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Stability Analysis for Incremental Adaptive Dynamic
Programming with Approximation Errors

Yifei Li1 and Erik-Jan van Kampen, Ph.D.2

Abstract: This paper provides a convergence and stability analysis of the incremental value iteration algorithm under the influence of various
errors. Incremental control is firstly used to linearize the continuous-time nonlinear system, recursive least squares (RLS) identification is then
introduced to identify the incremental model online. Based on the incremental model, the value iteration algorithm is used to design an
optimal adaptive controller, with an analytical optimal control law. Moreover, the convergence of the developed incremental value iteration
algorithm is proved. The stability of the controller is analyzed using Lyapunov stability theory. Finally, a flight control simulation verifies
the robustness of the controller to various initial conditions, as well as adaptation to actuator faults. DOI: 10.1061/JAEEEZ.ASENG-5097.
© 2023 American Society of Civil Engineers.

Introduction

Reinforcement learning (RL) is a field of machine learning (ML)
that is best characterized by interaction with the environment
(Sutton and Barto 2014). In the control field, RL has been widely
used to solve optimal control problems of a class of systems with
unknown dynamics, namely approximate dynamic programming
(ADP) (Bertsekas 2019; Jiang and Jiang 2017; Lewis and Liu
2013; Sutton et al. 1992; Sharma and York 2018), which was first
proposed by Werbos (1977). Accompanying the continuous and
high-dimensional control spaces is the exponential growth of com-
putational complexity, known as the curse of dimensionality (Werbos
1977; Powell 1977). The curse of dimensionality is mitigated by
utilizing parameterized approximators (Haykin 2009), such as
artificial neural networks (ANNs), polynomial functions, and
quadratic functions.

Since the 2000s, ADPmethods have been successfully applied to
aerospace systems, such as morphing aircraft (Wang et al. 2019a),
satellites (Zhou et al. 2020), and continuum robots (Jiang et al.
2022). To deal with the high nonlinearity and uncertainty of aero-
space systems, ADP methods often need an ANN to approximate
the system’s dynamical model. This model network needs to be
trained offline using a representative simulation model before it
is applied online, causing increased computation load. Moreover,
the offline training relies on a simulation model with high fidelity,
which is difficult to obtain, resulting in a reality gap between
offline training and online implementation.

Incremental control techniques can deal with the control of non-
linear systems with uncertainties by establishing a local incremen-
tal model, under the assumption that the system is sampled at a
sufficiently high frequency. Many nonlinear control methods are
combined with incremental control, such as incremental nonlinear

dynamic inversion (INDI) (Sieberling et al. 2010; Wang et al. 2019c;
Liu et al. 2022), incremental backstepping (IBS) (Wang et al. 2018;
Acquatella et al. 2013), incremental sliding mode control (ISMC)
(Wang and Sun 2022; Wang et al. 2021), and incremental adaptive
dynamic programming (IADP) (Zhou et al. 2015, 2016, 2018). The
method used in incremental control to linearize the nonlinear model
involves using a Taylor expansion with respect to local states and
neglecting the higher-order terms. As a result, a first-order approxi-
mation of state derivative is obtained. However, neglecting higher-
order terms of a Taylor series results in a model approximation error.
For INDI methods, Wang et al. (2019c) analyzed the insensitivity
to the residual cancellation error (including higher-order terms).
For IADP methods, Zhou et al. (2016, 2018) and Sun and Kampen
(2021) assume that the higher-order terms are negligible for suffi-
ciently high sampling frequency. The reason to use an incremental
model is that it uses a linearized model of the original nonlinear
system. Using recursive least squares (RLS) identification to identify
this linearized model can be faster than identifying a nonlinear
model. As a result, the IADP algorithms become more suitable for
online implementation.

The stability analysis of ADP is well developed using Lyapunov
stability theory in the literature (Liu and Wei 2014; Tamimi et al.
2008; Heydari 2014, 2015, 2018). Balakrishnan et al. (2018) pro-
vide an overview of ADP-based feedback controller stability analy-
sis. ADP can be classified into two categories, i.e., value iteration
(VI) and policy iteration (PI). The convergence proof of PI can be
seen in previous studies (Liu and Wei 2014; Guo et al. 2018). For
VI, the convergence proof was first developed for general nonlinear
control-affine systems by Tamimi et al. (2008). Heydari (2014)
present the convergence of VI-based ADP algorithms, including
heuristic dynamic programming (HDP) and dual heuristic program-
ming (DHP) to solve infinite-horizon optimal control problems.
HDP algorithms approximate the cost function, while DHP algo-
rithms approximate the gradient of cost function. Heydari (2015)
considered the approximation error at each iteration to prove the
convergence and stability of VI. Later, Heydari (2018) presented
a general conclusion of value iteration stability, considering the
effects of value function and control policy approximation errors.
However, the aforementioned theoretical results are based on per-
fect knowledge of the system dynamics. For IADP algorithms, the
nonlinear system dynamics are approximated by an incremental
linear model, which introduces model approximation error and
affects the convergence to the optimal value.
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Motivated by the above analysis, the contributions of this paper
are summarized as follows:
• In the stability analysis of incremental value iteration algorithm,

we consider the approximation error of the incremental model.
This consideration is necessary for practical control problems,
because the nonlinear system models are usually not perfectly
identified.

• A sufficient and necessary condition for asymptotic stability of
incremental value iteration is provided. This condition describes
how the approximation error at each iteration affects the itera-
tion tolerance and system stability.
This study analyzes the stability of the incremental value iteration

algorithm, considering the incremental model approximation error.
To the authors’ best knowledge, the effect of incremental model
approximation error on the stability of approximate value iteration
has not been discussed in the literature.

The remainder of this paper is structured as follows. The second
section presents the framework of the incremental value iteration
algorithm for optimal tracking problems. The third section provides
the error analysis of the approximate value iteration. The fourth
section presents the convergence analysis of the incremental value
iteration under various approximation errors, as well as the stability
analysis of nonlinear optimal control using the incremental value
iteration algorithm. The fifth section provides the simulation results
of a flight control problem. In the final section, concluding remarks
are given.

Incremental Value Iteration for Optimal Tracking
Control

This section develops optimal tracking control using the incremen-
tal value iteration algorithm. The incremental model is first devel-
oped using Taylor expansion, leading to a linear system model.
Then, the RLS algorithm is introduced to identify the system model
parameters. Finally, the value iteration algorithm is used to design a
tracking controller for the incremental model.

Incremental Model

The purpose of the incremental control method is to approximate a
nonlinear system with a time-varying linear system model at each
discrete time step (Sieberling et al. 2010). Although most physical
systems are continuous, the control of physical systems is usually
considered in a discrete-time domain. Incremental control assumes
high-frequency sampling to reduce the approximation error. In prac-
tical applications, the sampling time is constrained by hardware. In
previous studies (Liu et al. 2022; Sieberling et al. 2010; Zhou et al.
2015, 2016, 2018), incremental control was applied to the control of
the nonlinear system with unknown dynamics and uncertainties.

The discrete-time nonlinear system subjected to the control in-
put is expressed as

xkþ1 ¼ fðxk; ukÞ; k ∈ N ð1Þ
where f∶Rn × Rm → Rn is a smooth nonlinear function associated
with state vector xk and input vector uk. n, m are positive integers
denoting the dimensions of the state and control spaces. k repre-
sents the discrete-time index. N represents the set of nonnegative
integers.

