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Abstract

The digitalisation of financial markets has led to an increase in the share of trades being executed by
algorithmic trading systems. A key application of these algorithms arises when a trader needs to buy
or sell a large volume of shares within a fixed time window. The trader must decide between placing
reliable but costly market orders or cheaper limit orders, at a risk of not filling her target amount
within the desired time frame. This is known as the Optimal Placement Problem (OPP) and this
thesis aims to provide a general solution to this problem.

Our research builds forth upon two models. The first, proposed by Cont and Kukanov [2017] [15],
formulates the problem as a stochastic convex optimization problem. This model provides a static
solution to the OPP, where the trader can only place orders at the initial time. We extend their model
beyond the best quote price-level to consider any number of price-levels. This generalization still allows
us to derive analytical expressions for the optimal placement strategy, including a closed-form solution
under the assumption that market and limit order arrivals follow exponential distributions.

However, large deviations in the calibrated parameters or distributions can lead to substantially
higher costs. A dynamic strategy that allows the trader to adjust her placement strategy at intermedi-
ate times offers increased flexibility and resilience against such unexpected order flow deviations. The
second model, proposed by Cartea and Jaimungal [2015] [5], provides such a dynamic solution and
frames the problem as a stochastic optimal stopping and control problem. We extend this model to
include mid-price drift and a general running inventory penalty, and formulate a recursive expression
for the general optimal strategy for an inventory of any size.

The static solution gives an accurate, efficient and robust indication of the optimal allocation for
larger inventories and longer trading windows. The dynamic solution, on the other hand, is more
effective at liquidating (or acquiring) smaller inventories in shorter time frames at an optimal price,
by providing a precise, adaptive strategy in volatile market conditions.

Overall, this thesis improves our understanding of the Optimal Placement Problem by analytically
deriving its solution under two distinct model setups: the static model of [15] and the dynamic model of
[5]. In the static approach, we find the optimal allocation switches from limit orders at one price-level
to the next at distinct critical points. This provides an intuitive and broadly applicable rule of thumb
for practical implementation, leading to lower expected costs across the board. The optimal strategy,
derived from the dynamic model, leads to higher average earnings per share than benchmark models
like the Time Weighted Average Price, the solution only considering limit orders and the solution found
in [5], by taking into account market orders and possible mid-price drift.

Future extensions, such as testing on different arrival distributions, depth discretisation, parame-
ter calibration and using heuristic methods to improve computational speed, could further assess the
practical viability and performance trade-offs of these strategies in real-world trading systems.

Keywords: Limit Order Books, Optimal Order Placement, Convex Optimization, Optimal Control
Theory, Optimal Stopping Theory, Dynamic Programming Principle, Queueing Systems, Hamilton-
Jacobi-Bellman Equation, Algorithmic Trading
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1 | Introduction

Technological advancements in financial markets have led to an increase in trades being performed
by algorithms. In 2019, algorithmic trading accounted 92% of all traded equity volume in the United
States [30]. Traders range from small retail investors to specialised market-makers, each trading not
only for speculative investment purposes, but also for risk hedging strategies, arbitrage, and liquidity
provision.

Electronic platforms replaced traditional floor trading, enabling traders to trade at ultra-high
speeds. High-frequency trading (HFT) firms use algorithms to place and cancel orders within microsec-
onds. Traditional financial institutions like banks and hedge funds have also embraced algorithms to
execute large volumes of trades. This shift drives the need for fast and efficient algorithms and the
ability to process large amounts of data in real-time.

A key challenge in trade execution is buying or selling a large amount of shares in a finite time
horizon. To mitigate negative price impact, the trader must decide how to split up the large parent
order into smaller child orders. This is known as the Optimal Execution Problem, and has been vastly
studied in the literature. Once this order scheduling decision is made, a trader must decide how to
allocate each child order between market orders (which execute immediately but incur higher costs)
and limit orders (which offer better prices but may not be filled in time). This is called the Optimal
Placement Problem and will be the focus of this thesis.

Solving the Optimal Placement Problem is of critical importance. Even small improvements in
execution efficiency can yield substantial cost savings. For example, Almgren and Chriss [2001] [1]
estimate that a 10 basis point improvement in execution price translates to millions of dollars saved
annually for large institutions. Poorly placed orders may either miss execution entirely or lead to
unfavourable price impact due to adverse selection. Moreover, the decision must be made under
uncertainty, as future order flow, price movements, and cancellations are inherently stochastic.

In this thesis we aim to derive tractable analytical solutions to the Optimal Placement Problem,
providing insight into how order book features, such as queue size, spread, depth, and cancellation
rates, affect optimal order allocation. First, we build on the static model proposed by Cont and
Kukanov [2017] [15], which poses the problem as a stochastic convex optimization problem. Next, we
explore a dynamic model, as proposed by Cartea and Jaimungal [2015] [5], which poses the problem as
a stochastic optimal stopping and control problem in which the trader optimally adapts her placement
strategy over time in response to evolving market conditions. Together, these two approaches offer
complementary perspectives: one focusing on immediate placement under static assumptions, and the
other incorporating adaptive decision-making in a dynamic environment.

1.1 Limit Orders Books

In order to buy any asset, someone who owns that asset has to be willing to sell it. In financial markets,
trading occurs through the matching of these buyers and sellers. For trading to take place, there must
be a buyer willing to purchase at a certain price and a seller willing to sell at that same price. This is
done by placing orders in a digital order book, where all outstanding buy and sell orders are recorded
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Figure 1.1: A schematic representation of the limit order book with a price-time priority [18]

and matched according to specific rules.
While there are many trading mechanisms (e.g. request-for-quote, dark pools and over the counter

markets) trading is often done in limit order books, which are crucial to the functioning of modern
financial markets. A limit order book is a record of all outstanding limit orders for a particular asset
(share, bond, commodity etc.), organized by price-level. It displays the buy orders (bids) and sell
orders (asks) that have been placed but not yet executed. These orders are placed as buy/sell limit
orders, which indicate that a trader is willing to buy/sell at the price at which the limit order is placed.
The order book consists of discrete price-levels with one "tick" difference between each level. The best
bid is the highest price someone is willing to buy at, and the best ask is the lowest price someone is
willing to sell at. The difference between the best bid and best ask is known as the (bid-ask) spread.
The depth of a placed limit order refers to how far below (for a buy order) or above (for a sell order)
the best bid/ask the order is placed. When a market order is placed, it is immediately executed at the
best available price, which means it will match with the best bid (if it is a sell market order) or ask (if
it is a buy market order) in the book, filling the first outstanding limit order at the best bid/ask price.

Most exchanges employ a price-time priority policy to organize limit orders. At a given price-level,
orders are executed in the order they were received (first-in, first-out or FIFO). This creates queues
at each price-level: a newly submitted limit order joins the back of the queue. When a matching
order arrives, it is matched with the first order in the queue. If a market order exceeds the size of the
best quote, it walks up the book, executing against multiple levels. This queueing mechanism ensures
fairness and transparency in the trading process.

Mathematically, a limit order book (LOB) can be modelled as a multi-level queueing system, where
each price-level represents a queue of buy or sell orders. The arrival processes include market orders
(MOs), which are executed immediately, limit orders (LOs), which are added to the book at the
specified price-level, and cancellations, which remove outstanding limit orders from the book. These
three processes dictate the dynamics of the entire LOB and can be described stochastically, such
as Poisson processes [15], while the queue dynamics at each level can be modelled as Markov jump
processes or diffusion approximations [34][19]. These models capture the probabilistic nature of order
arrivals, cancellations, and executions, providing a framework for analysing market microstructure and
developing effective trading strategies. Figure 1.1 shows a typical schematic representation of the limit
order book.
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1.2 Optimal Placement Problem

Common tasks that banks, flash-traders, and other market participants often face are adjusting their
position, risk, or exposure. This is done by liquidating or acquiring a (large) number of shares within
a certain period of time. After the decision has been made to execute a child order at certain moment,
within a specific time frame and the problem comes down to where in the LOB and when in the time
frame the trader must place her orders. This problem is not studied as thoroughly in the literature,
and we choose to call this the Optimal Placement Problem (OPP) (as in [23]), which will be the
focus of this thesis.

In principle, a trader favours acquiring/liquidating their target quantity using limit-orders, because
they avoid crossing the bid-ask spread and often earn a rebate for providing liquidity to the market.
The structure of this rebate depends on the trading venue: it could be a fixed amount per share or a
percentage of the transaction value. However, placing only limit orders, or limit orders too deep into
the book, carries the risk that they may not be filled in time. This could force the trader to execute
market orders at the end of the time period to fill the remaining inventory, potentially at unfavourable
prices. On the other hand, if the trader chooses to execute only market orders, she risks "walking
up the order book", meaning she will have to pay higher prices as they exhaust the liquidity at each
price-level. Due to the fact that these market orders are in essence "liquidity-taking", they are often
penalised with a fee. Another factor to consider is the price impact of placing orders on a certain side
of the order book, as placing buy market or limit orders generally shifts the price of the assets upward
[12]. Almgren and Chriss [2001] [1] estimate that a 10 basis point improvement in execution price
translates to millions of dollars saved annually for large institutions.

Mathematically, the problem boils down to determining how many market orders to place, how
many limit orders and at what depth to place these limit orders. The trader aims to minimise the
expected total cost, which includes the cost of execution (the price paid or received for filled orders)
and the cost of non-execution (the penalty for not filling orders by in the set time frame). This can be
modelled in many different ways, as we will see in the Literature section. The solution to this problem
often involves trade-offs between immediacy (using market orders) and price improvement (using limit
orders), while considering the risk of under-filling the target amount of shares.

In practice, many traders, especially retail investors, might only use market orders for simplicity,
accepting the potential for higher execution costs. One common strategy is the Time-Weighted Average
Price (TWAP), where orders are split evenly over time to reduce market impact. Another is the
Volume-Weighted Average Price (VWAP), which aims to match the volume profile of the market over
the trading period. More advanced strategies involve optimising over targeting schedules, where the
trader specifies a desired execution profile and adjusts the order placement accordingly [1][8].

In this thesis, the main question we try to answer is:

What is the optimal allocation of orders between market orders and limit orders at various
price levels in a limit order book, to minimize trading costs while ensuring timely execution?

We will build on existing work by Cont and Kukanov [2017] [15], first formulating the static version
of the problem, where the trader has to place all her orders at time t = 0 and wait until the terminal
time to place any market orders to fill the under-filled target amount. We extend on the paper by [15]
generalising it to consider multiple price levels deeper in the LOB. Next we formulate the OPP as a
dynamic optimal stopping and control problem, as in [5], where a trader optimises the depth at which
to place her limit orders at every time between the initial and terminal time (control) and when to
place market orders instead (stopping). We extend on this paper by considering possible drifts in the
mid-price, introducing fees and rebates for filled market and limit orders respectively, and a general
remaining inventory and running inventory penalty function.

These two models complement each other nicely. The static model creates an intuitive sense of the
dynamics of the whole queueing system underlying the LOB and how an optimal order allocation is
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influenced by different LOB events, even for trading large inventories across longer time windows. The
dynamic model then focusses our perspective on finding a strategy that is precisely optimal for smaller
inventories, re-assessing our strategy at every time step and adapting to changing LOB conditions.

1.3 Literature

In the literature, many different ways to model the LOB have been proposed, each with their own
(dis)advantages. These models allow us to describe the dynamics of the LOB, providing solutions to
many different problems. Some important problems are finding the filling-probability of limit orders,
predicting movements in the mid-price and the OPP, which we will be looking at. The mathematical
model for the LOB that is chosen is crucial in determining the approach to solving these problems.

1.3.1 Models for Limit Order Book Dynamics

Accurately modelling and simulating limit order books is very important for both researches and
traders. Having an accurate simulation of an LOB not only allows for prediction of future LOB events,
but also for the back-testing of algorithmic trading strategies and a richer set of training data to run
the strategy on.

When modelling a limit order book several points of focus can be taken. Taking the mid-price as a
central focus point, modelled as a (correlated) random walk [19][23] or a mean reversion process [24], is
known as the centred order book representation [28][14]. Changes to the spread and best price queues
occur when incoming market orders deplete these queues. These market orders have been modelled as
simple Poisson point or jump processes [32], simple Hawkes processes [33], but in later work also as
Compound Poisson [2] and Compound Hawkes processes [28]. The arrival of market orders, the arrival
of limit orders and the cancellation of limit orders completely determine the evolution of the order
book in this model. This has the advantage that only these 3 processes need to be modelled accurately
to simulate the dynamics of the LOB. Since the 3 processes describe actual real-world events, these
types of models closely represent real LOBs and offer intuitive insights into their mechanics. For these
reasons we chose to adopt the model introduced by Cont and Kukanov [2017] [15], where the queues
in the LOB are depleted by incoming market orders and cancelled limit orders and the queues are
formed by incoming limit orders. These events are modelled as random variables with no specified
distribution, requiring minimal assumptions.

Another modelling approach focusses on the shape of the limit order book, by representing the
state of the order book as (a pair of) densities, described by a system of stochastic partial differential
equations (SPDEs) [16][26]. The shape of the order book could help indicate the direction of the
movement of the mid-price, based on the imbalance in the bid and ask volumes [6] or the evolution of
the incoming market order flow, also referred to as the Order Flow Imbalance [7][4][31]. These models
capture volume distribution and features like convexity, depth resilience, and dynamic liquidity, and
are useful when solving problems where mid-price movement play an essential role. The drawbacks of
these models is that they can are computationally complex and they require some strong assumptions
and simplifications, making them less representative of the real mechanics behind the LOB.

Lastly placed orders could be the focus of the model, treating the filling of an order as a birth-
death process. Survival analysis is particularly useful in this case, as it is able to handle variables that
are partially censored or truncated, like cancelled limit orders. The hazard function, which describes
the probability that an order remains unfilled until a certain time, can then be derived analytically
using underlying assumptions (as in [32]), but is more commonly derived using deep-learning methods
[37][38][10]. Although these types of models often require strong assumptions, they allow for analytical
solutions for problems where the fill probability of a limit order plays a central role. For this reason we
choose to adopt the model introduced by Cartea and Jaimungal [2015] [5] as our second model, to find
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a dynamic trading strategy. It assumes limit orders can be placed at a continuous depth in the LOB
and have an exponential probability distribution, that describes the probability that a limit order is
filled when a market order arrives.

Recently, machine-learning methods have become very popular, not just in the case of survival
analysis. In [25], they use machine-learning to forecast mid-price movements and [31] use neural
networks to model the order book shape, but these methods require large amounts of training data
and provide relatively little tractable insights in the inner workings of the limit order book.

1.3.2 Models for the Optimal Placement Problem

The Optimal Placement Problem (OPP) addresses the question of how a trader can optimally allocate
an order across different types (limit or market) and price levels in a limit order book (LOB) to
minimize expected execution cost or maximize execution probability. In this subsection we will go
through the different models for the OPP used in the literature and the different scopes considered,
before motivating our choice of model.

Firstly, we look at static models. In Markov chain models (as in [11]), the dynamics of the LOB are
approximated as a discrete-time or continuous-time Markov process, where states may represent queue
sizes, price levels, or order book imbalances. The OPP becomes one of determining the probability that
a limit order is executed before the mid-price moves unfavourably, along with the expected execution
price. Guo et al. [2013] [24] find the static optimal placement strategy by minimising a cost function,
where the fill probability of limit orders at a certain depth is determined by the movement of the mid-
price, modelled as a random walk. Cont and Kukanov [2017] [15] also formulate the OPP as a convex
optimization problem, modelling the expected cost of execution as a function of the allocation of an
order across MOs and limit orders at different price levels. Their static framework assumes a known
distribution of LO and MO arrival and LO cancellation rates and fill probabilities are determined by
these three events. Both papers find a static solution, where the trader may only place her orders at
the initial time and execute any unfilled orders at the terminal time as MOs. The main strength of the
optimal strategy found in [15] lies in its ability to capture the true workings of a limit order book and
provide tractable solutions. However, it lacks the flexibility to adapt in real-time to market changes,
as the optimal strategy is computed once and not updated dynamically.

Other researches model the OPP in a dynamic setting resulting in optimal strategies that can be
adapted at intermediate times. Cartea, Jaimungal, and Ricci [2014] [9] formulate an optimal order
placement strategy by modelling the LOB using a system of SDEs and use dynamic programming
to derive optimal policies. Aydogan and Ugur [2023] [3] extend this to multi-period settings and
include stochastic price impact and inventory risk. Although these methods are accurate at capturing
intricate details of the LOB, their complexity makes analytical solutions unattainable and their dynamic
programming equation often has to be solved numerically. Cartea and Jaimungal [2015] [5] formulate a
dynamic optimal stopping and control problem where the trader optimally decides, at each time step,
whether to place a market or a limit order (and at what depth). Assuming an exponential distribution
for the fill probability of limit orders allows for the derivation of a closed form analytical solution. This
offers an intuitive explicit adaptive trading strategy that allows the trader to re-optimise at every time
point, leading to precisely optimal strategies.

Now, some models restrict their scope to only limit orders, typically at the best bid or ask level.
For instance, Gueant et al. [2012] [21] and Cartea and Jaimungal [2015] [8] consider only passive
limit order execution and focus on the fill probability of these limit orders. [20] extends the model
from [8] to also consider mid-price drift, but considering only limit orders can result in trivial optimal
strategies, especially for a trader looking to acquire/liquidate a large inventory or when mid-price drift
is unfavourable.

Other researches, on the other hand, allow for both market orders and limit orders, but the focus
is limited to choosing between a market order (MO) or a limit order (LO) placed at the best bid or
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ask price, often without considering the possibility of placing orders deeper into the LOB (e.g., Guo et
al. [2023] [25] and Guilbaud and Pham [2011] [22]). Figueroa-Lopez et al. [2017] [19] allow for market
and limit orders at any depth, but only consider the optimal placement of 1 order, rather an inventory
of multiple orders. Considering market orders and limit orders at all depths allows for a truely optimal
strategy even in a broader spectrum of cases (like high order-flow, significant mid-price drift or short
time frames).

Recently, reinforcement learning (RL) has gained popularity for solving the OPP without requiring
full knowledge of the underlying LOB dynamics. Karpe et al. [2020] [29], Fang et al. [2022] [17], and
Schnaubelt [2021] [35] train deep RL agents to learn optimal order placement policies from historical
LOB data. These models can uncover non-intuitive strategies and perform well in complex, high-
dimensional environments. However, they require substantial amounts of training data and may lack
interpretability. Additionally, RL policies are difficult to analyse formally, which can be a drawback
for risk-sensitive trading environments.

The most general formulation of the OPP considers the full LOB, allowing placement of MOs and
LOs across all levels and inventory sizes. We first choose to adopt the mode by Cont and Kukanov
[2017] [15], as it very closely represents the mechanics that govern a real LOB, and allows for an
analytical solution to the OPP for any inventory size considering market orders and limit orders (at all
price-levels). Since deviations in the expected order flow can significantly throw off the static optimal
allocation, we then look for a dynamic strategy that allows the trader to re-evaluate and adjust her
strategy, while still considering the most general OPP formulation. Cartea and Jaimungal [2015] [5]
propose frameworks that allow for (extensions to) such generality. Furthermore, these models allow for
analytical solutions to this general formulation of the OPP, giving tractable insights in the workings
of optimal placement strategies.

1.4 Main Contributions

This thesis builds on two models that provide analytical solutions to the OPP. Firstly, we will build
on existing work by Cont and Kukanov [2017] [15], extending the paper by considering multiple price-
levels deeper in the LOB, rather than just the decision between market orders and limit orders at the
best price level. We derive a general expression for the solution to the n price-level case, without any
assumptions on the probability distribution of market order arrivals, limit order arrivals and limit order
cancellations. Furthermore, we assume these three events are exponentially distributed. This allows us
to derive the analytical expression for cumulative distribution function (CDF) for the convolution of
the order outflows at the different price-levels. The expression of this CDF allows us to represent the
solution of the OPP explicitly, allowing us to exactly determine the optimal number of market orders
and limit orders and at what price-level to place the latter.

Secondly, we formulate the OPP as a dynamic optimal stopping and control problem, as in [5]. In
this model a trader optimises the depth at which to place her limit orders at every time between the
initial and terminal time (control) and when to place market orders instead (stopping). We extend on
this paper by formulating the optimal solution for general inventory size, rather than only providing
analytical solutions for inventories of size 1 or 2. We derive a recursive formula for the optimal depth at
which to place limit orders and the optimal stopping time at which to place market orders. Furthermore
we extend the model by Cartea and Jaimungal [2015] [5] by considering possible drifts in the mid-price,
introducing fees and rebates for filled market and limit orders respectively, and a general remaining
inventory and running inventory penalty function.
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1.5 Thesis Structure

Chapter 2 introduces the two models of the limit order book that are used in this thesis. Chapter
3 provides the mathematical preliminaries required to understand the derivations of the solutions.
Next, in chapter 4, we will start with the static model and derive its general solution for n price-
levels. In chapter 5 we move on to the dynamic model and derive its general solution for all inventory
sizes. Chapter 6 shows the numerical results, where we analyse the solutions found and compare them
to benchmark strategies. Chapter 7 concludes with the most important conclusions and discussion,
followed by the proofs to our propositions in appendix A. Appendix B contains long derivations and
other work less important to the main body of this thesis and my code for making the plots can be
found in appendix C.



2 | Model of the Limit Order Book

In section 1.1 of the Introduction we explain how the limit order book works and section 1.3 shows
different ways the LOB has been modelled in the literature and our motivation for the chosen models.
In this chapter we will explain the chosen models in further detail, before moving on to solving the
Optimal Placement Problem in both models in chapter 4 and 5.

This thesis uses 2 different models for the limit order book. Section 2.1 describes the static model
from the paper by Cont and Kukanov [2017] [15] and section 2.2 describes the dynamic model from
the paper by Cartea and Jaimungal [2015] [5]. In the first model in chapter 4 the dynamics of the
limit order books are determined by the number of arriving market orders, arriving limit orders and
cancelled limit orders. Each is modelled as a stochastic random variable, which allows us to calculate
the expected cost of any order allocation analytically. The OPP then becomes a "static" convex
optimization problem, where we minimise the expected cost function. In the second model in chapter
5 we directly model the filling-probability of a limit order placed at a certain depth, conditional on
the arrival of a market order. The arrival of market orders is subsequently modelled as a Poisson
process, to be able to calculate the expected number of filled limit orders a different depths. Using this
model the optimal allocation problem considering both limit and market orders becomes a stochastic
optimal stopping and control problem. The value function of the continuation and stopping scenario
is optimised and compared at every time, to find the "dynamic" optimal allocation strategy.

2.1 Static Model

The first, static model was introduced by Cont and Kukanov [2017] [15] and is centred around the
mid-price. Half of the spread, h, below the mid-price is the best buy quote, and half of the spread
above the mid-price is the best sell quote. We look at a case of the Optimal Placement Problem,
where a trader wishes to buy S shares, but if the trader was selling the problem would be completely
analogous. One "tick size", δ, below the best buy quote (the first price-level) is the second best buy
quote (the second price-level) and another tick size below that the third etc.. At every-price level there
is a queue of outstanding limit orders, Q1, Q2, Q3, .... The traders’ order placement problem consist of
deciding how many market orders M to place and how many limit orders Li to place at each price level
i = 1, ..., n. This order placement decision can be summarized by a vector XXX = (M,L1, ..., Ln) ∈ Rn+1

+

of order sizes.
The evolution of the limit order book is then determined by three processes: the arrival of market

orders, the arrival of limit orders and the cancellation of limit orders. The number of arriving market
orders in the time frame t ∈ (0, T ) is described by the stochastic process µ ∈ (0,∞). The cancelled
limit orders from each queue Q1, Q2, Q3, ... is described by the stochastic process γ1, γ2, γ3, ..., where
γi ∈ (0, Qi). The arriving limit orders at each price-level after time t = 0 is also a stochastic process
denoted by η1, η2, η3, ..., with ηi ∈ (0,∞). The cancelled limit orders only apply to the orders in the
existing queue at t = 0. For the limit orders after that, ηi describes the net new number of limit orders
that have arrived at time t = T , so not counting the ones that have been placed and cancelled inside
the time frame t ∈ (0, T ).
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Figure 2.1: Schematic representation of the static model

To allow for analytical solutions and for ease of notation we describe the evolution of the LOB in
terms of the outflows from each queue, rather than the three separate stochastic processes mentioned
in the previous paragraph. The outflow at the first queue, ξ, is made up of the arriving market orders
and the cancelled orders from the first queue,

ξ = µ+ γ1 (2.1)

with ξ ∈ (0,∞).
From the second queue, the outflow is obviously also determined by the number of incoming market

orders, but since this is already captured in ξ, we define the (extra) outflow from the second queue, ψ1,
as the number of cancelled limit orders from that queue minus the number of limit orders that arrived
before this queue (at the first price-level after t = 0). In general, the outflow from price-level i + 1 is
given by

ψi = γi+1 − ηi (2.2)

with ψi ∈ (−∞, Qi+1). The reason we subtract ηi is because arriving limit orders are actually inflow,
rather than outflow, since market orders have to deplete those first before they start to fill limit orders
at price-level i+ 1.

The Optimal Placement Problem in this model comes down to a trader, who is looking to buy S
shares within the time frame t ∈ (0, T ), deciding how many market orders and limit orders to place
at what price-level. In Figure 2.1 we can see how the order outflows influence the number of trader’s
orders that are filled at each price-level i, OFi. To start filling L2 orders, the incoming market order
must first deplete (Q1 − γ1), L1, η1, and (Q2 − γ2).
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2.2 Dynamic Model

Where in the static model the trader had to make her placement decision at time t = 0 and wait until
the terminal time t = T to fill any remaining orders as market orders, the dynamic model allows the
trader to make decisions at intermediary times, adapting to the current market conditions.

In this dynamic model of the OPP, introduced by Cartea and Jaimungal [2015] [5], the trader is
looking to sell the shares in her inventory. This model combines an optimal stopping problem and
an optimal control problem. At each point in time the trader faces a choice between selling a market
order (stopping) or placing a limit order at a certain depth δ (controlling). This decision is based on
the value function associated with either selling a market order or placing a limit order at the optimal
depth. If the value of continuing to place a limit order at the optimal depth is higher than the value
of stopping and placing a market order, she will place a limit order, controlling the depth at which it
is placed at every time step. Once the value of stopping is equal to the continuation value, she will
place a market order, as this value is guaranteed rather than uncertain like the value of limit orders.
The value function depends on the trader’s wealth, the size of her inventory I, the time she has left to
liquidate the inventory T − t and market conditions like the mid-price p and incoming market orders
ν.

Stopping guarantees the trader will sell a market order. However, when a limit order is placed the
probability that it is filled depends on the depth it is placed at and the arrival rate of incoming buy
market orders, λν . The probability that a limit order, placed at a depth δ, is filled when a buy market
order arrives is assumed to be

P (δ) = e−κδ (2.3)

where κ > 0. At every point in time the trader optimizes the depth at which she places her limit
orders, making sure they are deep enough to sell at an attractive price, but not too deep ensuring they
are filled within the desired time frame. When the trader places a market order or her limit order is
filled, her inventory size decreases by 1. She then faces the same decision again, this time governed by
different value functions, due to her smaller inventory size.

The trader wishes to liquidate her entire portfolio before the terminal time T , so whatever inventory
she is left with at an instant before this terminal time, she will liquidate in the form of market orders.

We see that for the static model the focus was on the queue at each price-level, and the LOB
dynamics were described by the three main LOB events. The dynamic model, on the other hand,
focusses on the mid-price, and the dynamics are described in terms of the filling probability of a limit
order at a certain depth.



3 | Mathematical Preliminaries

In this chapter we introduce preliminary mathematical concepts and theory which are used throughout
this thesis.

For the static model the underlying mathematics is simpler: we minimize a cost function, use con-
voluted probability distributions to express our solution and we require numerical solvers to minimize
(or find the root of) mathematical equations which cannot be solved algebraically in a general sense,
like transcendental equations.

For the dynamic model we will require more advanced theoretical frameworks. Firstly we express
the Optimal Placement Problem as a dynamic programming problem that combines stochastic control
theory and an optimal stopping problem. To solve it we must apply Ito’s Lemma to arrive at a
Hamilton-Jacobi-Bellman equation which can then be solved iteratively as an Ordinary Differential
Equation.

3.1 Numerical Methods for Root Finding

Throughout this thesis we encounter moments where we want to find the root of certain expressions,
for the static model to find the optimal order allocation in equation (4.47) and for the dynamic model
to find the optimal stopping time in equation (5.52) for example. In this thesis our aim is to derive
an explicit formula for the optimal allocation of orders, but some expression are too complex (or even
impossible) to solve algebraically. In that case, we need numerical minimizers or root finders to find
our solution.

In this work, we encounter transcendental equations of the following form several times:

eAx + eBx + c = 0

where A, B, and c are constants derived from the problem’s constraints, and x represents the variable
to be solved, like the position, time, or parameter optimizing the placement. These equations cannot
be solved in closed-form, in terms of elementary functions, due to the different exponential terms. This
section explores both analytical and numerical approaches to solve such equations, evaluates their
applicability, and justifies the adoption of the Newton-Raphson method as the most suitable technique
for our purposes.

3.1.1 Analytical Methods

Analytical solutions, which yield exact expressions for x, are desirable but challenging for transcen-
dental equations. We consider a few special cases where such solutions are feasible:

• Case 1: A = B
If A = B, the equation simplifies to 2eAx + c = 0, yielding:

eAx = − c
2

⇒ x =
1

A
ln
(
− c
2

)
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This solution requires c < 0 to ensure − c
2 > 0, making the logarithm real-valued. While elegant,

this case is unlikely to hold universally in the optimal placement context.

• Case 2: B = kA
If B = 2A, let u = eAx, transforming the equation into u + u2 + c = 0. Solving this quadratic
equation for u gives:

u =
−1±

√
1− 4c

2

Taking the positive root (since u > 0) and back-substituting, x = 1
A ln(u). This approach depends

on a specific relationship between A and B, which may not apply generally.

In the absence of such relationships, an analytical solution is not possible. Techniques like the
Lambert W function, effective for single-exponential equations, do not readily extend to sums of
exponentials without complex transformations. Thus, to solve equations of the general form eAx +
eBx + c = 0, we turn to numerical methods.

3.1.2 Numerical Methods

Numerical methods approximate the root of a function f(x) through iterative refinement. We evaluate
three common techniques:

1. Bisection Method
This method tries to find a root within an interval [a, b] where f(a)f(b) < 0, iteratively halving
the interval at mid-point c = a+b

2 . At each time step it checks in which half the root lies, by
checking if f(a)f(c) < 0 or f(b)f(c) < 0. It then choose the half containing the root and halves
this interval again, continuing until |f(c)| is sufficiently close to the root.

This method is robust but converges slowly (linear convergence), making it less efficient for
high-precision needs. Furthermore, it requires that on its defined interval [a, b], the condition
f(a)f(b) < 0 is satisfied. However, this is not necessarily the case in the situations where we
wish to apply the root-finder, making this method unsuitable for our application.

2. Newton-Raphson Method
The Newton-Raphson method starts with an initial guess x0 and iteratively refines it using the
formula:

xn+1 = xn −
f(xn)

f ′(xn)

where f ′(x) is the derivative of the function. This method uses the tangent line at xn to approx-
imate the root, leading to quadratic convergence when the initial guess is close to the true root.
For our transcendental equation f(x) = eAx + eBx + c, the derivative is f ′(x) = AeAx + BeBx,
which is straightforward to compute.
The method’s efficiency depends on a good initial guess and a non-zero derivative at each itera-
tion. Poor initial guesses or points where f ′(xn) ≈ 0 can lead to divergence or slow convergence.
Despite these challenges, its speed makes it highly suitable for problems requiring repeated root-
finding in our case.

3. Secant Method
The Secant method approximates the root using two initial guesses, x0 and x1, and iterates via:

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
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This approach approximates the derivative using the slope of the secant line between two points,
eliminating the need for explicit derivative computation. While this makes it simpler to imple-
ment for functions where the derivative is complex, its convergence is super-linear, slower than
Newton-Raphson’s quadratic rate. Additionally, it requires two initial guesses, and its perfor-
mance can degrade if the guesses are poorly chosen or if the function behaves non-smoothly near
the root.

We select the Newton-Raphson method for solving equations of the form eAx + eBx + c = 0 due
to its quadratic convergence, ensuring fast computation. The method’s reliance on the derivative
f ′(x) = AeAx+BeBx is not a limitation, as it is easily computed. Additionally, the real-world context
of our variables allows informed initial guesses, enhancing convergence reliability. We also implement a
tolerance of ϵ = 10−6 (stopping when |f(xn)| < ϵ) and may employ the Bisection method as a fallback
for poor initial guesses.

3.2 Dynamic Programming

3.2.1 Dynamic Programming Principle for Optimal Stopping and Control Prob-
lems

In a combined optimal stopping and control problem, we are solving a problem where we try to optimise
our value function using the control variables and at the same time decide when it is optimal to decide
to "stop". First, letXXXu ∈ Rm denote the vector containing the controlled processes that determine the
trader’s performance criteria. XXXu is controlled using the control process u = (ut)0≤t≤T , and satisfies
the SDE

dXXXu
t = µµµtdt+ σσσtdWWW t + γγγut dNNN

u
t (3.1)

where µµµ = (µµµt)0≤t≤T ∈ Rm is the drift, σσσ = (σσσt)0≤t≤T ∈ Rm+ is the volatility and WWW = (WWW t)0≤t≤T ∈
Rm a collection of independent Brownian motions. Furthermore, NNNu = (NNNu

t )0≤t≤T ∈ Nn denotes a
collection of counting processes with controlled intensities λλλu = (λλλut )0≤t≤T ∈ Rn, and γγγut := γγγ(t, ut) ∈
Rn×m denotes the controlled jump size.

The trader’s reward is a function of these controlled processes XXXu, which are stochastic process,
which is why we need to take the expectation. The trader has a performance criterion, for each
admissible control process u ∈ A[t,T ] and admissible stopping time τ ∈ T[t,T ], given by

Hτ,u(t,xxx) = Et,xxx[G(XXXu
τ ) +

∫ τ

t
F (s,XXXu

s )ds] (3.2)

where G(XXXu
τ ) is the reward upon exercise, F (s,XXXu

s ) is the running penalty, and she seeks to find the
value function

H(t,xxx) = sup
τ∈T[t,T ]

sup
u∈A[t,T ]

Hτ,u(t,xxx) = sup
τ∈T[t,T ]

sup
u∈A[t,T ]

Et,xxx[G(XXXu
τ ) +

∫ τ

t
F (s,XXXu

s )ds] (3.3)

and control strategy u and stopping time τ which attain the supremum of the performance criterion
(if it exists).

Say we are at a point (t = t0,XXX = xxx) and G(XXXu
τ ) is the reward paid out at the chosen stopping time

(and optimal strategy u). Our value function is described by the optimal stopping time τ⋆ ∈ [t0, T ]
that maximizes the expected reward, given the point (t0,xxx) which we are currently at. Now that we
know which stopping time maximizes our expected reward, the value function H(t, x) with t0 ≤ t < τ⋆

describes the current value of our position.
The dynamic programming principle (DPP) for optimal stopping and control problems, as described

above and in [8], is given by the following theorem.
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Theorem 3.1. Dynamic Programming Principle for Optimal Stopping and Control. The
value function H(t,xxx) satisfies the DPP

H(t,xxx) = sup
τ∈T[t,T ]

sup
u∈A[t,T ]

Et,xxx[
(
H(θ,XXXu

θ ) +

∫ θ

t
F (s,XXXu

s )ds

)
1τ≥θ +

(
G(XXXu

τ ) +

∫ τ

t
F (s,XXXu

s )ds

)
1τ<θ]

(3.4)
for all (t,xxx) ∈ [0, T ] × Rm and all stopping times θ ≤ T , where G(Xu

τ ) is the reward function and
F (s,XXXu

s ) is the running penalty.

