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The Journal of Immunology

A Comprehensive Workflow for Applying Single-Cell
Clustering and Pseudotime Analysis to Flow Cytometry Data

Janine E. Melsen,* Monique M. van Ostaijen-ten Dam,* Arjan C. Lankester,*

Marco W. Schilham,*,1 and Erik B. van den Akker†,‡,1

The introduction of single-cell platforms inspired the development of high-dimensional single-cell analysis tools to comprehensively

characterize the underlying cellular heterogeneity. Flow cytometry data are traditionally analyzed by (subjective) gating of sub-

populations on two-dimensional plots. However, the increasing number of parameters measured by conventional and spectral flow

cytometry reinforces the need to apply many of the recently developed tools for single-cell analysis on flow cytometry data, as well.

However, the myriads of analysis options offered by the continuously released novel packages can be overwhelming to the immu-

nologist with limited computational background. In this article, we explain themain concepts of such analyses and provide a detailed

workflow to illustrate their implications and additional prerequisites when applied on flow cytometry data. Moreover, we provide

readily applicable R code covering transformation, normalization, dimensionality reduction, clustering, and pseudotime analysis

that can serve as a template for future analyses. We demonstrate the merit of our workflow by reanalyzing a public human dataset.

Compared with standard gating, the results of our workflow provide new insights in cellular subsets, alternative classifications, and

hypothetical trajectories. Taken together, we present a well-documented workflow, which utilizes existing high-dimensional single-

cell analysis tools to reveal cellular heterogeneity and intercellular relationships in flow cytometry data. The Journal of Immu-

nology, 2020, 205: 864–871.

F
low cytometry data are traditionally analyzed bymanual and
sequential gating of subpopulations on two-dimensional
plots. This approach is highly dependent on the user’s

interpretation and knowledge and is time-consuming. More-
over, it critically underappreciates the full spectrum of naturally
occurring variation in coexpression and intensity expression of
markers and thus seems insufficient to capture the full underly-
ing cellular complexity.
The introduction of new experimental platforms such as single-

cell RNA sequencing and mass cytometry (1), which can acquire
.20,000 and 40 parameters per cell, respectively, has advanced
the development of high-dimensional data analysis tools (2). In
flow cytometry, technological advances in equipment and devel-
opment of new fluorescent dyes have led to a major increase in
dimensionality of the acquired datasets. With the introduction of
new conventional and spectral flow cytometers, .30 parameters
can be simultaneously measured (3, 4). Hence, the need to apply

the existing single-cell analysis tools on flow cytometry datasets
increases.
In general, two analytical approaches have been developed to

capture the underlying cellular heterogeneity. The first approach
aims to define phenotypically similar cells by clustering. Clus-
tering can be achieved by applying general clustering methods
such as hierarchical clustering or K-means or methods developed
for cytometry data (5) [e.g., Gaussian mean shift (GMS) clustering
(6) as implemented in Cytosplore, FlowSoM (7), PhenoGraph (8)]
or single-cell RNA-sequencing data (9) [e.g., k-nearest neighbor–
based Louvain clustering (10), as implemented in Seurat (11)]. In
contrast, the second analytical approach assumes a continuum of
cellular states and aims to reveal cellular progression by inferring
cellular trajectories, called pseudotime analysis. This type of
analysis is particularly useful for studying cellular differentiation
or disease progress. The method has been developed for single-
cell RNA-sequencing data by Monocle (12). Nowadays, .70
methods are available and reviewed (13), including Slingshot (14),
Wishbone (15), and partition-based graph abstraction (16). Hence,
depending on the assumptions and purposes for the data, current
analytical approaches are either aimed at discovering distinct
subsets of cells or model cells as a differentiating continuum. In
practice, analytical methods are often applied consecutively to
progressively unravel the structure in single-cell datasets.
Visualization of high-dimensional data requires dedicated methods,

