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Abstract
The current project investigated the feasibility of aerocapture at Jupiter, and the benefits in terms of
payload mass fraction that could be achieved compared to traditional orbital insertion burns. A nu-
merical simulation model has been set up, as well as an analytical formulation of the problem. The
numerical verification of the analytical model showed that the analytical model still needs to be refined
to produce accurate and useful results. Thermal fluxes, a driving aspect of aerocapture, have been
implemented by using correlation laws, as well as corrective terms, all retrieved from literature. The
aerocapture problem was numerically modeled and has been then optimized. However, the best trajec-
tories provided a negative mass fraction benefit of −0.37 when compared to a traditional insertion burn.
The best available mass fraction for the spacecraft’s entry-unrelated subsystems was 0.44. Therefore,
apart from some niche applications, aerocapture at Jupiter can be considered unappealing at best in
the near future.
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1
Introduction

1.1. An Opening
Venturing into the furthest boundaries of the Solar System has been, and still is, a deed that often re-
quired many generations of passionate humans to be accomplished. Indeed, the clock of solar system
traveling ticks way too slowly for a mission to be conceived, tested, manufactured, assembled, and
flown in a human lifetime. And when the contingencies of the journey make it possible, the time we
need to understand all the new discoveries a probe just made, that time asks the help of fresh, new
minds. That time needs new humans ready to stand on the shoulders of the giants that preceded them,
to take on their legacy, and hear what that probe had told us since the beginning.

Now, with the help of new technologies, that gap can be merged. Now, that Solar System clock can
be hijacked to tick faster.

But, how?

By using what has always been there: the atmospheres of planets.

It has by now become common knowledge that, in order for a mission to arrive quicker, it has to
travel faster. On this, scientific consensus has been reached long ago. Once arrived at the destination,
however, that consensus quickly fades away. Until recently, there has not been an effective solution to
slow the spacecraft down, to make it stay at its intended destination, and not escape and fly away, and
be lost in the deepest parts of space. Now, a promising technique has been found and tried already:
aerocapture. A simple, yet tricky, concept that promises powerful maneuvers, at the cost of equally
powerful thermal and aerodynamic loads generated by those same operations.

The costs that aerocapture asks are the reason that motivated this project. A mission that wants to
make use of its powerful benefits must also be able to sustain the harsh price of a severe atmospheric
entry environment, one that would rip the probe apart if not for the countermeasures that are to be taken.
A shield to protect the spacecraft from the heat, and a structure capable of sustaining the accelerations
of an atmospheric entry, are the bare minimum a probe needs to exit that environment unharmed.

What needs to be addressed is whether those costs motivate the power that aerocapture can give,
or not. This is clearly not a black-and-white picture. This is a picture with a multitude of shades, but
some patterns to navigate this picture exist. There are planets for which those costs can be blindly paid.
Mighty is the power that can be gained here. It is the case for Saturn, Uranus, and Neptune. For those
planets, new mission concepts and faster travel times can finally be conceived, all thanks to the power
of atmospheres. Missions developed with traditional techniques would not be even conceivable. Inner
planets, such as Mars or Venus, do not promise the same gains outer planets guarantee. However,
the costs they ask for are so little they can be easily paid, given a proper mission design is carried out.

There is one planet, however, one planet, that evades this logic. That one planet whose gravitational
well is so powerful that the price for the power of aerocapture can rapidly become unaffordable. A
spacecraft entering its atmosphere would do so with such high velocities that the thermal fluxes would
quickly become unbearable. That planet is Jupiter, second to none, but the Sun, in the entire solar

1



1.2. Research Question 2

system. Jupiter sits exactly on that thin grey line that discerns patterns where the power of aerocapture
is convenient to those where it is simply too expensive.

The current project wants to investigate that grey line. This project aims at assessing the true costs
of aerocapture at Jupiter. Whether or not the power of atmospheric braking can be worth the costs is
the burning question this project starts with.

1.2. Research Question
This thesis project aims at answering what is the magnitude of the true costs, and the available options,
of performing aerocapture at Jupiter. The research questions it starts with, are the following:

How can a Jupiter insertion trajectory be performed with the sole use of gravity assists and
atmospheric drag?

How, if so, can an unpropelled trajectory to Jupiter deliver more payload than a traditional trajectory
featuring impulsive insertion maneuvers?

These questions open the discussion, and the project itself. How this research will be carried out is
explained in the following section.

1.3. Structure
Part I of the project comprehends all the background information, mainly retrieved from the literature
study. It comprehends:

• Chapter 2, which introduces the techniques that will be investigated in the project;
• Chapter 3, which describes the main features of the Jupiter environment;
• Chapter 4, which presents the past missions that flew at Jupiter;
• Chapter 5, which talks about the dynamics relevant to the project.

Part II incorporates all the tools and the material needed for the project:

• Chapter 6, which describes the available tools;
• Chapter 7, which talks about the numerical methods in use;
• Chapter 8, which presents the available verification and validation material.

Part III combines the definition of the problem and its mathematical modeling:

• Chapter 9, which focuses on the definition of the problem, its boundaries, and its features;
• Chapter 10, which investigates the thermal environment at Jupiter and derives ways to calculate
the thermal loads;

• Chapter 11, which addresses the problem of flybys, whether to incorporate them or not;
• Chapter 12, which is on the modeling of the problem in a mathematical sense;
• Chapter 13, which shows the tuning process for the integration scheme and the environment
model;

• Chapter 14, which carries out the verification and validation of the model by using the available
material.

Part IV is the main core of the project: it is the actual research performed, and it comprehends:

• Chapter 15, the optimization chapter, where the most promising trajectories are drawn and ana-
lyzed;

• Chapter 16, which eventually analyzes the pros and cons of the aerocapture technique.

Part V:

• Chapter 17, the conclusions and recommendations chapter.

Then, a list of references used in the project is present, followed by appendices:

• Appendix A, which contains some additional figures the project refers to;
• Appendix B, which contains tabulated data the project uses in some of its parts;
• Appendix C, which shows the time planning of the thesis.
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2
On the Use of Natural Forces

In designing a space mission, it is attractive to benefit from forces offered by nature. In this chapter,
the gravity assist and the aerocapture maneuvers will be presented.

2.1. Natural Perturbations
Natural perturbations comprehend all the natural forces that can divert a spacecraft from its trajectory
calculated with the 2-body model.

Clearly, natural perturbations have benefits that can be harnessed to perform unpropelled maneu-
vers, thus potentially increasing the payload mass of a spacecraft. Such benefits can be used by
including these forces in the design of the trajectory.

Figure 2.1: Trajectories of the two probes Voyager 1 and 2. They both performed multiple gravity assists to leave the Solar
System with relatively low use of propellant. [1, Figure 1]

The impact of said natural perturbations has extensively been studied in the field of astrodynamics.
One of the main benefits of this research is the decrease of the required propellant mass or Time
of Flight (ToF) to follow space transfer trajectories. Many breakthrough discoveries enabled deep-
space trajectories that would have been unfeasible otherwise (e.g. Figure 2.1). Many techniques that
harness these perturbations have been developed but there is still room for many improvements and
new discoveries.

4
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The literature review that preceded this thesis started with a general aim: finding new ways to use
natural orbital perturbations or improve existing techniques for space transfer trajectory design.

From this large scope, the research narrowed down to a more specific problem focused on the
aerocapture and gravity assist techniques. As a science case, a multi-gravity-assist approach and
aerocapture trajectory at Jupiter has been selected.

2.2. Gravity Assist
Gravity assists have been extensively used throughout the years of the space age to achieve goals oth-
erwise impossible to reach. From missions outside the Solar System to missions directed towards the
outermost or innermost planets orbiting the Sun, this technique has proven to be effective in reducing
the amount of propellant to be carried on board, lowering the costs of several missions and enabling
new perspectives.

Working principle
To explain the principle behind the gravity assist, the patched-conics approximation can be used to
make it more straightforward. The following description comes from Wakker [2, Chapter 18].

It is assumed that the spacecraft is subject to the force of only one body at a time, which is the
Sun while in interplanetary space, and is the planet when inside its sphere of influence (SoI). Within
the planet SoI, the hyperbolic trajectory of the spacecraft is described relative to a planetocentric non-
rotating reference frame, thus coordinate and velocity transformations are applied when passing from
the heliocentric frame to a planetocentric one.

Figure 2.2: The in-plane geometry of hyperbolic encounter trajectories, which result in a gravity assist that changes the
spacecraft velocity vector in the heliocentric frame [2, Figure 18.19].

Figure 2.2 shows the geometry of a hyperbolic flyby trajectory of the spacecraft relative to a planet.
It can be seen that the direction of the arrival velocity V∞t differs from that of the departure velocity
V ∗
∞t. This results in a difference in heliocentric velocity before and after the flyby, all accomplished

without any aid of impulsive maneuvers. It is not a transformation between kinetic and potential energy,
since the latter remains almost unchanged. The spacecraft position in the heliocentric frame in fact
barely changes during the entire flyby phase. It can then be concluded that ”passing close to a planet
produces a discontinuous change in the total energy of the spacecraft’s heliocentric trajectory” [2]. This
is, in essence, the swingby effect, as Wakker [2] calls it, also regarded as the gravity assist.
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Such a technique is capable of greatly reducing the amount of propellant required for an interplan-
etary mission, thus increasing the amount of payload the probe can carry.

This approach works well in the simplified patched-conics approximation, which is useful for prelimi-
nary studies. For spacecraft applications, transfers from one planet to another are usually computed by
using Lambert’s theorem. This is done before running the actual simulations with an accurate physical
model. Such transfers can be from Earth to the swingby planet or from the swingby planet to the target
planet.

This approach can then be verified by Tisserand’s criterion, which takes also three-body dynamics
into account. Tisserand’s criterion has been formulated by Tisserand and states that the Tisserand
parameter, a value calculated from several Keplerian elements of an orbit, should remain constant
between the orbits before and after a gravity assist.

The transfers to and from the swingby planet are then matched by using this criterion, which has to
be satisfied in order to obtain viable launch and encounter opportunities [2].

Usage
This technique has been selected in this study for reducing the orbital energy of an approaching space-
craft at Jupiter so that the aerocapture phase could be less demanding in terms of aerothermal loads
and potentially even more effective overall.

It has also been considered for a post-aerocapture flyby, which scope would be that of raising the
orbital pericenter. In particular, both options would consider a gravity assist around one of the Galilean
moons of Jupiter. More on this aspect in the next section.

2.3. Aero-capture
Aerocapture is a technique that consists of harnessing a planet’s atmosphere to slow the spacecraft
down and insert it into a closed orbit around the main body. It can be used alone, or combined with
other techniques, such as gravity assists.

Figure 2.3: Aerocapture geometry with following pericenter raise and orbit adjustment maneuvers. [3, Figure 1]

This technique requires some critical post-aerocapturemaneuvers to be conducted, such as the peri-
center raise. A delta-v has to be applied to raise the pericenter above the capture planet’s atmosphere;
otherwise, the spacecraft would undergo a second atmospheric entry, with potentially catastrophic re-
sults for the mission.



3
Jupiter Environment

Jupiter offers a chaotic environment, where many objects play different roles and influence each other
in many unpredictable ways. The scope of the current chapter is to present the natural forces at play
in this environment, the characteristics of the atmosphere and radiation environments, and to highlight
the major bodies orbiting Jupiter.

3.1. Natural Forces
Jupiter’s environment is characterized by a variety of powerful and complex forces. The planet’s strong
magnetic field, which is one of the largest in the Solar System, interacts with the high-energy particles
that are constantly bombarding the planet to create intense radiation belts. These radiation belts can
be hazardous to spacecraft and even pose a threat to human exploration.

Figure 3.1: Auroras in Jupiter’s atmosphere captured by Hubble Space Telescope [4].

In addition to the magnetic field, Jupiter’s rotation also creates powerful atmospheric forces, driving
the planet’s distinctive cloud bands, storms, and jet streams. These atmospheric systems are further
influenced by the planet’s massive size and strong gravitational pull, which can affect the behavior
of nearby moons and other objects in the vicinity. Finally, external forces, such as the gravitational
influence of the Sun and other planets, can also shape Jupiter’s environment, affecting its orbit and

7
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even contributing to the formation and evolution of its moons and ring system. Understanding these
complex and interrelated forces is crucial for studying Jupiter’s environment and the role it plays in the
larger Solar System.

3.2. Atmosphere
Jupiter, the largest planet in our Solar System, is a gas giant with a thick and complex atmosphere that
has intrigued astronomers and space enthusiasts for centuries. Jupiter is more than 11 times the size
of Earth and is mostly composed of hydrogen and helium. Its atmosphere is characterized by powerful
winds, massive storms, and a range of atmospheric phenomena that make it one of the most complex
and fascinating objects to study in our Solar System.

Jupiter’s atmosphere is modeled using mainly data from the Galileo probe, which flew into Jupiter’s
atmosphere and collected various information about its characteristics. Three models are considered:
interpolation of Galileo data, layered, and exponential models.

3.2.1. Interpolation
Interpolating data from the Galileo probe retrieves the most accurate density model for the atmosphere
of Jupiter that can be achieved. Reconstructed in-flight data (Table B.1) from the Galileo descent
contains density and pressure data related to altitude, thus a Lagrangian interpolation (explanation in
Chapter 7) of this data returns highly accurate profiles for such quantities. Figure 3.2 shows the density
profile with respect to altitude reconstructed by Seiff et al. [5]. From their data, the same profile could
be retrieved and used for this study.

Figure 3.2: Density of the upper jovian atmosphere as a function of altitude, derived from measured probe decelerations. The
steeper slope above 550 km indicates a major warming of the upper atmosphere [5, Figure 26].

3.2.2. Layered
A simpler approach to modeling the atmosphere of Jupiter is that of approximating it by dividing it into
different layers per altitude, each of them with different properties. Each layer can have a constant tem-
perature or a temperature linearly varying with altitude, as Figure 3.3 shows. For constant-temperature
layers, the exponential model can be applied to them and is valid within the bounds of the layer. For
linear-temperature-variation layers, the analytical model is more complex and can take into account
the variation of the gravity force as well. This formulation has been taken from Mooij [6]1.

1The referred source, in its 2019 version, has a typo on this specific formula



3.3. Radiation environment 9

Figure 3.3: Jupiter atmosphere linearized temperature-altitude profile. Data has been taken from the descent of the Galileo
probe, presented by Seiff et al. [5]. The temperature above 1000 km has been considered constant with the value it has at

1000 km. α represents the slope of the lines [km/K]. ρ is the density [kg/m3].

By taking into account the varying temperature and the variation of the gravity force, and by assum-
ing the atmosphere to be in hydrostatic equilibrium, the formulation for a linear-temperature-variation
layer can be derived:

ρ

ρ0
=

(
h− h0
αT0

+ 1

)− g0α
R (αbT0−bh0+1)

· e
g0α
R b(h−h0) (3.1)

where T0, h0 are the temperature and altitude taken at the lower boundary of the layer; α is the tem-
perature gradient of the layer; R is the gas constant for the Jupiter atmosphere (3614.92 J/ kg K [5]); b
accounts for the variation of the gravity force with altitude (b = 2

RJ
).

3.2.3. Exponential
The exponential model describes the atmosphere of Jupiter by assuming a constant temperature at all
altitudes and approximating the density profile with an exponential function. The formula for the density
profile with altitude is

ρ

ρ0
= e

−

 h

Hs


(3.2)

where ρ0 = 0.16 kg m−3 and Hs = 27 km [7].

3.3. Radiation environment
Jupiter is known for having a very intense radiation environment, due to its strong magnetic field and
its position in the outer Solar System, where it is bombarded by high-energy particles from the Sun and
other sources, such as Io’s volcanic activity.

The magnetic field of Jupiter traps these particles in belts around the planet, creating a hazardous
environment for spacecraft and potential human exploration. In fact, the radiation levels around Jupiter
are so high that they can damage electronics and affect the performance of instruments on spacecraft.
Understanding and mitigating the effects of this radiation is a major challenge for the success of a
mission to Jupiter.
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Figure 3.4: Equatorial profiles of radiation doses inside 0.27, 1,
2.2 and 5 g/cm2 Al shells in Jupiter’s environment. Below, the
disposition of Jupiter’s satellite is presented [8, Figure 2].

Figure 3.4 shows the equatorial profiles of ra-
diation doses inside aluminum shells of different
thicknesses. The radiation environment starts be-
coming severe when venturing closer than the or-
bit of Ganymede, and critically increases in sever-
ity when getting closer than Io’s orbit. Then,
closer than the orbit of Metis (the dot closest to
Jupiter among the moons shown in the disposi-
tion of Figure 3.4), the radiation levels drop in in-
tensity such that the profile of radiation dose does
not pose a risk for the spacecraft anymore.

In conclusion, the equatorial radiation lev-
els in Jupiter’s environment are those of inter-
est for the trajectory of an aerocapture mission.
To achieve the lowest airspeed with respect to
Jupiter’s winds, a counter-clockwise equatorial
trajectory is the optimal geometry.

3.4. Galilean moons
The Galilean moons of Jupiter have always at-
tracted great interest from researchers due to
their dynamical complexity and the peculiar resonance pattern present between the inner three of them.
The four Galilean moons are, from the closest to the furthest, Io, Europa, Ganymede, Callisto, and, as
said before, the three moons in resonance are Io, Europa, and Ganymede, with a pattern 1:2:4 for their
orbital periods.

Since these three moons present this peculiar pattern for their orbital periods, their configuration
repeats itself after a set amount of time, that is after every four orbits of Io, the innermost of the three.
Table 3.1 shows how this time span corresponds to approximately 7 days.

Table 3.1: Absolute orbital periods and relative values w.r.t. Io. [9]

Jupiter Moon Orbital Period (days) Orbital Period relative to Io

Io 1.769 1

Europa 3.551 2.0

Ganymede 7.155 4.0

Callisto 16.689 9.4

For what concerns all four moons, the time span after which the same configuration for all of them
reoccurs is about 188 Io orbits, that is 332.572 days. The number of 188 orbits corresponds to the
minimum common integer multiple between the relative orbital periods of the four moons ( Table 3.1).
It corresponds to 20 orbits of Callisto, 47 orbits of Ganymede, 94 orbits of Europa, and, as said, 188
orbits of Io. This result can be used when selecting the time span for the study to be conducted, see
Chapter 15.

3.5. Rings
Jupiter is well-known for its system of rings, although they are not as prominent as those around Saturn.
The rings of Jupiter were first discovered by the Voyager 1 spacecraft in 1979 and have since been
studied in greater detail by subsequent missions. The rings are composed primarily of dust and small
particles, with some larger rocks and boulders mixed in.

Jupiter’s ring system is divided into four main components: the halo, main ring, Amalthea gossamer
ring, and Thebe gossamer ring. The halo is a diffuse ring that surrounds the planet and is thought to
be composed of small dust particles. The main ring is the most prominent and well-studied component,
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consisting of four narrow bands of material. The Amalthea and Thebe gossamer rings are fainter and
more diffuse, and are believed to be formed by dust ejected from the moons Amalthea and Thebe.

Figure 3.5: Rings of Jupiter [10]. The equatorial radius of Jupiter, Rj , is
71,398 km.

The rings of Jupiter extend in the
vicinity of the planet, closer than Io’s
orbit. Figure 3.5 shows their struc-
ture. They are approximately com-
prised within Metis and Thebe orbits,
thus they range from 92000 km to
226000 km in orbital radius from the
center of Jupiter.

As said, such rings are mainly com-
posed of dust, thus particles of diam-
eters comprised between 0.1 and 10
µm [11]. There are no records of po-
tential hazards posed by such rings, as
the few large rocks and boulders are
unlikely to collide with a spacecraft fly-
ing through those regions, thus it can
be assumed that a mission to Jupiter
should not consider Jupiter’s rings as
a primary risk for the mission.

A risk assessment is surely recom-
mendable, however it goes beyond the
scope of the current work.



4
Past Missions

This chapter summarizes the past missions of interest that had Jupiter as their destination. Such mis-
sions are the Galileo and the Juno mission.

4.1. Galileo
The Galileo mission has been devised to explore the Jupiter system in the 1990s. It consisted of an
orbiter and a probe, the latter of which entered the atmosphere. When referring to the Galileo mission,
the subject will just be the Galileo probe, unless explicitly stated otherwise. This is because the probe
entry is the subject of interest in this study.

The work related to the Galileo mission includes the pre-flight studies performed prior to the entry,
but much of the literature has sparked after the mission whenmany attempts to reconstruct its trajectory,
the atmospheric properties, and the heat loads have been conducted.

In this section, the Galileo probe and its atmospheric descent will be presented. The reconstruction
of thermal loads will be addressed in Chapter 10.

Probe characteristics
The Galileo Probe was a sphere-cone spacecraft with a 22.2 cm nose radius and 44.86 deg cone-half-
angle, as Figure 4.1 shows [12]. The mass of the atmospheric probe was 338.93 kg for a diameter
of 126.49 cm. Carbon phenolic and phenolic nylon were chosen for the ablative thermal protection
system [13].

Figure 4.1: Cross-section of the Galileo probe deceleration module [14, Figure 1].

The entry conditions of the probe are set at an altitude of 450 km above the 1-bar-pressure level of
Jupiter. They are presented in both inertial and body-fixed coordinates in Table 4.1.
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Parameter Inertial Jupiter Body fixed
Entry velocity, km/s 59.92 47.4054
Entry angle, deg - 6.64 - 8.4104
Entry latitude, deg / 6.5303
Entry longitude, deg / 4.9403
Entry heading, clockwise from east, deg / 2.6111
Entry angle of attack, deg 0.0 5.7
He abundancy, mol % / 13.6

Table 4.1: Galileo probe entry conditions [13, Table 3], [15]. Empty values are assumed to be equal to the other column
counterpart.

Atmospheric entry
The Galileo probe followed a steep quasi-ballistic entry when entering Jupiter’s atmosphere; a config-
uration that resulted in the highest aerothermodynamical loads a spacecraft can undergo during an
atmospheric entry. Such trajectory differs substantially from that one of an aerocapture mission. How-
ever, the results of the Galileo mission can as well be applicable to a shallower entry, such as an
aerocapture trajectory.

Figure 4.2: Probe velocity during entry as a function of time and altitude. Velocity started to decrease significantly at about
-120 s (155 km), simultaneous with the onset of ablative mass loss [5, Figure 20].

The flight data of the Galileo probe entry, as well as data on Jupiter’s atmosphere, is available
thanks to Seiff et al. [13], which reconstructed the probe’s trajectory and the atmospheric properties
based on the probe’s measurements. Values such as velocity, altitude, flight path angle, Mach number,
drag coefficient, and Reynolds and Knudsen numbers for the probe descent are given at intervals of 5
seconds. The atmosphere properties are also tabulated. Atmospheric pressure and density, specific
heat ratios, and temperature, among other values, are given with respect to the altitude.

Reynier, D’Ammando, and Bruno [12] collects the studies conducted to better model the chemical
kinetics and convective heating thanks to the Galileo mission data. They also mention the thermal
and mechanical loads experienced by the vehicle during re-entry. They state that: the peak heating
rate and heat load exerted on the heatshield amounted to 300 MW/m2 and 3000 MJ/m2, respectively;
the maximum deceleration was as large as 250 g. Moreover, the probe’s 152 kg heat shield made up
almost half of the probe’s total mass and lost 80 kg during the entry. They also provide some flight data
and physical characteristics of the Galileo probe.
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4.2. Juno
The Juno mission was launched in 2011 to study Jupiter, and after a five-year journey, the spacecraft
entered orbit around the planet on July 5, 2016, by means of a carefully planned orbital insertion burn.
Juno’s close flybys, passing within a few thousand kilometers of Jupiter’s cloud tops, allowed its sci-
entific instruments to make detailed measurements of the planet’s gravitational and magnetic fields,
as well as its atmospheric composition, temperature, and other important parameters [16]. Juno has
completed over 30 orbits of Jupiter and has already provided researchers with a wealth of new data
and insights into this fascinating planet, with many more exciting discoveries expected in the future.

Figure 4.3: Nominal approach, bound orbit, and reduced period orbit of the Juno mission at Jupiter. The period-reduction
maneuver was actually not performed in the real mission, resulting in the spacecraft remaining in the long-period orbits [17].

Flight data
Reconstruction of Juno navigation during the approach phase at Jupiter has been done by Bradley et al.
[18].

Real orbital data about the Juno probe can be found at NASA SPICE Kernels [19]; data that can be
used to verify the accuracy of the physical model, at least partially, by simulating the trajectory of Juno
with the given model and comparing the trajectory with Juno orbital data.



5
Flight dynamics

The aim of the current chapter is to give an overview of the tools required for computing the flight
dynamics of the problem, such as the reference frames and coordinate systems. The forces acting in
the Jupiter environment are also compared.

5.1. Reference Frames
Choosing the appropriate reference frame(s) is essential to conduct a proper study, simplifying the
process, and reducing the risk of introducing both logical and numerical errors. The following reference
frames are taken from Mooij [6].

Inertial planetocentric reference frame (I-frame)
The origin of the inertial reference frame is located at the Centre of Mass (CoM) of the central body.
The plane formed by the axes XI and YI coincides with the equatorial plane of the central body. The
ZI -axis is pointing north and the reference meridian which determines the direction of the XI -axis, is
defined by the zero-longitude or prime meridian at zero time.

For Earth, in particular, the XI -axis is fixed in inertial space at a specified time, and the reference
frame is named after the chosen time. For example, J2000 is the name of the Earth inertial frame with
XI -axis pointing at the Vernal Equinox, a point in the constellation Aries, at 12h on 1 January 2000.

Figure 5.1: ECI and ECEF frames. ECI stands for Earth Centered Inertial, a planetocentric inertial frame, while ECEF stands
for Earth-Centered Earth-Fixed frame, a planetocentric rotating frame. Their relationship is illustrated in the picture. For Earth,

the prime meridian is represented by the Greenwich meridian. [20, Figure C.5]

Rotating planetocentric reference frame (R-frame)
This frame is fixed to the central body and coincides with the inertial planetocentric frame at the specified
time (and once every full rotation of the central body after that). Again, the ZR-axis is pointing north,
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whereas the XR-axis intersects the equator at zero degrees longitude and the YR-axis completes the
right-handed system. The relation between this frame and the I-frame is shown in Figure 5.1.

Body reference frame (B-frame)
The body frame is fixed to the vehicle, with the origin set at its CoM. TheXB-axis lies in the longitudinal
plane of symmetry and is positive in the forward direction. TheZB-axis also lies in the plane of symmetry
and is positive in the downward direction. The YB-axis completes the right-handed system.

Vertical reference frame (V -frame)
The ZV -axis is pointing towards the CoM of the central body, along the radial component of the gravi-
tational acceleration of a perfectly spherical body. The XV -axis lies in a meridian plane, perpendicular
to ZV , and points to the northern hemisphere. The YV -axis completes the system. The XV YV -plane
is referred to as the local horizontal plane.

This frame is often regarded as the Local-Vertical Local-Horizontal (LVLH-frame), or as the Radial
(R), along-track (S) and cross-track (W) frame (RSW-frame) (See Figure 5.2).

Figure 5.2: RSW reference system shown for an Earth-orbiting satellite: radial (R̂), along-track (Ŝ) and cross-track (Ŵ ) [21].

Trajectory reference frame, airspeed based (TA-frame)
The three axes of the TG-frame are defined as follows. The XTA-axis is positive along the velocity
vector relative to the atmosphere, the ZTA-axis lies in the vertical plane, pointing downwards, and the
YTA-axis completes right-handed system.

