
Machine Learning Algorithms for Caching Systems
Online Learning for Caching with Heterogeneous miss-costs

Robert Valentin Vadastreanu

Supervisor(s): Georgios Iosifidis, Naram Mhaisen, Fatih Aslan

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Robert Valentin Vadastreanu
Final project course: CSE3000 Research Project
Thesis committee: Georgios Iosifidis, Naram Mhaisen, Fatih Aslan, Neil Yorke-Smith

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
This paper presents an adaptive per-file caching
policy designed to dynamically adjust caching de-
cisions based on the importance of the requested
files. It relies on the Online Gradient Ascent (OGA)
algorithm, which treats the caching problem as
an online optimization problem. This methodol-
ogy ensures minimal regret by continuously opti-
mizing caching configurations in response to real-
time request sequences. The caching configura-
tions are optimized after every request using a con-
stant learning rate. Due to the fact that the trends of
requested files can change, we will introduce two
new algorithms that change the learning rate at ev-
ery request to increase the adaptability. We will
present two new algorithms, the Universally Adap-
tive Caching (UAC) algorithm and the Adaptive
Per File Caching Algorithm (APFC), and we will
present scenarios to highlight their performances.

1 Introduction
Caching is a universal strategy to improve efficiency by
keeping frequently needed items easily accessible. This
principle can be applied to various fields in computer
science, such as databases, but also outside the field,
such as library management or household organization.
In computer science, caching1 is a technique used to
store data that is requested frequently in a temporary
storage area to improve the system’s performance.
The caching memory is a small, high-speed storage
area close to the CPU. Because of its size, an efficient
caching policy is trivial for a system’s performance.

A caching policy is a set of rules determining which
data should be stored in the cache memory at every time
slot. Its objective is to maximize the number of cache
hits to minimize latency. A cache hit occurs when the
requested data is found in the cache memory, allowing
faster access than retrieving it from the main memory. A
cache miss is the opposite situation when the requested
data is not stored in the cache memory. An illustration
of how cache works can be seen in Figure 1.

The caching problem, first identified in the 1950s,
continues to pose significant challenges in modern com-
puting. The increasing volume of data and the evolving
patterns of data requests necessitate the development of
new techniques and strategies.

Some classical caching methods 2 are Least Re-
cently Used (LRU), which removes the least recently
used items from the cache when it is full, First In First
Out (FIFO), in which the oldest items are removed when
the cache reaches its maximum capacity, and Least

1Caching explained: https://aws.amazon.com/caching/
2https://www.gem5.org/documentation/general docs/

memory system/replacement policies/

Figure 1: Caching diagram

Frequently Used (LFU) in which the least frequently
used file is removed whenever the cache become full.
These previous methods follow a static set of rules
regardless of the request pattern and do not adapt to the
different importance of the files, which can depend on
the distance to the server storing that file or on traffic.
Considering this, the caching problem started to be
cast as an online linear optimization [5]. A new policy
called Online Gradient Ascend (OGA) was introduced
that adapts to the trends and the patterns of the requests
with different importance, using a constant learning
rate. Even if the online learning methods are generally
pessimistic because they measure performance in an
adversarial way, the performance is better in practice.

The OGA adjusts the next caching configuration
based on the direction of the gradient. It uses a step
size η, representing the change made at every step. This
variable is fixed and depends on the upper bound of
the importance of the files. This paper will provide a
scenario where the OGA algorithm will perform poorly
because of its step size. This makes use of a high
variance of the importance of the files.

As proved in [5], the OGA algorithm has optimal
performance compared with the classical algorithms,
but its performance is inversely proportional to the
importance of the files. The performance is high when
the requests have a small variance in importance. Still,
the situation changes when we introduce a high variance
for the files’ importance because the algorithm’s step
size will be very small so that it will converge very
slowly. This led to the realization that this current algo-
rithm is insufficient for handling scenarios with varying
importance for the files. Because of that, we need to
design another algorithm that addresses this issue and
adapts its step size according to the importance of the
files, even if those can change dramatically over time.

This paper introduces two upgrades of this online
caching method. Firstly, we will introduce an algorithm
that changes the step size at every step, solving the
previous scenario. In this approach, we will show that

https://aws.amazon.com/caching/
https://www.gem5.org/documentation/general_docs/memory_system/replacement_policies/
https://www.gem5.org/documentation/general_docs/memory_system/replacement_policies/

the policy’s performance will no longer depend on the
upper bound of the files’ importance. Secondly, the step
size will become independent for each file, depending
on each file’s importance in the system. This will
improve the first version of our algorithm, so at every
step, the step size will rely only on the requested file
itself, not on all the previous requests.