so-called dimensionality reduction methods, to comprehensively
represent the cellular heterogeneity assessed by many parameters
into a two-dimensional scatterplot. To date, a wide array of
dimensionality reduction methods are available and already
extensively reviewed elsewhere (5, 17, 18). For instance, t–stochastic
neighbor embedding (19), hierarchical stochastic neighbor em-
bedding (HSNE; as implemented in Cytosplore) (20, 21), and
uniform manifold approximation and projection (UMAP) (22, 23)
are commonly applied to visualize results of cluster analysis. The
result of pseudotime analysis is preferably visualized in a reduced
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dimensional space, which orders cells along a trajectory, such
as diffusion map (24, 25). Overall, visualization by dimen-
sionality reduction forms the key element of each analysis of
single-cell data.
To reveal in detail the immunological landscape at the single-cell

resolution in large flow cytometry datasets, we have compiled a
comprehensiveworkflow illustrated with readily applicable R code,
accessible to the immunologist with limited computational back-
ground. Specifically, we offer a workflow for high-dimensional
single-cell analysis from data preprocessing to visualization, cluster-
ing, and pseudotime analysis and include a description of limitations
and potential pitfalls.

Materials and Methods
Data

The flow cytometry dataset FR-FCM-ZYQ9 was downloaded from the
FlowRepository Web site (26, 27). Eight healthy bone marrow donors were
selected for further analysis of the T cells. The panel included the following
markers: a live/dead marker (Aquablue), CD141CD19 (PE-Dazzle), CD3
(BV785), CD4 (BV605), CD8 (APC-Fire), CCR7 (BV421), CD45RA
(BV650), CD27 (FITC), CD95 (APC), CD49b (PE), CD69 (PE-Cy5),
CD103 (PE-Cy7), and CXCR4 (PerCP-Cy5.5). CXCR4 was removed
from the analysis because we observed no reliable CXCR4 staining.
Donor B (47 y), L (57 y), and M (60 y) were measured on a different day
than donor F (41 y), K (84 y), N (67 y), R (31 y), and W (28 y). The
complete workflow as discussed below is depicted in Fig. 1.

Preprocessing

The fcs files were manually compensated in the conventional analysis
software Kaluza (v2.1; Beckman Coulter, Brea, CA). Next, the following
gating strategy was applied. Lymphocytes were gated based on forward and
side scatter, dead cells were excluded by the live/dead staining, doublets
were excluded by plotting the width and height of the forward and side
scatter, and finally T cells were gated as CD142CD192CD3+ living
single lymphocytes (Supplemental Fig. 1). The T cell data were exported
as csv files and imported into R (v3.6; R Foundation for Statistical
Computing, Vienna, Austria). Transformation was applied on the eight
samples (Supplemental Fig. 2). We compared our manual hyperbolic
arcsine (arcsinh) transformation to arcsinh transformation with cofactor
150 and to automated parameter optimized transformations, as imple-
mented in FlowCore (logicle) (28), FlowVS (arcsinh) (29), and FlowTrans
(arcsinh) (30) (Supplemental Fig. 2). After transformation, normalization
was applied by either gaussNorm or fdaNorm as implemented in the
FlowStats package (31) to correct for technical intersample variation
(Supplemental Fig. 3). The transformed and normalized expression values
were exported to fcs files by use of the FlowCore package. The R scripts
and fcs files are available on GitHub (https://github.com/janinemelsen/
Single-cell-analysis-flow-cytometry).

Dimensionality reduction

Three dimensionality reduction methods were used: HSNE, diffusion map
[as implemented in the destiny package (25)], and UMAP [as implemented
in the uwot package (32)]. For HSNE, we imported the fcs files containing
the T cells from the eight donors (in total 618,288 cells) in Cytosplore (21)
and performed a four-level HSNE with default parameters based on the
expression levels of CD3, CD4, CD8, CCR7, CD45RA, CD27, CD95,
CD49b, CD69, and CD103.

Clustering

As clustering methods, we applied GMS clustering (in Cytosplore),
FlowSOM, and PhenoGraph. The HSNE-based GMS clustering with a s of
20 was performed to identify cell clusters. Phenotypically similar clusters
were manually merged, to avoid overclustering. The 14 clusters identified
in the CD4+ T cell compartment in the second level were exported as
individual fcs files for further analyses.