Figure 5.3: Definition of the aerodynamic attitude angles α, β and σ, positively oriented. It must be noted that σ is the bank
angle. The three related reference frames are the body frame (index B), the aerodynamic frame (index A), and the trajectory

frame (index T). [6, Figure 3-6]

Aerodynamic reference frame, airspeed based (AA-frame)
TheXAA-axis is defined along the velocity vector of the vehicle relative to the atmosphere, which implies
that the XAA-axis is collinear with the XTA-axis. The ZAA-axis is collinear with the aerodynamic lift
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force (based on airspeed variables), but again opposite in direction. The YAA-axis completes the right-
handed system. When the vehicle is not banking, the AA- and TA-frames are coincident. See Figure 5.3
for a visual depiction.

5.2. Coordinate systems
Choosing the appropriate coordinate system for a problem is a crucial matter; it permits to simplify the
calculations and can reduce the magnitude of numerical errors. The following list of coordinate systems,
except for the Modified Equinoctial Elements and the Unified State Model, is taken from Mooij [6].

Cartesian
Being the most common coordinates, cartesian elements allow the expression of the position, velocity
and acceleration of the spacecraft with respect to either the I- or the R-frame.
Position and velocity are defined as:

Position: x, y, z
Velocity: ẋ, ẏ, ż (labeled u, v, w in the R-frame)

Spherical
Cartesian elements may at times result in complicated formulations for the Equations of Motion, which
is why spherical components are used in these cases to simplify calculations. In spherical compo-
nents, position and velocity (in the current context, we will only define them w.r.t. the R-frame) can be
expressed by (Figure 5.4):

Position: distance R, longitude τ and latitude δ
Velocity: groundspeed Vg, flight-path angle γg and heading χg.

Longitude varies between 0°≤ τ < 360°, while latitude varies between −90°≤ δ ≤ 90°. γg varies
between −90°≤ γg ≤ 90°and χg varies between −180°≤ χg < 180°.

Figure 5.4: Definition in the R-frame of the six spherical flight parameters, the position (R, τ, δ) and velocity (Vg , γg , χg). All
angles are positively oriented. [6, Figure 3-4]

Keplerian
The six Keplerian elements defining the orbit shape and position of a spacecraft are:

a : semi-major axis (a > Rp
1)

e : eccentricity (0 ≤ e)
i : inclination (0°≤ i ≤ 180°)
ω : argument of pericentre (0°≤ ω < 360°)
Ω : longitude of the ascending node (0°≤ Ω < 360°)

1Radius of the central body
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θ : true anomaly (0°≤ θ < 360°)2
Their definition comes from Figure 5.5 for a, e, θ and Figure 5.6 for i, ω, Ω.

Figure 5.5: Definition of semi-major axis a and eccentricity e. The spacecraft is at a distance r from the main body, and the
true anomaly is indicated by θ.[6, Figure 3-1]

Figure 5.6: Definition of the three orbital parameters Ω, ω and i. The spacecraft is moving at a distance r with a velocity VI
w.r.t. the I-frame. [6, Figure 3-2] For low eccentricities, the argument of latitude u = ω + θ is used instead of the two other
separate variables, to avoid singularities. The same reasoning applies for low inclinations, where the longitude of pericentre

ω̃ = Ω+ ω combines the two other separate variables [2].

Classical Attitude Angles
Classical attitude angles are the roll angle ϕ, the pitch angle θattitude, and the yaw angle ψ. For re-entry
applications, these angles usually define the attitude of the body frame w.r.t. the inertial space, but it is
also possible to have them define the attitude of the body w.r.t. the local horizontal plane.

Aerodynamic Angles
Aerodynamic angles, are the angle of attack α (−180°≤ α < 180°, for a ’nose-up’ attitude α > 0°),
the angle of sideslip β (−90°≤ β ≤ 90°, β is positive for a ’nose-left’ attitude) and the bank angle σ
(−180°≤ σ < 180°, σ is positive when banking to the right). Their definition is shown in Figure 5.3.

Quaternions
Quaternions, or the four parameters of Euler, areQ1, Q2, Q3, andQ4. A quaternion is a four-dimensional
hyper-complex number and consists of one real and three imaginary numbers. Since the quaternions
form a set of four coordinates, every rotation happens to be over-determined, there are no singularities
present for any rotation.

2In the original source [6] the mean anomaly (M), instead of the true anomaly (θ), had been regarded. For practical reasons,
the latter has instead been preferred. θ allows for a more direct hence convenient representation of the spacecraft position in
Keplerian coordinates.
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Unified State Model
The Unified State Model (USM) is a method for expressing orbits using a set of seven elements, which
consist of a quaternion and three parameters based on the velocity hodograph [22]. Such a coordinate
system comes in different varieties, each of them comprising a different set of elements.

The traditional USM, or USM7, uses, as already said, the quaternions and the velocity hodograph. A
variation of the USM7, the USM6, uses Modified Rodrigues Parameters (MRP) instead of a quaternion,
and, finally, the USMEM is another variation that uses the exponential map instead of a quaternion.

The major benefit of this coordinate system is the total absence of singularities, as it has one more
variable than the six degrees of freedom of a spacecraft.

For a more detailed description of how the parameter sets are derived, refer to Vittaldev, Mooij, and
Naeije [22].

5.3. Natural Forces Assessment
The scope of the present paragraph is to give a first-order estimate of the acceleration magnitudes
within this environment. The result of such a comparison is shown in Figure 5.7 and 5.8. Multiple
assumptions have been made to give an estimation of such forces, thus it can only be used to have an
order of magnitude ide on the importance of a force. The models for the forces are later presented.

Figure 5.7: Order of magnitude of various accelerations acting on a body in the vicinity of Jupiter. D stands for Drag and SRP
for Solar Radiation Pressure, and for them the spacecraft cross-sectional area used for computing these forces has also been

noted. The influence of individual spherical-harmonics terms is of planet Jupiter.

By looking at Figure 5.7 it is immediately clear how the drag force has the capability of steering
the spacecraft far more than any other force, provided that such spacecraft is flying at altitudes lower
than 500 km. Other remarkable notes can be made about the importance of irregularities in the Jupiter
gravity field.

Such irregularities must always be regarded, especially when the spacecraft is flying in the vicinity
of Jupiter. Also, a comparison with other models for the gravity field has to be done, since the spherical-
harmonics formulation can diverge when flying closer than the reference radius. It could lead to errors
so big that a better accuracy can be reached by removing the entire spherical-harmonics formulation,
or just some high-order terms, from the model.

Peculiar are the magnitudes of the Lorentz force (labeled as EM force) and the Relativistic terms,
which are likely to be included in the model for reaching sufficient accuracy.

From Figure 5.8, other important insights can be obtained, such as the importance of the Galilean
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moons. Their gravity appears to be powerful enough to make the gravity-assist maneuver a useful tool
for changing the spacecraft orbit, before or after the aerocapture.

Figure 5.8: Order of magnitude of various accelerations acting on a body for high altitudes at Jupiter. SRP stands for Solar
Radiation Pressure, and the spacecraft cross-sectional area used for computing it has also been noted. Individual

spherical-harmonics terms are of the planet Jupiter.

Third-body Gravity
For the gravitational forces, the regarded body has been assumed to be at the closest distance possible
to the spacecraft, so that its magnitude would have been assessed at the worst case.

The distances between celestial bodies have been taken from De Pater and Lissauer [9]. The
gravitational parameters have been retrieved from the SPICE kernels provided by NASA [23].

Figure 5.9: Scheme of the acceleration exerted by a third body. A is the spacecraft, C is Jupiter (the central body), and B is the
third body exerting gravity.

For any body other than Jupiter, the gravity has been calculated by following the scheme presented
in Figure 5.9, which translates into

(aBA)C = aBA − aBC (aBA = ∇UB (rBA)) (5.1)

For each of the four Galilean Moons, the gravity force has been computed up to their surface value,
which corresponds to the peaks that can be seen in Figure 5.8. Any value of the force computed within
the surface radius of the moons has been truncated at the surface acceleration magnitude.
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Spherical-Harmonics Terms
The same reasoning applies for the spherical-harmonics terms evaluated, which have been taken at
their highest magnitude possible, that is at Jupiter’s poles 3, and that decrease in magnitude with
increasing distance from Jupiter.

It must be noted though that such terms, despite being quite powerful, almost cancel each other
out during each orbit. Usually, only a small fraction of such force remains unbalanced, and that is the
fraction that continuously perturbs the orbit of the spacecraft.

The formulas have been derived from the spherical-harmonics expansion of the gravitational field
(Equation 5.2), for l = 2, 4, 8 and m = 0, and all the required coefficients (normalized) have been
retrieved from TUDAT [24]. It follows that the longitude θ does not play any role in these cases, and
that the latitude ϕ that results in the highest magnitude is 90°.

B is the body exerting gravity (Jupiter) and A is the spacecraft.(
δUB

δr
(rA)

)
l,m

= − (l + 1)
µ

r2

(
R

r

)l

P̄lm(sinϕ)
(
C̄lm cosmθ + S̄lm sinmθ

)
(5.2)

Solar Radiation Pressure
Solar Radiation Pressure is a small but potentially powerful force, which can result in rather high pertur-
bations in a satellite orbit if not taken into consideration. This fact comes from the direction from which
the force comes, that is radially expanding from the Sun. Especially for relatively small trajectories it
can be considered to always point the same direction; a geometry that leads to great perturbations in
a relatively small amount of time.

The force has been calculated with the following formula:

aSRP = 2
I

c

A

m
I = (Js)J = (Js)E

(
rE
rJ

)2

(5.3)

and as (Js)E , the solar constant calculated at distance of 1 AU, a value of 1360.8 W m−2 has
been taken [25]. The spacecraft mass has been estimated to be 4000 kg (based on past missions to
Jupiter); rE and rJ are the distance of Earth and Jupiter from the Sun, again retrieved from De Pater
and Lissauer [9]; c is the speed of light; the cross-section area A has been taken as 10 m2 and as 100
m2 to assess the effect of SRP on spacecrafts of different sizes.

Drag
Since the study is focused on aerocapture, it is natural to deduce that the drag force, and aerodynamic
forces in general, will be the dominant ones, among all of them.

The peculiarity of drag of acting always in opposition with the direction of motion makes it a powerful
tool for changing a spacecraft trajectory. It also comes with drawbacks, though, such as the heating
that it induces on the spacecraft during the atmospheric entry. The heat flux and the total heat absorbed
must be thoroughly modeled, otherwise an initially promising mission could result in a catastrophe due
to excessive heating on the vehicle.

The formulation for the drag force is in principle very straightforward:

aD = −1

2
ρv2CD

A

m
v̂ (5.4)

where ρ represents the atmospheric density; v the spacecraft velocity w.r.t. the atmosphere, which
has been selected to be 59 km s−1 [26]; CD is the drag coefficient, taken as 1.2 as a rough first estimate;
A and m, the spacecraft area and mass, have been kept equal to those used for the Solar Radiation
Pressure acceleration.

Since the drag acceleration varies according to ρ, and the atmospheric density of Jupiter varies with
the altitude, the density profile of Jupiter’s atmosphere is necessary to compute the drag. To obtain
such a profile, a model that divides the atmosphere of Jupiter into layers, shown in Figure 3.3, has been
adopted. The analytical model of the density variation has been presented in Chapter 3.

3The final mission geometry will actually feature an equatorial trajectory, however the results of this preliminary study have
been kept as a rough first estimate.
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Lorentz Force
It is common for spacecraft to get charged while in space. This can happen for several causes, ranging
from interactions with the surrounding plasma environment to being exposed to the solar radiation.
Such phenomena can leave the spacecraft positively or negatively charged, thus making it acquire a
potential w.r.t. the environment.

If such spacecraft orbit planets equipped with a powerful magnetic field, they are then subjected
to what is called the Lorentz force F = q v × B. From this basic formulation, well-known in physics,
Wakker [2] derives the acceleration a satellite orbiting the primary body in a circular orbit experiences:

aL ≈ −4π ϵ0 g1,0
U∗Rs

M

(
R

r

)3√
µ

r
er (5.5)

where ϵ0 is the permittivity of vacuum (8.8542 · 10−12 F/m); g1,0 is the first Gauss coefficient of the
harmonic expansion for the magnetic field, which permits as a first-order approximation to consider
such a field as a magnetic dipole, and for Jupiter is 4.242 G [27]; U∗ is the electrical potential difference
between the satellite and the surrounding plasma, estimated to be around -100 V for Jupiter [28]; Rs is
the satellite radius;M is the mass of the satellite; R is the planet reference radius for the magnetic field
spherical-harmonics expansion, which for Jupiter is 71,372 km [27]; µ is the gravitational parameter of
the central body; r, finally, is the distance from the center of mass of the planet.

Apart from the assumptions already mentioned, such as the satellite placed in a circular orbit or the
magnetic field approximated as a dipole, the satellite here has also been assumed to be a spherical
conducting body, such that its capacitance is C = −4π ϵ0Rs.

For a more detailed formulation of the Lorentz force, refer to Wakker [2] (Chapter 20.5), and, for the
coefficients of the Jupiter magnetic field, refer to Ness [27].

For what concerns the geometry of the acceleration, it acts in radial direction, as it can be seen in
Equation 5.5. It can be inward or outward pointing depending on the charge of the spacecraft.

Relativistic effects
For high-accuracy applications, the effects of relativity must be regarded, since the Newtonian gravity
formulation does not describe reality with sufficient precision.

Montenbruck, Gill, and Lutze [29] describe the relativistic effects presented below.
While regarding relativity, however, special relativity alone is not sufficient in the vicinity of a massive

body. This happens because it assumes a flat four-dimensional space-time, but massive bodies with
their mass and angular momentum lead to a curvature of the said four-dimensional space-time. General
relativity must then be used, a formulation that lets the space-time to be warped by massive bodies.
The geodesic equation describes the motion of a satellite in such space, and, if expanded to first order,
while also dropping the gravito-magnetic contributions, it leads to the post-Newtonian correction of the
acceleration:

arel = − µ

r2

((
4
µ

c2r
− v2

c2

)
er + 4

v2

c2
(er · ev) ev

)
(5.6)

where er and ev denote the unit position and velocity vectors; v is the circular velocity of the space-
craft; µ is the gravitational constant of the primary body; c is the speed of light. For the current first-order
estimate, the orbit of the satellite has been considered circular, so that Equation 5.6 becomes:

arel = − µ

r2

(
3
v2

c2

)
er (5.7)

Here, also the relativistic terms act radially on the spacecraft.

5.4. Observations
As it could be seen Jupiter’s surroundings is a very complicated environment with many different effects
playing greater or smaller roles, depending on their intensity, or on the considered region.

It comes as consequence that a selection of the most important components of such environment,
those to include in a simulation suite, has to be conducted once the mission trajectory and the problem
are somewhat defined.
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It is for this reason that such selection will be conducted in Chapter 13, where only themost important
components will be selected.



Part II

Tools & Material
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6
Hardware & Software

The current chapter presents the hardware and software tools that will be used throughout the study.

6.1. Hardware
As hardware tools for the project, a consumer-level laptop has been found sufficient. The required
numerical tasks are well within the capabilities of current laptops, thus no need for additional hardware
has been found.

This section aims at describing the hardware used for the project so that it would serve as a future
reference when comparing the required time for running simulations to their complexity (number of
function evaluations, model complexity, etc.).

CPU
The processor is an Intel Core i7 8750H, with a nominal clock speed of 2.20 GHz. As cache memory,
it has 6 slots of 32 kB L1 D-Cache and also for the L1 I-Cache, 6 slots of 256 kB L2 Cache, and 9 MB
of L3 Cache.

RAM memory
The laptop possesses one slot of 16 GB of DDR4 RAM memory, with a 1200 MHz clock speed.

Storage memory
As storage memory, data will be kept in a 500 GB SSD drive. It is estimated that the total volume of
data will remain within the order of 10 GB.

6.2. Software
This section lists the software tools that will be used throughout the study.

6.2.1. Python
Python is a well-known and widely recognized coding language. It is often used in the field of research,
and so will be for the current work. All the following libraries provide an interface to Python, and,
together with its straightforwardness in usage, they make Python the best choice as the programming
language for this project.

6.2.2. TUDAT
As stated in the software website: ”The TU Delft Astrodynamics Toolbox (Tudat) is a powerful set of
libraries that support astrodynamics and space research. Such framework can be used for a wide
variety of purposes, ranging from the study of reentry dynamics to interplanetary missions” [30].

It is particularly suited for the current science case that will be studied and optimized.
Moreover, TUDAT allows for external contributions in the form of c++ or Python code, thus any new

software that will need to be developed can be programmed using one of these two languages. It is
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likely that Python will be preferred over c++, despite being less efficient, in order to keep the schedule
constraints set for the thesis.

Available features
TUDAT is a software that can accurately simulate the Jupiter system and is capable of handling atmo-
spheric entry portions of the trajectory as well. It also includes a wide set of integration and propagation
schemes that are readily available. The USM7 and RKF7(8) propagation and integration schemes,
which have been selected during the literature review and will be presented in Chapter 7, are already
included.

Moreover, a JPL SPICE interface is also available, meaning that data from previously flownmissions
can easily be used in the software and no new tool has to be developed for that.

6.2.3. Pygmo
In addition to performing trajectory simulations, for which TUDAT suits perfectly, the project also fea-
tures an optimization phase.

It is for this purpose that PyGMO will be used. PyGMO is in fact a scientific Python library for mas-
sively parallel optimization and provides a unified collection of optimization algorithms and problems
[31]. It comprehends a wide list of optimization algorithms. Multi-objective Hypervolume-based Ant
Colony Optimizer (MHACO), one of the promising candidates found in the literature review, is present
there, but there are also algorithms capable of handling mixed-integer non-linear problems, an impor-
tant feature that could be needed.



7
Numerical Methods

The following chapter on numerical methods provides an overview of several techniques used in nu-
merical analysis, including root-finding algorithms, interpolation schemes, integration schemes, and
optimization algorithms.

7.1. Root-finding algorithms
Root-finding algorithms are numerical methods used to determine the roots, or zeros, of a function.
These algorithms are commonly used to solve equations that cannot be solved analytically. Root-
finding algorithms include many techniques. Here, regula falsi, bisection, and the secant method will
be presented.

7.1.1. Regula Falsi
The Regula Falsi method, also known as the method of false position, is a numerical method for finding
roots of a function f(x) in a given interval [a, b].

Algorithm
The method starts with two initial guesses, x0 = a and x1 = b, and, given that f(x0) and f(x1) have
opposite signs, it calculates the next approximation, x2, using the formula:

x2 = x1 − f(x1)
x1 − x0

f(x1)− f(x0)
=
x0f(x1)− x1f(x0)

f(x1)− f(x0)
(7.1)

If f(x2) = 0, or f(x2) has a lower value than a set accuracy, then x2 is the root. Otherwise, a new
interval is chosen based on the signs of f(x0), f(x1), and f(x2), and the process is repeated until the
desired accuracy is achieved. The new interval is chosen as follows:

• If f(x0) and f(x2) have opposite signs, the root is in [x0, x2].
• If f(x1) and f(x2) have opposite signs, the root is in [x2, x1].

The Regula Falsi method is a bracketing method, which means that it guarantees convergence to
a root if the initial interval brackets a root and the function is continuous in the interval. However, the
method can be slow to converge, especially if the function is highly nonlinear or has multiple roots in
the interval.

Illinois addition
An improved version of the Regula Falsi method is the Illinois algorithm, which halves the value of the
retained interval boundary edge when the new x2 value has the same sign as the previous one.

x2 =
1
2x0f(x1)− x1f(x0)

1
2f(x1)− f(x0)

or x2 =
x0f(x1)− 1

2x1f(x0)

f(x1)− 1
2f(x0)

(7.2)

The Illinois algorithm can converge faster than the Regula Falsi method, especially when the func-
tion has a steep slope near the root. However, it may also require more function evaluations per
iteration.
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7.1.2. Bisection
The bisection algorithm is a simple and robust numerical method for finding the root of a function f(x)
in a given interval [a, b]. The method starts by evaluating the function at the midpoint c = (a + b)/2 of
the interval. If f(c) = 0, or f(c) has a lower value than a set accuracy, then c is the root. Otherwise, a
new interval is chosen based on the signs of f(a), f(b), and f(c), and the process is repeated until the
desired accuracy is achieved. The new interval is chosen as follows:

• If f(a) and f(c) have opposite signs, the root is in [a, c].
• If f(b) and f(c) have opposite signs, the root is in [c, b].
• Otherwise, c is a stationary point of the function and the method fails to converge.

The bisection algorithm is guaranteed to converge to a root if the function is continuous and changes
sign in the interval [a, b]. However, the method may converge very slowly, especially if the function is
highly nonlinear or if the interval is wide. The convergence rate is proportional to the width of the interval
and decreases by a factor of 2 with each iteration.

7.1.3. Secant method
The secant method is a numerical method for finding the root of a function f(x) that requires only one
initial guess. The method uses a sequence of approximations x0, x1, x2, . . . that are obtained by linearly
interpolating between two previous approximations xn−1 and xn. Specifically, the next approximation
xn+1 is given by:

xn+1 = xn − f(xn)(xn − xn−1)

f(xn)− f(xn−1)
(7.3)

If f(xn+1) = 0, or f(xn+1) has a lower value than a set accuracy, then xn+1 is the root. Otherwise,
the method is repeated until the desired accuracy is achieved. The secant method is a quasi-Newton
method, which means that it uses only function values and does not require the calculation of deriva-
tives. However, the method may converge slowly or fail to converge if the function has a flat slope near
the root or if the initial guess is far from the root. The convergence rate of the method is roughly equal
to the golden ratio (1 +

√
5)/2 ≈ 1.618, which is faster than the linear convergence of the bisection

method but slower than the quadratic convergence of Newton’s method.

7.2. Interpolation
Lagrange interpolation is a method of constructing a polynomial that passes through a set of n data
points (x1, y1), (x2, y2), . . . , (xn, yn). The polynomial has degree at most n− 1, which means that it has
the form:

L(x) =

n∑
i=1

yiℓi(x)

where ℓi(x) is the ith Lagrange basis function, which is defined as:

ℓi(x) =
∏
j ̸=i

x− xj
xi − xj

The Lagrange basis functions have the property that ℓi(xj) = δij , where δij is the Kronecker delta
function. This means that L(xi) = yi for all i, which implies that the polynomial passes through all the
data points.

The accuracy of the Lagrange polynomial depends on the spacing and distribution of the data points.
In general, the polynomial may oscillate or exhibit spurious behavior near the edges of the data range,
especially if the data points are clustered or unequally spaced. In practice, it is common to use an
interpolating polynomial of a lower degree or a smoothing function to avoid these issues.

For the current project, an 8th-order interpolator has been used, which is already available in TUDAT.
It has been found that such an order provides a good trade-off between accuracy and stability.
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7.3. Numerical Integration
The integration scheme is an instrument that will be used to compute the trajectories followed by the
spacecraft. The RKF method is here described.

The Runge-Kutta-Fehlberg (RKF) method is a popular numerical scheme for solving ordinary differ-
ential equations (ODEs) that combines two different orders of the Runge-Kutta method to achieve high
accuracy and efficiency. The method uses an adaptive step size strategy to adjust the integration step
based on the error estimate, which allows it to handle stiff or non-stiff ODEs with varying degrees of
smoothness.

Figure 7.1: Working principle of a Runge-Kutta integration
scheme [32].

The RKF method is based on two sets of coef-
ficients, denoted for example as RKF7 and RKF8
for the RKF7(8) method. The RKF7 coefficients
correspond to a seventh-order scheme, while the
RKF8 coefficients correspond to an eighth-order
scheme. The method works by integrating the
ODE over a single time step h using both the
RKF7 and RKF8 schemes, and then using the dif-
ference between the two solutions to estimate the
local truncation error. If the error is below a spec-
ified tolerance level, the solution is accepted and
the step size is increased. If the error is above
the tolerance level, the solution is rejected and
the step size is decreased. This process is re-
peated until the entire time interval is covered.

The RKF method is particularly useful when
the solution of the ODE changes rapidly in some
regions and slowly in others. By adjusting the
step size in each region accordingly, the method
can achieve high accuracy without requiring a
large number of function evaluations. However,
the method may be less efficient than other meth-
ods for ODEs that have a relatively smooth solu-
tion or do not require high accuracy.

The selected case study is particularly suited for RKF methods since it features dynamics that
change rapidly in some regions and slowly in others. In particular, the RKF7(8) method has been
selected as an integration scheme already during the literature review.

7.4. Propagation scheme
The choice of the propagation scheme shapes the equations of motion, which will take different forms
based on the variables that will be used. As propagation scheme, the Unified State Model with quater-
nions USM7 has been chosen.

The Unified State Model is a singularity-free representation of the equations of motion. This pecu-
liarity is achieved by defining a satellite’s motion in a three-dimensional space with seven parameters
instead of six.

The USM7 version uses quaternions as well as the velocity hodograph to define the state of a
spacecraft, and its main advantage as said is the absence of singularities regarding the 3D motion
of the spacecraft. One last singularity remains, that is the one reached when approaching the limiting
true anomaly in hyperbolic orbits. Another drawback consists of the numerical integration of quaternion
elements that causes noise and deviations of norm; an issue whose first-order effect can be removed,
but still persists [22].



8
Verification & Validation Material

Verification and validation tools and data are crucial for ensuring the reliability of aerocapture trajectory
studies at Jupiter. This chapter will explore the methods and tools used to verify and validate spacecraft
trajectories during high-speed atmospheric entry and braking maneuvers, as well as the environment
of Jupiter in general.

8.1. Verification
The verification tools for the aerocapture problem are presented here.

8.1.1. GTOPX
Stemming from the well-known, but no longer maintained, GTOP database published in 2005 by ESA,
the Global Trajectory Optimisation Problem with eXtension (GTOPX) database adds new problems to
the initial GTOP, precisely problems featuring mixed-integer and multi-objective properties [33]. The
material regarding the GTOPX database can be found at MIDACO-SOLVER [34].

Since the selected science case can be modeled as a multi-objective problem that also includes
integer and floating-point decision variables, using one of the mixed-integer and multi-objective prob-
lems provided by this extended GTOP database would result in a reliable benchmark of the selected
study case.

8.1.2. Numerical simulations
Numerical simulations of aerocapture at Jupiter have the potential to serve as a powerful verification
tool for analytical models of aerocapture. Analytical models use simplified equations and assumptions
to predict the behavior of a spacecraft during aerocapture, but they may not capture the full complexity
of the interaction between the spacecraft and the planet’s atmosphere. Numerical simulations, on
the other hand, use computer models to solve the full set of equations governing the motion of the
spacecraft and its interaction with the atmosphere, expected to provide a more accurate and detailed
picture of the process. By comparing the results of numerical simulations with those predicted by
analytical models, a better understanding of the strengths and limitations of each approach can be
gained and the current understanding of the aerocapture process be refined.

8.2. Validation
The validation material for Jupiter’s atmosphere and environment, coming from the Galileo and Juno
missions, is presented here.

8.2.1. Galileo
The available validation data from the Galileo mission consists of trajectory data, SPICE kernels, and
reconstructed heat loads data.
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Trajectory data
The available validation material from the Galileo mission comes from the reconstructed in-flight data
available in Table B.2 in the appendix. Here, values for the trajectory geometry such as the probe
altitude, velocity, and flight path angle, are displayed with respect to the elapsed time. Other probe
parameters are presented as well, such as its mass and diameter profiles and its CD coefficient during
the entry. Moreover, flowfield parameters such as the Mach, Reynolds, and Knudsen numbers are also
presented.