The proof to this theorem can be found in section A.8 of the Proofs, and the intuition behind this
DPP is as follows. If stopping has not yet occurred (τ ≥ θ), then the trader receives the value function
at that time. If stopping has already occurred (τ < θ), then the trader has received the reward at this
stopping time.

The Dynamic Programming Equation (DPE) satisfied by the value function can be obtained by
looking at the DPP over infinitesimally small amounts of time. The DPE that arises in this problem,
as in [8], is stated by the following theorem.

Theorem 3.2. Dynamic Programming Equation for Stopping and Control Problems. As-
sume that the value function H(t,xxx) is once differentiable in t and all seconder-order derivatives in xxx
exist, i.e. H ∈ C1,2([0, T ],Rm) and that G : Rm → R and F : Rm → R are continuous. Then H solves
the quasi-variational inequality (QVI),

max

(
∂tH + sup

u∈At

(
LutH + F

)
; G−H

)
= 0, on D, (3.5)

where D = [0, T ] × Rm and the generator of the process Lt acts on twice differentiable functions as
follows:

Lth(t, x) = µµµ(t,xxx) ·DDDxh(t, x) +
1

2
Tr(σσσ(t,xxx)σσσ(t,xxx)′DDD2

xh(t,xxx)) +

p∑
j=1

λj(t,xxx)[h(t,xxx+ γγγ·j(t,xxx))− h(t,xxx)]

(3.6)
where γγγ·j represents the j-th column of γγγ, DDDxh represents the vector of partial derivatives w.r.t. x, and
DDD2
xh represents the matrix of second-order partial derivatives w.r.t. x.

The proof to this theorem can be found in section A.9 of the Proofs. The intuition behind this
QVI can best be explained when handling the two possibilities separately, we either have

(i) ∂tH + LtH + F = 0 and G < H, (3.7)

or we have
(ii) H = G and ∂tH + LtH + F < 0. (3.8)

In the first case, the reward G is lower than the value function H, which means that we are in the
continuation region (i.e. it is optimal for the trader to continue rather than choosing the reward) and
the value function satisfies a linear PDE. In the second case, the value function H has the same value
as the reward G and the PDE tells us the value function will decrease in time. This means that it is
optimal for the trader to choose the instant, guaranteed reward rather than continuing.



4 | The Static Optimal Placement Prob-
lem

The first model to tackle the Optimal Placement Problem in this thesis is based on the model introduced
by Cont and Kukanov [2017] [15]. They choose to analyse strategies where a trader can place her limit
orders at the best buy quote on multiple different exchanges. In this thesis, however, we choose to only
consider one exchange, but explore the situation where a trader can place her limit orders at different
price levels. We start by introducing the simplest problem, where the trader can only post at the best
buy quote and then consider two, three and four price-levels, to eventually arrive at a general case
where the trader can choose any price-level to post her limit orders. We consider the case where the
trader wishes to acquire shares within a certain time frame, but the case where she wishes to liquidate
an inventory by selling shares is completely analogous.

Below is a brief overview of all symbols and notations used in this chapter.

• S is the target number of shares the trader wishes to acquire

• T is the terminal time at which the trader must have acquired her target number of shares S

• M is the number of market orders she places at t = 0

• Li is the number of limit orders she places at price-level i at t = 0

• XXX is the placement vector containing the number of market orders and limit orders (at each
price-level) the trader places

• Qi is the queue size at price-level i at t = 0

• γi is the number of cancelled limit orders from the queue Qi within the time frame t ∈ (0, T )

• µ is the number of incoming number of market sell orders within the time frame t ∈ (0, T )

• ηi is the number of incoming limit buy orders at price-level i within the time frame t ∈ (0, T )

• ξ is the order outflow at the first price-level, and consists of incoming market sell orders µ and
cancelled limit orders from the first price-level γ1

• ψi is the order outflow at price-level i+1, and consists of incoming limit buy order at price-level
i, ηi, and cancelled limit orders from price-level i+ 1, γi+1

• OFi is the number the trader’s limit orders placed at price-level i that are filled within the time
frame t ∈ (0, T )

• A is total number of trader’s limit orders that are filled within the time frame t ∈ (0, T )

• δ is the tick size between the price-levels
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• h is half of the bid-ask spread

• f is a fee the trader must pay for placing market orders

• r is a rebate the trader receives for filling her limit orders

• ρu is the penalty coefficient when the trader under-fills her target amount of shares S

• ρo is the penalty coefficient when the trader over-fills her target amount of shares S

• θ is the price impact coefficient for any order the trader places at t = 0 or at terminal time t = T

At time t = 0, the trader, whose objective is to buy S shares before time t = T , may submit
limit orders (LOs) of total size L1 ≥ 0 at the best buy quote (also called the first price-level) and
market orders (MOs) for M ≥ 0 shares. The order placement decision is denoted by the vector
XXX = (M,L1) ∈ R2

+ of order sizes. The LOs L1 join the best buy quote queue of size Q1 ≥ 0. The
number of the trader’s limit orders which are filled between time t = 0 and t = T is a function of the
arriving market orders, denoted by µ, and the cancelled limit orders, denoted by γ1. For the cancelled
limit orders we only consider limit orders in the best buy quote queue which were placed before the
initial time t = 0. The number of orders at the best bid price that gets filled by time T , denoted as
OF1, is given by:

OF1 = min(max(µ+ γ1 −Q1, 0), L1) = (µ+ γ1 −Q1)+ − (µ+ γ1 −Q1 − L1)+ (4.1)

where we use the notation (x)+ = max(x, 0). The total amount of shares bought by the trader during
[0, T ), denoted by A(X,µ, γ1), is given by

A(XXX,µ, γ1) =M + OF1. (4.2)

and consists of the amount of market orders placed plus the number of limit orders filled at terminal
time T . We can generalise this model to consider all the possible price levels at which the trader can
post limit orders. The price-levels start at the best buy quote (the first price-level) and then go down
in tick sizes δ. The trader now has to decide how many MOs to place and how many LOs to place
at every price-level. We choose to consider n price-levels and denote the order placement decision
by the vector XXX = (M,L1, L2, ..., Ln). A limit buy order placed at the i-th price-level is placed at a
price h + (i − 1)δ below the mid-price, where h is half of the bid-ask spread. Every price-level i has
its own queue Qi in which the trader places her limit orders. We introduce a new stochastic variable
ψi−1, which describes the inflow and outflow of orders that have priority after the trader’s LOs placed
at price-level i − 1 and before LOs placed at price-level i. This order flow consists of LOs arriving
at price-level i − 1, in the time window t ∈ (0, T ), and LOs being cancelled from the queue Qi. For
the arriving LOs at price-level i − 1, denoted by ηi−1, we don’t consider orders that are placed and
cancelled in the time window t ∈ (0, T ), and we denote the order cancelled from Qi as γi. Because ηi−1

represents incoming orders (inflow) and γi cancelled orders (outflow), we define the stochastic variable
for the outflow at price-level i as

ψi−1 = γi − ηi−1. (4.3)

To ease notation and derivation, we also choose to define the order outflow at the first price-level as

ξ = µ+ γ1, (4.4)

consisting of the arriving MOs µ and the cancelled LOs from the first queue γ1. We see that ψi−1 is
very distinct from the outflow at the first price-level ξ. These definitions mean that, when considering
n price-levels, we have that ξ ∈ [0,∞) and ψi−1 ∈ (−∞, Qi], as obviously γi ∈ [0, Q1] and ηi ∈ [0,∞).
A schematic overview of the static order placement model can be found in Figure 2.1 in Chapter 2.
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The number of the trader’s orders filled at price-level i (which is i−1 ticks below the best price-level)
is given by the formula

OFi =(ξ +
i−1∑
k=1

ψk −
i−1∑
k=1

(Qk + Lk)−Qi) · 1{∑i−1
k=1(Qk+Lk)+Qi<ξ+

∑i
k=1 ψk<

∑i
k=1(Qk+Lk)}

+ Li · 1{ξ+∑i
k=1 ψk>

∑i
k=1(Qk+Lk)}

(4.5)

where Li is the size of the trader’s order placed at the i-th price-level below the best quote. So,
the number of the trader’s orders filled at price-level i depends on the convolution of the probability
functions of the order outflow at the first price-level, ξ, and the outflow at the other price levels before
it, ψ1, ..., ψi−1. When considering n price levels, the total number the trader’s orders that are filled
before terminal time t = T , denoted as A, is the sum of the number of her LOs that are filled at each
price-level and the number of MOs placed at t = 0. So the total number of orders the trader fills before
time T is given by

A(XXX, ξ,ψψψ) =M +
n∑
i=1

OFi (4.6)

where XXX = (M,L1, L2, ..., Ln) is the order allocation for n price-levels, ξ is the order outflow at the
first price-level and ψψψ = (ψ1, ..., ψn−1) are the outflows at the n − 1 price levels below the first. For
simplicity we use the notation A = A(XXX, ξ,ψψψ).

Most exchanges offer sellers of limit orders rebates, say re, but also set penalties for adverse se-
lection, fAS. This results in an effective rebate of r = re + fAS, that the trader, whose limit order
is executed, receives as a reward for providing liquidity to the market. Using market orders to buy
shares, which can be seen as liquidity-taking, is often penalized with an additional fee f . We can now
calculate the execution cost relative to the mid-price for an order allocation XXX = (M,L1, ..., Ln):

C(XXX, ξ,ψψψ) = (h+ f)M −
n∑
i=1

(h+ (i− 1)δ + r)OFi (4.7)

where h is half of the spread.
A trader may also experience a shortfall due to unfilled orders, A < S, in which case the trader

has to purchase the remaining S −A shares at time T . In contrast, the trader might have bought too
many shares A > S, and must sell the excess A−S at time T . Both events introduce additional costs.
Adverse selection, due to the placement of the buy limit orders at time 0, implies that conditionally
on this event prices have likely increased and the cost of market orders at time T is higher than their
cost at time 0, i.e. larger than h + f . This execution risk is to be included in the objective function
and given by

R(XXX, ξ,ψψψ) = ρu(S −A(XXX, ξ,ψψψ))+ + ρo(A(XXX, ξ,ψψψ)− S)+ (4.8)

where ρu, ρo ≥ 0 are the marginal penalties (in dollars) of under- and over-filling the target number of
shares S. We can see ρu as a trader’s urgency to fill her orders.

Lastly, empirical studies have shown that both market and limit orders affect prices, and the average
impact of small orders can be well approximated by a linear function [13][27]. Here buy orders (limit or
market) drive the mid-price up and sell orders generally drive the price down. We assume the impact
cost is paid on all orders placed at times 0 and T , irrespective of whether they are filled, with the total
impact of all orders given by

I(XXX,µ, γ1) = θ (M + L1 + (S −A(XXX, ξ,ψψψ))+) (4.9)

where θ is the impact coefficient.
Adding all these terms allows us to define the cost function as follows.
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Definition 4.1. [15](Cost function). Let XXX = (M,L1, ..., Ln) ∈ Rn+1 be a placement vector, ξ a
random variable and ψψψ a vector of n− 1 random variables, then the cost function is defined as

v(XXX, ξ,ψψψ) :=(h+ f)M −
n∑
i=1

(h+ r + (i− 1)δ)OFi

+ ρu(S −A(XXX, ξ,ψψψ))+ + ρo(A(XXX, ξ,ψψψ)− S)+

+ θ

(
M +

n∑
i=1

Li + (S −A(XXX, ξ,ψψψ))+

) (4.10)

where h, f, r, δ, ρu, ρo, θ, S ≥ 0 are constants, OFi is given by equation (4.5) and A(XXX, ξ,ψψψ) is given by
equation (4.6).

We can now formulate the Optimal Placement Problem considering n price-levels.

Problem 4.1. (Optimal Placement Problem) An optimal order placement is a vector X∗ =
(M⋆, L⋆1, ..., L

⋆
n) ∈ Rn+1

+ that minimises the expected cost function v(XXX, ξ,ψψψ) and therefore is the solu-
tion of

min
X∈Rn+1

+

E[v(XXX, ξ,ψψψ)] (4.11)

where v(XXX, ξ,ψψψ) is given by equation (4.10).

To avoid certain trivial solutions to the Optimal Placement Problem we begin by making some
reasonable assumptions on the parameter values.

Suppose our trader has filled more LOs than here target quantity S, i.e. A > S. In that case
the trader must place market sell orders at the terminal time T . Let us denote the price-level k
as the lowest level in which at least 1 of the trader’s placed limit orders is filled before time T ,
k = mink≥0{k : OFk > 0}. When the trader has overfilled her target amount, it means that she has
first bought shares (in the form of LOs) at a price greater or equal to p − (h + (k − 1)δ) and must
then sell the overfilled amount as market orders at a price p− (h+ (k− 1)δ) (or lower if the overfilled
amount is large enough to walk the book), where p is the mid-price. This is because all the queues
at the higher prices have all been depleted. For shares sold at a lower price, i.e. price-level i > k,
this means a loss (or extra cost) of (i − k)δ per share. Therefore, we must argue that in reality it is
never optimal to overfill the target amount. We use this argument and other reasonable economical
restrictions to make the following assumptions.

Assumptions

A1: ρu > h+ f : market orders sent at time 0 are less expensive compared to market orders that are
sent at time T (avoids the trivial solution where only limit orders are placed at t = 0)
A2: ρo + θ > h + (k − 1)δ + r for k = mink>0{k : OFk > 0} and ρo > −(h + f): it is suboptimal to
over-fill the target size S regardless of fees and rebates
A3: r+h > 0: possibly negative rebates do not eliminate price improvement from limit order execution
(limit orders are still cheaper than market orders)

These assumptions lead to the following proposition:

Proposition 4.1. Under assumption A1-A3 all optimal order allocations for the Optimal Placement
Problem 4.1 belong to the set

C = {(M⋆, L⋆1, L
⋆
2, ...) : 0 ≤M⋆ ≤ S, 0 ≤ L⋆i ≤ S, M⋆ +

∑
L⋆i = S} (4.12)
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The proof to this proposition can be found in section A.1. Under the constraint S =M +
∑n

i=1 Li,
which means

(S −A(XXX, ξ,ψψψ))+ = (S −A(XXX, ξ,ψψψ))1{ξ+
∑n
i=1 ψi<

∑n
i=1(Qi+Li)} (4.13)

equation (4.10) becomes

v(XXX, ξ,ψψψ) :=(h+ f)M − (h+ r)OF1 −
n−1∑
i=1

(h+ r + i · δ)OFi+1

+ ρu(S −A(XXX, ξ,ψψψ))1{ξ+
∑n−1
i=1 ψi<

∑n
i=1(Qi+Li)}

+ θ

(
M +

n∑
i=1

Li + (S −A(XXX, ξ,ψψψ))1{ξ+
∑n−1
i=1 ψi<

∑n
i=1(Qi+Li)}

) (4.14)

4.1 Solution Considering One Price-Level

In this section we review the case where the trader is looking to buy S shares before terminal time
T and she can only post MOs and LOs at the best price-level, as in [15]. In this one price-level case,
where n = 1, the cost function in equation 4.10 becomes

v(XXX, ξ) =(h+ f)M − (h+ r)OF1

+ ρu(S −A(XXX, ξ))+ + ρo(A(XXX, ξ)− S)+

+ θ (M + L1 + (S −A(XXX, ξ))+)

(4.15)

where XXX = (M,L1) is the trader’s order allocation consisting of M MOs and L1 LOs at the best
price-level, ξ is the order outflow at the first price-level given by 4.4, OF1 is the number of trader’s L1

orders that are filled and A(XXX, ξ) is given by 4.2. The trader must find an optimal order allocation
XXX⋆ = (M⋆, L⋆1) to minimise the expected cost function, which we denote as V (X) = E[v(X, ξ)].

When considering one price-level for limit orders, adhering to the Assumptions at the beginning of
this chapter, means an optimal allocation to the Optimal Placement Problem must satisfyM∗+L∗ = S,
i.e. the trader does not place more orders than her target quantity. Solving the OPP it becomes clear
that ρu plays a crucial role, as it increases so does the amount of market orders M∗, which is logical.
For the n = 1 case of Problem 4.1 the optimal split between limit and market orders is given by the
following proposition.

Proposition 4.2. Assume that ξ has a continuous distribution and Assumptions (A1-A3) hold. Then
the following allocations are optimal for the n = 1 case of the Order Placement Problem 4.1

(i) If ρu ≤ ρu = 2h+f+r
F (Q1+S)

− (h+ r + θ), then (M∗, L∗
1) = (0, S) is an optimal allocation.

(ii) If ρu ≥ ρu = 2h+f+r
F (Q1)

− (h+ r + θ), then (M∗, L∗
1) = (S, 0) is an optimal allocation.

(iii) If ρu ∈ (ρu, ρu), an optimal allocation is a mix of limit and market orders, given by

M∗ = S − F−1

(
2h+ f + r

ρu + h+ r + θ

)
+Q1, (4.16)

L∗
1 = F−1

(
2h+ f + r

ρu + h+ r + θ

)
−Q1, (4.17)

where F (x) = P(ξ ≤ x) is the distribution of the outflow at the first price-level ξ = µ + γ1 and
F−1 is its left-inverse.

The proof to this proposition can be found in section A.2.
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4.1.1 Example: Exponentially Distributed Order Flow at the First Price-Level

We will now show an example for an analytical solution, when assuming that ξ exponentially dis-
tributed. For the exponential distribution, the CDF is given by Fξ(x) = 1−e−λx. Then (A.4) becomes

M⋆ =
1

λ
ln

(
−h− f + ρu + θ

h+ r + ρu + θ

)
+Q+ S, (4.18)

and equation (A.5) becomes

L⋆ =
1

λ
ln

(
h+ r + ρu + θ

−h− f + ρu + θ

)
−Q. (4.19)

4.2 Solution Considering Two Price-Levels

In this section we will review the case where the trader can post MOs and LOs at the best and second-
best price-levels. The second-best price-level is one tick size δ below the best price, with a queue of
size Q2 at time 0. In the Optimal Placement Problem 4.1 considering two price-levels (i.e. n = 2)
the trader’s order allocation vector becomes XXX = (M,L1, L2), where L1 and L2 represent the number
of LOs placed at the best and second-best price-level, where L1, L2 ≥ 0. We introduce the random
variable ψ1 defined in 4.3, which describes the order outflow at the second price-level. It consists of
LOs arriving at the first price-level during t ∈ (0, T ), denoted by η1, and LOs cancelled from Q2,
denoted by γ2. For a schematic overview of the model please refer back to Figure 2.1. The number
the trader’s LOs in the second-best price that are filled level is given by

OF2 = min(max(ξ −Q1 − L1 + ψ −Q2, 0), L2)

= (ξ −Q1 − L1 + ψ −Q2)+ − (ξ −Q1 − L1 + ψ −Q2 − L2)+

= (ξ + ψ −Q1 − L1 −Q2) · 1{Q1+L1+Q2<ξ+ψ<Q1+L1+Q2+L2} + L2 · 1{ξ+ψ>Q1+L1+Q2+L2}

(4.20)

where ψ = ψ1 is the order outflow at the second price-level. Equation 4.10 in this case is given by

v(XXX, ξ, ψ) : = (h+ f)M − (h+ r)OF1 − (h+ δ + r)OF2

+ ρu(S −A(XXX, ξ, ψ))+ + ρo(A(XXX, ξ, ψ)− S)+

+ θ (M + L1 + L2 + (S −A(XXX, ξ, ψ))+)

(4.21)

where A(XXX, ξ, ψ) is given by equation (4.2). Proposition 4.1 tells us that S =M +L1+L2, so we have
that A− S = 0 and (S −A)+ = (S −A)1{ξ+ψ<Q1+L1+Q2+L2}, which allows us to rewrite the expected
cost function as

E[v(XXX, ξ, ψ)] : = E[(h+ f)M − (h+ r)OF1 − (h+ δ + r)OF2

+ (ρu + θ)(S −A(XXX, ξ, ψ))1{ξ+ψ<Q1+L1+Q2+L2} + θS]

= E[(h+ f)M − (h+ r)OF1 − (h+ δ + r)OF2

+ (ρu + θ)(S − (M + OF1 + OF2))1{ξ+ψ<Q1+L1+Q2+L2} + θS].

(4.22)

In the case where the trader can choose to place limit orders at the best bid or the second-best bid,
we can express the solution to the Optimal Placement Problem 4.1 in the following proposition.

Proposition 4.3. Assume that ξ and ψ have continuous distributions and Assumptions (A1-A3) hold.
Then the optimal allocation for the n = 2 case of the Order Placement Problem 4.1 satisfies the
following equations

(i) If ρu ≥ ρu = 2h+δ+f+r
Fξ+ψ(Q1+Q2)

− (h+ r+ δ+ θ), then (M∗, L∗
1, L

∗
2) = (S, 0, 0) is an optimal allocation.
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(ii) If ρu ≤ ρu = 2h+δ+f+r
Fξ+ψ(Q1+Q2+S)

− (h+ r + δ + θ), then M∗ = 0 and L∗
1 satisfies,

δ + (h+ r + ρu + θ)Fξ(Q1 + L⋆1)− (h+ δ + r + ρu + θ)Fξ+ψ(Q1 +Q2 + L⋆1) = 0, (4.23)

and L∗
2 satisfies

L⋆2 = S −M⋆ − L⋆1. (4.24)

(iii) If ρu ∈ (ρu, ρu), then the optimal allocation is a mix of limit (L∗
1, L

∗
2) and market (M⋆) orders,

where L⋆1 satisfies (4.23), L⋆2 satisfies (4.24), and M⋆ satisfies

M⋆ = S − F−1
ξ+ψ

(
2h+ δ + f + r

h+ δ + r + ρu + θ

)
+Q1 +Q2, (4.25)

where Fξ(x) = P(ξ ≤ x) is the distribution of the outflow at the first price-level ξ = µ + γ1,
Fξ+ψ(x) = P(ξ + ψ ≤ x) is the distribution of the outflow at the first and second price-level ξ,
ψ = −η1 + γ2 and F−1

ξ , F−1
ξ+ψ are their left-inverses.

The derivation can be found in section A.3 and methods for finding the root of (4.23) are discussed
in section 3.1.

4.2.1 Special Case: Empty Queue and No New LOs

We see that in a special case where the second price-level queue is empty and no new LOs arrive at
the first price-level (i.e. Q2 = 0 and ψ = 0), we are left with the one price-level case, where the order
allocation only considers M and L2, since equation (4.23) becomes

∂V

∂L1
= δ + (h+ r + ρu + θ)Fξ(Q1 + L1))− (h+ δ + r + ρu + θ)Fξ(Q1 + L1) = 0

δ − δFξ(Q1 + L1) = 0

(4.26)

where Fξ(Q1 + L1) ∈ (0, 1) for L1 ∈ [0, S]. We see that if Q2 and ψ2 are set to zero, the derivative of
V w.r.t L1 is always increasing, which is logical, since in that case L1 orders are just as likely to be
filled as L2 orders, so it is never optimal to place orders at the price-level of L1. This means we set
L1 = 0, which means

L⋆2 = S −M⋆ − L⋆1 = S −M⋆ = F−1
ξ+ψ

(
2h+ δ + f + r

h+ δ + r + ρu + θ

)
−Q1 (4.27)

as is the case for the limit orders in the one price-level case (but this time the traders earns (h+ δ+ r)
(instead of (h+ r)) for a limit order).

4.2.2 Special Case: Many New LOs at the First Price-Level

When we set ψ → −∞, this means there are many limit orders arriving at the first price-level, behind
our L1 orders, making it impossible for our L2 limit orders to be filled. We see that when ψ → −∞,
we have Fξ+ψ(Q1 +Q2 + L⋆1) → 1. In this case equation (4.23) becomes

∂V

∂M
= 2h+ δ + f + r − (h+ δ + r + ρu + θ)

= h+ f − (ρu + θ) ≤ 0
(4.28)

where the inequality is due to Assumption A2, and (4.25) becomes

∂V

∂L1
= δ + (h+ r + ρu + θ)Fξ(Q1 + L⋆1)− (h+ δ + r + ρu + θ)

= (h+ r + ρu + θ)(Fξ(Q1 + L⋆1)− 1) ≤ 0.

(4.29)
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We see that in this case the expected cost function is decreasing in both M and L1. To know what
values of M and L1 actually minimise V , we need to know which is smaller: ∂V

∂M or ∂V
∂L1

. We find that
we have ∂V

∂M < ∂V
∂L1

when

h+ f − (ρu + θ) < (h+ r + ρu + θ)(Fξ(Q1 + L⋆1)− 1),

Fξ(Q1 + L⋆1)− 1 >
h+ f − (ρu + θ)

h+ r + ρu + θ
,

Fξ(Q1 + L⋆1) >
2h+ δ + f + r

h+ r + ρu + θ
,

L⋆1 > F−1
ξ

(
2h+ δ + f + r

h+ r + ρu + θ

)
−Q1.

(4.30)

Let us denote the solution to one price-level OPP (as described in Proposition 4.2) as XXX⋆, 1 price-level =
(M⋆, 1 price-level, L⋆, 1 price-level

1 ) and the solution to the one price-level OPP as simplyXXX⋆ = (M⋆, L⋆1, L
⋆
2).

We see that we find the expected cost to be decreasing w.r.t. M or L1 when L⋆1 > L⋆, 1 price-level
1 or

L⋆1 < L⋆, 1 price-level
1 respectively. Considering our constraint S = M + L1 + L2, this means that our

truely optimal solution is L⋆1 = L⋆, 1 price-level
1 . We indeed find the two price-level solution in the case

where ψ → −∞ is the same as in the one price-level case, as expected.

4.2.3 Example: Exponentially Distributed Order Flow at the First Two Price-
Levels

To express the solution in Proposition 4.4 analytically, we again assume ξ ∼ X, where X is exponen-
tially distributed with rate λξ, and ψ ∼ Q2−Y , where Q2 is the length of the second price-level queue
and Y is independent and exponentially distributed with rate λψ. We must then know the cumulative
distribution function of the convolution of the random variables ξ and ψ. This is given in the following
lemma.

Lemma 4.1. If ξ ∼ X, where X is exponentially distributed with rate λξ, and ψ ∼ Q2 − Y , where Q2

is the length of the second price-level queue and Y is independent and exponentially distributed with
rate λψ, the cumulative distribution function of the convolution of the random variables ξ and ψ is
given by

Fξ+ψ(A) =

{ λξ
λξ+λψ

e−λψ(Q2−A) , A ≤ Q2

1− λψ
λξ+λψ

e−λξ(A−Q2) , A > Q2.
(4.31)

The proof to this lemma can be found in section A.4 of the Proofs and can be used to derive an
analytical expression for the two price-level case of the static Optimal Placement Problem 4.1. The
following corollary describes this analytical solution.

Corollary 4.1. If ξ ∼ X, where X is exponentially distributed with rate λξ, and ψ ∼ Q2 − Y , where
Q2 is the length of the second price-level queue and Y is independent and exponentially distributed with
rate λψ, the solution as in Proposition 4.3 is given by

M⋆ =S − 1

λξ
log

(
λψ

(λξ + λψ)

h+ δ + r + ρu + θ

−h− f + ρu + θ

)
+Q1, (4.32)

where L⋆i = S −M⋆ ∈ [0, S] and L⋆j = 0 for j ̸= i. The optimal depth for limit orders is price-level i,
where i = 1 if λξ satisfies

λξ <
λψδ

h+ r + ρu + θ
, (4.33)

and i = 2 if λξ satisfies

λξ ≥
λψδ

h+ r + ρu + θ
. (4.34)
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4.3 Solution Considering Three Price-Levels

In this section we will review the case where the trader can post MOs and LOs at the first, second
and third price-level. We again start by expressing the number of our orders filled at the third price-
level, OF3, as a function of the order outflows at the first, second and third price-level, ξ, ψ1 and ψ2

respectively.

OF3 =min(max(ξ −Q1 − L1 + ψ1 −Q2 − L2 + ψ2 −Q3, 0), L3)

=(ξ −Q1 − L1 + ψ1 −Q2 − L2 + ψ2 −Q3)+ − (ξ −Q1 − L1 + ψ1 −Q2 − L2 + ψ2 −Q3 − L3)+

=(ξ + ψ1 + ψ2 −Q1 − L1 −Q2 − L2 −Q3) · 1{Q1+L1+Q2+L2+Q3<ξ+ψ1+ψ2<Q1+L1+Q2+L2+Q3+L3}

+ L3 · 1{ξ+ψ1+ψ2>Q1+L1+Q2+L2+Q3+L3},

(4.35)

and the cost function in this case is described by

v(XXX, ξ, ψ1, ψ2) :=(h+ f)M − (h+ r)OF1

− (h+ δ + r)OF2 − (h+ 2δ + r)OF3

+ ρu(S −A(XXX, ξ, ψ1, ψ2))+ + ρo(A(XXX, ξ, ψ1, ψ2)− S)+

+ θ (M + L1 + L2 + L3 + (S −A(XXX, ξ, ψ1, ψ2))+)

(4.36)

where A(XXX, ξ, ψ1, ψ2) is simply given by (4.2). Again, under the condition that S =M +L1+L2+L3,
we have that A− S = 0 and (S − A)+ = (S − A)1{ξ+ψ1+ψ2<Q1+L1+Q2+L2+Q3+L3}, which allows us to
rewrite the expected cost function as

E[v(XXX, ξ, ψ1, ψ2)] :=E[(h+ f)M − (h+ r)OF1 − (h+ δ + r)OF2 − (h+ 2δ + r)OF3

+ (ρu + θ)(S −A(XXX, ξ, ψ1, ψ2))1{ξ+ψ1+ψ2<Q1+L1+Q2+L2+Q3+L3} + θS]

=E[(h+ f)M − (h+ r)OF1 − (h+ δ + r)OF2 − (h+ 2δ + r)OF3

+ (ρu + θ)(S − (M + OF1 + OF2 + OF3))1{ξ+ψ1+ψ2<Q1+L1+Q2+L2+Q3+L3} + θS].

(4.37)

We can formulate our the solution to this three price-level case of the Optimal Placement Problem
4.1 in the form of the following proposition.

Proposition 4.4. Assume that ξ, ψ1, and ψ2 have continuous distributions and Assumptions (A1-A3)
hold. Then the optimal allocation for the n = 3 case of the Order Placement Problem 4.1 satisfies the
following, based on the valuw of ρu.

(i) If ρu ≥ ρu = 2h+2δ+f+r
Fξ+ψ1+ψ2 (Q1+Q2+Q3)

− (h + 2δ + r + θ), then (M∗, L∗
1, L

∗
2, L

∗
3) = (S, 0, 0, 0) is an

optimal allocation.

(ii) If ρu ≤ ρu = 2h+2δ+f+r
Fξ+ψ1+ψ2 (Q1+Q2+Q3+S)

− (h+ 2δ + r + θ), then M∗ = 0 and L∗
1 satisfies

δ + (h+ r + ρu + θ)Fξ(Q1 + L⋆1)− (h+ δ + r + ρu + θ)Fξ+ψ1(Q1 + L⋆1 +Q2) = 0, (4.38)

L∗
2 satisfies

δ + (h+ δ + r + ρu + θ)Fξ+ψ1(Q1 + L⋆1 +Q2 + L⋆2)

− (h+ 2δ + r + ρu + θ)Fξ+ψ1+ψ2(Q1 + L⋆1 +Q2 + L⋆2 +Q3) = 0,
(4.39)

and L∗
3 satisfies

L⋆3 = S −M − L⋆1 − L⋆2. (4.40)



24 4.3. SOLUTION CONSIDERING THREE PRICE-LEVELS

(iii) If ρu ∈ (ρu, ρu), then the optimal allocation is a mix of limit (L∗
1, L

∗
2, L

∗
3) and market (M⋆) orders,

where L⋆1 satisfies (4.38), L⋆2 satisfies (4.39), L⋆3 satisfies (4.40) and M⋆ satisfies

M⋆ = S − F−1
ξ+ψ1+ψ2

(
2h+ 2δ + f + r

h+ 2δ + r + ρu + θ

)
+Q1 +Q2 +Q3, (4.41)

where Fξ(x) = P(ξ ≤ x) is the distribution of the outflow at the first price-level ξ, Fξ+ψ1(x) =
P(ξ+ψ1 ≤ x) is the distribution of the outflow at the first and second price-level ξ, ψ1, Fξ+ψ1+ψ2(x) =
P(ξ + ψ1 + ψ2 ≤ x) is the distribution of the outflow at the first, second and third price-level ξ,
ψ1,ψ2 and F−1

ξ , F−1
ξ+ψ1

, F−1
ξ+ψ1+ψ2

their left-inverses.

The proof can be found in section A.5 and methods for finding the root of (4.38) and (4.39) are
discussed in section 3.1.

4.3.1 Example: Exponentially Distributed Order Flow at the First Three Price-
Levels

To express the solution in Proposition 4.4 analytically, we again assume ξ ∼ X, where X is exponen-
tially distributed with rate λξ, ψ1 ∼ Q2 − Y1 and ψ2 ∼ Q3 − Y2, where Q2 and Q3 is the length of the
second and third price-level queues and Y1 and Y2 are independent and exponentially distributed with
rates λψ1 and λψ2 . We must then know the cumulative distribution function of the convolution of the
random variables ξ, ψ1 and ψ2. This is given in the following lemma.

Lemma 4.2. If ξ ∼ X, where X is exponentially distributed with rate λξ, ψ1 ∼ Q2 − Y1 and ψ2 ∼
Q3 − Y2, where Q2 and Q3 is the length of the second and third price-level queues and Y1 and Y2 are
independent and exponentially distributed with rates λψ1 and λψ2, the cumulative distribution function
of the convolution of the random variables ξ, ψ1 and ψ2 is given by

Fξ+ψ1+ψ2(A) =


λξλψ1

(λξ+λψ2 )(λψ1−λψ2 )
e−λψ2 (Q2+Q3−A) − λξλψ2

(λξ+λψ1 )(λψ1−λψ2 )
e−λψ1 (Q2+Q3−A) , A ≤ Q2 +Q3

1− λψ1λψ2
(λξ+λψ1 )(λξ+λψ2 )

e−λξ(A−(Q2+Q3)) , A > Q2 +Q3

(4.42)

The proof to this lemma can be found in section A.6 of the Proofs and can be used to derive an
analytical expression for the three price-level case of the static Optimal Placement Problem 4.1. The
following corollary describes this analytical solution.