The following article is organized as follows: sec-
tion 2 analyzes other caching policies’ performances
based on other research made. Section 3 introduces
the system model, followed by the problem statement.
Section 4 explains the universally adaptive caching
algorithm and the adaptive per-file caching algorithm.
The following section presents some experiments of
those algorithms with some plots. Section 6 presents
some ethical aspects of this research. In the last section,
the result of this experiment will be concluded.

2 Related work
2.1 Classical Caching Policies
As also presented in the introduction, there are some classical
caching policies such as LRU, LFU, and FIFO. This section
will present related work that analyzes those policies’ per-
formances, along with the Online Gradient Ascent Algorithm
(OGA). Due to its limited size, the performance of a cache
policy needs to be adequately measured. In this section, we
will use a metric called cache hit ratio, which represents the
percentage of hits made during the request. In [4], it is shown
that LRU policy achieves a high hit ratio for some request pat-
terns that favor items to be re-requested shortly after their ini-
tial access. This happens because the LRU policy ensures that
these recently accessed items remain in the cache. This op-
timal performance can be observed in the simulations where
the user access patterns follow a Zipf distribution. Examples
of requests distributed according to Zipf’s law are web pages
[2] and YouTube videos [6]. Also, in [4], it is shown that
under a stationary request pattern, LFU outperforms LRU.
There are also some optimizations of the LRU, such as multi-
LRU [7], which has higher performances than the classical
LRU.

In the comparison between LRU and FIFO, there were sig-
nificant changes. Initially, LRU was considered better than
FIFO under the independent reference mode as written in
[14]. After some changes in the modern request patterns and
trends, a revision of this paper appeared [3], which claims
that FIFO outperforms LRU.

After this analysis, we can conclude that classical algo-
rithms have some strengths in specific request patterns. How-
ever, they do not adapt to changing trends because they follow
a strict set of rules, so they do not achieve high performance
on all request patterns.

2.2 Caching as an Online Algorithm
The limitation presented in the previous subsection gave the
motivation to model caching as an online learning problem
[12], [15]. The caching was studied as an online algorithm
in several ways, such as an online gradient ascent (OGA)

caching policy in [5], as an online mirror ascent [13], or using
sub-modular policies [8]. There are other approaches to the
caching problem as an online problem, such as in [10], where
the problem is solved using a recommender system.

Regarding the aspect of adaptability, the OGA Algorithm
solves this weakness. It is proved that it has optimal perfor-
mance [5]. The OGA Algorithm outperforms LRU and LFU
by 20% in some scenarios. In the other scenarios, its perfor-
mance stays close to the best among them. This is the basis
of our new adaptive caching algorithm.

The OGA Algorithm is an online problem solved with a
constant step size. In [11], it is shown that online learning
with fixed steps is less efficient than online learning with
adaptive steps. This paper will treat caching as an online
problem that will be solved with adaptive steps.

3 System model and problem statement
System model
In a caching system, we need to decide what files to store
in the high-speed caching memory close to the CPU. In our
model, we consider a finite set of files F = {1, 2, . . . , N}, of
length N and cache that can store at most C files, C ≤ N .

A request is made at every time slot. It will be encoded as
a one-hot vector of length N . If xk

t = 1, then at time t, the
kth file is requested. Every request has the form:

xt = (xi
t | i ∈ F and xi

t ∈ {0, 1})

All requests are chosen from the set:

X = {x ∈ {0, 1}N |
N∑
i=1

xi = 1}

At every time slot, we need to decide our caching configu-
ration. We will encode a caching configuration as a vector of
length N with the sum of elements at most N . Every element
in the vector represents the amount of the file to be stored in
the cache memory at time t. It has the form:

yt = (yit | i ∈ F and yit ∈ [0, 1])

All the caching configurations are chosen from the set:

Y = {y ∈ [0, 1]N |
N∑
i=1

yi ≤ C}

A cache hit happens when the requested file is already
stored in the cache. In the opposite case, the requested file
is not stored in the cache, so we have a cache miss. A cache
hit at time t respects the property xtyt ̸= 0. The cache miss
at time t respects xtyt = 0.