SPICE kernels
NASA’s SPICE kernels are sets of data files that contain information about the geometry, position, and
movement of celestial bodies. Some SPICE kernels for the Galileo mission, which explored Jupiter
and its moons in the 1990s, are available as validation material [35]. These kernels can be used for
testing the accuracy of simulation models of Jupiter’s atmosphere. By comparing the output of such
models with the data contained in the SPICE kernels, reliability and accuracy of these models can be
ensured. This is particularly important in fields such as space exploration, where even small errors in
calculations can have significant consequences on the final trajectory.

The curators of this library for the Galileo mission however warn that ”this collection is still being
assembled and validated, after which it will be put through PDS peer review. It is not yet complete.”1

Such data set could still be used, but its validity alone would be limited.

Heat loads
Heat loads data has been reconstructed by Park [37], and their steady-state solutions for the stagnation
point can be found in Table 10.4.

The altitude range is between 100 and 200 km, where the majority of the ablation occurred. These
results are the closest match between flight and simulation data for heat fluxes.

8.2.2. Juno
The validation data taken from NASA’s SPICE kernels of the Juno mission provides crucial information
for testing and improving simulation models for the spacecraft’s arrival trajectory.

SPICE kernels
Real orbital data about the Juno probe can be found at NASA SPICE Kernels [19]; data that can be
used to verify the accuracy of the physical model, at least partially, by simulating the trajectory of Juno
with the given model and comparing the trajectory with Juno orbital data. The impact of the Jovian
atmosphere on a spacecraft trajectory, for example, cannot be validated with such data.

1PDS stands for Planetary Data System; it is a long-term archive of digital data products returned from NASA’s planetary
missions [36].
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9
Problem Definition

Themathematical and logical definition of the problem is a necessary step for its solution. In this chapter,
the trajectory geometry, the spacecraft properties, and the problem requirements will be presented.
Additionally, an assessment of some requirements will be performed to verify that the initial assumptions
hold under the problem’s conditions.

9.1. Trajectory geometry and configuration
The trajectory that will be investigated will start at the edge of Jupiter’s sphere of influence (SoI), so
it will comprehend only the approach phase of a transfer from Earth to Jupiter. The initial position
and velocity will be chosen by assuming an interplanetary Hohmann transfer that precedes Jupiter’s
approach phase.

The possibility of performing one flyby during the approach phase is considered, and after that, the
spacecraft will perform an aerocapture entry at Jupiter’s atmosphere with the scope of entering a bound
orbit around the planet.

After the aerocapture phase, there is the possibility of performing one additional flyby, which will
allow the spacecraft to raise its orbital pericenter and avoid a second atmospheric entry into the planet’s
atmosphere.

It is important to note that the trajectory will ideally be flown without any need for orbital maneuvers
that require propellant. Later in this chapter it will be verified whether this assumption holds or not.

9.1.1. Flybys
A flyby is an orbital maneuver that consists of skimming over a planet or a moon, to change the shape
of the original orbit by harnessing the gravitational pull of such body. A more detailed description of the
flyby effect is given in Chapter 2.

Regarding the Jupiter system, flybys can be performed at the Galilean moons in order to reduce the
orbital energy of the spacecraft, but the number of flybys that can be performed is limited. The more
flybys are planned, the fewer times the favorable moon configuration would occur. For this reason,
doing more than a double flyby would result in too few occurrences, thus posing a severe constraint on
the launch time of the mission. If a double flyby is performed, it would be in the form of one pre- and
one post-aerocapture flyby.

9.1.2. Areocapture
Aerocapture is a spaceflight maneuver that uses a planet’s atmosphere to slow down a spacecraft and
put it into an orbit around the planet. This technique involves using a combination of drag and heat
generated by atmospheric friction and air compression to decelerate the spacecraft.

Thermal loads
The thermal loads a spacecraft has to withstand are a critical part of the aerocapture phase, thus their
correct evaluation is crucial. A small survey on thermal loads will be done in Chapter 10, where the
most accurate ways to evaluate them will be presented.
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Theoretical corridor width
To perform aerocapture, the entry vehicle must enter the atmosphere within the aerocapture corridor
bounded by the minimum and maximum acceptable Entry Flight-Path Angles (EFPAs) as shown in
Figure 9.1. The minimum EFPA γmin (undershoot limit) is the steepest EFPA at which the vehicle
can enter and achieve the desired atmospheric exit conditions to achieve the target apoapsis. The
maximum EFPA γmax (overshoot limit) is the shallowest allowable for the vehicle to achieve the desired
orbit upon atmospheric exit. The difference between the two bounding EFPAs is termed the theoretical
corridor width (TCW), and it is a measure of the vehicle control authority [38].

Figure 9.1: Theoretical corridor width (TCW) [38, Figure 2].

Feasibility
The entry TCW for a Jupiter atmospheric entry has been found to be of 0.4°[38] for a lift-modulated
entry. The results of such a narrow entry corridor have the same assumptions as the current study,
thus they can be considered to be valid results to be applied here as well.

Figure 9.2: Two aerodynamic control approaches for an aerocapture
vehicle: lift modulation and drag modulation; the dashed line indicates the

atmospheric interface [39, Figure 1].

Figure 9.3 shows the feasibility re-
gions for lift and drag modulation aero-
capture (for a visual depiction of those
entry modulation techniques, see Fig-
ure 9.2). A primary observation is that
drag modulation at Jupiter is unfeasi-
ble in the near future, as it requires
too high ballistic coefficient ratios [38],
whereas lift modulation can still be per-
formed, although the presented sce-
nario is far from optimal because of the
narrow TCW.

As can be seen, the most critical
constraint comes from themaximum al-
lowable peak heat flux qw (q̇w in the
figure), whereas the limits on the maxi-
mum g-loads do not limit the feasibility
space. The peak heat flux constraint
selected by Girija et al. [38] is of 12000
W/cm2, but for the current study it is set
to 5000W/cm2, thus it can be expected
that the feasibility region is narrower than what Figure 9.3 shows.

The arrival V∞ range selected for the optimization in Chapter 15 is between 5 and 6 km/s (V∞ = 5.6
km/s for a Hohmann transfer), thus well within the possible constraint line of 5000 W/cm2 peak heat
flux.
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Figure 9.3: Aerocapture feasibility charts for Jupiter [38, Figure 9]. The green region indicates the feasible (L/D, V∞)
combination for lift-modulation aerocapture with a TCW limit of 0.5 deg. With a required TCW of 0.2 deg, the yellow region also
becomes feasible. The same reasoning applies to the drag-modulation aerocapture. Here, β2/β1 indicates the ratio between

the minimum and maximum achievable ballistic coefficients (see Figure 9.2).

9.1.3. Conventional-burn scenario
In a parallel scenario to an aerocapture maneuver, used for reference purposes here, a spacecraft
would perform a similar trajectory, but instead of entering the planet’s atmosphere, it would perform an
insertion burn that would put it in a closed orbit around Jupiter. The insertion burn would happen at
approximately 2000 km pericenter altitude. Unlike an aerocapture maneuver, which uses the planet’s
atmosphere to slow down and capture the spacecraft into orbit, an insertion burn relies on the space-
craft’s propulsion system to slow down and achieve the desired orbit. This method requires propellant
to be carried on board compared to an aerocapture maneuver, but it offers more precise control over
the spacecraft’s trajectory and avoids potential risks associated with the atmospheric entry. Addition-
ally, an insertion burn can be used for missions that do not require the spacecraft to enter the planet’s
atmosphere, such as remote sensing or communication satellites.

The mass fraction of the propellant required for the insertion burn would be calculated by using the
following formula, which is a readaptation of the rocket equation taken from Girija et al. [38]:

f prop = 1.12

(
1− exp

[
−∆VOI
Ispg0

])
(9.1)

where 1.12 is an assumed tankage factor to account for the structural mass of the propulsion system
(the original value for the rocket equation is 1), ∆VOI is the orbit insertion ∆V , Isp is the propulsion
system specific impulse, and g0 = 9.80665m/s2 is the standard free-fall acceleration. The orbit insertion
∆V is computed by considering the ∆V needed to achieve a final orbit with 0.98 eccentricity.

An Isp = 320 s will be used, as Girija et al. [38], assuming a conventional bipropellant engine.

9.1.4. Comparison rationale
The comparison, between the classical approach of using an impulsive manevuer and the aerocapture
technique, will feature both quantitative and qualitative indicators:

• Technique-related deliverable payload mass fraction (payload is intended as any other subsystem
that is not related to the orbit insertion - instruments + bus)

• Spacecraft shape configuration constraints
• Technique-related risks (flyby constraints, radiation...)

They will be used later in the final assessment.
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Payload mass calculation
To calculate the payload mass fraction each technique can deliver, the required mass for orbit insertion
each technique uses has to be subtracted from the spacecraft’s total mass. It is important to note that
for this study ”payload mass” indicates the mass of the payload but also the mass of the spacecraft’s
bus, minus the mass of the orbital insertion subsystem. The payload mass fraction calculation has been
taken from Girija et al. [38]. The total mass can be expressed in the following way for the aerocapture
scenario:

MTotal =MESS +MTPS +MP (9.2)

whereMTPS is the TPS mass,MESS is the Entry Support System (ESS) mass 1, andMP is the useful
payload mass, and for a classical insertion burn scenario:

MTotal =Mprop +MP (9.3)

whereMprop is the propellant mass.
To calculate the payload mass fraction each technique can deliver, the following equations will be

used:

fP, prop = 1− f prop (9.4)

where fP, prop =MP /MTotal and f prop =Mprop/MTotal ;

fP,ac = 1− fESS − fTPS (9.5)

where fP, ac = MP /MTotal , entry support systems mass fraction fESS = MESS/MTotal , and TPS mass
fraction fTPS =MTPS /MTotal . Note that fESS in Equation 9.5 depends upon the assumption of including
or not a GNC system in the spacecraft. If included, it can be assumed that such a fraction would be
fESS ∼ 0.23 [38], resembling that of the Mars Science Laboratory.

9.2. Spacecraft Properties
The main properties of a hypothetical spacecraft that would fly within Jupiter’s atmosphere are here
presented.

General properties
The spacecraft’s mass is assumed to be about 2000 kg. Its area will be 5 m2, and its nose radius will
be that of the Galileo probe, which is 0.222 m.

Aerodynamics
The shape of the entry capsule will resemble that of the Galileo probe. It will be shaped to have a 45-
degree inclined frustum, a body radius2 of 1.26 m. Refer to Figure 4.1 for its full shape (cfr. Figure 9.3).

As drag and lift coefficients, values of 1.2 and 0.6 have been chosen. They would result in a lift-to-
drag ratio of 0.5, which would be expected for an aerocapture entry at Jupiter.

Thermal Protection Subsystem
As Thermal Protection Subsystem (TPS), the Heatshield for Extreme Entry Environment Technology
(HEEET) has been selected, due to its low mass and suitability for atmospheric entry at gas giants [40].

Structure and radiation shielding
For shielding, the spacecraft will feature a 1-cm thick outer shield of Aluminum as the Europa Clipper
mission would [41]. Expressed in g/cm2, the shield thickness would be 2.7 g/cm2, since the density of
Aluminum is 2.7 g/cm3.

1The ESS includes aeroshell structure, guidance and navigation systems, and other supporting equipment that is not consid-
ered useful payload delivered to orbit [38].

2The body radius for the current project has been used as nose radius, as the heat flux validation process has been brought
out with Galileo’s body radius. Investigating the reason behind the discrepancies that arise when using the true nose radius is
beyond the scope of the project.
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9.3. Problem Requirements
The requirements of the problem, as well as the constraints, are presented here.

9.3.1. Problem functional requirements
The following requirements define what the spacecraft has to do. Due to the non-specific nature of the
mission under study, only few functional requirements are necessary.

Capture trajectory
The spacecraft has to enter a closed and stable orbit around Jupiter.

Final orbit
The final orbit must allow rather frequent close encounters with Jupiter but it also must avoid spending
large amounts of time in high-radiation areas.

9.3.2. Problem non-functional requirements
The following requirements describe the general properties of the mission.

State position error
The state position error can vary along the trajectory since different phases of the mission require
different precision in position. The state position error would depend on the navigation accuracy of
the spacecraft during the trajectory, thus depend on the onboard instrumentation. As a reference, the
Juno mission to Jupiter has been taken, since it flew an approach trajectory comparable to that of the
following problem. It is set as follows:

• The state position accuracy has to be of the order of 100 km during the arrival trajectory.
• The state position accuracy has to be of the order of 10 km during the flybys.
• At atmospheric entry, the position accuracy has to be of the order of 10 km.
• During the aerocapture phase, the position accuracy has to be of the order of 100 km.
• After the aerocapture phase, the position accuracy has to be of the order of 50 km.

The accuracy requirements have been set according to the results of the Juno mission. The ground-
based radiometric position error of the Juno mission has been taken as the primary reference. During
the beginning of its approach phase, the position error was close to 300 km. It then rapidly came down
to 100 km as the spacecraft came closer to Jupiter, and it remained approximately constant until some
weeks prior to the insertion burn when it came down to 50 km. By using optical navigation, as proposed
by Bradley et al. [18], the error can be brought down to a few kilometers during the last week prior to
the insertion burn. During the insertion burn, the position error rose to 100 km, to decrease again to
50 km in the post-burn orbit. During and after atmospheric entry similar values are expected. All such
information is displayed in Figure 9.4.

For what concerns flybys, due to the fast dynamics and the high sensitivity of those phases, the
position accuracy that is required for the atmospheric entry has been selected there as well.

State velocity error
The state velocity error is as well a requirement with different thresholds along the trajectory. The state
velocity error would as well as the position error depend on the navigation accuracy of the spacecraft
during the trajectory, thus depend on the onboard instrumentation. As a reference, the Juno mission
to Jupiter has been taken here as well.

It is set as follows:

• The state velocity accuracy along the arrival trajectory has to be of the order of 0.1 m/s
• The state velocity accuracy has to be of the order of 10 m/s during the flybys.
• At atmospheric entry, the velocity accuracy has to be of the order of 0.1 m/s
• The state velocity accuracy has to be of the order of 10 m/s during aerocapture
• The state velocity accuracy has to be of the order of 0.1 m/s after aerocapture
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Figure 9.4: Current state uncertainty for the Juno approach trajectory. In red (the most accurate profile) is shown the actual
performance of the ground-based radiometric-only solution from the as-flown trajectory. The other trends indicate the

performance of the optical-only solutions, using different kinds of optical cameras [18, Figure 3].

The ground-based radiometric measurements of the Juno mission have been taken as the primary
reference for the velocity as well, again referring to Figure 9.4. During the beginning of the Juno
approach phase, the error in velocity was close to 3 m/s. Along the trajectory, it came down to values
around 0.1 m/s, as the spacecraft came closer to Jupiter. It then slowly increased when coming closer
to the insertion burn, but it still remained within the 0.1 m/s level.

During the insertion maneuver, the velocity error rose to 10 m/s, then decreased again to less
than 0.1 m/s. Similar values for an aerocapture entry can be expected, thus the velocity accuracy
requirement has been set accordingly.

For flybys the same accuracy set for the atmospheric entry has been selected, due to the fast
dynamics of such phases which would make it difficult to have highly accurate measurements of the
velocity.

Flight path angle at atmosphere entry interface
• The flight path angle must be accurate within ±0.1°

With a theoretical entry corridor width of 0.4°[38], the accuracy of the flight path angle at atmospheric
entry is crucial for the success of an aerocapture mission at Jupiter.

Such high accuracy has been achieved for entry missions at Earth and Mars atmospheres, but for
conceptual atmospheric entry trajectories at the gas giants (and Titan), the entry accuracy has been
estimated to be about 25% of the entry corridor width, which in those cases was about 2°[38]. There is
no analogue study about a Jupiter entry, but it can be assumed that the accuracy would be comparable
to that achievable for other gas giants. Setting the required accuracy to ± 0.1°, that is 25% of the entry
corridor width, makes it a reasonable guess, although it can be considered quite optimistic.

Required lift-to-drag ratio
• L/D has to be between 0.5 and 1.5.

Previous aerocapture missions featured vehicles with lift-to-drag ratios ranging from 0.5 to 1.5 [42].
Low lift-to-drag ratios (values lower than 0.5) result in unfeasible trajectories for Jupiter [38], whereas
high ratios (higher than 1.5) are difficult to achieve with blunt bodies. The selected interval is hence
particularly suited for the current mission.
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CPU time per simulation
• The CPU time per simulation must not exceed 0.2 s.

A CPU time per simulation that meets this requirement would allow a batch of 30000 simulations to take
1h to compute. With such speed, enough flexibility would be guaranteed in running several simulation
batches, even for debugging, without big losses of time that would result in a schedule delay.

9.3.3. Problem Constraints
Maximum peak heat flux

• The total wall incident heat flux must be lower than 5000 W/cm2

which is the threshold above which the HEEET heatshield can no longer be used minus the maximum
allowed uncertainty on the heat flux calculation. The HEEET is a heatshield specifically designed
(Technology Readiness Level: 6) for atmospheric entry at gas giants [40], and is the best candidate for
such entry, as will be discussed in Chapter 10.

Maximum aerodynamic acceleration
• The maximum aerodynamic acceleration experienced by the spacecraft must be lower than 30
gE [38].

Minimum and maximum Jupiter distance
The arrival trajectory must remain contained within the sphere of influence of Jupiter, to avoid gravita-
tional perturbations that might alter completely the trajectory geometry.

• The maximum distance from Jupiter has to be lower than 48.2 million km.

The spacecraft also cannot dive too deeply into Jupiter’s atmosphere, otherwise it would experience
unsustainable aerothermodynamic loads. As a comparison, the Galileo probe, which performed a
ballistic entry at Jupiter, failed at an altitude of -35 km (with respect to the 1-bar pressure level). The
minimum distance from Jupiter can be set to be higher than the 1-bar pressure level, which corresponds
to the commonly accepted radius of Jupiter.

• The minimum distance from Jupiter’s centre of mass has to be higher than 69946 km.

Minimum distance from moons
For the spacecraft not to collide with the Galilean Moons, it must keep a safe distance from them. A
safety altitude for flybys at these moons is set to 100 km, which allows the spacecraft to avoid many of
the risks connected to low-altitude flybys. The spacecraft must keep a distance from the moons higher
than the following:

• rI > 1921.6 km rE > 1660.8 km rG > 2734.1 km rC > 2510.3 km.

The thresholds correspond to the radius of the moons with the safety altitude included. Subscripts I,
E, G, C indicate the spacecraft distance respectively from Io, Europa, Ganymede, and Callisto.

Final orbit eccentricity
• The eccentricity of the final orbit must be lower than 0.985

This is approximately the current eccentricity of the Juno spacecraft. It was initially meant to be inserted
in a less eccentric orbit, but due to a malfunction in the propulsion system, the spacecraft has been kept
to its initial orbit of 53 days period. An orbital eccentricity that would go above this level would result in
an orbit particularly sensitive to environmental perturbations, thus very unstable. It could even result
in the spacecraft being ejected outside the Jupiter system, in the unfortunate case of a gravitational
interaction with one of the main moons of Jupiter.
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Final orbit pericenter
• The pericenter altitude of the final orbit must be higher than or equal to 1000 km

To avoid a second deep atmospheric entry of the spacecraft, the final orbit pericenter must be adjusted
to meet this requirement. At this altitude, the magnitude of the drag perturbation is close to that of the
moon Io, thus negligible compared to the gravitational forces of Jupiter.

The drag force could however be powerful enough to effectively perturb the spacecraft after several
repeated passages. The effect would be an eccentricity reduction, thus it would be actually optimal at
the beginning of the mission to better stabilize the orbit. It is then considered a desired effect for the
purpose of this study. A detailed mission analysis would have to consider whether and for how long
this aerobraking effect could or should be used.

Interplanetary arrival velocity direction
• The Sun-asymptote phase angle must fall within 70-110 degrees.

The sun-asymptote phase angle indicated the interplanetary direction from which the spacecraft arrives
at Jupiter. The arrival phase angle of an optimal Hohmann transfer would be 90 degrees. Small devia-
tions are accepted since the spacecraft could follow a faster, or propellant-saving, trajectory that would
result in a slightly smaller or larger angle at arrival. Deviations that do not comply with the requirement
are most likely the results of unfeasible transfer trajectories, thus will not be considered.

9.4. Non-functional Requirements Validity Assessment
Since the problem assumes that no corrective maneuvers are needed along the approach phase, a
sensitivity study on some non-functional requirements is performed to verify this assumption.

For such analysis, simulations were run in batches of 100s, and the selected parameter of the
analysis has been randomly perturbed by following a Gaussian distribution. The standard deviations
(1σ) of the distributions have been set so that an interval of 3σ would encompass 99.7% of the admis-
sible perturbation cases. A 3σ interval would encompass the entire uncertainty band for a selected
requirement. Different requirements that regarded just some trajectory parts were assessed by just
propagating those portions of the trajectory. This allowed for a more in-depth analysis of the single
parts of the trajectory for such cases.

A full-trajectory analysis would return more complete and continuous results, but for the purpose of
the current work it has been deemed unnecessary.

As a note, the Mersenne Twister has been used as the core module for the random generation of
numbers [43]. It is available in Python in the ”random” module. The nominal seed number that has
been used is 50, but results have been tested with other numbers such as 100, 150, and 200.

9.4.1. State position error assessment
The requirements for the position have been set based on the navigation accuracy of the Juno space-
craft. To verify their validity under the assumption of no corrective maneuvers, the sensitivity of the
problem to perturbations in position at different stages of the trajectory has been assessed.

For this case, the initial position of the propagation has been randomly perturbed in the RSW frame
(see Chapter 5 for a description of the RSW frame) for each simulation. Both single-axis and multiple-
axis uncoupled and coupled perturbed simulations were performed, but only the most remarkable re-
sults are shown here.

The choice to perturb the initial position of the trajectory arc has been made because it is the state,
among all those along the arc, that would lead to the biggest errors at the end of the propagation.
Errors applied early in the propagation have more time to build up and get bigger, thus the earlier a
perturbation is applied, the bigger the final error is going to be.

Arrival arc position accuracy
Here the position accuracy for the arrival arc, which goes from the beginning of the trajectory until the
atmospheric entry, will be analyzed. No flybys are considered here.

For perturbation in all three R, S, and W axes, the Gaussian distribution of the initial position pertur-
bation has been set with a standard deviation (σ) of 100 km so that an interval of 3σ would be equal to
300 km. This would be in accordance with the accuracy requirement of ±300 km position accuracy.
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Figure 9.5: The RSW error at atmospheric entry (tE ) is shown in relation to
the position perturbation of the initial state (t0). Perturbations were applied

along all three R, S, and W axes. The W axis shows an independent
behaviour from the other two, meaning that it would only depend on an initial

perturbation on that sole axis.

Such interval has been seen to re-
sult in position errors up to 800 km in
each direction at the atmospheric entry
interface (tE). Specifically, the great-
est magnitude results along the R axis,
whereas for the S andW axes, the final
errors do not exceed 200 km. Velocity
errors remained instead rather small,
in fact, they did not exceed 3 m/s in
any direction. Here again, the greatest
magnitude resulted along the R axis.
Results are shown in Figure 9.5.

The final position errors suggest
that the required position accuracy of
100 km during the approach phase
cannot be respected without the need
for a GNC system, or by increasing
our knowledge of the initial state accu-
racy. In fact, with an accuracy on the
initial position of approximately 50 km
in each direction, the 100-km position
accuracy requirement for the approach
phase would be met without any need
for a GNC system.

Perturbations of the state position
at the beginning of the trajectory do not
lead to considerable variations in the
entry flight path angle. The flight path
angle in fact hardly changes, with varia-
tions of the order of 10-5 degrees. The
airspeed, on the other hand, sees a
variation of the order of 100 m/s (the
airspeed depends also on the atmo-
spheric region the spacecraft flies in).
The effect of the initial position pertur-
bation on these quantities can be seen
in Figure A.1 in the appendix. The re-
ported results are for perturbations sin-
gularly applied at each axis for differ-
ent runs, thus a different case from that
one of Figure 9.5. The individual ef-
fects have been preferred because of
the predominance of the perturbations
on the R axis, which make the effects
of those on the S and W axes indistin-
guishable.

Having an airspeed with this great uncertainty is again another sign that such large errors in the
initial position either have to be reduced or a GNC system has to be added to the equation.

Flyby phase position accuracy
The position error during flybys will depend on if and how they will be implemented. The following
requirement of 10 km for each RSW direction in position is considered a first guess that resembles the
accuracy for Juno during the insertion burn [18]. As said in Chapter 11, flybys are not part of the final
problem, leaving this requirement to be evaluated as a recommendation.
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Entry phase position accuracy
The position accuracy for the aerocapture phase at Jupiter has to be up to 100 km in each direction,
but the uncertainty at the atmospheric entry interface has to be lower than 10 km in each direction.

The position accuracy at the atmospheric entry interface at Jupiter is clearly crucial for defining the
quality of the aerocapture phase. A latitude/longitude change in entry position would translate into a
different airspeed experienced by the capsule, which is a driving factor for aerocapture. This would
eventually translate into a different atmospheric entry geometry, which would result in great differences
in the final orbit, and entry aerothermal loads.

The entry position has been perturbed along the R, S, and W axes of the RSW frame, following a
Gaussian distribution with a 3-σ interval of 10 km.

Results coming from such propagations show that the effects of perturbations along the R and S
axes are strongly coupled, hence the final results show quite some noise regarding the trends in position
and velocity error coming from these perturbations. Single-axis perturbations were also performed, and
their results have been shown to closely match those of the combined R, S, andW perturbations, except
for the absence of any noise in the results, which makes them easier to investigate. For this reason,
the uncoupled effects on the R, S, and W axes have been presented in this case.

It can be seen in Figure 9.6 how perturbations on the initial position up to 10 km lead to position
errors at the atmospheric exit that remain within 10-20 km. The altitude accuracy (R axis) is sensitive
mostly to initial changes in the R axis, although it remains within a 5 km error. The entry trajectory, in
general, is primarily sensitive along its S axis. Errors in the along-track direction (S axis) go easily up
to 20 km for a perturbation in the R or S axes.

Figure 9.6: Resulting error in the R, S, and W components at the atmospheric exit epoch (tF ), when a single perturbation on
the R, S, or W axis is applied (figures from left to right) at atmospheric entry (tE ). The top line shows the effect of the

perturbation on the final position error (tF ), whereas the bottom line is for the final velocity error (tF ). Each figure shows the
effect of the single perturbation on the simulations, thus their effects are evaluated separately and not coupled.

For what concerns the velocity error, Figure 9.6 shows how a perturbation in position along the R
axis can lead to velocity errors up to 150 m/s in the along-track direction (S axis), which corresponds
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to a direct change in velocity magnitude. A perturbation along this axis leads to the largest error in
velocity, but final errors up to 50 m/s are present even for an initial perturbation along the S axis (at tE).
On the other hand, a perturbation in the across-track direction (W axis) leads to a negligible error in
velocity.

For what concerns the error on peak heat flux (qw) and total heat load (Qw), an RSW position error at
atmospheric entry would result in a peak qw error of 500 W/m2 and aQw error of 60 MJ/m2 (Figure A.2).
A different trajectory would mean different magnitudes of thermal loads, an aspect that in some cases
could determine the success or failure of such a mission.

Post-aerocapture phase position accuracy
The required position accuracy for the post-aerocapture orbit is 50 km in each direction. Results from
the atmospheric entry assessment showed that the accuracy at the atmospheric exit was about 20 km
for a 10 km error at the entry interface. The orbit that follows from that is expected to be very sensitive
to the entry conditions, hence its comparison to those.

The final orbit position accuracy has been evaluated by considering a position perturbation (3-σ
interval of 10 km) at the atmospheric entry interface.

As presented in Figure 9.7, the final position accuracy exceeds the requirement by multiple orders
of magnitude, since even small changes in position at the beginning of the atmospheric entry can result
in million-km differences in the final orbit.