Using the Taylor expansion of Eq. (1) at state xk, the following as

xkþ1 ¼ xk þ Fk−1ðxk − xk−1Þ þ Gk−1ðuk − uk−1Þ
þO½ðxk − xk−1Þ2; ðuk − uk−1Þ2� ð2Þ

where Fk−1 ¼ ∂fðx;uÞ=∂xjxk−1;uk−1 ∈ Rn×n is the system transi-
tion matrix, and Gk−1 ¼ ∂fðx; uÞ=∂ujxk−1;uk−1 ∈ Rn×m is the input
distribution matrix at time step k − 1 for discretized systems.
O½ðxk − xk−1Þ2; ðuk − uk−1Þ2� are the higher-order terms of the
Taylor expansion series.

Eq. (2) can be rewritten in an incremental formulation as

Δxkþ1 ¼ Fk−1Δxk þ Gk−1Δuk þO½ðΔxkÞ2; ðΔukÞ2Þ� ð3Þ
whereΔxkþ1 ¼ xkþ1 − xk is the state increment at time index kþ 1
with respect to k. Δxk ¼ xk − xk−1, Δuk ¼ uk − uk−1 are the state
and control increments at time index k with respect to k − 1.

The nonlinear system can be represented by this time-varying
incremental model. This linear model needs to be available online
to provide the model information to the incremental value iteration
algorithm instead of using a global nonlinear system model. With
high-frequency sample data and a relatively slow-varying system,
the time-varying matrices Fk−1 and Gk−1 can be identified online
using the RLS method (Isermann and Munchhof 2011).

Recursive Least-Squares Identification

RLS is an online algorithm, which reduces the computational effort
and provides an update of the parameter estimates at each sample
step. Compared to nonrecursive identification methods, recursive
methods do not store the previous measured data (Isermann and
Munchhof 2011).

To present the RLS algorithm, the augmented system state is
defined as

Xk ¼
�
Δxk

Δuk

�
ð4Þ

The augmented system matrices are defined as

Θ̂k−1 ¼ ½F̂k−1Ĝk−1�T ð5Þ

Conduct a one-step prediction of augmented state Δx̂Tkþ1 as

Δx̂Tkþ1 ¼ XT
k Θ̂k−1 ð6Þ

The error εk between ΔxTkþ1 and Δx̂Tkþ1 is defined as

εk ¼ ΔxTkþ1 −Δx̂Tkþ1 ð7Þ

The estimate of the augmented system matrix Θ̂k−1 is updated as

Θ̂k ¼ Θ̂k−1 þ
Λk−1Xk

κþ XT
kΛk−1Xk

εk ð8Þ

where Λk−1 is the equal weighted estimation of the covariance
matrix CovðΘ̂k − Θ̂k−1Þ, which describes the confidence of the
estimated Θ̂k. Λk−1 is updated by

Λk ¼
1

κ

�
Λk−1 − Λk−1XkXT

kΛk−1
κþ XT

kΛk−1Xk

�
ð9Þ

where κ ∈ ð0; 1Þ is the forgetting factor, which weights older
measurements exponentially. The value of κ provides a balance be-
tween the performance of noise rejection and time-varying param-
eter estimation. When κ → 1, the RLS algorithm becomes equally
weighted and behaves better at noise rejection; when κ → 0, the
RLS algorithm shows adaptation to new measurements, and thus
adapts to time-varying parameters. For a satisfying performance
in practice, κ is suggested to be assigned as 0.9 < κ < 0.995.
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It has been proved in Isermann and Munchhof (2011) that RLS
identification is a bias-free method, under the condition that the
output has been affected by a white Gaussian noise. Therefore,
the estimation error is bounded.

Assumption 1. The estimation errors using RLS are bounded
as kFk − F̂kk ≤ ΔFk

; kGk − Ĝkk ≤ ΔGk
, k ∈ N. ΔFk

, ΔGk
are con-

stant bounds.
According to assumption 1, Eq. (3) can be rewritten as

Δxkþ1 ¼ F̂k−1Δxk þ Ĝk−1Δuk þ ðFk−1 − F̂k−1ÞΔxk

þ ðGk−1 − Ĝk−1ÞΔuk þOðΔx2k;Δu2kÞ ð10Þ

where the estimated system matrix F̂k−1 and control matrix Ĝk−1
are used to represent the incremental model in practice.

Eq. (10) is an exact representation, where the higher-order terms
of Taylor expansion and the RLS estimation error are presented as
OðΔx2k;Δu2kÞ and ðFk−1 − F̂k−1ÞΔxk, ðGk−1 − Ĝk−1ÞΔuk, respec-
tively. The incremental model used in previous studies (Zhou et al.
2015, 2016, 2018; Sun and Kampen 2021) is in fact an approxi-
mation of the nonlinear system and keeps the first-order part of
Taylor expansion, but the approximation error is not discussed.

The incremental model is simplified as

Δxkþ1 ¼ F̂k−1Δxk þ Ĝk−1Δuk þΔIME ð11Þ

where ΔIME ¼ ðFk−1 − F̂k−1ÞΔxk þ ðGk−1 − Ĝk−1ÞΔuk þOðΔx2k;
Δu2kÞ is the total error of using incremental model approximation
and RLS estimation.

Incremental Value Iteration–Based Optimal Control
Algorithm

The incremental value iteration algorithm assumes a time-varying
linear model and can be used for nonlinear tracking control prob-
lems. In addition, this method optimizes the control increment
by minimizing a cost function. Incremental value iteration does
not assume the principle of time-scale separation. The principle
of time-scale separation in flight control systems means that the
inner control loop that is used to stabilize attitude and angular
rates, and the outer loop that tracks vehicle position, can be treated
separately because the attitude dynamics are faster than the trans-
lational dynamics.

The utility function is defined as follows:

rðxk;ukÞ ¼ ðxk − xrefk ÞTQðxk − xrefk Þ þ uTkRuk ð12Þ

where Q and R are positive definite matrices, and xrefk is the refer-
ence signal for the system state. The cost function is the cumulative
sum of utility functions starting from state xk driven by a policy

VðkÞ ¼
X∞
l¼k

γl−krðxl;ulÞ ð13Þ

where the discount factor γ ∈ ð0; 1Þ represents the importance of
future utility functions.

The Bellman equation (Sutton and Barto 2014) is then de-
rived as

VðkÞ ¼ rðxk;ukÞ þ γVðkþ 1Þ ð14Þ
Remark 1. The forgetting factor γ < 1 ensures that the future

discounted utility functions converge to 0 as l → ∞, which is a
finite-horizon optimal control problem. Intuitively, the future utility
functions do not have the same importance as near-horizon utility

functions. When γ ¼ 1, as in typical infinite-horizon optimal con-
trol problems, the bound of VðkÞ goes to infinity and the stability
result fails. The value of γ affects the convergence rate of value
iteration. The smaller γ is, the faster the value iteration algorithm
converges.

The reconstruction of exact cost functions VðkÞ, Vðkþ 1Þ in the
right-hand side of Eq. (14) is one challenge of approximate value
iteration. For this purpose, a parameterized approximator is usually
used, but approximation error is inevitably introduced. More de-
tails on approximation error are discussed in the next section. This
paper adopts a quadratic cost function to approximate the exact cost
function

V̂ðkÞ ¼ eTkPek ð15Þ

The reason to use quadratic approximator is that the cost func-
tion is assumed to be a quadratic form. Specifically, the cost func-
tion is the cumulative sum of future utility functions, which has
infinite terms and is difficult to calculate.