The importance of the files at time t is encoded in the
weights vector wt of length N, where every position repre-
sents how important a file is at time t. This is the form of the
weights vector:

wt = (wi
t|i ∈ F and wi

t > 0)

We define the weighted request as being the element-wise
product between the request vector and the weights vector:

gt = wt ⊙ xt

The utility function represents how efficient the caching
configuration was at time t. It is defined as:

f(xt,yt) =

N∑
i=1

wi
tx

i
ty

i
t

Consider that we have T requests, X = (x1,x2, ...xT) and
our caching policy Y = (y1,y2, ...yT). The following func-
tion measures the utility of this caching policy over these re-
quests:

U(X,Y) =

T∑
t=1

f(xt,yt)

We define a static caching policy as a policy that does not
change the caching configuration over time. Every time slot
uses the same caching configuration. The static policy that
uses y as caching configuration is:

C(y) = (y1,y2, ...yT), yi = y,∀i ∈ {1, 2, ... T}

The best static caching policy Y⋆ = C(y⋆) is the static
policy that achieves the highest utility until the horizon T. The
argument is defined as the following:

y⋆ = argmax
y∈Y

U(X,C(y))

The performance of our caching policy will be measured
in a metric called the regret, which compares the policy with
the best static policy. It is defined as:

RT (X,Y) = U(X,Y∗)− U(X,Y)

Problem statement
This paper aims to introduce new caching algorithms based
on the OGA algorithm. In the following, we will explain how
the OGA algorithm works and its limitations, as demonstrated
in [5].

Because we cannot influence the incoming requests, we
will redefine the utility function with only one parameter, the
vector yt. This also applies to the regret function:

f(yt) =

N∑
i=1

wi
tx

i
ty

i
t

RT (Y) = U(X,Y∗)− U(X,Y)

The OGA updates the caching policy with the formula:

yt+1 = ΠY(yt + ηt∇ft)

where ηt is the learning rate, and ΠY(z) =
argmaxy∈Y ∥z − y∥ represents the projection of the vector
z onto Y , and ∇ft = (∂ft

∂yi
t
,∀i ∈ {1, 2, ..., N}) = wt ⊙ xt,

where ⊙ represents the element-wise product between 2 vec-
tors. An example of a projection algorithm that can be used
in this scenario can be found in [5].

The diameter of a set of vectors is defined as the maximum
distance between two vectors in that set. In our case, in the
space of all possible caching configurations, the diameter is:

diam(Y) =

{√
2C if 0 < C ≤ N

2 ,√
2(N − C) if N

2 < C ≤ N.

The learning rate of the OGA algorithm is defined as:

ηt =
diam(Y)

L
√
T

,∀t ∈ {1, 2...T}

,
where L represents the upper bound of the norm of the

gradient: ∥∇ft∥
As proved in [5, Theorem 2], the OGA algorithm’s regret

has an upper bound of:

RT (OGA) ≤ diam(Y)L
√
T

As we can observe, L is a multiplication factor in the upper
bound of the regret. This means that if we use a pattern where
some files have a big variance in weight, the regret will be
big, meaning that the policy performance will be low. This
is happening because 1

L is a factor in the learning rate. The
learning rate will be very low for L being significantly bigger
than most of the requests’ weight, implying that the OGA
will learn very slowly only because there is a possibility of
requesting a file of high importance.

This paper aims to introduce a per-file weighted cache al-
gorithm that obtains a smaller upper bound for the regret be-
cause it can converge faster. Firstly, the paper will introduce
an intermediate algorithm that adapts the learning rate at ev-
ery time slot and performs better than the OGA in the pat-
tern presented earlier. This intermediate algorithm can be
improved to have a unique learning rate per file so that the
gradient updates independently for each file. These two algo-
rithms will solve the small adaptability of the OGA algorithm
in some specific request patterns.

4 Adaptive Caching Algorithms
This section proposes two new online caching algorithms,
which adapt their learning rates to the request patterns. We
will show that in experiments, those methods lead to bet-
ter performance than using the constant learning rate. The
first subsection presents the Universally Adaptive Caching
Algorithm, while the second presents the Adaptive per-file
Caching Algorithm.