These results show how critical a GNC system would be during atmospheric entry. The resulting
orbit would be too sensitive for a mission at Jupiter to be successful with no GNC system.

Figure 9.7: Resulting error in the R, S, and W components at the final orbit apocenter (t1), when a single perturbation on the R,
S, or W axis is applied (figures from left to right) at atmospheric entry (tE ). The top line shows the effect of the perturbation on
the final position error (t1), whereas the bottom line is for the final velocity error (t1). Each figure shows the effect of the single

perturbation on the simulations, thus their effects are evaluated separately and not coupled.
The W axis is here as well uncoupled from the other two, with much lower effects on position and velocity errors.
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Another parameter that highlights how different the final orbit would be is its eccentricity. The ec-
centricity change resulting from these initial perturbations would be up to 0.01 (Figure A.3). Its value
could seem rather small, however, for a nominal orbit that could have a 0.98 eccentricity even a 0.01
change could potentially result in a non-capture state, thus resulting in mission failure.

9.4.2. State velocity error assessment
The requirements for the velocity have been set as well based on the navigation accuracy of the Juno
spacecraft. To verify their validity under the assumption of no corrective maneuvers, the sensitivity of
the problem to perturbations in velocity at different stages of the trajectory has been assessed.

For this case as well, the initial velocity of the propagation has been randomly perturbed in the
RSW frame (see Chapter 5 for a description of the RSW frame) for each simulation. Both single-axis
and multiple-axis uncoupled and coupled perturbed simulations were performed. The most remarkable
results from those are shown here.

Arrival arc velocity accuracy
Here the velocity accuracy for the arrival arc, which goes from the entry of the SoI until the atmospheric
entry, will be analyzed. No flybys are considered.

For coupled perturbations in all three R, S, and W axes, the Gaussian distribution of the initial
velocity perturbation has been set with a standard deviation (1σ) of 1 m/s so that an interval of 3σ
would be equal to 3 m/s. This would be in accordance with the accuracy requirement of ±3 m/s initial
state velocity accuracy.

Figure 9.8: The RSW error at atmospheric entry (tE ) is shown in relation to
the velocity perturbation of the initial state (t0). Perturbations were applied

along all three R, S, and W axes. The W axis shows an independent
behaviour from the other two, meaning that it would only depend on an initial

perturbation on that sole axis.

Such an interval has been seen to
result in velocity errors up to 150 m/s in
each direction at the atmospheric entry
interface (tE). Specifically, the great-
est magnitude results along the R axis,
whereas for the S and W axes, the fi-
nal errors do not exceed 50 m/s. Po-
sition errors were strongly affected, as
expected. They reached values up to
40000 km. Here again, the greatest
magnitude resulted along the R axis.
Results are shown in Figure 9.8.

The final velocity errors suggest
that the required velocity accuracy of
0.1 m/s during the approach phase
cannot be respected without the need
for a GNC system, or by increasing
our knowledge of the initial state accu-
racy. In fact, with an accuracy of ap-
proximately 3 m/s in each direction, the
0.1-m/s velocity accuracy requirement
for the approach phase would be met
without any need for a GNC system.

Moreover, perturbations of the state
velocity at the beginning of the trajec-
tory lead to considerable variations in
the airspeed. The flight path angle
varies up to 0.002 degrees, a value that
cannot be completely ignored, but that
is still below the required entry flight
path angle margins. The airspeed, on
the other hand, sees a variation up to 8
km/s, which exceeds the requirement
by multiple levels of magnitude. The
effect of the initial position perturbation
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on these quantities can be seen in Fig-
ure A.4 in the appendix. The reported
results are for perturbations singularly applied at each axis for different runs, thus a different case from
that one of Figure 9.8. The individual effects have been preferred because of the predominance of the
perturbations on the R axis, which make the effects of those on the S and W axes indistinguishable.

Due to the large position and velocity errors stemming from the initial state velocity uncertainty, it is
clear that such large errors in the initial velocity either have to be reduced, or a GNC system has to be
added to the equation.

Flyby phase velocity accuracy
The velocity error during flybys will depend on if and how they will be implemented. The following
requirement of 10 m/s for each RSW direction in velocity is considered a first guess that resembles the
accuracy for Juno during the insertion burn [18]. As will be said in Chapter 11, flybys are not part of the
final problem, leaving this requirement to be evaluated as a recommendation.

Entry phase velocity accuracy
The velocity accuracy for the aerocapture phase at Jupiter has to be up to 10 m/s in each direction, but
the uncertainty at the atmospheric entry interface has to be lower than 0.1 m/s in each direction.

The velocity accuracy at the atmospheric entry interface at Jupiter is another important parameter
that drives the success of the mission. A change in the magnitude or direction of the velocity would
translate into a different aerocapture trajectory, which would result in great differences in the final orbit,
and entry aerothermal loads. The entry velocity has been then perturbed along the R, S, and W axes
of the RSW frame, following a Gaussian distribution with a 3-σ interval of 0.1 m/s.

Figure 9.9 shows how perturbations on the initial velocity up to 0.1 m/s lead to velocity errors at the
atmospheric exit that remain within the order of 0.1 m/s. The entry trajectory, in general, is primarily
sensitive along its S axis. Errors in this along-track direction go easily up to 0.2 m/s for a perturbation
at the entry interface.
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Figure 9.9: Resulting error in the R, S, and W components at the atmospheric exit epoch (tF ), when a velocity perturbation is
applied at atmospheric entry (tE ). The top line shows the effect of the perturbation on the final position error (tF ), whereas the

bottom line is for the final velocity error (tF ).

For what concerns the position error, Figure 9.9 shows how a perturbation in velocity of such mag-
nitude does not produce considerable errors in position. Final errors are at most a few tens of meters
and thus can be considered negligible.

For what concerns the peak heat flux (qw) and total heat load (Qw), such parameters hardly change
for a velocity perturbation of 0.1 m/s, thus a trajectory with this uncertainty at the atmospheric entry
would experience thermal loads comparable to the nominal one.

Post-aerocapture phase velocity accuracy
The required velocity accuracy for the post-aerocapture orbit is 0.1 m/s in each direction. Results from
the atmospheric entry assessment showed that the accuracy at the atmospheric exit was about better
or equal to 0.2 m/s for a 0.1 m/s error at the entry interface. The orbit that follows from that is expected
to be very sensitive to the entry conditions, hence its comparison to those is made again.

The final orbit position accuracy has been evaluated by considering a position perturbation (3-σ
interval of 0.1 m/s) at the atmospheric entry interface.

As presented in Figure 9.10, the final velocity error goes up to 3 m/s, which is only one order of
magnitude greater than the 0.1-m/s requirement.

The final position error exceeds the requirement by multiple orders of magnitude, reaching 2000 km
values for 0.1 m/s perturbations at the entry interface.

These results show as well how critical a GNC system would be during atmospheric entry. The
resulting orbit would be too sensitive to velocity as well for a mission at Jupiter to be successful without
a GNC system.
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Figure 9.10: Resulting error in the R, S, and W components at the final orbit apocenter (t1), when a single perturbation on the
R, S, or W axis is applied (figures from left to right) at atmospheric entry (tE ). The top line shows the effect of the perturbation
on the final position error (t1), whereas the bottom line is for the final velocity error (t1). Each figure shows the effect of the

single perturbation on the simulations, thus their effects are evaluated separately and not coupled.

The eccentricity change of the final orbit for a velocity perturbation results to be negligible, hinting
that an orbit that would respect the required position and velocity accuracy would be guaranteed to be
in a captured state around the planet.

9.4.3. Observations
The results of the sensitivity analysis clearly show that a GNC system would be needed for an aero-
capture trajectory at Jupiter that does not feature flybys. It would be needed both for the approach
phase and the atmospheric entry to maintain the required position and velocity accuracy, assuring the
spacecraft would end up in the desired orbit.

Another possibility would come from increasing the initial state accuracy, thus leading to lower navi-
gation errors along the trajectory and meeting the expected requirements, but it is an unlikely scenario
for the near future, thus the GNC option should be preferred.

Including a GNC system means that the mass required by all the entry-related sensors and in-
struments has to be accounted for, thus reducing the potential benefits from a ballistic aerocapture
exercise.



10
Thermal Loads

The thermal loads for an aerocapture trajectory are the driving factor for the sizing of a spacecraft’s
heatshield. This chapter aims at finding effective ways of calculating the heat fluxes acting on a vehicle
for a Jupiter entry. For this purpose, a literature review on the topic has first been performed, then
some approaches for heat-load calculation have been drawn.

10.1. State of the art
The existing literature regarding thermal loads for a Jovian atmospheric entry has been reviewed here.
The main goal was to find viable approaches for calculating the incident heat fluxes acting on a vehicle
traveling into Jupiter’s atmosphere. The majority of the findings is related in some way to the Galileo
mission, whose entry probe entered Jupiter’s atmosphere on December 7, 1995.

Also, all the available flight data related to this Jovian entry is related to the Galileo mission [12],
which had been the first and only one of its kind to feature an entry into the Jovian atmosphere.

10.1.1. Heatshields
For planetary entry trajectories, the heatshield is the driving part of the Thermal Protection Subsystem
(TPS), accounting for the majority of the TPS mass. For steep entries at gas giants, however, spe-
cial heatshields need to be designed, since the environment there is substantially different from an
atmospheric entry performed on an inner planet.

Here, a description of the Galileo mission heritage is given, together with some remarks on recent
developments on the topic.

Galileo mission heritage
The Galileo mission was a first of its kind, featuring an entry probe entering Jupiter’s atmosphere. For
such purpose, an adequate heatshield had to be designed, and some of its data is presented by Milos
et al. [14], where they also analyze the ablation data from the flown trajectory. They provide valuable
information on the materials used for its heatshield. Tabulated data for cp and kv of carbon phenolic
and phenolic nylon is provided.

New developments
A new heatshield for atmospheric entry at gas giants has recently been designed by NASA, named
Heatshield for Extreme Entry Environments Technology (HEEET) [40]. This heatshield is capable of
mass savings above 40%, compared to standard carbon-phenolic heatshields such as Galileo’s and its
technological readiness is at level 6, meaning it just needs to undergo a flight demonstration. HEEET’s
outer layer consists of a fine, dense weave using carbon yarns, whereas the inner layer is a low-density,
thermally insulating weave consisting of a special yarn that blends together carbon and phenolic mate-
rials.

48
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10.1.2. Giant planets entry studies
Studies on heat loads for entry trajectories at giant planets have been mainly conducted during the
60s-70s in preparation for what would have become the Galileo mission. All this work consists hence
of the foundation upon which the Galileo mission, and its pre-flight studies, relied.

Thermal loads
Many ways for effectively and efficiently computing thermal loads have been studied, providing equa-
tions that could be used in simulations of an entry trajectory.

Sutton and Graves Jr [44] study an equation for arbitrary gas mixtures that calculates the stagnation
point convective heat flux. It can thus be adapted to Jupiter, accounting for the H-He ratio of the gas
mixture.

Zoby et al. [45] provide approximate solutions for inviscid, radiating flows about blunt probes entering
atmospheres consisting of hydrogen and helium. It is a fast way of assessing the heat fluxes, which
would be suitable for optimization processes where batches of simulations have to be run.

Entry simulations
The first attempts at simulating a Jupiter entry had the main objective of assessing the magnitude of
the thermal loads. Their importance determined the heatshield sizing, thus an accurate calculation that
accounted for the most effects had to be carried out.

The dominant uncertainty factor associated with the heat shield recession calculations, fundamental
for heatshield sizing, was the radiation absorption within the ablation layer, which was not well known at
the time. Consequently, the evaluation of the convective and radiative blockage due to ablation vapors
was a major issue [12]. What follows are two studies whose major aim was to effectively assess the
importance of such an effect.

Figure 10.1: Stagnation point heat fluxes with (ṁ ̸= 0) and without (ṁ = 0)
coupled ablation injection [46, Figure 16]. Noteworthy is the coupled

convective heat flux, which becomes almost negligible when considering
ablation injection.

Moss J. N. [47] study the radiative
blockage due to ablation injection for
a Jupiter entry. Three entry trajecto-
ries are simulated. They account for
variations in probe configuration, at-
mospheric gas composition, and entry
conditions. Based on their assump-
tions, it results that ablation had a sig-
nificant role in blocking the incident
heat fluxes, similar results as those
shown in Figure 10.1. The results
are given in the form of tabulated data
in which flight parameters, wall condi-
tions, and heat fluxes are present for
each case.

Moss and C. Bolz [48] performed a
study focused on defining the heating
environment during entry and on deter-
mining the effectiveness of coupled ab-
lation injection in reducing the surface
heating rate. They provide tabulated
data on incident heat fluxes and on wall
conditions for pressure and tempera-
ture. This is a pre-flight study, and, as
had been seen with the Galileo entry,

the effectiveness of ablation injection turned out to have been underdetermined at the stagnation point
and overdetermined at the frustrum.

10.1.3. Galileo probe atmospheric entry
Following the previous work, the Galileo mission was conceived and flown. As already presented in
Chapter 4, the part considered in this project is the probe entry.



10.1. State of the art 50

Time,
s

Altitude,
km

V∞

km/s
ρ∞,
kg/m3

ps,
atm

ρs/ρ∞
Ts,
K

δs,
cm

qC ,
MW/m2

qR,
MW/m2

35.00 215.3 47.65 1.35e-5 0.28 13.64 14472 1.23 50 8
40.00 184.5 47.14 4.22e-5 0.85 12.75 15497 1.29 80 40
43.00 166.6 46.38 8.47e-5 1.65 12.16 16054 1.35 107 101
46.00 149.0 44.89 1.72e-4 3.12 11.53 16437 1.55 131 237
48.00 138.0 43.25 2.72e-4 4.56 11.07 16461 1.73 141 370
49.13 132.2 42.06 3.47e-4 5.50 10.82 16357 1.86 150 446
50.78 123.9 39.77 4.99e-4 7.04 10.34 15989 2.00 154 512
52.86 114.1 36.00 7.66e-4 8.79 9.60 15027 2.39 138 474
55.06 105.1 31.08 1.16e-3 9.77 8.76 13085 2.71 111 210
58.75 93.0 22.24 2.03e-3 9.11 12.41 5493 2.04 39 0

Table 10.1: Flight data and radiative and convective wall heat fluxes at radiation pulse phase [46, Table 4]. The probe mass in
this simulation has been set to 335 kg. Subscript s indicates surface conditions, whereas ∞ indicates free-stream flow.

The work related to the Galileo mission includes the pre-flight studies performed prior to the entry,
but much of the literature has sparked after the mission had flown. The attempts at reconstructing the
heat loads are presented here.

Pre-flight studies
Although they could not rely on direct mission data, pre-flight studies are an important part of the liter-
ature about the Galileo entry, and their results are still valuable as a starting point to model the heat
fluxes. As proof of this, they can be adjusted with later discoveries to match the reconstructed heat
fluxes of the trajectories. The two most complete pre-flight studies are presented here.

Figure 10.2: Profiles of flow temperature and density along the
stagnation streamline. Results are shown both with and without

accounting for pyrolysis [49, Figure 9]. D is the probe diameter and x
is the independent variable expressing the distance from the

stagnation point along the streamline. These results are plotted at
time t = 51.25 s relative to the reference time used in Table 10.2.

Moss and Simmonds [46] study the fore-
body flowfield solutions for Jupiter entry con-
ditions, where the ablation injection rate is
coupled with the surface heating rate. They
report radiative and convective wall heat
fluxes at 100-200 km altitudes for theGalileo
mission. Report data of interest is shown
in Table 10.1 and the visual trends are pre-
sented in Figure 10.1. It is still a pre-flight
study, but they account for most effects and,
together with the work of Haas and Milos
[49], they represent the culmination of the
pre-flight literature on the topic.

Flowfield properties and aerodynamics
are computed with a direct Monte Carlo sim-
ulation in the rarefield flow regime in Haas
and Milos [49]. Simulation results, employ-
ing a simple radiative equilibrium surface
model, indicate that the drag coefficient, CD,
varies from 2.1 at the free-molecule limit
down to 1.6 when approaching the near-
continuum transition regime (Re∞ = 1000).
They perform different simulations for different values of the accommodation coefficient A, which re-
lates to how flow particles collide with the probe heatshield. From these simulations, they report flow
parameters and thermal loads at altitudes between 350-750 km. See Table 10.2 and 10.3. More-
over, in Figure 10.2 they show how the particle density approaches near-continuum flow when close
to the probe incident surface, and the temperature greatly increases, suggesting the formation of a
bow-shock-like structure.
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Time,
s

Altitude,
km

Re M Kn
T ,
K

ρ,
kg/m3

0.00 735.00 0.10 31.47 415.59 425.0 2.024e-11
19.00 604.00 1.03 34.15 43.01 360.5 1.896e-10
33.50 506.00 8.69 37.20 5.55 303.2 1.422e-09
41.00 453.00 34.01 39.61 1.51 267.0 5.100e-09
46.40 416.00 103.41 41.86 0.53 238.7 1.435e-08
51.25 382.00 322.47 44.58 0.18 210.0 4.097e-08
55.50 353.00 926.15 46.35 0.07 194.0 1.114e-07

Table 10.2: Galileo probe entry simulation conditions [49, Table 1].

Re A CD
qnose,
W/m2

Tnose,
K

0.10 0.75 2.060 766 358.0
1.03 0.75 2.048 6495 602.4
8.69 0.75 2.024 48728 998.1
34.01 0.75 1.970 168523 1365.1
103.41 0.75 1.896 448881 1737.4
322.47 0.75 1.777 1201362 2236.4
926.15 0.75 1.629 2980082 2798.3
0.10 0.50 2.061 474 318.8
8.69 0.50 2.046 32564 909.9
103.41 0.50 1.934 309602 1580.3
926.15 0.50 1.628 2085700 2545.3
0.10 0.90 2.043 848 366.8
8.69 0.90 2.008 57941 1050.3
103.41 0.90 1.864 528677 1826.8
926.15 0.90 1.648 3559079 2931.1
34.01 pyrol 1.959 166779 482.2
103.41 pyrol 1.969 342187 642.1
322.47 pyrol 1.694 375325 896.8
926.15 pyrol 1.411 710552 1132.5

Table 10.3: Galileo probe entry simulation results at stagnation point [49, Table 2]. Simulations have been run for different
values of A. ’pyrol’ stands for pyrolisis, that is when ablation occurs.

Post-flight reconstruction
The success of the Galileo mission and the discrepancy of the mission data with the previous models
sparked a series of studies aimed at understanding the nature of this inconsistency. The nose tip of the
probe, approximately where the stagnation point was located, experienced a much lower ablation than
expected, whereas the probe frustrum experienced a heatshield recession significantly higher than
what the models predicted [12] [14]. The following papers investigate the nature of such discrepancies.

Matsuyama et al. [50] and Matsuyama et al. [51] analyze the Galileo trajectory and try to reproduce
the overall heat shield recession experienced by the probe. They investigate the case with radiation
only [50], then they include the effects of ablation [51]. The altitude range is between 100-200 km,
thus it represents the part with continuum flow, far from the free-molecular regime. Remarkable is their
approach to the probe mass loss modelling, where an energy-based approach has been followed.
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Time,
s

Altitude,
km

Ablation rate,
kg/m2·s

Spallation rate,
kg/m2·s

qR boundary-layer
edge, kW/cm2

qR wall,
kW/cm2

qC wall,
kW/cm2

40.35 190 0.473 0 3.713 2.031 0.4179
43.79 170 1.128 0 8.369 3.707 0.2283
47.36 150 2.943 0 19.42 8.120 0.1562
49.21 140 4.459 0 28.34 11.75 0.1537
51.16 130 5.672 0.0120 34.38 14.68 0.1375
53.23 120 5.749 0.0376 30.18 14.88 0.1151
55.52 110 5.664 0.0174 25.01 14.68 0.1568
58.19 100 1.604 0 5.310 4.743 0.7707

Table 10.4: Steady-state solutions for the Galileo probe at the stagnation point [37, Table 4].

Figure 10.3: Park qR and qC trends from data of Table 10.4. The data
points have been interpolated using a Lagrange 8th-order interpolator

scheme. Subscripts ’e’ and ’w’ stand respectively for boundary-layer edge
and wall conditions.

Park [37] analyze the heating/ablat-
ing environment of the Galileo probe,
with a focus on the stagnation-point re-
gion. They run simulations for altitudes
between 100-200 km, including the ef-
fects of ablation and spallation. This
study is limited to stagnation point re-
sults, but it has been capable of reach-
ing the closest match between flight
and simulation data for calculating the
heat fluxes in that region. The steady-
state solutions for the Galileo probe
at the stagnation point are present in
Table 10.4. Apart from ablation and
spallation rates, they provide radiative
and convective heat fluxes, with the ra-
diative heat flux calculated also at the
boundary layer edge. The convective
heat flux shows a different behavior
from the rest, which could seem unex-

pected, but this has likely to do with the effect of blockage from ablation vapors, which was the strongest
during the radiation pulse. The convective heat flux can be seen to increase at the end because that
is when the blockage effect becomes weaker. Figure 10.3 shows the trend of qR and qC , the radiative
and convective heat fluxes. Data from Park [37] is then particularly suited for V & V purposes since it is
the most detailed study of the heat fluxes at the stagnation point performed with Galileo’s in-flight data
[52].

Milos et al. [14] study the ablation and temperature data from the Galileo entry. As previously
presented, they provide info on the heatshield properties and some sensor data. They also estimate
the peak heat flux and heat load experienced by the vehicle.

Mass loss models
Accurately describing the behavior of the mass loss experienced by the probe is critical for an accurate
estimation of the blockage effect from the ablation vapors. In fact, many approaches are available in
the existing literature, and here the two most promising ones have been selected and presented here.

A data-regression approach is proposed by Seiff et al. [53], where they suggest the formula

ṁ = k ρ V 6.9 (10.1)

where k is a constant, ρ is the atmospheric density, and V is the airspeed. According to them it provides
a good approximation of the mass loss rate experienced by the probe during entry. The parameter k
however was not given, thus it has been estimated by fitting reconstructed flight data from Seiff et al.
[13] with that formula. A least-squares algorithm has been used, returning a value of k = 2.765998e−28.
The fitted curve is presented in Figure 10.4 and can be seen to match the flight data quite accurately.
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Moreover, a similar curve is also present in Figure 12 of Seiff et al. [53], providing additional proof of
the correctness of the calculation.

Figure 10.4: Mass loss rate (absolute value) calculated following the law presented in Seiff et al. [13]. Note that here the mass
loss rate has been plotted with respect to the altitude.

An energy-based mass loss model is instead proposed by Matsuyama et al. [51], where the mass
injection rate (ṁ) is indeed determined from an energy balance at the wall, given by

ṁ = −qC,w + qR,w

∆Ha
(10.2)

where ∆Ha is the heat of ablation. Quasi-steady ablation is assumed, and the wall temperature is
assumed to coincide with the sublimation temperature of the ablator. The sublimation temperature
(Tsub) and the heat of ablation (∆Ha) for a carbon-phenolic ablator are calculated with

Tsub = 3797.0 + 342.0 log pw + 30.0(log pw)2 (10.3)

∆Ha = 28.0− 1.375 log pw + 27.2(log pw)2 (10.4)

where pw is the wall pressure in atmospheres. The mass composition of the carbon-phenolic ablator is
chosen to closely match that one of the probe’s heatshield, thus it is assumed to be 92% carbon, 6%
oxygen, and 2% hydrogen. Finally, the surface recession rate can be calculated by using ∆s = ṁ/ρv
where the density of the heat shield material is given by ρv = 1448 kg/m3.

However, a challenge posed by this energy-based method is finding a way of calculating the pres-
sure at the surface of the capsule, which is far from trivial.

10.1.4. Tools for thermal loads evaluation
As shown, quantifying the thermal loads for a Galileo-like entry trajectory at a gaseous planet is rather
complicated. This chapter aims at collecting another set of more generic tools that can aid the calcu-
lation process. Some are presented also as already tailored for an aerocapture trajectory at Jupiter,
whereas some others are just more general techniques that can be adapted to a Jupiter entry.

Correlations by data regression
Tauber and Sutton [54] show a powerful yet simple technique for approximating the radiative heating by
using entry data for cases at Earth and Mars. It consists of an equation fitted to flight data to effectively
measure the heat fluxes during re-entry. However, the entry velocity range for the formulation to be
valid is at most in the order of 10 km/s, thus not applicable for a Jupiter entry. However, the general
technique, which makes use of the Chapman equation [55], can still be adapted to derive a formulation
for the radiative heat for Jupiter. The Chapman equation is the following:
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q = c1

√
ρ

RN
V m

(
1− Tw

Tw,ad

)
(10.5)

where q is the heat flux, ρ is the atmospheric density, RN is the vehicle nose radius, V is the airspeed,
Tw is the wall temperature, and Tw,ad is the adiabatic wall temperature (= T∞). The free parameters are
c1 and m. The term (1− Tw/Tw,ad)

1 is often regarded as the hot-wall correction since in the cold-wall
approximation, especially valid for hypersonic flight, it usually happens that Tw/Tw,ad ≈ 0.

Another more general formulation of the Chapman equation allows for more degrees of freedom
when curve fitting, and is more suitable for this project. Such equation is the following:

q = c1
ρn√
RN

V m (10.6)

where the free parameters are c1, m, and n, and RN is the nose radius, ρ is the density, and V is
the airspeed. The hot-wall correction has been neglected here since non-adiabatic effects usually get
considered in a second moment when using this form of the equation.

Ritter et al. [56] derive two correlations for fluxes based on Galileo mission data. One is for the
convective heat flux, and the other one is for the radiative heat flux. They validate them and they turn
out to be in good agreement with the Galileo flight data if non-adiabatic effects and blockage from
ablation vapors are taken into account. Such correlations will be presented in section 10.2.

Jupiter Atmospheric Entry code
Park and Tauber [57] talk about a simple yet accurate model to predict the turbulent convective heating
rate, which explains part of the Galileo heat shield recession. Their results refer to the work of Tauber
et al. [15], where a fast code for a Jupiter entry analysis is discussed and its equations are provided.
The model would take into account both the incident convective and radiative heat, then it would apply
some derived correlations that account for the non-adiabatic effects of radiation and for the blockage
effect due to ablation vapors. The coefficients for those correlations are however left undetermined.
They can be found from Reynier [58]. They show how the code works, and how it can be implemented.
Much information is taken from the work of Tauber and Wakefield [59], where the heating environment
at Jupiter entry is investigated, and three entry probes for Jupiter are compared.

Preliminary studies on aerocapture at Jupiter
Aso et al. [60] conduct a preliminary study on the Jupiter aerocapture mission type, one of the few of
its kind. They calculate launch windows, set a corridor width for the aerocapture based on eccentricity
and strict aerothermal loads constraints, plot altitude density, velocity, and deceleration, and perform a
numerical study of the heat loads.

10.2. Stagnation point heat loads calculation
In a zero-angle-of-attack configuration, the stagnation point is the region where themost intense thermal
loads act on the vehicle, hence it is the most critical part of a heatshield for this kind of atmospheric entry.
This configuration closely matches the Galileo mission’s case, but can be applied to an aerocapture
mission as well. A first-order estimate of the size of a heatshield can be done with just the thermal
loads at the stagnation point. For this reason, the focus will be primarily put on the stagnation point
region for calculating both the convective and radiative heat fluxes (respectively, qC and qR). For that,
the results of section 10.1 on thermal loads are used, and some viable approaches have been drawn.
Such approaches to calculating heat fluxes are the following:

1. Gather heat flux data from Haas and Milos [49] and Moss and Simmonds [46] (Table 10.1, 10.2,
10.3) and correlate it with equations from Tauber and Sutton [54]

2. Use the code developed by Tauber et al. [15]
3. Use the correlation equations derived by Ritter et al. [56]
1The fact that Tw/Tw,ad is written, instead of hw/hw,ad (the enthalpy ratio) assumes that the pressure gradient between the

bow shock and the vehicle surface is constant so that (Tw,ad − Tw) = cp (hw,ad − hw).