Corollary 4.2. If ξ ∼ X, where X is exponentially distributed with rate λξ, ψ1 ∼ Q2 − Y1 and
ψ2 ∼ Q3 − Y2, where Q2 and Q3 is the length of the second and third price-level queues and Y1 and Y2
are independent and exponentially distributed with rates λψ1 and λψ2 , the solution as in Proposition
4.4 is given by

M⋆ =S − 1

λξ
log

(
λψ1λψ2

(λξ + λψ1)(λξ + λψ2)

h+ 2δ + r + ρu + θ

−h− f + ρu + θ

)
+Q1, (4.43)

where L⋆i = S −M⋆ ∈ [0, S] and L⋆j = 0 for all j ̸= i. The optimal depth for limit orders is price-level
i, where i = 1 if λξ satisfies

λξ <
λψ1δ

h+ r + ρu + θ
, (4.44)

i = 2 if λξ satisfies
λψ1δ

h+ r + ρu + θ
≤ λξ <

λψ2δ

h+ δ + r + ρu + θ
, (4.45)

and i = 3 if λξ satisfies

λξ ≥
λψ2δ

h+ δ + r + ρu + θ
. (4.46)
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4.4 General Solution for n Price-Levels

Putting the solutions of the one, two, three and four price-level cases next to each other, we find the
pattern starting to emerge (where the four price-level case is solved in Appendix section B.2). We can
formulate the general solution to the Optimal Placement Problem 4.1 considering n price levels in the
following proposition.

Proposition 4.5. Assume that the queue outflows ξ and ψi (with i = 1, 2, ..., (n− 1)) have continuous
distributions and Assumptions (A1-A3) hold. Then the optimal allocation for the n price-level case of
the Order Placement Problem 4.1 satisfies the following, based on the value of ρu.

(i) If ρu ≥ ρu = 2h+(n−1)δ+f+r
Fξ+ψ1+...+ψn−1

(Q1+...+Qn)
− (h + (n − 1)δ + r + θ), then (M∗, L∗

1, ..., L
∗
n−1, L

∗
n) =

(S, 0, ..., 0, 0) is an optimal allocation.

(ii) If ρu ≤ ρu = 2h+(n−1)δ+f+r
Fξ+ψ1+...+ψn−1

(Q1+...+Qn+S)
− (h + (n − 1)δ + r + θ), then M⋆ = 0 and L⋆i (with

i = 1, 2, ..., (n− 1)) must satisfy

δ + (h+ (i− 1)δ + r + ρu + θ)Fξ+ψ1+...+ψi−1
(

i∑
k=1

(Qk + L⋆k))

− (h+ iδ + r + ρu + θ)Fξ+ψ1+...+ψi(
i∑

k=1

(Qk + L⋆k) +Qi+1) = 0

(4.47)

and L⋆n satisfies

L⋆n = S −M⋆ −
n−1∑
i=1

L⋆i . (4.48)

(iii) If ρu ∈ (ρu, ρu), then the optimal allocation is a mix of limit and market orders, where L⋆i (with
i = 1, 2, ..., (n− 1)) satisfies (4.47), L⋆n satisfies (4.48) and M⋆ satisfies

M∗ = S − F−1
ξ+ψ1+...+ψn−1

(
2h+ (n− 1)δ + f + r

h+ (n− 1)δ + r + ρu + θ

)
+Q1 + ...+Qn, (4.49)

where Fξ(x) = P(ξ ≤ x) is the distribution of the outflow at the first price-level ξ, Fξ+ψ1(x) =
P(ξ + ψ1 ≤ x) is the distribution of the outflow at the first and second price-level ξ and ψ1, and
Fξ+ψ1+...ψn−1(x) = P(ξ + ψ1 + ... + ψn−1 ≤ x) is the distribution of the outflow at the first up
to the n-th price-level ξ and ψ1. F−1

ξ+ψ1+...+ψn−1
is the left-inverse of the cumulative distribution

function describing the outflow at the first up to the n-th price-level.

Methods for finding the root of (4.47) are discussed in section 3.1.

4.4.1 Example: Exponentially Distributed Order Flow at All Price-Levels

To express the solution in Proposition 4.5 analytically, we again assume ξ ∼ X, where X is expo-
nentially distributed with rate λξ and ψi ∼ Qi+1 − Yi, where Qi is the length of our i-th price-level
queue and Yi are independent and exponentially distributed with rate λψi . We must then know the
cumulative distribution function of the convolution of the random variables ξ, ψ1, ..., ψn−1. This is
given in the following lemma.
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Lemma 4.3. If ξ ∼ X, where X is exponentially distributed with rate λξ and ψi ∼ Qi+1 − Yi, where
Qi is the length of our i-th price-level queue and Yi are independent and exponentially distributed with
rate λψi, the cumulative distribution function of the convolution of the random variables ξ, ψ1, ...ψi for
i = 1, 2, ...n− 1 is given by

Fξ+ψ1+...+ψi(A) =


∑i

k=1

λξ
∏i
j ̸=k λψj

(λξ+λψk )
∏i
j ̸=k(λψj−λψk )

e−λψk ((
∑i+1
k=2Qk)−A) , A ≤

∑i+1
k=2Qk

1−
∏i
k=1 λψk∏i

k=1(λξ+λψk )
e−λξ(A−(

∑i+1
k=2Qk)) , A >

∑i+1
k=2Qk

(4.50)

The proof to this lemma can be found in section A.7 of the Proofs and can be used to derive an
analytical expression for the general n price-level case of the static Optimal Placement Problem 4.1.
The following corollary describes this analytical solution.

Corollary 4.3. If ξ ∼ X, where X is exponentially distributed with rate λξ and ψi ∼ Qi+1−Yi, where
Qi is the length of our i-th price-level queue and Yi are independent and exponentially distributed with
rate λψi , the solution as in Proposition 4.5 is given by

M⋆ = S − 1

λξ
log

( ∏n−1
i=1 λψi∏n−1

i=1 (λξ + λψi)

h+ (n− 1)δ + r + ρu + θ

−h− f + ρu + θ

)
+Q1 (4.51)

where L⋆i = S −M⋆ ∈ [0, S] and L⋆j = 0 for all j ̸= i. The optimal depth of limit orders, the level Li,
is reached at the critical point when

λψi−1
δ

h+ (i− 2)δ + r + ρu + θ
≤ λξ <

λψiδ

h+ (i− 1)δ + r + ρu + θ
. (4.52)



5 | The Dynamic Optimal Placement Prob-
lem

The previous chapter examined the static case where the trader placed her limit and market orders at
time t = 0 and could not touch them until the terminal time t = T , when the limit orders were either
filled or had to be cancelled and replaced with market orders if they remained unfilled. However, big
deviations in the calibrated parameters or distributions, caused by large incoming limit/market orders
after time t = 0 for example, would lead to higher costs or missed potential savings for this static
strategy. A dynamic model that allowed the trader to adjust her strategy at intermediate times means
much more flexibility when such deviations in order flow occur.

In this chapter we will again consider the Optimal Placement Problem, but this time considering
it to be dynamic, allowing the trader to place limit orders at a certain depth, cancel unfilled limit
orders and place market orders at different time steps between t = 0 and t = T . We build forth upon
the method used in [5], introducing mid-price drift and general penalty functions for price impact of
placed orders and under-filling the target amount.

In [8] they work out an optimal stopping problem where the trader is allowed to either post market
orders or limit orders at the best price-level. This can be seen as the dynamic counterpart of our one
price-level static problem in section 4.1. To also include deeper price levels in our dynamic model, we
choose to focus on the combination of an optimal stopping problem, that tells the trader when it is
optimal to market orders, and an optimal control problem that tells the trader how deep to optimally
place her limit orders. We solve the Hamilton-Jacobi-Bellman equations by iteratively increasing the
inventory that the trader has to liquidate, to eventually end up at a recursive analytical solution for
all inventory sizes.

Our full model contains mid-price drift and a running inventory penalty. These are essential in
creating an incentive for the trader to place MOs. Without these terms, the optimal stopping time for
all inventory size would be an instant before the terminal time. The underlying logic is that without
price drift, the expected future mid-price is equal to the current mid-price. Therefore, a trader does
not stand to gain from posting MO during the trading window. Instead she can post her orders in the
form of LOs, hoping to fill them, and execute her remaining inventory at an instant before the terminal
time. If there is also no term to penalise the trader for holding on to her inventory during the trading
window, we indeed find all stopping times to be just before the terminal time, making the inclusion
of MOs in our problem redundant. In the absence of price drift and running inventory penalty, the
optimal strategy degenerates to the solution of the optimal control problem described in [20], without
terminal MO penalty.

5.1 Full Model Setup

We assume that the risk-free rate is zero and define the Optimal Placement Problem model using the
following terms.
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• S is the number of shares the trader wishes to liquidate

• T is the terminal time at which the trader wishes to have liquidated her portfolio

• p = (pt)0≤t≤T is the asset’s mid-price, which is described by Arithmetic Brownian Motion, namely

dpt = µdt+ σpdW
p
t (5.1)

• ∆ = (∆t)0≤t≤T denotes the spread and in our case we will mostly consider half of the spread ∆
2 .

This spread can be modelled as a mean reverting random variable (like an Ornstein-Uhlenbeck
process without drift), but this makes the problem considerably more complicated to solve, so
here it is assumed to be constant for the duration of the trading window

• δ = (δt)0≤t≤T denotes the depth at which the trader posts her limit sell orders measured from
the best sell order queue, i.e. the trader posts LOs at a price of pt + ∆t

2 + δt at time t

• ν = (νt)0≤t≤T denotes the Poisson process (with intensity λν > 0) corresponding to the number
of market buy orders (from other traders) that have arrived up until time t

• Lδ = (Lδt )0≤t≤T denotes the (controlled) counting process corresponding to the number of the
trader’s limit sell-orders which are executed at a depth δ by incoming market buy orders

• Mτττ = (Mτττ
t )0≤t≤T is the counting process denoting the trader’s placed MOs

• τττ = {τk : k = 1, ...,K} with K ≤ S is the corresponding sequence of stopping times at which the
trader places (and immediately executes) MOs, with Mt =

∑K
k=1 1τk≤t

• P (δ) = e−κδ with κ > 0 is the probability that the trader’s LO will be filled when a buy MO
arrives

• Xδ = (Xδ
t )0≤t≤T is the trader’s wealth process

• Iτ
ττ ,δ
t = S − Lδt −Mτττ

t is the trader’s inventory that remains to be liquidated

• ρu = ρu(I
τττ ,δ
t ) is the risk premium paid for executing MOs at terminal time T for the remaining

inventory the trader still has. It is a function of the size of the remaining inventory and often
assumed to be a linear function, but here we will keep it general by denoting ρu(I

τττ ,δ
T )

• θ = θ(Iτ
ττ ,δ
t ) is the penalty term on the running inventory, where the size of the penalty depends

on the size of the inventory the trader holds during the time frame. The reason we need this
running inventory penalty is that otherwise there is no incentive for the trader to place market
orders until an instant before the terminal time T .

• r, f are the rebate and fee earned/paid for filling a limit or market order resp.

The trader’s wealth is given by the SDE

dXτττ ,δ
t = (pt +

∆

2
+ δt + r)dLδt + (pt −

∆

2
− f)dMτττ

t (5.2)

where the first term describes the amount (plus rebate) earned by filling a limit sell-order (at depth δ)
and the second term is the price and fee paid for placing and filling a market sell-order. The number
of limit orders sold in the interval (0, t) is denoted by the counting process Lδ = (Lδt )0≤t≤T and the
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number of market orders denoted by the counting Mτττ = (Mτττ
t )0≤t≤T . We now define the trader’s

performance criteria, which is given by

Hτττ ,δ(t, x, p, i) = Et,x,p,i[Xτττ ,δ
T + Iτ

ττ ,δ
T (pT − ∆

2
− f − ρu(I

τττ ,δ
T ))−

∫ T

t
θ(Iτττ ,δu )du] (5.3)

where the notation Et,x,p,q[·] represents the expectation conditional on t, Xτ,δ
t− = x, pt = p and Iτ,δ

t− = i.
Our control variables are the stopping time τ and depth δ, which means that the set of admissible
strategies A consists of seeking over all F-stopping times τττ and the set of F-predictable, bounded from
below, depths δ. In this case the value function is given by

H(t, x, p, i) = sup
(τττ ,δ)∈A

Hτττ ,δ(t, x, p, i) (5.4)

and can be interpreted as the expected cost function, which is maximized by the optimal strategy, in
the form of the optimal stopping times τ⋆ and optimal limit order depth δ⋆.

Now, the Dynamic Programming Principle allows us to derive the Dynamic Programming Equation
(DPE) (see section 3.2 of the Preliminaries). The DPE, which the value function should satisfy, is in
the form of a quasi-variational-inequality (QVI), given by

0 = max

{
∂tH + µ∂pH +

1

2
σ2p∂ppH − θ(i) + sup

δ
λνe

−κδ
[
H(t, x+ (p+

∆

2
+ δ + r), p, i− 1)−H(t, x, p, i)

]
;

[
H(t, x+ (p− ∆

2
− f), p, i− 1)−H(t, x, p, i)

]}
,

(5.5)

with boundary and terminal conditions

H(t, x, p, 0) = x,

H(T, x, p, i) = x+ i(p− ∆

2
− f − ρu(i)).

(5.6)

The derivation can be found in section B.3.1 of the Appendix. The first part inside the max function
in (5.5) describes the evolution of the value function when the trader chooses to "continue" and place
limit orders at the optimal depth δ⋆. The second part inside the max function represents when the
trader decides to "stop" and place a market order. She does so when the value function H is equal to
the reward function G. The reward function is given by

G = H(t, x+ (p− ∆

2
− f), p, i− 1), (5.7)

which represents the trader executing one MO, increasing her wealth function by p−∆
2 −f and lowering

her inventory by 1.
Looking at the boundary and terminal conditions in (5.6) , we choose to make the ansatz for the

value function H(t, x, p, i) = x + i(p − ∆
2 − f) + h(t, i), based on [8]. Substituting this into our QVI,

we see that h(t, i) satisfied the simplified QVI

0 = max

{
∂th+ µi− θ(i) + sup

δ
λνe

−κδ [δ +∆+ r + f + h(t, i− 1)− h(t, i)] ;

[h(t, i− 1)− h(t, i)]

}
,

(5.8)
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with boundary and terminal conditions

h(t, 0) =0,

h(T, i) =− iρu(i), for i = 1, ...,R.
(5.9)

Focusing on the supremum term in (5.8), we can find the value of δ that maximizes this term, by
taking the derivative w.r.t. δ and setting it equal to zero. We find that the optimal strategy δ⋆ in
feedback control form is given by

δ⋆(t, p, i) =
1

κ
+ [h(t, i)− h(t, i− 1)]−∆− r − f. (5.10)

We see from the stopping region (the second part inside the max function) in (5.8), that is is
optimal to execute an MO at stopping time τi when

h(τi, i− 1)− h(τi, i) = 0 (5.11)

This can be interpreted as executing an MO whenever doing so does not change h, and thus increase
the value function by half of the spread plus the fee (based on the ansatz). Combining this observation
with (5.10) we find a lower bound for the optimal depth of

δ⋆ ≥ 1

κ
−∆− r − f. (5.12)

since we know h(t, i − 1) − h(t, i) ≤ 0 from the QVI (5.8). Now we assume that the trader may not
post LOs inside the spread, so we require δ > 0. Therefore we must require ∆ < 1

κ − r − f .
Substituting the optimal depth into the simplified QVI (5.8), we find that h(t, i) satisfies

0 = max

{
∂th+ µi− θ(i) +

λν
e

eκ(∆+r+f)

κ
e−κ[h(t,i)−h(t,i−1)] ; [h(t, i− 1)− h(t, i)]

}
. (5.13)

If the trader has inventory left at terminal time T , she must execute the remaining inventory as MOs
at a cost of ρu(I

τττ ,δ
T ) per share. At an instant time step before this terminal time, however, the trader

may execute MOs at a cost of ∆
2 +f < ρu, so it is never optimal for her to wait until time T to execute

an MO. As a result, the left-limit of the value function is not equal to its value at the terminal time,
and we have

H(T−, x, p, i) = −∆

2
− f +H(T−, x, p, i− 1) (5.14)

for every i > 0, which means that h(T−, i) = h(T−, i − 1) = 0 (since h(t, 0) = 0). The phenomenon
where the left limit of the solution is different from the terminal condition is sometimes called face-
lifting [36].

To be able to solve the QVI analytically, it must be further simplified. We apply the transformation

h(t, i) =
1

κ
log(w(t, i)) (5.15)

which transforms our simplified QVI into the following equation:

max

(
1

κw(t, i)
(∂tw(t, i) + κ(µi− θ(i))w(t, i) + λ̃νw(t, i− 1)) ;

1

κ
log

(
w(t, i− 1)

w(t, i)

))
= 0 (5.16)

where λ̃ν = λν
e e

κ(∆+r+f).
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We can rewrite QVI (5.16) by multiplying the left term inside the max function by κw(t, i) and
setting the right term equal to zero and taking the exponent. We find the simplified QVI

max

(
∂tw(t, i) + κ(µi− θ(i))w(t, i) + λ̃νw(t, i− 1) ; w(t, i− 1)− w(t, i)

)
= 0 (5.17)

with boundary and terminal condition

w(t, 0) = 1,

w(T, i) = e−iκρu(i) for i = 1, ...,R.
(5.18)

The optimal depth δ⋆ at which to place limit orders, when the trader holds an inventory of size i is
now given by

δ⋆(t, i) =
1

κ
−∆− r − f +

1

κ
log

(
w(t, i)

w(t, i− 1)

)
. (5.19)

The left part inside the max function in equation (5.17) represents the continuation value, and describes
evolution of the value function for a trader holding an inventory of size i at a time t, assuming the
trader follows the optimal depth scheme in (5.19). The stopping time τi, at which the trader should
(optimally) place an MO instead of continuing trying to liquidate her inventory of size i using LOs,
is then defined as the moment where this continuation value is equal to the stopping value (the right
part inside the max function in equation (5.17)). In that case the trader chooses to execute an MO, as
this guarantees this value, rather than the uncertain continuation value. Setting the left term inside
the max function in QVI (5.17) equal to zero gives us a differential equation (DE) of the form

∂tgi(t) + κ(µi− θ(i))gi(t) + λ̃νgi−1(t) = (5.20)

where gi(t) and gi−1(t) are functions that solve this DE. Then w(t, i), that solves (5.17), is given by

w(t, i) = gi(t) · 1{t≤τi} + gi−1(t) · 1{t>τi} (5.21)

where τi is the optimal stopping time at an inventory of size i. We can now solve QVI iteratively, first
plugging in the known boundary condition for i = 0, to find w(t, 1), then plugging this into the QVI
to find w(t, 2) and continuing until we have a solution for a general inventory size S.

5.2 Analytical Solution

5.2.1 The i = 1 Case:

Let us assume that fees, rebates and spread are constant, then the problem we are solving becomes

max

(
∂tw(t, 1) + κ(µ− θ(1))w(t, 1) + λ̃ν ; 1− w(t, 1)

)
= 0

w(T, 1) = e−κρu(1)
(5.22)

where λ̃ν = λν
e e

κ(∆+r+f). Using the fact that it is never optimal to stop at terminal time T (since
executing an MO at that time will induce extra penalty cost ρu(I

τττ ,δ
t )), we see that we have to solve

the ODE
∂tg1(t) + κ(µ− θ(1))g1(t) + λ̃ν = 0, g1(T

−) = 1. (5.23)

The solution is given by

g1(t) = eκ(µ−θ(1))(T−t) +
λ̃ν

κ(µ− θ(1))

(
eκ(µ−θ(1))(T−t) − 1

)
. (5.24)
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We see that g1(t) ≥ 1 for all t ∈ (0, T ) when

µ ≥ −λ̃ν
κ

+ θ(1), (5.25)

which means that the continuation value is always larger than the execution value (the price increase is
larger than the running inventory costs and the execution value), hence the solution to the QVI (5.22)
is

w(t, 1) = g1(t) · 1t<T + e−κρu(1) · 1t=T (5.26)

where g1(t) is given by (g1-full-model) and it is never optimal to execute an MO, except for an instant
before the terminal time T .

Moreover, based on equation (5.19), the optimal depth to post the limit order is given by

δ⋆(t, 1) =
1

κ
−∆− r − f +

1

k
log

(
eκ(µ−θ(1))(T−t) +

λ̃ν
κ(µ− θ(1))

(
eκ(µ−θ(1))(T−t) − 1

))
. (5.27)

We also find that if

µ <
−λ̃ν
κ

+ θ(1), (5.28)

that g1(t) < 1 for all t ∈ (0, T ), i.e. the continuation value is always less than the execution value, and
the solution to the QVI (5.22) is

w(t, 1) = 1t<T + e−κρu(1) · 1t=T , (5.29)

meaning it is always optimal to execute a market order, so τ1 = 0.

5.2.2 The i = 2 Case:

In this case we are solving the systemmax

(
∂tw(t, 2) + κ(2µ− θ(2))w(t, 2) + λ̃νw(t, 1) ; w(t, 1)− w(t, 2)

)
= 0

w(T, 2) = e−κρu(2).
(5.30)

We only consider the non-trivial case where µ ≥ −λ̃ν
κ + θ(1) and we use the trivial optimal strategy to

execute MOs an instant before the terminal time as our terminal condition face-lifted to w(T−, 2) =
1 · w(T−, 2) = 1. We must now determine the time τ2 when the solution to the QVI switches from
its immediate execution value to the continuation value, namely where w(t, 2) = w(t, 1).To guarantee
continuity of the QVI, we need to ensure that w(t, 2) and its derivative are continuous at this point,
i.e.

w(τ−2 , 2) = w(τ2, 2) and ∂tw(τ
−
2 , 2) = ∂tw(τ2, 2) = ∂tw(τ2, 1). (5.31)

From the QVI (5.30), we know that in the continuation region, we have

0 =∂tw(τ2, 2) + κ(2µ− θ(2))w(τ2, 2) + λ̃νw(τ2, 1)

=∂tw(τ2, 1) + κ(2µ− θ(2))w(τ2, 1) + λ̃νw(τ2, 1)

=
(
−κ(µ− θ(1))w(τ2, 1)− λ̃ν

)
+ κ(2µ− θ(2))w(τ2, 1) + λ̃νw(τ2, 1)

=w(τ2, 1)
(
κ(µ+ θ(1)− θ(2)) + λ̃ν

)
− λ̃ν ,

(5.32)

where the third equality follows from the continuation region of (5.22).
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We find that the optimal stopping time, at which the trader should execute a market order when
she holds an inventory of size 2, solves

w(τ2, 1) =
λ̃ν

κ(µ+ θ(1)− θ(2)) + λ̃ν
. (5.33)

This can be solved explicitly for τ2, since w(t, 1) = g1(t) is given in equation (5.26). In section B.3.3
we obtain

τ2 = T −
log

[(
λ̃ν

κ(µ+θ(1)−θ(2))+λ̃ν
+ λ̃ν

κ(µ−θ(1))

)]
− log

[(
λ̃ν

κ(µ−θ(1)) + 1
)]

κ(µ− θ(1))
. (5.34)

Furthermore, we have that τ2 only exists when w(τ2, 1) > 0, so we require

µ >
−λ̃ν
κ

− θ(1) + θ(2). (5.35)

Comparing that with the requirement for the non-trivial case at the beginning of this subsection, we
find a condition on running inventory penalty function, namely θ(2) > 2θ(1).

Now that we know the optimal stopping time, we can find the full solution for w(t, 2) and for that
we must solve the continuation equation backwards from τ2. This is done by solving the ODE

∂tg2(t) + κ(2µ− θ(2))g2(t) + λ̃νg1(t) = 0, g2(τ2) = Γ2 (5.36)

where Γ2 = 1 · w(τ2, 1) = λ̃ν

(
κ(µ+ θ(1)− θ(2)) + λ̃ν

)−1
and g1(t) is given by equation (5.24). The

solution is given by

g2(t) =
λ̃2ν

κ(2µ− θ(2))κ(µ− θ(1))

+ eκ(2µ−θ(2))(τ2−t)
(

λ̃ν

κ(µ+ θ(1)− θ(2)) + λ̃ν
− λ̃2ν
κ(2µ− θ(2))κ(µ− θ(1))

+
λ̃2ν

κ(µ+ θ(1)− θ(2))κ(µ− θ(1))
eκ(µ−θ(1))(T−τ2) +

λ̃ν
κ(µ+ θ(1)− θ(2))

eκ(µ−θ(1))(T−τ2)
)

+ eκ(µ−θ(1))(T−t)

(
− λ̃2ν
κ(µ+ θ(1)− θ(2))κ(µ− θ(1))

− λ̃ν
κ(µ+ θ(1)− θ(2))

)
.

(5.37)

So the solution of the QVI (5.30) for w(t, 2) is

w(t, 2) = g2(t) · 1{t<τ2} + g1(t) · 1{t≥τ2} (5.38)

where g2(t) is given by (5.37). Finally the optimal depth at which the trader should post her LOs is
given by

δ⋆(t, 2) =
1

κ
−∆− r − f +

1

κ
log

(
w(t, 2)

w(t, 1)

)
. (5.39)

5.2.3 The i = 3 Case:

In this case, we are solving the systemmax

(
∂tw(t, 3) + κ(3µ− θ(3))w(t, 3) + λ̃νw(t, 2) ; w(t, 2)− w(t, 3)

)
= 0

w(T, 3) = e−κρu(3).
(5.40)
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Let us only consider the non-trivial case where µ ≥ −λ̃ν
κ − θ(1) + θ(2) and we use the trivial optimal

strategy to execute MOs an instant before the terminal time as our terminal condition face-lifted to
w(T−, 3) = 1 · w(T−, 2) = 1. We must now determine the time τ3 when the solution to the QVI
switches from its immediate execution value to the continuation value, namely where w(t, 3) = w(t, 2).
To guarantee continuity of the QVI, we need to ensure that w(t, 2) and its derivative are continuous
at this point, i.e.

w(τ−3 , 3) = w(τ3, 3) and ∂tw(τ
−
3 , 3) = ∂tw(τ3, 3) = ∂tw(τ3, 2). (5.41)

From the QVI (5.40), we know that in the continuation region, we have

0 =∂tw(τ3, 3) + κ(3µ− θ(3))w(τ3, 3) + λ̃νw(τ3, 2)

=∂tw(τ3, 2) + κ(3µ− θ(3))w(τ3, 2) + λ̃νw(τ3, 2)

=− κ(2µ− θ(2))w(τ3, 2)− λ̃νw(τ3, 1) + κ(3µ− θ(3))w(τ3, 2) + λ̃νw(τ3, 2)

=(κ(µ+ θ(2)− θ(3)) + λ̃ν)w(τ3, 2)− λ̃νw(τ3, 1),

(5.42)

where the third equality follows from the continuation region of (5.30).
We find that the optimal stopping time τ3, at which the trader should execute an MO when she

holds an inventory of size 3, solves

w(τ3, 2) =
λ̃ν

(κ(µ+ θ(2)− θ(3)) + λ̃ν)
w(τ3, 1). (5.43)

This can be used to find τ3, since w(t, 2) is given by equation (5.38) and w(t, 1) is given in equation
(5.26). We try this in the section B.3.5, but find an eκ(2µ−θ(2))(τ2−τ3) term and an eκ(µ−θ(1))(T−τ3)

term in the equation, which leads to a transcendental equation that cannot be solved analytically, as
described in section 3.1. We can solve (5.43) explicitly for the special case where θ(2) = 2θ(1), as it
then becomes a quadratic equation. This is also shown in section B.3.5.

Once we know the optimal stopping time, we can find the full solution for w(t, 3) and for that we
must solve the continuation equation backwards from τ3. We can this by solving the ODE

∂tg3(t) + κ(3µ− θ(3))g3(t) + λ̃νg2(t) = 0, g3(τ3) = Γ3 (5.44)

where Γ3 = λ̃ν
(κ(µ+θ(2)−θ(3))+λ̃ν)

w(τ3, 1) and g2(t) is given in equation (5.37). Solving ODE (5.44) in
section B.3.4, we find

g3(t) =e
κ(3µ−θ(3))(τ3−t)

((
1 +

λ̃ν
κ(µ+ θ(2)− θ(3))

)
g2(τ3) +

λ̃2ν
κ(3µ− θ(3))κ(µ+ θ(2)− θ(3))

)
−
(

λ̃ν
κ(µ+ θ(2)− θ(3))

g2(t) +
λ̃2ν

κ(3µ− θ(3))κ(µ+ θ(2)− θ(3))

)
,

(5.45)

where g2(t) is given in equation (5.37) and τ3 solves equation (5.43). So the solution of the QVI (5.40)
for w(t, 3) is given by

w(t, 3) = g3(t) · 1{t<τ3} + g2(t) · 1{t≥τ3}. (5.46)

Finally the optimal depth at which the trader should post her LOs is given by

δ⋆(t, 3) =
1

κ
−∆− r − f +

1

κ
log

(
w(t, 3)

w(t, 2)

)
. (5.47)
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5.2.4 The General i = S Case:

The i = 4 case can be found in section B.3.6 and our value formulas g1(t), g2(t), g3(t) and g4(t) are
given by

g1(t) =e
A1(T−t)

(
1 +

λ̃ν
A1

)
− λ̃ν
A1
,

g2(t) =e
A2(τ2−t)

((
1 +

λ̃ν
A2 −A1

)
g1(τ2) +

λ̃2ν
A2(A2 −A1)

)
−
(

λ̃ν
A2 −A1

g1(t) +
λ̃2ν

A2(A2 −A1)

)
,

g3(t) =e
A3(τ3−t)

(
(1 +

λ̃ν
A3 −A2

)g2(τ3) +
λ̃2ν

(A3 −A2)(A3 −A1)
g1(τ3) +

λ̃3ν
A3(A3 −A2)(A3 −A1)

)
−
(

λ̃ν
A3 −A2

g2(t) +
λ̃2ν

(A3 −A2)(A3 −A1)
g1(t) +

λ̃3ν
A3(A3 −A2)(A3 −A1)

)
,

g4(t) =e
A4(τ4−t)

(
(1 +

λ̃ν
A4 −A3

)g3(τ4) +
λ̃2ν

(A4 −A3)(A4 −A2)
g2(τ4)

+
λ̃3ν

(A4 −A3)(A4 −A2)(A4 −A1)
g1(τ4) +

λ̃4ν
A4(A4 −A3)(A4 −A2)(A3 −A1)

)
−
(

λ̃ν
A4 −A3

g3(t) +
λ̃2ν

(A4 −A3)(A4 −A2)
g2(t)

+
λ̃3ν

(A4 −A3)(A4 −A2)(A4 −A1)
g1(t) +

λ̃4ν
A4(A4 −A3)(A4 −A2)(A3 −A1)

))
,

(5.48)

where A1 = κ(µ − θ(1)), A2 = κ(2µ − θ(2)) and A3 = κ(3µ − θ(3)) and where we have the stopping
times τi satisfying

g1(τ2) =
λ̃ν

A2 −A1 + λ̃ν
,

g2(τ3) =
λ̃ν

A3 −A2 + λ̃ν
g1(τ3),

g3(τ4) =
λ̃ν

A4 −A3 + λ̃ν
g2(τ4).

(5.49)
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As explained in the i = 3 case, τi cannot be expressed explicitly for i ≥ 3, since the formula in
(5.49) leads to transcendental equations as explained in section 3.1 and shown for i = 3 in section
B.3.5. This also means the general formula for gS(t) cannot be expressed explicitly for S ≥ 3, since
it always contains τS . In (5.48) it is crucial to note that Ai = 0 for i = 1, 2, ... or Ai − Aj = 0 for
i ̸= j would lead to infinite "blow-up" values, as it would mean dividing by zero. This means certain
combinations of mid-price drift and running inventory penalties cannot be combined using our formula
(like µ = 0.001 and θ(i) = 0.001 · i2, since this would mean A1 = 0), but this should not be a problem
in real-world situations, since these types of combinations for calibrated parameters are unlikely to
occur.

We see the general formula for gS(t) can be expressed in the following proposition

Proposition 5.1. The value function of the dynamic Optimal Placement Problem as defined in equa-
tion (5.4), which solves QVI (5.5), is given by

H(t, x, p, i) = x+ i(p− ∆

2
− f) +

1

κ
log(w(t, i)), (5.50)

where w(t, i) = gi(t) · 1{t<τi} + gi−1(t) · 1{t≥τi} for t ∈ (0, T ) and gi(t) is given by

gS(t) =e
AS(τS−t)

(
gS−1(τS) +

S∑
i=1

λ̃iν∏i
j=1(AS −AS−j)

gS−i(τS)

)
−
( S∑
i=1

λ̃iν∏i
j=1(AS −AS−j)

gS−i(t)

)

=eAS(τS−t)gS−1(τS) +
S∑
i=1

λ̃iν∏i
j=1(AS −AS−j)

(
eAs(τS−t)gS−i(τS)− gS−i(t)

)
(5.51)

where Ai = κ(iµ−θ(i)) for i ∈ N+, A0 = 0 and g0(t) = 1. The the stopping time τS solves the equation

gS−1(τS) =
λ̃ν

AS −AS−1 + λ̃ν
gS−2(τS) (5.52)

which can be solved using numerical methods, like Newton-Raphson’s method, as described in section
3.1. The optimal depth to place limit orders at a certain time t with remaining inventory S is given by

δ⋆(t, S) =
1

κ
−∆− r − f +

1

κ
log

(
gS(t)

gS−1(t)

)
· 1t<τS (5.53)

and at t = τS a market order should be placed and the inventory size decreases to i = S − 1.
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In this chapter, we aim to assess and compare the solutions found throughout this thesis, using nu-
merical experiments. Firstly the solution for the static model is reviewed, analysing the optimal order
allocation for the 1, 2, 3 and n price-level solution. To asses its performance we compare expected cost
of the optimal order allocation to benchmark models. For the dynamic solution we look at the optimal
depth and optimal stopping times and test their behaviour to different parameter changes. Finally, we
compare the average price per share the dynamic optimal strategy produces to benchmark strategies.

6.1 Static Model

The static model allows the trader to place her S orders in the form of market and limit orders (at
different price levels) time t = 0. Any orders unfilled at the terminal time t = T are then filled as
market orders. The following default parameter values are chosen (similar to [15]): h = 0.02, r = 0.002,
f = 0.003, δ = 0.01, θ = 0.0005, ρu = 0.043, Q1 = 2000, S = 1000, and λξ = 1/ξ̄ = 1/2200 with
ξ ∼ Exp(λξ) and ψi = Qi+1 − Yi with Yi ∼ Exp(λξ), to allow for fair benchmark comparison

First we will analyse the optimal order allocation for 1,2 and 3 price-levels, and then move on to
the general n price-level solution. Then we examine the performance of the optimal solution in terms
of expected costs, comparing it to benchmark strategies that only place 1 type of order (only MOs or
only LOs at a certain price-level) and the strategy from the paper by Cont and Kukanov [2017][15].

6.1.1 Optimal MO-LO Split for the One, Two and Three Price-Level Case

To see the evolution of the solution for the static model as the number of considered price-levels
increases, we start by analysing the 1 price-level solution and gradually consider deeper and deeper
levels.

One Price-Level

Our solution allows for any distribution of the random variable ξ. Obviously the chosen distribution
is crucial in determining our optimal solution. Figure 6.1 shows the optimal split between market and
limit orders for one price-level in the case where ξ is exponentially, normally or Pareto distirbuted,
all with parameters such that their mean is 2200. Furthermore, we see that the under-filling penalty
coefficient ρu also plays a big part in determining the optimal split. If under-filling is penalized heavily
(corresponding to higher ρu values) the trader is more conservative with placing limit orders and
instead opts for the more certain market orders. In the remainder of this section ξ is assumed to follow
an exponential distribution, as this is most common in the literature and allows for an analytical
expression of the optimal split, as seen in subsection 4.1.1. The behaviour of our cost function for
different values of ρu is shown in Figure 6.2. It illustrates why the bounds stated in Proposition 4.2 are
so important, as above ρu or below ρu the cost function is strictly increasing or decreasing w.r.t. L1.
Figure 6.3 shows how each parameter influences the optimal split between market and limit orders.
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Figure 6.1: Optimal split between market orders and limit orders at the best buy quote for different
values of ρu and different distributions for ξ.