4.1 Universally Adaptive Caching
Algorithm(UAC)

The Universally Adaptive Caching Algorithm updates the
learning rate based on the weights at every request. The im-
provement from the OGA algorithm is that it is not dependent
on the upper bound for the weighted request. For our algo-
rithm, we will set the learning rate:

ηt =

√
2diam(Y)

2
√∑t

i=1 ∥gi∥2

It is proved in [9, Eq. 15] that for solving an online learning
algorithm, using the previous learning rate which is adapted
to our caching problem, we obtain the bounds:

RT (UAC) ≤
√
2diam(Y)

√√√√ T∑
t=1

∥gt∥2

Now, we will compare the upper bound of the regret of
the OGA algorithm with the upper bound of the regret of the
UAC algorithm. We will start with the fact that L is the upper
bound for the norm of a weighted request:

∥gt∥ ≤ L ∀t ∈ {1, 2, ...T}

If we raise to the square, we obtain:

∥gt∥2 ≤ L2 ∀t ∈ {1, 2, ...T}

We can sum this inequality for all t ∈ {1, 2, ...T} and ob-
tain:

T∑
t=1

∥gt∥2 ≤ L2T

Now, we can get the square root and multiply with√
2diam(Y) both sides:

√
2diam(Y)

√√√√ T∑
t=1

∥gt∥2 ≤
√
2diam(Y)L

√
T

We can observe that the left term represents the regret of
the UAC algorithm, while the right contains the regret of the
OGA algorithm:

RT (UAC) ≤
√
2RT (OGA)

In this case, we approximated all the weights to the upper
bound L. In a real-world scenario, this approximation is too
harsh, so the regret of the UAC algorithm will stay lower than
the regret of the OGA algorithm. In the evaluation section,
we compare these two methods. A pseudocode for the UAC
algorithm, which handles a stream of requests, is displayed as
Algorithm 1.

Algorithm 1 Universally Adaptive Caching Algorithm
(UAC)

1: y1 ← 0 // Initialize caching policy
2: G0 ← 0 // Initialize weighted sum
3: D← Diameter // Calculate the diameter of Y
4: for t = 1, 2 ... do
5: gt ← wt ⊙ xt // Calculate weighted request using

element-wise product
6: Gt ← Gt−1 + ∥gt∥2 // Update weighted sum
7: ηt ← D

√
2

2
√
Gt

// Get Learning Rate
8: yt+1 ← ΠY(yt + ηtgt)
9: end for

4.2 Adaptive per file Caching Algorithm(APFC)
As we can observe in the previous subsection, the UAC’s
learning rate becomes smaller and smaller from time slot to
time slot. This is happening because:

ηt ≥ ηt+1,∀t ∈ {1, 2, ...T − 1}
For the proof, this is equivalent to:

√
2diam(Y)

2
√∑t

i=1 ∥gt∥2
≥
√
2diam(Y)

2
√∑t+1

i=1 ∥gt∥2
, ∀t ∈ {1, 2, ...T − 1}

We can perform some basic calculations and obtain the fol-
lowing:

√√√√ t∑
i=1

∥gt∥2 ≤

√√√√t+1∑
i=1

∥gt∥2, ∀t ∈ {1, 2, ...T − 1}

After we raise to the square and subtract, we obtain:

∥gt+1∥2 ≥ 0, ∀t ∈ {1, 2, ...T − 1}
Because the last step is always true, we demonstrated that

the learning rate becomes smaller from time slot to time slot.
So, it can become very low in an advanced part of a run of the
algorithm. This implies that updates to the caching configu-
rations will become significantly low in some situations. An
example is a change of trends: for example, in the first period,
there are some popular files, and over a few time slots, their
popularity decreases, and there will be a new trend. In this
case, the transition will be very slow. Using this intuition, we
can improve the UAC algorithm by using learning rates per
individual file.

In [11], the performance of the AdaGrad algorithm is pre-
sented, which is an Online Convex Optimization algorithm. It
uses a learning rate for each dimension of each of the coordi-
nates of a 1-dimensional vector. We will use this Online Con-
vex Optimization algorithm in our caching problem to use a
learning rate at time t for file i in order to create the Adaptive
Per File Caching Algorithm (APFC):

ηit =

√
2diam(Y)

2
√∑t

j=1(w
i
jx

i
j)

2
,∀i ∈ 1, 2, ...N

If we plug in the values corresponding to our caching prob-
lems, considering that the diameter is 1 for each file space, in
[11, Theorem 4.26], it is demonstrated that the following re-
gret bound holds:

RT (APFC) ≤
√
2

N∑
i=1

√√√√ T∑
j=1

(wi
jx

i
j)

2

In [11], it is also demonstrated that using this learning rate,
we will achieve a lower regret bound than setting the learn-
ing rate from the UAC algorithm. The evaluation section will
compare these two algorithms in different scenarios. A pseu-
docode is depicted in Algorithm 2 below, which presents an
application of the APFC algorithm over a stream of requests
alongside the weights vector.