10.2. Stagnation point heat loads calculation 55

It turns out that such approaches have to be integrated within each other, since each of them can
contribute only in a partial way to the heat loads calculation. Only the joint use of all approaches can
hence give satisfying results.

Once the heat fluxes are calculated, the total heat loadQ can be derived by a simple time integration
procedure. This value has been seen to be strongly correlated with the TPS mass fraction of previously
flown space missions, hence its calculation is crucial for first-order TPS sizing.

10.2.1. Vehicle heating environment
An aerocapture mission would most likely fly above altitudes of 200-250 km, thus for the majority of its
trajectory the atmosphere the spacecraft encounters is very thin, so there is free molecular/transitional
flow, and only in a few cases and for a short time period the continuum-flow regime is encountered. It
can be shown with data from Seiff et al. [13] where the Knudsen number (Kn) decreases with altitude
and reaches a value around 0.1 slightly above 300 km altitude. Free molecular flow occurs when Kn
> 10, whereas transitional flow occurs when 10 > Kn > 0.1, thus for the majority of the trajectory the
spacecraft would fly in altitudes corresponding to free molecular/transitional flow.

At the free molecular flow regime, with very high velocities w.r.t. air (tens of km/s), a bow-shock
region can however still form around the spacecraft, allowing for heat convection to occur. This happens
because the speed is 50 times as much as the thermal speed of molecules, so large it can compress
the molecular flow to transient/continuum fluid, eventually forming a bow-shock-like structure [60].

It will later be shown that convection is far greater than radiation for shallow entries such as those
for aerocapture, and radiation becomes dominant only for deep dives into the atmosphere, such as
Galileo’s, where gas molecules ionization happens at a larger scale.

Non-adiabatic effects for the radiative heat flux
At hypersonic speeds, it usually happens that the hot wall correction term gets neglected, thus the cold-
wall approximation is implicitly used. This works well because, as explained before, the temperature
of the compressed fluid is far greater that the vehicle surface temperature. However, when radiative
heat fluxes become important, non-adiabatic effects can in some cases become far from negligible
[59]. This is the case for the Galileo entry, where such effects had a strong influence on the reduction
of the incident radiative heat flux. How their behavior has been modeled will be shown in the following
paragraphs.

Heat flux blockage due to ablation vapors
The blockage effect due to the ablation products can be rather important in case of strong ablation, and,
as a consequence, it can drastically reduce the incident heat fluxes on the vehicle. This applies both
to radiation and convection.

The assessment of its magnitude, however, is far from trivial. Its modeling is indeed rather difficult
since it strongly depends on the interacting chemical species (from the atmosphere and the ablating
material) and on the laminar or turbulent nature of the boundary layer. Ablation injection of vapors
greatly encourages the transition from laminar to turbulent, as post-flight studies have observed [37].
Pre-flight studies carefully evaluated the impact of this blockage effect, however, they did not account
for this induced turbulence. This has been the cause of their underestimation of the cone frustum
recession. Turbulence indeed encourages the exchange of heat, making the boundary layer more
”transparent” to incident heat fluxes [58].

A useful correlation to model the impact of this effect is derived by Brewer and Brant [61]. It will be
later presented when addressing the blockage effect on the convective and radiative heat fluxes.

10.2.2. Convective heat flux
Due to the importance of the convective heat flux for aerocapture at Jupiter, all three approaches
presented at the beginning have been considered for the heat flux calculation.

Data regression
For the convective heat flux, the first approach consists of fitting Equation 10.6, the Chapman equation
in its generic formulation to some Galileo convective heat flux data. The convective heat flux data as
said before is obtained from Haas and Milos [49] and Balakrishnan and Nicolet [62] (Table 10.1, 10.2,
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10.3), the two most complete pre-flight studies of the Galileo trajectory [12]. The following expression
can then be obtained:

qCB=0
= 4.13377754

1√
RN

ρ0.51467325V 5.66475942 (10.7)

where qCB=0
is the convective heat flux for non-ablating conditions [kW/m2], RN is the nose radius

[m], ρ is the density [kg/m3], and V is the airspeed [km/s]. Note that the hot-wall correction term has
been neglected due to the hypersonic nature of the trajectory. A least-squares algorithm has been
used, and it has been fed with simulated flight data comprehending altitudes between 750 and 150 km.
Input values have been scaled with respect to their maximum value, to allow for a better convergence
of the interpolating algorithm. Such values are presented in Table 10.5, and they must be used as
scaling parameters when using Equation 10.7. The result of such curve fit is shown in Figure 10.5.
This approach however suffers from the high uncertainty of the convective blockage factor, which was
better understood only after studying the Galileo in-flight data.

Variable Name Scaling Value
RN 1.58227848e+00
ρ 4.92610837e+02
V 2.09863589e-02

qCB=0
6.49350649e-06

Table 10.5: Scaling values for variables of Equation 10.7. Values such as 6.49e-06 are to be read as 6.49 · 10−6.

Figure 10.5: Curve fit for the convective heat flux qCB=0
. As shown, not all the available data points have been used. This

choice has been made to allow for a more precise interpolation at higher altitudes, at the cost of constraining the range of
applicability to altitudes higher than 150 km. The 150 km limit is anyway below the desirable minimum altitudes for aerocapture
entries. The gap in data points present at 200-350 km is due to the fact that data has been taken from two different works; one
investigating high altitudes, above 350 km, and the other investigating low altitudes, below 200 km. No additional data could be

found for the intermediate range to fill this gap.

Jupiter code
The second approach would use the code developed by Tauber et al. [15], but much of the necessary
information for the code set-up could not be collected, thus making this way unfeasible on its own. It
has been regarded more as a general guideline on how to set up the heat loads model.
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Usage of existing correlations
The third approach consists of using Ritter et al. [56] correlation for the convective heat flux, which is
the following:

qCB=0
= 2004.2526 ∗ 1√

2∗RN

0.6091

∗
( ρ

1.22522

)0.4334441
∗
(

V

3048

)2.9978867

(10.8)

where qCB=0
is the convective heat flux for non-ablating conditions [kW/m2], RN is the nose radius [m],

ρ is the density [kg/m3], and V is the airspeed [m/s]. This equation already comes with variable scaling
integrated into it.

Alternative to this, Girija et al. [38] provided a similar but simpler equation that results in similar
outcomes. This is their expression for the ablation-free convective heat flux:

qCB=0
= Chfx

ρ
√
RN

V 3 Chfx = 0.6556E − 4 (10.9)

where Chfx is a constant determined by the planet’s atmospheric composition, Jupiter in this case, ρ∞
is the free stream atmospheric density [kg/m3], RN is the vehicle’s effective nose radius [m], and V is
the free stream velocity in [m/s]. Lastly, qCB=0

is the ablation-free (B = 0) convective heat flux and has
units of W/m2.

Convective blockage
Correlations for convection blockage are empirical and based on experimental or computational data
valid only for Jupiter entry conditions and carbon–phenolic material [58]. The following is a material-
dependent correlation derived by Brewer and Brant [61]:

ψCT
=

[
2.344

B

(√
B + 1− 1

)]1.063
(10.10)

where the turbulent convective blockage factor, ψCT
= qC/qCB=0

, is represented as a function of the
non-dimensional blowing coefficient B. The correlation can be seen in Figure 10.6.

Figure 10.6: Convective blockage for turbulent boundary-layers [61]. Note
that B′ = B.

What comes next is calculating the
blowing parameter, or blowing rate, B.
It is the driving point of the blockage ef-
fect. The blowing term represents the
gaseous diffusion of the decomposing
material into the boundary layer caus-
ing a thickening of the boundary layer
and a reduction of the temperature
gradient [58]. According to Reynier
[58], the blowing parameter can be de-
scribed as

B =
ṁ cp (Tw,ad − Tw)

qCB=0

(10.11)

where cp is the specific heat at constant
pressure of the gas mixture and ṁ is
themass injection rate. Equation 10.11
can then be reworked to highlight the
ratio between the two temperatures so
that it becomes

B =
ṁ cp Tw,ad

qCB=0

(
1− Tw

Tw,ad

)
(10.12)

where Tw/Tw,ad can be neglected for hypersonic flow. According to Mooij [6], Tw,ad can be described
as



10.2. Stagnation point heat loads calculation 58

Tw,ad ≈ V 2
∞

2cp,∞
(10.13)

at the stagnation point and for a hypersonic flow regime, since it is assumed that Tw,ad ≫ T∞. The
resulting expression for the blowing coefficient then becomes:

B =
ṁV 2

∞
2 qCB=0

(10.14)

assuming cp ≈ cp,∞. The most critical factor to model is the mass injection rate ṁ. Two different
approaches for its modeling come from a data-regression model (Equation 10.1) and an energy-based
approach (Equation 10.2).

10.2.3. Radiative heat flux
For what concerns the radiative heat flux, the third approach [56] already gives a good estimate of its
magnitude, as it will be later shown, thus there was no need to pursue other ways. The correlation for
the radiative heat flux is the following:

qRAD,B=0
= 9.7632379−40 ∗ (2 ∗RN )

−0.17905 ∗ (ρ)1.763827469 ∗ (V )10.993852 (10.15)

where qRAD,B=0
is the radiative heat flux without accounting for non-ablating conditions and non-adiabatic

effects [kW/m2], RN is the nose radius [m], ρ is the density [kg/m3], and V is the airspeed [m/s]. This
equation again already comes with variable scaling integrated into it.

Non-adiabatic effects
Equation 10.15 alone, however, has to be corrected for non-adiabatic flow effects (also regarded as
radiative cooling), which have an important role in a steep entry like the Galileo one [56]. The equation
that approximated this effect is obtained from the work of Tauber and Wakefield [59], which adapted
the Goulard equation to a Jupiter entry, and is the following:

Γ =
4qRAD,B=0

ρ∞V 3
∞

qRB=0
=

qRAD,B=0

1 + 3Γ0.7
(10.16)

where Γ is the Goulard number (the radiation cooling parameter) and the heating rate qRAD,B=0
has to

be here provided in W/m2 for the equation to work. Here, ablation is neglected (ṁ = 0, B = 0).

Radiation blockage
When ablation is taken into account, however, the incident radiative heat flux at the wall gets reduced
even further. As said before, this has to do with the ablation vapors blocking part of the radiative heat
flux from the probe. The greater the ablation, the larger the blockage.

The same empirical correlation used to model the blockage effect on the convective heat flux can
be applied here as well. The radiation blockage effect would then be described by Equation 10.10 and
10.14, the equations for calculating the blockage factor ψRT

= qR/qRB=0
and the blowing parameter

B.

10.2.4. Total heat load and Peak heat flux
Total heat load and peak heat flux are two critical quantities that need to be considered when designing
a TPS for an atmospheric entry mission. The calculation method for both of them, as well as a TPS-
sizing method, are presented here.

Total heat load
The total heat load acting on the vehicle’s wall, Qw, is a crucial quantity that determines the size of a
spacecraft’s TPS. A correlation between the total heat load and the TPS mass fraction for previously
flown missions has been derived by Wright et al. [63] and is shown in Figure 10.7. The correlation for
the mass fraction is the following:

fTPS =
mTPS

mvehicle
=

0.091

100
(
Qw

10000
)0.51575 (10.17)
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where Qw is in J/m2, and an extra factor of 10−2 has been introduced to express the mass ratio fTPS
as a value ranging from 0 to 1, and not in percentage form.

Figure 10.7: TPS mass fraction for prior NASA missions [63, Figure 1] Note that the Galileo probe experienced a total heat
load of about 200 kJ/cm2, which corresponds to a TPS mass fraction of about 50%.

This correlation, however, implies that the value of Qw must be known. An effective way of calcu-
lating this quantity is by integrating the total incident heat flux on the vehicle’s wall over the flight time,
following this expression:

Qw =

∫ tf

t0

qw dt =

∫ tf

t0

(qC + qR) dt (10.18)

where Qw is the total wall heat load [J/m2], qw is the total wall heat flux [W/m2], and t0 and tf are the
atmospheric entry and exit epochs. For the accuracy required by the current work, the trapezoidal
rule approximation for calculating the integral is more than sufficient. The integration errors that would
be introduced have a limited influence on the value of Qw, which as well would make the TPS mass
fraction vary by a negligible value.

Peak heat flux
Alongside the total heat load, the peak heat flux is another crucial quantity that determines the type of
heatshield that will be used. Different heatshields are composed of different materials, often interwoven
in different ways, all characteristics that determine the maximum incident total heat flux that a given
heatshield can sustain. Table 10.6 gives an overview of the maximum total heat flux sustainable by the
currently available heatshields.

The calculation of the total heat flux is quite straightforward. It consists of taking the maximum value
of the total incident wall heat flux along the trajectory.
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Material Name Manufacturer
Density,
kg/m3

Heat flux limit,
W/cm2

SLA-561V Lockheed-Martin 256 ∼200
FM 5055 Carbon Phenolic Fibercote 1450 >10,000
MX4926N Carbon Phenolic Cytec (pre-preg), ATK, HITCO 1450 >10,000
PhenCarb-20,24,32 Applied Research Associates 320-512 ∼750
PICA (Phenolic Impregnated
Carbon Ablator) Fiber Materials, Inc. (FMI) 265 >1500

Avcoat 5026 (Apollo) Textron Systems 513 ∼1000
ACC Lockheed-Martin 1890 ∼1500
HEEET [40] / ∼1000 ∼5000

Table 10.6: Density and heat flux limit values of the most commonly used heatshield materials [55].

10.3. Observations
An effective method for calculating the heat loads acting on the vehicle is presented in this section.

Starting from an overview of the existing literature, with a focus on the Galileo mission, several
approaches for calculating the incident heat fluxes on a Jupiter atmospheric entry have been found
and derived.

As a result, correlations for calculating the incident convective and radiative heat fluxes (qC and qR)
have been found, plus other effects acting on the entry environment have been considered. In particular,
non-adiabatic effects on the radiative heat flux and the blockage of heat fluxes due to ablation have
been regarded and modeled. Correlations of empirical nature, or theory-derived ones, describe such
effects on the basis of trajectory parameters such as velocity and density. Important to mention is the
model selected for approximating the mass injection rate ṁ. The data-regression model has been
selected due to its simplicity and the fairly good results it can give, as it will be seen in Chapter 14.

Moreover, the derivation of the total heat load Qw acting on the vehicle has been presented, which
requires knowing the values of qC and qR.

Lastly, a way of correlating Qw and the TPS mass fraction of a spacecraft has been found and
presented.



11
Addition Of Flybys

This chapter assesses the problem of flybys, to see whether a pre- and/or post-aerocapture flyby(s)
can be added.

11.1. Pre-aerocapture Flyby
Adding a flyby prior to aerocapture can help reduce the orbital energy. However, this approach poses
serious constraints on orbit geometry. Although flybys at moons have been observed to reduce orbital
energy by 20-35%, which is a considerable amount, it is not expected to sufficiently counterbalance
the constraints on trajectory geometry that adding a flyby imposes. Moreover, it is worth noting that the
aerocapture technique is more effective when it has more energy ∆E to dissipate [26].

The maximum delta energy obtainable with flybys can be calculated using the following equation
[2]:

∆Emax =
2V ′

t V∞t

1 + V 2
∞t

/Vc2surf
(11.1)

where V ′
t represents the velocity of the moon, V∞t

is the asymptotic incoming velocity, and Vcsurf is the
surface circular velocity of the moon. The results of this calculation for different moons are summarized
in Table 11.1.

Moon ∆Emax (MJ/kg)
Io 4.695

Europa 2.756
Ganymede 4.719
Callisto 3.534

Table 11.1: Maximum Delta Energy Obtainable with Flybys for Various Moons. The initial orbital energy is 13.051 MJ/kg for an
interplanetary arrival velocity of 5.6 km/s (based on a hypothetical Hohmann transfer).

In conclusion, pre-aerocapture flybys will not be considered on this study because the constraints
that adding a flyby poses are not properly counterbalanced. The energy reduction it gives just slightly
helps reducing the loads in the aerocapture phase, which however performs better when required to
achieve a higher Emax.

Moreover, the additional complexity that adding a pre-aerocapture flyby would have posed, would
have been in conflict with the time constraints set for the thesis project. That is why it is left as a
recommendation

11.2. Post-aerocapture Flyby
A post-aerocapture flyby would aim at changing the orbital energy in such a way that the pericenter
of the orbit gets raised. In this case, the delta energy amounts are significant enough for a post-
aerocapture flyby to be considered in the simulation. Furthermore, adding only one flyby does not
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impose as strict constraints as adding two, thus the benefits of one post-aerocapture flyby could be
investigated.

The results of themaximum delta energy obtainable with post-aerocapture flybys for different moons
are summarized in the table below:

Moon ∆Emax (MJ/kg)
Io 4.813

Europa 2.858
Ganymede 4.990
Callisto 3.857

Table 11.2: Maximum Delta Energy Obtainable with Post-Aerocapture Flybys for Various Moons. The orbital energy
post-aerocapture of the reference orbit is -4.623 MJ/kg, obtained with a 2.5 deg entry flight path angle aerocapture.

Table 11.2 provides insights on the maximum delta energy obtainable through post-aerocapture
flybys for the moons Io, Europa, Ganymede, and Callisto, which is essential for mission planning and
optimization. It can be seen how the∆Emax are on the same order of magnitude of the pre-aerocapture
flyby, but now the energy of the closed orbit is much smaller than prior to aerocapture, making the effect
of a flyby much greater in proportion.

A strict constraint that a post-aerocapture flyby poses comes from the short time of flight between
the atmospheric exit and the moon flyby. The available window for corrective maneuvers could be too
narrow or non-existing, depending on themoon at which the flyby would occur. That is the case because
the less time is between the maneuver and the flyby, the more costly in delta-v terms the maneuver is
going to be, potentially nullifying the benefits of a flyby over a conventional pericenter-raise burn.

Nevertheless, the potential of a post-aerocapture flyby is still being investigated, and a flyby-targeting
method to intercept the moon at the right time and location is being developed.

11.3. Flyby Targeting Method
A complete flyby-targeting method has been developed, by using second-order equations from En-
gelsma and Mooij [64] and the full flyby description from [2] (see Chapter 12).
The flyby-targeting method calculates the entire trajectory based on the following parameters:

• interplanetary arrival velocity V∞
• atmospheric entry flight path angle γE
• atmospheric entry altitude (set to 450 km by default)
• moon of flyby
• epoch of flyby
• flyby impact parameter B

from these parameters, the initial state and epoch of the trajectory are calculated with the following
steps:

1. The orbital geometry of the arrival phase at Jupiter is determined thanks to the interplanetary
arrival velocity V∞ and atmospheric entry flight path angle γE . The initial distance from Jupiter is
set at Jupiter’s SoI, whereas the entry distance is set at 450 km altitude above the 1-bar level of
Jupiter’s atmosphere.

2. The aerocapture phase geometry and loads are calculated using the second-order equations for
atmospheric entry available from Engelsma andMooij [64] (see Chapter 12). They are particularly
well suited for shallow-entry γE .

3. The post-aerocapture arc that leads to the flyby is calculated by using the atmospheric exit state
and the flyby impact parameter B. The flyby formulation corresponds to that one expressed by
Wakker [2]. The flyby epoch fixes the position of the moon from which the entire orbit follows.
From here the initial epoch at which the orbit begins is backward calculated using the Keplerian
time to true anomaly expressions.

4. The final orbit that results from the flyby is calculated, and its pericenter altitude is assessed.
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5. From here on, the algorithm is capable of returning a state history of the analytical trajectory, with
the required number of points, as well as the initial state and epoch for the numerical simulations.

Once the initial state and epoch of the trajectory are returned, they can be given to the numerical
propagator, which will serve as a verification tool for testing the validity of the analytical expressions.

11.4. Method Verification
The method has been verified using a comprehensive numerical model, which incorporates Jupiter’s
point-mass gravity, the most advanced atmospheric model available, and the point-mass gravity of the
moon during the flyby.

As discussed in Chapter 14, the outcomes are inconsistent due to various assumptions in the semi-
analytical model that are not valid in the numerical context. Consequently, employing this method for
flyby targeting would be exceedingly unreliable, yielding results unsuitable for both numerical simula-
tions and actual mission scenarios.

Although the semi-analytical method remains promising if refined to better align with the numerical
simulations, further improvements to the model exceed the current project’s scope and time constraints.
Therefore, this refinement is proposed as a future recommendation, given the method’s demonstrated
potential as an effective analytical targeting predictor.

11.5. Observations
The addition of a pre- and a post-aerocapture flyby has been considered. The pre-aerocapture flyby
would have helped in reducing the loads in the atmospheric phase, but its contribution was too little
in comparison to the geometry and time constraints it would put. The post-aerocapture flyby seemed
to be a promising substitute for conventional pericenter-raise maneuvers, despite its strict geometrical
and time constraints.

The targeting method implemented to harness the benefits of such flyby works well under its as-
sumptions, but fails when verified with a more accurate numerical model that does not involve these
assumptions, as will be shown in Chapter 14. Flyby targeting using this method would result in a far
too unreliable approach: the results would not be applicable in a numerical simulation, let alone in a
real mission scenario. The final problem will make use of a numerical model to compute the aero-
capture, and the post-aerocapture flyby, while being a valuable addition to the research of the project,
exceeds its time constraints and is not part of the main focus of the research question. Investigating
the post-aerocapture flyby will be left as a future recommendation.

Moreover, the semi-analytical method should be refined to better match the numerical simulations,
however further refinement of the model goes beyond the scope of the current project since it would
also go beyond its time limitations. The refinement of the flyby-targeting algorithm is left as a future
recommendation.



12
Problem Modeling

Various approaches have been considered for modeling a multi-flyby aerocapture trajectory at Jupiter.
They are presented in the following sections.

12.1. Semi-analytical Modeling
The semi-analytical models used or developed for the project are presented here.

12.1.1. Lambert-targeting algorithms
The first attempt at modeling a multi-arc aerocapture trajectory at Jupiter concerned the usage of
Lambert-targeting algorithms (also called Lambert targeters). They are algorithms whose scope is
solving Lambert’s problem. They had been selected because of their ease of usage and the flexibility
given by the parameters of the problem. In the current project, a revisited formulation of Lambert’s
problem given by Izzo [65] has been used.

To compute a trajectory arc, the Lambert targeter in fact requires only the trajectory time of flight
and the initial and final positions of the spacecraft. With just these quantities, and through a root-finding
process, the algorithm is capable of calculating the respective full orbital arc.

Figure 12.1: The general Lambert’s problem geometry. By selecting the initial and final positions r1 and r2, and the time of
flight of the arc, the entire trajectory positions and velocities from the initial and final positions can be reconstructed by means

of a root-finding routine [66, Figure 2].

For what concerns multi-arc trajectories, namely those under consideration, using a Lambert tar-
geter would make matching the position vectors at the trajectory nodes rather straightforward, as can
be seen in Figure 12.1. The position vectors are indeed a parameter of the problem, thus they can be
set accordingly so that the trajectory arcs are all matching.
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For what concerns the boundary values for the velocity vectors, those are calculated only after
solving Lambert’s problem, thus they cannot be set to match beforehand. Matching the velocity vectors
between arcs at the trajectory nodes would require an optimization process over the trajectory time of
flight. The time of flight would be adjusted so that its value satisfies the boundary criteria both in between
arcs but also at the trajectory boundaries.

Usually, multi-arc trajectories computed bymeans of Lambert targeters assume that impulsive burns
at the trajectory nodes would bridge the gap between the mismatching velocity vectors. The optimiza-
tion process would still be performed by varying the time of flight, but here the aim would be more at
minimizing the total required delta-v, ideally bringing it to zero.

Since an optimization routine that would nullify the required delta-v for a multi-arc trajectory is likely
to be an ill-posed problem, with not even the certainty of the existence of a solution, at least of an easy
one to find, other approaches were considered.

The need for a tailored approach when calculating multi-arc trajectories resulted in the development
of several semi-analytical models that will be depicted in the following sections.

12.1.2. Multi-flyby semi-analytical approaches
All the approaches assume the orbit remains within the same plane throughout the trajectory, which
coincides with the moon’s orbital plane. Hence, the flyby does not change the orbital plane and the
orbital axis remains constant.

Instantaneous flyby at moon’s center
Here other assumptions are made. It is assumed that the arrival position of the pre-flyby arc coincides
with the moon’s position and that the flyby happens at a single point in space. In this way, the position
vectors of the two arcs would match at the flyby node.

The problem now requires a root-finding algorithm to find the pericenter altitude of the flyby that
would allow the atmospheric entry conditions of choice. Info on the available root-finding algorithms is
available in Chapter 7.

This approach is very straightforward in calculating a first estimate of a multi-arc trajectory. However,
its applications are rather limited, since it is assumed that the flyby would happen at the moon’s center
of mass and with a fictitious flyby altitude.

Instantaneous flyby at a set pericenter distance
In this approach, it is instead assumed that the arrival position of the pre-flyby arc has to be at a set
distance from the moon, but the flyby still happens instantaneously at a single point in space. In this
way, the position vectors of the two arcs would still match at the flyby node by definition.

It is an in-between approximation between the first-order approach presented above and the full
analytical flyby description.

The problem in this case still requires a root-finding algorithm for it to be solved, and the free pa-
rameter is still the flyby pericenter altitude. In this case, an additional equation has to be numerically
solved to extract the β angle, a parameter of the flyby geometry that indicates the angle between the
flyby pericenter direction and the direction opposite to the moon’s velocity.

Complete analytical flyby description
In this approach, the flyby phase is treated with the full description presented in Chapter 2. This would
mean that the position vectors of the two arcs would no longer match, but they would depend on the
flyby’s initial and final conditions. The flyby would no longer happen instantaneously, and the position
change of the moon between the start and end epochs of the flyby would be taken into account as well.

The result is a rather accurate representation of the analytically computed orbit. The computation
is, however, less straightforward. As the free parameter, the angle the spacecraft arriving at the moon
forms with the moon’s velocity vector is taken. It will be called the Σ angle. The set of equations will
be solved by finding the right value of such Σ angle that satisfies both the initial and final conditions of
the approach trajectory.

12.1.3. Aerocapture semi-analytical approximations
Two semi-analytical approaches that approximate the aerocapture phase were selected. They are first-
and second-order approximations of the atmospheric entry equations. The first-order approximation
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works best for steep entries, whereas the second-order one performs better at shallow entry flight path
angles.

First-order equations
The following summarised derivation is taken from Mooij [6]. Refer to that for the full derivation starting
from the equations of motion. The starting point for the derivation is given by a set of simplified and
reworked equations of motion by Mooij [6]:

m
dV

dt
= −D −mg sin γ (12.1)

mV
dγ

dt
= L−mg cos γ

(
1−

V 2

V 2
c

)
(12.2)

dr

dt
=
dh

dt
= V sin γ (12.3)

where m is the vehicle mass, V is the airspeed, g is the gravitational force of the planet, γ is the flight
path angle, Vc is the local circular velocity for a given altitude h (or distance r), D, L are the drag and
lift forces respectively.