Figure 6.2: The expected cost for one price-level as a function of the number of placed limit orders
L1 (where M = S − L1) for ρu = {ρu, 0.043, ρu}.
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We see that as the target quantity S increases, the number of limit orders to optimally place plateaus,
where any extra shares the trader wishes to buy should be placed as market orders.

Two Price-Levels

Next, the optimal allocation considering two price-levels, described in section 4.2, is analysed. Although
our solutions don’t specify a certain distribution for the stochastic variables ξ and ψi, from now on
we assume ξ is exponentially distributed and ψi is given by the queue size minus an exponential
distribution, i.e. ξ ∼ Expon(λξ) and ψi ∼ Qi+1 −Expon(λψi). This assumption on these distributions
allow for analytical solutions for the 2 price-level case, as seen in section 4.2, and they are common in
the literature (as in [32]). We set the target number of shares S = 1000 and the first two price queues
at Q1 = 2000 and Q2 = 1500.

Figure 6.4 shows how the static optimal allocation goes from only MOs to a mix of MOs and
L1 orders, as ξ̄ increases, until the optimal allocation consists of only L1 orders(i.e. L⋆1 = S). As ξ̄
continues to increase, we eventually reach a point where the optimal solution jumps from L⋆1 = S and
L⋆2 = 0 to L⋆1 = 0 and L⋆2 = S. The moment where this happens is, at the value described in Corollary
4.1. The standard parameter values h = 0.02, r = 0.002, ρu = 0.05, θ = 0.0005 and δ = 0.01, mean
that λψ1 = 1

0.5·Q2
= 1/750. Plugging these values into Corollary 4.1, we find the critical value of λξ to

be λξ = 1/5437.5 = 1/ξ, which is indeed the value at which the optimal allocation switches in Figure
6.4.

These findings align well with our expectations. As ξ̄ increases, the probability of L1 limit orders
being filled reaches such a high value, that this certainty is worth the trade-off with the uncertain limit
orders at L2 at a slightly better price. As ξ̄ increases even more another tipping point is reached: the
increase in certainty of execution for L1 order plateaus, whereas the fill probability of L2 orders grows,
causing the optimal allocation to jump to L⋆2 = S.

To see what happens to the expected cost function around this critical tipping point, the expected
cost function for this value ξ̄ is plotted using 10,000 Monte Carlo simulations of ξ and ψ1 in Figure
6.5. The plot highlights that when ξ̄ is exactly at this tipping point the expected cost is almost the
same for all splits between L1 and L2, when we set M = 0.

It is also important to see how the optimal solution behaves under changes in λψ1 . Figure 6.6
shows the optimal split for ξ̄ = 1/λξ = 1/2800 and different ψ̄1 = 1/λψ1 , where the outflow from the
second queue is given by ψ1 ∼ Q2 − Expon(λψ1). We see that for low ψ̄1 (i.e. "high" order outflow at
the second price-level) L2 orders are always preferred to L1 orders. This is according to our intuition,
since high second order outflow means a small queue before the L2 orders, this means that L1 and L2

orders have a very similar probability of being filled within the time frame, so due to the better price,
L2 orders are preferred. At some point, however, there is not enough outflow from the second queue,
meaning L2 have a significantly smaller chance of being filled. This sudden switch in optimal LOS
price-level occurs at the tipping point described in Corollary 4.1, namely 1/λψ1 = 1

λξ
δ

h+r+ρu+θ
≈ 386.2.

Three Price-Levels

The optimal allocation considering 3 price-levels (described in section 4.3) shows similar results. Setting
Q3 = 1500 and λψ2 = 0.6 · Q3, Figure 6.7 again shows the optimal static order allocation switching
from L2 orders to L3 at the critical point 1/λξ =

h+δ+r+ρu+θ
λψ2δ

= 7425 described in Corollary 4.2.

6.1.2 Optimal Strategy for n Price-Levels

We now proceed with the optimal allocation when considering any amount price-levels, as in section
4.4. Figure 6.8 shows the optimal order allocation when 8 price-levels are considered, for different mean
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Figure 6.3: The optimal split for one price-level for different parameter values, for the parameters
S,Q1, θ, h, r and f .
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Figure 6.4: Optimal split between market orders and limit orders at the best and second-best buy
quotes for different values of ξ̄ = 1/λξ

Figure 6.5: Expected cost function for ξ̄ = 5437.5 with L1 and L2 ranging from 0 to S
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Figure 6.6: Optimal split between market orders and limit orders at the best and second-best buy
quotes for different values of ψ̄1 = 1/λψ1

Figure 6.7: Optimal split between market orders and limit orders at the best three buy quotes for
different values of ξ̄ = 1/λξ
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Figure 6.8: Optimal split between market orders and limit orders at the best eight buy quotes for
different values of ξ̄ = 1/λξ

arrival rates of ξ, ξ̄ = 1/λξ. It is again assumed that ξ ∼ X, where X is exponentially distributed
with rate λξ and ψi ∼ Qi+1 − Yi, where Qi is the length of our i-th price-level queue and Yi are
independent and exponentially distributed with rate λψi and set Q2, ..., Q9 = 1500 and 1/λψi =
0.5 · Qi+1. Considering 8 price-levels, the optimal allocation is indeed as described in Corollary 4.3,
with it jumping from S limit orders at price-level i to S LOs at price-level i+ 1 at the critical points
described in (4.52). For a larger tick size δ, assuming the filling probabilities remain the same, we
expect the optimal allocation to shift to deeper price-levels more quickly, since those orders will result
in a higher reward with the same execution risk. Figure 6.9 confirms this expectation.

6.1.3 Cost Analysis

To see if our optimal order allocation strategy does indeed lead to lower expected cost, we compare it
to simple benchmark strategies, that either place only MOs or only LOs at a certain price level and
the one price-level strategy from Cont and Kukanov [2017] [15]. The average cost for each strategy
is calculated using 200.000 Monte Carlo simulations, with the following parameter values: h = 0.02,
r = 0.002, f = 0.003, δ = 0.01, θ = 0.0005, ρu = 0.05, Q1 = 2000, Q2, Q3, .. = 1500 S = 1000, and
ξ̄ = 1/λξ ∈ (0, 10.000) with ξ ∼ Exp(λξ) and ψ̄i = 1/λψi = Qi+1/2 with ψi ∼ Qi+1 − Exp(λψi).

Figure 6.10 illustrates that for high values of ξ̄ the optimal allocation leads to a lower expected cost
than the benchmark strategies. For lower values of ξ̄, however, the one price-level optimal strategy
from [15] leads to a lower expected cost.

In Figure 6.11 we zoom into the graph for the values of ξ̄ where the optimal allocation reaches
the critical point where the optimal strategy jumps from all L2 orders, to all L3 orders. The figure
shows the model accurately switches price-level at the point when the expected cost for this strategy
starts to become lower than the previous strategy, out performing the strategies that only post L2 or
L3 orders. Compared to the strategy from [15], however, our optimal strategy switches from L1 orders
to L2 orders prematurely. Consequently, around ξ̄ = 5450 the one price-level strategy achieves slightly
lower expected costs than the static optimal strategy.

The static optimal strategy performs well for higher values of ξ̄, but the one price-level strategy
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Figure 6.9: The optimal split for 6 price-levels for different different tick sizes δ =
0.005, 0.010, 0.015, 0.020 from top left to bottom right.

from [15] performs better for lower values ξ̄, where the optimal solution is to balance market orders and
limit orders at the best price-level. To improve the performance of our strategy, we let our choice of
the number of price levels to consider be guided by the critical points described in Corollary 4.3. If the
value of ξ̄ lies below the critical point for Li, there is no need to consider that price-level, as our optimal
allocation will not place any limit orders there. Adjusting the static optimal strategy accordingly we get
the expected cost seen in Figure 6.12. It illustrates that our strategy indeed matches the performance
of the one price-level strategy from [15]. Zooming in in Figure 6.13, it becomes evident that for higher
values of ξ̄, the adjusted optimal strategy jumps to the two price-level strategy and then the three
price-level strategy, at the points where these strategies have lowest expected cost.

In the previous examples optimal allocation was only a mix of MOs and L1 orders. It is crucial to
examine how the static optimal strategy behaves when deeper price-levels enter this mix. Changing
the spread size from 0.04 to 0.02, so h = 0.02 to h = 0.01, causes our optimal solution to behave
completely differently. Figure 6.14 shows that for our 5 price-level solution it is no longer optimal to
place L1 orders at all, instead at a certain point the number of MOs starts to go down and the trader
should start placing L2 orders immediately. Figure 6.15 and Figure 6.16 show that the n = 5 price-level
optimal allocation leads to slightly higher expected cost than the one price-level allocation (from [15])
when the optimal solution involves L1 limit orders. Although it produces significantly lower costs at
higher values of ξ̄, we must use the critical points to determine the number of price-levels to consider
for our static optimal order allocation.

This adjustment, using the critical points from Corollary 4.3 to decide how many price levels to
consider, enables our optimal order allocation to achieve equal or lower average costs than the strategies
posting LOs at a certain price-level and the strategy from [15] for all values of ξ̄, as seen in Figure
6.17. Zooming in, Figure 6.18 highlights that our adjusted optimal solution is able to adapt to ξ̄ and
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Figure 6.10: Expected costs of different alloca-
tion strategies for different values of ξ̄ = 1/λξ

Figure 6.11: Expected costs of different alloca-
tion strategies for different values of ξ̄ = 1/λξ,
zoomed in where the optimal strategy switches
from L1 to L2 to L3 LOs

Figure 6.12: Expected costs of different allo-
cation strategies compared to our adjusted order
allocation for different values of ξ̄ = 1/λξ

Figure 6.13: Expected costs of different allo-
cation strategies compared to our adjusted order
allocation for different values of ξ̄ = 1/λξ, zoomed
in where the optimal strategy switches from L1 to
L2 to L3 LOs
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Figure 6.14: Optimal order allocation for 5 price-levels for different values of ξ̄ = 1/λξ, with h = 0.01

change the number of price-levels it considers, to find the allocation that leads to the lowest expected
cost in all cases.

To summarize, under the assumption that order flow is exponentially distributed our static opti-
mal allocation provides an intuitive and analytically tractable trading strategy. The critical points
in Corollary 4.3 allow for adjustment of the number of price-levels considered in our static optimal
allocation, leading to lower expected cost under all order flow values when compared to benchmark
strategies only considering MOs and LOs at the first price-level, or only LOs at any one price-level.

6.2 Dynamic Model

This section highlights the key results of the dynamic model in chapter 5. To allow for fair comparison
the parameter values are set based on the values in the paper by Cartea and Jaimungal [2015] [5]:
p0 = 60, µ = 0, σp = 0.01, the starting inventory R = 10, T = 60 seconds, κ = 100,∆ = 0.01, λν =
50/min, θ = 0.0001, but also introducing a rebate for LOs and fee for MOs by setting r = 0.003 and
f = 0.002.

First we will analyse the optimal depth at which a trader should place her limit orders, and then
the optimal stopping times when a trader should place market orders. Lastly the average cost per share
our strategy is able to realise is compared to the benchmark models that don’t consider mid-price drift
(as in [5]) or don’t consider MOs (as in [20]), and the Time Weighted Average Price (TWAP).

6.2.1 Optimal Depth for Limit Orders

As mentioned in the beginning of Chapter 5, in the absence of a running inventory penalty and price
drift, there is no incentive for the trader to place market orders until an instant before the terminal
time, setting the optimal stopping time for all inventories to t = T−. There is, however, an incentive
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Figure 6.15: Expected costs of different alloca-
tion strategies for different values of ξ̄ = 1/λξ,
with h = 0.01

Figure 6.16: Expected costs of different allo-
cation strategies for different values of ξ̄ = 1/λξ,
with h = 0.01, zoomed in where the optimal strat-
egy switches from L2 to L3 to L4 to L5 LOs

Figure 6.17: Expected costs of different allo-
cation strategies compared to our adjusted order
allocation for different values of ξ̄ = 1/λξ, with
h = 0.01

Figure 6.18: Expected costs of different allo-
cation strategies compared to our adjusted order
allocation for different values of ξ̄ = 1/λξ, with
h = 0.01, zoomed in where the optimal strategy
switches from L2 to L3 to L4 to L5 LOs
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Figure 6.19: Optimal LO placement depth as function of inventory size without running inventory
penalty or mid-price drift (θ = 0, µ = 0)

to liquidate her inventory in the form of limit orders before the terminal time. Figure 6.19 shows how
the optimal depth for the trader’s limit orders decreases as the trader’s remaining inventory increases,
showing an higher urgency to fill limit orders when the remaining inventory is higher, based on the
solution from [20].

A crucial incentive for a trader to quickly liquidate her inventory is the running inventory penalty.
Figures 6.20, 6.21, 6.22 and 6.23 illustrates that as the penalty term over the remaining inventory
increases, the optimal depth at which the trader should place her limit order decreases, highlighting
this sense of urgency. For certain inventory sizes, the optimal depth hits zero before the terminal time,
this indicates the optimal strategy has determined a stopping time. In the case where θ = 0.0005, the
optimal depth is always at the touch (δ = 0) for i = 5 and i = 6, since in those cases the stopping time
is equal to 0.

Another important incentive for a trader to have more urgency in liquidating her inventory is when
the mid-price is expected to go down. Figure 6.24 shows what happens when we introduce a drift term
to the mid-price. In line with our intuition, the higher the drift term µ (i.e. the more the price will
go up), the less urgent the trader is to liquidate her portfolio quickly, and the more she can afford to
place her limit orders deeper into the order book. All-in-all our dynamic optimal strategy is effective at
adapting the depth at which it places limit order to (un)favourable price drifts and running inventory
penalty.

6.2.2 Optimal Stopping Times for Market Orders

When a trader deems it suboptimal to wait for her limit orders to be filled (at any depth), she chooses
to place market orders to liquidate (part of) her inventory. When the penalty on her running inventory
is low, or the mid-price is expected to move up, she has less urgency in liquidating her inventory
quickly, so we expect she can afford to keep a larger inventory for a longer period of time. In Figure
6.25 shows that for a lower running inventory penalty term, the optimal stopping time (at which to
place a market order) when the trader holds an inventory of size 10, is at slightly over 6 seconds before
the terminal time. As this penalty term is increased, however, it becomes optimal to start placing
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Figure 6.20: Optimal LO placement depth as
function of inventory size at θ = 0.00001

Figure 6.21: Optimal LO placement depth as
function of inventory size at θ = 0.00005

Figure 6.22: Optimal LO placement depth as
function of inventory size at θ = 0.0001

Figure 6.23: Optimal LO placement depth as
function of inventory size at θ = 0.0005

Figure 6.24: Optimal LO placement depth for inventory of size 1 and different mid-price drifts µ
with θ = 0.00001
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market orders immediately (at t = 0) and continue with an inventory of size 8 (for θ = 0.0002) or size
5 (for θ = 0.0005).

The reason we will find most strategies execute several MOs at the beginning and then post limit
orders at decreasing depth is logical: the depth optimizes so that we execute our limit orders with a
good probability and hopefully at attractive prices, but the MO execution strategy tells us what is a
realistic inventory size to start with so that the trader is able to liquidate them all as limit orders with
high probability.

Figure 6.25: The optimal stopping time for market orders for different running inventory penalty
values, θ = 0.00001, 0.0001, 0.0002, 0.0005 from top left to bottom right, with the TWAP as comparison

As mentioned in the previous section, another parameter driving a trader’s incentive to place
market orders is price drift. We saw a negative price drift, makes the trader more eager to liquidate
her inventory, causing the optimal depth to be lower. Figure 6.26 illustrates the same is true for
stopping times, with negative drift leading to faster stopping times. Next, in Figure 6.27 we see the
exact opposite holds for positive µ values. As the drift in mid-price increase, a trading hoping to
optimally liquidate her inventory should wait to place market orders longer and longer. This is logical,
since the trader wishes to sell the shares in her inventory when the price is as high as possible, but with
enough time left to allow her to sell them as limit orders before the terminal time t = T . The reason we
chose µ = 0, 0.0008, 0.00018, 0.00028, 0.00038, 0.0048, 0.0058 is that whole values like µ = 0.001 results
in zeros in the denominator of the formula for gS(t), resulting in errors. All-in-all our dynamic optimal
strategy is effective at adapting to (un)favourable price drifts and running inventory penalty through
the timing of market orders.

6.2.3 Cost Analysis

To see if our optimal allocation strategy actually leads to cost savings, we compare it to benchmark
strategies. The first benchmark strategy is the Time Weighted Average Price (TWAP) strategy, which



CHAPTER 6. NUMERICAL RESULTS 51

Figure 6.26: Optimal stopping time for different price drifts µ =
0,−0.0002,−0.0004,−0.0006,−0.0008,−0.001 with θ = 0.0001

Figure 6.27: Optimal stopping time for different price drifts µ =
0, 0.0008, 0.00018, 0.00028, 0.00038, 0.0048, 0.0058 with θ = 0.0005
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places only market orders, spread out equally over the time interval. This strategy relies on the
certainty of market orders being filled and spreads them out to avoid exerting impact on the mid-price.
The second benchmark strategy we compare to our solution was proposed by Cartea and Jaimungal
[2015] [5], who used the same optimal stopping and control model, but did not incorporate mid-price
drift. Finally our strategy is compared to the benchmark strategy from [20], which does consider
mid-price drift, but doesn’t allow the trader to post MOs, only optimising for the optimal LO depth.

The average earnings per share of the strategies is compared based on 10,000 Monte Carlo sim-
ulations of the mid-price. For these simulations we set the following parameter values: p0 = 60 and
µ = −0.001, σp = 0.01, the starting inventory R = 10, T = 60 seconds, κ = 100,∆ = 0.01, λν =
50/min, θ = 0.0001, r = 0.003, f = 0.002.

Optimal Strategy vs. TWAP

Figure 6.28 shows three Monte Carlo price simulations for µ = −0.001 and σp = 0.01. Although the
drift term is negative, due to the stochastic nature of Brownian Motion we see that the price does not
necessarily go down (simulation 2). Figure 6.29 shows the depth at which the trader must place her
limit orders according to the optimal strategy. The figure highlights that as her inventory size decreases
(due to her limit orders being filled) she can afford to place her limit orders deeper into the book. Next,
in Figure 6.30, it is evident that the trader’s inventory gradually decrease over time in all 3 simulations,
with the average liquidation scheme being relatively close to the TWAP scheme. Furthermore, for the
second and third simulation the trader was not able to liquidate her entire inventory using limit orders
according to the optimal strategy, requiring her to place a market order at stopping time t = τ2 (for
simulation 2) and a market order at time t = T (for simulation 2 and 3) to liquidate the last share
in her inventory. Finally, the average price the trader receives for the shares she has sold is compared
in Figure 6.31. It shows that the optimal strategy achieves higher average prices (which means higher
earnings for the trader) than the TWAP in all three simulations. This is to be expected, since the
optimal strategy allows the placement (and therefore the filling) of LOs, which are always favourable
above MOs. What makes the result interesting to see, however, is the liquidation scheme that the
inventory follows over time. It resembles that of a TWAP strategy, meaning the optimal strategy also
benefits from avoiding mid-price impact (like TWAP) while achieving a more favourable average price
per share.

Optimal Strategy With Drift vs. No-Drift Strategy

Now our dynamic optimal strategy as described in Proposition 5.1 is compared to the strategy proposed
by Cartea and Jaimungal [2015][5]. Figure 6.32 again shows see 3 Monte Carlo price simulations for
µ = −0.001 and σp = 0.01 and Figure 6.33 shows the depth at which the trader must place her limit
orders according to the optimal strategy. Evidently the trader following the strategy that does not
consider mid-price drift places her limit orders deeper into the book than our optimal strategy, as the
no-drift optimal solution does not take into account the effect of the negative price drift. From the
liquidation scheme, in Figure 6.34, we see that the trader’s inventory gradually decrease over time in
all 3 simulations, under both strategies. For the strategy that doesn’t consider the mid-price drift,
the orders are filled later than those under our optimal strategies, with two of the no-drift simulations
requiring the placement of 1 or 2 MOs at terminal time t = T to liquidate the remaining inventory
(compared to only 1 simulation of our optimal strategy requiring 1 MO at t = T ). This untimely filling
of LOs is reflected in the average price per share, as seen in Figure 6.35. Upon closer examination, the
average price for simulation 1 and 3 of the no-drift strategy decreases sharply at the terminal time,
because in those simulations the trader is forced to place MOs at t = T to fill her remaining inventory.
To see if (and when) our dynamic optimal strategy does lead to a trader selling her shares at a higher
average price per share, our strategy is executed on 10,000 Monte Carlo simulations of the mid-price.
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Figure 6.28: Price simulations for µ = −0.001
and σp = 0.01

Figure 6.29: Optimal LO placement depth over
time for all 3 simulations

Figure 6.30: Inventory over time for all 3 simu-
lations and the TWAP schedule, indicating when
LOs were filled and MOs were executed

Figure 6.31: Average price paid per share in ev-
ery simulation with the dynamic optimal strategy
vs. the TWAP schedule
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Figure 6.32: Price simulations for µ = −0.001
and σp = 0.01

Figure 6.33: Optimal LO placement depth over
time for the optimal strategy with drift and the
no-drift strategy, for all 3 simulations

Figure 6.34: Inventory over time for all 3 sim-
ulations of the optimal strategy with drift (solid
lines) and the no-drift strategy (dashed lines), in-
dicating when LOs were filled (O) and MOs were
executed (X)

Figure 6.35: Average price paid per share in
every simulation with the optimal strategy with
drift vs. the no-drift strategy
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For each price path we first apply our optimal strategy and then the strategy not considering drift,
and find the average price paid per share. Table 6.1 shows the average price per share earned using
each strategy, for different mid-price drift values and across 10,000 price simulations, with the trader
holding a starting inventory of size i = 5. As per our expectations, in the absence of drift both
strategies perform the same, earning slightly above the mid-price (p0 = 60) on average. For negative
drift, we see the more drift there is, the more the new optimal strategy is able to earn compared to
the no-drift strategy. For µ = −0.003, our optimal strategy tells us that any inventory above size
4 should be sold as market orders at time t = 0, and this adjustment leads to an extra earnings of
0.086 per share. For positive price drift, our optimal strategy still leads to a higher earnings per share,
although the difference between both strategies is not as big as for negative drift. We find that for
smaller/larger starting inventories the savings per share are similar. All-in-all, our dynamic optimal
strategy is effective at adapting to positive and negative price drift, leading to higher average earnings
per compared to dynamic strategies that don’t consider mid-price drift.

Mid-price drift (µ) No-Drift Strategy Strategy With Drift Extra earnings per share

0.003 60.152 60.190 0.038
0.002 60.110 60.131 0.021
0.001 60.070 60.075 0.005
0 60.029 60.029 0
-0.001 59.988 60.004 0.016
-0.002 59.945 59.993 0.048
-0.003 59.904 59.990 0.086

Table 6.1: Average price earned per share using the no-drift strategy and our dynamic optimal
strategy (with drift) across 10,000 simulations, for different mid-price drifts

Optimal Strategy With Limit and Market Orders vs. Only Limit Orders

Finally we compare our found optimal strategy to the one from [20], which also produces a dynamic
trading strategy considering mid-price movement, but only considers limit orders at the the optimal
depth. Furthermore in [20] no running inventory penalty is considered, so we set θ = 0. Our interest
solely lie where our optimal strategy says the trader should execute market orders, since that is where
the strategies differ. For non-negative price drifts and low running inventory penalty (i.e. θ = 0) the
stopping times are all close to the terminal time as can be seen in Figure 6.26 and 6.27, so mid-price
drifts are set at µ = 0.001,−0.001,−0.002,−0.003,−0.004,−0.005 and inventory the trader seeks to
liquidate is set at size i = 6. For µ = −0.001, we have stopping time τ6 = 56 seconds, and for
µ = −0.005 our optimal strategy tells the trader to liquidate any inventory size above i = 2 (i.e.
τ3, τ4, ... = 0) as market orders immediately and only place 2 orders as limit orders. Lastly, to make a
fair comparison we set ρu = 0, since our optimal strategy, which can place market orders, will never
pay an extra fee at the terminal, but instead choose to execute its remaining inventory as market
orders and instant before the terminal time T , as mentioned in the beginning of Chapter 5. Table 6.2
highlights that considering market orders does in fact lead to higher average earnings per share. For
a positive price drift (µ = 0.001) the stopping times are all equal to the terminal time (τ1, ..., τ6 = T ),
so our optimal strategy is exactly the same as the optimal strategy only considering limit orders. As
soon as our strategy starts to set stopping times below T , however, we see that across the 10,000
simulations our optimal strategy results in higher earnings per share, with the extra earnings growing
as our found stopping times are closer to the initial time t = 0. All-in-all the inclusion of market orders
in our dynamic optimal strategy leads to higher average earnings per share compared to strategies that
only consider limit orders, with the extra earnings highest when the trader’s urgency to liquidate her
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inventory is higher (e.g. for negative price-drift).

Mid-price drift (µ) Only Limit Orders LO and MO Strategy Extra earnings per share

0.001 60.0686 60.0686 0
-0.001 60.0082 60.0083 0.0001
-0.002 60.0013 60.0014 0.0001
-0.003 59.9966 59.9980 0.0014
-0.004 59.9920 59.9963 0.0043
-0.005 59.9878 59.9954 0.0076

Table 6.2: Average price earned per share using the limit-order-only strategy and our dynamic optimal
strategy (placing LOs and MOs) across 10,000 simulations, for different mid-price drifts



7 | Conclusion and Discussion

Algorithmic trading has become an indispensable part of electronic trading systems, with all types of
market participants using it to execute trades at the most favourable prices. At the heart of trade
execution lies the Optimal Placement Problem (OPP): a trader looking to buy or sell a target quantity
of shares must decide what types of orders to place (market or limit) at what time and what price-level.
This thesis aims to provide a general analytical solution to this OPP, considering both market and
limit orders, at all price levels.

To achieve this we considered two models, which we extended to include market orders and limit
orders at all price levels, consider any target quantity of shares and possible drifts in the mid-price.
The first static model formulated the OPP as a static convex optimisation problem, where a trader
must place her orders optimally at the initial time to minimise expected costs. This model created
an intuitive understanding of the effect of order book events on the optimal solution to the OPP and
allowed us to derive a tractable analytical optimal solution which is widely applicable, not just in the
case where only limit orders at the best buy/sell price-level are considered.

Although the static model was widely applicable, its solution is not practical when order flow and
other LOB parameters are volatile. Therefore, we implemented a second model, which formulated the
OPP as a dynamic stochastic optimal stopping and control problem, where a trader optimally adapts
their placement strategy over time in response to evolving market conditions. This model allowed for a
dynamic optimal strategy that we were able to express analytically for any inventory (target quantity)
and considering possible drift in the mid-price, allowing for an improvement in adapting the trader’s
strategy to (unfavourable) price drift.

In the Chapter 6 we presented a detailed numerical assessment of both the static and dynamic for-
mulations of the OPP. In this chapter, we summarise the key findings, highlighting the most promising
results offered by the static and dynamic model solutions. We then compare the two models, analysing
how they relate and their respective pros and cons. Lastly, we propose additional analyses that could
be further investigated in future research and end with some final remarks.

7.1 Promising Results

7.1.1 The Static Model

The static model was first proposed by Cont and Kukanov [2017] [15], but only considered market
orders and limit orders at the best buy quote. We were able to extend the optimal solution for 1
price-level to 2, 3, and eventually n price-levels. When analysing this general solution, we saw the
optimal strategy behaved intuitively, with the optimal allocation shifting to price-levels deeper into
the book, as the number of incoming market orders increased. We saw similar intuitive behaviour
of our general optimal strategy in cases where the number of incoming limit orders or the tick size
was changed, indicating correctness and an ability to translate changing LOB conditions into a new
optimal order allocation.

Next, we assumed the order outflows at each price-level to be exponentially distributed. This
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allowed us to derive an analytical expression for the solution for n price-levels. We found the static
optimal order allocation to jump from limit orders at one price-level to the next at critical points,
which can be described explicitly in terms of the arrival rates of market orders and limit orders after
time t = 0. These critical points balance the marginal cost (of not filling the deeper LO) with the
marginal gain (if the deeper LO is filled). At these critical tipping points, we find the expected cost for
a strategy of placing limit orders at a certain level or limit orders at one price level lower to be exactly
the same, confirming the intuition of our found solution and indicating robustness. The fact that these
transitions happen at analytically tractable thresholds is a promising result, because it offers traders a
simple rule of thumb for when to switch price-levels based solely on observable queue depletion rates.

When compared to benchmark strategies, that place only market orders, only limit orders or adhere
to the 1 price-level solution proposed by Cont and Kukanov [2017] [15], we see our optimal allocation
for n price levels by by itself does not achieve lower expected cost in cases where the optimal solution
is to combine market orders with limit orders at the first (few) price-level(s). However, when we adjust
our optimal allocation to only consider the number of price-levels that are of interest to the optimal
solution, using the critical points, we see the adjusted optimal allocation is able to outperform the
before mentioned benchmark strategies in every case, achieving a lower expected cost and being much
more widely applicable. This makes the optimal solution considering n price-levels, combined with the
critical values we found more effective at allowing the trader to acquire any amount of shares at the
best price in a wider variety of cases.

7.1.2 The Dynamic Model

The dynamic model was based on a paper by Cartea and Jaimungal [2015] [5], which considered both
market and limit orders at any depth. In [5] they derived an analytical solution for a trader looking
to liquidate an inventory of size 1 or 2, but did not take into account possible drifts in the mid-price.
We were able to derive a recursive formula describing the optimal strategy, for any inventory size S,
that took into account important parameters like running inventory penalty and mid-price drift. This
strategy consisted of two parts: the optimal depth at which to place limit orders and the optimal
stopping times at which to place market orders. The dynamic optimal strategy proved to behave
very intuitively for different inventory sizes, running inventory penalties and drifts in the mid-price,
validating its ability to create a sense of urgency for a trader looking to liquidate her portfolio, when
the mid-price drift is negative or the running inventory penalty is large.

We find that the optimal strategy achieves higher average prices (which means higher profits for
the trader) than the Time Weighted Average Price across all three mid-price simulations. This is to
be expected, since the optimal strategy allows the placement (and therefore the filling) of limit orders,
which are always favourable above market orders. What makes the result interesting to see however,
is the liquidation scheme which the inventory follows over time, which is similar to that of the TWAP,
which means the optimal strategy also has the advantage of avoiding mid-price impact that the TWAP
scheme has, at a more favourable average price per share.

When compared to the solution by Cartea and Jaimungal [2015] [5] that does not consider mid-
price drift, we find our optimal strategy is also able to consistently generate higher sell prices for the
trader. In the presence of negative mid-price drift, our model is effective at adapting the trader’s
optimal strategy to post market orders sooner and limit orders at lower depths, prioritising a timely
liquidation of her inventory. This leads to a higher average price per share, across 10,000 simulations.
For positive mid-price drift, our optimal strategy tells the trader to post deeper limit orders, as market
orders filled at the terminal time trade at favourable prices, also leading to higher earnings per share
compared to the solution not considering mid-price drift.

Finally, we compared to the solution in [20] that only considers the optimal depth to place limit
orders, and doesn’t allows the trader to place market orders. We see that when our strategy tells us
it is optimal to place market orders before the terminal time, in the presence of negative price drift
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for example, it leads to higher average earnings per share across 10,000 simulations. The earlier our
optimal stopping times are, the higher the average earnings per share for our trader, highlighting the
importance of the consideration of market orders in this formulation of the OPP.

7.2 Comparing the Static and Dynamic Model

The key difference between the two models is that the static model did not allow for adjustments to
the strategy mid-trajectory. As a result, if the market or limit order arrivals differ from the expected
distribution, the static strategy can result in significant extra costs. By contrast, the dynamic model
allows a trader to re-optimise and adjust their strategy at intermediate times and correct for discrep-
ancies between expected and actual LOB events. As seen in the numerical experiments, the dynamic
strategy delays market orders when the mid-price drifts favourably, or accelerates MO usage when
inventory penalties or negative drifts increase. This flexibility consistently leads to lower realised costs
in environments where order flow is more volatile or drift is non-zero.

The static model seems to more accurately represent the true workings and structure of a limit
order book. The dynamic model estimates fill probability of an LO at a certain depth based on a
pre-determined distribution and a constant MO arrival rate. The static model, on the other hand,
captures the queueing system underlying this fill probability and accurately tries to capture the three
events that completely determine the dynamics and evolution of a real-world LOB: the arrival of MOs,
the arrival of LOs and the cancellation of LOs.

For larger inventories and longer time windows the static model is a better fit. The recursive
nature of the dynamic solution makes computations for large inventories over longer time windows
more cumbersome, which means you lose the ability to quickly react and adapt to changing market
conditions. In a high-frequency environment, where every microseconds counts, this speed is crucial for
an effective trading algorithm. It is more effective at liquidating small inventories in short time frames
at an optimal price. The static model works especially well for large inventories and long periods of
time, as this means more market orders arriving, for which we have seen the static optimal solution to
be robust.

The static model’s optimal split is highly sensitive to the under-fill penalty coefficient. If this
coefficient is miss-estimated, placing too many LOs (which the static solution might do) can force
costly, last-minute MOs. In the dynamic model, the trader can wait to see whether LOs actually fill
and only place MOs when necessary. When the mid-price exhibits drift, the static model cannot adapt
to changing expectations of price movement. In contrast, the dynamic model explicitly incorporates
drift in its value function, allowing it to "lean into" favourable drifts (placing deeper LOs) or pre-empt
unfavourable drifts (placing earlier MOs). Because the dynamic strategy’s stopping times and LO
depths adjust continuously to this mid-price drift, it is able to consistently ensure timely execution,
avoiding having to place MOs at the terminal time.

To conclude, whereas the static model offers an intuitive solution to the OPP, the dynamic model
is better at playing into changing LOB conditions (such as deviation in arrival rates or mid-price drift),
allowing for re-evaluation and re-optimisation of the trader’s strategy at intermediary time steps. At
larger inventory levels, however, the recursive nature of the solution for the dynamic model leads to
longer computational time, which can be a major drawback.

7.3 Discussion

While our static and dynamic models yield clear insights and improvements to benchmark order place-
ment strategies, several limitations and opportunities for further research remain.

The static model currently outperforms the studied benchmark models, when the arrival rate of
market orders and limit orders is assumed to be exponentially distributed. Although the literature
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proves this to be a reasonable assumption, interesting results might appear when these arrivals are
described differently, such as (Compound) Hawkes processes.

Secondly, the static model does not consider the order in which MOs and LOs arriving during the
time window. This might miss occurrences like the arrival of a large MO "walking up the book" before
new LOs are posted later in the time window. In reality, such a large number of incoming MOs could
potentially fill deeper LOs. A more realistic model could incorporate the order in which MOs and LOs
arrive, looking at the intensity of the arrivals.

