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Summary

The great demand for location-aware wireless sensor networks (WSNs) motivates
the research in this thesis. The unique characteristics of WSNs impose numerous
challenges on localization and communication. In this thesis, we handle some key
challenges and provide affordable solutions.

Impulse radio ultra wideband (IR-UWB) is employed as the fundamental tech-
nology for both localization and communication due to its distinctive advantages
in accurate ranging and reliable communication. The following aspects are treated
in this thesis.

• Transmitted-reference (TR) UWB communication systems: IR-UWB pro-
cessing in the digital domain usually asks for very high sampling rates.
The TR-UWB scheme allows for sub-Nyquist rate sampling by correlating
the received pulse sequence with its delayed version in the analog domain.
Thus, it avoids the daunting Nyquist sampling rate, relaxes the stringent
synchronization requirements, and only asks for aggregate channel coeffi-
cients. A data model including various kinds of interferences is employed,
and then a complete receiver is proposed including signal detection, channel
estimation, synchronization and equalization.

• Theoretical ranging bounds and practical ranging methods based on IR-UWB:
We investigate the theoretical ranging accuracy of a novel method, which
exploits the range information in both the amplitude and the time delay
of the received signal. The investigations are conducted not only for an
additive white Gaussian noise (AWGN) channel with attenuation, but also
for an AWGN channel with both attenuation and shadowing. Furthermore,
a practical ranging method based on time-of-arrival (TOA) estimation us-
ing UWB IRs is developed. Stroboscopic sampling is employed to sacrifice
transmission efficiency for a lower sampling rate. Moreover, it can maintain
the same ranging resolution as Nyquist sampling can achieve. Due to the
long preamble required by stroboscopic sampling, the clock drift, which is
an accumulative effect over time caused by the relative clock skew between
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viii Summary

different clocks, is one of the main error sources in TOA estimation. There-
fore, TOA estimation methods with clock drift calibration are explored to
dramatically mitigate the influence of the drift.

• Various localization and tracking methods:

– Extended multi-dimensional scaling (MDS): Since the classical MDS
cannot be applied to general networks with missing links, we extend
the classical MDS algorithm to deal with a special kind of network with
specific missing links. Our goal is to jointly estimate the positions of
all the nodes given partial pairwise distance measurements up to a
translation, rotation, and reflection.

– Reference-free time-based localization: Low-complexity least-squares
(LS) estimators based on time-of-arrival (TOA) or time-difference-of-
arrival (TDOA) measurements have been developed in literature to
locate a target node with the help of anchors (nodes with known po-
sitions). They require to select a reference anchor in order to cancel
nuisance parameters or relax stringent synchronization requirements,
and suffer from a poor reference selection. We propose reference-free
localization estimators based on TOA measurements to decouple the
reference dependency. Furthermore, we generalize existing reference-
based closed-form localization estimators using TOA or TDOA meas-
urements, and shed new light on their relations to clarify some confu-
sions that still persist in recent literature.

– Robust time-based localization: Time-based localization approaches at-
tract a lot of interest due to their high accuracy and potentially low
cost for WSNs. However, time-based localization is tightly coupled
with clock synchronization. Thus, the reliability of timestamps in time-
based localization becomes an important yet challenging task to deal
with. Regardless of the reliability of the timestamps from the target
node, we propose a novel ranging protocol, namely asymmetric trip
ranging (ATR), which leads to localization methods that are naturally
immune to internal attacks mounted by a compromised target node.
Robust localization strategies using the ATR protocol based on TOA
measurements are proposed to localize a target node with the help of
anchors for asynchronous networks.

– Kalman tracking: Due to the nonlinearity of the localization problem,
a Kalman filter (KF) is usually replaced by an extended KF (EKF)
for tracking a mobile target. However, the modeling errors inherently
contained in the EKF degrade the tracking performance. Therefore,
we make use of the ATR protocol again, carry out exact linearizations,
and achieve a KF based on a linear measurement model to track a
mobile target with the aid of fixed anchors.
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CHAPTER 1

Introduction

1.1 Location-aware wireless sensor networks

Earthquake in Japan: at 14:46 local time March 11th, 2011, the north-east
coast of Japan was hit by the most powerful earthquake since records, which
triggered a massive tsunami as a result. Thousands of people were dead,
and many more people were missing. Around 60 international teams from
45 countries have been placed on alert to assist Japanese teams to rescue
victims trapped beneath collapsed buildings.

Jewelry thieves in Tefaf: in March 20th, 2011, jewelry thieves struck again
during the Tefaf antiques fair, which is the world’s leading fine art fair held
in Maastricht, The Netherlands. It was not the first time that thieves struck
at the fair. In 2010, a pendant and ring with combined value of 860, 000
euros were stolen. In 2008, a necklace valued at 1.2 million euros was stolen.

E. coli outbreak across Europe: in May 2011, the outbreak of a virulent strain
of E. coli infected more than 2,200 people in at least 12 countries across
Europe. Forty-two victims died in Germany, and one in Sweden according
to the report from the European Centre for Disease Prevention and Con-
trol in June 23rd 2011. Germany reported that cucumbers from Spain were
the suspicious source for the E. coli outbreak. Tens of thousands of kilos
of fresh fruit and vegetables grown in Spain were destroyed. Spanish fruit
and vegetable exporters estimated a loss of 200 million dollars a week. But
later, it was found that sprouts grown in Germany were the likely source.
Only until June 30th 2011 the German Federal Institute for Risk Assess-
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2 Introduction

Figure 1.1: Applications of WSNs.

ment announced that seeds of fenugreek from Egypt were likely the cause
of the E. coli outbreak.

All these recent events have significantly affected people’s lives. We engineers ask
ourselves what we can do to make things better. Could we search for survivors
faster and smarter? Could we prevent the loss of assets? Could we have a better
monitoring and control of our food?

Location-aware wireless sensor networks (WSNs) may offer a promising solu-
tion to all these problems. Exciting advances in IC design have made it possible to
miniaturize sensor devices with measuring, computation, and communication cap-
abilities. Although each sensor has limited capabilities, the deployment of a large
wireless sensor network (WSN) can accomplish numerous complicated functions
in a wide range of applications, such as monitoring and control in environmental,
agricultural or industrial systems, as shown in Fig. 1.1. For instance, WSNs can
provide valuable information for search and rescue during severe disasters, such as
earthquakes and avalanches; asset tracking can be accomplished by WSNs; preci-
sion agriculture can employ WSNs to reduce costs and environmental impact by
fertilizing and watering only where necessary; WSNs can be used to detect pollu-
tion and identify the sources; product quality control in industrial processes can
be achieved by making use of wireless sensors to measure, monitor and actuate;
and traffic systems can take benefit from WSNs to monitor traffic throughput and
direct traffic flows.

The data of the sensors has to be associated with the locations where the data
was measured, and at the same time be accessible via flexible wireless communica-
tions. Therefore, localization and communication have equal primary importance



1.2. UWB technology 3

in WSNs. Furthermore, localization itself is a challenging research topic under
investigation for many decades. It finds applications not only in WSNs [1,2], but
also in the global positioning system (GPS) [3], radar systems [4], underwater
systems [5], acoustic systems [6, 7], cellular networks [8], as well as wireless local
area networks (WLANs) [9], etc. It is embraced everywhere at any scale. New
applications of localization are continuously emerging, which motivates further
exploration and attracts many researchers from different research areas, such as
geophysics, signal processing, aerospace engineering and computer science. To
name a few localization applications, there are geographic routing, warehousing,
logistics, etc.

Considering localization and communication for WSNs at the physical layer,
we are confronted with a number of unique challenges:

• Accurate localization and reliable communication in harsh envir-
onments

In general, WSNs will be deployed in harsh environments, such as a dis-
aster scene, inside process equipment, office buildings and green houses, etc.
These environments are normally GPS-denied and rich in multipath chan-
nels, which makes it very difficult to obtain accurate location estimates and
perform reliable communications. Moreover, the requirements for localiz-
ation accuracy also vary with the environment as shown in Fig. 1.2. For
outdoor environments, meter-level accuracy may satisfy the requirements.
On the other hand, for indoor environments, centimeter accuracy is some-
times required.

• Low cost and low complexity

The number of sensors deployed in a WSN can be huge. Therefore, there are
stringent constraints upon their cost and complexity. When we develop the
localization and communication system for WSNs, we should always bear
these constraints in mind and balance them with the obtained performance.