A simple approximation of the motion for steep-entry trajectories can be obtained if the aerodynamic
forces L andD are assumed to be large in relation to the mass terms in the equations of motion (12.1.3).
With D >> W and L >> W , it follows that

m
dV

dt
= −D (12.4)

mV
dγ

dt
= L (12.5)

dr

dt
=
dh

dt
= V sin γ (12.6)

Dividing the above equations directly yields:

1

V

dV

dγ
= −

D

L
(12.7)

Assuming L/D to be constant, we find for initial conditions VE and γE (E stands for Entry)

V

VE
= e

−
γ − γE

L/D (12.8)

and since γF = −γE (symmetric flight profile - F stands for Exit)

VF

VE
= e

2γE

L/D (12.9)

For an assumed exponential atmosphere, it follows with

p

ρ
= RT =

g

β
ρ = ρ0e

−hβ (12.10)

where p and ρ are the atmospheric pressure and density,R is the gas constant for Jupiter’s atmosphere,
T is the atmospheric temperature, β = 1/HS with HS being the scale height, and g is the gravitational
acceleration, that

cos γ − cos γE =
g

2β

1

W/S

CL

(ρ− ρE) (12.11)
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so that the current free-stream density and altitude can be related to the flight path angle. Here W is
the weight force, S is the cross-section area, and CL is the lift coefficient.

Regarding the down-range, the following equation can be used

X =
1

β

γ − γE + cot γ′E ln

 tan
γ′E
2

+ tan
γ

2
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γ′E
2

− tan
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2

·
tan

γ′E
2

− tan
γE

2
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γ′E
2
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γE

2


 (12.12)

where
cos γ′E = cos γE −

ρE g

2β

CL

W/S
(12.13)

By using Equations 12.8 and 12.11, the airspeed and the density the capsule experiences during
entry can be calculated for any given flight path angle γ. Knowing that from the beginning to the end of
an aerocapture trajectory γ monotonically increases from γE to γF , we can fully reconstruct the shape
of the atmospheric entry with such means.

Second-order equations
This set of second-order equations is more suitable for shallow entries, with low flight path angles
γ. The main downside of this set is that new dependent and independent variables and constants
have to be introduced to non-dimensionalize the equations. The equations thus lose their intuitive
nature and become increasingly complex. However, the non-dimensionalization and rewriting process
is solely a mathematical operation, and the obtained equations of motion, when no approximations
are added, still produce the exact results also obtained from standard equations of motion. The new
non-dimensionalized values use symbols that may appear in other parts of the report, where they are
used to indicate other quantities. These symbols have to be considered to take the meaning assigned
here just for the current derivation.

Starting with the maximum lift-to-drag ratio E∗, where K and CD0
are related to the parabolic drag

polar, the equation is

E∗ =
1

2
√
KCD0

(
CD = CD0

+KC2
L

)
(12.14)

then we have the constants B, which specifies the entry altitude and physical characteristics of the
vehicle; λ, the lift-control constant, which allows for lift-modulation; k1, defined from the other two:

B =
ρE S rE

2m

√
CD0

K
λ =

CL√
CD0

/K
k1 = B λ (12.15)

where ρE and rE are the density and altitude at atmospheric entry, S is the cross-section area, and m
is the vehicle mass. Other constants have been introduced to simplify the equations, namely, η, k, and
α:

η =
B

E∗

√
rE

HS

k =
2E∗

B

√
rE

HS

α =
rE gE
VE 2

(12.16)

where HS is the scale height of the exponential atmosphere model (an exponential atmosphere is
assumed), and gE and VE are the entry gravitational acceleration and velocity. Lastly, the constant c
indicates the non-dimensionalized entry flight path angle ϕ:

c = ϕ(0) = −

√
rE

HS
sin γE (12.17)

with γE as flight path angle at atmospheric entry.
The full set of second-order equations that includes this non-dimensionalization process is pre-

sented here. They are taken from Engelsma and Mooij [64]. See that reference for a full description.
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The main challenge came from finding an analytical expression relating x, the non-dimensional
altitude (it is reciprocal to the altitude - see Equation 12.34), to the range angle τ , coming from the
equation dτ = dx/dϕ. The range-angle τ is an independent variable that is obtained from

τ =

√
rE

HS
θ

dθ

dt
=
V cosγ

r
(12.18)

where θ is also a measure of the range angle. ϕ, as said, is the non-dimensional flight path angle, which
can be calculated with

ϕ2 = c2−2k1(ex − 1)− 2(1− α)x+ 2ηαI(x) or ϕ = −

√
rE

HS
sin γ (12.19)

which in the left expression is the second-order approximation of the flight path angle. In that expression,
I(x) is an integral value that gets calculated using Equation 12.26. From the expression on the right
note that the sign of ϕ is positive for the descending leg of the trajectory, and negative for the ascending
leg, thus opposite to the dimensional flight path angle.

One way of solving dτ = dx/dϕ analytically is by approximating ϕ with a second-order polynomial
(Equation 12.22). It follows that all the other quantities can be expressed by using the coefficients of
this polynomial. This approach requires knowing the values of the polynomial coefficients a1, a2, a3.
They can be calculated with the following expressions:

a1 =
3

x1

(
2(1− α)− c2 + 4k1

x1
+

4k1 (e
x1 − 1)

x21

)
a2 = −6(1− α) +

2
(
c2 + 6k1

)
x1

− 12k1 (e
x1 − 1)

x21

a3 = c2

(12.20)

where x1 is the minimum altitude reached during entry. x1 can be calculated by iteratively solving the
left expression of Equation 12.19 for ϕ2 = 0, which occurs when x = x1. It is solved by first calculating
the minimum altitude x′1 with the first-order approximation of ϕ (the left expression of Equation 12.19
without the term 2ηαI(x)). Then, once a first-order approximation of x′1, and a′1, a′2, a′3 is available, the
left expression of Equation 12.19 can be solved for ϕ2 = 0 by keeping I(x) = I(x′1). Once solved,
second-order values for x1, and a1, a2, a3 are obtained.

All the other quantities can now be derived by using the coefficients a1, a2, a3, calculated with
Equation 12.20, and the full aerocapture entry can be reconstructed. The equations that allow for the
derivation of all the aerocapture quantities (trajectory parameters, aerodynamic loads, heat fluxes) are
the following:

x(τ) = −
a2

2a1
−
√
a22 − 4a1a3

2a1
sin

(
√
−a1τ − arcsin

a2√
a22 − 4a1a3

)
(12.21)

ϕ2a(τ) = a1x(τ)
2 + a2x(τ) + a3 (12.22)

ϕa(τ, δ) = δ
√
ϕ2a(τ) (12.23)

I1(τ, δ) =
1

2
ϕa(τ, δ)x(τ)−

a2

4a1
(c− ϕa(τ, δ)) +

(
4a1a3 − a22

)
8a1

τ (12.24)

I2(τ, δ) = −
1

a1
(c− ϕa(τ, δ))−

a2

2a1
τ (12.25)

I(τ, δ) =

(
1 + λ2

)
k1

cx(τ)−
1

2
kαx(τ)2+

−
(1− α)

(
1 + λ2

)
k1

τx(τ)−
(
1 + λ2

)
k1

I1(τ, δ) +
(1− α)

(
1 + λ2

)
k1

I2(τ, δ)

(12.26)
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J(τ, δ) =

(
1 + λ2

)
k1

cτ −
(
1 + λ2

)
k1

x(τ)−
(1− α)

(
1 + λ2

)
2k1

τ2 − kαI2(τ, δ) (12.27)

ϕ(τ, δ) = δ
√
ϕ2(τ, δ) (12.28)

v(τ, δ) =

(
1 + λ2

)
k1

(c− ϕ(τ, δ))− kαx(τ)+

−
(1− α)

(
1 + λ2

)
k1

τ − ηkαI(τ, δ) +
ηα
(
1 + λ2

)
k1

J(τ, δ)

(12.29)

D

gE
(τ, δ) =

(
1 + λ2

)
Bex(τ)−ηv(τ,δ)

2αE∗ (12.30)

L

gE
(τ, δ) =

λBex(τ)−ηv(η,δ)

α
(12.31)

q(τ, δ, C, a, b,M) = CRa
nρ

b
EV

M
E ebx(τ)−

Mηv(τ,δ)
2 (C, a, b,M are set by using heat flux data) (12.32)

where all the equations are only dependent on the fixed entry conditions, range-angle τ , and δ. The
latter, δ, has a value of 1 or -1, and specifies whether the flight is in the downwards or upwards leg,
respectively.

The value of x starts at zero at atmospheric entry, then increases up to a maximum at the deepest
point in the atmosphere, and decreases back down to zero at the atmospheric exit. With this in mind,
the boundaries of the range of values τ takes can be determined by solving x(τ) = 0. At atmospheric
entry,

√
−a1τ = 0, and consequently x(τ) = 0. By considering the cyclic behavior of the sin function,

one set of roots can be expressed as
√
−a1τ = 2πk, where k is any integer, or, k ∈ Z and the first

root is part of this set. Similarly, a second set of roots can be expressed as
√
−a1τ = (1 + 2k)π + 2β,

where β = arcsin
a2√

a22 − 4a1a3
, and again k ∈ Z. Only the smallest two roots (atmospheric entry

and exit) described by these two sets are of interest. These roots are, for atmospheric entry and exit,
respectively,

τ = 0 and τ =

(
π + 2 arcsin

a2√
a22 − 4a1a3

)
1

√
−a1

(12.33)

When the above equations are evaluated from atmospheric entry to exit, values have to be con-
verted to the classical dimensional variables. The equations needed to transform back to the radial
distance, velocity, flight-path angle, and aerodynamic loads are presented here:

r(τ) = −Hsx(τ) + rE (12.34)

V (τ, δ) =

√
V 2
E

eηv(τ,δ)
(12.35)

γ(τ, δ) = arcsin

 ϕ(τ, δ)

−

√
rE

Hs

 (12.36)
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D

gE
(τ, δ) =

D

gE
(τ, δ)

gE

gE
(12.37)

L

gE
(τ, δ) =

L

gE
(τ, δ)

gE

gE
(12.38)

This set of equations is particularly suited for analytically calculating shallow atmospheric entries,
hence with small values of γE . This approximation tends to underestimate the impact of steep entry
flight path angles, thus it can be considered a counterpart of the first-order approximation, which is best
at modeling steep entry trajectories and overestimates shallow entries.

12.1.4. Observations
The suite of analytical tools presented here is quite promising for serving as an initial-state trajectory
estimator in the numerical simulations that will be performed. The capabilities of each method will have
to be individually verified by means of a full numerical model of the problem. This process will select
the most accurate tools for the project.

By just an initial estimation, some considerations can be already made both for multi-flyby tools and
aerocapture equation sets.

Modeling the flyby as instantaneously happening at the moon’s center of mass leads to a very
straightforward approach, but also to a model that lacks too much adherence to reality to be considered
viable. Treating the flyby as instantaneous, but now happening at a set distance and location from the
moon’s center, is already a much better approach than the previous one. In this case, the risk of the
vehicle impacting the moon due to a miscalculation of the analytical approximation is still rather large.
However, the more precise the model ends up being, the lower the risk of a moon impact is going to
be. This does not hold true for the former approach, where a 100% precision would mean certainty of a
moon impact. The third approach to flybys, the complete flyby description, is the most complex model
out of these three, but at the same time it is also the most promising approach. It is indeed the most
accurate model since it includes most of the effects of a satellite-moon gravitational interaction. Its
effectiveness will hence be the first to be evaluated, and, if deemed sufficient in terms of both accuracy
and efficiency, no other model for flyby would be considered.

Regarding the aerocapture entry, two approaches have been identified. A first-order set of equa-
tions, which performs best for large values of γE , and a second-order set of equations, which comple-
ments the other set by performing best for small values of γE . Due to the shallow nature of aerocapture
entry trajectories, it is highly expected that the second-order set of equations will perform best when
verified with the numerical model, but in this case both approaches will be evaluated, regardless of
each one’s effectiveness.

12.2. Numerical Modeling
As already mentioned before, the need for a numerical model for the multi-flyby aerocapture at Jupiter
comes from the need for verifying all the semi-analytical tools that have been presented and developed.
Moreover, the numerical model can become a tool itself to use in simulating the aerocapture trajectory.

A numerical model would also provide highly precise trajectories capable of meeting the require-
ments set in Chapter 9, thus it would be the ultimate tool for conducting the optimization process and
performing the final assessment and evaluation of the aerocapture technique. In this section, its main
characteristics will be described.

12.2.1. Environment
Bodies
Bodies that have to be included in the environment are Jupiter, the main body, and the Galilean Moons
if flybys are to be performed. However, as presented in Chapter 11, no flybys are considered in the
current project. Other bodies that can be included in the environment are Saturn and the Sun, based
on the assessment done in Chapter 5.

Accelerations
The accelerations considered for the environment are the gravitational acceleration from Jupiter, and
the aerodynamic acceleration from Jupiter’s atmosphere. The choice of the gravitational and atmo-
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spheric models is made in Chapter 13.

Radiation
For the radiation environment, the orbit will be considered equatorial, thus the equatorial profile for
radiation intensity at Jupiter, the profile presented in Chapter 3, will be used.

12.2.2. Propagation and integration schemes
From the literature review conducted previous to the current project, a combination of propagation and
integration schemes has been selected. It has been estimated that this combination would be the
best candidate for the characteristics of the science case at hand. It is indeed going to be a highly
dynamic environment, making the RKF7(8) the best candidate for an integration scheme. Moreover,
the absence of singularities and the good performance of the USM7 makes it the best choice in terms
of propagation scheme. In conclusion, the following schemes have been chosen:

• USM7, as propagator
• RKF7(8), as integrator

12.2.3. Aerothermodynamical loads
Understanding how severe the entry loads will be for the vehicle is crucial for assessing the effective-
ness of the mission. Here their calculation rationale is summarised.

Aerodynamic loads
Aerodynamic loads are calculated using the well-known expressions for the drag and lift forces (Chap-
ter 5 shows how the drag force is calculated). Such formulations are already built in the TUDAT envi-
ronment that will be used for running the simulations, thus the data about the aerodynamic force will
be retrieved from the simulation results. Then, based on the vehicle attitude, the various aerodynamic
forces such as lift, drag, and potentially side force, will be calculated.

Thermal loads
The calculation of the thermal loads is thoroughly explained in Chapter 10. For aerocapture trajectories
it has been seen that the convective heat flux is much greater than the radiative heat flux, thus making
the calculation of the former more important. For the convective heat flux, the following formula will be
used, taken from Girija et al. [38]:

qCB=0
= Chfx

√
ρ

RN
V 3 Chfx = 0.6556E − 4 (12.39)

where Chfx is a constant determined by the planet’s atmospheric composition, Jupiter in this case, ρ∞
is the free stream atmospheric density [kg/m3], RN is the vehicle’s effective nose radius [m], and V is
the free stream velocity in [m/s]. Lastly, qCB=0

is the ablation-free (B = 0) convective heat flux and has
units of W/m2.

For the radiative heat flux, the following formula has been used, from Ritter et al. [56]:

qRAD,B=0
= 9.7632379−37 ∗ (2 ∗RN )

−0.17905 ∗ (ρ)1.763827469 ∗ (V )10.993852 (12.40)

where qRAD,B=0
is the radiative heat flux without accounting for non-ablating conditions and non-adiabatic

effects, and has units of W/m2, RN is the nose radius [m], ρ is the density [kg/m3], and V is the airspeed
[m/s].

The radiative heat flux qRAD,B=0
has been then corrected for non-adiabatic effects (Tauber andWake-

field [59]):

Γ =
4qRAD,B=0

ρ∞V 3
∞

qRB=0
=

qRAD,B=0

1 + 3Γ0.7
(12.41)

where Γ is the Goulard number (the radiation cooling parameter) and the heating rate qRAD,B=0
has here

as well units of W/m2. Here, ablation is neglected (ṁ = 0, B = 0).
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Finally, both heat fluxes are corrected for the effect of ablation. The following is amaterial-dependent
correlation derived by Brewer and Brant [61]:

ψCT
=

[
2.344

B

(√
B + 1− 1

)]1.063
(12.42)

where the turbulent convective blockage factor, ψCT
= qC/qCB=0

, is represented as a function of the
non-dimensional blowing coefficientB. The correlation can be seen in Figure 10.6. The same empirical
correlation can be applied to the radiative heat flux as well, with blockage factor ψRT

= qR/qRB=0
that

follows the same correlation.
The blowing coefficient is calculated with:

B =
ṁV 2

∞
2 qCB=0

(12.43)

assuming cp ≈ cp,∞, and the mass injection rate ṁ modeled with a data-regression model (Equa-
tion 10.1).

From those heat fluxes, the total heat load and the peak heat flux are calculated, and from that the
TPS mass fraction is extrapolated. More on that is discussed in Chapter 10.

12.2.4. Termination conditions
In order to terminate all simulations in a consistent way, a specific set of termination conditions has
been selected. The nominal conditions for termination, which have to be satisfied altogether, are the
following:

• Bound orbit: Terminate when E < 0, hence when the spacecraft’s orbit is bound to the planet
(analog is to require the semi-major axis to be positive).

• No aerodynamic forces Terminate when the aerodynamic forces are lower than 0.4 mm/s2. This
prevents termination to occur within Jupiter’s atmosphere.

• Negative flight path angle: Terminate when the spacecraft’s γ goes below zero. This allows
termination to occur at the final orbit’s apocenter, where the γ angle goes from positive to negative.

This set of nominal termination conditions works for all cases where a skipping entry (thus the spacecraft
eventually exits the atmosphere) that results in aerocapture (thus the spacecraft enters a bound orbit
around the planet) occurs.

For all cases that result in an atmospheric entry undershoot (no aerocapture) or overshoot (no
atmospheric exit), additional non-nominal termination conditions have been added. For these non-
nominal conditions, even triggering just one of them would lead to termination, since each of them
tackles a specific non-nominal outcome. They are the following:

• Minimum distance from Jupiter: Terminate when the spacecraft’s altitude goes below 50 km.
This condition terminates in case of an overshoot entry.

• Maximum distance from Jupiter: Terminate when the spacecraft exceeds the boundaries of
Jupiter’s SoI (48.2 million km). This condition terminates in case of an undershoot entry.

• Maximum duration: Terminate when the simulation propagates for more than 200 days. Within
this timespan, the trajectory is able to fully occur, thus this condition is purely a safe stop in case
of unexpected outcomes.

• Maximum CPU time: Terminate when the elapsed CPU time of the simulation exceeds 5 s.
This assures that in case the propagation gets stuck in a non-nominal scenario, the simulation
eventually terminates allowing the script to proceed to the next step in a reasonable amount of
time.

12.3. Observations
When it comes to modeling complex trajectories such as multi-flyby aerocapture trajectories at Jupiter,
both semi-analytical and numerical models have their own advantages and drawbacks. While semi-
analytical models are fast and computationally efficient, they often rely on crude approximations of
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reality, making them inaccurate and unreliable on their own. This is why they need to be evaluated
using numerical models. On the other hand, numerical models that are complex enough to accurately
simulate such trajectories can become highly inefficient without an initial-state targeting algorithm. Ran-
domly guessing the initial state of the trajectory would take a large number of guesses before getting
closer to optimal solutions. In this scenario, semi-analytical approximations can come in handy in iden-
tifying the most promising areas in the design space of decision variables, greatly speeding up the
optimization process. Therefore, a combination of both numerical and semi-analytical models can be
a powerful tool in designing complex trajectories.



13
Integrator & Environment Tuning

Integrator and environment tuning is a key part of the process to build a robust simulation model for
the problem under investigation. This chapter will aim at tuning the integration scheme so that it can
achieve the required accuracy without requiring massive computational power. The environment model
will also be assessed, to make sure it has the required accuracy for the problem to be effectively studied.

13.1. Integrator tuning
Tuning the integrator is a process that requires setting up a robust benchmark upon which the tuning
process can be performed. Hence, the section starts with the definition of a benchmark trajectory,
whose accuracy is one/two orders of magnitude more accurate than the required accuracy for the
integrator.

On the other hand, the integrator accuracy is usually set to be two orders of magnitude lower than
the required accuracy for the physical model. Hence, since in Chapter 9 the set position accuracy was
respectively 100, 10, 100 km for approach, aerocapture, post-aerocapture orbit, the set accuracy for
the integrator will be 1 km, 100 m, 1 km, for the same respective phases.

As a consequence, the benchmark accuracy will be set to 10, 1, and 10m for approach, aerocapture,
and post-aerocapture orbit.

13.1.1. Benchmark set-up: RK8
Three different step sizes for different parts of the trajectory are selected by running a step size study on
the benchmark. The three parts, as said before, are: approach, aerocapture, and post-aerocapture or-
bit. Each part will be individually studied to select the correct step size for the benchmark that achieves
the required accuracy while staying in the truncation error regime. The integration scheme is Runge-
Kutta 8; the most accurate Runge-Kutta method available in TUDAT.

Approach arc
This is the arrival part of the trajectory. It arrives in the vicinity of Jupiter, precisely at a 3.9 million
km distance, thus outside the influence of any of the Galilean moons. The choice has been made
because, when running the analysis, the root finder failed to converge when smaller distances were
set, thus resulting in simulation failure. The investigated step sizes range from 104 to 61·104 s. From
such interval, 31 linearly spaced samples were taken.

The resulting final position error for each step size is presented in Figure 13.1, where it can be
seen that choosing a step size of 105 s could guarantee the required accuracy, staying in the truncation
regime, and at the same time maintain a reasonable speed.

As a result, a step size of 105 s has been chosen.

74



13.1. Integrator tuning 75

Figure 13.1: Step size study of the approach arc of the benchmark.

Aerocapture arc
This is the aerocapture part of the trajectory, it starts at a 3.9 million km distance from Jupiter, then
goes down deep into Jupiter’s atmosphere and arrives at a distance of 3.9 million km from Jupiter
(again, further than the Galilean moons). The investigated step sizes range from 1 s to 21 s. From
such interval, 11 linearly spaced samples were taken.

The resulting final position error for each step size is presented in Figure 13.2, where it can be
seen that choosing a step size of 10 s could guarantee the required accuracy, staying in the truncation
regime, and at the same time maintain a reasonable speed.

As a result, a step size of 10 s has been chosen.

Figure 13.2: Step size study of the aerocapture arc of the benchmark.

Post-aerocapture arc
This is the last part of the trajectory, it comprehends part of the elliptical orbit that results from the
aerocapture phase. The propagation is stopped at the apocenter. The investigated step sizes range
from 104 to 61·104 s. From such interval, 31 linearly spaced samples were taken.

The resulting final position error for each step size is presented in Figure 13.3, where it can be seen
that choosing a step size of 8·104 s could guarantee the required accuracy, staying in the truncation
regime, and at the same time maintain a reasonable speed.
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As a result, a step size of 8·104 s has been chosen.

Figure 13.3: Step size study of the post-aerocapture arc of the benchmark.

Result
An issue that arises when using the benchmark to assess the integrator’s accuracy is the lack of data
points to effectively compare the integration outcome with the benchmark. Figure 13.4 shows the
comparison. Apart from the fact that the integrator of choice with tolerance 10−14 already outperforms
the benchmark, large interpolation errors can be seen. Such errors are caused by the sparse dataset
of points.

By instead using the combination (4e3, 4, 4e3) s of step sizes for the benchmark, a relatively close
benchmark error behavior can be obtained, despite being in the round-off error regime.

Figure 13.4: Trajectory computed with an RKF7(8) (tolerance set to 10−14), and compared with a benchmark with time steps
(1e5, 10, 8e4) s.
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Figure 13.5: Trajectory computed with an RKF7(8) (tolerance set to 10−14), and compared with a benchmark with time steps
(4e3, 4, 4e3) s

The result obtained in Figure 13.5 can be considered satisfactory. The benchmark is 2 orders of
magnitude more precise than the integrator with such settings and the interpolation errors are much
smaller. Their presence now is not dramatic enough for the results to be unreadable, so they can be
tolerated unless they pose a problem for future applications.

13.1.2. Integrator accuracy selection

Figure 13.6: RKF7(8) integration scheme evaluated with different tolerances.

The benchmark affects the evaluation only of the most accurate settings for RKF7(8), precisely only
the case with tolerance set to 10−15. However, a tolerance set to values around 10−14 or 10−13 should
result in an integration scheme that maintains the required position accuracy of 1 km outside Jupiter’s
atmosphere, and 100 m within it. The integrator accuracy would actually be better by one or two
orders of magnitude, but for the relatively little computational load required for the optimization (see
Chapter 15), the focus is more on accuracy than speed.
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13.2. Environment tuning
In this section, the major forces at play in the Jupiter system will be evaluated and selected, with their
respective models.

13.2.1. Forces assessment
Based on the assessment of forces presented in Chapter 3, some key effects have been selected:

• Jupiter’s gravitational pull, the point mass gravity, and the main spherical harmonics effects;
• The Galilean moons’ gravitational pull;
• The atmosphere of Jupiter;
• The gravitational pull of Saturn and the Sun;
• The solar radiation pressure effect.

Among these forces, which ones to consider, and how to model them, is the topic of the current section.

13.2.2. Selection
The aspects earlier presented are here evaluated and their inclusion or not is assessed.

Jupiter & atmosphere: The main components necessary for studying the aerocapture technique are
Jupiter’s gravitational pull and Jupiter’s atmosphere, which are included in the environment.
Galilean moons: Regarding the Galilean moons, since no flybys would be performed, and thus the
focus is set on the aerocapture technique, their effect on the position accuracy goes beyond the scope
of the current project, therefore they are not included in the environment.
Sun & Saturn: The Sun and Saturn could provide perturbations of significant values for the accuracy
of the approach phase, as seen in Chapter 3, precisely in Figure 5.7 and 5.8, but since the aerocapture
phase is the main focus of the project, their effect on the approach trajectory has not been considered.
It is as well something that goes beyond the current scope of the project.
Solar Radiation Pressure (SRP): The same reasoning applies to solar radiation pressure, which would
have a major effect during the approach phase of the trajectory. It is as well not included in the envi-
ronment.

The components included in the environment are thus only Jupiter’s gravitational field and its atmo-
sphere.

13.2.3. Models
The available models are here evaluated and the final ones are selected.

Jupiter’s gravitational field: For Jupiter’s gravitational field, two models can be used: the point-mass
gravity, or a spherical harmonics expansion that considers the values of J2 J4 and J8, which according to
Figure 5.7 and 5.8 (Chapter 3) have significant contributions in terms of magnitude. Using the spherical
harmonics expansion would surely increase the accuracy of the physical model, but since the trajectory
is set to fly close to Jupiter’s surface, the frequency of the model diverging and resulting in failed runs
is rather high. With this drawback, and the fact that its addition would not be necessary for the scope of
the project, which is more directed towards a feasibility study, the spherical harmonics expansion has
been discarded. As a consequence, Jupiter’s point-mass gravity model has been selected.
Jupiter’s atmosphere: Regarding Jupiter’s atmosphere, due to the fact that its accuracy is the most
critical component in determining the aerocapture entry accuracy, the most accurate atmospheric
model available for Jupiter has been selected (it has been presented in Chapter 3). The lack of a strict
constraint on computation speed allows this model to be chosen without a proper trade-off analysis.

13.3. Observations
A benchmark with step sizes (4e3, 4, 4e3) s, where each step size has been used for a different arc,
has been selected, and the integrator RKF7(8) has been evaluated with different tolerances. It has
been found that the tolerances set to 10−14 provide very good accuracy at a reasonable speed. It is a
bit slower but speed was not a driving requirement for the trajectory.
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The simulation environment has been defined as well. The final components are Jupiter’s gravita-
tional field and its atmosphere.

As environment models for those components, a Jupiter point-mass gravity field has been chosen,
since the spherical harmonics expansion was found to be unstable and provided little benefit in accuracy.
Moreover, for this feasibility study, the effect of spherical harmonics was not necessary to be included.
The atmospheric model has been chosen to be the interpolation of Galileo’s data, the most accurate
atmospheric model available.