Algorithm 2 Adaptive Per File Caching Algorithm (APFC)

1: y1 ← 0 // Initialize caching policy
2: G0 ← 0 // Initialize weighted sum
3: D← Diameter // Calculate the diameter of Y
4: for t = 1, 2 ... do
5: gt ← xt ⊙wt // Calculate the weighted request using

element-wise product
6: Gt ← Gt−1 + gt ⊙ gt // Update weighted sum

vector using element-wise product
7: ηit ← D

√
2

2
√∑N

i=1 Gi
tx

i
t

// Calculate Learning Rate for the

requested file
8: yt+1 ← ΠY(yt + ηitgt)
9: end for

5 Evaluation
This section compares the algorithms described in the paper.
In the first subsection, we will highlight the differences in
practice between the OGA and UAC using the MovieLens
dataset. The second subsection will show a scenario where
APFC’s performance is better than UAC’s.

5.1 OGA vs UAC
The MovieLens3 data set was used for both figures for the
simulation. In these simulations, we used the first 10000 re-
views in chronological order from the MovieLens, where the
requested file is the reviewed movie. The simulations from
both figures use a total of N = 497 files and a fixed cache
size of C = 250.

In Figure 2, we perform the simulation without consider-
ing the weight vector. To achieve this, we set it constant as
a vector of ones. In this case, the learning rate of OGA will
use the term L = 1. Considering that we know the horizon’s
value T = 10000, the number of files, and the caching size,
we can also calculate the learning rate as η ≈ 0.222. In this
case, we can observe that the UAC and APFC perform simi-
larly, while the OGA has a higher regret. This is happening
because, in the early running stage, the UAC and APFC have

3https://grouplens.org/datasets/movielens/

high learning rates that decrease over time. The OGA uses
a constant learning rate, updating the caching configuration
more slowly.

Figure 2: Unweighted simulation

Figure 3: Weighted simulation

Figure 4: Weighted simulation zoomed

In Figure 3, the performance difference between OGA and
these two algorithms becomes more evident by introducing
weights. We will use a convention for the files’ weight to be a
minimum of 1 and a maximum of 15. This implies the upper
bound is L = 15. Using the same steps previously, we can
calculate η ≈ 0.0148 in the OGA algorithm. As we can ob-
serve in the figure, the OGA is rising steeply in the first 10000
time slots. Because the learning rate changes from time slot
to time slot, the UAC and APFC perform better, achieving a
ten-times smaller regret. Figure 4 is a zoomed version of Fig-
ure 3, highlighting that UAC and APFC perform similarly in
those cases.

https://grouplens.org/datasets/movielens/

5.2 UAC vs APFC

This subsection will present two scenarios where APFC out-
performs UAC and OGA. APFC and UAC will outperform
the OGA for the same reason as in the previous subsec-
tion. The purpose of this experiment is to compare UAC
and APFC. Figures 5 and 6 represent different simulations
of those algorithms using two request patterns with different
trends. We define a trend as a period when a file is requested
frequently compared to the other files. Both simulations are
using N = 400 files.

In Figure 5, we perform a simulation using 100 trends hav-
ing a cache size of C = 100. Every trend has 40 requests.
In trend i, the file i is requested at least 25%, while the other
files are randomly requested under the uniform distribution.
In every trend, the first 75% of the requests have weight 1,
while the last 25% have the weight 3. In the first 1000 iter-
ations, the UAC and APFC have similar performances. This
is happening because they are using similar learning rates.
After that, we can observe a split; the regret of the APFC re-
maining lower because other trends are coming. This happens
because the learning rate is high when a file without history is
introduced. In UAC, the same learning rate is used at time t
regardless of which file is requested. When new files become
popular, the APFC performs better later in a simulation. It
achieves a regret of around 230, while the UAC achieves a
regret of around 350, which represents an increase of around
50%.

In Figure 6, we are using four cyclic trends, having a cache
size of C = 40. For each cycle, we have 50 trends, each
with 50 requests, of which at least 20% are for the popular
file. The other 80% are randomly requesting a file using the
uniform distribution. Each request has weight 1 in the first
half of a trend, while in the second half, it is increased to 5.
We plotted this experiment to show that even if the popular
file has some history, like in cycles 2, 3, and 4, the APFC
performs better. In this case, we can observe that the APFC
obtains a negative regret at the horizon, meaning it performs
better than the best static policy.

6 Responsible Research

This section will discuss the ethical aspects of the research
adhering to the Netherlands Code of Conduct for Research
Integrity [1].

