,5") + Vi ()]
end for
until t =1
forall s € § do
m'(s) « argmax,, [Zycs 8Cs,a,8") - [R(s,a,s") + Vi(sN]]
: end for
: return T*

oXNaRON 2

o
Moo

done by linear programming in (at most) 0(|S|®) time [47]. An alternative approach, known
as modified policy iteration, is to solve these by applying a simplified form of value iteration
in which the actions to select are already known for each state from the policy (i.e., m;(s) for
each s € §). This step which is known as policy evaluation is followed by a policy improve-
ment step in which the policy is greedily updated based on the latest value function ;. This
process is repeated until no improvements are possible and the policy stops changing.
Solving the set of linear equations in each iteration is a time-costly operation, especially
for large state spaces, in comparison to the 0(|S|? - |A|) time required for an iteration of VI.
The main advantage of PI can however be that for a finite space the algorithm converges in
a finite number of steps when there is no more strict improvement, because only a finite
number of stationary policies exist, while in VI the convergence depends on the threshold.

Backwards Induction In the special case of a finite horizon MDP it is possible to obtain an
optimal policy by applying backwards induction [15] shown in Algorithm 3. As the name
suggests the algorithm works backwards, starting from the last step h and recursively using
the value function of step t + 1 to compute that of step t. Even though the algorithm works
well when dealing with finite horizons, typically real world scenarios more often deal with
infinite horizons for planning under uncertainty.

Linear Programming A less frequently applied approach is that of formulating the MDP as a
Linear Program (LP) and solving it using so-called simplex methods. Following this approach,
an LP formulation for an MDP M = (S, sy, 4,6, R), as explained in [59], is:

min " 1o(s) - V(s)
s'es
s.t. V(s) = z 5(s,a,s") [R(s,a,s") +7 - V(s)] Vs €S, Va €A 2.7)
s'es
where puq : § = [0,1] is a probability distribution over the states.
From the solution V* of this LP formulation, a policy #* can be obtained by letting

m*(s) = arg max z 6(s,a,s")[R(s,a,s") +vy-V(s)]
aea 4=

for each state s € §. This primal formulation optimizes a value function V, but alternatively
the policy can be optimized directly by considering the dual formulation (see [47]). Comparing
LP algorithms to the specialized VI and PI algorithms, the latter typically hold more promise
for efficient solutions than general-purpose LP algorithms, although the LP scale better to
larger MDP planning problems.
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Algorithm 4 SARSA
Require: State space §, Action space A4, Learning rate a € (0, 1), Discount factor y € [0, 1)
Ensure: Optimal policy t* : § » A

1: Initialize Q : § X A » R arbitrarily

2: repeat
3 Pick s € § arbitrarily
4 a < 7[s] > m is the policy derived from Q
5 repeat
6: Perform a and observe r, s’
7: a' «m[s']
8: Q(s,a) « Q(s,a) + a[r +y0Q(s',a) — Q(s, a)]
9: Update = based on Q
10: s« s
11 a<a
12: until s is terminal

13: until Q converged
14: return *

Reinforcement Learning Techniques

Reinforcement Learning (RL) techniques work on real experience based on which they up-
date the behavior of the agent which is defined by an action-selection policy. To do this they
require direct interaction with the environment to obtain experience and update value func-
tion estimations accordingly during execution. Although most planning algorithms cannot
be used for learning problems, learning algorithms can be used for planning problems as
they can make use of simulated experience. There are several techniques that exist, of which
the most common ones are discussed in the remainder of this section.

Q-Learning Q-Learning [74, 78] is a model-free reinforcement learning technique which dis-
covers an action-selection policy by learning estimates of the optimal Q-values of an MDP.
The technique starts off with a Q-table Q, which is arbitrarily initialized, containing the Q-
values Q(s,a) for each state-action pair (s,a). At each point in time the agent for which the
Q-Learning technique is applied is assumed to be in a certain state s and chooses a next
action a to execute based on the current Q-value estimates. After executing an action the
agent ends up in a new state s’ and observes a certain reward r. The Q-table is then updated
accordingly based on the following update rule:

Q(s,a) =Q(s,a) + a[r +y max Q(s’,a") —Q(s, a)]

where a € (0,1) is the learning rate and y € [0,1) the discount factor. The learning rate
expresses the rate at which newly acquired information overrides the old information in the
Q-table. Over time the estimates in the Q-table will improve such that the revenue is maxi-
mized. A near-optimal policy can then be constructed by selecting the action with the highest
Q-value from the Q-table for each state.

SARSA SARSA [74] is another model-free RL algorithm which is similar to Q-Learning.
While Q-Learning is an off-policy method which learns the value of the optimal policy, SARSA
is an on-policy method which learns the value of the policy it currently follows in order to
iteratively improve this policy. In each iteration, it simulates the action yielded by its policy
and observes the reward and next state. Accordingly the Q-table is updated based on these
observations as shown in Algorithm 4, which repeats itself with the observed s’ and action a’
imposed by the policy r that is derived from Q.
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2.2. Bayesian Optimization

This section elaborates upon a method known as Bayesian Optimization (BO), which is used
to automate the process of optimizing the parameters of an unknown objective. First Sec-
tion 2.2.1 introduces the optimization tasks this method is aimed at and how these are rel-
evant to SDM problems. Subsequently, in Section 2.2.2 the optimization method is formally
described. In Section 2.2.3 the configurable parts of the method are discussed, considering
both advantages and disadvantages of available options. Finally, in Section 2.2.4 a num-
ber of applications of Bayesian Optimization in the field of planning under uncertainty are
discussed, serving as an overview of the method’s successes in this field.

2.2.1. Problem Formulation

One of the problems that is faced in the field of optimization is that of maximizing a nonlinear,
real valued objective function f : X » R on a domain X ¢ R™ (m = 1). Formally, to find a
global maximizer x* € X for which:

x* = argmax f (x) (2.8)
XEX

In particular the problem turns out to be a common bottleneck when dealing with an objective
function that is unknown and expensive to evaluate in terms of the required computational
resources. As an example, one could think of finding the hyperparameters for a neural
network which maximize the performance, where each single evaluation of a set of parameters
requires one to train the neural network and assess the performance on a huge dataset.

Although this problem of optimizing expensive functions can be found in many different
contexts, it is foremost a problem in SDM. That is, typically one can only hope to estimate ob-
jective functions of SDM problems in Al planning and reinforcement learning through expen-
sive simulations [10]. A particularly relevant optimization problem pops up when considering
the problem of learning to control systems that involve uncertainty, in which an important
issue is that of faithfully modeling the uncertainty in the outcomes of actions [29]. This par-
ticular problem has recently received quite some attention, posing it as a problem of learning
and optimizing the parameters of a probabilistic model of the system, such as the model’s
transition probabilities, reward function or optimal policy [62].

A naive approach for optimizing the objective would be to evaluate a set of (random) com-
binations of parameters and see which parameter settings seem to give the best results. This
approach however, usually requires expert knowledge and might demand a large number of
function evaluations that do not necessarily provide new information about the parameter
space. The method known as Bayesian Optimization, described in Section 2.2.2, improves on
these naive approaches by making predictions about which regions of the parameter space
are expected to give the best results and hence limiting the number of function evaluations.

2.2.2. Algorithm Description

Bayesian Optimization (BO) is a powerful method for finding the maximum of a typically
unknown, expensive, nonlinear objective function, while aiming to minimize the number of
objective function evaluations and avoiding local maxima [10]. This method first requires
one to set a prior p(f) over the objective function f, representing the belief about the space of
plausible objective functions. Then, the algorithm starts off by gathering a small set of initial
sample-observation pairs of samples x € X and corresponding objective values y = f(x) + ¢.
These pairs are then stored in a set Dy, = {(x;,y;) | i = 1...t} (i.e., the evidence set) where
we let x; denote the ith sample and y; = f(x;) + ¢; the corresponding ith observation with
noise ¢;. The algorithm then derives a posterior distribution p(f|D;..) which, according to
Bayes’ Theorem, is said to be proportional to the likelihood p(D;..|f) and the prior p(f) for
the first t gathered observations, s.t.:

P(f|D1:0) < p(Dr:clf) - p(f) (2.9)

This posterior can be viewed as an estimation of the objective function f, sometimes referred
to as a surrogate function.



18 2. Background

N=3 N=4

objective function f
observation

95% confidence interval

—_

==

|

posterior mean
acquisition function a

05

Figure 2.5: An example of using Bayesian Optimization on a toy example problem. The plots show a GP approximation of
objective function f over four iterations based on N observations. The plots also show the corresponding GP-UCB acquisition
function a for these GP approximations, which yield high utility for those areas of the domain X with high prediction uncertainty.

Algorithm 5 Bayesian Optimization (General Formulation)
Require: Domain X c R™(m = 1), prior p(f) and acquisition functiona : X » R

1: Dy < {Co, )iy > D is the evidence set with D.,, the n initial sample-observation pairs
2: fortn+1,n+2,..do

3 X < argmax, ., a(x|Dq:p—1) > Acquisition based on posterior p(f|D1.¢)
4 Ve < f(xe) + &

5: D1t < Dy—q U {(xe, ye)} > Augment D with the new evidence
6: Update the posterior p(f|Dq.¢)

7 Break when satisfactory > Stop condition defined by implementation
8. end for

9: return arg max . . ep Vi

To decide on which x € X to sample and gather a new observation f(x) from next, a so-
called acquisition function a : X ~ R is used, which assigns a certain utility to evaluating f
at some particular x € X, given the evidence set D at that time. This acquisition function
should be defined such that it captures a correct balance between exploration (to sample
from areas with high uncertainty) and exploitation (to sample from areas likely to improve
on prior observations). For this reason many different classes of acquisition functions exist,
which are discussed in detail in Section 2.2.3.

The procedure is illustrated by a toy example in Figure 2.5 with the goal of retrieving the
global maximum of the usually unknown objective function f. The prior and acquisition
function in this example are set to some of the most common options (i.e., a zero-mean
Gaussian Process and GP-UCB function). The plots show four subsequent iterations which
each add a new observation of the objective function f and update the posterior/surrogate
function accordingly. The sample for each next iteration is selected at the point with the
highest utility in the acquisition function a, in the plots denoted by a star symbol.

The general formulation of the BO framework is presented in Algorithm 5. An implementa-
tion of this framework still requires one to define three components, which are the domain X
of f, the prior over f, and last of all the acquisition function a. The next section discusses
the various options that exist for the latter two components in detail.
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2.2.3. Choice of Prior and Acquisition Function

In order to apply Bayesian Optimization there are two major choices that need to be made,
which are those of the prior distribution over the objective and the acquisition function. In
this section the different options and corresponding considerations that need to be made for
these two components are elaborated upon.

Prior Distributions

In Bayesian Optimization the de facto standard for the prior distribution is a Gaussian Pro-
cess (GP), which is typically well-suited as it accounts for the uncertainty associated with
each prediction. Another important aspect that makes a GP a convenient choice for the prior
distribution is that it induces a posterior distribution over the objective function that is an-
alytically tractable. Intuitively a GP can be viewed as a prior which assumes that similar
inputs result in similar outputs. For an objective function f, the GP defines a Gaussian
probability distribution over f(x) for each x, so that a GP can be expressed as a probability
distribution over functions:

P(f()|x) = N (u(x), 02 (x)) (2.10)

where V' denotes a normal distribution, while y and o denote mean and standard deviation
respectively. By this definition, a GP can be viewed as a function that returns the mean and
variance of a normal distribution over the possible values of f at x. A GP as prior over an
objective function f is typically denoted as:

f~GP(m(),K(, ) (2.11)

so that the GP is completely specified by a mean function m and a kernel function K defining
the covariance. The mean function y is typically initialized by a constant mean, usually zero,
due to the assumption that all points in the parameter space are equally likely and because
the conditional mean can still be flexibly specified by the kernel function K [42].

The choice of the kernel or covariance function of the GP determines the smoothness of
the estimations on the performance and confidence intervals of unexplored samples in the
parameter space. According to the various literature in the field of Bayesian Optimization
the most common kernels are said to be the squared exponential (also known as radial basis
function (RBF) or Gaussian) kernel and Matérn kernel. However, the squared exponential
kernel turns out unrealistically smooth for practical applications [72] and therefore would
require properly selecting its hyperparameters. The Matérn kernel serves as a more flexible
class, which is parameterized by the hyperparameter v specifying the expected smoothness
of the approximated function, i.e., which can be used to tweak the distance at which there
are almost no effects from previous samples and the rate at which these effects decrease. As
concluded in [48, 65, 68] the most interesting and most commonly used for machine learning
applications are the Matérn kernels with v = 3/2 and v = 5/2, as can be seen being applied
in various works [42, 72, 76].