According to Eq. (15), one has V̂ðkþ 1Þ ¼ eTkþ1Pekþ1. How-
ever, ekþ1 is not available at time index k, so one has to predict
ekþ1 using the constructed incremental model in Eq. (11). To this
end, the exact ekþ1 is derived as

ekþ1 ¼ xkþ1 − xrefkþ1

¼ xk þ F̂kþ1Δxk þ Ĝk−1Δuk þΔIME − xrefk −Δxrefkþ1

¼ ðxk − xrefk Þ þ F̂k−1Δxk þ ĜΔuk þΔIME −Δxrefkþ1

¼ ek þ F̂k−1Δxk þ Ĝk−1Δuk þΔIME −Δxrefkþ1 ð16Þ

Omitting the incremental model approximation error ΔIME and
the increment of reference signal Δxrefkþ1, the prediction of ekþ1 is
calculated as

êkþ1 ¼ ek þ F̂k−1Δxk þ Ĝk−1Δuk ð17Þ

Then, the modified approximated cost function, denoted as
V̂ 0ðkþ 1Þ, is defined as

V̂ 0ðkþ 1Þ ¼ êTkþ1Pêkþ1 ð18Þ

Using V̂ 0ðkþ 1Þ in Eq. (18) to construct Vðkþ 1Þ in l (14),
one has

V̂ðkÞ≈ rðxk;ukÞ þ γV̂ 0ðkþ 1Þ
¼ eTkQek þ uTkRuk þ γêTkþ1Pêkþ1

¼ eTkQek þ ðuk−1 þΔukÞTRðuk−1 þΔukÞ
þ γðek þ F̂k−1Δxk þ Ĝk−1ΔukÞT

× Pðek þ F̂k−1Δxk þ Ĝk−1ΔukÞ ð19Þ

Remark 2. In Eq. (19), the quadratic function V̂ 0ðkþ 1Þ ¼
êTkþ1Pêkþ1 is used to construct the exact cost functionVðkþ 1Þ. This
approximation can be divided into two parts: the first part is using
eTkþ1Pekþ1 to approximate Vðkþ 1Þ ¼ P∞

l¼kþ1 γ
l−krðxl; ulÞ,; the

second part is using êkþ1 to approximate ekþ1.
Remark 3. From Eq. (19), one can conclude that the approxi-

mated cost function V̂ðkÞ is a function of state variables (ek, Δxk,
uk−1, Δuk), estimated incremental model matrices (F̂k−1, Ĝk−1),
and cost function matrices Q, R.

© ASCE 04023097-3 J. Aerosp. Eng.
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The optimal approximated cost function V̂�ðkÞ is defined as

V̂�ðkÞ ¼ min
Δuk

½eTkQek þ ðuk−1 þΔukÞTRðuk−1 þΔukÞ

þ γV̂�ðkþ 1Þ� ð20Þ

The optimal control increment Δu�ðkÞ is given as

Δu�ðkÞ ¼ argmin
Δuk

½eTkQek þ ðuk−1 þΔukÞTRðuk−1 þΔukÞ

þ γV̂�ðkþ 1Þ� ð21Þ

The optimal control increment can be solved by taking the first
derivative of the right-hand side of Eq. (21). However, the optimal
solution is not exactly the solution of ∂V̂ðkÞ=∂Δuk ¼ 0, but the
closest analytical solution to it

∂V̂ðkÞ
∂Δuk

≈ 2Rðuk−1 þΔukÞ þ 2γĜT
k−1Pðek þ F̂k−1Δxk þ Ĝk−1ΔukÞ

¼ 2ðRþ γĜT
k−1PĜk−1ÞΔuk

þ 2½Ruk−1 þ γĜT
k−1Pðek þ F̂k−1ΔxkÞ� ¼ 0 ð22Þ

From Eq. (22), one has

2ðRþγĜT
k−1PĜk−1ÞΔukþ2½Ruk−1þγĜT

k−1Pðekþ F̂k−1ΔxkÞ� ¼ 0

ðRþγĜT
k−1PĜk−1ÞΔuk ¼−½Ruk−1þγĜT

k−1Pðekþ F̂k−1ΔxkÞ�
Δuk ¼−ðRþγĜT

k−1PĜk−1Þ−1½Ruk−1þγĜT
k−1Pðekþ F̂k−1ΔxkÞ�

ð23Þ

Therefore, the optimal incremental control Δu�k is given as

Δu�k ¼ −ðRþ γĜT
k−1PĜk−1Þ−1½Ruk−1 þ γĜT

k−1Pðek þ F̂k−1ΔxkÞ�
ð24Þ

The optimal control derived in Eq. (24) depends on the knowl-
edge of kernel matrix P, which is calculated by solving the Bellman
equation [Eq. (19)]. Eq. (19) is unsolvable directly because P is
implicitly contained inΔuk. Therefore, the following iterative com-
putation is used to obtain an approximated solution:
1. Policy Improvement. The policy improves for the current kernel

matrix Pi as

Δuik ¼ −ðRþ γĜT
k−1PiĜk−1Þ−1

× ½Ruk−1 þ γĜT
k−1Piðek þ F̂k−1ΔxkÞ� ð25Þ

uik ¼ uk−1 þΔuik ð26Þ

2. Policy Evaluation. The kernel matrix series {P0;P1; : : : ;Pimax}
in approximate cost function V̂ðkÞ is calculated recursively, us-
ing the equation derived in Eq. (19) as

eTkP
iþ1ek ≈ eTkQek þ ðuikÞTRuik þ γêTkþ1P

iêkþ1 ð27Þ

Remark 4. The optimality of the control policy in Eq. (25) is
partially achieved by adopting a changing kernel matrix Pi. Using
the Bellman equation in Eq. (27) improves the precision of value
function approximation, resulting into an improved matrix Piþ1,
which makes V̂ðkÞ closer to VðkÞ. Therefore, the control derived
by V̂ðkÞ in Eq. (22) is closer to the optimal control derived by VðkÞ.

The incremental value iteration algorithm is summarized in
algorithm 1.

Algorithm 1. Incremental Value Iteration Algorithm
Required Input:
state xk, xkþ1, state reference xrefk , xrefkþ1

Initialization:
Choose maximum iteration number imax
Choose forgetting factor γ, cost function matrices Q, R
Choose initial kernel matrix P0, initial control u0
Choose initial system matrices Θ̂0 ¼ ½F̂0; Ĝ0�T ,
initial covariance matrix Λ0

RLS Identification:
1: Δx̂Tkþ1 ¼ XT

k Θ̂k−1
2: Δxkþ1 ¼ xkþ1 − xk
3: εk ¼ ΔxTkþ1 −Δx̂Tkþ1

4: Θ̂k ¼ Θ̂k−1 þ
Λk−1Xk

κþ XT
kΛk−1Xk

εk

5: Λk ¼
1

κ

�
Λk−1 − Λk−1XkXT

kΛk−1
κþ XT

kΛk−1Xk

�
Value Iteration:
for i ¼ 0 to imax

1: ek← xk − xrefk
2: ekþ1← xkþ1 − xrefkþ1

3: Δuik← − ðRþ γĜT
k−1PiĜk−1Þ−1

× ½Ruk−1 þ γĜT
k−1Piðek þ F̂k−1ΔxkÞ�

4: uik← uk−1 þΔuik
5: Solve eTk P

iþ1ek ¼ eTkQek þ ðuikÞTRuik þ γêTkþ1P
iêkþ1,

obtain Piþ1

end for

Approximation Error Analysis

The exact reconstruction of the cost function in exact value iteration
is usually impossible except for in simple problems, because the
cost function is defined as a sum of future utility functions, as in
Eq. (13). Approximating the cost function with a quadratic func-
tion inevitably introduces approximation errors in every iteration.
This section formulates the approximation errors in every iteration,
which would affect the stability and convergence of incremental
value iteration.