• Robustness

Due to the limited cost, lots of errors are caused by uncertainties of sensor
components. For example, sensors may employ poor crystals for clocking,
which will introduce severe synchronization problems in both localization
and communication. Meanwhile, WSNs are vulnerable to malicious attacks.
Robustness has to be taken into account in the system development.

1.2 UWB technology

1.2.1 Overview of UWB

UWB technology is not new for wireless communications. Its history starts from
the first impulse radio (IR) experiment conducted by Marconi for wireless tele-
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Figure 1.2: Outline of current wireless localization systems [10].

graphy in the late 1890s. Very narrow pulses in the time domain, which occupy
a large bandwidth in the frequency domain, are employed. However, the imple-
mentation difficulties of IR have pushed wireless communications to an opposite
direction, which now employs narrowband (NB) signals to make feasible hardware
systems. Driven by the great demand for wireless communications with multiple
access and high data rates, code division multiple access (CDMA) and ortho-
gonal frequency-division multiplexing (OFDM) technologies for NB signals are
successfully developed and deployed. Furthermore, besides time and frequency, a
third dimension, space, is explored in multi-input multi-output (MIMO) systems
to achieve a more reliable and higher capacity communication link. However,
the positive feedback between technologies and markets always push us further.
Scarce spectrum resources and nonstop market queries bring UWB technology
back to the research stage again. In 2002, the Federal Communications Commis-
sions (FCC) allocated the 3.1 − 10.6 GHz spectrum under regulations for UWB
technologies, which promoted a big boost in this area. According to the FCC,
the UWB signal is any signal whose bandwidth B ≥ 500 MHz or whose fractional
bandwidth Bf ≥ 20%, where Bf = 2(fH − fL)/(fH + fL), and fH and fL are
the upper and lower frequency of the −10 dB emission points, respectively. This
new definition categorizes UWB systems as IR-UWB systems, where each trans-
mitted pulse instantaneously occupies the ultra-wide bandwidth, and other UWB
systems, where an aggregation of at least 500 MHz bandwidth of narrowband
carriers is employed, e.g., multiband OFDM systems. The UWB systems promise
very high data rate and more efficient spectrum use.

UWB technology is also not new for localization. UWB radars were mainly
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used for military positioning and tracking since the 1960s. In general, localization
consists of two steps: first, metrics bearing location information are measured,
the so-called ranging or bearing, and second, the positions are estimated based
on those metrics, the so-called location information fusion. There are mainly four
metrics: time-of-arrival (TOA) or time-of-flight (TOF) [11], time-difference-of-
arrival (TDOA) [6, 12], angle-of-arrival (AOA) [13], and received signal strength
(RSS) [14]. The ranging methods using RSS can be implemented by energy detect-
ors, but they can only achieve a coarse resolution. Antenna arrays are required for
AOA-based methods, which encumbers their popularity. On the other hand, high
accuracy and potentially low cost implementation make TOA or TDOA based on
IR-UWB a promising ranging method [1].

The celebrated Shannon’s law (C = Blog2(1 + SNR), where C is the channel
capacity, B is the bandwidth of the signal, and SNR is the signal-to-noise ratio)
indicates a linear relation between the channel capacity and the signal bandwidth.
Meanwhile, for an additive white Gaussian noise (AWGN) channel, the ranging

accuracy based on TOA estimation is known as

√
Var(d̂) ≥ c/(2πBe

√
2SNR) [1],

where c is the signal propagation speed, and Be =
(∫∞

−∞ f2|S(f)|2df/
∫∞
−∞ |S(f)|2df

)1/2

is the effective signal bandwidth with S(f) the Fourier transform of the transmit-
ted signal. Hence, increasing the bandwidth of the signal is a very efficient way
to obtain a higher channel capacity and ranging accuracy. That is the first reason
why we would like to use UWB signals. Furthermore, it has a wealth of advant-
ages, such as resolvable multipath components, harmless overlay with existing
frequency allocations, low duty cycle, low probability of interception, and high
probability of penetration. All these make UWB-IRs ideal for communication
and localization in WSNs∗.

1.2.2 Challenges

Huge bandwidth is a double-edged sword. UWB-IRs require a Nyquist sampling
rate of several tens of GHz, which is prohibitively high for practical implement-
ation [15, 16] and conflicts with the stringent constraints of WSNs. Compressive
sampling (CS) could be a rescue for UWB-IRs [17–19], which are sparse in time.
CS is based on the concept that a sparse signal can be recovered from a relatively
small number of measurements [20, 21]. However, the replacement of analog-to-
digital convertors (ADCs) with analog-to-information convertors (AICs)† is not a
clear answer to the question whether we really get rid of the Nyquist rate in such
systems. Thus, we face the first challenge: how to avoid the Nyquist rate
sampling for UWB communications and ranging?

∗Different WSN applications require different data rates. For example, low-rate WSNs are
enough for personal health monitoring, but high-rate WSNs are in need for real-time processing
control loops.

†AICs conduct nonadaptive linear operations to the analog signal and result in discrete
samples.
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As we mentioned before, a TOA or TDOA metric is preferred for ranging.
Since TOA or TDOA measurements are time-based, clock synchronization is es-
sential to achieve accurate localization. Synchronization is also very important for
UWB communications, but not as rigorous as it is for localization. Note that ran-
ging is carried out between two sensor nodes, and different clock components are
employed at different sensor nodes. The relative clock skew between two clocks
will introduce a large clock drift over the whole ranging packet and cause severe
waveform mismatch, which makes it impossible to correctly detect the TOA of
the first path by averaging many frames in order to enhance the SNR. Then, we
face the second challenge: how to calibrate the clock drift for ranging?

Furthermore, even if we correctly detect the TOA of the first path and the
sensor node records a timestamp correspondingly for TOF calculation, the local
timestamp has to be translated into absolute time. Since the distance is the
product of the absolute TOF and the signal propagation speed, it only relates to
the absolute time duration, not to any local time duration. Therefore, we face the
third challenge: how to jointly consider synchronization and localization?

Due to the progress of the deployment of WSNs, security issues are put on the
table. Localization is vulnerable to many types of attacks [22–24], such as relay
attack, jamming attack and compromised node attack, etc. Since we will mainly
focus on time-based localization methods, time-related attacks which tightly con-
nect with localization and synchronization have to be considered. For example, a
deceitful target sensor sends fraudulent timestamps to spoof its processing time,
or submits inaccurate timestamps due to its asynchronous clock or other reasons.
Hence, we face the fourth challenge: how to take the misbehavior and unre-
liability of sensors into account in the development of the localization
approach?

Moreover, the low-cost and low-complexity constraints for WSNs motivate us
to focus on non-coherent UWB communication systems and look for closed-form
algorithms for localization. Although maximum likelihood estimators (MLEs)
and convex optimization are powerful tools to approach optimum performance,
high computational complexity and numerous iterations make them less attract-
ive for WSNs. Consequently, we face the fifth challenge: how to design a
non-coherent UWB communication system and closed-form localiza-
tion solutions for WSNs?

Last but not least, in practice, sensors are not static, and they can move
anywhere. We need to track their locations. Due to the nonlinear relations
between ranging measurements and the coordinates of the mobile target sensors,
the conventional Kalman filter (KF) cannot be used. The extended Kalman filter
(EKF) [25] is most widely used to linearize the non-linear model. However, the
performance of the EKF is decided by how accurate the linear approximation is.
Moreover, the unscented Kalman filter (UKF) and the particle filter [26] are also
effective tools to deal with nonlinear models and non-Gaussian noise for tracking.
However, both of them are computationally intensive. As a result, we face the
sixth challenge: how to track a moving sensor with low complexity?
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In this thesis, we try to address all these challenges in the following chapters,
which are summarized in the next section.

1.3 Thesis outline and contributions

This thesis is composed of three parts: Part I UWB communications, Part II
UWB ranging, and Part III Localization and tracking. Each part is organized as
follows.

• Part I UWB communications

In Chapter 2 [J4][C7-8]‡, a complete detection, channel estimation, syn-
chronization and equalization scheme for a transmitted-reference (TR) UWB
system is proposed. The scheme is based on a data model which admits a
moderate data rate and takes both the inter-frame interference (IFI) and
the inter-symbol interference (ISI) into consideration, and replaces Nyquist
sampling with sub-Nyquist sampling. Moreover, the bias caused by the
inter-pulse interference (IPI) in one frame is also taken into account. Based
on the analysis of the stochastic properties of the received signals, several
detectors are studied and evaluated. Furthermore, a data-aided two-stage
synchronization strategy is proposed, which obtains sample-level timing in
the range of one symbol at the first stage and then pursues symbol-level
synchronization by looking for the header at the second stage. Three chan-
nel estimators are derived to achieve joint channel and timing estimates for
the first stage, namely the linear minimum mean square error (LMMSE)
estimator, the least squares (LS) estimator and the matched filter (MF).
We check the performance of different combinations of channel estimation
and equalization schemes, and try to find the best combination, that is, the
one providing a good tradeoff between complexity and performance.