Acquisition Functions

The next step is defining an acquisition function which is used in the optimization process
to efficiently sample observations towards the global optimum. Typically, high utility in the
acquisition functions corresponds to potentially high objective function values. However, to
avoid getting stuck in local optima, acquisition functions are defined such that a trade-off is
made between exploration and exploitation. In each iteration of the BO framework, a new
observation is sampled at the point x € X where the utility is the highest. Traditionally,
the Maximum Probability of Improvement (MPI), Maximum Expected Improvement (MEI) and
GP Upper Confidence Bound (GP-UCB) functions are used for Bayesian Optimization [68].
In the discussion of these acquisition functions, let us define f(x*) as the ‘best’ observa-
tion, corresponding to the sample x* = arg max, .. ¥ when considering the first ¢t samples.
In the following overview each of these acquisition functions are defined accompanied by a
discussion of their main advantages and disadvantages seen in practice.
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Maximum Probability of Improvement (MPI) This acquisition function selects the next sample
to maximize the probability of improvement, which is the sample x € X so that:

argfglCaXP(f(x) zf(x)+9)

where ¢ > 0 is a trade-off parameter. The higher this trade-off parameter ¢, the higher
the preference of exploration over exploitation. Note that this means that setting § =0
implies that the optimization purely depends on exploitation, acquiring points most
likely to yield improvement. One could also choose to update ¢ dynamically over time.

Advantages Intuitive acquisition function which can guarantee a minimum improve-
ment of ¢ in each iteration. Considers both mean, variance and current best f(x*)
of the surrogate function.

Disadvantages Difficult to tune trade-off parameter and extremely sensitive to the choice
of this parameter: a too small { may result in an exhaustive search around a local
optimum, while a too large ¢ results in a slow search (close to random sampling).

Maximum Expected Improvement (MEI) This acquisition function defines its utility based on
the magnitude of the improvement to be expected. The function ignores the points that
would lead to a decrease compared to the current best f(x*). The MEI function selects
the point x € X such that:

arg max E[max(0, uf(x) — fx*t) =8)]

x€X
where s (x) is the posterior mean at x for the objective f and ¢ > 0 a trade-off parameter.

Advantages Common steps exist for properly setting &, with £ = 0.01 appearing to work
well in most cases according to [48]. Allows for non-myopic extensions [10].

Disadvantages Points that are likely to bring no improvement are neglected, although
the chance of them resulting in actual improvement is usually small.

GP Upper Confidence Bound (GP-UCB) This acquisition function defines its utility by looking
at the curve that is f; standard deviations above the posterior mean u; and samples
x € X such that:

argmax us(x) + Bror(x)
x€X

where f5; is an O(logt) exploration coefficient scheduled over time [18]. This acquisition
function relies on the idea of being optimistic in the face of uncertainty.

Advantages Strong bounds exist on the cumulative regret and also guidelines exist to
set B; to achieve optimal regret.

Disadvantages Hyperparameter f; needs to be set properly.

In some domains, the time that is needed to evaluate the objective function depends on
the region from which a point x € X is sampled. For example, when again the optimization
of the hyperparameters of neural networks is considered, one may observe that for some
settings of parameters it takes a lot longer to train a model. To account for this aspect, one
could apply cost-sensitive optimization by using the Maximum Expected Improvement Per
Second (MEIPS) function.

Maximum Expected Improvement Per Second (MEIPS) This acquisition function, proposed in
[72], makes use of another GP-model over the evaluation time of the objective function
over the same domain X. The MEIPS selects the next sample x € X such that:

E[max(0, ur(x) — f(x*) — §)]
arg max
xX€X Us (x)

where ps(x) is the posterior mean at x for the timing GP-model, while uf and ¢ are defined
as in the MEI function.



2.2. Bayesian Optimization 21

Advantages Prefers samples that are expected to be evaluated with lower cost.

Disadvantages Requires another timing GP-model accompanied by increased costs.

Further expanding on this, various portfolio allocation techniques have been suggested
that address the issue that there is no single acquisition function that outperforms the oth-
ers for all problem instances. One example is the GP-Hedge algorithm [39, 68] which holds
a portfolio of acquisition functions and employs past performance of each of these functions
to predict their future acquisition performance. However, this algorithm fails to account
for valuable information gained through exploration, which has led to alternative portfolio
algorithms, such as the Entropy Search Portfolio [68, 77] which considers the gain of infor-
mation of each acquisition function towards the optimum.

Finally, one can choose to blend the acquisition functions of a set of GPs with varying
hyperparameter settings by computing the integrated acquisition function [72]:

K

. 1

aGID) = [ a(xID, gy )P Oy D)0y ~ ¢ ' 21D, 055) (2.12)
k=1

where a(x) is the utility at x € X in the MEI function for the GP with hyperparameters 6,
given the evidence set D. Computing d(x) is commonly realized by a Monte Carlo integration
over the acquisition functions of the GPs. This integrated function is typically used to account
for uncertainty in the hyperparameters of the underlying GP in the BO framework. A benefit
of this Bayesian treatment of these hyperparameters is that the number of choices to be made
is reduced and leads to a more automated optimization solution.

2.2.4. Applications of Bayesian Optimization to SDM Problems

As we consider the optimization of learning probabilistic models for planning under uncer-
tainty in this thesis, it might be valuable to have a look at how Bayesian Optimization is ap-
plied to closely-related tasks for planning. Therefore, in this section a number of applications
that involve or are closely related to DTP are highlighted, to get an idea of the applicability of
Bayesian Optimization and identify the motivations for using this method.

In [49], Bayesian Optimization is applied for a mobile robot that adaptively plans a path
while maximizing the information it obtains from observations about its own location and
the location of navigation landmarks in the environment. The objective/cost function C is
parametrized by a policy vector = and approximations for selected samples (of robot pose and
landmark locations) are made by different functions over the belief states of the POMDP (i.e.,
average mean square error (AMSE), maximum a posteriori square error (MAPSE) and a largest
marginal heuristic). Typically, estimating the belief state is an expensive problem, typically
carried out through SLAM algorithms in robotics. Therefore, to minimize computational cost,
a Bayesian Optimization algorithm is applied with the choice of a GP prior over ¢ and where
new samples are acquired using an MEI acquisition function. Applying Bayesian Optimiza-
tion allows for a more cost-efficient online path planning method for optimal exploration of
an environment compared to other approaches.

Another consideration for exploration of environments with stochastic dynamics is that
of safety. That is, the assumption of an MDP being ergodic, which is when any state is
reachable from another, is impractical as systems tend to get stuck or break due to unsafe
exploration. Therefore, in [76] a method of safe exploration is proposed that, based on an
initial set of states that are known a priori to be safe, iteratively identifies which nearby states
are safe to visit. This is done by making regularity assumptions on the safety feature, and
by such modeling this safety feature by a GP prior with a Matérn 5/2 kernel. The goal of
their SAFEMDP algorithm is to visit those states that expand the set of safe states (of which is
known that a safe return route exists which is inferred from the MDP’s transition dynamics)
as quickly as possible, so to minimize the resources required to explore the MDP. Therefore,
the acquisition is performed such that those states are selected that are known to be safe
and comprise the highest uncertainty, so that the acquired knowledge with every sample is
maximized.
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Finally, multiple papers have shown that the BO framework can be employed to speed
up online policy search for RL tasks. The proposed algorithms in these papers, have the BO
framework select and evaluate a policy in each iteration and keep track of estimates of the
expected value of all policies. One example is the PILCO framework [21], a model-based on-
line policy search method, which models the dynamics of a system by a non-parametric GP
so that policies are retrieved indirectly. Another example is seen in [81] in which Bayesian
Optimization is used to optimize policies for RL by exploiting generated trajectory data. To
take advantage of the obtained trajectory information in the Bayesian Optimization this infor-
mation is intertwined with the kernel of the GP prior, in such way that the induced behavior
(i.e., defined by sequences of selected actions) of pairs of policies are taken into account in
a behavior-based kernel (BBK). Accordingly, given an evidence set Dy., = {(m;,n(m;), &)} an
(estimate) of the expected return 7n(m;) of policy n; is computed using a set of trajectories ¢;.
This paper also proposes a model-based Bayesian Optimization method which learns tran-
sition probabilities and reward functions based on collected trajectory data to approximate
the expected return through simulations on a probabilistic model. To account for inaccu-
racies of learned models, this model-based algorithm introduces a  term in the kernel that
ensures that the model information is neglected when it turns out to be inaccurate based on
the occurrence of systematic errors.



Related Work

A common approach in DTP, as was discussed in Chapter 1, is to formulate plans by making
use of (compact) probabilistic models of the systems under consideration. In particular we
focus our attention to devising MDP models, which need to accurately define what constitutes
the state of the system, reflect uncertainty through transition probabilities, and specify goals
through rewards. The problem we face is that handcrafting accurate, well-generalizing mod-
els is a difficult and time-costly process for a human designer. To overcome this problem the
goal is to automatize the model development process by applying learning algorithms on data
that describes the dynamics of the system under consideration. Therefore, this chapter aims
to provide some insight into the existing approaches for automating the development of prob-
abilistic models for planning under uncertainty and the existing alternatives for automated
control of systems involving uncertainty.

First Section 3.1 gives an overview of the existing algorithms for learning models from
execution traces of the system. Then, in Section 3.2 a number of approaches are examined,
which combine offline methods for learning (initial) models with RL algorithms which update
the model parameters online. Finally, Section 3.3 looks into approaches that extend the
traditional MDP framework by accounting for uncertainty in the transition probabilities, with
the aim to overcome the infeasibility of obtaining completely accurate probabilistic models.

3.1. Learning Probabilistic Models from Execution Traces

To facilitate the learning of system models, the first step is to obtain a dataset which de-
scribes the dynamics of the system under consideration. A common approach of obtaining
this data is through the recording of observations made in an exploration phase in which
the system aims to gather information about the effect of performing various actions in dif-
ferent situations. This exploration could be done selecting actions at random, executing a
specific policy, or following another method of choosing actions. The next step is to learn
a probabilistic model which most accurately explains the execution traces obtained in this
exploration phase. In this section a number of the algorithms for this purpose are consid-
ered, where Section 3.1.1 evaluates the well-known Baum-Welch algorithm that iteratively
updates transition and emission probabilities starting from a model with initial estimates
of these probabilities, while Section 3.1.2 addresses a class of algorithms based on merging
(time-)states for developing MDPs.

3.1.1. The Baum-Welch Algorithm

The most widely applied approaches for learning probabilistic models are based on maximiz-
ing the likelihood of observing the execution traces of the dataset. When the goal is to learn
the parameters of a Markov Chain, the transition probabilities can be estimated as we have
seen in Section 2.1.2, by the ratio of the times a particular transition is observed and the
total number of transitions observed from the corresponding starting state. However, while
Markov Chains are similar to MDPs in that they describe the evolution of a stochastic pro-
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cess over time, they do not involve decisions on actions to perform. Due to the close nature
of these probabilistic models the likelihood maximization can be applied almost directly to
learn the transition probabilities of MDPs, although requires more data due to the addition
of actions.

In practice, it is more common to only have a sequence of observations at one’s disposal
which do not directly map to the states of the system. The approach of likelihood maxi-
mization generalizes to learning partially observable Markov Models through the well-known
Baum-Welch algorithm [79], which is a special instance of the Expectation Maximization (EM)
algorithm generally used for learning the parameters of HMMs. Given a discrete or continu-
ous observation space V, a discrete state space §, and a set O of i.i.d. observation sequences,
the algorithm learns a model M* = arg max,, p(O|M). Informally, this is done by first providing
manual estimates of the model parameters and then iteratively computing the expectations of
how frequently the transitions and emissions are used (i.e., the E-step) and updating these
parameters based on those computed expectations (i.e., the M-step). For a more detailed
explanation of the Baum-Welch algorithm one may refer to the tutorial by Bilmes in [7].

Although the approach turns out to work quite well for learning HMMs for recognition
purposes, some problems emerge when applying the algorithm to learn POMDPs for planning
under uncertainty. That is, the algorithm is well known to be sensitive to its initialization
(particularly in the case of continuous observations) and depending on the choice of the initial
model parameters it may result in local maxima. However, to some extent this problem can be
overcome by segmenting the observation sequences using k-Means clustering to restrict the
model to a discrete HMM or POMDP (e.g., see [13]). This discretization however, depending on
the choice of the hyperparameter(s) of the clustering algorithm, might neglect some valuable
distinctions between observations or states of the system.