Pseudotime

The 14 fcs files from the CD4+ T cell clusters (in total 275,856 cells) were
exported from Cytosplore and imported in R. Next, we ran Slingshot (14)
on the transformed CD4+ T cell dataset. Based on the HSNE-based GMS
clusters, the minimum spanning tree was calculated to identify lineages.
We specified the naive CD4+ T cells as the initial cluster. The pseudotime

variable was inferred by fitting simultaneous principal curves. Visualiza-
tion was achieved by plotting the pseudotime variable as a color scale on a
diffusion map. The R code is available on GitHub (https://github.com/
janinemelsen/Single-cell-analysis-flow-cytometry).

Results
To apply high-dimensional single-cell analysis on flow cytometry
data, we developed a workflow that consists of four sections: data
preprocessing (compensation, export cells of interest, transfor-
mation, normalization), dimensionality reduction, clustering, and
pseudotime analysis (Fig. 1). To enable readers to perform the
analyses themselves, we demonstrated our workflow by rean-
alyzing publicly available flow cytometry data downloaded from
FlowRepository (FR-FCM-ZYQ9) and comparing the results with
the results obtained after standard gating. Bone marrow mono-
nuclear cells from eight healthy donors, which were measured on
two different days, were included for further analysis. We selected
the T cell panel, which includes a live/dead marker, CD14, CD19,
CD3, CD4, CD8, CCR7, CD45RA, CD27, CD95, CD49b, CD69,
and CD103.

Preprocessing

The initial preprocessing steps (compensation and exporting cells
of interest) of a data-driven analysis of flow cytometry data are not
different from the traditional approach and can be performed in
conventional gating software.

Compensation. We corrected for spillover of fluorochromes by
applying compensation. It should be noted that the compensation
can differ between days but also between samples that were
measured on the same day.

Export cells of interest. After compensation, dead cells and dou-
blets need to be excluded. Lymphocytes were gated based on
forward and side scatter, dead cells were excluded by the live/dead
staining, doublets were excluded by plotting thewidth and height of
the scatters, and for illustrative purposes, T cells were gated as
CD142CD192CD3+ (Supplemental Fig. 1). In total, we exported
618,288 T cells as csv from eight samples.

Transformation. Conventional gating software often visualizes data
on biexponential axes, meaning that lower (negative) values are
plotted on a linear scale, whereas higher (positive) values are plotted
on a logarithmic scale. This standard transformation, however, is
generally not applied on the exported data. Hence, our workflow
starts with options for data transformation.
Automated transformations as implemented in the FlowVS (29),

FlowCore (28), or FlowTrans package (30) were applied on the
data. In contrast to FlowTrans, FlowVS and FlowCore calculate
the optimal transformation per parameter and work satisfactorily
in our hands, except for markers that have low-intensity expres-
sion or are expressed at low frequency. For instance, the param-
eters CD103, CD49b, and CCR7 exhibit artificial positive peaks
after automated transformation (Supplemental Fig. 2A–C). Hence,
in our opinion, a manual inspection (and if necessary, adjustment)
of the applied transformations remains essential.
In parallel, we conducted a manual transformation of the data

for comparison with the automated transformation methods
(Supplemental Fig. 2D). We choose to apply a manual arcsinh
transformation on the data, which serves a similar purpose as
the biexponential transformation and allows tuning of the linear
region around zero by adjusting the cofactor. The cofactor of
the arcsinh transformation equals the size of the linear region
on the positive or negative side of the zero (Fig. 2A). Whereas
for mass cytometry–derived datasets, the arcsinh transfor-
mation is commonly applied with a cofactor of 5; for flow
cytometry data, a cofactor of 150 is often applied (5, 33).
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However, transforming a parameter with a fixed (yet in our hands,
generally too low) cofactor of 150 can result in a false-positive
peak (Fig. 2A third panel, Supplemental Fig. 2E).
Because each fluorochrome has a distinct staining pattern, each