• Part II UWB ranging

In Chapter 3 [C6], we derive the Cramér-Rao bound (CRB) for range estim-
ation, which does not only exploit the range information in the time delay,
but also in the amplitude of the received signal. This new bound is lower
than the conventional CRB that only makes use of the range information in
the time delay. We investigate the new bound in an additive white Gaussian
noise (AWGN) channel with attenuation by employing both narrowband
(NB) signals and UWB signals. For NB signals, the new bound can be
3dB lower than the conventional CRB under certain conditions. However,
there is not much difference between the new bound and the conventional
CRB for UWB signals. Further, shadowing effects are added into the data
model. Several CRB-like bounds for range estimation are derived to take
these shadowing effects into account.

‡References here refer to the publication results of this thesis on pp. 14



8 Introduction

In Chapter 4 [C5], we propose a time-of-arrival (TOA) estimation scheme
using UWB impulse-radio (IR), which has a low sampling rate and is robust
against clock drift. Low-rate stroboscopic sampling, which can achieve an
equivalent sampling rate as high as the Nyquist sampling rate, is adopted to
achieve a high resolution TOA estimate by IR-UWB. Since a long preamble
is required to collect sufficient data samples, the clock drift is one of the
main error sources in TOA estimation with stroboscopic sampling IR-UWB
systems. The clock drift refers to the time difference between two clocks
due to the relative clock skew. Taking the drift into account in our system,
we first obtain a maximum-likelihood (ML) estimate of the drift. Then, we
investigate several kinds of TOA estimation methods, and employ the peak
selection (PS) and the jump back and search forward (JBSF) method to
estimate the TOA using the averaged data samples calibrated for the drift.
A theoretical performance limit is obtained by the CRB for joint estimation
of the clock drift ratio and the parameters of the multipath components.
Simulation results corroborate that associated drift calibration significantly
reduces the TOA estimation errors, and that stroboscopic sampling can
achieve the same estimation resolution as Nyquist sampling.

• Part III Localization and tracking

Throughout a WSN, there are always a few sensors labeled as anchors, whose
positions are known (by a system administrator during startup), and the
rest are ordinary sensors, whose positions must be estimated. If the ordinary
sensors can make range measurements with enough anchors, low-complexity
closed-form localization estimators as proposed in the following chapters can
be employed to estimate each sensor position independently. Therefore, this
kind of methods is categorized as singular localization methods. However,
due to the low cost and low power constraints of the sensors, their commu-
nication range is limited. Thus, not all of them can reach enough anchors.
To deal with this problem, the localization can be accomplished sequen-
tially [27, 28]. The sensors that reach enough anchors are localized first.
Then, these located sensors can be viewed as new anchors that can facil-
itate the location estimation of other sensors. Alternatively, extra range
information among sensors can be explored [2]. Sensors can cooperate with
their neighbors, and their positions are jointly estimated simultaneously.
This kind of methods is called aggregate localization methods. In this part,
we first propose a range-based aggregate localization method in Chapter 5,
and then mainly focus on time-based singular ones in the following chapters.

In Chapter 5 [J3], we consider N sensor nodes randomly distributed in an
l-dimensional space, e.g., l = 2 (a plane) or l = 3 (a space). There are no
anchors. The distance measurements between nodes (given they are connec-
ted) are available, which could be obtained by TOA or RSS estimation. Note
that we do not care about the approach to obtain distance measurements
here. We assume that the distance measurements are composed of the true
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distances corrupted by additive random noise. Our goal is to estimate the
positions of all the nodes given partial pairwise distance measurements up
to a translation, rotation, and reflection. Current solutions first complete
the missing distances and then apply the classical multidimensional scaling
(MDS) algorithm. Instead, we extend the classical MDS to a setup where
the sensor network is composed of a fully connected group of nodes that
communicate with each other (e.g., anchors), and a group of nodes that
cannot communicate with each other, but each one of them communicates
with each node in the first group. We localize the fully connected nodes
by exploiting their distance measurements to the disconnected nodes. At
the same time, the positions of the disconnected nodes are obtained up to
a translation relative to the positions of the connected nodes. Recovering
this translation, can be obtained with an additional step. Simulation results
show that the proposed algorithm outperforms current MDS-like solutions
to the problem.

From Chapter 6 to Chapter 8, we consider M anchor nodes and one target
node, and would like to estimate or track the position of the target node.
All the nodes are again distributed in an l-dimensional space. The coordin-
ates of the anchor nodes are known and defined as Xa = [x1, x2, . . . , xM ],
where the vector xi = [x1,i, x2,i, . . . , xl,i]

T of length l indicates the known
coordinates of the ith anchor node. We employ a vector x of length l to de-
note the unknown coordinates of the target node. Our method can easily be
extended for multiple target nodes. Furthermore, since we employ TOA (or
TDOA) measurements, clock synchronization is essential to achieve accur-
ate localization. Therefore, we take clock parameters into account. We con-
sider three different kinds of networks with different synchronization levels
w.r.t. to the anchor clock. Note that these synchronization requirements
are related to the anchors, and no synchronization requirements are upon
the target node, which indicates that the clock of the target node can run
freely. Strictly speaking, they are all asynchronous networks. Consequently,
the timing relation between the target clock Cs(t) and the the absolute time
t can be described as [29]

Cs(t) = αst + θs, (1.1)

where αs and θs denote the unknown clock skew and clock offset of the
target node clock relative to the absolute clock. To be more specific, we
consider the following networks:

– Synchronous networks in Chapter 6: all the anchors are synchronized
with each other. The timing relation between the ith anchor clock
Ci(t) and the absolute time t can be modeled as

Ci(t) = t + θ, i = 1, 2, . . . , M, (1.2)
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where θ is the unknown common clock offset of Ci(t) relative to the
absolute clock.

– Quasi-synchronous networks in Chapter 7 and Chapter 8: all the an-
chors have different clock offsets with each other. The clock model for
the ith anchor is now modeled as

Ci(t) = t + θi, i = 1, 2, . . . , M, (1.3)

where θi is the unknown clock offset of Ci(t) relative to the absolute
clock.

– Fully asynchronous networks in Chapter 7: all the anchors not only
have different clock offsets but also different clock skews w.r.t. each
other. The clock model for the ith anchor is here given by

Ci(t) = αit + θi, i = 1, 2, . . . , M, (1.4)

where αi is the unknown clock skew of Ci(t) relative to the absolute
clock.

In Chapter 6 [J1], we propose several reference-free localization estimat-
ors based on TOA measurements for a scenario, where anchor nodes are
synchronized, and the clock of the target node runs freely. The reference-
free LS estimators that are different from the reference-based ones do not
suffer from a poor reference selection. Furthermore, we generalize existing
reference-based localization estimators using TOA or TDOA measurements,
which are scattered over different research areas, and we shed new light on
their relations. We justify that the optimal weighting matrix can com-
pensate the influence of the reference selection for reference-based weighted
LS (WLS) estimators using TOA measurements, and make all those estim-
ators identical. However, the optimal weighting matrix cannot decouple the
reference dependency for reference-based WLS estimators using a nonre-
dundant set of TDOA measurements, but can make the estimators using
the same set identical as well.

In Chapter 7 [J2][C1][C3-4], we propose robust time-based localization strategies
to locate a target node with the help of anchors (nodes with known posi-
tions) in quasi-synchronous networks and fully asynchronous networks, re-
spectively. Time-based localization approaches attract a lot of interest due
to their high accuracy and potentially low cost for WSNs. However, time-
based localization is tightly coupled with clock synchronization. Thus, the
reliability of timestamps in time-based localization becomes an important
yet challenging task to deal with. A novel ranging protocol is developed,
namely asymmetric trip ranging (ATR), to reduce the communication load
and explore the broadcast property of WSNs. Regardless of the reliability of
the timestamp report from the target node, closed-form least-squares (LS)
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estimators are derived to accurately estimate the target node position. As
a result, we counter the uncertainties caused by the target node by ignoring
the timestamps from this node.