A particularly relevant work is that of Shatkay and Kaelbling [69] in which the algorithm is
applied to learn POMDP models in the context of mobile robot navigation. In their work they
make the assumption of a finite set of states whose size is known, and associate each state
with a point in some metric space derived from the odometric ability of the robot. Based on a
set of gathered odometric readings an initial topological model is learned by applying k-Means
clustering, taking the clusters as the states in which the observations were made, and based
on state and observation counts make initial estimates of the model parameters. Then, an
adapted version of Baum-Welch is applied which takes into account odometric information
to iteratively update the model. The obtained results are compared to those that emerge
from the traditional Baum-Welch algorithm, which is used to demonstrate that exploiting
odometric information can reduce the number of iterations and improve the final model.

Similarly, an adaptation of the Baum-Welch algorithm is applied in [44] to learn POMDPs
which exploits prior knowledge of map symmetry and does not adjust probabilities that are
assumed to be approximately correct since the sensor and actuator models are expected
to be similar in different environments. In this way the amount of required training data
is restricted and updating the model happens more selectively and efficiently, although it
demands the need for handcrafting an initial topological model and defining constraints on
the model structure.

As opposed to the related work described in this section, in our approach we aim to avoid
any assumptions or constraints on the MDP model parameters. For instance, in the experi-
ments presented in Chapter 5, we obtain the state space in exactly the same way as in [69],
although avoid the assumption that the size is known. Instead, we choose to learn the most
appropriate choice for this hyperparameter with which the best performance in the execution
of the system’s tasks can be obtained.

3.1.2. State Merging Algorithms

A completely different class of algorithms is based on the merging of states to acquire proba-
bilistic models. The type of algorithms that are considered here are based on a method called
Best-First Model Merging which was first proposed by Stolcke and Omohundro in [73] to learn
HMMs for the purpose of speech recognition.
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Algorithm 6 State Merging by Trajectory Clustering

Require: Training set 0 = {0y, ..., 0;}, Clustering algorithm, hyperparameter(s) 9, actions A
Ensure: MDP M = (S,s0,4,6,R) > So and R are here irrelevant
1: Compute similarities of time-states based on trajectories
2: Cluster most similar time-states to obtain the state space §
3: Compute the transition probabilities to obtain §
4: return MDP M

Given a training set 0 of i.i.d. observation sequences, this algorithm starts from an initial
HMM whose state space consists of separate states for each time-step in the sequences. The
entries of the transition and emission matrix are thus initialized with probability one for each
of the transitions between subsequent states and each percept in the observation sequence
respectively. Although this HMM explains the data perfectly it is usually not efficient and
therefore the model is iteratively updated by merging those pairs of states that decrease the
likelihood the least. This repeats itself until a stop criterion is reached, such as the likelihood
falling below a certain value or reaching a predefined number of states.

This approach can be adapted for learning POMDPs as described in [53] such that the tran-
sition function is initially incomplete as it will only be defined for the actions corresponding
to the transitions between subsequent states. A particular advantage of this approach is that
one can choose to adapt the merging criterion so that, for instance, states are only merged if
they both map to the same goal percept. However, a major disadvantage of the approach is
that alternative merges are never considered by the algorithm, although in the end they may
result in better models. This means that the approach is prone to local maxima, although
this can be avoided to some extent by considering a set of most promising merges in each
iteration, although it would make the algorithm even more cost-expensive than it already is.

A variation of the algorithm is a method seen in [53] that goes under the name of State
Merging by Trajectory Clustering, which makes the state merging approach more resilient
to perceptual aliasing. In this approach the merging criterion is changed such that in each
iteration those pairs of states are merged whose prior and posterior trajectories in the training
set are most similar. The pseudocode of this method is shown in Algorithm 6 where the
similarity of states is thus defined by the length of the common trajectories from and towards
the states. In case the observations have an underlying metric space, one can choose to apply
algorithms like k-Means clustering to cluster the most similar time-states, or alternatively
turn to clustering methods that work on similarity matrices.

Although a simply likelihood maximization approach for MDPs has been followed in our
experiments presented in Chapter 5, the algorithms described here may prove useful for
potential future work. Especially when we want to learn state spaces for POMDPs for our
application domain, the latter algorithm seen in [53] appears better capable of dealing with
perceptual aliasing that is often encountered in real-world systems. However, when the
state space of POMDPs is not learned from the available data, employing the Baum-Welch
algorithm is probably a more attractive alternative, considering the state merging algorithms
are computationally quite expensive.

3.2. Active Learning

Devising a completely accurate specification of the MDP’s transition probabilities typically
turns out infeasible for real-world DTP problems. However, it should be noted that the learn-
ing algorithms that have been addressed earlier, usually recover enough to let an MDP reflect
the actual environment in which an agent operates. The plans that are derived accordingly
from these models yield better performance than a random choice of actions in the execution
of the system would. A class of approaches that we consider in this section are those that
combine offline model learning and planning methods with online (reinforcement) learning
methods which incrementally update the model parameters.
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3.2.1. Model-Based Reinforcement Learning

In RL a distinction exists between model-free and model-based methods, where in the former
the choice of action is made based on previously realized value, while the latter evaluates
candidate actions based on their expected future rewards. Model-free or direct RL can there-
fore be viewed as corresponding to habitual behavior, while model-based RL corresponds
to goal-directed behavior. When the system under consideration encompasses considerable
structure and its dynamics can be modeled accurately, model-based approaches tend to use
experiential data more efficiently, be more resilient to changing goals and are better capable
of obtaining near-optimal policies [1]. The SDM problems involving these type of systems are
those that qualify for applying model-based RL in which an initial MDP could be obtained by
offline model learning. However, one should note that model-free RL approaches are better
suited for learning from scratch (i.e., SDM problems with very limited prior knowledge and
data), as model-based RL approaches tend to suffer from model bias [21]. That is, model-
based RL makes the inherent assumption that the underlying model sufficiently accurately
reflects the real-world environment.

To improve the estimations of the model parameters in model-based RL, the algorithms
demand for efficient exploration, for which various approaches exist that are optimistic in
face of uncertainty. An example is the E3 algorithm [43] which explicitly chooses between
exploiting the known part of the MDP and optimally reaching the part that needs to be ex-
plored. Its exploration is based on balanced wandering, which means that the agent will
prefer the action that has been executed the least from its current state (breaking ties ran-
domly) until the state has been visited a sufficient number of times. Another algorithm is
the R-Max algorithm [9], which has a built-in mechanism for switching between exploitation
and exploration and differs in its exploration by letting the agent make the assumption that
a maximum possible reward can be obtained from unexplored state-action pairs.

Another issue that should be taken care of in model-based RL is when and how to update
the MDP and its plan based on acquired experience. A simple approach would be to update
the plan on each model update applying a well-known algorithm like VI, although this is
computationally expensive. To gain efficiency, frameworks like RTMBA [38] or DYNA and
its various extensions [70], aim to update their plans more intelligently (e.g., by updating
value functions only for a subset of state-action pairs). A different approach could be to
limit exhaustive exploration of states in the first place, exemplified by the RL-DT algorithm
proposed in [37], which generalizes the effects of actions across states. This, however, is
particularly useful for these domains that require sample-efficient learning and for which
the available time for exploration is limited.

3.2.2. Active Reinforcement Learning

An appealing approach to overcome inaccuracies of offline learned probabilistic models is to
use them as prior models for the model-based RL algorithms shown in Section 3.2.1. In [26]
an approach referred to as Active Reinforcement Learning is presented which uses a provided
MDP specification as prior knowledge for exploration through model-based RL. Rather than
using this MDP for planning, its model parameters are used as a blueprint for exploration
in the actual environment. The algorithm guides the exploration by selecting these actions
for which is known that the ‘prior’ MDP is most sensitive to changes in the corresponding
transition probabilities and rewards.

3.2.3. Bayesian Reinforcement Learning

Considerable work has been conducted on investigating the application of Bayesian methods
to RL motivated by their close relation to decision theory for making decisions under un-
certainty. In Bayesian Reinforcement Learning (BRL) [30] the idea is to learn a model of the
environment by considering the unknown parameters of the model as random variables. Over
these random variables a prior distribution p(6@) is defined corresponding to the prior beliefs
over the unknown parameters 0 of the model. A common choice for discrete-state and action
MDPs is a multinomial Dirichlet prior, which is parameterized by a count vector ® = (¢, ..., )
which defines the number of observations of all possible transitions. Then, as evidence is
gathered, the posterior on § (which quantifies the uncertainty over the parameters) is updated
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Algorithm 7 Model-Based Bayesian Reinforcement Learning

Require: Initial MDP M = (S, 5s,4,6,R)
1: Initialize prior distribution(s) over unknown parameter(s)
2: repeat
3 Select action a € A based on the posterior distribution(s)
4 Execute action a
5 Record observed reward and state
6: Update posterior of unknown parameters based on observations
7: until Agent terminates

based on Bayes’ rule from which an estimation of the model parameters can be obtained. A
framework that is accordingly used in model-based BRL is the Bayes-Adaptive MDP [34],
which augments the original state space §, transition function § and reward function R by
jointly combining them with the posterior’s hyperparameters ®. A general formulation of the
steps of model-based BRL is shown in Algorithm 7 [60].

A major drawback of model-based BRL is that obtaining exact solutions appears com-
putationally intractable. Nonetheless various approximate BRL methods have been devised
to provide feasible solutions (such as Bayesian DP, BOSS and Monte-Carlo tree search ap-
proaches), of which a majority is summarized in [30] for the interested reader. Still, a major
challenge is scaling BRL methods to large-scale MDPs and models with continuous spaces.

3.3. MDP Models with Transition Probability Uncertainty

Another method to overcome the infeasibility of obtaining completely accurate specifications
of transition probabilities is to extend the models and planning algorithms to take impre-
cise probabilities into account. Over the years various frameworks have been introduced
that utilize this idea, such as the MDP with Imprecise Probabilities (MDP-IP) first introduced
in [66] which describes the transition probabilities as a set of linear inequalities to repre-
sent incomplete, ambiguous or conflicting beliefs over these probabilities. That is, in this
framework the probability of moving from a state s; to s; with action a could, for instance, be
expressed by a variable p;; s.t. a constraint 0 < p;; < 0.5. An illustrative example of a possi-
ble application of such a framework would be that of MDPs for traffic light control, for which
the estimation of lane-turning probabilities for all traffic lanes is problematic, especially as
they may be different over the day or throughout the year [23]. For these type of domains
in particular, the MDP-IP framework was devised to account for strict uncertainty in the
transition function. The framework also allows one to find plans under either optimistic or
pessimistic assumptions about the true transition function. However, while the traditional
MDP-IP framework demands solution techniques that are notably time-expensive, in practice
factored MDP-IP representations are used for efficient planning, for instance, by synchronous
dynamic programming based on parameterized algebraic decision diagrams (PADDs) [23] or
RTDP solutions [22].

An alternative framework is the Bounded-parameter Markouv Decision Process (BMDP) where
a range of the transition probabilities and rewards are known, such that it can be viewed as
a set of possible MDPs. In fact, BMDPs are a special case of MDP-IPs where the attainable
probabilities can be defined by a discrete set rather than linear constraints, but where ranges
can also be defined on the rewards. When it is possible to restrict the parameters of the MDP
at intervals as is done in the BMDP framework, the algorithms that exist for BMDPs exploit
the restricted structure of the parameters more efficiently than MDP-IPs, because the MDP-
IP solutions demand LP approaches in each iteration. There exist solution techniques for
BMDPs that can efficiently learn optimal policies, such as interval VI [31] or robust versions
of RTDP [11].






Model Optimization Framework

Our interest in this thesis lies in the development of probabilistic models for systems whose
dynamics are stochastic. The objective is to use a dataset of execution traces of a system to
attain an accurate system representation, which can be used to obtain plans for an agent’s
decision making in a system that involves uncertainty. In this chapter we describe our pro-
posed framework that applies learning algorithms to obtain probabilistic models in the form
of MDPs and optimizes for a performance-maximizing model by sampling multiple hyperpa-
rameter settings for these learning algorithms.

First off, in Section 4.1 we define the problem at hand that the proposed framework aims
to deal with. Then, in Section 4.2, the application of mobile robot navigation is introduced,
which is one of the possible applications of the framework and is used as a running example
in this chapter. This application is also used for evaluating the proposed framework through
the experiments that were carried out and are documented in Chapter 5. Next, Section 4.3
describes the prerequisites for the dataset serving as the input of the proposed model op-
timization framework. Subsequently, in Section 4.4, a detailed description of the learning
and optimization routine is provided which forms our base framework for learning optimal
MDPs. Finally, in Section 4.5, we define our extension of this base framework in the form of
a multi-phase framework consisting of three phases whose aim is to further improve on the
effectiveness of the framework.