Moreover, we show that under economically reasonable assumptions, the optimal static solution
consists of placing as many orders in total as the trader’s target quantity. Then the optimal static
solution is found by taking the derivative of the cost function w.r.t. the order placement variables. For
the one price-level solution we can use the constraint on the total order size to capture the fact that
placing more MOs means that the traders can place less LOs. When the number of order placement
variables is then increased for the two, three and n price-level solutions, this fact is no longer captured
in the optimal solution. This leads to a discrepancy between the found optimal static solution and
the true solution that minimises the cost function. This discrepancy can be removed by adjusting the
number of price-levels our static solution considers. What might also be interesting, however, is to
analyse the problem as a stochastic linear programming, to make sure the solution always adheres to
the optimality constraints, without need for adjustments.

Lastly the static model also makes some key assumptions. It assumes that no matter how many
MOs are placed, they never walk the book, meaning the best sell quote queue is greater than our target
number of shares. Although this assumption is simple to check, it could be an interesting addition, to
take into account what effect it has on our optimal solution, if placing too many market orders means
walking up the book. Furthermore it does not take into account price levels inside the spread. Doing
this could allow the model to be extended to also include price drifts or changes in the spread size.

The dynamic model currently assumes a simplified, depth-based fill probability for any LO and a
Poisson arrival for MOs. In reality, fill probabilities depend on more detailed queue dynamics, including
order size, queue imbalance, and cancellation rates. It is important to note that the distribution of
the fill probability plays a crucial role in whether the dynamic model allows for an analytical solution.
Future work could, however, look into fill-probability functions, perhaps using survival analysis or
empirical estimation, to assess how sensitive the dynamic solution is to this assumption.

Moreover, the dynamic model assumes that a trader can place a limit order at any "continuous"
depth. However, in real exchanges, prices are discrete multiples of a tick size. Consequently, the
optimal "continuous" depth must be rounded to the nearest tick, potentially increasing expected cost.
Future work should look to discretise the LO depth and evaluate how rounding affects the dynamic
strategy. This could be done by solving a discrete dynamic programming problem over integer tick
increments. The dynamic strategy also re-places limit orders at the optimal depth every time step. In
a real LOB this would send the trader’s order to the back of the queue at that price-level, which is very
impactful for the fill probability of that order. Accounting for these LOB mechanics more accurately
could improve the practical applicability and performance of the optimal strategy.

In the functions describing the dynamic optimal strategy certain combinations of values for the
mid-price drift and running inventory penalty lead to asymptotic "blow-up" values in our solution.
Intuitively this happens when the price drift pushes the dynamic optimal strategy one way and the
running inventory penalty pushes the other way, causing our equations to break down. Interpolation
from values above and below the problematic combinations or implementing smoothing adjustments
could help resolve this issue.

As noted, the dynamic strategy’s computational runtime grows exponentially with inventory size,
due to the recursive nature of the solution. To make it viable for larger inventories (e.g., inventories
greater than 15), one could explore approximate dynamic programming methods like Value Function
Approximation (using basis functions or neural networks), Model Predictive Control or Grid Coarsening
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(solving the dynamic problem on a coarse grid of inventory and time). Implementing these methods
might make the dynamic optimal strategy more practically applicable for a real-world trader in a
high-speed environment.

Lastly, although our numerical experiments use parameter values inspired by realistic scenarios, its
performance remains to be tested on real LOB data. Further research on calibration of parameters
could be very interesting and will be crucial to make the found solutions practically applicable.

7.4 Final Remarks

This work offers two different approaches to the general Optimal Placement Problem, considering
market orders and limit orders at all depths. The static convex optimisation model offers intuitive
insights in the workings of the queueing mechanism in a limit order book. Its n price-level solution is
computationally efficient and, when combined with exponential distribution functions for order arrivals,
results in a explicit optimal order allocation that has consistently lower expected cost than benchmark
strategies and is more widely applicable. The dynamic optimal stopping and control problem excels
when the LOB environment is volatile and mid-price drift is likely. The dynamic optimal strategy
also leads to higher average earnings per share compared to benchmark strategies, but may require
approximate or heuristic methods to scale to large inventories in practice. Future extensions, like the
testing on different arrival distributions, depth discretisation and parameter calibration, could further
improve the performance and practical applicability of these approaches in real-world trading systems.
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A | Proofs

A.1 Proposition 4.1

Under assumption A1-A3 all optimal allocations belong to the set

C = {(M⋆, L⋆1, L
⋆
2, ...) : 0 ≤M⋆ ≤ S, 0 ≤ L⋆i ≤ S, M⋆ +

∑
L⋆i = S} (A.1)

Proof. Since market orders are always filled, the second inequality in assumption A2 tells us that
0 ≤M⋆ ≤ S. Now, suppose we have an allocationXXX with 0 ≤M ≤ S, L1 ≤ S−M , L2 = S−M−L1,...,
but there is a price-level k such that

{min
k>0

k : Lk > S −M −
k−1∑
i=1

Li} (A.2)

which means
∑
L⋆i +M⋆ > S. We then make a new allocation XXX ′ with all the same values except

L′
k = S −M −

∑k−1
i=1 Li. Then the difference in cost between the two allocations is given by

v(XXX, ξ,ψψψ)− v(XXX ′, ξ,ψψψ) =− (h+ (k − 1)δ + r)(OFk − OF′
k) + ρu

(
(S −A)+ − (S −A′)+

)
+ ρo

(
(A− S)+ − 0

)
+ θ
(
L2 − L′

2 + (S −A)+ − (S −A′)
)
.

(A.3)

We must now differentiate between four different scenarios:

(i) ξ + ψ1 + ...+ ψk−1 <
∑k−1

i=1 (Qi + Li) +Qk:

We have OFk = OF′
k = 0, (S − A)+ = (S − A′)+ = S −M −

∑k−1
i=1 OFi and (A − S)+ = 0, so

v(XXX, ξ,ψψψ)− v(XXX ′, ξ,ψψψ) = θ(Lk − L′
k) > 0.

(ii)
∑k−1

i=1 (Qi + Li) +Qk ≤ ξ + ψ1 + ...+ ψk−1 <
∑k−1

i=1 (Qi + Li) +Qk + L′
k:

We have OFk = OF′
k = ξ + ψ1 + ... + ψk−1 −

∑k−1
i=1 (Qi + Li) − Qk ≤ S − M −

∑k−1
i=1 Li,

(S−A)+ = (S−A′)+ = S−M−
∑k−1

i=1 OFi−OF′
k and (A−S)+ = 0, so v(XXX, ξ,ψψψ)−v(XXX ′, ξ,ψψψ) =

θ(Lk − L′
k) > 0.

(iii)
∑k−1

i=1 (Qi + Li) +Qk + L′
k ≤ ξ + ψ1 + ...+ ψk−1 <

∑k−1
i=1 (Qi + Li) +Qk + Lk:

We have L′
k = OF′

k ≤ OFk = ξ+ψ1+ ...+ψk−1−
∑k−1

i=1 (Qi+Li)−Qk, (S−A)+ = (S−A′)+ = 0

and (A − S)+ = ξ + ψ1 + ... + ψk−1 −
∑k−1

i=1 (Qi + Li) − Qk − L′
k = OFk − OF′

k ≥ 0, so
v(XXX, ξ,ψψψ)− v(XXX ′, ξ,ψψψ) = (ρo − h− (k − 1)δ − r)(OFk − OF′

k) + θ(Lk − L′
k). We know from A2

that ρo+ θ ≥ h+(k− 1)δ+ r so we have v(XXX, ξ,ψψψ)− v(XXX ′, ξ,ψψψ) = (ρo−h− (k− 1)δ− r)(OFk−
OF′

k) + θ(Lk − L′
k) > (ρo + θ − h − (k − 1)δ − r)(OFk − OF′

k) ≥ 0, where the first inequality
follows from A2 and the fact that θ > 0.

(iv) ξ + ψ1 + ...+ ψk−1 ≥
∑k−1

i=1 (Qi + Li) +Qk + Lk:

We have L′
k = OF′

k < OFk = Lk, (S −A)+ = (S −A′)+ = 0 and (A−S)+ = Lk −L′
k ≥ 0, so by

A2 v(XXX, ξ,ψψψ)−v(XXX ′, ξ,ψψψ) = (ρo+θ−h−(k−1)δ−r)(Lk−L′
k) > 0, since ρo+θ ≥ h+(k−1)δ+r.
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We have proven an allocation XXX = (M⋆, L⋆1, L
⋆
2, ...) is suboptimal if

∑
L⋆i +M⋆ > S. The fact that an

allocation is suboptimal if
∑
L⋆i +M⋆ < S simply follows from the fact that setting M ′ = S −

∑
L⋆i

for a new allocation XXX ′ will always result in lower costs due to A2.

A.2 Proposition 4.2

Assume that ξ has a continuous distribution and Assumptions (A1-A3) hold. Then the following
allocations are optimal for the n = 1 case of the Order Placement Problem 4.1

(i) If ρu ≤ ρu = 2h+f+r
F (Q1+S)

− (h+ r + θ), then (M∗, L∗
1) = (0, S) is an optimal allocation.

(ii) If ρu ≥ ρu = 2h+f+r
F (Q1)

− (h+ r + θ), then (M∗, L∗
1) = (S, 0) is an optimal allocation.

(iii) If ρu ∈ (ρu, ρu), an optimal allocation is a mix of limit and market orders, given by

M∗ = S − F−1

(
2h+ f + r

ρu + h+ r + θ

)
+Q1, (A.4)

L∗
1 = F−1

(
2h+ f + r

ρu + h+ r + θ

)
−Q1, (A.5)

where F (x) = P(ξ ≤ x) is the distribution of the outflow at the first price-level ξ = µ + γ1 and
F−1 is its left-inverse.

Proof. The expected costs is given by

E[v(XXX,µ, γ)] :=E[(h+ f)M − (h+ r)OF
+ ρu(S −A(XXX,µ, γ))+ + ρo(A(XXX,µ, γ)− S)+

+ θ (M + L+ (S −A(XXX,µ, γ))+)].

(A.6)

We know that S = M + L and we set ξ = µ + γ. In that case, we have {A(XXX, ξ) > S} = ∅ and
{A(XXX, ξ) < S|ξ > Q + L} = ∅, which means that (S − A(XXX, ξ))+ = (S − A(XXX, ξ))1{ξ<Q+L}. This
allows us to rewrite the expected cost as a function of M as

E[v(XXX, ξ)] = V (M) :=E[(h+ f)M − (h+ r)((ξ −Q)+ − (ξ −Q− S +M)+)

+ ρu(S −M − ((ξ −Q)+ − (ξ −Q− S +M)+))1{ξ<Q+S−M}

+ θ
(
S + (S −M − ((ξ −Q)+ − (ξ −Q− S +M)+))1{ξ<Q+S−M}

)
]

=E[(h+ f)M − (h+ r)((ξ −Q)+ − (ξ −Q− S +M)+)

+ (ρu + θ)(S −M − ((ξ −Q)+ − (ξ −Q− S +M)+))1{ξ<Q+S−M} + θS].

(A.7)

For the amount of our orders filled (OF1) is given by

OF1 = (ξ −Q)+ − (ξ −Q− S +M)+ = (ξ −Q)1{Q<ξ<Q+S−M} + (S −M)1{ξ≥Q+S−M}. (A.8)
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This allows us to rewrite the expected cost function as

V (M) = E[(h+ f)M − (h+ r)((ξ −Q)1{Q<ξ<Q+S−M} + (S −M)1{ξ≥Q+S−M}) (A.9)

+ (ρu + θ)
(
S −M − (ξ −Q)1{Q<ξ<Q+S−M} + (S −M)1{ξ≥Q+S−M}

)
1{ξ<Q+S−M} + θS]

(A.10)

= E[(h+ f)M − (h+ r)(ξ −Q)1{Q<ξ<Q+S−M} − (h+ r)(S −M)1{ξ≥Q+S−M} (A.11)

+ (ρu + θ)(S −M)1{ξ<Q+S−M} − (ρu + θ)(ξ −Q)1{Q<ξ<Q+S−M} + θS] (A.12)

= E[(h+ f)M − (h+ r + ρu + θ)(ξ −Q)1{Q<ξ<Q+S−M} − (h+ r)(S −M)1{ξ≥Q+S−M}
(A.13)

+ (ρu + θ)(S −M)1{ξ<Q+S−M} + θS]. (A.14)

We are allowed to differentiate inside the expectation, due to the dominated convergence theorem.
Doing so, we find the derivative of the cost function w.r.t. M , given by

∂E[v(XXX, ξ)]
∂M

= V ′(M) = E[(h+ f)− 0 · 1{Q<ξ<Q+S−M} + (h+ r)1{ξ≥Q+S−M} − (ρu + θ)1{ξ<Q+S−M}]

= E[(h+ f) + (h+ r)1{ξ>Q+S−M} − (ρu + θ)1{ξ<Q+S−M}]

=

∫ ∞

−∞
((h+ f) + (h+ r)1{ξ>Q+S−M} − (ρu + θ)1{ξ<Q+S−M})fξ(x)dx

= (h+ f)

∫ ∞

−∞
fξ(x)dx+ (h+ r)

∫ ∞

Q+S−M
fξ(x)dx− (ρu + θ)

∫ Q+S−M

−∞
fξ(x)dx

= (h+ f) + (h+ r)(1− Fξ(Q+ S −M))− (ρu + θ)Fξ(Q+ S −M)

= 2h+ f + r − (h+ r + ρu + θ)Fξ(Q+ S −M) = 0.

(A.15)

We see that if ρu ≤ 2h+f+r
F (Q+S) − (h + r + θ), then V ′(M) ≥ 0 for M ∈ (0, S) and therefore V is non-

decreasing at these points. Checking that V (S)−V (0) ≥ (h+f−ρu−θ)S+(h+r+ρu+θ)S(1−F (Q+
S)) ≥ 0 we conclude that M⋆ = 0 (since it is non-decreasing across the interval M ∈ (0, S)). Similarly,
if ρu ≥ 2h+f+r

F (Q) − (h+ r + θ), then V ′(M) ≤ 0 for all M ∈ (0, S) and V (M) is non-increasing at these
points. Checking that V (S)−V (0) ≤ (h+ f −ρu− θ)S+(h+ r+ρu+ θ)S(1−F (Q)) ≤ 0 we conclude
that M⋆ = S. Finally, if ρu is between these two values, ∃ϵ > 0, such that V ′(ϵ) < 0, V ′(S − ϵ) > 0
and by continuity of V ′ there is a point where V ′(M⋆) = 0. This M⋆ is optimal by convexity of V (M)
and Proposition A.2 solves the Optimal Placement Problem 4.1 for one price-level.

A.3 Proposition 4.3

Assume that ξ and ψ have continuous distributions and Assumptions (A1-A3) hold. Then the optimal
allocation for the n = 2 case of the Order Placement Problem 4.1 satisfies the following equations

(i) If ρu ≥ ρu = 2h+δ+f+r
Fξ+ψ(Q1+Q2)

− (h+ r+ δ+ θ), then (M∗, L∗
1, L

∗
2) = (S, 0, 0) is an optimal allocation.

(ii) If ρu ≤ ρu = 2h+δ+f+r
Fξ+ψ(Q1+Q2+S)

− (h+ r + δ + θ), then M∗ = 0 and L∗
1 satisfies,

δ + (h+ r + ρu + θ)Fξ(Q1 + L⋆1)− (h+ δ + r + ρu + θ)Fξ+ψ(Q1 +Q2 + L⋆1) = 0, (A.16)

and L∗
2 satisfies

L⋆2 = S −M⋆ − L⋆1. (A.17)
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(iii) If ρu ∈ (ρu, ρu), then the optimal allocation is a mix of limit (L∗
1, L

∗
2) and market (M⋆) orders,

where L⋆1 satisfies (A.16), L⋆2 satisfies (A.17), and M⋆ satisfies

M⋆ = S − F−1
ξ+ψ

(
2h+ δ + f + r

h+ δ + r + ρu + θ

)
+Q1 +Q2, (A.18)

where Fξ(x) = P(ξ ≤ x) is the distribution of the outflow at the first price-level ξ = µ + γ1,
Fξ+ψ(x) = P(ξ + ψ ≤ x) is the distribution of the outflow at the first and second price-level ξ,
ψ = −η1 + γ2 and F−1

ξ , F−1
ξ+ψ are their left-inverses.

Proof. Using (A.8) and (4.20) we can again write the expected cost function as a function of M and
this time also L1, so that L2 = S −M − L1 (again adhering to Proposition 4.1). The expected cost
function is then given by

E[v(XXX, ξ, ψ)] = V (M,L1) :=E[(h+ f)M − (h+ r)((ξ −Q1)1{Q1<ξ<Q1+L1} + L1 · 1{ξ≥Q1+L1})

− (h+ δ + r)( (ξ + ψ −Q1 − L1 −Q2) · 1{Q1+L1+Q2<ξ+ψ<Q1+L1+Q2+S−M−L1}

+ (S −M − L1) · 1{ξ+ψ>Q1+L1+Q2+S−M−L1} )

+ (ρu + θ)( S − (M + ((ξ −Q1)1{Q1<ξ<Q1+L1} + L1 · 1{ξ≥Q1+L1})

+ ((ξ + ψ −Q1 − L1 −Q2) · 1{Q1+L1+Q2<ξ+ψ<Q1+L1+Q2+S−M−L1}

+ (S −M − L1) · 1{ξ+ψ>Q1+L1+Q2+S−M−L1})) ) · 1{ξ+ψ<Q1+L1+Q2+S−M−L1}.

+ θS]

(A.19)

Separating the terms and using Q1 + L1 +Q2 + S −M − L1 = Q1 +Q2 + S −M we obtain

V (M,L1) =E[(h+ f)M − (h+ r)(ξ −Q1)1{Q1<ξ<Q1+L1} − (h+ r)L1 · 1{ξ≥Q1+L1})

− (h+ δ + r)(ξ + ψ −Q1 − L1 −Q2) · 1{Q1+L1+Q2<ξ+ψ<Q1+Q2+S−M}

− (h+ δ + r)(S −M − L1) · 1{ξ+ψ>Q1+Q2+S−M}

+ (ρu + θ)( S −M − (ξ −Q1)1{Q1<ξ<Q1+L1} − L1 · 1{ξ≥Q1+L1}

− (ξ + ψ −Q1 − L1 −Q2) · 1{Q1+L1+Q2<ξ+ψ<Q1+Q2+S−M}

− (S −M − L1) · 1{ξ+ψ>Q1+Q2+S−M} ) · 1{ξ+ψ<Q1+Q2+S−M} + θS]

=E[(h+ f)M − (h+ r)(ξ −Q1)1{Q1<ξ<Q1+L1} − (h+ r)L1 · 1{ξ≥Q1+L1})

− (h+ δ + r)(ξ + ψ −Q1 − L1 −Q2) · 1{Q1+L1+Q2<ξ+ψ<Q1+Q2+S−M}

− (h+ δ + r)(S −M − L1) · 1{ξ+ψ>Q1+Q2+S−M}

+ (ρu + θ)(S −M) · 1{ξ+ψ<Q1+Q2+S−M} − (ρu + θ)(ξ −Q1)1{Q1<ξ<Q1+L1}

− (ρu + θ)L1 · 1{ξ≥Q1+L1} · 1{ξ+ψ<Q1+Q2+S−M}

− (ρu + θ)(ξ + ψ −Q1 − L1 −Q2) · 1{Q1+L1+Q2<ξ+ψ<Q1+Q2+S−M} + θS].

(A.20)

Taking the derivative of V w.r.t. the number of market orders M gives
∂V

∂M
= E[(h+ f) + (h+ δ + r) · 1{ξ+ψ>Q1+Q2+S−M} − (ρu + θ) · 1{ξ+ψ<Q1+Q2+S−M}]

=

∫ ∞

−∞
((h+ f) + (h+ δ + r) · 1{ξ+ψ>Q1+Q2+S−M} − (ρu + θ) · 1{ξ+ψ<Q1+Q2+S−M})fξ+ψ(x)dx

= (h+ f)

∫ ∞

−∞
fξ+ψ(x)dx+ (h+ δ + r)

∫ ∞

Q1+Q2+S−M
fξ+ψ(x)dx− (ρu + θ)

∫ Q1+Q2+S−M

−∞
fξ+ψ(x)dx

= h+ f + (h+ δ + r)(1− Fξ+ψ(Q1 +Q2 + S −M))− (ρu + θ)Fξ+ψ(Q1 +Q2 + S −M)

= 2h+ δ + f + r − (h+ δ + r + ρu + θ)Fξ+ψ(Q1 +Q2 + S −M).

(A.21)
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Setting (A.21) equal to zero and using similar reasoning as in the 1 price-level case, we see that if
ρu ≤ 2h+δ+f+r

F (Q1+Q2+S)
− (h + δ + r + θ), then ∂V

∂M ≥ 0 for M ∈ (0, S), so M⋆ = 0. Similarly we also see

for ρu ≥ 2h+δ+f+r
F (Q1+Q2)

− (h + δ + r + θ) that ∂V
∂M ≤ 0 for M ∈ (0, S), so M⋆ = S. For ρu ∈ (ρu, ρu) the

optimal number of market orders M⋆ is given by

M⋆ = S − F−1
ξ+ψ

(
2h+ δ + f + r

h+ δ + r + ρu + θ

)
+Q1 +Q2. (A.22)

Taking the derivative of V w.r.t. the number of limit orders at the best quote L1 gives

∂V

∂L1
=E[−(h+ r) · 1{ξ≥Q1+L1}

+ (h+ δ + r) · 1{Q1+L1+Q2<ξ+ψ<Q1+Q2+S−M}

+ (h+ δ + r) · 1{ξ+ψ>Q1+Q2+S−M}

− (ρu + θ) · 1{ξ≥Q1+L1} · 1{ξ+ψ<Q1+Q2+S−M}

+ (ρu + θ) · 1{Q1+L1+Q2<ξ+ψ<Q1+Q2+S−M}]

=− (h+ r)(1− Fξ(Q1 + L1))

+ (h+ δ + r)(Fξ+ψ(Q1 +Q2 + S −M)− Fξ+ψ(Q1 +Q2 + L1))

+ (h+ δ + r)(1− Fξ+ψ(Q1 +Q2 + S −M))

−
∫ ∞

−∞
(ρu + θ) · 1{x≥Q1+L1} · 1{x+y<Q1+Q2+S−M}fξ,ψ(x, y)d(x, y)

+ (ρu + θ)(Fξ+ψ(Q1 +Q2 + S −M)− Fξ+ψ(Q1 +Q2 + L1)).

(A.23)

We evaluate the integral separately, since we have to be careful with the boundaries. The integral
above can be rewritten to

=−
∫ ∞

−∞
(ρu + θ) · 1{x≥Q1+L1} · 1{x+y<Q1+Q2+S−M}fξ,ψ(x, y)d(x, y)

=− (ρu + θ)

∫ y=Q2

y=−∞

∫ x=Q1+Q2+S−M−y

x=Q1+L1

fξ(x)fψ(y)dxdy

=− (ρu + θ)

∫ y=Q2

y=−∞
(Fξ(Q1 +Q2 + S −M − y)− Fξ(Q1 + L1))fψ(y)dy

=− (ρu + θ)

(∫ y=Q2

y=−∞
Fξ(Q1 +Q2 + S −M − y)fψ(y)dy − Fψ(Q2)Fξ(Q1 + L1)

)
=(ρu + θ) (Fψ(Q2)Fξ(Q1 + L1)− Fξ+ψ(Q1 +Q2 + S −M))

(A.24)

where Fψ(Q2) = 1 since ψ ∈ (−∞, Q2]. We know from convolution of probability functions, that if we
have two independent random variables X,Y , then the probability of their sum X + Y is given by

fX+Y (z) =

∫ ∞

−∞
fX(x)fY (z − x)dx (A.25)

which can be seen as simply saying, the probability that the sum is equal to z is found by adding up
all probabilities where X = x and Y = z − x. Now if we were to integrate this function, to find its
CDF, we get

FX+Y (A) =

∫ A

−∞
fX+Y (z)dz =

∫ A

−∞

∫ ∞

−∞
fX(x)fY (z − x)dxdz

=

∫ ∞

−∞

∫ A

−∞
fX(x)fY (z − x)dzdx =

∫ ∞

−∞
FY (A− x)fX(x)dx.

(A.26)
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We find the derivative of the expected cost function is given by

∂V

∂L1
=− (h+ r)(1− Fξ(Q1 + L1))

+ (h+ δ + r)(Fξ+ψ(Q1 +Q2 + S −M)− Fξ+ψ(Q1 +Q2 + L1))

+ (h+ δ + r)(1− Fξ+ψ(Q1 +Q2 + S −M))

+ (ρu + θ)(Fξ(Q1 + L1)− Fξ+ψ(Q1 +Q2 + L1))

=δ + (h+ r + ρu + θ)Fξ(Q1 + L1))− (h+ δ + r + ρu + θ)Fξ+ψ(Q1 +Q2 + L1) = 0.

(A.27)

This can be simplified to

AFξ+ψ(Q1 +Q2 + L1) +BFξ(Q1 + L1) + C = 0 (A.28)

with

A = −(h+ δ + r + ρu + θ), B = h+ r + ρu + θ, C = δ. (A.29)

With the assumptions made earlier, the optimal number of limit orders in the second best price level,
should simply be L⋆2 = S −M⋆ − L⋆1, but this is only the case when (A.28) has root L⋆1 ∈ (0, S). If
this root does not exist in this interval, it means it would be optimal to place L1 = 0 (when ∂V

∂L1
> 0

for L1 ∈ (0, S)) or L1 = S (when ∂V
∂L1

< 0 for L1 ∈ (0, S)).

A.4 Lemma 4.1

If ξ ∼ X, where X is exponentially distributed with rate λξ, and ψ ∼ Q2 − Y , where Q2 is the length
of the second price-level queue and Y is independent and exponentially distributed with rate λψ, the
cumulative distribution function of the convolution of the random variables ξ and ψ is given by

Fξ+ψ(A) =

{ λξ
λξ+λψ

e−λψ(Q2−A) , A ≤ Q2

1− λψ
λξ+λψ

e−λξ(A−Q2) , A > Q2.
(A.30)

Proof. For the exponential distribution the cumulative distribution function (CDF) is given by FX(x) =
1− e−λXx. We set ξ ∼ X and ψ ∼ Q2 − Y where X is exponentially distributed with rate λξ , Q2 is
the length of our second price-level queue and Y is exponentially distributed with rate λψ. An analysis
of limit order arrivals in [32] shows that the exponential distribution is a reasonable approximation of
actual limit orders arriving in FX spot markets. So for ψ we have

fψ(ψ = y) = λψe
−λψ(Q2−y), (A.31)

meaning the CDF is given by

Fψ(ψ = y) = e−λψ(Q2−y) (A.32)

where y ∈ (−∞, Q2]. To find the CDF of the convolution of ξ and ψ, which is denoted by Fξ+ψ(A),
we look at two different cases. Firstly, when A > Q2, the CDF of the convolution of ξ and ψ is given
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by

Fξ+ψ(A) =

∫ Q2

−∞
Fξ(A− y)fψ(y)dy

=

∫ Q2

−∞
(1− e−λξ(A−y))λψe

−λψ(Q2−y)dy

=λψ

∫ Q2

−∞
e−λψ(Q2−y)dy − λψe

−λξA−λψQ2

∫ Q2

−∞
e(λξ+λψ)ydy

=

[
e−λψ(Q2−y)

]Q2

−∞
−

λψ
λξ + λψ

e−λξA−λψQ2

[
e(λξ+λψ)y

]Q2

−∞

=1−
λψ

λξ + λψ
e−λξ(A−Q2).

(A.33)

Now if A ≤ Q2, the CDF of the convolution of ξ and ψ is given by

Fξ+ψ(A) =

∫ ∞

0
Fψ(A− x)fξ(x)dx

=

∫ ∞

0
e−λψ(Q2−A+x)λξe

−λξxdx

=λξe
−λψ(Q2−A)

∫ ∞

0
e−(λξ+λψ)xdx

=−
λξ

λξ + λψ
e−λψ(Q2−A)[e−(λξ+λψ)x

]∞
0

=
λξ

λξ + λψ
e−λψ(Q2−A).

(A.34)

We see that these two cases indeed coincide at the point when A = Q2, so we find that the convolution
of ξ and ψ is given by

Fξ+ψ(A) =

{ λξ
λξ+λψ

e−λψ(Q2−A) , A ≤ Q2

1− λψ
λξ+λψ

e−λξ(A−Q2) , A > Q2.
(A.35)

The inverse of this function is given by

F−1
ξ+ψ(x) =

Q2 − 1
λψ

log
(

λξ
(λξ+λψ)x

)
, x ≤ Fξ+ψ(Q2) =

λξ
λξ+λψ

Q2 +
1
λξ

log
(

λψ
(λξ+λψ)(1−x)

)
, x > Fξ+ψ(Q2) =

λξ
λξ+λψ

.
(A.36)

We can use (A.35) and (A.36) to find a closed-form expression of the optimal solution M⋆ and L⋆1. For
M⋆, given by equation (4.25), we find

M⋆ =

S + 1
λψ

log
(

λξ
(λξ+λψ)

h+δ+r+ρu+θ
2h+δ+f+r

)
+Q1 , 2h+δ+f+r

h+δ+r+ρu+θ
≤ λξ

λξ+λψ

S − 1
λξ

log
(

λψ
(λξ+λψ)

h+δ+r+ρu+θ
−h−f+ρu+θ

)
+Q1 , 2h+δ+f+r

h+δ+r+ρu+θ
>

λξ
λξ+λψ

(A.37)

and to derive a closed form expression L⋆1, we insert (A.35) and (A.32) into equation (4.23), to find

δ+(h+r+ρu+θ)(1−e−λξ(Q1+L1))−(h+δ+r+ρu+θ)(1−
λψ

λξ + λψ
e−λξ((Q1+Q2+L1)−Q2)) = 0, (A.38)
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since Q1 +Q2 + L1 ≥ Q2. We find that equation (A.38) holds if

0 =− e−λξ(Q1+L1)

(
(h+ r + ρu + θ)− (h+ δ + r + ρu + θ)

λψ
λξ + λψ

)
,

λξ + λψ
λψ

=
h+ δ + r + ρu + θ

h+ r + ρu + θ
,

λξ
λψ

=
δ

h+ r + ρu + θ
,

λξ =
λψδ

h+ r + ρu + θ
.

(A.39)

We find that if λξ >
λψδ

h+r+ρu+θ
, the derivative ∂V

∂L1
> 0, so it is no longer optimal to place L1 limit

orders and the trader should instead place L2 limit orders. The fact that this sudden switch in optimal
limit order price-level can be expressed as a closed-form critical point is a nice result.

A.5 Proposition 4.4

Assume that ξ, ψ1, and ψ2 have continuous distributions and Assumptions (A1-A3) hold. Then the
optimal allocation for the n = 3 case of the Order Placement Problem 4.1 satisfies the following, based
on the valuw of ρu.

(i) If ρu ≥ ρu = 2h+2δ+f+r
Fξ+ψ1+ψ2 (Q1+Q2+Q3)

− (h + 2δ + r + θ), then (M∗, L∗
1, L

∗
2, L

∗
3) = (S, 0, 0, 0) is an

optimal allocation.

(ii) If ρu ≤ ρu = 2h+2δ+f+r
Fξ+ψ1+ψ2 (Q1+Q2+Q3+S)

− (h+ 2δ + r + θ), then M∗ = 0 and L∗
1 satisfies

δ + (h+ r + ρu + θ)Fξ(Q1 + L⋆1)− (h+ δ + r + ρu + θ)Fξ+ψ1(Q1 + L⋆1 +Q2) = 0, (A.40)

L∗
2 satisfies

δ + (h+ δ + r + ρu + θ)Fξ+ψ1(Q1 + L⋆1 +Q2 + L⋆2)

− (h+ 2δ + r + ρu + θ)Fξ+ψ1+ψ2(Q1 + L⋆1 +Q2 + L⋆2 +Q3) = 0,
(A.41)

and L∗
3 satisfies

L⋆3 = S −M − L⋆1 − L⋆2. (A.42)

(iii) If ρu ∈ (ρu, ρu), then the optimal allocation is a mix of limit (L∗
1, L

∗
2, L

∗
3) and market (M⋆) orders,

where L⋆1 satisfies (A.40), L⋆2 satisfies (A.41), L⋆3 satisfies (A.42) and M⋆ satisfies

M⋆ = S − F−1
ξ+ψ1+ψ2

(
2h+ 2δ + f + r

h+ 2δ + r + ρu + θ

)
+Q1 +Q2 +Q3, (A.43)

where Fξ(x) = P(ξ ≤ x) is the distribution of the outflow at the first price-level ξ, Fξ+ψ1(x) =
P(ξ + ψ1 ≤ x) is the distribution of the outflow at the first and second price-level ξ, ψ1,
Fξ+ψ1+ψ2(x) = P(ξ+ψ1+ψ2 ≤ x) is the distribution of the outflow at the first, second and third
price-level ξ, ψ1,ψ2 and F−1

ξ , F−1
ξ+ψ1

, F−1
ξ+ψ1+ψ2

their left-inverses.
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Proof. Using (A.8), (4.20) and (4.35) we can again write the expected cost function as a function of
M , L1 and this time also L2, so that L3 = S −M −L1 −L2 (again adhering to Proposition 4.1). The
expected cost function is then given by

E[v(XXX, ξ, ψ1, ψ2)] =V (M,L1, L2)

:=E[(h+ f)M − (h+ r)((ξ −Q1)1{Q1<ξ<Q1+L1} + L1 · 1{ξ≥Q1+L1})

− (h+ δ + r)( (ξ + ψ1 −Q1 − L1 −Q2) · 1{Q1+L1+Q2<ξ+ψ1<Q1+L1+Q2+L2}

+ L2 · 1{ξ+ψ1>Q1+L1+Q2+L2} )

− (h+ 2δ + r)( (ξ + ψ1 + ψ2 −Q1 − L1 −Q2 − L2 −Q3)

· 1{Q1+L1+Q2+L2+Q3<ξ+ψ1+ψ2<Q1+L1+Q2+L2+Q3+S−M−L1−L2}

+ (S −M − L1 − L2) · 1{ξ+ψ1+ψ2>Q1+L1+Q2+L2+Q3+S−M−L1−L2} )

+ (ρu + θ)( S − (M + ((ξ −Q1)1{Q1<ξ<Q1+L1} + L1 · 1{ξ≥Q1+L1})

+ ((ξ + ψ1 −Q1 − L1 −Q2) · 1{Q1+L1+Q2<ξ+ψ1<Q1+L1+Q2+L2}

+ L2 · 1{ξ+ψ1>Q1+L1+Q2+L2})

+ ((ξ + ψ1 + ψ2 −Q1 − L1 −Q2 − L2 −Q3)

· 1{Q1+L1+Q2+L2+Q3<ξ+ψ1+ψ2<Q1+L1+Q2+L2+Q3+S−M−L1−L2}

+ (S −M − L1 − L2) · 1{ξ+ψ1+ψ2>Q1+L1+Q2+L2+Q3+S−M−L1−L2})) )

· 1{ξ+ψ1+ψ2<Q1+L1+Q2+L2+Q3+S−M−L1−L2} + θS].