In Chapter 8 [C2], we propose a Kalman filter (KF) based tracking approach
to track a target node with the assistance of anchors in quasi-synchronous
networks w.r.t. the synchronization level of the anchors. We again employ
the asymmetric trip ranging (ATR) protocol to obtain TOA measurements
and facilitate clock offset cancellation, and further derive a linear measure-
ment model from the TOA measurements. Thus, the KF based on this linear
measurement model does not have the modeling errors inherently contained
in the extended Kalman filter (EKF). Furthermore, low computational com-
plexity makes the proposed KF a promising solution for practical use.

Besides the above contributions included in this thesis, we have also developed
a flexible platform shown in Fig. 1.3 in order to explore the hardware architecture
of the digital receiver algorithm for the TR UWB communication system. This
platform delivers a hardware experimental environment for the TR UWB scheme.
It can emulate real UWB signals as inputs of our digital UWB receiver and make
efficient use of a USB link between the hardware and PC. To be more specific, an
arbitrary waveform generator (AWG) in the platform is programmed to generate
UWB signals. These represent the transmitted TR UWB signals, convolved with a
measured multipath channel impulse response and correlated by a delayed version
of themselves. A dualchannel, 12-bit A/D convertor (ADC) samples the signals
at 100 MHz. The data samples are transferred through a USB link from the
FPGA board to the PC and demodulated by Matlab software. The function
block diagram of the platform is depicted in Fig. 1.4. A digital receiver with a
two-step acquisition was realized on the platform and the results were published
in [C9].
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Figure 1.3: The hardware platform setup

Figure 1.4: The block diagram of the hardware platform for a DHTR UWB system
prototype development
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1.4 Smart PEAS project

The research for this thesis was supported in part by the STW project DPC. 7976
“Product Quality Control Using Smart PEAS-Based UWB Technology”(Smart
PEAS) within the Green and Smart Process Technologies program. The Smart
PEAS project aims at studying the use of smart moving process environment ac-
tuators and sensors (PEAS) based on ultra-wideband (UWB) technology inside
the process equipment for product quality control. Product quality is determined
by manufacturing processes, thus processes must be rigorously characterized, un-
derstood, and controlled. Current process controls are based on measured data at
a few fixed positions and carried out at a few fixed positions as well. Therefore, it
is insufficient and ineffective. Smart PEAS can provide an enabling infrastructure
to dramatically improve process controls in an efficient way. More measurements
can be obtained to accurately characterize the process, and more controls can be
preciously conducted in a distributed fashion as well.

This Smart PEAS project has been carried out by a team composed of two
Ph.D. candidates, two Postdocs, one engineer and two supervisors, and was a
cooperation between the Circuits & Systems (CAS) group of the Faculty of Elec-
trical Engineering, Mathematics and Computer Sciences (EEMCS) of the Delft
University of Technology and the Process & Energy (PE) group of the Faculty of
Mechanical, Maritime and Materials Engineering (3ME) of the same university.

The main research work has been split into two clusters. The first cluster is
related to CAS activities, whereas the second cluster contains PE tasks as follows.

Cluster 1 (CAS tasks)

1. Characterization of transmission properties of UWB-signals in various in-
dustrial media and temperatures, and related UWB antenna design.

2. Development of the UWB communications technology under conditions pre-
vailing in chemical processes, i.e., in liquids and inside metal vessels.

3. Development of the UWB localization technology under conditions prevail-
ing in chemical processes, i.e., in liquids and inside metal vessels.

4. Integration of the devices for communications, localization, and pro- cess
variable measurements into a mobile sensor which is robust enough to be
applied in a process environment.

Cluster 2 (PE tasks)

5. Defining the application scope of the new technology and identification of the
measurement system. This will include the definition of e.g. sensor design



1.4. Smart PEAS project 15

parameters/boundary conditions on geometry, chemical and temperature
resistance (current maximum temperature is 150- 200C), and process safety
issues.

6. Conceptual design of a measurement system in a process, including sensor
removal strategies.

7. Establishing and optimizing the flow behavior of sensor geometries in pro-
cess equipment. A special issue will be the interference with the normal
hydrodynamic flow.

8. Process characterization by determining dynamic process parameter- pos-
ition profiles which serve as validation data for advanced process models
and control strategy. A first emphasis will be on positioning and temper-
ature profiling. Depending on progress at the electronics department other
measurement functionalities or actuation principles will be tested.

9. Implementation of sensors within chemical processes, with a focus on the
validation of spatial distributed process models and on methods to optimize
and control the local process conditions to improve the performance of the
process and the product quality.

The outcome of this project consists of some fruitful results triggered by the
close collaboration between the two research groups. This thesis presents some
of the main research results related to the first cluster. Furthermore, together
with 3UB (a TU Delft spin-off company) and Delft Engineering Services (DES),
the CAS group has developed a prototype testing system within the Smart PEAS
project as shown in Fig. 1.5. One of the PEAS is shown in Fig. 1.6, and consists
of a ball-shaped plastic module. A bow-tie antenna is integrated on the surface,
and the sensor electronics are embedded inside the module. Online localization
using this platform is currently under test.
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Figure 1.5: The prototype testing system for the Smart PEAS project.

Figure 1.6: A close-up of one of the PEAS.
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CHAPTER 2

Transmitted-Reference Ultra-Wideband Systems

2.1 Introduction

Ultra-wideband (UWB) impulse radio (IR) techniques can provide high speed, low
cost, and low complexity wireless communications with the capability to over-
lay existing frequency allocations [33]. Since UWB systems employ ultrashort
low-duty-cycle pulses as information carriers, they suffer from stringent timing
requirements [33] [34] and complex multipath channel estimation [33]. Conven-
tional approaches require a prohibitively high sampling rate of several GHz [35]
and an intensive multi-dimensional search to estimate the parameters for each
multipath echo [36].

Detection, channel estimation and synchronization problems are always en-
tangled with each other. A typical approach to address these problems is the
detection-based signal acquisition [37]. A locally generated template is correlated
with the received signal, and the result is compared to a threshold. How to gener-
ate a good template is the task of channel estimation, whereas how to decide the
threshold is the goal of detection. Due to the multipath channel, the complexity
of channel estimation grows quickly as the number of multipath components in-
creases, and because of the fine resolution of the UWB signal, the search space is
extremely large.

Recent research works on detection, channel estimation and synchronization
methods for UWB have focused on low sampling rate methods [38] [39] [40] [41] or
non-coherent systems, such as transmitted-reference (TR) systems [37] [42], differ-
ential detectors (DDs) [43] and energy detectors (EDs) [41] [44]. In [38], a general-

The results in this chapter have been published as [30–32]
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ized likelihood ratio test (GLRT) for frame-level acquisition based on symbol rate
sampling is proposed, which works with no or small inter-frame interference (IFI)
and no inter-symbol interference (ISI). The whole training sequence is assumed to
be included in the observation window without knowing the exact starting point.
Due to its low duty cycle, an UWB signal belongs to the class of signals that
have a finite rate of innovation [39]. Hence, it can be sampled below the Nyquist
sampling rate and the timing information can be estimated by standard methods.
The theory is developed under the simplest scenario and extensions are currently
envisioned [45]. The timing recovery algorithm of [40] makes cross correlations
of successive symbol-long received signals, in which the feedback controlled delay
lines are difficult to implement. In [41], the authors address a timing estimation
comparison among different types of transceivers, such as stored-reference (SR)
systems, ED systems and TR systems. The ED and the TR systems belong to the
class of noncoherent receivers. Although their performances are suboptimal due
to the noise contaminated templates, they attract more and more interest because
of their simplicity. They are also more tolerant to timing mismatches than SR
systems. The algorithms in [41] are based on the assumption that the frame-level
acquisition has already been achieved. Two-step strategies for acquisition are de-
scribed in [46] [47]. In [46], the authors use a different search strategy in each step
to speed up the procedure, which is the bit reversal search for the first step and
the linear search for the second step. Meanwhile, the two-step procedure in [47]
finds the block which contains the signal in the first step, and aligns with the
signal at a finer resolution in the second step. Both methods are based on the
assumption that coarse acquisition has already been achieved to limit the search
space to the range of one frame and that there are no interferences in the signal.