4.1. Problem Statement

As mentioned in Chapter 1, the problem this thesis is concerned with is the development of
probabilistic models in the form of MDPs to be used for obtaining plans for automated control
of systems that involve uncertainty. The development of such probabilistic models tends to
be a difficult and time-costly process for a human designer. Therefore, an appealing idea is
to automate the model development process by applying learning algorithms on a dataset of
execution traces of the system under consideration. However, to achieve effective planning in
a real-world environment, the models that are learned should accurately reflect the dynamics
of the system, such that derived plans account for the uncertainty that is present in the
execution of actions, observations and exogenous events. Although algorithms for learning
MDPs from a dataset do already exist, the state of the art lacks a method of setting the
hyperparameters 6 of these algorithms such that a model is retrieved that best reflects the
underlying system and maximizes the performance in its execution of derived plans. Besides,
although Reinforcement Learning (RL) allows us to bypass the development of a model, it
often turns out to be quite slow for finding optimal policies in complex environments. More
formally, summarizing the above, the problem can be formulated as follows:

Problem Statement. Given a set E of execution traces describing the dynamics of a system that
involves uncertainty, an MDP M needs to be developed, utilizing learning algorithms parameterized by
a set of hyperparameters 0 configured in such way to maximize the performance yielded by following
the policies computed from this model M in a real-world setting.

29
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(a) Example environment with a mobile robot and goal area.  (b) Datapoints of execution traces from exploration depicted.
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(c) State space of a learned MDP depicted. (d) Corresponding optimal policy for the MDP.

Figure 4.1: Planning for the navigation of a mobile robot by learning MDPs from data about the environment.

Allin all, the problem we deal with is that of automating the task of learning a performance-
maximizing MDP that generalizes well over multiple tasks for a system involving uncertainty.
This involves the need for a proper performance measure to express the value of a learned
MDP and allow for a fair comparison of different MDPs. That is, depending on the parameter
settings of the learning algorithm used, an MDP may yield low performance in its execution
for two major reasons. First of all, the learned model may be too complicated for the amount
of available data, which leads to model overfitting. On the other hand, one could acquire
a model that is too simple to explain the available data and so does not accurately reflect
the underlying system in that situation. Therefore, the parameters of the learning algorithm
should be properly adjusted in order to obtain accurate probabilistic models. Finally and
most importantly, a solution to this problem should take into account the costs of learning
and evaluating these system models.

4.2. Application to Mobile Robot Navigation
In this chapter a model optimization framework is proposed that could be employed for var-
ious planning problems involving uncertainty. To illustrate the type of problems this frame-
work is aimed at and what comprises a probabilistic model for such problems, we use its
application to path planning in mobile robot navigation as a running example throughout
this chapter. The problem statement for this application is as follows: a mobile robot needs
to be autonomously controlled by an agent in such way to navigate from one location to an-
other in some world, say, an office environment, as fast as possible. This problem domain
is particularly suited as the robots tend to operate under significant uncertainty in their ac-
tions (e.g., slipping) and observations (e.g., sensor noise). Although there are other potential
applications as described in Chapter 1, this particular application can be used to illustrate
the procedure of learning MDPs from data and obtaining plans accordingly quite well.

For example, let us consider the scenario in which the robot needs to operate in an envi-
ronment as depicted in Figure 4.1a. For now let us assume, the action space A is defined as
a finite set of movements in the cardinal and inter-cardinal directions, such that:

A = {S, SE, E,NE, N, NW, W, SW}
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Before our model optimization framework is applied to learn MDPs for the system, the
data about the environment could have been obtained in the form of execution traces that
consist of logs of the robot’s pose and the (next) action it is about to take. This could then
give a set of datapoints, as depicted in Figure 4.1b, which can be used to learn the states and
transition probabilities of an MDP. Quantizing this dataset of observed robot poses into 10
symbols (e.g., using k-Means clustering), might give us the state space § = {s, ... g} depicted
in Figure 4.1c. Accordingly, based on such a quantization into a state space §, one can
learn a transition function § : § X A X § +~ [0, 1] for an MDP applying the maximum-likelihood
estimation as described in Section 2.1.3. Then, say that, for instance, we define a task for
the robot as moving from an initial position in state sy € S to a goal area corresponding to the
state s; € § as depicted. This would make us define a reward function R : § X A X § » R for
our MDP such that only a reward can be obtained from the ‘goal’ state s,, i.e.:

R W )1 ifs'=s,As#5
(50,57 = 0 otherwise

Putting the earlier defined components together, an MDP M for this particular task is
M = (S,s9,4,6,R). Accordingly, an optimal policy n*, defining the most appropriate action
from any state, is quite straightforward for this simple MDP and is depicted in Figure 4.1d.

In this application the value of a learned MDP needs to depend on how fast the robot
would reach its goal location for the various tasks it is expected to perform. It should be
noted that a proper assessment of model value should be made based on the performance in
simulations and the real world as there may exist discrepancies between states in the model
and the actual state of the system in its execution. In the following sections we discuss how
the proposed framework takes these aspects into account so that on convergence an MDP is
obtained that reflects the real world and generalizes over multiple tasks quite well.

4.3. Dataset Prerequisites

Prior to describing the proposed framework for the problem as specified in Section 4.1, we
are obliged to specify the expected format of the datasets to learn MDPs from. A self-evident
approach is making use of a dataset generated from execution traces, in which the system
under consideration logged a set of readings/observations describing the system state ac-
companied by the actions selected in between at a fixed time interval. One should note that
this means that the action space A and time-step t, that will be used for any MDP for the
system, should already have been established at this point. When adding the auxiliary con-
dition of needing to learn fully observable MDPs, the need arises for the observations in these
execution traces to be usable for distinguishing between the different system states.

For our running example of mobile robot navigation such a dataset may be obtained by
executing the robot in its real-world environment following a random action policy (or a policy
that exploits any further prior knowledge). That is, one could choose to let the robot record
its location and orientation in terms of its sensor readings which are logged at a fixed time in-
terval. In the exploration, the robot would then start from some position in the environment,
choose an action (e.g., driving forward in some direction) at random and execute it according
to the fixed time-step. Then, what will be logged are the robot’s sensor readings and selected
action at each stage. Recording the action at each stage is appropriate as it allows us to
observe the effect of the actions and identify actions that do not affect the robot’s state (e.g.,
being unable to move because of a wall or other obstacle close to the robot).

Further, one should ensure that the dataset obtained from the exploration at least holds
observation-action pairs for the area of the observation/state space of interest for the tasks
the system is expected to perform. For our running example, this would be covering most of
the reachable parts of the environment and trying out actions in each area multiple times.
Clearly, one could decide to exclude or limit exploration for those areas that are deemed not
of interests for the tasks the system is expected to perform. All in all, the learning algorithm
requires one to fix an action space A and time-step t and gather a dataset consisting of a
sufficient number of observation-action pairs to describe the dynamics of the system under
consideration.
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Algorithm 8 MDP-Optimization Base Framework

Require: Set of execution traces E, Parameter space 0, Set of tasks T, Action space 4, Time-step ¢,
Discount factor y € [0, 1), Weight factor g € [0, 1], Acquisition functiona : @ » R
Ensure: MDP M .., Evidence set D
10 Mmax < NULL
2: VMmax <0
3D<0 > The evidence set storing samples and observations
4: gp « GP(0,K) > Zero-mean GP with covariance K
5: Sample 6 € 0 at random
6: repeat
7.
8

M,V < LearningStep(6)
if Vae > Va,, then

9: VMmax Rl V]Vf
10: Mmax & M
11: end if

12: 6 « OptimizationStep(6, Vyr)
13: until convergence
14: return M ,,,, D

15: function LearningStep(6)

16: § < Quantization(E, 9)

17: 6 « LearnTransitionProbs(E, S, 4, 6) > For instance, a likelihood maximization approach
18: Vorp < 0

19: Vsim < 0

20: for all (start,goal) € T do

21: {s0,s4} < ToStates({start, goal})

22: R < ToRewardFunction(sg)

23: M < (S,s9,4,6,R)

24: V,n « DTPPlanning(M) > Solve for a policy m using a DTP algorithm, such as VI
25 Vorp < Vorp + V[so]

26: if 3 < 1 then

27: task_status, steps « RunSim(M, )
28: if task_status = success then

29: Vern < Vorm +7°5°P° - R[]

30: end if

31 end if

32: end for
33 Vy < TREE+(1-p) L5
34: return M,V

35: end function

36: function OptimizationStep(6, Vy,)

37: D <DU{(6,V)}

38: gpfit(D) > Fit a GP given D, maximizing the log-marginal likelihood
39: return argmax o a(x|D, gp) > Suggest a sample 6 to evaluate next
40: end function

4.4. Base Framework

The learning and optimization routine described in this section forms the base framework for
the problem dealt with. This routine, schematically depicted in Figure 4.2, aims to properly
adjust the hyperparameters 6 of the employed model learning algorithm by posing it as an
optimization task. The objective is then to obtain an MDP that maximizes the performance of
executing the plans that are derived from it. In the remainder of this section we explain the
working of this routine of which the corresponding pseudocode is presented in Algorithm 8.
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Figure 4.2: Schematic diagram of the model learning and optimization routine.

4.4.1. Learning Step

The routine can be viewed as consisting of two subsequent steps which are repeated until
an MDP model that yields satisfactory performance is obtained. The first of these two main
steps will be referred to as the learning step, in which an MDP model is learned and its value
is assessed.

This learning step starts off with a dataset of execution traces E obtained beforehand as
described in Section 4.3. As we can see in Algorithm 8, Line 15, the step is parameterized by 6,
which represents the parameter setting to be used for the employed model learning algorithm.
Given a parameter setting 6, a state space § is acquired by quantizing the execution traces E
using an unsupervised machine learning algorithm. Subsequently, a transition function §
is acquired by applying a known model learning algorithm (such as one of those described
in Section 3.1), given the dataset E, state space § and possible actions A. The tasks to
perform are each accordingly mapped to a reward function R over the acquired state space §
(or alternatively over state-action pairs or state-action-state triplets). The state space §,
transition function §, action set 4, reward function R and a configurable initial state s, are
then combined into an MDP M = (S, sq, 4,6, R).

To assess the performance yielded by M, the MDP is solved by applying known DTP
algorithms like VI or PI to obtain policies for a set of tasks the system is expected to per-
form. The value of the model V), is then determined by checking how well the system is
expected to perform by execution according to the derived policies (e.g., based on simula-
tions and/or the value function obtained by a DTP algorithm). The sections below describes
each of the components of this algorithm in more detail and most importantly defines the
performance measure that is used for assessing the value of learned MDPs.

Action Space and Time-Step

The action space A of the MDP to be learned is one of the input parameters for the framework
and should match the actions used in obtaining the set E of execution traces. Similarly,
the time-step t is an input parameter as well, which specifies the time in between stages in
which the agent selects an action, again matching the time-step used in obtaining the set E of
execution traces. In our running example, one possibility is to define the action space as the
set of movements in the cardinal and inter-cardinal directions as seen earlier in Section 4.2.
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Figure 4.3: One-time reward in goal state G in an MDP realized by an absorbing state T.

The time-step t for the mobile robot would then correspond to the period of time it moves in
one of these directions after it has selected an action a € A.

State Space

From the provided set of execution traces E, a state space S is learned based on the current
hyperparameter setting 6 in the learning step. For instance, in our running example, a
k-Means clustering can be applied on, for instance, coordinates in the execution traces E
describing the reachable locations of the robot, where k is specified by the setting of 6.

Transition Function

In the learning step the transition function § is obtained by applying a known model learn-
ing algorithm, for which a likelihood maximization approach may be selected for learning
the transition probabilities of a fully observable MDP. The transition function is defined for
the provided action space A and earlier acquired state space § and approximated from the
transitions in the set E of execution traces.

Tasks and Reward Functions

The goal for the class of problems of interest is to obtain a well-generalizing model that
performs well on multiple different tasks. Therefore, an estimate of the value of a model
is assessed over a set T of tasks provided as input to the framework, where each task is
presented as the combination of a starting and goal configuration.

The starting configurations are each mapped to corresponding states in the MDP, match-
ing the quantization to state space §, so that one can define §; € § as a set of initial states.
Similarly, the goals are each mapped to states, such that one can define S; € § as a set of
goals. One problem that emerges, however, is that there might not be a one-to-one corre-
spondence between learned and true (goal) states, which leads to the possibility of small state
spaces yielding high value while the goal states might not map well to the true goal states.
To take care of this, we introduce a discrepancy factor ¢ € [0,1], which corresponds to the
fraction of entries from the set E within the goal state that map to the true goal.