(A.44)

Separating the terms and using Q1 +L1 +Q2 +L2 +Q3 +S −M −L1 −L2 = Q1 +Q2 +Q3 +S −M
we obtain

V (M,L1, L2) :=E[(h+ f)M − (h+ r)(ξ −Q1)1{Q1<ξ<Q1+L1} − (h+ r)L1 · 1{ξ≥Q1+L1}

− (h+ δ + r)(ξ + ψ1 −Q1 − L1 −Q2) · 1{Q1+L1+Q2<ξ+ψ1<Q1+L1+Q2+L2}

− (h+ δ + r)L2 · 1{ξ+ψ1>Q1+L1+Q2+L2}

− (h+ 2δ + r)(ξ + ψ1 + ψ2 −Q1 − L1 −Q2 − L2 −Q3)

· 1{Q1+L1+Q2+L2+Q3<ξ+ψ1+ψ2<Q1+Q2+Q3+S−M}

− (h+ 2δ + r)(S −M − L1 − L2) · 1{ξ+ψ1+ψ2>Q1+Q2+Q3+S−M}

+ (ρu + θ)( S − (M + (ξ −Q1)1{Q1<ξ<Q1+L1} + L1 · 1{ξ≥Q1+L1}

+ (ξ + ψ1 −Q1 − L1 −Q2) · 1{Q1+L1+Q2<ξ+ψ1<Q1+L1+Q2+L2}

+ L2 · 1{ξ+ψ1>Q1+L1+Q2+L2}

+ (ξ + ψ1 + ψ2 −Q1 − L1 −Q2 − L2 −Q3)

· 1{Q1+L1+Q2+L2+Q3<ξ+ψ1+ψ2<Q1+Q2+Q3+S−M}

+ (S −M − L1 − L2) · 1{ξ+ψ1+ψ2>Q1+Q2+Q3+S−M}) )

· 1{ξ+ψ1+ψ2<Q1+Q2+Q3+S−M} + θS].

(A.45)
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Taking the derivative of V (M,L1, L2) w.r.t. the number of market orders M gives

∂V

∂M
= E[(h+ f) + (h+ 2δ + r) · 1{ξ+ψ1+ψ2>Q1+Q2+Q3+S−M} − (ρu + θ) · 1{ξ+ψ1+ψ2<Q1+Q2+Q3+S−M}]

=

∫ ∞

−∞
((h+ f) + (h+ 2δ + r) · 1{ξ+ψ1+ψ2>Q1+Q2+Q3+S−M}

− (ρu + θ) · 1{ξ+ψ1+ψ2<Q1+Q2+Q3+S−M})fξ+ψ1+ψ2(x)dx

= (h+ f)

∫ ∞

−∞
fξ+ψ1+ψ2(x)dx+ (h+ 2δ + r)

∫ ∞

Q1+Q2+Q3+S−M
fξ+ψ1+ψ2(x)dx

− (ρu + θ)

∫ Q1+Q2+Q3+S−M

−∞
fξ+ψ1+ψ2(x)dx

= h+ f + (h+ 2δ + r)(1− Fξ+ψ1+ψ2(Q1 +Q2 +Q3 + S −M))

− (ρu + θ)Fξ+ψ1+ψ2(Q1 +Q2 +Q3 + S −M)

= 2h+ 2δ + f + r − (h+ 2δ + r + ρu + θ)Fξ+ψ1+ψ2(Q1 +Q2 +Q3 + S −M).

(A.46)

Setting (A.46) equal to zero and using similar reasoning as in the 1 price-level case, we see that if
ρu ≤ 2h+2δ+f+r

F (Q1+Q2+Q3+S)
− (h+2δ+ r+ θ), then ∂V

∂M ≥ 0 for M ∈ (0, S), so M⋆ = 0. Similarly we also see

for ρu ≥ 2h+2δ+f+r
F (Q1+Q2+Q3)

− (h + 2δ + r + θ) that ∂V
∂M ≤ 0 for M ∈ (0, S), so M⋆ = S. For ρu ∈ (ρu, ρu)

the optimal number of market orders M⋆ is given by

M⋆ = S − F−1
ξ+ψ1+ψ2

(
2h+ 2δ + f + r

h+ 2δ + r + ρu + θ

)
+Q1 +Q2 +Q3 (A.47)

and we clearly see a pattern starting to emerge.

Next, we look at what happens when we take the derivative of V (M,L1, L2) with respect to L1,
which is given by

∂V

∂L1
=E[−(h+ r) · 1{ξ≥Q1+L1} + (h+ δ + r) · 1{Q1+L1+Q2<ξ+ψ1<Q1+L1+Q2+L2}

+ (h+ 2δ + r) · 1{Q1+L1+Q2+L2+Q3<ξ+ψ1+ψ2<Q1+Q2+Q3+S−M}

+ (h+ 2δ + r) · 1{ξ+ψ1+ψ2>Q1+Q2+Q3+S−M}

+ (ρu + θ)( −1{ξ≥Q1+L1} + 1{Q1+L1+Q2<ξ+ψ1<Q1+L1+Q2+L2}

+ 1{Q1+L1+Q2+L2+Q3<ξ+ψ1+ψ2<Q1+Q2+Q3+S−M} ) · 1{ξ+ψ1+ψ2<Q1+Q2+Q3+S−M}]

=E[−(h+ r) · 1{ξ≥Q1+L1} + (h+ δ + r) · 1{Q1+L1+Q2<ξ+ψ1<Q1+L1+Q2+L2}

+ (h+ 2δ + r) · 1{Q1+L1+Q2+L2+Q3<ξ+ψ1+ψ2}

+ (ρu + θ)( −1{ξ≥Q1+L1} + 1{Q1+L1+Q2<ξ+ψ1<Q1+L1+Q2+L2} ) · 1{ξ+ψ1+ψ2<Q1+Q2+Q3+S−M}

+ (ρu + θ)1{Q1+L1+Q2+L2+Q3<ξ+ψ1+ψ2<Q1+Q2+Q3+S−M}].

(A.48)

Using the definition of the expectation, we find the derivative of V w.r.t. L1 to exist of the following
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integrals and be given by

∂V

∂L1
=− (h+ r)(1− Fξ(Q1 + L1)) + (h+ δ + r)(Fξ+ψ1(Q1 + L1 +Q2 + L2)− Fξ+ψ1(Q1 + L1 +Q2))

+ (h+ 2δ + r)(1− Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3))

− (ρu + θ)

∫
1{x≥Q1+L1} · 1{x+y+z<Q1+Q2+Q3+S−M}fξ,ψ1,ψ2(x, y, z)d(x, y, z)

+ (ρu + θ)

∫
1{Q1+L1+Q2<x+y<Q1+L1+Q2+L2} · 1{x+y+z<Q1+Q2+Q3+S−M}fξ,ψ1,ψ2(x, y, z)d(x, y, z)

+ (ρu + θ)(Fξ+ψ1+ψ2(Q1 +Q2 +Q3 + S −M)− Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3)).

(A.49)

With similar reasoning as in the 2 price-level case, we find the first integral to be equivalent to the
following

=− (ρu + θ)

∫
1{x≥Q1+L1} · 1{x+y+z<Q1+Q2+Q3+S−M}fξ,ψ1,ψ2(x, y, z)d(x, y, z)

=− (ρu + θ)

∫ y+z=Q2+Q3+S−M−L1

y+z=−∞

∫ x=Q1+Q2+Q3+S−M−(y+z)

x=Q1+L1

fξ(x)fψ1+ψ2(y + z)dxd(y + z)

=− (ρu + θ)

∫ y+z=Q2+Q3

y+z=−∞

∫ x=Q1+Q2+Q3+S−M−(y+z)

x=Q1+L1

fξ(x)fψ1+ψ2(y + z)dxd(y + z)

=− (ρu + θ)

∫ y+z=Q2+Q3

y+z=−∞
(Fξ(Q1 +Q2 +Q3 + S −M − (y + z))− Fξ(Q1 + L1))fψ1+ψ2(y + z)d(y + z)

=− (ρu + θ)

(∫ y+z=Q2+Q3

y+z=−∞
Fξ(Q1 +Q2 +Q3 + S −M − (y + z))fψ1+ψ2(y + z)d(y + z)

− Fψ1+ψ2(Q2 +Q3)Fξ(Q1 + L1)

)
=(ρu + θ) (Fξ(Q1 + L1)− Fξ+ψ1+ψ2(Q1 +Q2 +Q3 + S −M))

(A.50)

and the second integral to be equal to

=(ρu + θ)

∫
1{Q1+L1+Q2<x+y<Q1+L1+Q2+L2} · 1{x+y+z<Q1+Q2+Q3+S−M}fξ,ψ1,ψ2(x, y, z)d(x, y, z)

=(ρu + θ)

(∫ z=Q3+S−M−L1

z=Q3+S−M−L1−L2

∫ x+y=Q1+Q2+Q3+S−M−z

x+y=Q1+L1+Q2

fξ+ψ1(x+ y)fψ2(z)dzd(x+ y)

+

∫ z=Q3+S−M−L1−L2

z=−∞

∫ x+y=Q1+L1+Q2+L2

x+y=Q1+L1+Q2

fξ+ψ1(x+ y)fψ2(z)dzd(x+ y)

)
=(ρu + θ)

(
0 +

∫ z=Q3+S−M−L1−L2

z=−∞
(Fξ+ψ1(Q1 + L1 +Q2 + L2)− Fξ+ψ1(Q1 + L1 +Q2))fψ2(z)dzd(x+ y)

)
=(ρu + θ)(Fξ+ψ1(Q1 + L1 +Q2 + L2)− Fξ+ψ1(Q1 + L1 +Q2))

(A.51)

since ψ2 ∈ (−∞, Q3] and Q3 ≤ Q3 + S −M − L1 − L2 ≤ Q3 + S −M − L1 which means∫ Q3+S−M−L1

Q3+S−M−L1−L2
fψ2(z)dz = 0.
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This gives allows us to write the derivative of V (M,L1, L2) w.r.t. L1 as

∂V

∂L1
=− (h+ r)(1− Fξ(Q1 + L1)) + (h+ δ + r)(Fξ+ψ1(Q1 + L1 +Q2 + L2)− Fξ+ψ1(Q1 + L1 +Q2))

+ (h+ 2δ + r)(1− Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3))

+ (ρu + θ) (Fξ(Q1 + L1)− Fξ+ψ1+ψ2(Q1 +Q2 +Q3 + S −M))

+ (ρu + θ)(Fξ+ψ1(Q1 + L1 +Q2 + L2)− Fξ+ψ1(Q1 + L1 +Q2))

+ (ρu + θ)(Fξ+ψ1+ψ2(Q1 +Q2 +Q3 + S −M)− Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3))

=2δ + (h+ r + ρu + θ)Fξ(Q1 + L1)

+ (h+ δ + r + ρu + θ)(Fξ+ψ1(Q1 + L1 +Q2 + L2)− Fξ+ψ1(Q1 + L1 +Q2))

− (h+ 2δ + r + ρu + θ)Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3) = 0.

(A.52)

We now move on to taking the derivative of V (M,L1, L2) w.r.t. L2 and see it is given by

∂V

∂L2
=E[−(h+ δ + r) · 1{ξ+ψ1>Q1+L1+Q2+L2} + (h+ 2δ + r) · 1{Q1+L1+Q2+L2+Q3<ξ+ψ1+ψ2}

+ (ρu + θ)(−1{ξ+ψ1>Q1+L1+Q2+L2} + 1{Q1+L1+Q2+L2+Q3<ξ+ψ1+ψ2<Q1+Q2+Q3+S−M}

+ 1{ξ+ψ1+ψ2>Q1+Q2+Q3+S−M}) · 1{ξ+ψ1+ψ2<Q1+Q2+Q3+S−M}].

(A.53)

Taking the expectation by integrating we obtain

∂V

∂L2
=− (h+ δ + r)(1− Fξ+ψ1(Q1 + L1 +Q2 + L2))

+ (h+ 2δ + r)(1− Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3))

− (ρu + θ)

∫
1{x+y>Q1+L1+Q2+L2} · 1{x+y+z<Q1+Q2+Q3+S−M}fξ,ψ1,ψ2(x, y, z)d(x, y, z)

+ (ρu + θ)(Fξ+ψ1+ψ2(Q1 +Q2 +Q3 + S −M)− Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3))

+ (ρu + θ) · 0.
(A.54)

We find the integral to be equal to

=− (ρu + θ)

∫
1{x+y>Q1+L1+Q2+L2} · 1{x+y+z<Q1+Q2+Q3+S−M}fξ,ψ1,ψ2(x, y, z)d(x, y, z)

=− (ρu + θ)

∫ z=Q3+S−M−L1−L2

z=−∞

∫ x+y=Q1+Q2+Q3+S−M−z

x+y=Q1+L1+Q2+L2

fξ+ψ1(x+ y)fψ2(z)d(x+ y)dz

=− (ρu + θ)

∫ z=Q3

z=−∞

∫ x+y=Q1+Q2+Q3+S−M−z

x+y=Q1+L1+Q2+L2

fξ+ψ1(x+ y)fψ2(z)d(x+ y)dz

=− (ρu + θ)

∫ z=Q3

z=−∞
(Fξ+ψ1(Q1 +Q2 +Q3 + S −M − z)− Fξ+ψ1(Q1 + L1 +Q2 + L2))fψ2(z)dz

=(ρu + θ)(Fξ+ψ1(Q1 + L1 +Q2 + L2)− Fξ+ψ1+ψ2(Q1 +Q2 +Q3 + S −M)).

(A.55)

Inserting this into (A.53) and rearranging the terms we find the derivative of V (M,L1, L2) w.r.t. L2

is given by

∂V

∂L2
=δ + (h+ δ + r + ρu + θ)Fξ+ψ1(Q1 + L1 +Q2 + L2)

− (h+ 2δ + r + ρu + θ)Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3) = 0.

(A.56)
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We see (A.52) and (A.56) both depend on L1 and L2, which means we will find a line on which
V (M,L1, L2) is minimized. We can substitute (A.56) into (A.52) to find the derivative of V (M,L1, L2)
w.r.t. L1 is given by

∂V

∂L1
=δ + (h+ r + ρu + θ)Fξ(Q1 + L1)− (h+ δ + r + ρu + θ)Fξ+ψ1(Q1 + L1 +Q2) = 0. (A.57)

This proves our result found in the proposition.

A.6 Lemma 4.2

If ξ ∼ X, where X is exponentially distributed with rate λξ, ψ1 ∼ Q2 − Y1 and ψ2 ∼ Q3 − Y2, where
Q2 and Q3 is the length of the second and third price-level queues and Y1 and Y2 are independent
and exponentially distributed with rates λψ1 and λψ2 , the cumulative distribution function of the
convolution of the random variables ξ, ψ1 and ψ2 is given by

Fξ+ψ1+ψ2(A) =


λξλψ1

(λξ+λψ2 )(λψ1−λψ2 )
e−λψ2 (Q2+Q3−A) − λξλψ2

(λξ+λψ1 )(λψ1−λψ2 )
e−λψ1 (Q2+Q3−A) , A ≤ Q2 +Q3

1− λψ1λψ2
(λξ+λψ1 )(λξ+λψ2 )

e−λξ(A−(Q2+Q3)) , A > Q2 +Q3

(A.58)

Proof. For the exponential distribution the CDF is given by FX(x) = 1 − e−λXx. We set ξ ∼ X,
ψ1 ∼ Q2 − Y1 and ψ2 ∼ Q3 − Y2 where X is exponentially distributed with rate λξ. In general, we
have ψi ∼ Qi+1 − Yi, where Qi is the length of our i-th price-level queue and Yi are exponentially
distributed with rate λψi . So for ψi we have

fψi(ψi = y) = λψie
−λψi (Qi−y) (A.59)

meaning the CDF is given by
Fψi(ψi = y) = e−λψi (Qi+1−y) (A.60)

where y ∈ (−∞, Qi+1].We know from the previous section that for the convolution of ξ and ψ1 we have

Fξ+ψ1(z) =


λξ

λξ+λψ1
e−λψ1 (Q2−z) , z ≤ Q2

1− λψ1
λξ+λψ1

e−λξ(z−Q2) , z > Q2

(A.61)

which means for the PDF we have

fξ+ψ1(z) =


λξλψ1
λξ+λψ1

e−λψ1 (Q2−z) , z ≤ Q2

λξλψ1
λξ+λψ1

e−λξ(z−Q2) , z > Q2.
(A.62)

To find the CDF of the convolution of ξ + ψ1 and ψ2, Fξ+ψ1+ψ2(A), we must look at two different
regions: A ≤ Q2 +Q3 and A > Q2 +Q3. By definition, the convoluted CDF is given by

Fξ+ψ1+ψ2(A) =

∫ ∞

−∞
Fψ2(A− z)fξ+ψ1(z)dz. (A.63)

Through the derivation in section B.1, we find that the convolution of ξ, ψ1 and ψ2 is given by

Fξ+ψ1+ψ2(A) =


λξλψ1

(λξ+λψ2 )(λψ1−λψ2 )
e−λψ2 (Q2+Q3−A) − λξλψ2

(λξ+λψ1 )(λψ1−λψ2 )
e−λψ1 (Q2+Q3−A) , A ≤ Q2 +Q3

1− λψ1λψ2
(λξ+λψ1 )(λξ+λψ2 )

e−λξ(A−(Q2+Q3)) , A > Q2 +Q3

(A.64)
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assuming that λψ1 ̸= λψ2 . The inverse of this function cannot be expressed explicitly for x >

Fξ+ψ1+ψ2(Q2 + Q3) = 1 − λψ1λψ2
(λξ+λψ1 )(λξ+λψ2 )

, due to the different exponents in the expression of the

CDF. However, for x ≤ Fξ+ψ1+ψ2(Q2 +Q3) = 1− λψ1λψ2
(λξ+λψ1 )(λξ+λψ2 )

, the inverse of Fξ+ψ1+ψ2(A) can be
expressed explicitly, and is given by

F−1
ξ+ψ1+ψ2

(x) = Q2 +Q3 +
1

λξ
log

(
λψ1λψ2

(λξ + λψ1)(λξ + λψ2)(1− x)

)
. (A.65)

This still allows us to find an analytical expression for the solution described in Proposition 4.4. We
see the optimal number of market orders M⋆ is given by

M⋆ =S − 1

λξ
log

(
λψ1λψ2

(λξ + λψ1)(λξ + λψ2)

h+ 2δ + r + ρu + θ

−h− f + ρu + θ

)
+Q1. (A.66)

From section 4.2.3 we know the optimal solution shifts from limit orders at the best (first) price-level
to the second price-level at the point λξ =

λψ1δ

h+r+ρu+θ
. To see when the optimal solution shifts to the

third price-level, we look at equation (4.39) for L⋆2 and find that the following must hold for an optimal
order allocation:

δ + (h+ δ + r + ρu + θ)(1−
λψ1

λξ + λψ1

e−λξ((Q1+Q2+L1+L2)−Q2))

− (h+ 2δ + r + ρu + θ)(1−
λψ1λψ2

(λξ + λψ1)(λξ + λψ2)
e−λξ((Q1+Q2+Q3+L1+L2)−(Q2+Q3))) = 0,

(A.67)

since Q1 +Q2 +L1 +L2 ≥ Q2 and Q1 +Q2 +Q3 +L1 +L2 ≥ Q2 +Q3. We find that equation (A.67)
holds if

0 =− e−λξ(Q1+L1+L2)

(
(h+ δ + r + ρu + θ)

λψ1

λξ + λψ1

− (h+ 2δ + r + ρu + θ)
λψ1λψ2

(λξ + λψ1)(λξ + λψ2)

)
,

λξ + λψ2

λψ2

=
h+ 2δ + r + ρu + θ

h+ δ + r + ρu + θ
,

λξ
λψ2

=
δ

h+ δ + r + ρu + θ
,

λξ =
λψ2δ

h+ δ + r + ρu + θ
.

(A.68)

We find that if λξ >
λψ2δ

h+δ+r+ρu+θ
, the derivative ∂V

∂L2
> 0, so it is no longer optimal to place L2 limit

orders and the trader should instead place L3 limit orders. We again find that the point at which the
optimal limit order depth switches from one price-level to the next can be expressed as a closed-form
critical point.

A.7 Lemma 4.3

If ξ ∼ X, where X is exponentially distributed with rate λξ and ψi ∼ Qi+1 − Yi, where Qi is the
length of our i-th price-level queue and Yi are independent and exponentially distributed with rate
λψi , the cumulative distribution function of the convolution of the random variables ξ, ψ1, ...ψi for
i = 1, 2, ...n− 1 is given by

Fξ+ψ1+...+ψi(A) =


∑i

k=1

λξ
∏i
j ̸=k λψj

(λξ+λψk )
∏i
j ̸=k(λψj−λψk )

e−λψk ((
∑i+1
k=2Qk)−A) , A ≤

∑i+1
k=2Qk

1−
∏i
k=1 λψk∏i

k=1(λξ+λψk )
e−λξ(A−(

∑i+1
k=2Qk)) , A >

∑i+1
k=2Qk

(A.69)
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Proof. For the exponential distribution the CDF is given by FX(x) = 1 − e−λXx. We set ξ ∼ X,
ψ1 ∼ Q2 − Y1 and ψ2 ∼ Q3 − Y2 where X is exponentially distributed with rate λξ. In general, we
have ψi ∼ Qi+1 − Yi, where Qi is the length of our i-th price-level queue and Yi are exponentially
distributed with rate λψi . So for ψi we have that the PDF is given by

fψi(ψi = y) = λψie
−λψi (Qi−y) (A.70)

meaning the CDF is given by

Fψi(ψi = y) = e−λψi (Qi+1−y), with y ∈ (−∞, Qi+1]. (A.71)

From section 4.3.1, we know that the convolution of ξ, ψ1 and ψ2 is given by

Fξ+ψ1+ψ2(A) =


λξλψ1

(λξ+λψ2 )(λψ1−λψ2 )
e−λψ2 (Q2+Q3−A) − λξλψ2

(λξ+λψ1 )(λψ1−λψ2 )
e−λψ1 (Q2+Q3−A) , A ≤ Q2 +Q3

1− λψ1λψ2
(λξ+λψ1 )(λξ+λψ2 )

e−λξ(A−(Q2+Q3)) , A > Q2 +Q3

(A.72)
assuming that λψ1 ̸= λψ2 . This means the PDF is given by

fξ+ψ1+ψ2(A) =


λξλψ1λψ2

(λξ+λψ2 )(λψ1−λψ2 )
e−λψ2 (Q2+Q3−z) − λξλψ1λψ2

(λξ+λψ1 )(λψ1−λψ2 )
e−λψ1 (Q2+Q3−z) , z ≤ Q2 +Q3

λξλψ1λψ2
(λξ+λψ1 )(λξ+λψ2 )

e−λξ(z−(Q2+Q3)) , z > Q2 +Q3.

(A.73)
To find the cumulative distribution function of the convolution of ξ+ψ1+ψ2 and ψ3, Fξ+ψ1+ψ2+ψ3(A),
we must look at two different regions: A ≤ Q2 +Q3 +Q4 and A > Q2 +Q3 +Q4. By definition, the
convoluted CDF is given by

Fξ+ψ1+ψ2+ψ3(A) =

∫ ∞

−∞
Fψ3(A− z)fξ+ψ1+ψ2(z)dz. (A.74)

We first look at the region A ≤ Q2 +Q3 +Q4, which means A−Q4 ≤ Q2 +Q3, so we must split the
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integral at these points. Therefore, the convoluted CDF is given by

Fξ+ψ1+ψ2+ψ3(A) =

∫ A−Q4

−∞
Fψ3(A− z)fξ+ψ1+ψ2(z)dz +

∫ Q2+Q3

A−Q4

Fψ3(A− z)fξ+ψ1+ψ2(z)dz

+

∫ ∞

Q2+Q3

Fψ3(A− z)fξ+ψ1+ψ2(z)dz

=Fξ+ψ1+ψ2(A−Q4) +

∫ Q2+Q3

A−Q4

e−λψ3 (Q4−(A−z)) λξλψ1λψ2

(λξ + λψ2)(λψ1 − λψ2)
e−λψ2 (Q2+Q3−z)dz

−
∫ Q2+Q3

A−Q4

e−λψ3 (Q4−(A−z)) λξλψ1λψ2

(λξ + λψ1)(λψ1 − λψ2)
e−λψ1 (Q2+Q3−z)dz

+

∫ ∞

Q2+Q3

e−λψ3 (Q4−(A−z)) λξλψ1λψ2

(λξ + λψ1)(λξ + λψ2)
e−λξ(z−(Q2+Q3))dz

=
λξλψ1

(λξ + λψ2)(λψ1 − λψ2)
e−λψ2 (Q2+Q3+Q4−A) −

λξλψ2

(λξ + λψ1)(λψ1 − λψ2)
e−λψ1 (Q2+Q3+Q4−A)

+
λξλψ1λψ2

(λξ + λψ2)(λψ1 − λψ2)

1

λψ2 − λψ3

[
e−λψ3 (Q4−(A−z))e−λψ2 (Q2+Q3−z)

]z=Q2+Q3

z=A−Q4

−
λξλψ1λψ2

(λξ + λψ1)(λψ1 − λψ2)

1

λψ1 − λψ3

[
e−λψ3 (Q4−(A−z))e−λψ1 (Q2+Q3−z)

]z=Q2+Q3

z=A−Q4

+
λξλψ1λψ2

(λξ + λψ1)(λξ + λψ2)

−1

λξ + λψ3

[
e−λψ3 (Q4−(A−z))e−λξ(z−(Q2+Q3))

]z=∞

z=Q2+Q3

=
λξλψ1

(λξ + λψ2)(λψ1 − λψ2)
e−λψ2 (Q2+Q3+Q4−A) −

λξλψ2

(λξ + λψ1)(λψ1 − λψ2)
e−λψ1 (Q2+Q3+Q4−A)

+
λξλψ1λψ2

(λξ + λψ2)(λψ1 − λψ2)

1

λψ2 − λψ3

[
e−λψ3 (Q2+Q3+Q4−A) − e−λψ2 (Q2+Q3+Q4−A)

]
−

λξλψ1λψ2

(λξ + λψ1)(λψ1 − λψ2)

1

λψ1 − λψ3

[
e−λψ3 (Q2+Q3+Q4−A) − e−λψ1 (Q2+Q3+Q4−A)

]
+

λξλψ1λψ2

(λξ + λψ1)(λξ + λψ2)

−1

λξ + λψ3

[
0− e−λψ3 (Q2+Q3+Q4−A)

]
.

(A.75)

So for A ≤ Q2 +Q3 +Q4, the CDF of the convolution of ξ, ψ1, ψ2 and ψ3 is given by

Fξ+ψ1+ψ2+ψ3(A) =

(
λξλψ2λψ3

(λξ + λψ1)(λψ2 − λψ1)(λψ3 − λψ1)

)
e−λψ1 (Q2+Q3+Q4−A)

+

(
λξλψ1λψ3

(λξ + λψ2)(λψ1 − λψ2)(λψ3 − λψ2)

)
e−λψ2 (Q2+Q3+Q4−A)

+

(
λξλψ1λψ2

(λξ + λψ3)(λψ1 − λψ3)(λψ2 − λψ3)

)
e−λψ3 (Q2+Q3+Q4−A).

(A.76)

We can now clearly see the pattern start to emerge. For the general convolution of ξ + ψ1 + ... + ψi,
the CDF is given by

Fξ+ψ1+...+ψi(A) =


∑i

k=1

λξ
∏i
j ̸=k λψj

(λξ+λψk )
∏i
j ̸=k(λψj−λψk )

e−λψk ((
∑i+1
k=2Qk)−A) , A ≤

∑i+1
k=2Qk

1−
∏i
k=1 λψk∏i

k=1(λξ+λψk )
e−λξ(A−(

∑i+1
k=2Qk)) , A >

∑i+1
k=2Qk.

(A.77)
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A.8 Theorem 3.1

Dynamic Programming Principle for Optimal Stopping and Control. The value function
H(t,xxx) satisfies the DPP

H(t,xxx) = sup
τ∈T[t,T ]

sup
u∈A[t,T ]

Et,xxx[
(
H(θ,XXXu

θ ) +

∫ θ

t
F (s,XXXu

s )ds

)
1τ≥θ +

(
G(XXXu

τ ) +

∫ τ

t
F (s,XXXu

s )ds

)
1τ<θ]

(A.78)
for all (t,xxx) ∈ [0, T ] × Rm and all stopping times θ ≤ T , where G(Xu

τ ) is the reward function and
F (s,XXXu

s ) is the running penalty.

Proof. As we know, for the value function is given by

Hτ,u(t,xxx) = Et,xxx[G(XXXu
τ ) +

∫ τ

t
F (s,XXXu

s )ds] (A.79)

where G(XXXu
τ ) is the reward upon exercise and F (s,XXXu

s ) is the running penalty. Choosing another
arbitrary stopping time θ, we can rewrite the performance criterion as

Hτ,u(t,xxx) =Et,xxx[G(XXXu
τ ) +

(∫ τ

θ
F (s,XXXu

s )ds+

∫ θ

t
F (s,XXXu

s )ds

)
1τ≥θ +

(∫ τ

t
F (s,XXXu

s )ds

)
1τ<θ]

=Et,xxx[
(
G(XXXu

τ ) +

∫ τ

θ
F (s,XXXu

s )ds+

∫ θ

t
F (s,XXXu

s )ds

)
1τ≥θ

+

(
G(XXXu

τ ) +

∫ τ

t
F (s,XXXu

s )ds

)
1τ<θ]

=Et,xxx[
(
Eθ,xxx[G(XXXu

τ ) +

∫ τ

θ
F (s,XXXu

s )ds] +

∫ θ

t
F (s,XXXu

s )ds

)
1τ≥θ

+

(
G(XXXu

τ ) +

∫ τ

t
F (s,XXXu

s )ds

)
1τ<θ]

=Et,xxx[
(
Hτ,u(θ,XXXθ) +

∫ θ

t
F (s,XXXu

s )ds

)
1τ≥θ +

(
G(XXXu

τ ) +

∫ τ

t
F (s,XXXu

s )ds

)
1τ<θ]

(A.80)

Now, for any admissible control and stopping time, H(t,xxx) ≥ Hτ,u(t,xxx), which means we can put the
following bound on the equation above

Hτ,u(t,xxx) ≤Et,xxx[
(
H(θ,XXXθ) +

∫ θ

t
F (s,XXXu

s )ds

)
1τ≥θ +

(
G(XXXu

τ ) +

∫ τ

t
F (s,XXXu

s )ds

)
1τ<θ] (A.81)

Taking the supremum over all stopping times and controls left and right gives us the first inequality

H(t,xxx) ≤ sup
τ∈T[t,T ]

sup
u∈A[t,T ]

Et,xxx[
(
H(θ,XXXθ) +

∫ θ

t
F (s,XXXu

s )ds

)
1τ≥θ +

(
G(XXXu

τ ) +

∫ τ

t
F (s,XXXu

s )ds

)
1τ<θ]

(A.82)
To obtain the reverse inequality, we take an ϵ-optimal control (depth), denoted by vϵ ∈ A, such

that
H(t,xxx) ≥ Hvϵ(t,xxx) ≥ H(t,xxx)− ϵ (A.83)

where ϵ > 0. Such a control exists of the value function is continuous in the space of controls. Consider
its modification up to time τ :

ṽϵ = ut1t≤θ + vϵ1t>θ (A.84)
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where u ∈ A is an arbitrary admissible control. We then have that

H(t,xxx) ≥Hτ,ṽϵ(t,xxx)

=Et,xxx[
(
Hτ,ṽϵ(θ,XXXθ) +

∫ θ

t
F (s,XXX ṽϵ

s )ds

)
1τ≥θ +

(
G(XXX ṽϵ

τ ) +

∫ τ

t
F (s,XXX ṽϵ

s )ds

)
1τ<θ]

=Et,xxx[
(
Hτ,vϵ(θ,XXXθ) +

∫ θ

t
F (s,XXXu

s )ds

)
1τ≥θ +

(
G(XXXuϵ

τ ) +

∫ τ

t
F (s,XXXuϵ

s )ds

)
1τ<θ]

≥Et,xxx[
(
H(θ,XXXθ) +

∫ θ

t
F (s,XXXu

s )ds

)
1τ≥θ +

(
G(XXXuϵ

τ ) +

∫ τ

t
F (s,XXXuϵ

s )ds

)
1τ<θ]− ϵ

(A.85)

where the first equality follows from (A.80), the second using (A.84) and the final inequality follows
from (A.83). Since the above holds for every δ and ϵ, it holds for the supremum and we can take the
limit as ϵ→ 0 and end up with the reverse inequality

H(t,xxx) ≥ sup
τ∈T[t,T ]

sup
u∈A[t,T ]

Et,xxx[
(
H(θ,XXXθ) +

∫ θ

t
F (s,XXXu

s )ds

)
1τ≥θ +

(
G(XXXu

τ ) +

∫ τ

t
F (s,XXXu

s )ds

)
1τ<θ].

(A.86)
Combining inequality (A.82) and (A.86) gives us the equation in the theorem.

A.9 Theorem 3.2

Dynamic Programming Equation for Stopping and Control Problems. Assume that the
value function H(t,xxx) is once differentiable in t and all seconder-order derivatives in xxx exist, i.e.
H ∈ C1,2([0, T ],Rm) and that and F : Rm → R+ are continuous. ThenH solves the quasi-variational
inequality (QVI),

max

(
∂tH + sup

u∈At

(
LutH + F

)
; G−H

)
= 0, on D, (A.87)

where D = [0, T ] × Rm and the generator of the process Lt acts on twice differentiable functions as
follows:

Lth(t, x) = µµµ(t,xxx) ·DDDxh(t, x) +
1

2
Tr(σσσ(t,xxx)σσσ(t,xxx)′DDD2

xh(t,xxx)) +

p∑
j=1

λj(t,xxx)[h(t,xxx+ γγγ·j(t,xxx))− h(t,xxx)]

(A.88)
where γγγ·j represents the j-th column of γγγ, DDDxh represents the vector of partial derivatives w.r.t. x,
and DDD2

xh represents the matrix of second-order partial derivatives w.r.t. x.

Proof. The proof is analogous to that described in [8] and is broken up into two steps by showing (on
D) that (i) the left-hand side is first smaller than or equal to zero, and that (ii) by contradiction the
left-hand side is also greater than or equal to zero. Therefore, equality must hold.

(i) First, we show that

max

(
∂tH + sup

u∈At

(
LutH + F

)
; G−H

)
≤ 0, on D. (A.89)

To show this, we first note that a constant stopping time τ = t (i.e. stopping immediately) is an
admissible strategy. Therefore, by the DPP, the performance criteria with this constant stopping
rule equals G and we require H ≥ G so that G −H ≤ 0. Now take any point (t0, x0) ∈ D and
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we will show that the inequality holds at this point. Consider the sequence of stopping times
equal to the minimum of t0 + h and the time it takes XXXt to exit a ball of size 1 from its current
position xxx0, so

θh = inf

(
t > t0 : (t, ||XXXt − xxx0||) /∈ [t0, t0 + h]× 1

)
, h > 0 (A.90)

where || · || denotes the Euclidean norm. As long as h < T − t0 this is an admissible stopping
time. Therefore, by taking τ = t0, the DPP (that tells us H is the maximum value over all
stopping times) implies that

H(t0,xxx0) ≥ Et0,xxx0 [H(θh,XXXθh) +

∫ θh

t0

F (s,XXXs)ds]. (A.91)

We then expand H(θh,XXXθh) using Ito’s lemma for jump-diffusions to write

H(θh,XXXθh) = H(t0,xxx0)

+

∫ θh

t0

{∂tH(t,XXXt) + LtH(t,XXXt)} dt

+

∫ θh

t0

(
σ(t,XXXt)DxxxH(t,XXXt)

′) dWt

+

p∑
j=1

∫ θh

t0

[H (t,XXXt + γγγ·j(t,XXXt))−H(t,XXXt)] dN̂NN
j

t ,

where

N̂NN t =NNN t −
∫ t

0
λ(s,XXXs)ds

are the compensated versions of the counting process, and γγγ·j denotes the jth column of γ.