To explore the effect of approximation error, rewrite the policy
evaluation in Eq. (27) as

eTkP
iþ1ek ¼ eTkQek þ ðuikÞTRuik þ γêTkþ1P

iêkþ1 þ ϵiðxkÞ;
∀ i ∈ ½0; imax� ð28Þ

For i ¼ 0; 1; : : : ; imax, Eq. (28) is rewritten as

eTkP
1ek ¼ eTkQek þ ðuikÞTRuik þ γêTkþ1P

0êkþ1 þ ϵ0ðxkÞ
eTkP

2ek ¼ eTkQek þ ðuikÞTRuik þ γêTkþ1P
1êkþ1 þ ϵ1ðxkÞ

..

.

eTkP
iþ1ek ¼ eTkQek þ ðuikÞTRuik þ γêTkþ1P

iêkþ1 þ ϵiðxkÞ
..
.

eTkP
imaxþ1ek ¼ eTkQek þ ðuikÞTRuik þ γêTkþ1P

imax êkþ1 þ ϵimax
ðxkÞ

ð29Þ

where ϵiðxkÞ is the approximation error in the (iþ 1)th iteration,
which is defined as
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ϵiðxkÞ ¼ min
Δuk

(
eTkQek þ ðuTk−1 þΔukÞRðuk−1 þΔukÞ

þ γ

"X∞
l¼k

γl−krðxl;ulÞ
#)

−min
Δuk

½eTkQek þ ðuTk−1 þΔukÞRðuTk−1 þΔukÞ

þ γêTkþ1P
iêkþ1� ð30Þ

Because eTkQek is not a function associated with control incre-
ment Δuk, ϵiðxkÞ can be rewritten as

ϵiðxkÞ ¼min
Δuk

(
ðuTk−1 þΔukÞRðuTk−1 þΔukÞ

þ γ

"X∞
l¼k

γl−krðxl;ulÞ
#)

−min
Δuk

½ðuTk−1 þΔukÞRðuTk−1 þΔukÞ þ γêTkþ1P
iêkþ1� ð31Þ

Main Results

This section discusses the convergence and stability of incremental
value iteration. The first part analyzes the continuity of the mini-
mization operator. The second part provides the convergence proof
by introducing two exact iterations as the upper and lower bounds
of approximate value iteration with approximation error. The third
part derives an asymptotic stability condition of approximate value
iteration.

Continuity Analysis

It has been verified that smooth function approximators “uniformly”
approximate a function if the function is continuous (Haykin 2009).
Otherwise, the approximation accuracy is not guaranteed to be suit-
able on new states that are not used in the training.

Rewrite the optimal control of exact value iteration in Heydari
(2014) as

u�k ∈ argmin
uk

½Uðxk; ukÞ þ γV�ðkþ 1Þ� ð32Þ

Recall the optimal incremental control of incremental value iter-
ation in Eq. (21)

Δu�k ¼ argmin
Δuk

½eTkQek þ ðuk−1 þΔukÞTRðuk−1 þΔukÞ

þ γV�ðkþ 1Þ� ð33Þ

The general value iteration does not always have analytical sol-
ution of u�k. Incremental value iteration does not suffer from this
shortcoming because the system is linearized as an incremental
model. Based on the previously presented results, the tracking error
prediction êkþ1 leads to an analytical form of approximated cost
function as in Eq. (19). In Heydari (2015), the continuity of value
iteration is not guaranteed. The discontinuity comes from the con-
trol policy because it is solved by Eq. (32), where the minimization
operator argminð·Þ is not necessarily continuous. However, incre-
mental value iteration provides a direct mapping between the con-
trol incrementΔuk and approximated cost function V̂ðkÞ according
to Eq. (19). In Eq. (19), the matricesQ, R and forgetting factor γ are
constant, and the system matrix Fk−1 and control matrix Gk−1 are
fixed in time step k − 1. The tracking error ek ¼ xk − xrefk at step k

is continuously changing. Therefore, it is concluded that V̂ðkÞ at
step k is continuously changing with respect to Δuk. As a result,
the operator argminð·Þ in Eq. (33) can be transferred into the equa-
tion to solve ∂V̂ðkÞ=∂ðΔukÞ ¼ 0. The conclusion is that incremen-
tal value iteration meets the continuity condition of general value
iteration algorithm.

Convergence Analysis

Tamimi et al. (2008) showed that the exact value iteration is first
proved to converge to the optimal cost function and optimal con-
trol. In practice, the approximators are introduced when the cost
function and control policy are not exactly known. As a result,
the approximation errors will affect both the convergence and sta-
bility of the approximate value iteration algorithm. This subsection
will analyze the boundedness and convergence of approximated
cost function sequences fV̂iðkÞg∞i¼0. To this end, a bound on the
approximation error per iteration is established, as in assumption 2.

Assumption 2. The value function approximation error defined
in Eq. (30) is bounded as jϵiðxkÞj ≤ ηrðxk; 0Þ; ∀ i ∈ N for some
η ∈ ½0; 1Þ. The parameter η corresponds to the accuracy of the func-
tion approximator.

Define fV̄iðkÞg∞i¼0 and fViðkÞg∞i¼0 as cost function sequences
initiated from V̄0ðkÞ and V0ðkÞ, which are generated by the follow-
ing value iterations with approximation error bounds:

V̄iþ1ðkÞ ¼ eTk P
iþ1ek

¼ eTkQek þ uTk Ruk þ γêTkþ1P
iêkþ1 þ ηrðxk; 0Þ ð34Þ

Viþ1ðkÞ ¼ eTkP
iþ1ek

¼ eTkQek þ uTkRuk þ γêTkþ1P
iêkþ1 − ηrðxk; 0Þ ð35Þ

Lemma 1. Let jϵiðxkÞj ≤ ηrðxk; 0Þ; ∀ i ∈ N for some
η ∈ ½0; 1Þ. If the recursive relations given by Eqs. (28), (34),
and (35) are initialized such that V0ðkÞ ≤ V̂0ðkÞ ≤ V̄0ðkÞ, then
one has ViðkÞ ≤ V̂iðkÞ ≤ V̄iðkÞ; ∀ i ∈ N. Moreover, if V0ðkÞ ¼
V̂0ðkÞ ¼ V̄0ðkÞ, then ViðkÞ and V̄iðkÞ are, respectively, the greatest
lower bound and the least upper bound of V̂iðkÞ for ϵiðxkÞ ∈
½−ηrðxk; 0; Þ þ ηrðxk; 0Þ�.