Let us then define R; as the set of reward functions R; for each i € §; in which a one-time
reward (which is realized as depicted in Figure 4.3) is received only in goal state i. Note that as
such, an equivalent formulation can be given as a stochastic shortest path problem [35] for the
resulting MDPs. The reason the reward needs to be only obtainable once is to ensure that the
expressions in Equation 4.2 and Equation 4.3, which are used to estimate the performance
yielded by an MDP, lie in the same range and can be used together as discussed in the next
section. The reward function R; : § X A X § = R for some task with goal state i € S; is then
defined as follows:

& ifs'=i

R;(s,a,s") = .
i ) 0 otherwise

(4.1)
Accordingly one can define T); = Sy X R; as the set of tasks, in the form of all pairs of

initial states and reward functions, over which the performance is assessed. The next section

discusses how the value of a model M is assessed in the learning step over these tasks.
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Performance Measure

Posing the learning of probabilistic models as an optimization task requires us to define
a mapping of MDPs to a performance measure that can be used to fairly compare different
models. As discussed earlier, one can express the performance of an MDP in terms of how well
the agent performs tasks following the policies that are derived from the model. Therefore,
one option is to make use of the value function V obtained by a DTP algorithm, such as VI
or PI. Based on such a value function, an expression of how well the agent is expected to
perform some task t = (sp, R) € Ty, is:

VbTp t=(so.R) = V[so] (4.2)

where s, € § is the initial state and R the reward function of the MDP for the task.

However, although the DTP algorithm may yield high value for the task, it might be that
the agent will not perform well following the policy in the real world. To better assess the
performance, one could execute simulations in which the agent follows the policy derived
from the MDP model. Although performing simulations is more cost-expensive, it yields a
better approximation of how well the agent executes a task following a policy obtained from
the model. Accordingly, let us express the performance on some task in simulations as:

Vsim,t=(so,R) = Y™ - R[i] (4.3)

where s, € § is the initial state, R the reward function, y the discount factor, i € § the goal
state and n the number of steps taken to reach the goal.

Combining the expressions of Equation 4.2 and Equation 4.3 yields the following expres-
sion of the performance on some task t € Ty:

B Vorpi=so.) T (1 = B) - Vsim,t=(s0,R) (4.4)

where f € [0, 1] is a parameter which specifies the relative weight of Vrp; against that of Vs p ¢
and where s, and R are the initial state and reward function for the task respectively.
Putting this all together, the performance of an MDP M can in this way be expressed as:

Ve = Yiery B Vorre + (1= B) - Vsime
Mo ITac]

(4.5)

where T, is the set consisting of the pairs of initial states and reward functions of the tasks
over which the performance is assessed.

4.4.2. Optimization Step

The second main step of the routine will be referred to as the optimization step, in which a
parameter setting 6 is selected for the next learning step in such way that yielded performance
converges to a global maximum as quickly as possible. As initially there is no knowledge of
the performance given the settings of the learning parameter(s) 8, in the first few routine-
iterations parameter settings are selected at random from the designer-specified domain 0
(i.e., the parameter space). Together with the value I}, of the corresponding model obtained
in the learning step for each of these parameters 6, they are stored in an evidence set D.
The objective function f in our case is the LearningStep function which maps parameter
settings 6 € 0 to real-valued performance yielded by MDPs.

As discussed earlier in Section 2.2.1, the objective functions for the class of SDM problems
tend to be expensive to evaluate as proper estimations can only be made through time-costly
simulations. Therefore, Bayesian Optimization emerges as an attractive method to find a
global maximizer 6* € © for our objective function. After each iteration the evidence set D
is augmented with a new observation, based on which the posterior p(f|D) of the objective
function f is updated accordingly. A new parameter setting for the next learning step is then
sampled at the point with maximum utility in the selected acquisition function a : ® » R.
This procedure is repeated until some criterium is reached, which can be a fixed number of
iterations, a fixed time or a custom stopping criterion, e.g., observing no improvement for
some number of iterations.
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Algorithm 9 MDP-Optimization Multi-Phase Framework (Phase 1 and 2)

Require: Set of execution traces E, Parameter space 0, Set of tasks T, Action space A, Time-step t,
Discount factor y € [0, 1), Acquisition function a; : ® » R
Ensure: MDP M .«
1: Dy, gp, < Phase1()
2: Mmax < Phase2()

3: function Phase1

4 B <10 > Compute V), based on the value function, i.e., Vjy = Vprp
5: D<@

6 gp < GP(0,K)

7 repeat

8: M, Vyr < LearningStep(6)

9: 6 « OptimizationStep(6, Vy,)

10: until convergence

11: return D, gp

12: end function

13: function Phase2

14: B < 0.0 > Compute V4, based on simulations, i.e., V3y = Vo1
15: D, < @

16: gp, < GP(0,K)

17: M max < NULL

18 Va,, < 0.0

19: 0 < argmax, o El(x|D1, gp,)

20: a <05

21: repeat

22: M,V < LearningStep(6)

23: if V]Vf > VMmax then

24: VMmax — VM

25: Mpax &M

26: end if

27: 6 « OptimizationStep2(8, Vr, @)
28: a<—al

29: until convergence

30: return M,

31: end function

32: function OptimizationStep2(6, Vyr, @) > The a parameter weighs the El of the first phase.
33: D, « D, U{(6,Var)}

34: gp,fit(D)

35: return argmax .o a - El(x|D4, gp,) + (1 — @) - EI(x|D,, gp,)

36: end function
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Figure 4.4: Correspondence of the phases of the model optimization framework to the different levels of abstraction.

4.5. Multi-Phase Framework

To make the solution more cost-effective, the framework is extended by defining three phases
with the aim of exploiting the lower cost of computing the value function for MDPs in com-
parison to the cost of executing plans in simulations or the real world. That is, assessing
performance solely based on learned MDP models is less cost-expensive, although the model
might not accurately reflect the real world as its abstracts over low-level details. This section
defines the phases of the extension, of which each subsequent phase better reflects the real
world, but on the other hand are accompanied by higher costs as is depicted in Figure 4.4.

4.5.1. Phase 1: Value Function Pre-Processing

In the first phase the performance is assessed solely based on the value functions derived by
the DTP algorithm used for planning. This means the § parameter is set to § = 1.0 such that
the performance V), of MDP M is expressed only in terms of V,rp and so no simulations are
performed in this phase. Therefore, this first phase is relatively cost-cheap, and although it
abstracts from the real-world the most, it may be used to identify the interesting area of the
parameter space. Hence, the goal of this first phase is to narrow down the search space to a
subspace of learning parameters more likely to yield high performance.

The block diagram in Figure 4.5 depicts the main steps of this first phase, whose pseu-
docode is presented in Algorithm 9, starting from Line 3. In each iteration of this first phase
the execution traces E from the exploration are used to obtain an MDP by applying the learn-
ing algorithms, given a parameter setting 8. The value of the learned model M is then as-
sessed based only on the value function V for a set of tasks T),; the system is expected to
perform. The value of model M is thus computed as:

Vo = ZtETM VDTP,t
M Tl

where each task t € Ty, is defined in terms of an initial state and reward function.

Based on the gathered evidence new parameter settings 8 are sampled iteratively, which
are those settings for which the utility is the highest in the acquisition function a; used for BO.
This continues until a stopping condition has been met, where in this first phase stopping
after a fixed number of iterations should be acceptable, as the goal is only to narrow down
the search space. At the end of the first phase, the resulting posterior GP distribution gp, is
taken and used for the acquisition in the next optimization phase.
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Figure 4.5: Block diagram showing the steps of the first phase of the multi-phase optimization framework. This phase develops
a distribution which reflects the interesting area of the parameter space solely based on the value functions of MDPs.
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Figure 4.6: Block diagram showing the steps of the second phase of the multi-phase optimization framework. This phase uses
the distribution G2, learned in the first phase in the acquisition in the optimization for an MDP which maximizes performance in
simulations.

Phase 3

Figure 4.7: An illustration of the goal of the third phase in the context of mobile robot navigation. In the navigation towards the
goal state sg, the robot might get stuck in state s, following the optimal policy. Therefore, higher resolution is needed in this area
of the state space.
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Figure 4.8: An illustration of the idea behind the second phase of the multi-phase framework. The plot shows two artificial
functions, one being much cheaper to evaluate compared to the other. As the maxima are close, starting to sample around the
maximizer of the cheap function may steer the optimization towards the maximum of the expensive function.

4.5.2. Phase 2: Simulation-Based Optimization

In the second phase the performance is assessed solely based on simulations of the system
under consideration. This means that, instead, the  parameter is now fixed at g = 0.0 such
that the performance Vj, of MDP M is expressed only in terms of V5. Therefore, the second
phase is much more cost-expensive and so a desirable aim is to minimize the number of
evaluations needed. In an attempt to do so, the second phase exploits the knowledge gathered
in the first phase by utilizing the GP gp, in the acquisition of new samples in the optimization
process. The idea is thus to first sample from those parts of the parameter space 0 expected
to yield high value according to the observations in the first phase.

The block diagram in Figure 4.6 depicts the main steps of this second phase, whose pseu-
docode is presented in Algorithm 9, starting from Line 13. The first thing that differs from
the previous phase is that, in each iteration, the value of the learned model M is assessed
based on time-costly simulations. The value of model M is thus computed as:

ZtETM VSIM,t
M = —-———--
I Tar |

where each task t € T), is defined in terms of an initial state and reward function.

The main difference, however, lies in how new parameter settings 6 are sampled in each
iteration in this phase. The acquisition in this phase is based on the integrated acquisition
function, defined in Equation 2.12, as it uses the GP from the prior phase and the GP posterior
based on the observations of this phase. That is, the acquisition function is defined as:

a - El(x|Dy,gp,) + (1 — @) - El(x|Dy, gp,)

where D, and D, are the evidence sets, and gp, and gp, the GP approximations of the first
and second phase respectively, with the expected improvement El at x € ® weighed by «a.
The knowledge obtained in the first phase is utilized by weighing the expected improve-
ment more heavily for selecting the first few samples (i.e., setting a to a high value). Over
time, the influence of the first phase decreases by lowering the value of @ as more observa-
tions are made. Our hypothesis is that, if the global maximum in the first phase lies close to
that of the second phase (as illustrated in Figure 4.8), a performance-maximizing MDP may
be found faster, as the sampling is initially steered by the approximation of the first phase.
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Algorithm 10 MDP Optimization Multi-Phase Framework (Phase 3)

Require: MDP M, = (S, sy, 4,5, R), Set of tasks T, Time-step t, Discount factor y € [0,1)
Ensure: MDP M.

1. function Phase3

2 for all (start, goal) € T do

3 task_status, steps < RunTask(start, goal)

4: nel

5: while task_status = stuck do

6: Let s; be the state in which the system got stuck

7 Eg;y < GatherEvidence(sy)

8: Compute n sub-clusters within s; using Eg;y as training set

9: Learn a new transition function & for the new states using Eg;y
10: task_status, steps « RunTask(start, goal)
11: nen+1 > Increment n only if the agent got stuck in the same state
12: end while
13: end for
14: return M, < (Sf,50,4,6¢,R) > 8 being the updated state space

15: end function

16: function RunTask(start, goal)

17: (s0,s¢) < ToStates({start, goal})

18: R < ToRewardFunction(sg)

19: M < (S,59,4,6,R)

20: V,n, « DTPPlanning(M)

21: return RunSim(M, mr;) >> Execute the policy in simulations or the real-world
22: end function

23: function GatherExperience(sy)
24: R « ToRewardFunction(sy)
25: M « (S5,50,4,6,R)

26: V,m; < DTPPlanning(M)

27: Let Eg;p be a dictionary

28: forallae A,s' € S do

29: Egyla][s'] < @

30: end for

31 forallie{1,..,100},a € Ado o> Perform trials of all actions from state s
32: Let o be the current system state observations

33: Execute a and let s’ be the resulting state

34 Egiulalls'] « Esinlal[s'] VU {o} > Store the observed transition in Eg;y,
35: while s" # s; do > Move back to state s
36: Execute m;(s") and update s’ to the resulting state

3r: end while

38: end for

39: return Eg;y

40: end function

4.5.3. Phase 3: Model Fine Tuning

The third phase starts after the optimization process has reached its stop condition and has
retrieved a performance-maximizing MDP M ... In this phase, the goal is to further improve
the learned model by checking whether the transition probabilities are likely to match the
real world environment. The identification of discrepancies in these probabilities happens by
executing actions in those areas of the state space that are visited most often and in which the
agent tends to get stuck (according to the transition probabilities) and seeing if the observed
transitions yield comparable probabilities. For those areas and their corresponding states for
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which mismatches are identified, higher resolution is provided to better reflect the system’s
dynamics in the real world.