Since the stopping time θh is chosen so that the process XXX remains bounded by the ball of size 1
around xxx0 plus the potential of a jump (which we assume bounded), it follows that the stochastic
integrals with respect to both the Brownian motions and the compensated counting processes
vanish under the expectation. Hence, we have

0 ≥ Et0,xxx0
[∫ θh

t0

{∂tH(t,XXXt) + LtH(t,XXXt) + F (t,XXXt)} dt
]
.

Dividing by h and taking h ↘ 0, in which case θh ↘ t0 + h a.s. (since XXXt will a.s. not hit the
edge of the ball), the Fundamental Theorem of Calculus implies that

lim
h→0

1

h

∫ t+h

t
f(s)ds = f(t) (A.92)

which means that we get

0 ≥ lim
h↘0

Et0,xxx0
[
1

h

∫ t0+h

t0

{∂tH(t,XXXt) + LtH(t,XXXt) + F (t,XXXt)} dt
]

= ∂tH(t0,xxx0) + LtH(t0,xxx0) + F (t0,xxx0).

(A.93)

This completes the first part of the proof.
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(ii) Next, we establish by contradiciton that

max

(
∂tH + sup

u∈At

(
LutH + F

)
; G−H

)
≥ 0, on D. (A.94)

If this inequality doesn’t hold on D, then there exists a point (t0,xxx0) ∈ D such that

G(t0,xxx0)−H(t0,xxx0) < 0 and (∂t + Lt)H(t0,xxx0) < 0 (A.95)

since F (t,xxx) ≥ 0 on D. We also used simplified notation that differentiates between the two
cases, first for stopping immediately at τ = t0, meaning the traders receives the reward, so

H(t0,xxx0) = sup
u∈A

Et0,xxx0 [G(XXXu
τ ) +

∫ τ

t0

F (s,XXXu
s )ds] = G(XXXτ ) (A.96)

and continuing until at least t0 + h, then deciding optimally thereafter, so

H(t0,xxx0) = sup
u∈A

Et0,xxx0 [H(t0 + h,XXXu
t0+h) +

∫ t+h

t0

F (s,XXXu
s )ds] = H(t0 + h,XXXt0+h). (A.97)

We will show that (A.95) contradicts the DPP. We introduce a new function φϵ which approxi-
mates the value function near (t0,xxx0) but locally dominates it:

φϵ(t,xxx) := H(t,xxx) + ϵ(||xxx− xxx0||4 + |t− t0|2), ∀(t,xxx) ∈ D, ϵ > 0. (A.98)

Under assumption (A.95), for ϵ > 0 but sufficiently small, there is a small neighbourhood around
(t0,xxx0) in which the value function is at least δ larger than the reward G (since by (A.95)
G(t0,xxx0) < H(t0,xxx0)) and for which the operator (∂t+Lt) renders the approximation φϵ negative.
Mathematically put, there exists h > 0 and δ > 0 such that

H ≥ G+ δ and (∂t + Lt)φϵ ≤ 0 on Dh := [t0, t0 + h]× Bh (A.99)

where Bh is a ball of size h around xxx0. Also, near (t0,xxx0) (on the boundary ∂Dh of Dh), φϵ is
locally larger than H, hence

−ζ := max
∂Dh

(H − φϵ) < 0. (A.100)

We now take a stopping time equal to the first time the process exits this ball, namely

θ := inf

(
t > t0 : (t,XXXt) /∈ Dh

)
. (A.101)

Take a second stopping rule, this time arbitrary, τ ∈ T[t,T ], and let ψ = τ ∧ θ. Then we have

H(ψ,XXXψ)−H(t0,xxx0) = (H − φε)(ψ,XXXψ) + (φε(ψ,XXXψ)− φε(t0,xxx0)), (A.102)

since φε and H coincide at (t0,xxx0). From Ito’s lemma, and the fact that XXXψ is bounded due to
stopping the first time XXX exits the ball Bh, we have

Et0,xxx0 [φε(ψ,XXXψ)− φε(t0,xxx0)] = Et0,xxx0
[∫ ψ

t0

(∂t + Lt)φε(t,XXXt)dt

]
≤ 0. (A.103)

The diffusive and jump terms vanish because they are martingales, and the inequality follows
from the second inequality in (A.99). Hence, putting this together with (A.102), we have

Et0,xxx0 [H(ψ,Xψ)−H(t0,xxx0)] ≤ Et0,xxx0 [(H − φε)(ψ,XXXψ)] ≤ −ζP(τ ≥ θ), (A.104)
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where the second inequality follows from (A.100). By rearranging to isolate H(t0,xxx0), we have

H(t0,xxx0) ≥ζP(τ ≥ θ) + Et0,xxx0 [H(ψ,XXXψ)]

=ζP(τ ≥ θ) + Et0,xxx0 [H(τ,XXXτ )1τ<θ +H(θ,XXXθ)1τ≥θ].
(A.105)

By the first inequality in (A.99), H ≥ G+ δ on Dh, so therefore

H(t0,xxx0) ≥ ζP(τ ≥ θ) + Et0,xxx0 [(G(XXXτ ) + δ)1τ<θ +H(θ,XXXθ)1τ≥θ] (A.106)

where we have replaced H(τ,XXXτ ) by its lower bound (G(XXXτ )+ δ) on {τ < θ}, since in that event
we are still in Dh. Finally, since Et0,xxx0 [1τ<θ] = P(τ < θ), we have

H(t0,xxx0) ≥ ζP(τ ≥ θ) + δP(τ < θ) + Et0,xxx0 [G(XXXτ )1τ<θ +H(θ,XXXθ)1τ≥θ]. (A.107)

Setting θ = t0 + h and inserting (A.96) and (A.97), we find

H(t0,xxx0) ≥ζP(τ ≥ θ) + δP(τ < θ)

+ sup
u∈A

Et0,xxx0 [
(
G(XXXu

τ ) +

∫ τ

t0

F (s,XXXu
s )ds

)
1τ<θ +

(
H(θ,XXXu

θ ) +

∫ θ

t0

F (s,XXXu
s )ds

)
1τ≥θ].

(A.108)

By the arbitrariness of τ ∈ T[t,T ] (so it is also true for the optimal stopping time), and the fact
that the constants added to the expectation above are positive (and both probabilities can’t be
zero), we arrive at a contradiction to the DPP and the proof is complete.



B | Appendix

B.1 Distribution function of the convoluted order flows

For the exponential distribution the CDF is given by FX(x) = 1−e−λXx. We set ξ ∼ X, ψ1 ∼ Q2−Y1
and ψ2 ∼ Q3−Y2 where X is exponentially distributed with rate λξ. In general, we have ψi ∼ Qi+1−Yi,
where Qi is the length of our i-th price-level queue and Yi are exponentially distributed with rate λψi .
Based on the definition, the probability density function (PDF) of ψi is given by

fψi(ψi = y) = λψie
−λψi (Qi−y) (B.1)

meaning the CDF is given by

Fψi(ψi = y) = e−λψi (Qi+1−y), (B.2)

where y ∈ (−∞, Qi+1]. We know from the previous section that for the convolution of ξ and ψ1 we
have

Fξ+ψ1(z) =


λξ

λξ+λψ1
e−λψ1 (Q2−z) , z ≤ Q2

1− λψ1
λξ+λψ1

e−λξ(z−Q2) , z > Q2

(B.3)

which means the PDF of ξ + ψ1 is given by

fξ+ψ1(z) =


λξλψ1
λξ+λψ1

e−λψ1 (Q2−z) , z ≤ Q2

λξλψ1
λξ+λψ1

e−λξ(z−Q2) , z > Q2.
(B.4)

To find the CDF of the convolution of ξ + ψ1 and ψ2, Fξ+ψ1+ψ2(A), we must look at two different
regions: A ≤ Q2 +Q3 and A > Q2 +Q3. The convoluted CDF is given by

Fξ+ψ1+ψ2(A) =

∫ ∞

−∞
Fψ2(A− z)fξ+ψ1(z)dz. (B.5)

First we analyse A ≤ Q2 + Q3. By the bounds on the argument of Fψ2 , when z ≤ A − Q3 we have
Fψ2 = 1. For fξ+ψ1 , we split the integral at z = Q2, and since A ≤ Q2+Q3, A−Q3 ≤ Q2, so all-in-all
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we split at the integral at z = A−Q3 and z = Q2. We obtain

Fξ+ψ1+ψ2(A) =

∫ z=A−Q3

z=−∞
1 · fξ+ψ1(z)dz +

∫ z=Q2

z=A−Q3

Fψ2(A− z)fξ+ψ1(z)dz +

∫ z=∞

z=Q2

Fψ2(A− z)fξ+ψ1(z)dz

=Fξ+ψ1(A−Q3) +

∫ z=Q2

z=A−Q3

e−λψ2 (Q3−(A−z)) λξλψ1

λξ + λψ1

e−λψ1 (Q2−z)dz

+

∫ z=∞

z=Q2

e−λψ2 (Q3−(A−z)) λξλψ1

λξ + λψ1

e−λξ(z−Q2)dz

=
λξ

λξ + λψ1

e−λψ1 (Q3+Q2−A) +
λξλψ1

λξ + λψ1

[
1

λψ1 − λψ2

e−λψ2 (Q3−(A−z))e−λψ1 (Q2−z)
]z=Q2

z=A−Q3

+
λξλψ1

λξ + λψ1

[
−1

λξ + λψ2

e−λψ2 (Q3−(A−z))e−λξ(z−Q2)

]z=∞

z=Q2

=
λξ

λξ + λψ1

e−λψ1 (Q2+Q3−A) +
λξλψ1

λξ + λψ1

1

λψ1 − λψ2

(
(e−λψ2 (Q2+Q3−A))− (e−λψ1 (Q2+Q3−A))

)
+

λξλψ1

λξ + λψ1

−1

λξ + λψ2

(
0− (e−λψ2 (Q2+Q3−A))

)
.

(B.6)

So for A ≤ Q2 +Q3, the CDF of the convolution of ξ, ψ1 and ψ2 is given by

Fξ+ψ1+ψ2(A) =
λξ

λξ + λψ1

(
1−

λψ1

λψ1 − λψ2

)
e−λψ1 (Q2+Q3−A)

+
λξ

λξ + λψ1

(
λψ1

λξ + λψ2

+
λψ1

λψ1 − λψ2

)
e−λψ2 (Q2+Q3−A)

=
λξλψ1

(λξ + λψ2)(λψ1 − λψ2)
e−λψ2 (Q2+Q3−A) −

λξλψ2

(λξ + λψ1)(λψ1 − λψ2)
e−λψ1 (Q2+Q3−A).

(B.7)

For the region A ≥ Q2 +Q3 we find

Fξ+ψ1+ψ2(A) =

∫ z=Q2

z=−∞
Fψ2(A− z)fξ+ψ1(z)dz +

∫ z=A−Q3

z=Q2

Fψ2(A− z)fξ+ψ1(z)dz

+

∫ z=∞

z=A−Q3

Fψ2(A− z)fξ+ψ1(z)dz

=

∫ z=Q2

z=−∞
1 · fξ+ψ1(z)dz +

∫ z=A−Q3

z=Q2

1 · fξ+ψ1(z)dz +

∫ z=∞

z=A−Q3

Fψ2(A− z)fξ+ψ1(z)dz

=Fξ+ψ1(A−Q3) +

∫ z=∞

z=A−Q3

e−λψ2 (Q3−(A−z)) λξλψ1

λξ + λψ1

e−λξ(z−Q2)dz

=1−
λψ1

λξ + λψ1

e−λξ(A−(Q2+Q3)) +
λξλψ1

λξ + λψ1

[
−1

λξ + λψ2

e−λψ2 (Q3−(A−z))e−λξ(z−Q2)

]z=∞

z=A−Q3

=1−
λψ1

λξ + λψ1

e−λξ(A−(Q2+Q3)) +
λξλψ1

λξ + λψ1

−1

λξ + λψ2

(
0− e−λξ(A−(Q2+Q3))

)
(B.8)
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where for the CDF Fξ+ψ1(A −Q3), we have A −Q3 > Q2. We find that in the region A > Q2 +Q3,
the CDF of the convolution of ξ, ψ1 and ψ2 is given by

Fξ+ψ1+ψ2(A) =1 +

(
λξλψ1

(λξ + λψ1)(λξ + λψ2)
−

λψ1(λξ + λψ2)

(λξ + λψ1)(λξ + λψ2)

)
e−λξ(A−(Q2+Q3))

=1−
λψ1λψ2

(λξ + λψ1)(λξ + λψ2)
e−λξ(A−(Q2+Q3)).

(B.9)

We see that these two cases indeed coincide at the point A = Q2+Q3, since the coefficent preceding
the exponent in equation (B.9) can be rewritten to

=
λξλψ1

(λξ + λψ2)(λψ1 − λψ2)
−

λξλψ2

(λξ + λψ1)(λψ1 − λψ2)

=
λξλψ1(λξ + λψ1)− λξλψ2(λξ + λψ2)

(λξ + λψ1)(λξ + λψ2)(λψ1 − λψ2)

=
λ2ξλψ1 + λξλ

2
ψ1

− λ2ξλψ2 − λξλ
2
ψ2

(λξ + λψ1)(λξ + λψ2)(λψ1 − λψ2)

=
(λ2ξ + λξλψ1 + λξλψ2 + λψ1λψ2)(λψ1 − λψ2)− λψ1λψ2(λψ1 − λψ2)

(λξ + λψ1)(λξ + λψ2)(λψ1 − λψ2)

= 1−
λψ1λψ2

(λξ + λψ1)(λξ + λψ2)
.

(B.10)

So for the convolution of ξ, ψ1 and ψ2 we have

Fξ+ψ1+ψ2(A) =


λξλψ1

(λξ+λψ2 )(λψ1−λψ2 )
e−λψ2 (Q2+Q3−A) − λξλψ2

(λξ+λψ1 )(λψ1−λψ2 )
e−λψ1 (Q2+Q3−A) , A ≤ Q2 +Q3

1− λψ1λψ2
(λξ+λψ1 )(λξ+λψ2 )

e−λξ(A−(Q2+Q3)) , A > Q2 +Q3.

(B.11)
The inverse of this function cannot be expressed explicitly for x > Fξ+ψ1+ψ2(Q2 + Q3) = 1 −

λψ1λψ2
(λξ+λψ1 )(λξ+λψ2 )

, due to the different exponents in the expression of the CDF. For x ≤ Fξ+ψ1+ψ2(Q2 +

Q3) = 1− λψ1λψ2
(λξ+λψ1 )(λξ+λψ2 )

, however, the inverse is given by

F−1
ξ+ψ1+ψ2

(x) = Q2 +Q3 +
1

λξ
log

(
λψ1λψ2

(λξ + λψ1)(λξ + λψ2)(1− x)

)
. (B.12)

B.2 Static model: four price-levels

We work in a similar fashion as the previous sections, with the cost function defined as

v(XXX, ξ, ψ1, ψ2, ψ3) :=(h+ f)M − (h+ r)OF1 − (h+ r + δ)OF2 − (h+ r + 2δ)OF3 − (h+ r + 3δ)OF4

+ ρu(S −A(X, ξ, ψ1, ψ2, ψ3))+ + ρo(A(X, ξ, ψ1, ψ2, ψ3)− S)+

+ θ(M + L1 + L2 + L3 + L4 + (S −A(X, ξ, ψ1, ψ2, ψ3))+)

=(h+ f)M − (h+ r)OF1 − (h+ r + δ)OF2 − (h+ r + 2δ)OF3 − (h+ r + 3δ)OF4

+ (ρu + θ)(S − OF1 − OF2 − OF3 − OF4)+ + ρo(OF1 + OF2 + OF3 + OF4 − S)+

+ θ(M + L1 + L2 + L3 + L4)

(B.13)



APPENDIX B. APPENDIX 89

with the number of orders filled at price-level i defined as

OFi =(ξ +

i−1∑
k=1

ψk −
i−1∑
k=1

(Qk + Lk)−Qi) · 1{∑i−1
k=1(Qk+Lk)+Qi<ξ+

∑i
k=1 ψk<

∑i
k=1(Qk+Lk)}

+ Li · 1{ξ+∑i
k=1 ψk>

∑i
k=1(Qk+Lk)}

.

(B.14)

We find the expected cost function given by

V (M,L1, L2, L3) :=E[(h+ f)M − (h+ r)(ξ −Q1)1{Q1<ξ<Q1+L1} − (h+ r)L1 · 1{ξ≥Q1+L1}

− (h+ δ + r)(ξ + ψ1 −Q1 − L1 −Q2) · 1{Q1+L1+Q2<ξ+ψ1<Q1+L1+Q2+L2}

− (h+ δ + r)L2 · 1{ξ+ψ1>Q1+L1+Q2+L2}

− (h+ 2δ + r)(ξ + ψ1 + ψ2 −Q1 − L1 −Q2 − L2 −Q3)

· 1{Q1+L1+Q2+L2+Q3<ξ+ψ1+ψ2<Q1+L1+Q2+L2+Q3+L3}

− (h+ 2δ + r)L3 · 1{ξ+ψ1+ψ2>Q1+L1+Q2+L2+Q3+L3}

− (h+ 3δ + r)(ξ + ψ1 + ψ2 + ψ3 −Q1 − L1 −Q2 − L2 −Q3 − L3 −Q4)

· 1{Q1+L1+Q2+L2+Q3+L3+Q4<ξ+ψ1+ψ2+ψ3<Q1+Q2+Q3+Q4+S−M}

− (h+ 3δ + r)(S −M − L1 − L2 − L3) · 1{ξ+ψ1+ψ2+ψ3>Q1+Q2+Q3+Q4+S−M}

+ (ρu + θ)( S − (M + (ξ −Q1)1{Q1<ξ<Q1+L1} + L1 · 1{ξ≥Q1+L1}

+ (ξ + ψ1 −Q1 − L1 −Q2) · 1{Q1+L1+Q2<ξ+ψ1<Q1+L1+Q2+L2}

+ L2 · 1{ξ+ψ1>Q1+L1+Q2+L2}

+ (ξ + ψ1 + ψ2 −Q1 − L1 −Q2 − L2 −Q3)

· 1{Q1+L1+Q2+L2+Q3<ξ+ψ1+ψ2<Q1+L1+Q2+L2+Q3+L3}

+ L3 · 1{ξ+ψ1+ψ2>Q1+L1+Q2+L2+Q3+L3})

+ (ξ + ψ1 + ψ2 + ψ3 −Q1 − L1 −Q2 − L2 −Q3 − L3 −Q4)

· 1{Q1+L1+Q2+L2+Q3+L3+Q4<ξ+ψ1+ψ2+ψ3<Q1+Q2+Q3+Q4+S−M}

+ (S −M − L1 − L2 − L3) · 1{ξ+ψ1+ψ2+ψ3>Q1+Q2+Q3+Q4+S−M} )

· 1{ξ+ψ1+ψ2+ψ3<Q1+Q2+Q3+Q4+S−M} + θS].

(B.15)

We then take the derivative of V w.r.t. M , to find

M⋆ = S − F−1
ξ+ψ1+ψ2+ψ3

(
2h+ f + r + 3δ

h+ r + 3δ + ρu + θ

)
+Q1 +Q2 +Q3 +Q4. (B.16)
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Next, we take the derivative of V w.r.t. L1, to find

∂V

∂L1
=− (h+ r)(1− Fξ(Q1 + L1)) + (h+ δ + r)(Fξ+ψ1(Q1 + L1 +Q2 + L2)− Fξ+ψ1(Q1 + L1 +Q2))

+ (h+ 2δ + r)(Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3 + L3)− Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3))

+ (h+ 3δ + r)(1− Fξ+ψ1+ψ2+ψ3(Q1 + L1 +Q2 + L2 +Q3 + L3 +Q4))

+ (ρu + θ)(−1{ξ≥Q1+L1} + 1{Q1+L1+Q2<ξ+ψ1<Q1+L1+Q2+L2}

+ 1{Q1+L1+Q2+L2+Q3<ξ+ψ1+ψ2<Q1+L1+Q2+L2+Q3+L3}

+ 1{Q1+L1+Q2+L2+Q3+L3+Q4<ξ+ψ1+ψ2+ψ3<Q1+Q2+Q3+Q4+S−M}

+ 1{ξ+ψ1+ψ2+ψ3>Q1+Q2+Q3+Q4+S−M})

· 1{ξ+ψ1+ψ2+ψ3<Q1+Q2+Q3+Q4+S−M}

=− (h+ r)(1− Fξ(Q1 + L1)) + (h+ δ + r)(Fξ+ψ1(Q1 + L1 +Q2 + L2)− Fξ+ψ1(Q1 + L1 +Q2))

+ (h+ 2δ + r)(Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3 + L3)− Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3))

+ (h+ 3δ + r)(1− Fξ+ψ1+ψ2+ψ3(Q1 + L1 +Q2 + L2 +Q3 + L3 +Q4))

+ (ρu + θ)(−1{ξ≥Q1+L1} · 1{ξ+ψ1+ψ2+ψ3<Q1+Q2+Q3+Q4+S−M}

+ 1{Q1+L1+Q2<ξ+ψ1<Q1+L1+Q2+L2} + 1{Q1+L1+Q2+L2+Q3<ξ+ψ1+ψ2<Q1+L1+Q2+L2+Q3+L3}

+ 1{Q1+L1+Q2+L2+Q3+L3+Q4<ξ+ψ1+ψ2+ψ3<Q1+Q2+Q3+Q4+S−M})

(B.17)

where in the second equality we used the fact that S = M + L1 + L2 + L3 + L4 and ψi ≤ Qi, which
means that for example Q1+L1+Q2+L2+Q3+L3 < Q1+Q2+Q3+Q4+S−M . Using a method
similar to the previous sections to rewrite the integral we are left with, we obtain

∂V

∂L1
=− (h+ r)(1− Fξ(Q1 + L1)) + (h+ δ + r)(Fξ+ψ1(Q1 + L1 +Q2 + L2)− Fξ+ψ1(Q1 + L1 +Q2))

+ (h+ 2δ + r)(Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3 + L3)− Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3))

+ (h+ 3δ + r)(1− Fξ+ψ1+ψ2+ψ3(Q1 + L1 +Q2 + L2 +Q3 + L3 +Q4))

+ (ρu + θ)((Fξ(Q1 + L1)− Fξ+ψ1+ψ2+ψ3(Q1 +Q2 +Q3 +Q4 + S −M))

+ (Fξ+ψ1(Q1 + L1 +Q2 + L2)− (Fξ+ψ1(Q1 + L1 +Q2))

+ (Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3 + L3)− Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3))

+ (Fξ+ψ1+ψ2+ψ3(Q1 +Q2 +Q3 +Q4 + S −M)

− Fξ+ψ1+ψ2+ψ3(Q1 + L1 +Q2 + L2 +Q3 + L3 +Q4)))

=3δ + (h+ r + ρu + θ)Fξ(Q1 + L1)

+ (h+ δ + r + ρu + θ)(Fξ+ψ1(Q1 + L1 +Q2 + L2)− Fξ+ψ1(Q1 + L1 +Q2))

+ (h+ 2δ + r + ρu + θ)(Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3 + L3)

− Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3))

− (h+ 3δ + r + ρu + θ)Fξ+ψ1+ψ2+ψ3(Q1 + L1 +Q2 + L2 +Q3 + L3 +Q4).

(B.18)
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Next, we take the derivative of V w.r.t. L2, to find

∂V

∂L2
=− (h+ δ + r) · 1{ξ+ψ1>Q1+L1+Q2+L2}

+ (h+ 2δ + r) · 1{Q1+L1+Q2+L2+Q3<ξ+ψ1+ψ2<Q1+L1+Q2+L2+Q3+L3}

+ (h+ 3δ + r)(1{Q1+L1+Q2+L2+Q3+L3+Q4<ξ+ψ1+ψ2+ψ3<Q1+Q2+Q3+Q4+S−M}

+ 1{ξ+ψ1+ψ2+ψ3>Q1+Q2+Q3+Q4+S−M})

+ (ρu + θ)(−1{ξ+ψ1>Q1+L1+Q2+L2} + 1{Q1+L1+Q2+L2+Q3<ξ+ψ1+ψ2<Q1+L1+Q2+L2+Q3+L3}

+ 1{Q1+L1+Q2+L2+Q3+L3+Q4<ξ+ψ1+ψ2+ψ3<Q1+Q2+Q3+Q4+S−M}) · 1{ξ+ψ1+ψ2+ψ3<Q1+Q2+Q3+Q4+S−M}

=− (h+ δ + r)(1− Fξ+ψ1(Q1 + L1 +Q2 + L2))

+ (h+ 2δ + r)(Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3 + L3)− Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3))

+ (h+ 3δ + r)(Fξ+ψ1+ψ2+ψ3(Q1 +Q2 +Q3 +Q4 + S −M)

− Fξ+ψ1+ψ2+ψ3(Q1 + L1 +Q2 + L2 +Q3 + L3 +Q4))

+ (h+ 3δ + r)(1− Fξ+ψ1+ψ2+ψ3(Q1 +Q2 +Q3 +Q4 + S −M))

+ (ρu + θ)(Fξ+ψ1(Q1 + L1 +Q2 + L2)− Fξ+ψ1+ψ2+ψ3(Q1 +Q2 +Q3 +Q4 + S −M))

+ (ρu + θ)(Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3 + L3)− Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3))

+ (ρu + θ)(Fξ+ψ1+ψ2+ψ3(Q1 +Q2 +Q3 +Q4 + S −M)

− Fξ+ψ1+ψ2+ψ3(Q1 + L1 +Q2 + L2 +Q3 + L3 +Q4))

(B.19)

and obtain

∂V

∂L2
=2δ + (h+ δ + r + ρu + θ)Fξ+ψ1(Q1 + L1 +Q2 + L2)

+ (h+ 2δ + r + ρu + θ)(Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3 + L3)

− Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3))

− (h+ 3δ + r + ρu + θ)Fξ+ψ1+ψ2+ψ3(Q1 + L1 +Q2 + L2 +Q3 + L3 +Q4).

(B.20)

Lastly, we take the derivative of V w.r.t. L3, to find

∂V

∂L3
=− (h+ 2δ + r)(1− Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3))

+ (h+ 3δ + r)(1− Fξ+ψ1+ψ2+ψ3(Q1 + L1 +Q2 + L2 +Q3 + L3 +Q4))

+ (ρu + θ)(−1{ξ+ψ1+ψ2>Q1+L1+Q2+L2+Q3+L3} · 1{ξ+ψ1+ψ2+ψ3<Q1+Q2+Q3+Q4+S−M})

+ (ρu + θ) · 1{Q1+L1+Q2+L2+Q3+L3+Q4<ξ+ψ1+ψ2+ψ3<Q1+Q2+Q3+Q4+S−M}

=− (h+ 2δ + r)(1− Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3))

+ (h+ 3δ + r)(1− Fξ+ψ1+ψ2+ψ3(Q1 + L1 +Q2 + L2 +Q3 + L3 +Q4))

+ (ρu + θ)(Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3 + L3)− Fξ+ψ1+ψ2+ψ3(Q1 +Q2 +Q3 +Q4 + S −M))

+ (ρu + θ)(Fξ+ψ1+ψ2+ψ3(Q1 +Q2 +Q3 +Q4 + S −M)

− Fξ+ψ1+ψ2+ψ3(Q1 + L1 +Q2 + L2 +Q3 + L3 +Q4))

(B.21)

and we find

∂V

∂L3
=δ + (h+ 2δ + r + ρu + θ)Fξ+ψ1+ψ2(Q1 + L1 +Q2 + L2 +Q3)

− (h+ 3δ + r + ρu + θ)Fξ+ψ1+ψ2+ψ3(Q1 + L1 +Q2 + L2 +Q3 + L3 +Q4).

(B.22)
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Substituting (B.22) into (B.20) and (B.20) into (B.18) we find the optimal allocation to be described
in the following proposition.

Proposition B.1. Assume that ξ, ψ1, ψ2, and ψ3 have continuous distributions and Assumptions (A1-
A3) hold. Then the optimal allocations for the Order Placement Problem with 4 price-levels satisfy the
following:

(i) If ρu ≥ ρu = 2h+3δ+f+r
Fξ+ψ1+ψ2+ψ3(Q1+Q2+Q3+Q4)

− (h + 3δ + r + θ), then (M∗, L∗
1, L

∗
2, L

∗
3, L

∗
4) =

(S, 0, 0, 0, 0) is an optimal allocation.

(ii) If ρu ≤ ρu = 2h+3δ+f+r
Fξ+ψ1+ψ2+ψ3 (Q1+Q2+Q3+Q4+S)

− (h+ 3δ + r + θ), then M∗ = 0 and, L∗
1 satisfies

δ + (h+ r + ρu + θ)Fξ(Q1 + L⋆1)− (h+ δ + r + ρu + θ)Fξ+ψ1(Q1 + L⋆1 +Q2) = 0, (B.23)

L∗
2 satisfies

δ + (h+ δ + r + ρu + θ)Fξ+ψ1(Q1 + L⋆1 +Q2 + L⋆2)

− (h+ 2δ + r + ρu + θ)Fξ+ψ1+ψ2(Q1 + L⋆1 +Q2 + L⋆2 +Q3) = 0,
(B.24)

L∗
3 satisfies

δ + (h+ 2δ + r + ρu + θ)Fξ+ψ1+ψ2(Q1 + L⋆1 +Q2 + L⋆2 +Q3 + L⋆3)

− (h+ 3δ + r + ρu + θ)Fξ+ψ1+ψ2+ψ3(Q1 + L⋆1 +Q2 + L⋆2 +Q3 + L⋆3 +Q4) = 0,
(B.25)

and L∗
4 satisfies

L⋆4 = S −M − L⋆1 − L⋆2 − L⋆3. (B.26)

(iii) If ρu ∈ (ρu, ρu), then the optimal allocation is a mix of limit (L∗
1, L

∗
2, L

∗
3, L

∗
4) and market (M⋆)

orders, where L⋆1 satisfies (B.23), L⋆2 satisfies (B.24), L⋆3 satisfies (B.25), L⋆4 satisfies (B.26) and
M⋆ satisfies

M⋆ = S − F−1
ξ+ψ1+ψ2+ψ3

(
2h+ 3δ + f + r

h+ 3δ + r + ρu + θ

)
+Q1 +Q2 +Q3 +Q4, (B.27)

where Fξ(x) = P(ξ ≤ x) is the distribution of the outflow at the first price-level ξ, Fξ+ψ1(x) =
P(ξ+ψ1 ≤ x) is the distribution of the outflow at the first and second price-level ξ, ψ1, Fξ+ψ1+ψ2(x) =
P(ξ + ψ1 + ψ2 ≤ x) is the distribution of the outflow at the first, second and third price-level ξ,
ψ1,ψ2, Fξ+ψ1+ψ2+ψ3(x) = P(ξ + ψ1 + ψ2 + ψ3 ≤ x) is the distribution of the outflow at the first,
second, third and fourth price-level ξ, ψ1,ψ2,ψ3 and F−1

ξ , F−1
ξ+ψ1

, F−1
ξ+ψ1+ψ2

, F−1
ξ+ψ1+ψ2+ψ3

their
left-inverses.

The methods for finding the root of (B.23), (B.24) and (B.25) are discussed in section 3.1.

B.3 ODE solving for the complete dynamic model

B.3.1 Using the DPP to derive the HJB equation (DPE)

As we have shown in the Preliminaries section, a vector of controlled processes XXXu is controlled using
the control process u = (ut)0≤t≤T , and satisfies the SDE

dXXXu
t = µµµtdt+ σσσtdWWW t + γγγut dNNN

u
t (B.28)

where µµµ = (µµµt)0≤t≤T ∈ Rm is the drift, σσσ = (σσσt)0≤t≤T ∈ Rm+ is the volatility and WWW = (WWW t)0≤t≤T ∈
Rm a collection of independent Brownian motions. Furthermore, NNNu = (NNNu

t )0≤t≤T ∈ Nn denotes a
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collection of counting processes with controlled intensities λλλu = (λλλut )0≤t≤T ∈ Rn, and γγγut := γγγ(t, ut) ∈
Rn×m denotes the controlled jump size. From the DPP we know the value function H is given by

H(t,xxx) = sup
τ∈T[t,T ]

sup
u∈A[t,T ]

Et,xxx[
(
H(θ,XXXu

θ ) +

∫ θ

t
F (s,XXXu

s )ds

)
1τ≥θ +

(
G(XXXu

τ ) +

∫ τ

t
F (s,XXXu

s )ds

)
1τ<θ].

(B.29)
Then our value function H solves the quasi-variational inequality (QVI),

max

(
∂tH + sup

u∈At

(
LutH + F

)
; G−H

)
= 0, on D, (B.30)

where D = [0, T ] × Rm and the generator of the process Lt acts on twice differentiable functions as
follows:

Lth(t, x) = µµµ(t,xxx) ·DDDxh(t, x) +
1

2
Tr(σσσ(t,xxx)σσσ(t,xxx)′DDD2

xh(t,xxx)) +

p∑
j=1

λj(t,xxx)[h(t,xxx+ γγγ·j(t,xxx))− h(t,xxx)]

(B.31)
where γγγ·j represents the j-th column of γγγ, DDDxh represents the vector of partial derivatives w.r.t. x,
and DDD2

xh represents the matrix of second-order partial derivatives w.r.t. x.
In our model of the Optimal Placement Problem the vector valued process is denoted by (VVV τ

ττ ,δ
t )0≤t≤T

and is controlled by the control function δ, which describes the depth the trader places her LOs, and τττ
which describes the stopping times at which the trader must place her MOs. The controlled processes
are then described by the SDE

dVVV τ
ττ ,δ
t = d

Xτττ ,δ
t

pt
Iτ
ττ ,δ
t

 =

0
µ
0

 dt+

 0
σp
0

 dWt +

pt + ∆
2 + δt + r pt − ∆

2 − f
0 0
−1 −1

 d

(
Lδt
Mτττ
t

)
. (B.32)

We now define the trader’s performance criteria, which is given by

Hτττ ,δ(t, x, p, i) = Et,x,p,i[Xτττ ,δ
T + Iτ

ττ ,δ
T (pT − ∆

2
− f − ρu(I

τττ ,δ
T ))−

∫ T

t
θ(Iτττ ,δs )ds] (B.33)

where the notation Et,x,p,q[·] represents the expectation conditional on t, Xτττ ,δ
t− = x, pt = p and Iτττ ,δ

t− = i.
Our control variables are the stopping times τ and depth δ, which means that the set of admissible
strategies A consists of seeking over all F-stopping times τ and the set of F-predictable, bounded from
below, depths δ. In this case the value function is given by

H(t, x, p, i) = sup
(τττ ,δ)∈A

Hτττ ,δ(t, x, p, i) (B.34)

where A = [t, T ]i × [0,∞).
In this case the generator of the process is given by

LtH(t, x, p, i) =

0
µ
0

 ·

∂x∂p
∂i

H(t, x, p, i) +
1

2

 0
σ2p
0

 ·

∂xx∂pp
∂ii

H(t, x, p, i)

+ λνe
κδ
[
H(t, x+ pt +

∆t

2
+ δ + r, p, i− 1)−H(t, x, p, i)

]
.