14
Verification & Validation

Verification and validation is a crucial step to assure the correctness and validity of the models. Here,
the analytical models have been verified with a numerical model, which has been validated with Galileo
flight data.

14.1. Numerical Model Validation
The numerical model has been validated by using data from the Galileo atmospheric entry at Jupiter.
Both data from the Galileo trajectory and the thermal loads has been used for the validation.

14.1.1. The Galileo trajectory
The Galileo probe entered Jupiter’s atmospheric interface at a speed of about 47.8 km/s, at 450 km
altitude. To withstand the intense heat generated by the atmospheric entry, the probe was protected
by a heat shield made of carbon phenolic material. As the probe decelerated, it experienced peak
temperatures up to 15,500 °C and deceleration forces up to 230 g [61].

Only the first part of the Galileo entry has been implemented into TUDAT for the model validations,
specifically the atmospheric entry, up to the heatshield ejection phase. The probe has been modeled
to be a spherical shape of the same cross-section as the probe. The descent trajectory has been found
to not provide data of great interest for validating an aerocapture trajectory model. Reconstructed flight
data available in Table B.2 and Table 10.4 has been used to validate both the trajectory dynamics, with
the acceleration loads, and the heat fluxes.

14.1.2. Model accuracy results
As can be seen in Figure 14.1 and 14.2, several aspects of the flight trajectory have been compared.
Specifically, the drag acceleration, the altitude, the flight path angle, the Mach number, the density, and
the airspeed. The simulated data and the validation data from the Galileo mission seem to be in good
accordance.

A closer look, given by Figure 14.3, shows how the error in airspeed goes up to 1 km/s, but just
during the peak of the entry loads, whereas the error in altitude remains within 5 km. The f.p.a. angle
significantly diverges towards the end of the trajectory. This could have to do with the difference in
shape between the actual probe and what has been used for the simulations here. However, the
accuracymeets the requirements set for the project, thus a better model for the shape has been deemed
unnecessary for this project.

Overall, the results indicate a rather good accordance of the model with the validation data. The
accuracy of the model would be high enough for the purposes of the current project.

An observation goes to the discrepancy of the Mach number as well, as seen at the beginning
of the trajectory in Figure 14.2. This discrepancy originates from the atmospheric model used in the
simulations, which uses real in-flight density data from the Galileo mission, but sets the atmospheric
temperature to be constant. As a result of this, the speed of sound remains constant as well throughout
the whole trajectory, and the Mach number is affected as a consequence.
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Figure 14.1: Acceleration, altitude, and flight path angle plots of the Galileo descent. The dashed grey line indicates the trend
expressed by the validation data. t=0 is set at the entry interface.

The only parameter of concern would be the flight path angle (Figure 14.1 and 14.3), which varies
significantly during the end of the atmospheric entry, and the beginning of the descent. This is likely
due to unmodelled effects such as mass ablation that greatly impact the simulation accuracy at a later
stage of the trajectory for this variable. The same reasoning applies to the other variables, although
for the velocity it happens more on the peak of deceleration. Again, this does not pose a serious issue
for the accuracy of the simulations, since effects such as mass ablation (which are not included in the
numerical model) are not that significant in an aerocapture scenario. The thermal loads are somehow
contained, thus leading to little to no ablation on the vehicle.

Figure 14.2: Mach number, density, and airspeed plots of the Galileo descent. The dashed grey line indicates the trend
expressed by the validation data. t=0 is set at the entry interface.
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Figure 14.3: Plots of velocity, altitude, and flight path angle errors during the Galileo descent. t=0 is set at the entry interface.

14.1.3. Aerothermal loads
The thermal loads are verified by flying the Galileo probe in the simulation environment and assessing
whether the models in use comply with results from the Galileo mission.

Validation data
To verify the correctness of the equations for the thermal loads, reconstructed in-flight data has been
taken from Park [37] and is here provided in Table 10.4. The actual values of the wall convective heat
flux, wall radiative heat flux, and boundary-layer edge radiative heat flux are there available for altitudes
ranging from 100 to 200 km. Such data has been interpolated with respect to altitude, by means of an
8-th order Lagrange interpolator, but its validity cannot extend beyond that altitude range because of
the large extrapolation errors that would be introduced.

Convective heat flux
A first observation regards the convective heat flux calculated with Equation 10.8, which appears to
be of the same order of magnitude as that calculated with Equation 10.7 (see Figure 14.4). For this
reason, Equation 10.8 has been kept as the preferred method for the calculation of the convective heat
flux. The selected equation, already presented in Chapter 10, is the following:

qCB=0
= 2004.2526 ∗ 1√

2∗RN

0.6091

∗
( ρ

1.22522

)0.4334441
∗
(
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3048

)2.9978867

When corrected for the effect of ablation (ψCT
= qC/qCB=0

), the current model still overpredicts
Park’s results, although it shows the expected qualitative trend. A deeper investigation of the problem
might highlight the cause of the overprediction, but the current result could be still used as a conser-
vative measurement of the actual flux experienced by the probe. Moreover, the effect of ablation for
an aerocapture entry will not be as pronounced as that for the Galileo probe, thus reducing the error
committed when modeling this effect.

The analysis of the results would anyway have to consider the overprediction factor, but there would
be certainty over the fact that the convective heat flux does not get underdetermined.

A plot of the two correlations, the selected correlation with the blockage effect included, and the
results from Park [37], is available in Figure 14.4.

Radiative heat flux
The radiative heat flux qRAD,B=0

, calculated with Equation 10.15, is over-determined when compared to
results from Park [37], as shown in Figure 14.5.
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Figure 14.4: Comparison between the convective heat flux (qCB=0
) calculated with the correlation obtained by data

interpolation in this work and the correlation provided by Ritter et al. [56]. The correlation provided by Ritter et al. [56] has been
kept and adjusted for the ablation effect (ψCT

= qC/qCB=0
). This correlation has been then compared to the actual heat

fluxes experienced by Galileo, those calculated by Park [37].

However, when the non-adiabatic effects on radiation are considered, the curve (qRB=0
) matches

the boundary-layer-edge radiative heat flux qR,e calculated by Park [37], but it is still higher than the
wall radiative heat flux.

Finally, when also the blockage effect due to ablation injection is considered, the curve (qR) comes
close to matching the wall radiative heat flux qR,w calculated by Park [37]. The wall conditions for the
incident radiative heat flux are then well approximated by the selected method, as clearly shown in
Figure 14.5.

Figure 14.5: Radiative heat flux calculated at different conditions and compared to results from Park [37]. qRAD,B=0
is the total

incident heat flux, qRB=0
is the heat flux rescaled accounting for non-adiabatic effects, qR is the wall incident heat flux, where

also the effect of ablation has been considered. For Park [37] results, qR,e is the radiative heat flux at the boundary-layer edge,
and qR,w is the radiative heat flux at the wall.

Integrated heat load
The total integrated heat load that results from a simulated Galileo entry has been seen to comply with
the value reported by Figure 10.7, which is about 200 kJ/cm2. For this to happen, all the main effects
on the heat fluxes have to be taken into account. The total integrated heat load calculated for the wall
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conditions is 226.631 kJ/cm2, which corresponds to a mass fraction of 0.526.
As a consequence, the resulting TPS mass fraction matches rather well the actual TPS mass frac-

tion of the Galileo probe.

Observations
The models for calculating the convective and radiative heat flux have been verified using the Galileo
probe trajectory and heat fluxes from the literature.

Good accordance between Galileo’s radiative heat flux and the radiative heat flux models has been
found, whereas the calculation for the convective heat flux seems to overpredict the actual values when
excessive ablation is occurring. Anyway, the overprediction is not severe, thus making this model a
good conservative tool for calculating the convective heat flux.

The total heat load resulting from the numerical model is also closely matching the total heat load
experienced by the Galileo probe. The TPS mass fractions match as well as a consequence.

Although an aerocapture trajectory has a different geometry than the Galileo entry, such models
can be considered reliable enough for a rough estimate of the thermal loads for aerocapture.

An uncertainty analysis to understand the impact of the model uncertainty would increase the insight
into the models in use, which is essential to assess their robustness when applied for aerocapture.

14.2. Analytical Model Verification
The analytical model prediction accuracy is here verified with the numerical model, and the results of
such verification are presented.

14.2.1. Verification process
The analytical model presented in Chapter 12 and Chapter 11 has been verified using a numerical
model that features Jupiter’s point-mass gravity, the most accurate atmosphere model, and the point-
mass gravity of the moon of the flyby.

The problem parameters have been varied through a grid search according to the boundaries pre-
sented in Table 14.1. The variation has been for a single parameter at once. The nominal ones are
present in that table as well. For each parameter, and for each moon considered (4 Galilean moons),
100 runs have been performed, evenly line-spacing the selected parameter among the considered
interval.

Decision Variable Lower Boundary Upper Boundary Nominal Value Unit

Interpl. Velocity VJ∞ 5100 6100 5600 m/s
Entry Fpa γE -4 -0.1 -3 deg
Flyby Epoch tflyby 14610 14627 14610 days since J2000
Impact Parameter B -rSoImoon rSoImoon Rmoon m

Table 14.1: Decision variable ranges for the verification

The numerical model has been run by using the initial state and epoch calculated by the analytical
model, those that according to the assumptions of the analytical model would result in the desired
trajectory.

For the validation, the propagation of the numerical model has been set to start at the atmospheric
entry interface, with the entry state and epoch provided by the analytical model. This allowed to remove
any integration error stemming from the approach phase, but most importantly it ruled out the perturba-
tion of the moon’s gravity that would have affected the orbit precision during the approach, leading to
a different entry state. In this way, the actual accuracy of the atmospheric entry equations, and of the
subsequent parts of the model, have been properly assessed.

14.2.2. Results
Among all the results obtained from the grid search, the variable with the strongest impact on the out-
come of the simulations has been seen to be the entry flight path angle γE , whereas other parameters
did not induce many variations in the results. The entry velocity has shown to be almost not sensitive to
a change in the interplanetary velocity VJ∞ , as it has been just marginally affected by a variation of VJ∞
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along all the interval provided by Table 14.1. The epoch of the flyby, on the other hand, just affected
the position of the initial state, and the initial epoch, since the trajectory geometry is built around the
desired arrival conditions at the moon. Lastly, the impact parameter, B, had little effect on the overall
outcomes of the simulations, and did not greatly influence the comparison. Here, the main driver of the
analytical model accuracy was the aerocapture phase, rather than the flyby phase.

For all these reasons, the most impactful decision variable has been the entry flight path angle γE ,
and thus all results portrayed here show how the accuracy varies with a variation of such variable.

As seen in Figure 14.6 and 14.7, the position and velocity errors escalate rather quickly right after
the aerocapture phase, although this representation is far too general and does not give much insight
into what is the root cause of these errors. The position error shown in Figure 14.6 might appear to
rise as γE decreases, however, this is only due to the fact that shallower flight path angles lead to
more elliptical orbits (or escape trajectories), thus terminating the simulation, and comparison, at a
later moment in time, where the discrepancies have had more time to increase.

Figure 14.6: Magnitude of position error between the analytical and the numerical model. Starting epoch is set at the
atmospheric entry interface. The runs have been performed by varying the atmospheric entry flight path angle γE , and the

successful runs have been plotted.

Figure 14.7: Magnitude of velocity error between the analytical and the numerical model. Starting epoch is set at the
atmospheric entry interface. The runs have been performed by varying the atmospheric entry flight path angle γE , and the

successful runs have been plotted.
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A look at what components of the position and velocity errors are more affected is given by Fig-
ure 14.8, where the errors have been presented in the RSW components. The R and S components
are the most affected, with the R axis being the most affected one, whereas theW component has been
seen to be rather stable. This behaviour can be explained by the different geometry of the resulting
orbits. As it will be later shown, it often happens that the analytical equations for aerocapture have a
tendency to undershoot the exact solution, thus leading to capture orbits with a much shorter period
than the capture orbits resulting from the numerical model. Moreover, it often happens that what has
been computed to be a capture orbit by the analytical model, is actually an unbound orbit according to
the numerical model (see Figure 14.11). This discrepancy in geometry explains the great difference in
the R, and in the S directions of the RSW frame.

Lastly, the errors in velocity are a result of such reasoning. Being the two geometries very different,
it follows that the velocity vectors at any given epoch will be pointing toward different directions, leading
to errors in velocity that shine a grim light on the analytical model, making its predictions appear worse
than what they actually are.

Figure 14.8: Error in position and velocity along the RSW axes (R: radial, S: along track, W: across-track), between the
analytical and the numerical model. Starting epoch is set at the atmospheric entry interface. The runs have been performed by

varying the atmospheric entry flight path angle γE , and the successful runs have been plotted.

Such information from the RSW components of the position and velocity error gives more insight
into how the two orbits diverge after the aerocapture phase. However, the key point that should be
investigated to address the root causes of such discrepancies is indeed the aerocapture phase itself.

For this reason, the aerocapture phase has been singularly investigated, and its aspects individually
examined. The trend shown by various driving quantities of the aerocapture phase is presented in
Figure 14.9 and 14.10. These figures show the behavior of errors on flight data as well as on loads
acting on the vehicle. In these figures, it comes clear how reducing the entry flight path angle γE leads
to more accurate solutions, as expected. The analytical equations perform better with shallow values
of γE . The trend is confirmed by every quantity presented in those figures.

Regarding the accuracy of the atmospheric exit state, a reasonable value of γE that leads to a stable
capture orbit is around 3 degrees, thus errors up to 50 km in altitude and 1.5 km/s in velocity can be
expected for a nominal aerocapture trajectory computed with the analytical model.
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Figure 14.9: Error in altitude, flight path angle, and airspeed, between the analytical and the numerical model. Here, only the
atmospheric entry phase is considered, and the elapsed time is in the order of 100s of seconds. The runs have been

performed by varying the atmospheric entry flight path angle γE , and the successful runs have been plotted.

Figure 14.10: Error in atmospheric density, drag and lift accelerations, between the analytical and the numerical model. Here,
only the atmospheric entry phase is considered, and the elapsed time is in the order of 100s of seconds. The runs have been

performed by varying the atmospheric entry flight path angle γE , and the successful runs have been plotted.

Regarding the errors made in computing the atmospheric entry loads, Figure 14.10 shows how
the drag acceleration aD can be off by more than 20 m/s2, and 10 m/s2 for the lift acceleration aL.
Considering that the magnitudes of such accelerations computed with the numerical model are 5 m/s2
for aD and 2 m/s2 for aL, it results that the analytical model over-predicts the intensity of such loads on
the vehicle by an order of magnitude, leading to conservative solutions.
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A good insight into what might be the cause of the issue is given by the error in atmospheric den-
sity computed by the analytical model. Even if its magnitude is rather small, the great impact of other
quantities along the entry would make this difference have an important effect on both aD and aL, since
the mathematical expression of both accelerations depends on ρ. Another contributing factor could be
coming from the different velocity vectors used for the computations. While the numerical model con-
siders the spacecraft’s velocity w.r.t. Jupiter’s atmosphere, the airspeed indeed, the analytical model
makes use of the spacecraft’s inertial velocity w.r.t. Jupiter. Those two values can differ by more than
10 km/s. The inertial velocity is indeed around 60 km/s, whereas the airspeed for an equatorial entry
in Jupiter’s rotational direction is around 47 km/s.

Figure 14.11: The eccentricity of the final orbit computed by the analytical and numerical models is shown in the figure above
as it varies for different values of the entry flight path angle γE . In the figure below, the error between the two eccentricities is

presented.

Finally, a key quantity to investigate in order to assess the reliability of such analytical model is
the eccentricity of the final orbit efinal. Figure 14.11 shows efinal computed by the numerical and semi-
analytical models for various values of γE , and as presented there it is clear how the analytical equations
greatly undershoot the final orbit eccentricity, leading to many theoretically captured states that do not
lead to orbital capture when verified numerically. The error in final eccentricity is rather dramatic as well,
far too beyond the set accuracy requirement in Chapter 9. It decreases as γE decreases, as expected,
although it still remains too large for the usable range of γE the problem requires.

14.3. Final Observations
In this chapter, a numerical model for aerocapture at Jupiter has been validated using Galileo flight data
from the homonymous mission. There is a rather good accordance between the model and the data,
making it suitable for the current study. The validation has been performed with a spherical model for
the probe, since the actual shape was not yet implemented. Due to the good agreement with the flight
data the implementation of a better and more accurate shape, while being truly a valuable addition to
the project, has been seen as unnecessary given also the time constraints of the project.

An analytical approximation of the aerocapture at Jupiter has been verified by using this validated
numerical model. The results indicate that a refinement of the analytical model is needed, as some of
the assumptions made in the analytical expressions are not valid according to the numerical outcomes.
The airspeed the numerical model uses differs from the inertial velocity the analytical equations use,
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thus this aspect has to be surely tackled to improve the performance of the analytical equations. Then,
the atmospheric model could play a big part in the analytical evaluation of the mechanical loads, thus
a more accurate model for the atmosphere has to be considered. All these additions to the analytical
model, while clearly adding much value to the project, exceed its time constraints, thus they will be left
as future recommendations for studies in this matter.
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15
Optimization

This chapter covers the final formulation of the problem, and its subsequent optimization for the selected
objectives. From that, the best solutions are drawn, and observations on their feasibility and robustness
are made.

15.1. Jupiter Aerocapture Problem
The final version of the aerocapture problem at Jupiter is here redefined and presented.

15.1.1. Definition
As seen in Chapter 11 and 14, some aspects of the problem have been removed to better focus on
the main research question, and the model of choice has resulted to be the numerical model. In fact,
the addition of flybys adds value to the problem but either they pose too strict constraints, or their
study would exceeds the time constraints of the project. Moreover, the semi-analytical equations for
aerocapture have shown to underperform under the range of entry flight path angles γE of the problem,
thus the numerical model has been preferred.

The definitive problemwould then feature an aerocapture trajectory at Jupiter, numerically computed
with the numerical model presented in Chapter 12. The trajectory would start at atmospheric entry
and would end at the apocenter of the post-aerocapture bound orbit. In case of unbound orbits, the
trajectory would end once the spacecraft exits Jupiter’s SoI. Therefore, as presented in Chapter 9, the
environment of the aerocapture entry consists of Jupiter’s point mass gravity, and Jupiter’s atmosphere.
The atmospheric model consists of Galileo data interpolation, the most accurate model available for
Jupiter’s atmosphere.

While the gravitational irregularities of Jupiter would be capable of affecting the shape of the trajec-
tory, they are unlikely to be of such magnitude that they would significantly alter the final results and
the values of the objective functions. The focus of the optimization is more directed towards finding
the mass benefits of an aerocapture trajectory, rather than precisely assessing the trajectory accuracy.
The point-mass gravity model has been preferred as it is faster and does not pose the risk of diverging
(thus resulting in an unsuccessful simulation) when getting close to the surface of Jupiter.

15.1.2. Description
The final problem hence consists of two decision variables, the interplanetary excess velocity VJ∞, and
the entry flight path angle γE , which would define the shape of the arrival trajectory and the atmospheric
entry state. The results of the entry trajectory then lead to a final orbit which has to be bound to the
planet (a constraint on eccentricity) and has to respect thresholds on aerothermodynamical loads.

The trajectory is equatorial, since it leads to the most favorable airspeed by taking advantage of the
planet’s rotation. The entry interface is set at 450 km. By using the vis-viva equation, the value of the
entry velocity VJE can be easily retrieved, and by knowing γE the velocity vector can be determined.
The position vector is arbitrarily set at an altitude of 450 km on the equatorial plane, due to the cylindrical
symmetry of the problem.
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As a result of this new problem definition, the list of objectives, decision variables, and constraints,
has been adapted accordingly.

15.2. Objectives, Decision Variables, Constraints
The new quantities, objectives, decision variables, and constraints, for the optimization of the final
problem are presented here.

15.2.1. Objectives
Three objectives have been selected for the optimization.

fpayload: Maximum payload mass fraction
This objective aims at maximizing the mass fraction of the spacecraft that does not comprehend the
heatshield or the Entry Support System (ESS), thus not only the mass fraction of the science instrumen-
tation. Its calculation has been shown in Chapter 9, when talking about the calculation of the payload
mass.

Radiation Dose: Minimum total radiation dose
This objective aims at minimizing the total radiation dose to be absorbed by the spacecraft. It is calcu-
lated based on the equatorial radiation intensity profile available in Chapter 3, and the intensity function
is integrated based on the time the spacecraft spends at each altitude.

Aerocapture Benefit: Maximum benefit over impulsive burns
Although it might seem similar to the fpayload objective, the Aerocapture Benefit subtracts the fpayload
objective with the propellant mass fraction required for a spacecraft to operate a Jupiter insertion burn
maneuver at an altitude of 2000 km. The target orbit of the insertion burn maneuver has an eccentricity
of 0.98. A positive value for the objective indicates that aerocapture is preferable over a conventional
impulsive-burn scenario.

15.2.2. Decision variables
Two decision variables have been selected for the optimization.

Interplanetary arrival velocity VJ∞
The excess velocity a spacecraft would arrive with when entering Jupiter’s SoI.

Atmosphere entry flight path angle γE
The flight path angle a spacecraft would have when entering Jupiter’s atmosphere. The entry interface
is set at an altitude of 450 km.

15.2.3. Constraints
The following constraints have been set for the optimization.

Maximum peak heat flux
The entry probe would feature a HEEET heatshield, which can resist heat fluxes up to 5000 W/cm2.
This value is set as the maximum allowable peak heat flux.

Maximum aerodynamic loads
The maximum allowable aerodynamic acceleration has been set to 30 gE . While a spacecraft could be
designed to resist loads up to hundreds of gE ’s, the requirements on its structure would need a larger
mass fraction allocated for that, in order to resist such loads. This is why entry trajectories that exceed
this constraint have not been considered.

Minimum and maximum Jupiter distance
The minimum distance is set at Jupiter’s radius RJ , and the maximum distance at Jupiter’s SoI edge,
RJ SoI . This constraint assures that the spacecraft’s final trajectory flies within the mission space, that
is Jupiter’s SoI, and does not crash into Jupiter’s atmosphere
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Final orbit eccentricity
The maximum allowable eccentricity for the post-aerocapture orbit is set to 0.99. Values beyond 0.99
are considered to pose great risks to the state of the final orbit. Small errors could result in unbound
final orbits, with the spacecraft that would fly away from Jupiter without being captured.

15.3. Grid Search
For the optimization of the problem, a grid-search strategy has been implemented. The presence of
only two decision variables made this choice possible, as even trying every possible combination of
the two still leads to a number of simulations that can be handled and stored by the hardware in use
for the project.

15.3.1. Methodology
The grid search has been conducted by taking 100 values for each decision variable, equally spaced
within each variable interval range. Each combination of the two decision variables has been run, for
a total of 10,000 simulations performed. Each run is referenced with its run index, an index that goes
from 0 to 9999. It will be later used when talking about optimal solutions.

Each simulation returned the values for the objective functions, and the quantities relative to each
constraint. The set of simulations has been then filtered with the constraint requirements leading to the
results shown in the next section.

15.3.2. Results
The resulting values of the objective functions have been plotted, one objective against the other, in
Figure 15.1, 15.2, and 15.3. Figure 15.1 shows the relationship between the Aerocapture Benefit
and the fpayload objectives. Two values that are clearly closely correlated, as expected. This strong
correlation, while present for the γE decision variable, is less pronounced when related to the VJ∞
variable. The Aerocapture Benefit objective is indeed more sensitive to a change in VJ∞ than fpayload.
This has to do with the fact that Aerocapture Benefit is a subtraction of two values: the fpayload objective,
and the propellant mass fraction for a classical Jupiter insertion maneuver. The atmospheric entry
trajectory is not that sensitive to a change in VJ∞, whereas the required ∆v and propellant mass for a
classical Jupiter insertion maneuver is indeed sensitive to changes in VJ∞.

(a) The coloring represents the change in the γE decision variable (b) The coloring represents the change in the VJ∞ decision variable

Figure 15.1: The objective Aerocapture Benefit, which indicates the savings in payload mass fraction w.r.t. a nominal insertion burn, is
plotted against the objective fpayload, that is the payload mass fraction of the aerocapture technique. Results are already filtered for

constraints.

Such difference in sensitivity can indeed be seen between Figure 15.2 and 15.3. On the first figure the
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fpayload objective is almost invariant w.r.t. VJ∞, whereasAerocapture Benefit shows a larger variation for
the same change in VJ∞. The two objectives compared in Figure 15.1 are hence similar but with some
key differences. One, fpayload, is more suitable when the focus of the study is towards maximizing the
payload mass fraction of the probe (here payload is still considered in a more general sense), whereas
the other, the Aerocapture Benefit, represents a comparison between two techniques and is indeed
more suitable when the focus is on comparing them. The following study is focused on assessing the
benefits the aerocapture technique can provide compared to already existing orbital insertion strategies,
thus the Aerocapture Benefit objective is indeed the best candidate to assess such comparison. The
fpayload objective has been investigated to make sure it was not competing with the Aerocapture Benefit,
and since Figure 15.1 clearly shows how the two objectives are strongly and positively correlated, only
the Aerocapture Benefit objective will be considered for the analysis of optimum points.

(a) The coloring represents the change in the γE decision variable (b) The coloring represents the change in the VJ∞ decision variable

Figure 15.2: The objective Radiation Dose, which indicates the total radiation dose absorbed by the spacecraft, is plotted against the
objective fpayload, that is the payload mass fraction of the aerocapture technique. Results are already filtered for constraints.

(a) The coloring represents the change in the γE decision variable (b) The coloring represents the change in the VJ∞ decision variable

Figure 15.3: The objective Radiation Dose, which indicates the total radiation dose absorbed by the spacecraft, is plotted against the
objective Aerocapture Benefit, which indicates the savings in payload mass fraction w.r.t. a nominal insertion burn. Results are already

filtered for constraints.



15.4. Pareto Front 95

Lastly, what can be seen from both Figure 15.2 and 15.3 is that the amount of radiation dose a
probe absorbs presents two regions of minimum values. The regions featuring steep values of γE can
rather confidently be considered an area of absolute minimum since low-eccentricity equatorial orbits
at Jupiter tend to avoid high-radiation areas (Jupiter’s radiation environment is presented in Chapter 3).
The lower the eccentricity, the lower the total radiation dose received, with a minimum set for orbits that
do not venture further than 1.5 Jupiter radii.

Then, due to the structure of Jupiter’s radiation environment, the larger the eccentricity, the more the
total radiation dose becomes, peaking at a maximum where the majority of the orbital period is spent
in the high-radiation areas (spanning from 1.5 Jupiter radii to Ganymede’s orbit). The total radiation
dose then is seen to steadily decrease reaching a local minimum where the constraint on maximum
final eccentricity acts. Since the interest of the study is on orbits that maximize the Aerocapture Ben-
efit objective, and minimize the Radiation Dose, the region of minimum radiation dose and minimum
aerocapture benefit is considered of little interest for the current project, thus removed from the Pareto
front study. As a consequence, the design space on the γE decision variable is redefined to contain
only values of γE greater than -3.4 degrees.

Another final remark can be made, this time on the entry corridor width. The theoretical width
presented in Chapter 9 appears to be narrower than that computed with these results. It in fact spans
from a γE value of -4.5 deg to -2.9 deg, a corridor width of 1.6 degrees. Although more optimistic, it
remains a quite narrow entry corridor width for a Jupiter entry, which would still require a robust GNC
system to assure the target orbit is properly achieved. As stated by Girija et al. [38], the requirements
for a GNC system capable of handling such entry make an aerocapture trajectory at Jupiter a technique
unlikely to be used in the near future, since technological advancements are still needed to make sure
this approach would be preferable to more classical ones.