The illustration of Figure 4.7 aims to clarify the goal of this third phase by means of
an example for the context of mobile robot navigation. Although the model obtained in the
previous phase might yield high performance for most of the tasks used to assess model value,
a situation as illustrated in this figure might occur. That is, the robot, depicted in blue, needs
to move from its current position to the goal, indicated by the yellow shaded area. For the
state space depicted on the left-side however, the robot might get stuck following the optimal
policy from which the need for higher resolution in this area emerges.

In Algorithm 10, a proof-of-concept solution for this problem is shown which fine-tunes
an MDP M resulting from the previous two phases. Given a set of tasks T (possibly different
from the tasks used in the prior phases), a policy 7 is obtained based on this model, which
is executed in a simulation or real-world environment. When the agent detects it is stuck in
some state sy, it starts to gather a set of new execution traces Eg; of transitions from this
state. This set is augmented by iteratively selecting an action (in a round-robin fashion) and
executing it from the state s; and recording the end state s’. For the example in Figure 4.7,
one entry of this dataset Eg;y may express that starting from a location (x,y) in state sy = s,,
choosing to execute the action N of moving north resulted in ending up in state s;. Then,
another entry may express that starting from a location (x',y") in state sy = s,, executing the
same action resulted in ending up in state s,.

Based on the set Egy, the state sy in which the agent got stuck is split in a number
of (sub-)states by clustering the observations. The transition function of the MDP is then
updated accordingly for the resulting state space. The agent then attempts to perform the
task again with the updated MDP. If the agent then succeeds in executing the task, it moves
on to the next task, and otherwise repeats the earlier steps with higher resolution in the
clustering.

Note that this third phase is a phase that is mostly independent of the prior phases of the
framework. That is, in the first two phases the goal is to find the optimal parameters 6 of an
MDP model learning algorithm, while the third phase is concerned with tuning the resulting
MDPs. As such, this last phase is rather an additional (and optional) step with the attempt
of further improving the performance yielded by these system models.






Experimental Setup and Results

In Chapter 4 a framework was proposed for finding an optimal MDP for planning problems
that involve uncertainty given a dataset describing the dynamics of the system under con-
sideration. The framework aims to achieve this by posing the adjustment of the parameters
of model learning algorithms as an optimization task in which the yielded performance is to
be maximized. The domain of mobile robot navigation, where the problem statement is to
navigate a robot between locations as fast as possible, was identified as a potentially suit-
able application. This chapter discusses the experiments that were conducted to evaluate
the framework for this application and the results that were obtained accordingly. First of
all, Section 5.1 elaborates upon the setup for the experiments, discussing the relevant de-
tails on the implementation of the framework for this application and the software and other
resources used. Subsequently, Section 5.2 discusses the different configurations that are
used to test the framework. This, for instance, involves various combinations of learning
algorithms and different settings of the weight factor f on different environments. In, Sec-
tion 5.3 the results obtained for these different configurations are presented, inspected and
compared to one another, after which the most notable conclusions that can be drawn are
discussed.

5.1. Setup

For our experiments we made an implementation of the framework in the form of a module
that can be used to learn an optimal MDP for the navigation of a mobile robot. This imple-
mentation allows the control of a mobile robot in simulations by an MDP and a corresponding
policy. The model values assessed from these simulations are used to find a globally max-
imizing parameter settings of the learning algorithm used. In this section we will describe
the implementation in detail and how it is used in our experiments to find performance-
maximizing MDPs for a mobile robot in an office environment.

5.1.1. Software

In this section we discuss the software that is used in the implementation of our optimiza-
tion module. An overview of the main packages used for this implementation is presented in
Table 5.1. In the remainder of this section, we briefly explain for what part of the implemen-
tation each of these packages are used, and support the choices made where necessary.

Python Libraries

The module has been implemented in Python 2.7, due to its easily usable libraries for machine
learning and plotting and other widely available packages, but also because of its convenient
capability of interacting with the simulation software used. An overview of the main software
packages used for the implementation is shown in Table 5.1.
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Table 5.1: Software packages used for the implementation of the model learning framework for mobile robot navigation.

Package Name Version | Purpose

bayesian-optimization 0.4.0 Bayesian optimization

matplotlib 1.3.1 Plotting and visualizing robot actions
pymdptoolbox 4.0 b3 MDP planning algorithms
ros-indigo-strands-desktop | 0.0.14 Simulation software and environments
scikit-learn 0.18.1 Machine learning algorithms

Figure 5.1: The SCITOS-A5 mobile service robot in a running Morse simulation of the tum_kitchen environment.

For MDP planning, the pymdptoolbox library [19], is used, which implements various
planning algorithms for discrete MDPs. To solve for optimal policies in learned MDPs we rely
on this library and apply the VI algorithm with a discount factor of y = 0.95.

For the machine learning algorithms used, we employ the scikit-learn library. This
library includes the implementations of k-Means clustering and the EM algorithm for fitting
Gaussian Mixture Models (GMMs).

For Bayesian Optimization the bayesian-optimization library [56] has been employed.
This library offers an implementation of the BO procedure based on a GP prior including the
implementation of the most-used acquisition functions such as MPI, MEI and GP-UCB.

Simulator and Mobile Robot

For performing simulations the MORSE simulator [24], a generic simulator for academic
robots, has been used in combination with the ROS middleware to control the robot in an
environment. The simulations are performed with the Metralabs GmbH SCITOS-A5 [50],
an industry-standard mobile service robot designed specifically for interacting with humans
and guiding them to products or exhibits. This robot is equipped with several sensors which
can be used for navigation and Human Robot Interaction (HRI), such as an omni-directional
camera, 24 ultrasonic sensors, a collision sensor and a SICK laser range finder [33]. As
described in Section 5.1.2 we are particularly interested in the odometric capabilities of the
robot for the implementation that has been used in our experiments. Figure 5.1 shows this
robot in a MORSE simulation of one of the office environments used for our experiments.
The strands-desktop meta-package (developed as part of the STRANDS project [36]) was
used to obtain all required simulation software mentioned above with ease, in which the
environments used in the simulations of our experiments are contained as well.

5.1.2. Dataset Acquisition

In order to be able to learn MDPs from data and establish the optimization, we should obtain a
dataset that describes the environment the robot will operate in. This dataset should describe
possible robot poses and to what other poses the execution of the possible actions may lead
to, in order to properly describe the dynamics of the system.
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Table 5.2: An excerpt of one of the execution traces datasets showing the format of the entries. Each entry stores the pose (x,
v and yaw) of the robot based on odometry readings, and the action executed from this pose.

X y | action_id yaw
2.243550300598145 | 3.1634166240692 1 0.7840424207077832
2.8906018801116943 | 3.8128550052643 7| -0.8159573629295891
3.541900634765625 | 3.1447956562042 6 | -1.6159579833378268
3.544688224792481 | 2.1472022533417 0| -0.0326251734671011

Table 5.3: Details about the Morse simulation environments used and the size of the gathered datasets consisting of execution
traces of the SCITOS-AS5 robot.

Environment Name | Approximate Area (m?) | Number of Entries in Dataset
tum_ kitchen 100 4370
uol bl 800-1000 17 245

For our implementation and the experiments that have been carried out, execution traces
have been obtained by letting the robot follow a random action policy during which subse-
quent poses and actions are logged to a file. This exploration is performed inside the simulator
both for a relatively small environment (i.e., tum kitchen, based on a university kitchen of
the Technical University of Miinchen) and large environment (i.e., uol_bl, based on a floor
in a faculty of the University of Lincoln) obtained from a repository of the STRANDS project.

In the exploration a new entry is recorded in a file after each time-step of t = 1.0 s, which
each contain the robot’s pose based on odometric readings with its location as x and y position
and its orientation described by the yaw. Apart from that, each entry also stores the action
that is executed next from the current pose. As a result, the next entry tells us the robot’s
pose after the action in the previous entry has been executed.

In Table 5.2 an excerpt of one of the datasets is shown, which might give a clearer picture
of the data that has been gathered and the format in which it has been stored. The possible
actions of the robot correspond to a discrete set of robot movements in 8 different directions,
being south, south-east, east, north-east, north, north-west, west and south-west. For exam-
ple, the first two entries describes the transformation of the robot’s pose after trying to make
a south-east movement (n.b., positive difference in x corresponds to moving south, while pos-
itive difference in y corresponds to moving east). Table 5.3 presents additional information
about the environments and the size of the datasets gathered accordingly.

5.1.3. Framework Implementation

To evaluate the framework proposed in Chapter 4, an implementation was made for the do-
main of mobile robot navigation. This implementation optimizes for an MDP that maximizes
the yielded performance of following plans derived from it. That is, it aims to find a model
that ensures a mobile robot moves from one location in an environment to another as fast as
possible. In this section the relevant details of each part of the implementation are discussed.

Learning Step

For learning discrete-state MDPs from the acquired execution traces, a likelihood maximiza-
tion approach is applied based on a state space obtained from clustering algorithms. That is,
the state space is first obtained by applying a clustering algorithm (i.e., k-Means, GMM) with
6 defining the number of components and the geometric positions of the execution traces as
its training set. Then, a transition probability distribution is fitted on the execution traces,
such that an MDP may be obtained that comprehends the transitions that are possible when
actions are performed from any of its states.

After having learned an MDP, the learning step next assesses the corresponding model
value. The model value is assessed based on how fast (i.e., expressed by the number of
discrete time-steps) the agent would execute the tasks it is expected to perform when it is
employed with the learned MDP.
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Table 5.4: Settings for goal radius, parameter domain 0, time-outs and discount factor used for each of the environments in the

experiments.

Environment | Goal Radius | Parameter | Goal T/O | Stuck T/O | Global T/O | Discount

(m) | Domain @ (s) (s) (s) | Factory
tum_ kitchen 0.5 [2,300] 10 10 30 0.95
uol bl 1.0 | [100,1000] 10 10 120 0.95

For our domain we define each task as navigating from a start location to a goal location in
the environment, each presented as a pair of coordinates, as fast as possible. We translate
these tasks into something that can be fed to the learned MDP, first of all, by setting the
initial state of the MDP to the state predicted by the selected clustering algorithm for the
start coordinates. Similarly, a goal state is obtained, and accordingly a reward function for
the MDP is defined as prescribed in Section 4.4.1.

For each task, a value function and policy is computed for the MDP using the VI algorithm.
Based on the computed value functions and simulations following the corresponding policies,
the value V), of the learned MDP M is computed as in Equation 4.5 of Section 4.4.1. In the
simulations, for each task, the robot is first put at the start location defined by the task and
then moves in the direction imposed by the computed policy at each discrete time-step. It
repeats this until the goal state has been reached. At that point, however, the “true” goal
might not have been reached by the robot. This is a problem, because if we would quit the
simulation as soon as the goal state has been reached, then MDPs with state spaces that are
too simple would yield high value. To take this into account, as soon as the robot reaches
the goal state, it checks if it is inside a designer-specified range of the goal location (i.e., the
goal radius in Table 5.4). If not, the robot is moved into the direction of the goal location and
the same check is performed.

To avoid the simulations running endlessly on a certain task, time-outs are defined at
which the simulation is quit. First of all, a (relatively short) goal time-out is defined for
reaching the goal from the goal state, which clearly cannot take too long. Secondly, a stuck
time-out is defined, which starts when the robot remains at the same location after performing
an action. Finally, there is a global time-out, that defines the maximum time the robot is
allowed to spend on performing a task, taking into account any extra time caused by slipping.

The output of each learning step is the value of the learned model V), and the time spent
on model learning and planning. The last being used when the MEIPS acquisition function
is employed in the optimization. Further, additional data is logged in each iteration, which
is the total iteration time, simulation time, model learning time, total planning time and the
parameter setting 6 used.

Optimization Step

For the implementation of the framework for this domain we make use of the BO framework
for optimization based on a GP with a Matérn 3/2 kernel where the noise in the simulations
is approximated by adding Gaussian white noise through a White kernel with estimated
noise level of 107*. As initially there is no knowledge about the model value given a parameter
setting 6, first, a number of random settings are selected for which yielded performance is
assessed and stored in an evidence set. In the following iterations new settings for 6 are
chosen with maximum utility in the selected acquisition function, which is repeated for a
fixed number of iterations.