From a system point of view, non-coherent receivers are considered to be
more practical since they can avoid the difficulty of accurate synchronization and
complicated channel estimation. One main obstacle for TR systems and DD
systems is the implementation of the delay line [48]. The longer the delay line
is, the more difficult it is to implement. For DD systems [43], the delay line is
several frames long, whereas for TR systems, it can be only several pulses long [30],
which is much shorter and easier to implement [49]. ED systems do not need a
delay line, but suffer from multiple access interference [50], since they can only
adopt a limited number of modulation schemes, such as on-off keying (OOK) and
pulse position modulation (PPM). A two-stage acquisition scheme for TR-UWB
systems is proposed in [37], which employs two sets of direct-sequence (DS) code
sequences to facilitate coarse timing and fine aligning. The scheme assumes no IFI
and ISI. In [51], a blind synchronization method for TR-UWB systems executes
a MUSIC-kind of search in the signal subspace to achieve high resolution timing
estimation. However, the complexity of the algorithm is very high because of the
matrix decomposition.

Recently, a multi-user TR-UWB system that admits not only inter-pulse inter-
ference (IPI), but also IFI and ISI was proposed in [52]. The synchronization for
such a system is at low-rate sample-level. The analog parts can run independently
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without any feedback control from the digital parts. In this chapter, we develop a
complete detection, channel estimation, synchronization and equalization scheme
based on the data model modified from [52]. Moreover, the performance of dif-
ferent kinds of detectors is assessed. A two-stage synchronization strategy is pro-
posed to decouple the search space and speed up synchronization. The property
of the circulant matrix in the data model is exploited to reduce the computational
complexity. Different combinations of channel estimators and equalizers are evalu-
ated to find the one with the best trade-off between performance and complexity.
The results confirm that the TR-UWB system is a practical scheme that can
provide moderate data rate communications (e.g., in our simulation setup, the
data rate is 2.2Mb/s) at a low cost.

The chapter is organized as follows. In Section 2.2, the data model presented
in [52] is summarized and modified to take the unknown timing into account. Fur-
ther, the statistics of the noise are derived. The detection problem is addressed
in Section 2.3. Channel estimation, synchronization, and equalization are dis-
cussed in Section 2.4. Simulation results are shown and assessed in Section 2.5.
Conclusions are drawn in Section 2.6.

2.2 Asynchronous single user data model

The asynchronous single user data model derived in the following paragraphs
uses the data model in [52] as a starting point. We take the unknown timing into
consideration and modify the model in [52].

2.2.1 Single frame

In a TR-UWB system [42] [52], pairs of pulses (doublets) are transmitted in
sequence as shown in Fig.2.1. The first pulse in the doublet is the reference
pulse, whereas the second one is the data pulse. Since both pulses go through
the same channel, the reference pulse can be used as a “dirty template” (noise
contaminated) [40] for correlation at the receiver. One frame-period Tf holds
one doublet. Moreover, Nf frames constitute one symbol-period Ts = NfTf ,
which is carrying a symbol si ∈ {−1, +1}, spread by a pseudo random code
cj ∈ {−1, +1}, j = 1, 2, . . . , Nf , which is repeatedly used for all symbols. The
polarity of a data pulse is modulated by the product of a frame code and a
symbol. The two pulses are separated by some delay interval Dm, which can be
different for each frame. The delay intervals are in the order of nanoseconds and
Dm ≪ Tf . The receiver employs multiple correlation branches corresponding to
different delay intervals. To simplify the system, we use a single delay and one
correlation branch, which implies Dm = D. Fig. 2.1 also presents an example
of the receiver structure for a single delay D. The integrate-and-dump (I&D)
integrates over an interval of length Tsam. As a result, one frame results in P =
Tf/Tsam samples, which is assumed to be an integer.
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Figure 2.1: The transmitted UWB signal and the receiver structure

The received one-frame signal (jth frame of ith symbol) at the antenna output
is

r(t) = h(t − τ) + sicjh(t − D − τ) + n(t), (2.1)

where τ is the unknown timing offset, h(t) = hp(t) ⋆ g(t) of length Th, with
hp(t) the UWB physical channel and g(t) the pulse shape resulting from all the
filter and antenna effects, and n(t) is the bandlimited additive white Gaussian
noise (AWGN) with double sided power spectral density N0/2 and bandwidth B.
Without loss of generality, we may assume that the unknown timing offset τ in
(2.1) is in the range of one symbol period, τ ∈ [0, Ts), since we know the signal
is present by detection at the first step (see Section 2.3) and propose to find the
symbol boundary before acquiring the package header (see Section 2.4). Then, τ
can be decomposed as

τ = δ · Tsam + ǫ, (2.2)

where δ = ⌊τ/Tsam⌋ ∈ {0, 1, . . . , Ls−1} denotes the sample-level offset in the range
of one symbol with Ls = NfP , the symbol length in terms of number of samples,
and ǫ ∈ [0, Tsam) presents the fractional offset. Sample-level synchronization
consists of estimating δ. The influence of ǫ will be absorbed in the data model
and becomes invisible as we will show later.

Based on the received signal r(t), the correlation branch of the receiver com-
putes

x[n] =

∫ nTsam+D

(n−1)Tsam+D

r(t)r(t − D)dt

=

∫ nTsam

(n−1)Tsam

{[h(t − τ) + sicjh(t − D − τ) + n(t)]

[h(t + D − τ) + sicjh(t − τ) + n(t + D)]}dt

= sicj

∫ nTsam

(n−1)Tsam

[h2(t − τ) + h(t − D − τ)h(t + D − τ)]dt

+

∫ nTsam

(n−1)Tsam

[h(t − τ)h(t + D − τ) + h(t − D − τ)h(t − τ)]dt + n1[n],

(2.3)



2.2. Asynchronous single user data model 23

where

n1[n] = n0[n] + sicj

∫ nTsam

(n−1)Tsam

[h(t − τ)n(t) + h(t − D − τ)n(t + D)]dt

+

∫ nTsam

(n−1)Tsam

[h(t − τ)n(t + D) + h(t + D − τ)n(t)]dt, (2.4)

with

n0[n] =

∫ nTsam

(n−1)Tsam

n(t)n(t + D)dt. (2.5)

Note that n0[n] is the noise autocorrelation term, and n1[n] encompasses the
signal-noise cross correlation term and the noise autocorrelation term. Their
statistics will be analyzed later. Taking ǫ into consideration, we can define the
channel correlation function similarly as in [52]

R(∆, m) =

∫ mTsam

(m−1)Tsam

h(t − ǫ)h(t − ǫ − ∆) dt, m = 1, 2, . . . , (2.6)

where h(t) = 0, when t > Th or t < 0. Therefore, the first term in (2.3) can

be denoted as sicj

∫ nTsam

(n−1)Tsam
h2(t − τ)dt = sicj

∫ nTsam−δTsam

(n−1)Tsam−δTsam
h2(t − ǫ)dt =

sicjR(0, n − δ). Other terms in x[n] can also be rewritten in a similar way,
leading x[n] to be

x[n] =





sicj [R(0, n− δ) + R(2D, n − δ + D
Tsam

)]

+[R(D, n − δ) + R(D, n − δ + D
Tsam

)] + n1[n], n = δ + 1, . . . , δ + Ph,

n0[n], elsewhere,
(2.7)

where Ph = ⌈Th/Tsam⌉ is the channel length in terms of number of samples and
R(0, m) is always non-negative. Although R(2D, m + D/Tsam) is always very
small compared to R(0, m), we do not ignore it to make the model more accurate.
We also take the two bias terms into account, which are the cause of the IPI and
are independent of the data symbols and the code. Now, we can define the Ph ×1
channel energy vector h with entries hm as

hm = R(0, m) + R(2D, m +
D

Tsam
), m = 1, . . . , Ph, (2.8)

where R(0, m) ≥ 0. Further, the Ph × 1 bias vector b with entries bm is defined
as

bm = R(D, m) + R(D, m +
D

Tsam
), m = 1, . . . , Ph. (2.9)

Note that these entries will change as a function of ǫ, although ǫ is not visible in
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the data model. As we stated before, sample-level synchronization is limited to
the estimation of δ. Using (2.8) and (2.9), x[n] can be represented as

x[n] =

{
sicjhn−δ + bn−δ + n1[n], n = δ + 1, δ + 2, . . . , δ + Ph,
n0[n], elsewhere.