(B.35)

The performance criterion, for each F-stopping time τi, given by

Hτττ ,δ(t, x, p, i) = Et,x,p,i[G(τi, x, p, i) +
∫ τi

t
F (s, x, p, i)ds] (B.36)
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where G(t, x, p, i) is the reward upon exercise, which is, in our case, given by

G(t, x, p, i) =xt + it(pt −
∆

2
− f) = H(t, x+ (p− ∆

2
− f), p, i− 1),

G(T, x, p, i) =xT + iT (pT − ∆

2
− f − ρu(iT )),

(B.37)

and F (s, x, p, i) is the running inventory penalty given by

F (s, x, p, i) = −θ(is). (B.38)

Now, using the Dynamic Programming Principle, we can find the Hamiltonian-Jacobi-Bellman equation
which tells us that H solves the quasi-variational inequality (QVI)

0 = max

{
∂tH + µ∂pH +

1

2
σ2p∂ppH − θ(i)

+ sup
δ
λνe

−κδ
[
H(t, x+ (p+

∆

2
+ δ + r), p, i− 1)−H(t, x, p, i)

]
;[

H(t, x+ (p− ∆

2
− f), p, i− 1)−H(t, x, p, i)

]}
,

(B.39)

with boundary and terminal conditions

H(t, x, p, 0) = x,

H(T, x, p, i) = x+ i(p− ∆

2
− f − ρu(i)).

(B.40)

B.3.2 Solving the ODE for the i = 1 case

Let us assume that fees, rebates and spread are constant, then the problem we are solving becomes

max

(
∂tw(t, 1) + κ(µ− θ(1))w(t, 1) + λ̃ν ; 1− w(t, 1)

)
= 0

w(T, 1) = e−κρu(1)
(B.41)

where λ̃ν = λν
e e

κ(∆+r+f). Using the obvious optimal strategy of never stopping at terminal time T ,
we see that we have to solve the ODE

∂tg1(t) + κ(µ− θ(1))g1(t) + λ̃ν = 0, g1(T
−) = 1. (B.42)

We rewrite the ODE as

eκ(µ−θ(1))t∂tg1(t) + κ(µ− θ(1))eκ(µ−θ(1))tg1(t) =− λ̃νe
κ(µ−θ(1))t

∂t
[
eκ(µ−θ(1))tg1(t)

]
=− λ̃νe

κ(µ−θ(1))t∫ T

t
∂u
[
eκ(µ−θ(1))ug1(u)

]
du =

∫ T

t
−λ̃νeκ(µ−θ(1))udu

eκ(µ−θ(1))T g1(T )− eκ(µ−θ(1))tg1(t) =
−λ̃ν

κ(µ− θ(1))

(
eκ(µ−θ(1))T − eκ(µ−θ(1))t

)
(B.43)

and find the solution

g1(t) =
λ̃ν

κ(µ− θ(1))

(
eκ(µ−θ(1))(T−t) − 1

)
+ eκ(µ−θ(1))(T−t). (B.44)
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We see that g1(t) ≥ 1 for all t ∈ (0, T ) when

λ̃ν
κ(µ− θ(1))

(
eκ(µ−θ(1))(T−t) − 1

)
≥ 1− eκ(µ−θ(1))(T−t) (B.45)

we must first distinguish for
(
eκ(µ−θ(1))(T−t) − 1

)
> 0 (i.e. for µ > θ(1)), which is the case when

λ̃ν
κ(µ− θ(1))

≥− 1

−λ̃ν
κ

≤(µ− θ(1))

µ ≥−λ̃ν
κ

+ θ(1)

(B.46)

and for µ < θ(1), which is the case when

λ̃ν
κ(µ− θ(1))

≤− 1

−λ̃ν
κ

≤(µ− θ(1))

µ ≥−λ̃ν
κ

+ θ(1).

(B.47)

We see both cases yield the same bound on µ. When this bound is satisfied the continuation value is
always greater than the execution value, and the solution ot the QVI (B.41) is

w(t, 1) = g1(t) · 1{t<T} + e−κρu(1) · 1{t=T} (B.48)

and it is never optimal to execute a market order expect for an instant before the terminal time. If, on
the other hand, µ < −λ̃ν

κ + θ(1) the continuation value is always less than the execution value, leading
to the solution

w(t, 1) = 1{t<T} + e−κρu(1) · 1{t=T}. (B.49)

B.3.3 Solving the ODE for the i = 2 case

We try to find an explicit expression for τ2, by solving

w(τ2, 1) =
λ̃ν

κ(µ− θ(1))

(
eκ(µ−θ(1))(T−τ2) − 1

)
+ eκ(µ−θ(1))(T−τ2) = λ̃ν

(
κ(µ+ θ(1)− θ(2)) + λ̃ν

)−1

eκ(µ−θ(1))(T−τ2)

(
λ̃ν

κ(µ− θ(1))
+ 1

)
− λ̃ν
κ(µ− θ(1))

= λ̃ν

(
κ(µ+ θ(1)− θ(2)) + λ̃ν

)−1

eκ(µ−θ(1))(T−τ2)

(
λ̃ν

κ(µ− θ(1))
+ 1

)
= λ̃ν

(
κ(µ+ θ(1)− θ(2)) + λ̃ν

)−1
+

λ̃ν
κ(µ− θ(1))

τ2 = T − log

[(
λ̃ν

(
κ(µ+ θ(1)− θ(2)) + λ̃ν

)−1
+

λ̃ν
κ(µ− θ(1))

)(
λ̃ν

κ(µ− θ(1))
+ 1

)−1 ]
κ(µ− θ(1))−1.

(B.50)

Cleaning up the expression, we find the optimal stopping time

τ2 = T −
log

[(
λ̃ν

κ(µ+θ(1)−θ(2))+λ̃ν
+ λ̃ν

κ(µ−θ(1))

)]
− log

[(
λ̃ν

κ(µ−θ(1)) + 1
)]

κ(µ− θ(1))
.

(B.51)
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We find that, to avoid impossible values inside the logarithm, the following bound must hold:

µ ≥ −λ̃ν
κ

+ θ(1)− θ(2). (B.52)

Now to find the full solution of w(t, 2), we solve the ODE

∂tg2(t) + κ(2µ− θ(2))g2(t) + λ̃νg1(t), g2(τ2) = Γ (B.53)

where Γ = 1 · w(τ2, 1) = λ̃ν

(
κ(µ+ θ(1)− θ(2)) + λ̃ν

)−1
. The solution is found by

∂tg2(t) + κ(2µ− θ(2))g2(t) =− λ̃νg1(t)

∂t[e
κ(2µ−θ(2))tg2(t)] =− eκ(2µ−θ(2))tλ̃νg1(t)

eκ(2µ−θ(2))τ2g2(τ2)− eκ(2µ−θ(2))tg2(t) =− λ̃ν

∫ τ2

t
eκ(2µ−θ(2))sg1(s)ds.

(B.54)

For the integral, knowing g′1(t) = −κ(µ− θ(1))g1(t)− λ̃ν we find∫
eκ(2µ−θ(2))sg1(s)ds =

1

κ(2µ− θ(2))
eκ(2µ−θ(2))tg1(t)−

1

κ(2µ− θ(2))

∫
eκ(2µ−θ(2))sg′1(s)ds

=
1

κ(2µ− θ(2))
eκ(2µ−θ(2))tg1(t)−

1

κ(2µ− θ(2))

(
− κ(µ− θ(1))

∫
eκ(2µ−θ(2))sg1(s)ds− λ̃ν

∫
eκ(2µ−θ(2))sds

)
=

1

κ(2µ− θ(2))
eκ(2µ−θ(2))tg1(t) +

κ(µ− θ(1))

κ(2µ− θ(2))

∫
eκ(2µ−θ(2))sg1(s)ds+

λ̃ν
κ2(2µ− θ(2))2

eκ(2µ−θ(2))t(
1− κ(µ− θ(1))

κ(2µ− θ(2))

)∫
eκ(2µ−θ(2))sg1(s)ds =

1

κ(2µ− θ(2))
eκ(2µ−θ(2))tg1(t) +

λ̃ν
κ2(2µ− θ(2))2

eκ(2µ−θ(2))t∫
eκ(2µ−θ(2))sg1(s)ds =

1

κ(µ+ θ(1)− θ(2))
eκ(2µ−θ(2))tg1(t) +

λ̃ν
κ(2µ− θ(2))κ(µ+ θ(1)− θ(2))

eκ(2µ−θ(2))t

(B.55)

and using the notation A1 = κ(µ− θ(1)) and A2 = κ(2µ− θ(2)), we obtain

eA2τ2g2(τ2)− eA2tg2(t) =
−λ̃ν

A2 −A1
eA2τ2g1(τ2)−

λ̃2ν
A2(A2 −A1)

eA2τ2 +
λ̃ν

A2 −A1
eA2tg1(t) +

λ̃2ν
A2(A2 −A1)

eA2t

−eA2tg2(t) = eA2τ2

(
−λ̃ν

A2 −A1
g1(τ2)−

λ̃2ν
A2(A2 −A1)

− g2(τ2)

)
+ eA2t

(
λ̃ν

A2 −A1
g1(t) +

λ̃2ν
A2(A2 −A1)

)
g2(t) = eA2(τ2−t)

(
λ̃ν

A2 −A1
g1(τ2) +

λ̃2ν
A2(A2 −A1)

+ g2(τ2)

)
−
(

λ̃ν
A2 −A1

g1(t) +
λ̃2ν

A2(A2 −A1)

)
.

(B.56)

From the boundary condition of the ODE we know that g2(τ2) = g1(τ2) =
λ̃ν

B−A+λ̃ν
. Inserting this into

the formula above we find

g2(t) =e
A2(τ2−t)

((
1 +

λ̃ν
A2 −A1

)
g1(τ2) +

λ̃2ν
A2(A2 −A1)

)
−
(

λ̃ν
A2 −A1

g1(t) +
λ̃2ν

A2(A2 −A1)

)
g2(t) =e

A2(τ2−t)
(

λ̃ν
A2 −A1

+
λ̃2ν

A2(A2 −A1)

)
−
(

λ̃ν
A2 −A1

g1(t) +
λ̃2ν

A2(A2 −A1)

)
.

(B.57)
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B.3.4 Solving the ODE for the i = 3 case

We solve our main ODE

∂tg3(t) + κ(3µ− θ(3))g3(t) + λ̃νg2(t) = 0, g3(τ3) = Γ3 (B.58)

in the same way as before, using

∂tg3(t) + κ(3µ− θ(3))g3(t) =− λ̃νg2(t)

∂t[e
κ(3µ−θ(3))tg3(t)] =− λ̃νe

κ(3µ−θ(3))tg2(t)

eκ(3µ−θ(3))τ3g3(τ3)− eκ(3µ−θ(3))tg3(t) =− λ̃ν

∫ τ3

t
eκ(3µ−θ(3))sg2(s)ds.

(B.59)

For the integral, remembering g′2(t) = −A2g2(t)− λg1(t) and g′1(t) = −A1g1(t)− λ, we find

=

∫
eκ(3µ−θ(3))sg2(s)ds

=
1

κ(3µ− θ(3))
eκ(3µ−θ(3))tg2(t)−

1

κ(3µ− θ(3))

∫
eκ(3µ−θ(3))sg′2(s)ds

=
1

κ(3µ− θ(3))
eκ(3µ−θ(3))tg2(t)

− 1

κ(3µ− θ(3))

(
− κ(2µ− θ(2))

∫
eκ(3µ−θ(3))sg2(s)ds− λ̃ν

∫
eκ(3µ−θ(3))sg1(s)ds

)
=

1

κ(3µ− θ(3))
eκ(3µ−θ(3))tg2(t) +

κ(2µ− θ(2))

κ(3µ− θ(3))

∫
eκ(3µ−θ(3))sg2(s)ds+

λ̃ν
κ(3µ− θ(3))

∫
eκ(3µ−θ(3))sg1(s)ds.

(B.60)

Setting the first line equal to the last, and taking all terms containing the initial integral to one side,
we obtain(
1− κ(2µ− θ(2))

κ(3µ− θ(3))

)∫
eκ(3µ−θ(3))sg2(s)ds =

1

κ(3µ− θ(3))
eκ(3µ−θ(3))tg2(t) +

λ̃ν
κ(3µ− θ(3))

∫
eκ(3µ−θ(3))sg1(s)ds∫

eκ(3µ−θ(3))sg2(s)ds =
1

κ(µ+ θ(2)− θ(3))
eκ(3µ−θ(3))tg2(t) +

λ̃ν
κ(µ+ θ(2)− θ(3))

∫
eκ(3µ−θ(3))sg1(s)ds.

(B.61)

From the previous subsection we know∫
eA3sg1(s)ds =

1

A3 −A1
eA3tg1(t) +

λ̃ν
A3(A3 −A1)

eA3t (B.62)

where A1 = κ(µ− θ(1)) and A3 = κ(3µ− θ(3)). Remembering that g′1(t) = −A1g1(t)− λ̃ν we find∫
eA3sg1(s)ds =

1

A3
eA3tg1(t)−

1

A3

∫
eA3sg′1(s)ds

=
1

A3
eA3tg1(t)−

1

A3

(
−A1

∫
eA3sg1(s)ds− λ̃ν

∫
eA3sds

)
=

1

A3
eA3tg1(t) +

A1

A3

∫
eA3sg1(s)ds+

λ̃ν
A2

3

eA3t

(
1− A1

A3

)∫
eA3sg1(s)ds =

1

A3
eA3tg1(t) +

λ̃ν
A2

3

eA3t

∫
eA3sg1(s)ds =

1

A3 −A1
eA3tg1(t) +

λ̃ν
A3(A3 −A1)

eA3t.

(B.63)
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From the previous result, we obtain∫
eA3sg2(s)ds =

1

A3 −A2
eA3tg2(t) +

λ̃ν
A3 −A2

(
1

A3 −A1
eA3tg1(t) +

λ̃ν
A3(A3 −A1)

eA3t

)

=
1

A3 −A2
eA3tg2(t) +

λ̃ν
(A3 −A2)(A3 −A1)

eA3tg1(t) +
λ̃2ν

A3(A3 −A2)(A3 −A1)
eA3t.

(B.64)

Inserting (B.64) into our ODE, we obtain

eA3τ3g3(τ3)− eA3tg3(t) =− λ̃ν

((
1

A3 −A2
eA3τ3g2(τ3) +

λ̃ν
(A3 −A2)(A3 −A1)

eA3τ3g1(τ3)

+
λ̃2ν

A3(A3 −A2)(A3 −A1)
eA3τ3

)
−
(

1

A3 −A2
eA3tg2(t)

+
λ̃ν

(A3 −A2)(A3 −A1)
eA3tg1(t) +

λ̃2ν
A3(A3 −A2)(A3 −A1)

eA3t

))
=

λ̃ν
A3 −A2

eA3tg2(t) +
λ̃2ν

(A3 −A2)(A3 −A1)
eA3tg1(t) +

λ̃3ν
A3(A3 −A2)(A3 −A1)

eA3t

− λ̃ν
A3 −A2

eA3τ3g2(τ3)−
λ̃2ν

(A3 −A2)(A3 −A1)
eA3τ3g1(τ3)

− λ̃3ν
A3(A3 −A2)(A3 −A1)

eA3τ3 .

(B.65)

Continuing and inserting the boundary condition g3(τ3) = g2(τ3) = Γ3 = λ̃ν(A3 − A2 + λ̃ν)
−1g1(τ3)

into the above, we find

eA3tg3(t) =
λ̃ν

A3 −A2
eA3τ3g2(τ3) +

λ̃2ν
(A3 −A2)(A3 −A1)

eA3τ3g1(τ3) +
λ̃3ν

A3(A3 −A2)(A3 −A1)
eA3τ3

− λ̃ν
A3 −A2

eA3tg2(t)−
λ̃2ν

(A3 −A2)(A3 −A1)
eA3tg1(t)−

λ̃3ν
A3(A3 −A2)(A3 −A1)

eA3t + eA3τ3g3(τ3)

g3(t) =(1 +
λ̃ν

A3 −A2
)eA3(τ3−t)g2(τ3) +

λ̃2ν
(A3 −A2)(A3 −A1)

eA3(τ3−t)g1(τ3)

+
λ̃3ν

A3(A3 −A2)(A3 −A1)
eA3(τ3−t) − λ̃ν

A3 −A2
g2(t)−

λ̃2ν
(A3 −A2)(A3 −A1)

g1(t)

− λ̃3ν
A3(A3 −A2)(A3 −A1)

=eA3(τ3−t)
(
(1 +

λ̃ν
A3 −A2

)g2(τ3) +
λ̃2ν

(A3 −A2)(A3 −A1)
g1(τ3) +

λ̃3ν
A3(A3 −A2)(A3 −A1)

)
−
(

λ̃ν
A3 −A2

g2(t) +
λ̃2ν

(A3 −A2)(A3 −A1)
g1(t) +

λ̃3ν
A3(A3 −A2)(A3 −A1)

)
.

(B.66)

Let us now try to express the stopping time τ3 explicitly. We know τ3 satisfies the equation

g2(τ3) =
λ̃ν

A3 −A2 + λ̃ν
g1(τ3) (B.67)
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and that the expression for τ2 is

τ2 = T − 1

A1

(
log

[
λ̃ν

A2 −A1 + λ̃ν
+
λ̃ν
A1

]
− log

[
λ̃ν
A1

+ 1

])
. (B.68)

Let us write out an expression for τ3, inserting g2(t) into (B.67), which gives

eA2(τ2−τ3)
(

λ̃ν
A2 −A1

+
λ̃2ν

A2(A2 −A1)

)
−
(

λ̃ν
A2 −A1

g1(τ3) +
λ̃2ν

A2(A2 −A1)

)
=

λ̃ν

A3 −A2 + λ̃ν
g1(τ3).

(B.69)

Dividing both sides by λ̃ν this becomes

eA2(τ2−τ3)
(

1

A2 −A1
+

λ̃ν
A2(A2 −A1)

)
=

(
A3 −A1 + λ̃ν

(A2 −A1)(A3 −A2 + λ̃ν)

)
g1(τ3) +

λ̃ν
A2(A2 −A1)

. (B.70)

Inserting the formula for g1(τ3) we find

eA2(τ2−τ3)
(

1

A2 −A1
+

λ̃ν
A2(A2 −A1)

)
=(

A3 −A1 + λ̃ν

(A2 −A1)(A3 −A2 + λ̃ν)

)(
eA1(T−τ3)(1 + λ̃ν

A1

)
− λ̃ν
A1

)
+

λ̃ν
A2(A2 −A1)

.

(B.71)

This is known as a transcendental equation (equations of the form eAx + eBx = C), which cannot be
solved in the general sense, except for some special cases like A = 2B or A = B. We investigate one
such special case in the following subsection, but we must conclude that in the general case, τ3 cannot
be expressed explicitly.

B.3.5 Special case for explicit solution

In the g3(t) case we saw we could only find an explicit formula for τ3 under the condition. The stopping
time satisfies

eA2(τ2−τ3)
((

1 +
λ̃ν

A2 −A1

)
g1(τ2) +

λ̃2ν
A2(A2 −A1)

)
−
(

λ̃ν
A2 −A1

g1(τ3) +
λ̃2ν

A2(A2 −A1)

)
=

λ̃ν

A3 −A2 + λ̃ν
g1(τ3)

(B.72)

which can be written as

eA2(τ2−τ3)
(

λ̃ν
A2 −A1

+
λ̃2ν

A2(A2 −A1)

)
=

(
λ̃ν

A3 −A2 + λ̃ν
+

λ̃ν
A2 −A1

)
g1(τ3) +

λ̃2ν
A2(A2 −A1)

(B.73)

which can be simplified to

eA2(τ2−τ3)
(
λ̃ν +

λ̃2ν
A2

)
=

(
λ̃ν(A3 −A2)

A3 −A2 + λ̃ν
+ λ̃ν

)(
eA1(T−τ3)(1 + λ̃ν

A1

)
− λ̃ν
A1

)
λ̃2ν
A2

(B.74)

from which we finally see

eA2(τ2−τ3)
(
λ̃ν +

λ̃2ν
A2

)
− eA1(τ2−τ3)eA1(T−τ2)

(
λ̃ν(A3 −A2)

A3 −A2 + λ̃ν
+ λ̃ν

)(
1 +

λ̃ν
A1

) λ̃2ν
A2

= −
(
λ̃ν(A3 −A2)

A3 −A2 + λ̃ν
+ λ̃ν

)
λ̃3ν

A2A1
.

(B.75)
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We see this leaves us with a transcendental equation, as described in section 3.1, that cannot be solved
to arrive at a closed form expression for τ3 in the general case. However, under the special condition
that θ(2) = 2θ(1) we have that A2 = κ(2µ − θ(2)) = 2κ(µ − θ(1)) = 2A1. If make the general
assumption that θ(i) = 2θ(i− 1), the equation (B.75) becomes

e2A1(τ2−τ3)
(
λ̃ν +

λ̃2ν
2A1

)
− eA1(τ2−τ3)eA1(T−τ2)

(
λ̃ν(2A1)

2A1 + λ̃ν
+ λ̃ν

)(
1 +

λ̃ν
A1

) λ̃2ν
2A1

= −
(
λ̃ν(2A1)

2A1 + λ̃ν
+ λ̃ν

)
λ̃3ν
2A2

1

.

(B.76)

Substituting x = eA1(τ2−τ3), leaves us with a quadratic equation of the form

x2
(
λ̃ν+

λ̃2ν
A2

)
−xeA1(T−τ2)

(
λ̃ν(A3 −A2)

A3 −A2 + λ̃ν
+λ̃ν

)(
1+

λ̃ν
A1

) λ̃2ν
A2

+

(
λ̃ν(A3 −A2)

A3 −A2 + λ̃ν
+λ̃ν

)
λ̃3ν

A2A1
= 0. (B.77)

This can be solved using the quadratic formula x = −b±
√
b2−4ac
2a , where

a =λ̃ν +
λ̃2ν
A2
,

b =eA1(T−τ2)
(
λ̃ν(A3 −A2)

A3 −A2 + λ̃ν
+ λ̃ν

)(
1 +

λ̃ν
A1

) λ̃2ν
A2
,

c =

(
λ̃ν(A3 −A2)

A3 −A2 + λ̃ν
+ λ̃ν

)
λ̃3ν

A2A1
.

(B.78)

Inserting this into the quadratic formula and rewriting, we end up with

x =
(A3 −A1 + λ̃ν)

(A3 − 2A1 + λ̃ν)

(
λ̃2ν(2A1 + λ̃ν)

(A1 + λ̃ν)3

)
±

√√√√( λ̃2ν
2A2

1

+
λ̃ν
A1

λ̃ν

A3 − 2A1 + λ̃ν

)(
2A2

1

(A1 + λ̃ν)4

)
. (B.79)

We then end up with a solution for x and the optimal stopping time is simply given by τ3 = τ2 −
1
A1

log(x).

B.3.6 Solving the ODE for the i = 4 case

In this case we are solving the system

max

(
∂tw(t, 4) + κ(4µ− θ(4))w(t, 4) + λ̃νw(t, 3) ; w(t, 3)− w(t, 4)

)
= 0

w(T, 4) = e−κρu(4).

(B.80)

We only consider the non-trivial case where µ ≥ −λ̃ν
κ − θ(1) + θ(2) and we use the trivial optimal

strategy to execute MOs an instant before the terminal time as our terminal condition face-lifted to
w(T−, 4) = 1 ·w(T−, 3) = 1. We must now determine the time τ4 when the solution to the QVI "peels
away" from its immediate execution value, namely w(t, 4) = w(t, 3). We need to ensure that w(t, 4)
and its derivative are continuous at this point, so

w(τ−4 , 4) = w(τ4, 4) and ∂tw(τ
−
4 , 4) = ∂tw(τ4, 4) = ∂tw(τ4, 3). (B.81)

From the QVI (B.80), we know that in the continuation region, we have

0 =∂tw(τ4, 4) + κ(4µ− θ(4))w(τ4, 4) + λ̃νw(τ4, 3)

=∂tw(τ4, 3) + κ(4µ− θ(4))w(τ4, 3) + λ̃νw(τ4, 3)

=− κ(3µ− θ(3))w(τ4, 3)− λ̃νw(τ4, 2) + κ(4µ− θ(4))w(τ4, 3) + λ̃νw(τ4, 3)

=(κ(µ+ θ(3)− θ(4)) + λ̃ν)w(τ4, 3)− λ̃νw(τ4, 2)

(B.82)
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where the third equality follows from the continuation region of (5.40).
We find that the optimal stopping time, at which the trader should execute a market order when

she holds an inventory of size 3, solves

w(τ4, 3) =
λ̃ν

(κ(µ+ θ(3)− θ(4)) + λ̃ν)
w(τ4, 2). (B.83)

This can be solved explicitly for τ4, since w(t, 3) = g3(t) and w(t, 2) = g2(t) as given in the previous
subsections. We try this in the Appendix, but find an eκ(2µ−θ(2))(τ2−τ3) and an eκ(µ−θ(1))(T−τ3) term in
the equation, which poses a problem. We can solve it explicitly for the special case where θ(2) = 2θ(1),
as it then becomes a quadratic equation.

Now that we know the optimal stopping time, we can find the full solution for w(t, 3) and for that
we must solve the continuation equation backwards from τ3. We do this by solving the ODE

∂tg4(t) + κ(4µ− θ(4))g4(t) + λ̃νg3(t) = 0, g4(τ4) = Γ4 (B.84)

where Γ4 =
λ̃ν

(κ(µ+θ(3)−θ(4))+λ̃ν)
w(τ4, 2). The solution is given found by

∂tg4(t) + κ(4µ− θ(4))g4(t) =− λ̃νg3(t)

∂
[
eA4tg4(t)

]
=− eA4tλ̃νg3(t)

eA4τ4g4(τ4)− eA4tg4(t) =− λ̃ν

∫ τ3

t
eA4sg3(t).

(B.85)

For this integral, using the fact that g′3(t) = −A3g3(t)− λ̃νg2(t), we have

∫
eA4sg3(s)ds =

1

A4
eA4tg3(t)−

1

A4

∫
eA4sg′3(s)

=
1

A4
eA4tg3(t) +

A3

A4

∫
eA4sg3(t) +

λ̃ν
A4

∫
eA4sg2(t).

(B.86)

From the previous subsection we know

∫
eA4sg2(s)ds =

1

A4 −A2
eA4tg2(t) +

λ̃ν
(A4 −A2)(A4 −A1)

eA4tg1(t) +
λ̃2ν

A4(A4 −A2)(A3 −A1)
eA4t.

(B.87)
So (B.86) becomes

(
1− A3

A4

)∫
eA4sg3(s)ds =

1

A4
eA4tg3(t) +

λ̃ν
A4

(
1

A4 −A2
eA4tg2(t)

+
λ̃ν

(A4 −A2)(A4 −A1)
eA4tg1(t) +

λ̃2ν
A4(A4 −A2)(A3 −A1)

eA4t

)
∫
eA4sg3(s)ds =

1

A4 −A3
eA4tg3(t) +

λ̃ν
A4 −A3

(
1

A4 −A2
eA4tg2(t)

+
λ̃ν

(A4 −A2)(A4 −A1)
eA4tg1(t) +

λ̃2ν
A4(A4 −A2)(A3 −A1)

eA4t

)
.

(B.88)
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Substituting this back into our solution for the ODE we get

−eA4τ4g4(τ4) + eA4tg4(t) =

(
λ̃ν

A4 −A3
eA4τ4g3(τ4) +

λ̃ν
A4 −A3

(
λ̃ν

A4 −A2
eA4τ4g2(τ4)

+
λ̃2ν

(A4 −A2)(A4 −A1)
eA4τ4g1(τ4) +

λ̃3ν
A4(A4 −A2)(A3 −A1)

eA4τ4

))
−
(

λ̃ν
A4 −A3

eA4tg3(t) +
λ̃ν

A4 −A3

(
λ̃ν

A4 −A2
eA4tg2(t)

+
λ̃2ν

(A4 −A2)(A4 −A1)
eA4tg1(t) +

λ̃3ν
A4(A4 −A2)(A3 −A1)

eA4t

))
.

(B.89)

We see, using g4(τ4) = g3(τ4), our function g4(t) can be written as

g4(t) =

(
(1 +

λ̃ν
A4 −A3

)eA4(τ4−t)g3(τ4) +
λ̃ν

A4 −A3

(
λ̃ν

A4 −A2
eA4(τ4−t)g2(τ4)

+
λ̃2ν

(A4 −A2)(A4 −A1)
eA4(τ4−t)g1(τ4) +

λ̃3ν
A4(A4 −A2)(A3 −A1)

eA4(τ4−t)
))

−
(

λ̃ν
A4 −A3

g3(t) +
λ̃ν

A4 −A3

(
λ̃ν

A4 −A2
g2(t)

+
λ̃2ν

(A4 −A2)(A4 −A1)
g1(t) +

λ̃3ν
A4(A4 −A2)(A3 −A1)

))
.

(B.90)

We end up with the following form

g4(t) =e
A4(τ4−t)

(
(1 +

λ̃ν
A4 −A3

)g3(τ4) +
λ̃2ν

(A4 −A3)(A4 −A2)
g2(τ4)

+
λ̃3ν

(A4 −A3)(A4 −A2)(A4 −A1)
g1(τ4) +

λ̃4ν
A4(A4 −A3)(A4 −A2)(A3 −A1)

)
−
(

λ̃ν
A4 −A3

g3(t) +
λ̃2ν

(A4 −A3)(A4 −A2)
g2(t)

+
λ̃3ν

(A4 −A3)(A4 −A2)(A4 −A1)
g1(t) +

λ̃4ν
A4(A4 −A3)(A4 −A2)(A3 −A1)

))
(B.91)

where g3(t) is expressed in equation (5.45) and τ4 solves equation (B.83). So the solution of the QVI
(B.80) for w(t, 4) is

w(t, 4) = g4(t)1{t<τ4} + g3(t)1{t≥τ4}. (B.92)

Finally the optimal depth at which the trader should post her LOs is given by

δ⋆(t, 4) =
1

κ
+ r + f +

1

κ
log

(
w(t, 4)

w(t, 3)

)
. (B.93)
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B.3.7 Solving the ODE for the i = S case

For our value formulas g1(t), g2(t) and g3(t) we have found

g1(t) =e
A1(T−t)

(
1 +

λ̃ν
A1

)
− λ̃ν
A1
,

g2(t) =e
A2(τ2−t)

((
1 +

λ̃ν
A2 −A1

)
g1(τ2) +

λ̃2ν
A2(A2 −A1)

)
−
(

λ̃ν
A2 −A1

g1(t) +
λ̃2ν

A2(A2 −A1)

)
,

g3(t) =e
A3(τ3−t)

(
(1 +

λ̃ν
A3 −A2

)g2(τ3) +
λ̃2ν

(A3 −A2)(A3 −A1)
g1(τ3) +

λ̃3ν
A3(A3 −A2)(A3 −A1)

)
−
(

λ̃ν
A3 −A2

g2(t) +
λ̃2ν

(A3 −A2)(A3 −A1)
g1(t) +

λ̃3ν
A3(A3 −A2)(A3 −A1)

)
,

g4(t) =e
A4(τ4−t)

(
(1 +

λ̃ν
A4 −A3

)g3(τ4) +
λ̃2ν

(A4 −A3)(A4 −A2)
g2(τ4)

+
λ̃3ν

(A4 −A3)(A4 −A2)(A4 −A1)
g1(τ4) +

λ̃4ν
A4(A4 −A3)(A4 −A2)(A3 −A1)

)
−
(

λ̃ν
A4 −A3

g3(t) +
λ̃2ν

(A4 −A3)(A4 −A2)
g2(t)

+
λ̃3ν

(A4 −A3)(A4 −A2)(A4 −A1)
g1(t) +

λ̃4ν
A4(A4 −A3)(A4 −A2)(A3 −A1)

))
(B.94)

with A1 = κ(µ − θ(1)), A2 = κ(2µ − θ(2)) and A3 = κ(3µ − θ(3)) and where we have the stopping
times τ satisfying

g1(τ2) =
λ̃ν

A2 −A1 + λ̃ν
,

g2(τ3) =
λ̃ν

A3 −A2 + λ̃ν
g1(τ3),

g3(τ4) =
λ̃ν

A4 −A3 + λ̃ν
g2(τ4).

(B.95)

We see the general formula can be expressed as

gS(t) =e
As(τS−t)

(
gS−1(τS) +

S∑
i=1

λ̃iν∏i
j=1(AS −AS−j)

gS−i(τS)

)
−
( S∑
i=1

λ̃iν∏i
j=1(AS −AS−j)

gS−i(t)

)
(B.96)

with Ai = κ(iµ − θ(i)) for i = 1, 2, 3..., A0 = 0 and g0(t) = 1 and where the stopping time τS solves
the equation

gS−1(τS) =
λ̃ν

AS −AS−1 + λ̃ν
gS−2(τS). (B.97)
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To be able to effectively apply Newton-Raphson’s method we need the derivative of gS(t), which is

g′1(t) =−A1e
A1(T−t)

(
1 +

λ̃ν
A1

)
,

g′2(t) =−A2e
A2(τ2−t)

((
1 +

λ̃ν
A2 −A1

)
g1(τ2) +

λ̃2ν
A2(A2 −A1)

)
− λ̃ν
A2 −A1

g′1(t),

g′3(t) =−A3e
A3(τ3−t)

(
(1 +

λ̃ν
A3 −A2

)g2(τ3) +
λ̃2ν

(A3 −A2)(A3 −A1)
g1(τ3) +

λ̃3ν
A3(A3 −A2)(A3 −A1)

)
−
(

λ̃ν
A3 −A2

g′2(t) +
λ̃2ν

(A3 −A2)(A3 −A1)
g′1(t)

)
.

(B.98)

We evaluate g′3(τ3), and find it is given by

g′3(τ3) =−A3

(
(1 +

λ̃ν
A3 −A2

)g2(τ3) +
λ̃2ν

(A3 −A2)(A3 −A1)
g1(τ3) +

λ̃3ν
A3(A3 −A2)(A3 −A1)

)
−
(

λ̃ν
A3 −A2

(−A2g2(τ3)− λ̃νg1(τ3)) +
λ̃2ν

(A3 −A2)(A3 −A1)
(−A1g1(τ3)− λ̃ν)

)
=

(
(−A3 +

−A3λ̃ν
A3 −A2

+
A2λ̃ν

A3 −A2
)g2(τ3)

+ (
−A3λ̃

2
ν

(A3 −A2)(A3 −A1)
+

λ̃2ν
A3 −A2

+
A1λ̃

2
ν

(A3 −A2)(A3 −A1)
)g1(τ3)

+
−λ̃3ν

(A3 −A2)(A3 −A1)
+

λ̃3ν
(A3 −A2)(A3 −A1)

)
.

(B.99)

Using that g′2(τ3) = −A2g2(τ3)− λ̃νg1(τ3) and λ̃νg1(τ3) = (A3 −A2λ̃ν)g2(τ3) to find g′2(τ3) = −(A3 +
λ̃ν)g2(τ3), we can rewrite (B.99) as

g′3(τ3) =(−A3 − λ̃ν)g2(τ3) + (
−λ̃2ν

(A3 −A2)
+

λ̃2ν
A3 −A2

)g1(τ3) = g′2(τ3) (B.100)



C | Python Codes

The code used to create all the plots and analyses in this thesis can be found in this GitHub repository.

https://github.com/JoepClaes/ThesisOPP
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