The first phase of the multi-phase framework described in Section 4.5 is executed as an
individual optimization procedure, where the model values 1}, are solely based on computed
value functions and no simulations are performed. The resulting posterior of this first phase
is then used in the acquisition of the first few samples in the second phase with the aim of
finding a global maximizer faster.
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(a) State space of an MDP with 112 states for the tum_kitchen environment learned by k-Means clustering. The plot depicts
one of the tasks the mobile robot is expected to perform. The start location maps to a single state, labeled ‘1’. The goal center
maps to the state labeled ‘51’, while the goal area intersects with multiple states.

(b) AMORSE simulation of the tum_kitchen environment, showing the trajectory the SCITOS-A5 robot will follow to accomplish
the task depicted in Figure 5.2a according to the policy computed from the MDP using the VI algorithm.

Figure 5.2: Demonstration of the implementation learning the state space of an MDP and using it for path planning for a task in
the tum_kitchen environment.
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Table 5.5: Details on the different configurations used for the experiments on the base (single phase) framework.

ID | Environment | Weight Factor 8 | Acquisition Function | Algorithm | Dataset Used
1 tum kitchen 0.0 | MEI k-Means 100%
2 tum kitchen 0.0 | MEI k-Means 75%
3 tum kitchen 0.0 | MEI k-Means 50%
4 tum kitchen 0.0 | GP-UCB k-Means 100%
5 tum_ kitchen 0.0 | MEIPS k-Means 100%
6 tum kitchen 0.0 | MEI GMM 100%
7 tum kitchen 0.0 | GP-UCB GMM 100%
8 tum_kitchen 0.25 | MEI k-Means 100%
9 tum kitchen 0.50 | MEI k-Means 100%
10 | uol bl 0.0 | MEI k-Means 100%
11 | uol bl 0.0 | GP-UCB k-Means 100%
12 | uol bl 0.0 | MEIPS k-Means 100%
Table 5.6: Details on the different configurations used for the experiments on the multi-phase framework.
ID | Environment | Weight Factor § | Acquisition Function | Algorithm | Dataset Used
13 | tum kitchen 0.0 | MEI k-Means 100%
14 | tum kitchen 0.0 | GP-UCB k-Means 100%
15 | uol bl 0.0 | MEI k-Means 100%
16 | uol bl 0.0 | GP-UCB k-Means 100%

5.1.4. Demonstration

To provide the reader with a better insight as to how the implementation utilizes execution
traces to learn MDPs and use these for path planning, a demonstration is given of a single
iteration of the framework, supported by the illustrations in Figure 5.2. For this demon-
stration, let us assume that the optimization step provides us with a new parameter setting
6 = 112, specifying the number of states of the MDP, to evaluate.

First, given this parameter setting, a state space S is, in this case, learned by a k-Means
clustering on the execution traces E, with the result shown in Figure 5.2a. Correspondingly,
the transition function § is fitted by maximum likelihood and a set of tasks T are mapped to
this state space. To illustrate, let us take the task of moving from the position (—-1.9,1.05) to
(2.0,—5.6), mapping to the states labeled with “1’ and ‘51’ respectively as shown in Figure 5.2a.
Translating this into an initial state s, and reward function R, as described in Section 4.4.1,
results in an MDP (S, sy, 4, §, R) that can be solved using the VI algorithm to obtain a policy (and
value function). Then, to assess the performance in the simulator, this policy is employed, so
that the robot will follow the trajectory as shown in Figure 5.2b (n.b., additionally, the robot
might slip, so that it slightly deviates from this path). Then, with n being the recorded total
number of time-steps, a performance measure for this task is obtained through Equation 4.3.

5.2. Experiment Configurations

In this section an overview is provided of the experiments that have been performed with the
robot navigation implementation of the framework. Table 5.4 shows the auxiliary settings
used in the experiments for aspects like time-outs, parameter domain and goal radius for
each of the environments. Experiments are conducted for both the base framework and multi-
phase framework with each of the environments. The configurations for these experiments
are shown in Table 5.5 and Table 5.6 respectively.

The configurations were chosen with the aim of being able to identify how the results are af-
fected based on changes in the used acquisition function, weight factor, clustering algorithm
and the part of the dataset used. In each of these experiments data is stored that comprise
the generated evidence sets, log-files and the MDPs that yield the best performance. In the
next section the obtained results for each of these configurations are shown and discussed
accordingly.
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Figure 5.3: Plots showing a comparison of the resulting GP posterior for different dataset sizes. The plots corre-
spond to 20 iterations of the base framework on the tum_kitchen environment with § = 0.0, k-Means clustering
and MEI acquisition function used.

5.3. Results and Discussion

From the experiments that have been performed according to the configurations presented in
Section 5.2 results have been obtained that are discussed in this section. First, we present
and review the results obtained for the experiments that follow the base framework in Sec-
tion 5.3.1. Then, in Section 5.3.2 the results for the multi-phase extension of the framework
are presented and discussed. Each of the figures in these sections present plots for each of the
experiments, showing the resulting posterior from the gathered evidence, and the value V),
of the learned model in each iteration of the BO optimization process.

5.3.1. Base Framework

First off, we present and evaluate the results obtained from the experiments on the base
framework. As shown in Table 5.5, experiments have been performed on two different sim-
ulation environments: the small tum kitchen environment and the, in comparison, large
uol bl environment, for which the results are discussed in the following sections.

Tum Kitchen Environment

First of all, let us consider the results obtained for the small tum kitchen environment.
Overall, in Figures 5.4 to 5.6 one can see that the optimum 6,,,, is mostly found within similar
areas of the parameter space 0. In Figure 5.3 we compare the effect of using different dataset
sizes for learning MDPs. In Figure 5.3a, Figure 5.3c and Figure 5.3d the resulting GP is shown
after respectively using 100%, 75% and 50% of the dataset in the corresponding experiments.
One can see in Figure 5.3d that with 50% of the data employed, the observed model values V),
for different settings of 8 involve quite some noise. In this figure one can also see that the
GP is quite sensitive to this noise and accordingly over-fits on these observations, so that
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Figure 5.4: Plots showing a comparison of the resulting GP posterior for varying acquisition functions. The
plots correspond to 20 iterations of the base framework on the tum_ kitchen environment with § = 0.0 and
k-Means clustering used.
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Figure 5.5: Plots showing a comparison of the resulting GP posterior for varying acquisition functions. The plots
correspond to 20 iterations of the base framework on the tum_kitchen environment with f = 0.0 and GMM used.

the uncertainty about the parameter space is quite large. At the other hand, Figure 5.3c
shows that with 75% of the data the distinction becomes much more clear, even though the
higher variance is still present, particularly for larger settings of §. This clearly shows that
sufficient data is needed to avoid overfitting and obtaining more stable results with discernible
performance measures.
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Figure 5.6: Plots showing a comparison of the resulting GP posterior for varying settings of the g factor. The plots
correspond to 20 iterations of the base framework on the tum_kitchen environment with k-Means clustering and
MEI acquisition used.

Next, let us compare the results depicted in Figure 5.3a and Figure 5.4 where different
acquisition functions are used in the BO framework (i.e., MEI, GP-UCB and MEIPS respec-
tively). In addition, we present some plots that show how the different acquisition function
samples new observations in Figure 5.3b, Figure 5.4b and Figure 5.4d.

First of all, we see that in each of these experiments a global maximum is found in the
same area of the parameter space. For this environment the GP-UCB and MEIPS lead to a
more clear convergence to the area of the parameter space with the global optimum. The
benefits of the timing GP in the MEIPS is only limited for this environment as the time for
model learning and planning are closer together than for the uol bl environment.

Then, in Figure 5.5a and Figure 5.5b we see the plots for the experiments in which in-
stead GMMs are used for learning state spaces for our MDPs. We observe that again for
this algorithm, the optima are found within the same areas of the parameter space for both
experiments with different acquisition functions. The main thing we observe is that, the ob-
served model values V), is overall lower with the GMM employed in comparison to the values
observed with k-Means employed. Therefore, employing k-Means appears more suitable to
learn the state space for MDPs in our application of mobile robot navigation.

Finally, we look at the influence of the weight factor f for the small environment considering
the plots of Figure 5.3a, Figure 5.6a and Figure 5.6b. In this particular situation, one might
benefit from weighing Vprp in the model value, as it could make a clearer distinction be-
tween values for different settings of 6, because it cancels out part of the uncertainty from
the simulations. The intuition of why this works well for this particular environment can
be elucidated by Figure 5.8, which shows that the maxima of the V,rp and V5, measures
lie close together. However, setting f > 0 might also lead to a bias in other environments,
which is that, although V7, may have high value, computed policies may not work well in
the simulations or the real world.

UOL BL Environment

Let us next consider the results for the large uol bl environment. In Figure 5.7 plots are
shown for the experiments in which different acquisitions were used in the BO. One can
observe the optima found in each of these experiments lie close together. The experiment that
employs the MEI function, however, appears ineffective to find the same global maximum in
multiple repetitions. All in all, the GP-UCB and especially the MEIPS function appear most
effective in sampling parameter settings that result in MDPs yielding high performance.
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Figure 5.7: Plots showing a comparison of the resulting GP posterior for varying acquisition functions. The plots

correspond to the uol bl environment with § = 0.0 and k-Means clustering used.
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Figure 5.8: Plots showing a comparison of the resulting GP posterior for varying acquisition functions. The plots
correspond to 20 iterations of the multi-phase framework on the tum_kitchen environment with § = 0.0 and
k-Means clustering used.
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Figure 5.9: Plots showing a comparison of the resulting GP posterior for varying acquisition functions. The
plots correspond to 30 iterations of the multi-phase framework on the uol bl environment with § = 0.0 and
k-Means clustering used.

Table 5.7: Overview of the time expenses of a single iteration for model learning, planning and simulation with the algorithms used
in the experiments. The time expenses are presented as ranges for the smallest and largest MDPs learned for the environment.

Environment | Model Learning Time (s) | Planning Time (s) | Simulation Time (s)
tum kitchen 0.2-15.0 0.01-0.5 110-200
uol bl 1.0-60.0 0.05-5.0 100-700

5.3.2. Multi-Phase Framework

Next, we present and evaluate our results obtained in the experiments on the multi-phase
framework, for which the configurations are presented in Table 5.6. In these experiments,
first an optimization takes place of the model value computed solely from the value functions
for the tasks the system is expected perform. Only computing the value functions for MDPs
as is done in this first phase is relatively time-cheap (i.e., a matter of minutes) in comparison
to performing time-costly simulations (i.e., taking multiple hours) as is done in the second
phase. In Table 5.7 we present an overview to give an idea of the difference in time expenses
between learning MDP, running VI to compute plans, and running simulations in the Morse
simulator. In the plots in Figures 5.8a to 5.9b, the prediction mean resulting from this first
phase is depicted by a dotted line. In the second phase, the posterior from the first phase is
utilized to steer the acquisition of the first few samples as described in Section 4.5. The BO in
both of these phases is preceded by collecting a set of 5 random samples. The third phase of
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(a) One of the rooms in the (simulated) uol bl environment. (b) lllustration of the area of the earlier-learned state space
The mobile robot, seen in the top-right, is presented the task of interest. The resolution for the part of the state space as
of moving from its current location to a location in the main shown is too low, particularly, considering the state sz, which
hall, outside the room. might cause the robot to get stuck. The third phase of the

multi-phase framework therefore splits the state, as depicted
by the dotted red line, based on new centroids.

Figure 5.10: lllustration of the third phase of the multi-phase framework in a simulation of the uol_b1 environment.
The phase starts off with the MDP model learned in the previous phase, and further fine-tunes this model after the
robot gets stuck executing a new task.

the multi-phase framework will be covered separately, as it is mostly independent of the two
prior phases, being concerned with fine-tuning a specific MDP model rather than searching
for one.

Tum Kitchen Environment

First, we consider the experiments that apply the multi-phase framework to find an MDP for
path planning in the tum kitchen environment. In Figure 5.8a and Figure 5.8b one can see
that there appears to be a correspondence between the maxima of the posterior of the first
and second phase. Particularly, in Figure 5.8b we see a direct correspondence of the global
maximums, so that a proper model is found in the first few iterations of the optimization
process.

UOL BL Environment

Next, we consider the experiments that apply the multi-phase framework to the uol bl en-
vironment, for which the results are shown in Figure 5.9a and Figure 5.9b. As opposed to
the experiments on the tum kitchen environment, the prediction mean from the first phase
has a less evident correspondence with the maxima of the posterior of the second phase.
However, this does not prevent the BO of eventually finding a maximum for both of these
experiments in the same area of the parameter space. One thing that should be noted is
that for this environment there seems to be significantly more noise in the observations than
for the observations made with the smaller tum kitchen environment. We identified that
one aspect that influences the amount of noise is the size of the dataset for model learning,
having observed that with only half of our data significantly more noise could be observed.
Certainly we cannot exclude other causes for these highly varying observations, as part of it
is naturally caused by the uncertain dynamics being simulated, such as the robot slipping. It
could also be that assessing the performance based on a larger set of tasks or implementing
a mechanism for detecting outliers may result in more stable observations.
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Phase 3: MDP Tuning

Finally, we get back at the third phase of our multi-phase framework, in which the MDP
M obtained in the previous phase is further fine-tuned, given a set of new tasks. To in-
vestigate the expediency of this third phase, an implementation of the solution proposed in
Algorithm 10 has been made for the mobile robot navigation application.