(2.10)

Now we can turn to the noise analysis. A number of papers have addressed
the noise analysis for TR systems [53–56]. The noise properties are summarized
here, and more details can be found in Appendix 2.A. We start by making the as-
sumptions that D ≫ 1/B, Tsam ≫ 1/B, and the time-bandwidth product 2BTsam

is large enough. Under these assumptions, the noise autocorrelation term n0[n]
can be assumed to be a zero mean white Gaussian random variable with variance
σ2

0 = N2
0 BTsam/2. The other noise term n1[n] includes the signal-noise cross-

correlation and the noise autocorrelation, and can be interpreted as a random
disturbance of the received signal. Let us define two other Ph × 1 channel energy
vectors h′ and h′′ with entries h′

m and h′′
m to be used in the variance of n1[n]

h′
m = R(0, m) + R(0, m− D

Tsam
), m = 1, . . . , Ph, (2.11)

h′′
m = R(0, m) + R(0, m +

D

Tsam
), m = 1, . . . , Ph. (2.12)

Using those definitions and under the earlier assumptions, n1[n] can also be as-
sumed to be a zero mean Gaussian random variable with variance
(N0/2)

(
h′

n−δ + h′′
n−δ + 2sicjbn−δ

)
+σ2

0 , n = δ+1, δ+2, . . . , δ+Ph. This indicates
that all the noise samples are uncorrelated with each other and have a different
variance depending on the data symbol, the frame code, the channel correlation
coefficients, and the noise level. Note that the noise model is as complicated as
the signal model.

2.2.2 Multiple frames and symbols

Now let us extend the data model to multiple frames and symbols. We assume
the channel length Ph is not longer than the symbol length Ls. A single symbol
with timing offset τ will then spread over at most three adjacent symbol periods.

Define xk =
[
x[(k − 1)Ls + 1], x[(k − 1)Ls + 2], . . . , x[kLs]

]T
, which is an Ls-long

sample vector. By stacking M + N − 1 such received sample vectors into an
MLs × N matrix

X =




xk xk+1 . . . xk+N−1

xk+1 xk+2 . . . xk+N

... . . .
...

xk+M−1 xk+M . . . xk+M+N−2


 , (2.13)
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Figure 2.2: The data model structure of X

where N indicates the number of samples in each row of X, and M denotes the
number of sample vectors in each column of X, we obtain the following decom-
position

X = Cδ′(IM+2 ⊗ h)S + Bδ′1(MNf +2Nf )×N + N1, (2.14)

where N1 is the noise matrix similarly defined as X,

S =




sk−1 sk . . . sk+N−2

sk sk+1 . . . sk+N−1

... . . .
...

sk+M sk+M+1 . . . sk+M+N−1


 , (2.15)

and the structure of the other matrices is illustrated in Fig. 2.2. We first define
a code matrix C. It is a block Sylvester matrix of size (Ls + Ph −P )×Ph, whose
columns are shifted versions of the extended code vector: [c1,0

T
P−1, c2,0

T
P−1, . . . ,

cNf
,0T

P−1]
T . The shift step is one sample. Its structure is shown in Fig. 2.3. The

matrix Cδ′ of size MLs × (MPh + 2Ph) is composed of M + 2 block columns,
where δ = (Ls − δ′)mod Ls, δ′ ∈ {0, 1, . . . , Ls − 1}. As long as there are more
than two sample vectors (M > 2) stacked in every column of X, the non-zero
parts of the block columns will contain M − 2 code matrices C. The non-zero
parts of the first and last two block columns result from splitting the code matrix
C according to δ′: C′

i(2Ls−i+1 : 2Ls, :) = C(1 : i, :) and C′′
i (1 : Ls+Ph−P −i, :

) = C(i+1 : Ls +Ph−P, :), where A(m : n, :) refers to column m through n of A.
The overlays between frames and symbols observed in Cδ′ indicate the existence
of IFI and ISI. Then we define a bias matrix B, which is of size (Ls+Ph−P )×Nf
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Figure 2.3: The structure of the code matrix C and the bias matrix B

made up by shifted versions of the bias vector b with a shift step of P samples,
as shown in Fig. 2.3. The matrix Bδ′ of size MLs× (MNf +2Nf) also has M +2
block columns, the non-zero parts of which are obtained from the bias matrix
B in the same way as Cδ′ . Since the bias is independent of the data symbols
and the code, it is the same for each frame. Each column of the resulting matrix
Bδ′1(MNf+2Nf )×N is the same and has a period of P samples. Defining bf to be
the P × 1 bias vector for one such period, we have

Bδ′1(MNf+2Nf )×N = 1MNf×N ⊗ bf . (2.16)

Note that bf is also a function of δ, but since it is independent of the code, we
cannot extract the timing information from it.

Recalling the noise analysis of the previous section, the noise matrix N1 has
zero mean and contains uncorrelated samples with different variances. The matrix
Λ, which collects the variances of each element in N1, is

Λ = E(N1 ⊙ N1)

=
N0

2

{
(H′

δ′ + H′′
δ′)1(MNf +2Nf )×N + 2Cδ′(IM+2 ⊗ b)S

}
+ σ2

01MLs×N ,

(2.17)

where H′
δ′ and H′′

δ′ have exactly the same structure as Bδ′ , only using h′ and
h′′ instead of b. They all have the same periodic property, if multiplied by 1.
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Defining h′
f and h′′

f to be the two P × 1 vectors for one such period, we obtain

H′
δ′1(MNf+2Nf )×N = 1MNf×N ⊗ h′

f , (2.18)

H′′
δ′1(MNf+2Nf )×N = 1MNf×N ⊗ h′′

f . (2.19)

2.3 Detection

The first task of the receiver is to detect the existence of a signal. In order to
separate the detection and the synchronization problems, we assume that the
transmitted signal starts with a training sequence, and assign the first segment
of the training sequence to detection only. In this segment, we transmit all “+1”
symbols and employ all “+1” codes. It is equivalent to sending only positive
pulses for some time. This kind of training sequence bypasses the code and the
symbol sequence synchronization. Therefore, we do not have to consider timing
issues when we handle the detection problem. The drawback is the presence of
spectral peaks as a result of the periodicity. It can be solved by employing a
time hopping code for the frames. We omit this in our discussion for simplicity.
It is also possible to use a signal structure other than TR signals for detection,
such as a positive pulse training with an ED. Although the ED doubles the noise
variance due to the squaring operation, the TR system wastes half of the energy
to transmit the reference pulses. Therefore, they would have a similar detection
performance for the same signal-to-noise ratio (SNR), that is, the ratio of the
symbol energy to the noise power spectrum density. We keep the TR structure
for detection in order to avoid additional hardware for the receiver.

In the detection process, we assume that the first training segment is 2M1

symbols long, and the observation window is M1 symbols long (M1Ls = M1NfP
samples equivalently). We collect all the samples in the observation window,
calculate a test statistic and examine whether it exceeds a threshold. If not, we
jump into the next successive observation window of M1 symbols. The 2M1-
symbol-long training segment makes sure that there will be at least one moment,
at which the M1-symbol-long observation window is full of training symbols. In
this way, we speed up our search procedure by jumping M1 symbols. Once the
threshold is exceeded, we skip the next 2M1 symbols in order to be out of the
first segment of the training sequence and we are ready to start the channel
estimation and synchronization at the sample-level (see Section 2.4). There will
be situations where the observation window only partially overlaps the signal.
However, for simplicity, we will not take these cases into account, when we derive
the test statistic. If these cases happen and the test statistic is larger than the
threshold, we declare the existence of a signal, which is true. Otherwise, we miss
the detection and shift to the next observation window, which is then full of
training symbols giving us a second chance to detect the signal. Therefore, we do
not have to distinguish the partially overlapped cases from the overall included
case. We will derive the test statistic using only these two hypotheses indicated
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below. But the evaluation of the detection performance will take all the cases into
account.

2.3.1 Detection problem statement

Since we only have to tell whether the whole observation window contains a signal
or not, the detection problem is simplified to a binary hypothesis test. We first
define the M1NfP × 1 sample vector x = [xT

k ,xT
k+1, . . . ,x

T
k+M1−1]

T with entries
x[n], n = (k − 1)NfP + 1, (k − 1)NfP + 2, . . . , (k + M1 − 1)NfP , which collects
all the samples in the observation window. The hypotheses are as follows

1. H0: there is only noise. Under H0, according to the analysis from the
previous section, x is modeled as

x = n0, (2.20)

x
a∼ N (0, σ2

0I), (2.21)

where n0 is the noise vector with entries n0[n], n = (k − 1)NfP + 1, (k −
1)NfP + 2, . . . , (k + M1 − 1)NfP and

a∼ indicates approximately distrib-
uted according to. The Gaussian approximation for x is valid based on the
assumptions in the previous section.