parameter requires an individualized transformation. By adjusting
the linear size of the axis until an optimal distribution of the peaks is
observed (which can be done in conventional gating software), the
optimal cofactor can be determined. The negative peak of a his-
togram should be positioned in the linear region of the biexpo-
nential scale. If the cofactor is set too high, the positive peak will
be artificially positioned in the linear region, resulting in a false-
negative peak. If the cofactor is set too low, the negative peak
will be artificially positioned in the logarithmic region, resulting in
a false-positive peak (Fig. 2A).
Optimal cofactors could differ slightly between samples that

were measured on different days. For instance, the distribution of
the data of donor F and M, which were measured on two distinct
days, varied for CCR7 (Fig. 2B). In this case, the highest cofactor
can be applied on both samples as long as no false-negative peak
is observed (Fig. 2B, Supplemental Fig. 2D). In this manner, the
samples are equally transformed.

Normalization. As a result of interexperiment variability, variation
in staining intensity can be observed. For instance, use of a new Ab
lot, different temperature staining conditions, or flow cytometer
variability can lead to technical variation in the data. Therefore,
interexperiment variability does require normalization, but bio-
logical variation should be conserved. We observed for CD49b,

CD4, CD27, CCR7, CD8, and CD3 subtle differences in signal
intensities between the donors and therefore applied normalization
by either fdaNorm or gaussNorm as implemented in the FlowStats
package (31) (Fig. 2C, Supplemental Fig. 3). Because fdaNorm
automatically detects the number of peaks present in the datasets,
we prefer the use of fdaNorm. After normalization of the trans-
formed data, the FlowCore package was used to export the data as
fcs again (28).

Dimensionality reduction

For visualization purposes, the total number of dimensions (which
is equal to the number of parameters) needs to be reduced to two. A
wide range of methods is available, with each having its own
limitations and strengths. Datasets acquired by flow cytometry and
mass cytometry often include millions of cells. Because conven-
tional t–stochastic neighbor embedding can only handle 150,000
cells, the HSNE has recently been introduced to eliminate the
need for downsampling (20). The strength of HSNE is the pre-
sentation of millions of cells in multiple levels of clusters in
limited computational time. At the overview level, major lineages
can be identified, whereas at the deeper levels, phenotypical de-
tails of subpopulations can be revealed. HSNE has been imple-
mented in Cytosplore, which allows interactive exploration of the
data (21) (Fig. 3A, 3B). In addition, we will demonstrate the use of
diffusion map and UMAP (Fig. 4A, 4B, Supplemental Fig. 4). In
contrast to HSNE, both diffusion map and UMAP better preserve
the global structure of the data and are therefore more suitable for

FIGURE 1. Overview workflow. The preprocessing of the data includes compensation, exporting the population of interest, transformation (either with a

manual determined cofactor or automated), and normalization to correct for technical intersample variation. Compensation and gating is standard procedure

in analysis of flow cytometry data. Hereafter, the data are imported in R. The transformed and normalized data are used as input to define phenotypically

similar cells by clustering, visualized in a reduced dimensional space. For both dimensionality reduction and clustering, multiple methods are available. In

this figure, we demonstrate HSNE with GMS clustering as implemented in Cytosplore and clusters calculated by FlowSOM, projected on a diffusion map.

As an alternative to clustering, cellular trajectories can be studied by pseudotime analysis as implemented by Slingshot.
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visualization of cellular progresses. We will further discuss these
visualization tools in the clustering and pseudotime section.

Clustering

HSNE-based GMS clustering. We imported the compensated,
transformed, and normalized fcs files of the eight donors into
Cytosplore and performed an HSNE analysis on a total of 618,288
cells based on all parameters, except the forward scatter, side
scatter, live/dead marker, CXCR4, CD14, and CD19. In the
overview level, we identified the CD4+ T cells and CD8+ T cells
(Fig. 3A). We zoomed in on the CD4+ T cells and generated 14
clusters at the second level, guided by the GMS clustering based
on the density representation of the embedding (Fig. 3B, 3D).
We identified CD49b+ and CD49b2 naive T cells