Given a task to execute, the solution solves MDP M (with new initial state and reward
function for this task) for a policy, which it uses to perform the task. Then, if the controlled
robot gets stuck in a state sy in its attempt to complete the task, it starts to gather new
experience about the transitions possible from this state in a collection Eg;y. Based on this
new experience, the solution splits the state into a number of new (sub-)states through a
clustering of the observations in Eg;y, and accordingly updates the transition probabilities
based on the new data. The updated MDP is then used to compute a new policy for the task,
after which the agent tries to perform the task again. If the agent gets stuck in the same
state sy a clustering with higher resolution is applied to split the state.

For our implementation of this proof-of-concept solution, the mobile robot executes and
gathers new experience in a simulation environment. In gathering new experience, the mobile
robot stores the observations (i.e., odometric readings) it makes and the state s’ it ends up
in after executing an action a from these observations.

To evaluate the approach, we take the MDP M learned in the second phase of our last
experiment (i.e., see Figure 5.9b) for the uol bl environment. Then, a new task is presented,
which requires the robot to move from the corner of a room in the environment, as shown
in Figure 5.10a, to a location in the main hall outside the room. The problem, is that the
resolution in the learned state space § of M for this area is too low, as shown in Figure 5.10Db,
caused by the limited execution traces gathered for this area in the set E used for learning
the model. As a result, there is a considerable chance the robot gets stuck in the state
labeled s; € § from its starting location.

To take care of this, after the observation is made that he robot got stuck, the algorithm
makes the robot gather new data about the transitions possible from the different locations
within the state s; in which it got stuck. Based on this data, the algorithm clusters the
data to effectively split the state in two, well-nigh as shown in Figure 5.10b. The resulting
MDP with updated state space and transition probabilities then allows the mobile robot to
successfully accomplish the task (i.e., by the computed policy suggesting to move south and
west subsequently).

Although the algorithm works well for fixing small discrepancies like these in the model,
caused by limited data about a certain area of the environment, it is not well suited for
learning major parts of the model from the ground up. For such scenarios, one is better off
using existing RL solutions, such as continuous @-learning or active learning approaches
which use the learned MDP as a prior model (see Section 3.2).






Conclusions

The goal of this thesis is to provide a foundation for an algorithmic technique for learning
Markov Decision Processes (MDPs) for planning under uncertainty which maximize yielded
performance given a dataset describing the dynamics of a system that involves uncertainty.
This chapter presents a summary of the presented work and the contributions made in Sec-
tion 6.1 and revisits the identified research questions in Section 6.2. Finally, this chapter
concludes this thesis with recommendations and suggestions for future work in Section 6.3.

6.1. Summary of Contributions

Previous work in the field of probabilistic model learning for planning under uncertainty has
already presented us with various algorithms for learning Markov Decision Processes (MDPs)
offline from a dataset describing the dynamics of the system under consideration. The state
of the art however lacks an automated method of setting the hyperparameters of these learn-
ing algorithms so to best reflect the underlying system and maximize its performance in the
execution of the tasks it is expected to perform. To address this issue, we pose the adjust-
ment of the hyperparameters of such learning algorithms as an optimization task. In this
optimization task, the goal is to find the setting of the hyperparameters 6 which maximizes
the performance yielded by executing the plans or policies derived from the learned MDP.

In this thesis, we present a solution (which we refer to as the MDP optimization framework)
that employs the Bayesian Optimization (BO) framework for this optimization task, defining
a probability distribution over functions which maps parameter settings 6 to an assessment
of the value V), of a learned MDP. Although algorithms that employ the BO framework for
SDM problems do already exist, all of them are online RL approaches that do not utilize an
available dataset prior to interacting with the real-world environment. The model value V), of
an MDP, used as a relative performance measure in the optimization, is assessed based on
computed value functions and simulations of the tasks the system is expected to perform.

Additionally, we extended our proposed solution by exploiting the lower cost of computing
avalue function in comparison to performing time-expensive simulations, to define our multi-
phase optimization framework. That is, we define a first phase in which BO is performed to
maximize the average expected value for the MDP for a set of tasks to perform. The posterior
resulting from this phase is then used to steer the acquisition in a second optimization phase,
in which the performance in simulations over a set of tasks is being optimized.

Then, finally, we present a solution to further fine-tune the parameters of the MDP result-
ing from this optimization. This is done by increasing the resolution of the state space and
updating the transition probabilities where necessary, e.g., when the agent gets stuck in a
certain state.

An implementation of the aforementioned framework has been made for path planning
in a mobile robot navigation domain, in which a robot needs to move from one location to
another in an office environment. A dataset of execution traces with odometric readings has
been gathered based on which our implementation learns MDPs by clustering the data into
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a state space, with the number of states defined by the parameter setting 6. The implemen-
tation thus optimizes for an MDP that can produce policies for a mobile robot offline, which
can be followed to move from one location to another as fast as possible.

The results of the experiments show that our framework can effectively be used to obtain
an MDP for the path planning of a mobile robot. The first phase in the multi-phase framework
shows out to be able to steer the acquisition in the second phase towards a global maximizer
in some scenarios. And finally, the proof-of-concept implementation of the last phase, can
successfully be used to further fine-tune the parameters of a learned MDP when the mobile
robot gets stuck in some state when presented with a new task. However, it should be noted
that the last phase only has been tested on a single task (considering it is just an extra step
on top to potentially further improve MDPs), which means we cannot simply guarantee it can
be used to recover from all discrepancies that may be present.

6.2. Revisiting the Research Questions

To answer the main research question of this thesis, the four research questions presented
in Section 1.3 are revisited in this section. First off, the following research question is mostly
concerned with getting a good overview of the state of the art for learning MDPs from a dataset:

Research Question 1. Which learning algorithms exist that can be employed for learning
MDPs from data for systems involving uncertainty that require plans for automated control?

As seen in Section 2.1.3, one of the most straightforward methods can be deducted from
methods for fitting Markov Chains, i.e. by maximum likelihood or Bayesian inference. The
difference is in the addition of actions, so that a transition probability matrix needs to be
learned for each possible action, given some user-defined state space. For various domains,
such as that of mobile robot navigation, defining the state space may not be a trivial task,
although there are approaches for this, such as k-Means clustering or (time-)state merging
approaches, which are parameterized by the number of states. Then, when one needs to learn
partially observable models one needs to consider other approaches, as seen in Section 3.1,
to account for emission probabilities as well.

Research Question 2. How should a performance measure be defined which can be used to
fairly compare the value of different MDPs?

The value Vj; of an MDP M should be defined in terms of how well the agent performs
tasks based on the policies computed from the model. Therefore, first of all, the performance
can be estimated using the expected value in the initial state from the value function for
multiple tasks. However, as a model abstracts from the real world, using the value function
to express model value is not always sufficient. Therefore, a more accurate estimation can
be made through simulations of the tasks the system is expected to perform, discounting the
obtained reward based on the number of steps made. Combining these estimations results
in the expression shown in Equation 4.5 in Section 4.4.1, which can be used as a relative
performance measure of different MDPs for an environment.

Research Question 3. How can the parameter space of model learning algorithms cost-
effectively be explored towards a global maximizer with only limited knowledge about the
system under consideration?

We have seen that making an accurate assessment of the value of an MDP requires time-
expensive simulations to be performed. Therefore, it is important to limit the number of
evaluations of a parameter setting for the used model learning algorithm, with BO emerging
as an attractive framework for optimization. As we have seen in our experiments, BO could
effectively be employed to explore the parameter space with a limited number of evaluations.
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Research Question 4. How can the hierarchy of different abstraction levels be exploited to
find a performance-maximizing MDP in a more cost-effective way?

This research question has been addressed by the multi-phase framework proposed in
Section 4.5. In the first phase BO for an MDP with the model value based solely on the value
functions for the set of tasks over which to evaluate the performance. The resulting posterior
is then used in the second phase to steer the acquisition of the first few samples. In our
experiments we have seen that it is possible to use the first phase to successfully steer the
optimization in the second phase towards a global maximizer.

Putting our findings for our sub-questions together, we provide an answer to our main
research question reiterated below.

Main Research Question. How can the task of obtaining a (discrete) MDP that maximizes
the yielded performance of executing plans that are derived from it, given a dataset about the
system under consideration, be automated?

As handcrafting MDPs for systems with uncertain dynamics is a difficult task, an appeal-
ing approach is to employ learning algorithms to automate this task. To learn an MDP which
maximizes performance yielded from following the policies computed from it, one needs to
properly adjust the hyperparameters of these algorithms. As evaluating all possible hyper-
parameter settings may be a cost-expensive endeavor, the parameter space of model learning
algorithms may be explored more effectively using the sequential model-based optimization
framework known as Bayesian Optimization (BO). To compare MDPs, assessments of their
value can be made at different levels of abstraction, i.e., based solely on the MDP and its value
function, based on performance in simulations, or based on performance in a real-world en-
vironment. Additionally, it was found that assessments on a higher level of abstraction (with
lower costs) can be employed to steer the optimization on a lower level of abstraction towards
the area of the parameter space that maximizes the performance. However, we should note
that to give a conclusive answer to our main research question, we need to investigate how
well our methodology works for different application domains.

6.3. Recommendations and Future Work

As the framework proposed in this thesis is targeted at offline planning, the policies com-
puted from resulting MDPs can only to a certain extent account for the exogenous events in
the environment. Suppose an agent for a mobile robot, like in our example application, is
employed in the real world and at some point the planned path is obstructed. In this sce-
nario the agent will be unable to get to its target location based solely on the policy that was
computed offline. To account for these scenarios, first off, one could choose to periodically
explore the environment (using the current model as a blueprint, as in [26]) and update the
model parameters accordingly instead of having just a single exploration phase. An alterna-
tive is to employ the learned MDP in one of the model-based RL methods seen in Chapter 3,
which automatically balance exploration and exploitation.

Another issue that might be interesting to address in future work, is to identify whether
or not sufficient data is available for learning an appropriate MDP model. Although in our
experiments we were able to observe a high level of noise and overfitting on smaller datasets,
still the problem exists of how to assess what dataset size is appropriate and whether or not
the dataset covers the complete environment.

Considering the optimization aspect of the presented framework, one of the issues that
were identified, is that selecting the acquisition function and the hyperparameters of the GP
prior for BO is not a trivial task. For future work, we recommend the use of the portfolio
allocation [39, 68] and integrated acquisition [72] functions, discussed in Chapter 2, which
ease the above task as they reduce the number of choices that need to be made.
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Probably one of the most interesting directions for future work is to examine and experi-
ment with model learning through our framework for different domains. The main question
then is whether or not the application domain under consideration can provide a dataset
that describes the dynamics of the system and allows for learning probabilistic models.
Considering that MDPs and especially POMDPs are data intensive, one should carefully con-
template the contents of the dataset and whether they allow for learning transition prob-
abilities, emission probabilities, state spaces and/or observation spaces which accurately
reflect the dynamics of the underlying system. One recommendation is to look into learning
POMDPs for spoken dialogue systems [16, 60, 82]. Recently, there has been much interest in
modeling the dialogue manager of these systems this way, although estimating their dynam-
ics is quite a difficult task, and so it is desirable to automate this process. As an example,
in [16], the POMDP’s components (i.e., state space, observation space, transition and emis-
sion probabilities) are learned based on a dataset of human-to-human dialogues. For such
domains, our framework may prove useful in learning a probabilistic model that maximizes
the performance of the system. For other potential application domains, one may want to
consult [14] which presents a variety of applications for POMDPs which may potentially be
learned from data.

Another topic we briefly touched upon in Chapter 2 is automated model checking, which
encompasses techniques for formal model verification through temporal logic formulas. Ex-
amples can be found in [6, 45] where LTL formulas are used to formally express temporal
goals and produce a ‘product-MDP’ to derive plans which (partially) satisfy these formulas.
An interesting direction for future work would be to investigate the possibilities of combining
such model checking techniques with our framework. That is, combining the methods from
automated model checking and model learning through our framework, one may be able to
develop a framework that optimizes for an MDP which is best capable of satisfying a collection
of LTL formulas.
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