Proof. Lemma 1 is proved using mathematical induction. The
first step is to prove that V0ðkÞ ≤ V̂0ðkÞ ≤ V̄0ðkÞ. The second step
is assuming ViðkÞ ≤ V̂iðkÞ ≤ V̄iðkÞ to prove the assumptions in
Eqs. (34) and (28). As a result, it can be concluded that V̂iþ1ðkÞ ≤
V̄iþ1ðkÞ because ϵiðxkÞ ≤ ηrðxk; 0Þ and V̂iðkÞ ≤ V̄iðkÞ. Therefore,
one has V̂iðkÞ ≤ V̄iðkÞ; ∀ i ∈ N. The proof of ViðkÞ ≤ V̂iðkÞ;
∀ i ∈ N is similar when comparing Eq. (35) with Eq. (28) and
using mathematical induction. Proof of the last part of the lemma
follows from assuming εiðxkÞ ¼ ηrðxk; 0Þ; ∀ i ∈ N (respectively,
ϵiðxÞ ¼ −ηrðxk; 0Þ; ∀ i ∈ N), which leads to V̂iðkÞ ≤ V̄iðkÞ (re-
spectively, V̂iðkÞViðkÞ). Therefore, there is no greater lower bound
or lesser upper bound for V̂iðkÞ.

Considering the value iterations in Eqs. (34) and (35), it is seen
that V̄ið·Þ and Við·Þ are, respectively, the value functions at the ith
iteration of exact value iterations for cost functions as follows:

V̄ðkÞ ¼ γl−k
X∞
l¼k

½rðxl; ulÞ þ ηrðxl; 0Þ� ð36Þ

VðkÞ ¼ γl−k
X∞
l¼k

½rðxl;ulÞ − ηrðxl; 0Þ� ð37Þ
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The following lemma 2 provides sufficient conditions for their
convergence to the respective optimal cost functions.

Lemma 2. The exact value iterations given by Eqs. (34) and (35)
converge to the optimal value of cost functions [Eqs. (36) and (37)],
respectively, if they are initialized by smooth functions V̄0ð·Þ
and V0ð·Þ, such that 0 ≤ V̄0ðkÞ ≤ ð1þ ηÞrðxk; 0Þ; ∀ xk ∈ Ω and
0 ≤ V0ðkÞ ≤ ð1− ηÞrðxk;0Þ; ∀ xk ∈ Ω, where η ∈ ½0; 1Þ, Ω ⊂ Rn

is a compact set containing the given system.
Proof. The proof follows the results in the literature (Tamimi

et al. 2008; Heydari 2014) because the value iterations of V̄ðkÞ in
Eq. (34) and VðkÞ in Eq. (35) are in fact exact value iterations.

Following lemma 1 and lemma 2, theorem 2 proves the bound-
edness of the elements in approximate cost function sequences
fV̂iðkÞg∞i¼0.

Theorem 2. Let jϵiðxkÞj ≤ ηrðxk; 0Þ; ∀ xk ∈ Ω, then the ele-
ments of sequence fV̂iðkÞg∞i¼0 as i → ∞ are bounded by the opti-
mal cost functions in Eqs. (36) and (37) denoted with V̄�ðkÞ and
V�ðkÞ, respectively, in the sense that the greatest lower bound of
V̂iðkÞ converges to V�ðkÞ and the least upper bound of V̂iðkÞ con-
verges to V̄�ðkÞ as i → ∞.

Proof. The proof follows from the boundedness of fV̂iðkÞg∞i¼0

given in lemma 1 and the convergence of the bounds for smooth
V0ðkÞ and V̄0ðkÞ, which satisfy 0 ≤ V0ðkÞ ¼ V̂0ðkÞ ¼ V̄0ðkÞ ≤
ð1 − ηÞrðxk; 0Þ; ∀ xk ∈ Ω based on lemma 2.

Based on the result in theorem 2, the following theorem 3 ana-
lyzes the convergence of approximate value iteration when η → 0.

Theorem 3. Let jϵiðxkÞj ≤ ηrðxk; 0Þ; ∀ xk ∈ Ω, ∀ i ∈ N for
some η ∈ ½0; 1Þ. Let the approximate value iteration given by
Eq. (28) be initialized such that 0 ≤ V̂0ðkÞ ≤ ð1 − ηÞrðxk; 0Þ;∀ xk ∈ Ω. As η → 0, for example by selecting a richer approxima-
tor, the results from the approximate value iteration converge to the
results from the exact value iteration uniformly in compact set Ω.
More specifically, the least upper bound and the greatest lower
bound of V̂iðkÞ for i → ∞ converge uniformly to the optimal cost
function associated with cost function as η → 0.

Proof. Define V�ðkÞ as the optimal value of cost function VðkÞ,
and define ~V�ðkÞ as the optimal value of a new cost function ~VðkÞ.
~V�ðkÞ is defined as

~V�ðkÞ ≔
X∞
l¼k

γl−krðxh�l ; 0Þ ð38Þ

where xh
�

l ≔ fðxh�l−1; h�ðxh
�

l−1ÞÞ; ∀ l ∈ N − f0g and xh
�

0 ≔ x0.
Notably, ~VðkÞ is a cost function that considers a utility function as
rðxk; 0Þ, without control uk in utility function.

It is concluded that the exact value iterations of VðkÞ and
V̄ðkÞ, VðkÞ are in fact special cases of approximate values iter-
ation of V̂ðkÞ with different value of approximation error ϵiðxkÞ,
i.e., ϵiðxkÞ ¼ 0, ϵiðxkÞ ¼ ηrðxkÞ, ϵiðxkÞ ¼ −ηrðxkÞ, respectively
(see Fig. 1). Therefore, one has

V�ðkÞ ≤ V̄�ðkÞ ð39Þ

where V̄�ðkÞ is the optimal value of cost function Eq. (36); other-
wise, the control resulting from V̄�ðkÞ will be the optimal control
for cost function Eq. (13).

According to the definition of V̄�ðkÞ, one has

V̄�ðkÞ ≤ V�ðkÞ þ η ~V�ðkÞ ð40Þ

otherwise V̄�ðkÞwill not be the optimal value function of cost func-
tion Eq. (36). Note that both sides of inequality Eq. (40) include
infinite sums of rðxk;ukÞ þ ηrðxk; 0Þ terms, but they are evaluated

along different trajectories (i.e., the applied control policies are
different). The summation in the left-hand side is based on the con-
trol that minimizes cost function Eq. (36), and the summation in the
right-hand side is based on the control that minimizes cost func-
tion Eq. (13).