(CCR7+CD45RA+CD952, cluster 1, 2) and 12 subsets of mem-
ory T cells, including the CD27+ central memory (CM) T cells
(cluster 3, 4), CD27+ effector memory (EM) T cells (cluster 5, 6),
CD272 EM T cells (cluster 7, 8, 12), CD272 terminally differentiated
EM reexpressing CD45RA (EMRA) T cells (cluster 9, 10, 11),
CD69+CD1032 EM T cells (cluster 13), and CD103+ EM T cells
(cluster 14). The frequency of each cluster as percentage of total

CD4 per individual donor is depicted in Fig. 3E. Although not
present in all donors, clusters 11 and 12 represented CD272 EM
and EMRA CD4+ T cells, which expressed low levels of CD8
(Fig. 3B, 3D). When transformation with a suboptimal cofactor
of 150 is applied, these CD8dimCD4+ T cells can be falsely
interpreted as CD8+CD4+ T cells (Fig. 3C compared with Fig. 3B).
Therefore, correct transformation of the data is crucial for the vi-
sualization and interpretation of the data.
When zooming in on each cluster, multiple subclusters can be

identified. For instance, zooming in up to the data level for CD103+

EM T cells revealed the heterogenous expression of CD49b and a
subpopulation that coexpressed CD69 and CD103 (Supplemental
Fig. 5). Moreover, by plotting the sample color, which could be
relevant in clinical settings, sample specific clusters can be iden-
tified (Supplemental Fig. 5).
To further evaluate the data-driven single-cell clustering, we

compared our approach to the standard gating analyses performed
by Oetjen et al. (27). First, we revealed a distinct hierarchy of cells,
namely the CD8dimCD4+ T cells that were classified as bona fide
CD4 T cells, rather than as a separate double-positive T cell
population. Second, we included more markers in our analysis

FIGURE 2. Transformation and

normalization. (A) The CCR7 ex-

pression on the T cells of donor F

are shown on three distinct biexpo-

nential scales. By tuning the linear

region around zero on the biexpo-

nential scale, the optimal cofactor of

the arcsinh transformation can be

determined. The size of the linear

region on the positive or negative

side of the zero equals the cofactor

(1787, 10,000, or 150 are shown).

Setting the cofactor too high results

in a false-negative peak, whereas

setting the cofactor too low results

in a false-positive peak. (B) The

cofactor can differ between sam-

ples measured on different days.

The expression of CCR7 is shown

with an optimal cofactor of 1787

for donor F and 363 for donor M.

To equally transform the samples

and reduce intersample variation,

the highest cofactor can be applied

on all samples. (C) To correct for

signal intensity differences between

the donors, we applied normali-

zation by using fdaNorm, as imple-

mented in FlowStats. As an example,

CCR7 and CD4 are shown pre- and

postnormalization.
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(CD49b and CD27), which allowed us to identify additional
subpopulations of cells. Third, by considering all markers on each
single cell to define populations, instead of only two, we revealed
alternate definitions. For instance, in the original gating strategy,
only CCR7 and CD45RAwere considered for the definition of the

naive, CM, EM, and EMRA CD4 T cells, whereas with our ap-
proach, all markers were considered (Supplemental Fig. 6A). As a
consequence, the median frequency of the CM and EM CD4
T cells differed between the two approaches (Supplemental Fig.
6B). Altogether, these findings indicate the relevance of data-driven

FIGURE 3. Dimensionality reduction and clustering by HSNE and GMS. The exported T cells from eight donors (in total 618,288 cells) were

imported in Cytosplore, and an HSNE analysis with default parameters was performed. (A) At the overview level, CD4+ T cells were identified and

selected for further analysis. (B) At the second level of HSNE, multiple CD4+ T cells subsets were identified. The clustering was guided by the GMS

clustering, which is based on the density representation of the embedding. (C) To demonstrate the effect of changing the cofactor on the color scale, we

applied an arcsinh transformation with a suboptimal cofactor of 150 on CCR7, CD49b, and CD8 and plotted the results on the HSNE embedding.