2. H1: signal with noise is occupying the whole observation window. Under
H1, the data model (2.14) and the noise model (2.17) can be easily specified
according to the all “+1” training sequence. We define Hδ′ having the
same structure as Bδ′ , only taking h instead of b. It also has a period of
P samples in each column, if multiplied by 1. Defining hf to be the P × 1
vector for one such period, we have

Hδ′1(MNf +2Nf )×N = 1MNf×N ⊗ hf . (2.22)

By selecting M = M1 and N = 1 for (2.14), and taking (2.16), (2.18), (2.19)
and (2.22) into the model, the sample vector x can be decomposed as

x = 1M1Nf
⊗ (hf + bf ) + n1, (2.23)

where the zero mean noise vector n1 has uncorrelated entries n1[n], n =
(k − 1)NfP + 1, (k − 1)NfP + 2, . . . , (k + M1 − 1)NfP and the variances of
each element in n1 are given by

λ = E(n1 ⊙ n1)

=
N0

2
1M1Nf

⊗ (h′
f + h′′

f + 2bf ) + σ2
01M1Nf P . (2.24)

Due to the all “+1” training sequence, the impact of the IFI is to fold the
aggregate channel response into one frame, so the frame energy remains
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constant. Normally, the channel correlation function is quite narrow, so
R(D, m) ≪ R(0, m) and R(2D, m) ≪ R(0, m). Then, we can have the
relation

h′
f + h′′

f + 2bf ≈ 4(hf + bf ). (2.25)

Defining the P × 1 frame energy vector zf = hf + bf with entries zf [i], i =
1, 2, . . . , P and the frame energy Ef = 1T

P zf , we can simplify x and λ

x = 1M1Nf
⊗ zf + n1, (2.26)

λ ≈ 2N01M1Nf
⊗ zf + σ2

01M1Nf P . (2.27)

Based on the analysis above and the assumptions from the previous section,
x can still be assumed as a Gaussian vector in agreement with [54]

x
a∼ N (1M1Nf

⊗ zf , diag(λ)), (2.28)

where diag(a) indicates a square matrix with a on the main diagonal and
zeros elsewhere.

2.3.2 Detector derivation

The test statistic is derived using H0 and H1. It is suboptimal, since it ignores
other cases. But it is still useful as we have analyzed before. The Neyman-Pearson
(NP) detector [57] decides H1 if

L(x) =
p(x;H1)

p(x;H0)
> γ, (2.29)

where γ is found by making the probability of false alarm PFA to satisfy

PFA = Pr{L(x) > γ;H0} = α. (2.30)

The test statistic is derived by taking the stochastic properties of x under the two
hypotheses into L(x) (2.29) and eliminating constant values. It is given by

T (x) =

P∑

i=1

zf [i]

σ2
1 [i]





(k+M1−1)Nf−1∑

n=(k−1)Nf

(
x[nP + i] +

N0

σ2
0

x2[nP + i]

)
 , (2.31)

where σ2
1 [i] = 2N0zf [i] + σ2

0 . A detailed derivation is presented in Appendix 2.B.
Then the threshold γ will be found to satisfy

PFA = Pr{T (x) > γ;H0} = α. (2.32)
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Hence, for each observation window, we calculate the test statistic T (x) and
compare it with the threshold γ. If the threshold is exceeded, we announce that
a signal is detected.

The test statistic not only depends on the noise knowledge σ2
0 , but also on

the composite channel energy profile zf [i]. All data samples make a weighted
contribution to the test statistic, since they have different means and variances.
The larger zf [i]/σ2

0 is, the heavier the weighting coefficient is. If we would like
to employ T (x), we have to know σ2

0 and zf [i] first. Note that σ2
0 can be easily

estimated, when there is no signal transmitted. However, the estimation of the
composite channel energy profile zf [i] is not as easy, since it appears in both the
mean and the variance of x under H1.

2.3.3 Detection performance evaluation

Until now, the optimal detector for the earlier binary hypothesis test has been
derived. The performance of this detector working under real circumstances has
to be evaluated by taking all the cases into account. As we have described before,
there are moments where the observation window partially overlays the signal.
They can be modeled as other hypotheses Hj , j = 2, . . . , M1NfP . Applying the
same test statistic T (x) under these hypotheses including H1, the probability of
detection is defined as

PD,j = Pr{T (x) > γ;Hj}, j = 1, . . . , M1NfP. (2.33)

We would obtain PD,1 > PD,j , j = 2, . . . , M1NfP . Since the observation window
collects the maximum signal energy under H1 and the test statistic is optimal to
detect H1, it should have the highest possibility to detect the signal. Furthermore,
if we miss the detection under Hj , j = 1, . . . , M1NfP , we still have a second chance
to detect the signal with a probability of PD,1 in the next observation window,
recalling that the training sequence is 2M1 symbols long. Therefore, the total
probability of detection for this testing procedure is PD,j + (1 − PD,j)PD,1, j =
1, . . . , M1NfP , which is larger than PD,1 and not larger than PD,1+(1−PD,1)PD,1.
Since all hypotheses Hj , j = 1, . . . , M1NfP have equal probability, we can obtain
that the overall probability of detection PDo

for the detector T (x) as

PDo
=

1

M1NfP

M1Nf P∑

j=1

{PD,j + (1 − PD,j)PD,1}, j = 1, . . . , M1NfP.

(2.34)

where PD,1 < PDo
< PD,1 + (1 − PD,1)PD,1. Since the analytical evaluation of

PDo
is very complicated, we just derive the theoretical performance of PD,1 under

H1. In the simulations section, we will obtain the total PDo
by Monte Carlo

simulations and compare it with PD,1 and PD,1 + (1 − PD,1)PD,1, which can be
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used as boundaries for PDo
.

A theoretical evaluation of PD,1 is carried out by first analyzing the stochastic
properties of T (x). As T (x) is composed of two parts, we can define

T1(x) =

P∑

i=1

zf [i]

σ2
1 [i]

(k+M1−1)Nf−1∑

n=(k−1)Nf

x[nP + i], (2.35)

T2(x) =

P∑

i=1

zf [i]

σ2
1 [i]

(k+M1−1)Nf−1∑

n=(k−1)Nf

x2[nP + i]. (2.36)

Then we have

T (x) = T1(x) +
N0

σ2
0

T2(x). (2.37)

First, we have to know the probability density function (PDF) of T (x). However,
due to the correlation between the two parts, it can only be found in an empirical
way by generating enough samples of T (x) and making a histogram to depict
the relative frequencies of the sample ranges. Therefore, we simply assume that
T1(x) and T2(x) are uncorrelated, and T (x) is a Gaussian random variable. The
mean (variance) of T (x) is the sum of the weighted means (variances) of the two
parts. The larger the sample number M1NfP is, the better the approximation is,
but also the longer the detection time is. There is a tradeoff. In summary, T (x)
follows a Gaussian distribution as follows

T (x)
a∼ N

(
E(T1(x)) +

N0

σ2
0

E(T2(x)), var(T1(x)) +
N2

0

σ4
0

var(T2(x))
)
.

(2.38)

The mean and the variance of T1(x) can be easily obtained based on the assump-
tion that x is a Gaussian vector. The stochastic properties of T2(x) are much
more complicated. More details are discussed in Appendix 2.C. All the perform-
ance approximations are summarized in Table 2.1, where the function Q(·) is the
right-tail probability function for a Gaussian distribution.

A special case occurs when P = 1, which means that one sample is taken per
frame (Tsam = Tf ). For this case where no oversampling is used, we have constant
energy Ef and constant noise variance σ2

1 = 2N0Ef +σ2
0 for each frame. Then the

weighting parameters for each sample in the detector would be exactly the same.
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We can eliminate them and simplify the test statistic to

T ′
1(x) =

(k+M1−1)Nf∑

n=(k−1)Nf+1

x[n], (2.39)

T ′
2(x) =

(k+M1−1)Nf∑

n=(k−1)Nf+1

x2[n], (2.40)

and

T ′(x) = T ′
1(x) +

N0

σ2
0

T ′
2(x). (2.41)

Therefore, T ′
2(x)/σ2

0 will follow a central Chi-squared distribution under H0 and
T ′

2(x)/σ2
1 will follow a noncentral Chi-squared distribution under H1. We calculate

the threshold for T ′
2(x) as

γ′
2 = σ0

2Q−1
χ2

M1Nf

(α), (2.42)

and the probability of detection under H1 as

PD,1 = Qχ2
M1Nf

(M1NfE2
f
/σ2

1)

(
γ′
2

σ2
1

)
, (2.43)

Table 2.1: Statistical Analysis and Performance Evaluation for Different Detectors,
P > 1, Tsam = Tf/P

T1(x) T2(x) T (x)

H0

µ µT1,0
= 0 µT2,0

= M1Nf σ0
2

P∑

i=1

zf [i]