From the inequalities in Eqs. (39) and (40), one has

jV�ðkÞ − V̄�ðkÞj ≤ η ~V�ðkÞ ð41Þ
Let ~V�

maxðkÞ ≔ supxðkÞ∈Ω ~V�ðkÞ, where ~V�
maxðkÞ is the upper

bound of ~V�ðkÞ. Therefore, one can rewrite Eq. (41) as

jV�ðkÞ − V̄�ðkÞj ≤ η ~V�ðkÞmax ð42Þ
Inequality Eq. (42) proves the convergence of V̄�ðkÞ to the op-

timal value V�ðkÞ associated with cost function Eq. (13) as η → 0.
Moreover, the right-hand side of inequality Eq. (42) is a constant so
that it is independent of initial time; this convergence is uniform.
Let ~V�ðkÞ be defined as

~V�ðkÞ ≔
X∞
l¼k

γl−krðxh�l ; 0Þ ð43Þ

where h�ð·Þ is the optimal control policy for cost function Vð·Þ,
i.e., the summation in the right-hand side of Eq. (43) is evaluated
along the trajectory that is optimal with respect to Vð·Þ given by
Eq. (37). Similarly, one has that V�ðkÞ ≤ V�ðkÞ and V�ðkÞ ≤
V�ðkÞ þ ηeV�ðkÞ, which leads to

jV�ðkÞ − V�ðkÞj ≤ ηeV�ðkÞ ð44Þ

Defining eV�
maxðkÞ ≔ supxðkÞ∈ΩeV�ðkÞ, a similar uniform conver-

gence can be concluded because the right-hand side of inequality
Eq. (44) will be upper bounded by the t0 -independent term
ηeV �

maxðkÞ. It should be noted that eV �
maxðkÞ will be a finite constant

as long as η ∈ ½0; 1Þ, due to the upper boundedness of V�ðkÞ, which
leads to an upper-bounded V�ðkÞ, because V�ðkÞ ≤ V�ðkÞ. Consider
the utility function as rðxk;ukÞ ¼ QðxkÞ þ uTkRuk, which is derived
from Eq. (37), so that

V�ðkÞ ¼
X∞
l¼k

γl−k½rðxl;ulÞ − ηrðxl; 0Þ�

¼
X∞
l¼k

γl−k½Qðxh�l Þ þ h�Tðxh�l ÞRh�ðxh�l Þ − ηQðxh�l Þ�

¼
X∞
l¼k

γl−k½ð1 − ηÞQðxh�l Þ þ h�Tðxh�l ÞRh�ðxh�l Þ� ð45Þ

From the result of theorem 2, V�ðkÞ is bounded, which leads to a
bounded

P∞
l¼kð1 − ηÞQðxh�l Þ, and the boundedness of the latter

leads to a bounded cost function eV�ðkÞ ¼ P∞
l¼k γ

l−kQðxh�l Þ when
0 ≤ η < 1. Therefore, the right-side of Eq. (44) is bounded and ap-
proaches 0 as η → 0. This result proves that the exact value iteration
of V�ðkÞ converges to the optimal value of exact value iteration
V�ðkÞ as η → 0.

Fig. 1. The relation between V̂ðkÞ and VðkÞ, V̄ðkÞ, VðkÞ.
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Stability Analysis

This subsection first introduces two errors: the convergence error of
approximate value iteration and approximation error of control pol-
icy using a smooth approximator, or actor. Then, the stability result
of the approximate value iteration considering the aforementioned
two errors is provided.

Let the approximate value iteration be terminated at the ith iter-
ation, once a convergence tolerance, denoted with positive (semi-)
definite function δðxkÞ, is achieved, i.e., when

jV̂iþ1ðkÞ − V̂iðkÞj ≤ δðxkÞ; ∀ xk ∈ Ω ð46Þ
Heydari (2015) considered the approximation error of using an

actor to approximate control policy. For incremental value iteration,
an analytical optimal solution is provided; thus, the approximator
error does not exist. However, compared to exact value iteration,
incremental value iteration assumes that the nonlinear system is
approximated as a linear incremental model, leading to the model
approximation error, which is included in prediction error of êkþ1

with respect to ekþ1, and thus is included in modified approximated
cost function V̂ 0ðkþ 1Þ ¼ êTkþ1Pêkþ1.

Rewrite Eq. (46) as

−δðxkÞ ≤ V̂iþ1ðkÞ − V̂iðkÞ ≤ δðxkÞ; ∀ xk ∈ Ω ð47Þ
Thus

V̂iðkÞ − δðxkÞ ≤ V̂iþ1ðkÞ ≤ V̂iðkÞ þ δðxkÞ; ∀ xk ∈ Ω ð48Þ
From the right side of Eq. (48), one has

V̂iðkÞ þ δðxkÞ ≥ V̂iþ1ðkÞ ð49Þ
Using Eq. (28) in Eq. (49) yields

V̂iðkÞ ≥ eTt Qek þ ðuikÞTRuik þ γV̂iðkþ 1Þ þ ϵiðxkÞ − δðxkÞ;
∀ xk ∈ Ω ð50Þ

The asymptotic stability for the discrete nonlinear system
Eq. (1) is defined as

ΔV̂iðkþ 1Þ ≔ V̂iðkþ 1Þ − V̂iðkÞ ≤ 0; ∀ xk ∈ Ω ð51Þ
The equality in Eq. (51) holds only at the equilibrium xk ¼ 0.
From Eq. (50), one gets

V̂iðkþ 1Þ − V̂iðkÞ ≤ −eTkQek − ðuikÞTRuik
þ ð1 − γÞV̂iðkþ 1Þ − ϵiðxkÞ þ δðxkÞ ð52Þ

According to the stability condition in Eq. (51), one has

−eTkQek − ðuikÞTRuik − ϵiðxkÞ þ δðxkÞ þ ð1 − γÞêTkþ1P
iêkþ1 ≤ 0

ð53Þ
Remark 5. This inequality is the sufficient and necessary condi-

tion of asymptotic stability for a nonlinear dynamic system [Eq. (1)]
subjected to the designed optimal control in Eq. (36), considering the
approximation error at each iteration ϵiðxkÞ and iteration tolerance
δðxkÞ. Notably, the utility function rðxk; ukÞ ¼ eTkQek þ uTkRuk,
one-step value iteration error ϵiðxkÞ, convergence tolerance δðxkÞ,
and value function prediction V̂iðkþ 1Þ ¼ êTkþ1P

iêkþ1 are the fac-
tors that affect the system stability. ϵiðxkÞ, δðxkÞ are independent of
control uk. The utility function rðxk;ukÞ is an essential factor to af-
fect the system stability, i.e., the larger rðxk;ukÞ is, the more stable
the system is. The term ð1 − γÞêTkþ1P

iêkþ1 is also related to uk, but it
is relatively small because 1 − γ is close to zero.

Remark 6. ϵiðxkÞ describes the difference between using exact
value iteration and approximation value iteration. The value of ϵiðxkÞ
can be either positive or negative, which has different effects on
stability. ϵiðxkÞ > 0 indicates that the Lyapunov function of the
approximate value iteration represented by V̂iðkþ 1Þ is smaller than
Viðkþ 1Þ of the exact value iteration, so that it is easier to have
V̂iðkþ 1Þ < V̂iðkÞ and make the system more stable. On the con-
trary, ϵiðxkÞ < 0 indicates that the Lyapunov function V̂iðkþ 1Þ is
larger than Viðkþ 1Þ, so that it is harder to have V̂iðkþ 1Þ < V̂iðkÞ
and it makes the system more unstable. δðxkÞ measures to what ex-
tent the value iteration goes, i.e., a large δðxkÞ indicates the current
iteration index i is not sufficient to get an accurate estimate of
V�ðxkÞ, which may lead to instability of the system.

Remark 7. Asymptotic convergence of the cost function V̂iðkÞ
in the exact value iteration, described in Eq. (49), is the backbone
of deriving the stability condition for approximate value iteration
(including incremental approximate value iteration) in Eq. (53).
The control has to first guarantee that the oscillation in the con-
vergence of the approximated cost function is bounded in the pres-
ence of ϵiðxkÞ.