Applying a wrong cofactor could lead to misinterpretation of the expression values. (D) The heatmap, as generated in Cytosplore, illustrates the median

expression values of the T cell markers for each cluster. (E) The frequencies of the CD4 T cell clusters in each individual donor are shown. The boxplots

indicate the median, interquartile range, and outliers.
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single-cell analysis because it could lead to new insights in subset
identification and classification.

Alternative clustering methods. In addition to the HSNE-based
GMS clustering, we applied the clustering methods PhenoGraph
(8) and FlowSOM (7) on the CD4 T cells. To demonstrate the dif-
ferent visualization possibilities, we visualized the clustering results
on a diffusion map and UMAP (Supplemental Fig. 4). All three
clustering methods allow tuning of the number of clusters. It can be
noted that each clustering tool provides slightly different results.

Pseudotime analysis

By clustering, we assume that cells can be categorized in discrete
well-defined subpopulations; however, from a biological point of
view, it is equally plausible that cells are related to each other in
continuous paths of differentiation or maturation. Therefore, we
demonstrated how to infer cell trajectories from flow cytometry data
and reveal transitional cellular states. To this end, we exported the
CD4 clusters (in total 275,856 cells) as assigned in Fig. 3B and
imported them in R.

FIGURE 4. Pseudotime analysis by Slingshot. To perform pseudotime analysis on the CD4+ T cells, Slingshot was applied. Slingshot requires clusters

and transformed data as input for lineage identification and pseudotime calculation. To visualize the pseudotime values, the dimensionality reduction

method diffusion map was used. (A) The diffusion map was calculated based on the transformed marker expression values of CD3, CD4, CCR7, CD45RA,

CD95, CD27, CD69, CD103, CD49b, and CD8. For illustrative purposes, the HSNE-based cluster assignments were superimposed on the diffusion map.

The diffusion map captured the same cellular organization as identified by the clustering, except for the CD49b2 and CD49b+ subsets, which were plotted

on top of each other. Those subsets where pooled for pseudotime calculation (as indicated in the legend and the lower-right corner). (B) The expression of

the individual parameters is shown on the diffusion map. (C) Three lineages were identified by Slingshot, which connected the different HSNE-based

clusters. The cells are colored according to their pseudotime value. (D) All three lineages are characterized by loss of CD45RA, followed by either loss of

CD27, gain of CD45RA and possible gain of CD8 (lineage1), loss of CD27 and possible gain of CD103 (lineage2), or gain of CD69 (lineage 3). The color

of the cells corresponds to the color of the merged clusters in (A).
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Recently, Slingshot (14) has been introduced, which uses
cell clusters to build a minimum spanning tree and reveal the
cell lineages. Hereafter, smooth curves are constructed, and the
pseudotime variable (i.e., a numeric value representing each cell’s
progression along a trajectory) is assigned to each cell. In case of
single-cell RNA sequencing, the input for clustering and lineage
identification is a certain number of (reduced) dimensions. Be-
cause flow cytometry already has a limited number of dimensions
(equal to the number of parameters), all parameters can be used to
calculate the clusters and the pseudotime variable. To visualize the
lineages, we plotted the transformed data in a reduced dimensional
space.
Slingshot allows the user to choose the dimensionality reduction

and clustering method. We used diffusion map because it reorders
the cells along a potential differentiation trajectory (Fig. 4A). For
illustrative purposes, we chose the HSNE-based GMS clustering
as a clustering method and superimposed the cluster assignments
on the diffusion map (Fig. 4A). The diffusion map captured the
same cellular organization as identified by the clustering, except
for the CD49b2 and CD49b+ subsets, which were plotted on top of
each other (Fig. 4A, 4B). For the pseudotime calculation by
Slingshot, we pooled the CD49b2 and CD49b+ subsets because
too many clusters will result in artificial lineage calculation.
Lineages and pseudotimes were further calculated based on those
merged clusters and on the expression levels of the T cell markers,
which we visualized on the diffusion map (Fig. 4B). The naive
T cells were designated as starting cluster.
In total, three lineages were identified that connected the dif-