15.4. Pareto Front
Based on the results and conclusions of the grid search, a Pareto front has been drawn for theRadiation
Dose and Aerocapture Benefit objectives, with a narrower decision variable space that includes values
of γE greater than -3.4 degrees. Figure 15.4 shows the location of the points composing the Pareto
front of the two objectives, and Figure 15.5 provides a close-up to that same Pareto front.

The optimum points correspond to the runs numbered 7358 and 9857, two candidates whose values
for the decision variables, objectives, and constraints can be found in Table 15.1.

Figure 15.4: The objective Radiation Dose, which indicates the total radiation dose absorbed by the spacecraft, is plotted
against the objective Aerocapture Benefit, which indicates the savings in payload mass fraction w.r.t. a nominal insertion burn.
Results are filtered for constraints and values for γE are capped at γE > −3.4 deg. The points belonging to the Pareto front

are circled in red and are on the top-left corner of the image.

Regarding the two candidate solutions shown in Figure 15.5 and Table 15.1, some remarks can be
made.
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First, both solutions have the interplanetary excess velocity VJ∞ on the higher end of the variable
space, with values up to 6 km/s. Since for a classical Hohmann transfer the resulting VJ∞ is about 5.6
km/s, it follows that transfer trajectories faster that the Hohmann transfer possess favourable charac-
teristics for the arrival and aerocapture at Jupiter. The favourable effect, however, is not large enough
to be considered a driving parameter when designing an Earth-Jupiter transfer, but its presence is still
noteworthy, as Figure 15.3b shows.

Both solutions feature a γE that is among the shallowest values achievable while also meeting
the requirement on final eccentricity. Both their eccentricities in fact show values that are close to
the boundary value set to 0.99 (see Table 15.1), thus the neighbourhood of such solutions should be
investigated to better assess how close to the boundary those solutions are and their robustness.

Regarding the other constraints, each solution is well within the space of feasible solutions. Regard-
ing the objectives, instead, clear is the end result from the values of the Aerocapture Benefit objective.
Even for the best solutions, the benefit achievable from aerocapture is negative, meaning that a clas-
sical insertion burn by means of a bi-propellant engine still requires less mass for the propellant and
tanks than an atmospheric entry subsystem with its heatshield and entry support system.

Another observation can be made about the Radiation Dose absorbed by the spacecraft during
aerocapture and the first half-orbit. Since aerocapture trajectories that end up in the most favorable
airspeed direction during entry are equatorial, this means they have to pass through Jupiter’s high
radiation areas, which are toroidal regions that peak in intensity along the equator. As a result, the
total radiation dose resulting only from the aerocapture and the first orbit is already around values of
96 krad, which can get lower only when considering low-eccentricity captured orbits that stay in the
low-radiation vicinity of the planet. On the other hand, classical insertion burns can be performed also
in polar orbits, which would totally avoid Jupiter’s high radiation areas. This is another key benefit of a
classical insertion trajectory.

Figure 15.5: Close-up representation of the Pareto front for the objectives Radiation Dose and Aerocapture Benefit.
Annotations on the image indicate the run number associated with the optimum solution and are used for reference.
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Values Solution 7358 Solution 9857

Interplanetary Velocity VJ∞ [m/s] 5.837374× 103 6.089899× 103

Entry Fpa γE [deg] −2.949495 −2.984848

Payload Mass Fraction fpayload [-] 0.4470431 0.4409519

Radiation Dose [krad] 96.10917 96.1925

Aerocapture Benefit [-] −0.3759677 −0.3744960

Maximum Aerodynamic Load [m/s2] 6.041796 7.060132

Peak Heat Flux [W/m2] 5.797463× 106 6.026576× 106

Minimum Jupiter Distance [m] 7.021207× 107 7.020820× 107

Maximum Jupiter Distance [m] 4.82× 1010 4.82× 1010

Final Eccentricity [-] 0.9897191 0.9869964

Table 15.1: Values of the decision variables, objectives, and constraints for the optimal solutions numbered 7358 and 9857.

15.5. Best candidates analysis
Refined solutions presented in Figure 15.6 show how there is still some room for improvement, albeit
small. It can be seen in Figure 15.6 how solutions closer to the optimum can be found, increasing the
Aerocapture Benefit by 0.004, however, that means they are also closer to the eccentricity threshold,
resulting in risky geometries. A small error for such configurations could result in an escape trajectory
with consequent mission failure.

Solution number 9857 presents an eccentricity relatively distant from the constraint (see also Ta-
ble 15.1), whereas solution number 7358 is already fairly close, to the point it can be considered too
risky and unfeasible.

Figure 15.6: The two solutions are now plotted with a color mapping that indicates how close they are to the constraint
threshold.

A depiction of the orbital geometry of solution 9857 can be seen in Figure 15.7, whereas its aerocap-
ture altitude-velocity profile is present in Figure 15.8, and other quantities relative to the aerocapture
phase are presented in Figure A.5, A.6, A.7.
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Figure 15.7: Shape of the optimal solution for the aerocapture trajectory.

Figure 15.8: Altitude-Velocity profile of the aerocapture phase.

15.6. Observations
A new definition of the problem has been made, which comprehends only aerocapture at Jupiter, with
three objectives: fpayload, Aerocapture Benefit, and Radiation Dose.

For the optimization process, fpayload has not been used, only Aerocapture Benefit and Radiation
Dose. They have been shown to be the key parameters in comparing the two orbital insertion tech-
niques.

Radiation has an absolute minimum for low Jupiter equatorial orbits, and a local minimum for orbits
that spend little time in the high-radiation area. The design space has been limited to γE greater than
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-3.4 degrees to remove the global minimum of Radiation Dose, which is of little interest to the study.
The corridor width remains narrow, 1.6 degrees. A strong and robust GNC system would be needed.

For this reason, according to Girija et al. [38], aerocapture at Jupiter isn’t preferable to classical methods
for the near future.

Aerocapture Benefit is negative even for the best solutions, making this technique a niche applica-
tion for Jupiter, that could be used only for specific types of missions. The classical orbital insertion
maneuver is still to be preferred.

Lastly, radiation doses up to 90 krad are the minimums achievable by the aerocapture technique,
whereas a classical Jupiter insertion burn could be performed in a polar orbit, thus totally avoiding
Jupiter’s high radiation areas and resulting in far lower radiation doses.



16
Aerocapture: Overall Assessment

Aerocapture, the technique of using a planet’s atmosphere to decelerate a spacecraft for orbital inser-
tion, has been seen to present both a set of unique challenges and intriguing opportunities.

16.1. Challenges
The first challenge involves mass fractions. Contrary to what might be intuitive, aerocapture requires
a greater mass fraction than a traditional propulsive burn. This is primarily due to the need for an
aeroshell or heat shield to withstand the high temperatures associated with atmospheric entry. As
such, the spacecraft design must incorporate a significant increase in mass, taking into consideration
both the protective structure and the associated support systems.

The second challenge pertains to the precision of GNC systems. Aerocapture is a difficult operation
that demands exceptionally high precision from these systems. If a spacecraft enters the atmosphere at
an incorrect angle or velocity, it could either burn up or bounce back into space. Therefore, ensuring the
spacecraft is on the right trajectory and speed is absolutely vital, and demands rigorous and accurate
GNC protocols.

Themethod also imposes constraints on spacecraft design, specifically relating to probe dimensions
and folding. To survive the intense heat and pressure during aerocapture, the spacecraft must be
designed to withstand these harsh conditions. Additionally, the probe should be designed in a way
that allows it to fold effectively to ensure an optimal aerodynamic shape and to safeguard any delicate
instruments during this high-stress period.

Lastly, an important operational requirement of aerocapture is performing a pericenter raise maneu-
ver after the initial atmospheric pass. This is necessary to ensure that the spacecraft doesn’t reenter
the atmosphere, which could potentially lead to a catastrophic mission failure. This maneuver can be
accomplished using a thruster, expending a part of the spacecraft’s propellant reserve, or via a gravity
assist by performing a close flyby of one of the planet’s moons. This choice largely depends on the
specific mission requirements and the resources available.

16.2. Opportunities
Despite these challenges, aerocapture also provides unique opportunities. One such opportunity is
the ability to gather distinctive data about Jupiter’s atmosphere. The probe can capture invaluable data
about the gas giant’s thick atmosphere, providing insights into its composition, temperature, pressure,
and more. This is a unique form of data collection that is difficult to achieve with traditional flyby or
orbiting missions.

Aerocapture also offers a unique solution for achieving low-eccentricity orbits around Jupiter, a
feat difficult with traditional chemical propulsion due to its high propellant requirements. By leverag-
ing Jupiter’s own atmosphere to decelerate the spacecraft, aerocapture can efficiently transition the
spacecraft into a low-eccentricity orbit. This innovative technique opens new opportunities for close-
range, sustained study of Jupiter, enhancing our understanding of its atmospheric composition, mag-
netosphere, gravitational field, and numerous moons.
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16.3. Observations
In conclusion, while aerocapture presents considerable challenges in terms of spacecraft design and
operation, it also offers unique data collection opportunities, making it an appealing technique for spe-
cific mission profiles. Its applicability for a Jupiter mission remains however still limited to some niche
applications.
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17
Conclusions and Recommendations

17.1. Conclusions
The project started with the following research questions:

How can a Jupiter insertion trajectory be performed with the sole use of gravity assists and
atmospheric drag?

How, if so, can an unpropelled trajectory to Jupiter deliver more payload than a traditional trajectory
featuring impulsive insertion maneuvers?

Answering the first question. Performing a Jupiter insertion trajectory with the sole use of gravity
assists and atmospheric drag cannot be done at the current technological level. Further research
aimed at improving the knowledge of the spacecraft’s position and velocity states is needed. This,
or research directed towards combining the magnitude of different forces are some steps towards a
reduced need for a GNC system. In fact, currently, a spacecraft needs a GNC system to guide itself
to the right atmospheric entry conditions, and to maintain the correct attitude while diving into Jupiter’s
atmosphere.

Regarding the second question, an unpropelled aerocapture trajectory cannot deliver more space-
craft payload than a conventional insertion burn. This has to do with themass required for the heatshield
and for the entry support system, a suite of instruments necessary to guide the probe through the entry
phase. It has only been found in the literature that aerocapture is preferable only for low-eccentricity
target orbits, which are not feasible to reach with chemical engines.

In conclusion, while aerocapture presents considerable challenges in terms of spacecraft design
and operation, it also offers unique data collection opportunities, making it an appealing technique for
specific mission profiles. Its applicability for a Jupiter mission remains however still limited to some
niche applications, as the benefit of the aerocapture technique is not positive for all the investigated
scenarios.

17.2. Recommendations
Aerocapture, although challenging in terms of spacecraft design and operation, offers a unique data
collection opportunity, making it an appealing technique for specific mission profiles. To further enhance
the effectiveness and versatility of aerocapture for future missions, the following recommendations are
proposed:

1. GNC: Given the high precision required for the aerocapture trajectory, there is a need for further
research and development of advanced GNC systems. Accuracies in entry position and velocity
of respectively 10 km and 0.1 m/s should be satisfied.

2. Refine Aerocapture Equations: To improve accuracy and reliability, the mathematical equa-
tions that model the aerocapture process should be refined. The actual airspeed, instead of the
spacecraft’s inertial velocity, and more accurate analytical models for the atmosphere should be
considered.
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3. Post-Aerocapture Flyby Targeting Algorithm: Refinement of the post-aerocapture flyby target-
ing algorithm is necessary to improve accuracy during mission-critical maneuvers.

4. Inclination Change Capability: Feasibility of changing the spacecraft’s orbital inclination us-
ing aerocapture should be investigated, which could provide a mechanism to avoid hazardous
radiation belts in the proposed trajectories.
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A
Figures

γ and Airspeed error at tE from an RSW position perturbation at t0

Figure A.1: Error introduced on the entry Flight Path Angle (γ) and Airspeed by an RSW perturbation of the initial position at
the beginning of the trajectory. The perturbations are independently introduced on each RSW axis, thus their effect shown here

is uncoupled.
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qw and Qw error during the aerocapture phase from an RSW perturbation at tE

Figure A.2: Peak heat flux (qw) and total heat load (Qw) error from a position perturbation on the R, S, or W axis at
atmospheric entry (tE ). The perturbations on each axis are uncoupled.

Eccentricity error at tF from an RSW perturbation at tE

Figure A.3: Variation in the eccentricity of the final orbit (t1) for a position perturbation in the R, S, or W axes at atmospheric
entry (tE ). The perturbations have been individually assessed for each axis, thus their effect shown here is not coupled.
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γ and Airspeed error at tE from an RSW velocity perturbation at t0

Figure A.4: Error introduced on the entry Flight Path Angle (γ) and Airspeed by an RSW perturbation of the initial position at
the beginning of the trajectory. The perturbations are independently introduced on each RSW axis, thus their effect shown here

is uncoupled.

Accelerations, altitude, and f.p.a. trends for the aerocapture optimum

Figure A.5: Aerodynamic and gravitational forces, altitude profile, and γ profile are shown for the aerocapture phase.
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Mach no, density, and airspeed trends for the aerocapture optimum

Figure A.6: Mach number, atmospheric density, and airspeed profiles are shown for the aerocapture phase.

Heat flux trends for the aerocapture optimum

Figure A.7: Convective (qC ) and radiative (qR) heat fluxes are shown for the aerocapture phase.
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z, km p, mbar T , K ρ,
kg/m3

µ,
amu

R,
J/ (kg K)

g,
m/s2 cp/cv

1029.2 9.633e-07 899.9 2.575e-11 1.999 4159.0 22.526 1.400
1020.0 1.018e-06 903.4 2.711e-11 2.000 4157.8 22.533 1.400
1000.0 1.148e-06 897.0 3.082e-11 2.001 4155.4 22.547 1.400
980.0 1.297e-06 883.9 3.535e-11 2.002 4152.9 22.562 1.400
960.0 1.468e-06 872.2 4.057e-11 2.003 4150.5 22.576 1.400
940.0 1.664e-06 866.0 4.635e-11 2.004 4148.1 22.590 1.400
920.0 1.888e-06 865.4 5.264e-11 2.006 4145.6 22.605 1.400
900.0 2.141e-06 869.1 5.948e-11 2.007 4143.2 22.619 1.400
880.0 2.427e-06 875.2 6.700e-11 2.008 4140.9 22.633 1.400
860.0 2.749e-06 881.4 7.539e-11 2.009 4138.5 22.648 1.400
840.0 3.112e-06 885.2 8.502e-11 2.010 4136.2 22.662 1.400
820.0 3.522e-06 884.4 9.638e-11 2.011 4133.9 22.677 1.400
800.0 3.990e-06 877.2 1.101e-10 2.012 4131.6 22.691 1.400
780.0 4.527e-06 862.2 1.272e-10 2.014 4128.5 22.706 1.401
760.0 5.152e-06 840.0 1.487e-10 2.015 4125.5 22.720 1.401
740.0 5.887e-06 812.0 1.759e-10 2.017 4122.4 22.735 1.401
720.0 6.765e-06 776.1 2.117e-10 2.018 4119.3 22.749 1.401
700.0 7.827e-06 741.0 2.567e-10 2.020 4116.2 22.763 1.401
680.0 9.117e-06 712.8 3.113e-10 2.023 4110.6 22.778 1.401
660.0 1.068e-05 692.7 3.757e-10 2.026 4104.8 22,792 1.401
640.0 1.256e-05 680.2 4.506e-10 2.028 4099.1 22.807 1.402
620.0 1.481e-05 674.6 5.364e-10 2.031 4093.4 22.822 1.402
600.0 1.749e-05 669.8 6.390e-10 2.034 4087.6 22.836 1.402
580.0 2.067e-05 670.3 7.562e-10 2.039 4078.2 22.851 1.402
560.0 2.445e-05 664.0 9.053e-10 2.043 4068.8 22.865 1.403
540.0 2.903e-05 642.4 1.114e-09 2.049 4056.9 22.880 1.404
520.0 3.484e-05 594.3 1.451e-09 2.057 4042.2 22.894 1.404
500.0 4.256e-05 545.9 1.937e-09 2.064 4027.4 22.909 1.405
480.0 5.265e-05 535.8 2.455e-09 2.077 4003.9 22.924 1.406
460.0 6.518e-05 535.7 3.058e-09 2.089 3980.4 22.938 1.408
440.0 8.149e-05 483.1 4.276e-09 2,107 3946.1 22.953 1.411
420.0 0.0001072 392.9 6.989e-09 2.129 3904.6 22.968 1.413
400.0 0.0001463 370.2 1.023e-08 2.152 3863.2 22.982 1.414
380.0 0.0002107 289.2 1.917e-08 2.187 3802.5 22.997 1.429
360.0 0.0003367 231.7 3.892e-08 2.224 3738.7 23.012 1.445
340.0 0.0006036 198.6 8.251e-08 2,257 3684.5 23.026 1.461
320.0 0.001152 194.2 1.629e-07 2,281 3645.4 23.041 1.472
300.0 0.002177 177.6 3.417e-07 2,296 3621.3 23.056 1.483
280.0 0.004800 152.8 8.713e-07 2.303 3610.5 23.070 1.488
260.0 0.01094 151.0 2.012e-06 2.306 3604.8 23.085 1.489
240.0 0.02475 155.7 4.416e-06 2.308 3602.5 23.100 1.489
220.0 0.05593 157.2 9.878e-06 2.309 3601.6 23.115 1.490
200.0 0.1257 158.2 2.206e-05 2.309 3600.7 23.130 1.490
180.0 0.2824 157.4 4.984e-05 2.309 3600.6 23.144 1.490
160.0 0.6192 168.6 0.0001020 2.309 3600.6 23.159 1.490
140.0 1.342 160.5 0.0002325 2.309 3600.5 23.174 1.491
120.0 3.079 149.8 0.0005710 2.309 3600.4 23.189 1.491
100.0 7.177 158.1 0.001261 2.309 3600.4 23.204 1.493
80.0 16.40 143.8 0.003168 2.309 3600.4 23.218 1.511
60.0 43.74 122.6 0.009915 2.309 3600.4 23.233 1.534
40.0 135.8 113.2 0.03335 2.309 3600.4 23.248 1.547
23.3 351.5 122.9 0.07945 2.309 3600.4 23.261 1.528

Table B.1: Jupiter’s upper atmospheric state properties [5, Table 8].
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t, s z, km V , km/s γ, deg m, kg d, m M Re Kn CD

-240.0 1027.1 47.130 -10.61 338.93 1.265 20.58 0.0692 443. 2.060
-235.0 983.96 47.151 -10.46 338.93 1.265 20.77 0.0924 335. 2.060
-230.0 941.44 47.171 -10.31 338.93 1.265 21.03 0.125 250. 2.060
-225.0 899.49 47.191 -10.16 338.93 1.265 21.02 0.163 192. 2.060
-220.0 858.13 47.211 -10.02 338.93 1.265 20.89 0.206 151. 2.060
-215.0 817.36 47.230 -9.87 338.93 1.265 20.88 0.265 118. 2.060
-210.0 777.17 47.249 -9.72 338.93 1.265 21.19 0.358 88.3 2.058
-205.0 737.57 47.268 -9.57 338.93 1.265 21.87 0.515 63.2 2.054
-200.0 698.56 47.287 -9.42 338.93 1.265 22.90 0.793 43.0 2.051
-195.0 660.15 47.305 -9.27 338.93 1.265 23.69 1.19 29.6 2.047
-190.0 622.32 47.323 -9.12 338.93 1.265 24.04 1.70 21.1 2.045
-185.0 585.09 47.341 -8.97 338.93 1.265 24.17 2.35 15.3 2.043
-180.0 548.45 47.358 -8.82 338.93 1.265 24.51 3.35 10.9 2.040
-175.0 512.41 47.376 -8.68 338.93 1.265 26.27 5.81 6.74 2.026
-170.0 476.96 47.393 -8.53 338.93 1.265 27.27 9.43 4.31 2.010
-165.0 442.11 47.409 -8.38 338.93 1.265 28.48 15.90 2.67 1.991
-160.0 407.87 47.425 -8.23 338.93 1.265 32.93 40.70 1.21 1.953
-155.0 374.22 47.441 -8.08 338.93 1.265 38.89 1.30e+02 0.446 1.875
-150.0 341.18 47.455 -7.93 338.93 1.265 45.77 5.46e+02 0.125 1.726
-145.0 308.74 47.466 -7.78 338.93 1.265 45.07 1.47e+03 0.0453 1.526
-140.0 276.91 47.468 -7.63 338.93 1.265 51.81 7.85e+03 0.00981 1.153
-135.0 245.70 47.437 -7.48 338.93 1.265 51.33 2.76e+04 0.00278 1.087
-130.0 215.15 47.300 -7.33 338.87 1.265 51.26 9.60e+04 0.000798 1.049
-125.0 185.39 46.822 -7.18 338.51 1.265 50.78 3.17e+05 0.000238 1.030
-120.0 156.76 45.377 -7.04 336.39 1.264 47.68 8.55e+05 8.31e-05 1.026
-115.0 130.16 41.495 -6.92 324.53 1.261 45.00 2.55e+06 2.65e-05 1.019
-110.0 107.67 32.770 -6.85 287.72 1.246 36.10 5.43e+06 9.98e-06 1.009
-105.0 91.391 21.965 -6.89 254.15 1.223 23.69 6.62e+06 5.33e-06 1.004
-100.0 80.749 13.669 -7.10 244.19 1.213 15.33 7.45e+06 3.07e-06 1.001
-95.0 73.873 8.444 -7.58 242.09 1.211 9.91 7.53e+06 1.96e-06 1.010
-90.0 69.146 5.535 -8.43 241.39 1.210 6.49 6.20e+06 1.56e-06 1.033
-85.0 65.533 3.828 -9.75 241.34 1.210 4.60 5.64e+06 1.22e-06 1.066
-80.0 62.535 2.767 -11.67 241.33 1.209 3.31 4.59e+06 1.08e-06 1.146
-75.0 59.878 2.051 -14.30 241.33 1.207 2.50 4.07e+06 9.12e-07 1.254
-70.0 57.438 1.543 -17.80 241.33 1.207 1.93 3.92e+06 7.35e-07 1.345
-65.0 55.135 1.188 -22.35 241.33 1.207 1.50 3.58e+06 6.25e-07 1.384
-60.0 52.892 0.956 -27.93 241.33 1.207 1.20 3.17e+06 5.63e-07 1.378
-55.0 50.635 0.808 -34.35 241.33 1.207 1.01 3.05e+06 4.94e-07 1.306
-50.0 48.323 0.712 -41.21 241.33 1.207 0.90 3.11e+06 4.30e-07 1.000
-45.0 45.909 0.670 -47.99 241.33 1.207 0.85 3.39e+06 3.72e-07 0.926
-40.0 43.356 0.642 -54.26 241.33 1.207 0.82 3.88e+06 3.14e-07 0.897
-35.0 40.714 0.617 -59.90 241.33 1.207 0.78 4.25e+06 2.74e-07 0.872
-30.0 38.037 0.591 -64.90 241.33 1.207 0.74 4.58e+06 2.41e-07 0.846
-25.0 35.377 0.563 -69.28 241.33 1.207 0.73 5.68e+06 1.91e-07 0.819
-20.0 32.784 0.534 -73.09 241.33 1.207 0.67 5.81e+06 1.73e-07 0.796
-15.0 30.272 0.507 -76.35 241.33 1.207 0.65 6.60e+06 1.46e-07 0.776
-10.0 27.863 0.479 -79.12 241.33 1.207 0.60 6.83e+06 1.32e-07 0.761
-5.0 25.558 0.457 -81.42 241.33 1.207 0.56 6.68e+06 1.25e-07 0.749
0.0 23.339 0.438 -83.29 241.33 1.207 0.53 6.90e+06 1.15e-07 0.739

Table B.2: Galileo’s entry trajectory [5, Table 6].



C
Thesis work planning

The detailed work planning for the thesis is shown in Table C.1. Each task has been labeled with an
alphabetical letter, according to the legend shown in Table C.2, and there the corresponding calendar
weeks are also pointed for better readability.

Sep 2022 W1 D 5-11 W2 D 12-18 W3 D 19-25 W4 D 26-30

/ A(5) A(2), B(3) C(2), bns(3)

Oct 2022 W5 D 1-9 W6 D 10-16 W7 D 17-23 W8 D 24-30

D(5) D(5) D(5) E(5)

Nov 2022 W9 D 1-7 W10 D 8-14 W11 D 15-21 W12 D 22-30

F(3), bns(2) F(2), bns(3) F(5) G(5)

Dec 2022 W13 D 1-7 W14 D 8-14 W15 D 15-21 W16 D 22-31

H(4), bns(1) bns(5) bns(5) /

Jan 2023 W17 D 1-8 W18 D 9-15 W19 D 16-22 W20 D 23-31

/ I(5) I(5) J(5)

Feb 2023 W21 D 1-7 W22 D 8-14 W23 D 15-21 W24 D 22-28

J(5) K(5) K(5) K(5)

Mar 2023 W25 D 1-7 W26 D 8-14 W27 D 15-21 W28 D 22-31

K(5) L(5) M(3), bns(2) N(5)

Apr 2023 W29 D 1-7 W30 D 8-14 W31 D 15-21 W32 D 22-30

O(5) P(5) Q(4), bns(1) /

Table C.1: Weekly work planning for the Thesis. Each letter here represents a task that is part of the Thesis, and the legend is
shown at Table C.2. The numbers in brackets beside each letter are the number of days that will be spent on that task. ’bns’

stands for Bonus, as there is a total of 22 planned bonus days. ’W’ and ’D’ stand for Week and Days.
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Task
Letter Task Days

required
Dates
2022-23

A Organize the Python workspace, import the TUDAT
and PyGMO libraries, define the problem require-
ments, create a raw physical model

7 Sep W2-3

B Find good benchmark trajectories to use for refining
the physical model, find a shape and aerodynamic
properties for the spacecraft

3 Sep W3

C Tune the parameters of the integrator 2 Sep W4

D Code spherical harmonics magnetic field, lorentz
force, jupiter radiation areas

15 Oct W1-3

E Refine the physical model to make it comply with
the requirements

5 Oct W4

F Validate the Physical model with the Juno and
Galileo mission data

10 Nov W1-3

G Set up the optimization problem: define the objec-
tive functions, the constraints

5 Nov W4

H Choose pygmo optimizer with MINLP solving capa-
bilities

4 Dec W1

I Set up the optimization algorithm and tune it 10 Jan W2-3

J Verify optimizer with GTOX problems 10 Jan W4
Feb W1

K Run optimization algorithm, adjust parameters if
necessary

20 Feb W2-4
Mar W1

L Perform local refinement of pareto front 5 Mar W2

M Plot and analyze best candidates 3 Mar W3

N Analyze sensitivity to initial conditions of such can-
didates

5 Mar W3-4

O Compare best solutions to analogue trajectories
performed with impulsive maneuvers at Jupiter in-
sertion

5 Apr W1

P If aerocapture is worse, try aerocapture with no pre-
vious flybys; if aerocapture is better, do sensitivity
analysis of physical model

5 Apr W2

Q Draw conclusions, review the work, write introduc-
tion and abstract

4 Apr W3

Addi-
tion Add some other parameters to be varied in the tra-

jectory (e.g. simulate attitude change maneuver by
guidance) to allow for a more flexible optimization

Bonus Days: 22

Total: 140

Table C.2: Legend of the tasks that need to be done for the thesis. The number of days per task, as well as the total number of
days, have been reported. Moreover, a small addition to the study has been mentioned as well. Such addition can be done if

there is enough spare time at the end of the study.
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