Numerical Example: Flight Control Problem

This section assesses the developed incremental value iteration al-
gorithm on a practical flight control problem. Firstly, the longitu-
dinal attitude dynamics of an aircraft model are provided. Secondly,
the flight dynamics are discretized from a continuous-time model to
a discrete-time linear model, by using Taylor expansion. Simulation
results are presented to analyze the performance of the designed
adaptive flight controller.

Continuous-Time Dynamical Model

A nonlinear longitudinal dynamical model of the aerial vehicle
(Sonneveldt 2011) is provided as:

α̇ ¼ qþ q̄S
mV

Czðα; q;Mα; δeÞ þ
g
V

q̇ ¼ qSd
Iyy

Cmðα; q;Mα; δeÞ ð54Þ

where q̄ ¼ 1=2ρV2 is dynamic pressure, S is a reference area, m is
mass, V is speed, d is reference length, and Iyy is the pitching mo-
ment of inertia. Cz and Cm are the aerodynamic force and moment
coefficients, which are nonlinear functions.

The following aerodynamic parameters of this model are valid
for −10° < α < 10°:

Czðα; q;Mα; δeÞ ¼ Cz1ðα;MαÞ þ Bzδe

Cmðα; q;Mα; δeÞ ¼ Cm1ðα;MαÞ þ Bmδe

Bz ¼ b1Mα þ b2

Bm ¼ b3Mα þ b4

Cz1ðα;MαÞ ¼ ϕz1ðαÞ þ ϕz2Mα

Cz2ðα;MαÞ ¼ ϕm1ðαÞ þ ϕm2Mα

ϕz1ðαÞ ¼ h1α3 þ h2αjαj þ h3α

ϕm1ðαÞ ¼ h4α3 þ h5αjαj þ h6α

ϕz2 ¼ h7αjαj þ h8α

ϕm2 ¼ h9αjαj þ h10α ð55Þ
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where b1; : : : ; b4; h1; : : : ; h10 are constant coefficients in the flight
envelope, and the March number Mα is set to be 2.2.

For convenience of controller design, a simplified model is
given as

α̇ ¼ q − Cα
Y

mV
α − Cδe

Y

mV
δe þ

g
V

q̇ ¼ Mα
z

Iyy
αþMδe

z

Iyy
δe þ

Mq
z

Iyy
q ð56Þ

Selecting the state vector as x ¼ ½α; q�T and the control input as
elevator deflection δe, the state equation of the tracking problem
can be written as a state-space form

ẋ ¼ AðxÞxþ BðxÞuþHðxÞd ð57Þ
where x ¼ ½α; q�T , u ¼ δe, d ¼ g, AðxÞ, BðxÞ, HðxÞ are defined as

AðxÞ ¼

2664
−Cα

Y

mV
1

Mα
z

Iyy

Mq
z

Iyy
q

3775; BðxÞ ¼

26664
−Cδe

Y

mV

Mδe
z

Iyy

37775; HðxÞ ¼
24 1

V
0

35
ð58Þ

Discrete-Time Incremental Model

The incremental model considers the increment of control input,
which is established on a discrete-time model. This subsection

Fig. 2. Flight control response and control input in nominal case to track square wave αref : (a) α tracking trajectory; (b) pitch rate q trajectory;
(c) α tracking error; (d) elevator deflection δe; and (e) parameters of optimal kernel matrix P�.

Table 1. Parameter initialization values

Parameter Value

Q
�
10 0

0 10

�
R 0.1
γV 0.99
γRLS 0.99
κ 0.99

F̂0

�
1 0

0 1

�
Ĝ0 ½ 0 0 �T

Λ0 108
�
1 0

0 1

�
P0 0
ΔT 0.01
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first discretizes the continuous-time model of the aerial vehicle in
Eq. (57) into a discrete-time model, with a prescribed sampling
time. Then, the discrete-time model is linearized into an incremen-
tal model. The incremental model describes the dynamics of the
state vector increment associated with the input control increment.

In a certain trim point of flight, the parameters in AðxÞ, BðxÞ,
HðxÞ of the continuous-time aerial vehicle dynamics in Eq. (57) are
assumed to be fixed. Then, the system in Eq. (57) can be seen as a
time-invariant system. Followed by this assumption, one can dis-
cretize Eq. (57) as

xkþ1 ¼ Φðxk;ΔTÞxk þGðxk;ΔTÞuk þHðxkÞdk ð59Þ

where Φðxk;ΔTÞ ¼ eAΔT , Gðxk;ΔTÞ ¼ ∫ ΔT
0 eAτBdt, and ΔT is

the sampling time.
Taking the eaylor Expansion of Eq. (59) at xk yields

xkþ1 ¼ xk þ Fk−1ðxk − xk−1Þ þ Gk−1ðuk − uk−1Þ ð60Þ

where Fk−1 ¼ ∂Φðxk;ΔTÞxkþGðxk;ΔTÞukþHðxÞdk∂xk jxk−1;uk−1 , Gk−1 ¼
∂Φðxk;ΔTÞxkþGðxk;ΔTÞukþHðxÞdk∂u jxk−1;uk−1 .

Eq. (60) is rewritten in an incremental form as

Δxkþ1 ¼ Fk−1Δxk þGk−1Δuk ð61Þ

where Δxkþ1 ¼ xkþ1 − xk, Δxk ¼ xk − xk−1 are the increments of
state vector at time step kþ 1, k.Δuk ¼ uk − uk−1 is the increment

of control input at time step k. Notably, the matrices Fk−1, Gk−1 are
functions associated with sampling time ΔT.

Simulation Results

This subsection provides the flight control simulation of an aerial
vehicle. The dynamics considered are the longitudinal model of
angle of attack α and pitch rate q, controlled by elevator deflection
δe. The saturation limit of the actuator is set to be −30° ≤ δe ≤ 30°.
The initialization of controller parameters is provided in Table 1.
The reference signals of α are considered as
• Square Wave Reference Signal: αref ¼ 4=45πsignðsinð0.4πtÞÞ
• Sine Wave Reference Signal: αref ¼ 4=45π sinð0.4πtÞ

Persistent excitation (PE) is required in simulation for two pur-
poses. The first one is to provide exploration in order to achieve a
better policy evaluation; the second one is to excite the RLS iden-
tification process of the incremental model. To this end, the PE sig-
nal is appended to the control input as a probing noise

Δu 0
k ¼ Δuk þ nk ð62Þ

where nk is a signal that is a sum of sines with various amplitudes,
frequency, and phase. The amplitudes of nk are required not to be
large compared to the amplitude of Δuk so as to decrease their ef-
fects on the performance of the controller. This simulation uses a
PE signal as (de Alvear Cárdenas et al. 2018)

nk ¼ 0.3e−kΔT ½sinð−20kΔTÞ þ sinð10kΔTÞ þ cosð30kΔTÞ� ð63Þ

Fig. 3. Flight control response and control inputs in nominal case to track a sinusoidal αref : (a) α tracking trajectory; (b) pitch rate q trajectory;
(c) α tracking error; (d) elevator deflection δe; (e) identification of system matrix F̂; and (f) identification of control matrix Ĝ.
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Robustness to Initial Values of α and Sensor Noise
This simulation verifies the performance of the flight controller on
reference tracking. The robustness of the adaptive flight controller
is verified by setting different initial values α0. The reason to verify
the robustness of flight controller to initial values of α is that, in
practical flights, α has various initial values and is difficult to be
predicted. In these cases, the flight controller should have satisfac-
tory performances. The robustness of the flight control system to
sensor noise is another essential property in practical cases. This
subsection considers the measurement noises of states α, q and as-
sumes that nα ∼N ð0; 0.001Þrad, nq ∼N ð0; 0.001Þrad=s.