ferent clusters (Fig. 4C). By plotting the pseudotime value on the
diffusion map, the potential order of differentiation was identified
(Fig. 4C). In line with the current T cell development knowledge,
the naive CD4+ T cells were followed by the CCR7+CD45RA2 CM
CD4+ T cells and CD27+CCR72CD45RA2 EM T cells (Fig. 4B–D).
Lineage 1 was further characterized by loss of CD27 and re-
expression of CD45RA in the presence or absence of CD8dim ex-
pression. In literature, the EMRA CD4 T cells are indeed defined as
terminally differentiated memory T cells (34). Although the uncon-
ventional CD4+CD8dim T cells are poorly described, they are con-
sidered to represent mature memory T cells (35). In lineage 2, cellular
differentiation was also defined by loss of CD27 but included both
the CD1032 and CD696CD103+ memory T cells. Both CD69 and
CD103 are markers associated with tissue residency. Lineage 3
assigned the CD69+CD1032 memory CD4+ T cells, which are
likely to represent the CD4 analogue of the earlier-described bone
marrow–resident CD69+CD1032CD8+ memory T cells, as end
stage (36). Multiple lines of evidence suggest that tissue-resident
memory T cells indeed represent a separate lineage, but these
studies were mainly focused on CD8 T cells (37). Altogether,
Slingshot can be used as hypothesis-generating tool to study cel-
lular trajectories.

Discussion
Flow cytometry is a high-throughput technique with an increasing
number of parameters being measured, reinforcing the need for
novel analyses to explore cellular heterogeneity. Therefore, we
demonstrated the application of tools to facilitate the transition
from two-dimensional to high-dimensional single-cell analysis.
After the initial steps of compensation and selecting the cells of
interest, subsequent steps to continue at the single-cell resolution
require a more-advanced approach than for conventional analysis.
The quality of the transformation of the data has a major impact

on the downstream analyses (30). We highlighted the importance
of an individualized cofactor for each parameter to achieve correct
visualization. This is probably caused by the distinct spectral

properties of fluorochromes and relative expression of the mole-
cules being recognized. Another aspect of data preprocessing is
data normalization. To minimize technical variation, experimental
conditions should be kept as consistent as possible. In case some
variation is present in a dataset, we showed that normalization can
be achieved by the methods implemented in the FlowStats pack-
age (31).
Depending on the computational knowledge, any software with a

graphical interface (e.g., Cytosplore) or open source packages in R
or other programming languages can be explored for further
analysis. In this article, we propose two approaches for single-cell
analysis of flow cytometry data. First, we used clustering, aiming
to define groups of cells with the same phenotype. The differences
in subset definition and classification between the conventional
gating strategy in the original article (27) and our clustering ap-
proach highlight the importance of single-cell analysis. By con-
sidering all the markers at once on each single cell, the cellular
heterogeneity can more easily be uncovered and visualized.
Moreover, the increasing number of parameters detected with flow
cytometry makes sequential gating virtually unfeasible.
As a second approach, we demonstrated pseudotime analysis by

Slingshot, which enables visualization of transitional phenotypes to
study, for instance, development or activation processes. In this
analysis, we demonstrated that the differentiation andmaturation of
the CD4 naive to the EMRA T cells hypothetically occurs in the
presence or absence of CD8dim expression. This observation raises
the questions of which and why CD4 T cells acquire CD8 ex-
pression and would have been missed by the conventional gating
analysis if the CD8dim cells were not included in the CD4 gate.
Despite the capacity of clustering and pseudotime tools to

identify new subsets and cellular trajectories, respectively, it is
important to be aware that the results are tool and setting de-
pendent. Hence, clustering and pseudotime algorithms are useful to
explore the presence of potentially interesting new immune subsets
and developmental pathways yet always warrant a rigorous vali-
dation by additional experiments.
In conclusion, we compared and illustrated the use of multiple

methods for dimensionality reduction, clustering, and pseudotime
analysis after preprocessing of the data. To support high-dimensional
single-cell analysis of flow cytometry data, we provide a well-
documented workflow, which could contribute to a deeper under-
standing of the cellular heterogeneity and intercellular relationships.
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