Throughout our study, we ensured that all real-world data
used was publicly available and properly cited. We utilized
the MovieLens dataset, a common resource in research for
testing machine learning algorithms, which is FAIR (Find-
able, Accessible, Interoperable, and Reusable). For the sec-
ond experiment, we wrote how the data can be produced, in-
cluding the distributions used.

The algorithms used, UAC and APFC, are described in de-
tail, including a pseudocode for each, ensuring transparency
and enabling reproducibility. The results of the experiments
are impartially analyzed based on the plots displayed in the
paper.

Figure 5: 100 trends with C = 100

Figure 6: Cyclic trends with C = 40

7 Conclusions and Future Work
In conclusion, we highlighted the performance of two new
online caching algorithms, which keep track of the impor-
tance of the files, Uniform Adaptive Caching (UAC) and
Adaptive Per File Caching (APFC), alongside a comparison
between them. Our main goal was to prove that the APFC
and UAC algorithms improve the OGA algorithm. In a com-
parison between UAC and APFC, we showed that APFC
adapts better when we have a dynamic environment where the
weights of the files change frequently. In other experiments,
the APFC and UAC performed similarly.

Extending these two new algorithms to work in real-time
systems could provide practical benefits for future work. An-
other idea is to integrate a machine learning model to predict
file request patterns, which could adapt the learning rate and
further enhance caching efficiency.

Because UAC and APFC showed high adaptability to dif-
ferent request patterns compared with the OGA algorithm,
which outperforms the classical offline caching policies such
as LRU, LFU, or FIFO as written in [5], these algorithms may
promise an improvement in the caching systems.

References
[1] Association of Universities in the Netherlands (VSNU).

Netherlands Code of Conduct for Research Integrity,
2018.

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.
Web Caching and Zipf-like distributions: Evidence and

implications. In INFOCOM ’99, volume 1, pages 126–
134, March 1999.

[3] O. Eytan, D. Harnik, E. Ofer, R. Friedman, and R. Kat.
It’s time to revisit LRU vs. FIFO. In Proceedings of
the 12th USENIX HotStorage Workshop, Berkeley, CA,
USA, July 2020.

[4] C. Fricker, P. Robert, and J. Roberts. A versatile and
accurate approximation for LRU cache performance. In
ITC, 2012.

[5] L. Vigneri G. Iosifidis G. Paschos, A. Destounis. Learn-
ing to Cache with No Regrets. In IEEE INFOCOM,
2019.

[6] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. Youtube traffic
characterization: A view from the edge. In Proceedings
of the 7th ACM SIGCOMM conference on Internet mea-
surement, IMC ’07, pages 15–28, New York, NY, USA,
2007. ACM.

[7] Anastasios Giovanidis and Alexandros Avranas. Spa-
tial multi-LRU: Distributed caching for wireless net-
works with coverage overlaps. arXiv preprint
arXiv:1612.04363, 2016.

[8] Yuyi Li, Tarek Si Salem, Giovanni Neglia, and Stratis
Ioannidis. Online caching networks with adversarial
guarantees. Proc. ACM Meas. Anal. Comput. Syst., 5(3),
2021.

[9] H. Brendan McMahan. A survey of Algorithms and
Analysis for Adaptive Online Learning. Journal of Ma-
chine Learning Research, 18(90):1–50, 2017.

[10] Naram Mhaisen, George Iosifidis, and Douglas Leith.
Online Caching with Optimistic Learning. In Proceed-
ings of IFIP Networking, 2022.

[11] Francesco Orabona. A Modern Introduction to Online
Learning”, 2023.

[12] Shai Shalev-Shwartz. Online Learning and Online Con-
vex Optimization. Now Publishers Inc., 2012.

[13] T. Si Salem, G. Neglia, and S. Ioannidis. No-Regret
Caching via Online Mirror Descent. In Proc. of ICC,
2021.

[14] J Van Den Berg and A Gandolfi. LRU is better than
FIFO under the independent reference model. Journal
of applied probability, 1992.

[15] M. Zinkevich. Online Convex Programming and Gen-
eralized Infinitesimal Gradient Ascent. In ICML, 2003.

	Introduction
	Related work
	Classical Caching Policies
	Caching as an Online Algorithm

	System model and problem statement
	Adaptive Caching Algorithms
	Universally Adaptive Caching Algorithm(UAC)
	Adaptive per file Caching Algorithm(APFC)

	Evaluation
	OGA vs UAC
	UAC vs APFC

	Responsible Research
	Conclusions and Future Work