The first case in this simulation is to track a square wave refer-
ence signal αref . As can be seen from Figs. 2(a and c), the tracking
curve is oscillating at the initial 2.5 s, because the PE signal is con-
tained in the control input as an input disturbance. As the amplitude
of PE signal vanishes after 2.5 s, the tracking error of αref reduces.
In the case of different initial values α0, varying from −15° to 15°,
the adaptive controller is capable of stabilizing the tracking error
αkref − αk, in the presence of disturbance input. From Fig. 2(d),
the control input δe oscillates before 2.5 s between [−30°, 30°].
Due to the presence of sensor noises nα and nq, δe shows sawtooth
oscillations in the whole control process, leading to oscillations in
the curves of q and α.

As can be seen from Fig. 2(e), the optimal parameters P�
11, P

�
12,

P�
21, P

�
22 of kernel matrix P are searched through value iteration at

every time step k. The peaks appearing at t1 ¼ 0.12 s are caused by
the inaccurate identification of system matrix F and control matrix
G, because the approximated cost function V̂ðkÞ is a function asso-
ciated with F̂k−1, Ĝk−1. Notably, some jumps appear at time periods
Δt2 ¼ ½2.51 s;2.52 s�,Δt3 ¼ ½5.01 s;5.03 s�,Δt4 ¼ ½7.52 s;7.53 s�.

These jumps are caused by a sudden change of tracking error when
the reference signal αref switches. The adaptive controller has to re-
plan a new policy to optimize V̂k jumps so that they can be regarded
as transitional stages from the former tracking error sequence to the
current tracking error sequence.

The second case is to track a sine-form wave reference signal.
As can be seen from Figs. 3(a and c), the tracking performance of
state α oscillates before 2.5 s due to the presence of the PE signal.
After 5 s, the tracking errorΔα increases because the controller can
not follow the αref when it is changing fast, and the elevator de-
flection δe has slight oscillation. In Fig. 3(d), the elevator deflection
δe varies in a constrained range, disturbed by the PE signal. When
the tracking error decreases, δe vanishes. In Figs. 3(e and f), the
elements of the estimated system matrix F̂k−1 and control matrix
Ĝk−1 converge to their true values in less than 2 s. Peaks occur in
the estimation curves of F̂21, Ĝ2. This phenomenon is caused by
two reasons: (1) the PE signal excites the dynamical system, thus
the output states are affected; and (2) the estimation of covariance

matrix Λ varies from a large initial value Λ0 ¼ 108
h
1 0

0 1

i
, which

works as a high gain in innovation εk feedback, as shown in Eq. (8).

Adaptation to Flight Faults
Aircrafts suffer from various faults in practice that introduce un-
certainties to the dynamical model. An adaptive flight controller
should be able to deal with these faults as well as track the reference
command.

This simulation considers two common faults of aircraft actua-
tors, which can be used to simulate the fault effects in a real flight
environment (Wang et al. 2019b). The first fault is the sudden 50%

Fig. 4. Flight control response and control input in fault case of 50% control effectiveness loss (t ¼ 5 s): (a) α tracking trajectory; (b) pitch rate q
trajectory; (c) α tracking error; (d) elevator deflection δe; (e) identification of system matrix F̂; and (f) identification of control matrix Ĝ.

© ASCE 04023097-10 J. Aerosp. Eng.

 J. Aerosp. Eng., 2024, 37(1): 04023097 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft
 o

n 
11

/0
6/

23
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



loss of control effectiveness at t¼ 5 s, i.e., Cδe
z jfault ¼ 0.5Cδe

z jnominal,
Mδe

z jfault ¼ 0.5Mδe
z jnominal. In Figs. 4(a and c), when the fault occurs,

the state α leaves the reference αref , the tracking error Δα shows
a slight wave, and then decreases gradually. This phenomenon in-
dicates that,the tracking of α is slightly affected by the fault. In
Fig. 4(d), the elevator deflection δe shows an obvious wave when
the fault occurs. The peaks go to 10° and −5°. Due to the loss of
control effectiveness, the elevator needs more deflections to control
the states α and q. In Figs. 4(e and f), the identifications of system
matrix F̂ and control system Ĝ are provided. Specifically, Fig. 4(e)

shows that the loss of control effectiveness occurs at t ¼ 5 s does
not affect the identification of F̂. In Fig. 4(f), due to the change of
aerodynamic parameters Cδe

Y ,M
δe
z at t ¼ 5 s, the identification of Ĝ

shows a transition phase in less than 0.02 s. This is because G has
been changed after the fault occurs. The RLS algorithm has to
weigh between the former identified value of Ĝ and the present
measured data, to modify Ĝ. A short transition phase demonstrated
that RLS algorithm is able to identify the fault online fast.

The second fault considered is a biased elevator at t ¼ 5 s, lead-
ing to a constant biased deflection, i.e., Δδe ¼ 3°. This biased

Fig. 5. Flight control response and control inputs in fault case of constant biased deflectionΔδe ¼ 3°ðt ¼ 7 sÞ: (a) α tracking trajectory; (b) pitch rate
q trajectory; (c) α tracking error; (d) elevator deflection δe; (e) identification of system matrix F̂; and (f) identification of control matrix Ĝ.
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deflection introduces additional lift Cδe
Y Δδe and pitch moment

Mδe
z Δδe. In Figs. 5(a and c), when the fault occurs, α fails to track

αref . After an adjustment in less than 0.2 s, the pitch rate q in the
fault case follows the pitch rate q in the nominal case again, indi-
cating that the controller is capable of adapting to the constant dis-
turbance deflection of elevator. However, a constant static error of α
tracking appears despite the fact that pitch rate q in the fault case
follows q in the nominal case. In Figs. 5(e and f), when the biased
deflection Δδe takes effect, the elements in estimated F̂, Ĝ in the
fault case jumps from those in the nominal case. The changes of F̂,
Ĝ indicate that the constant biased deflection Δδe affects the iden-
tification result of F, G. This can be explained by the fact that Δδe
produces additional input lift and pitch moment, equivalent to the
effects of modified F, G under the same input δe, without biased
deflection Δδe.

Conclusion

The incremental value iteration algorithm is developed in this paper
for the optimal tracking control of a nonlinear discrete-time system.
Theoretical results prove that the incremental value iteration is sta-
ble when taking the nonlinear system approximation error and cost
function approximation error into account. An asymptotic stability
condition is developed when considering the approximation errors.
Simulation examples applied to an aerial vehicle verified that the
controller designed using the incremental value iteration is robust to
different values of α0. In fault-tolerant simulation, the RLS algo-
rithm identifies the incremental model online without model infor-
mation. The adaptive controller is capable of tracking the reference
signals when two different faults happen.

Data Availability Statement

Some or all data, models, or code that support the findings of this
study are available from the corresponding author upon reasonable
request.
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