σ2
1
[i]

µT0
= µT1,0

+
N0

σ2
0

µT2,0

σ2 σ
2
T1,0

=M1Nf σ0
2

P∑

i=1

z2
f
[i]

σ4
1
[i]

σ
2
T2,0

= 2M1Nf σ0
4

P∑

i=1

z2
f
[i]

σ4
1
[i]

σ
2
T0

= σ
2
T1,0

+
N2

0

σ4
0

σ
2
T2,0

H1

µ µT1,1
= M1Nf

P∑

i=1

z2
f
[i]

σ2
1
[i]

µT2,1
= M1Nf

P∑

i=1

zf [i]

(
1 +

z2
f
[i]

σ2
1
[i]

)
µT1

= µT1,1
+

N0

σ2
0

µT2,1

σ2 σ
2
T1,1

= M1Nf

P∑

i=1

z2
f
[i]

σ2
1
[i]

σ
2
T2,1

=2M1Nf

P∑

i=1

z
2
f
[i]

(
1 +

2z2
f
[i]

σ2
1
[i]

)
σ
2
T1

= σ
2
T1,1

+
N2

0

σ4
0

σ
2
T2,1

PF A Q

(
γ1

σT1,0

)
= α Q

(
γ − µT2,0

σT2,0

)
= α Q

(
γ − µT0

σT0

)
= α

γ γ1 = σT1,0
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(
γ1 − µT1,1

σT1,1

)
Q

(
γ2 − µT2,1

σT2,1

)
Q

(
γ − µT1

σT1

)



2.3. Detection 33

−4 −2 0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
p
/N

0
(dB)

P
D

,1

Probabilities of detection under H
1

 

 

T
′
(x)

T
1

′
(x)

T
2

′
(x)

P
FA

=1e−1

P
FA

=1e−3

P
FA

=1e−5

Figure 2.4: Performance comparison between T ′(x) and its components T ′
1(x) and

T ′
2(x)

where the functions Qχ2
ν
(x) and Qχ2

ν(λ)(x) are the right-tail probability functions
for a central and noncentral Chi-squared distribution, respectively. The statistics
of T ′

1(x) can be obtained by taking P = 1, zf [i] = Ef and σ2
1 [i] = σ2

1 into Table
2.1, and multiplying the means with σ2

1/Ef and the variances with σ4
1/E2

f . As

a result, the threshold γ′
1 for T ′

1(x) is
√

M1Nfσ2
0Q−1(α), which can be easily

obtained. The PD,1 of T ′(x) could be evaluated in the same way as T (x) by
Table 2.1.

The theoretical contributions of T ′
1(x) and T ′

2(x) to T ′(x) are assessed in
Fig. 2.4. The simulation parameters are set to M1 = 8, Nf = 15, Tf = 30ns,
Tp = 0.2ns and B ≈ 2/Tp. For the definition of Ep/N0 we refer to Section 2.5.
The detector based on T ′

1(x) (dashed lines) plays a key role in the performance
of the detector based on T ′(x) (solid lines) under H1. For low SNR, they are
almost the same, since T ′

1(x) can be directly derived by ignoring the signal-noise
cross correlation term in the noise variance under H1. There is a small difference
between them for medium SNRs. T ′

2(x) (dotted lines) has a performance loss
of about 4dB compared to T ′(x). Thanks to the ultra-wide bandwidth of the
signal, the weighting parameter N0/σ0

2 greatly reduces the influence of T ′
2(x) on

T ′(x). It enhances the performance of T ′(x) slightly in the medium SNR range.
According to these simulation results and the impact of the weighting parameter
N0/σ2

0 , we can employ T ′
1(x) instead of T ′(x). It has a much lower calculation

cost and almost the same performance as T ′(x).

Furthermore, the influence of the oversampling rate P to the PD,1 of T (x)
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can be ignored, because the oversampling only affects the performance of T2(x),
which only has a very small influence on T (x). Therefore, the impact of the
oversampling can be neglected. In Section 2.5, we will evaluate the PD,1 of T (x)
using the IEEE UWB channel model by a quasi-analytical method and also by
Monte Carlo simulations. Based on the simulation results in this section, we can
predict that for small P (P > 1) the PD,1 for T (x) will be more or less the same
as the PD,1 for T ′(x) or T ′

1(x).

2.4 Channel estimation, synchronization and equal-
ization

After successful signal detection, we can start the channel estimation and syn-
chronization phase. The sample-level synchronization finds out the symbol bound-
ary (estimates the unknown offset δ), and the result can later on be used for
symbol-level synchronization to acquire the header. This two-stage synchron-
ization strategy decomposes a two-dimensional search into two one-dimensional
searches, reducing the complexity. The channel estimates and the timing informa-
tion can be used for the equalizer construction. Finally, the demodulated symbols
can be obtained.

2.4.1 Channel estimation

Bias estimation

As we have seen in the asynchronous data model, the bias term is undesired.
It does not have any useful information, but disturbs the signal. We will show
that this bias seriously degrades the channel estimation performance later on.
The second segment of the training sequence consists of “+1,−1” symbol pairs
employing a random code. The total length of the second segment should be
M1 +2Ns symbols, which includes the budget for jumping 2M1 symbols after the
detection. The “+1,−1” symbol pairs can be used for bias estimation as well as
channel estimation. Since the bias is independent of the data symbols and the
useful signal part has zero mean, due to the “+1,−1” training symbols, we can
estimate the Ls × 1 bias vector of one symbol, bs = 1Nf

⊗ bf , as

b̂s =
1

2Ns
[xk xk+1 . . . xk+2Ns−1]12Ns

. (2.44)

Channel estimation

To take advantage of the second segment of the training sequence, we stack the
data samples as

X̃ =

[
xk xk+2 . . . xk+2Ns−2

xk+1 xk+3 . . . xk+2Ns−1

]
, (2.45)
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which is equivalent to picking only odd columns of X in (2.14) with M = 2 and
N = 2Ns−1. As a result, each column depends on the same symbols, which leads
to a great simplification of the decomposition in (2.14)

X̃ = [(C′
Ls+δ′ + C′′

Ls+δ′) (C′
δ′ + C′′

δ′)](I2 ⊗ h)[−sk sk]T1T
Ns

+12×Ns
⊗ bs + Ñ1, (2.46)

where Ñ1 is the noise matrix similarly defined as X̃. For simplicity, we only
count the noise autocorrelation term with zero mean and variance σ2

0 into Ñ1,
while σ2

0 can be easily estimated in the absence of a signal. Because we jump into
this second segment of the training sequence after detecting the signal, we do not
know whether the symbol sk is “+1” or “-1”. Rewriting (2.46) in another form
leads to

X̃ = Cshssδ1
T
Ns

+ 12×Ns
⊗ bs + Ñ1, (2.47)

where Cs is a known 2Ls × 2Ls circulant code matrix, whose first column is
[c1,0

T
P−1, c2,0

T
P−1, . . . , cNf

,0T
Ls+P−1]

T , and the vector hssδ of length 2Ls blends
the timing and the channel information, which contains two channel energy vectors
with different signs, skh and −skh, located according to δ

hssδ =

{
circshift(

[
skh

T ,0T
Ls−Ph

,−skh
T ,0T

Ls−Ph

]T
, δ), δ 6= 0[

− skh
T ,0T

Ls−Ph
, skh

T ,0T
Ls−Ph

]T
, δ = 0

, (2.48)

where circshift(a, n) circularly shifts the values in the vector a by |n| elements
(down if n > 0 and up if n < 0). According to (2.47) and assuming the channel
energy has been normalized, the linear minimum mean square error (LMMSE)
estimate of hssδ then is

ĥssδ = CH
s (CsC

H
s +

σ2
0

Ns
I)−1 1

Ns
(X̃ − 12×Ns

⊗ bs)1Ns
. (2.49)

Defining

ĥsδ =

[
ĥssδ(1 : Ls) − ĥssδ(Ls + 1 : 2Ls)

]

2
, (2.50)

where a(m : n) refers to element m through n of a, we can obtain a symbol-long
LMMSE channel estimate as

ĥδ = |ĥsδ|. (2.51)

According to a property of circulant matrices, Cs can be decomposed as Cs =
FΩFH , where F is the normalized DFT matrix of size 2Ls × 2Ls and Ω is a
diagonal matrix with the frequency components of the first row of Cs on the
diagonal. Hence, the matrix inversion in (2.49) can be simplified dramatically.
Observing that CH

s (CsC
H
s + (σ2

0/Ns)I)
−1 is a circulant matrix, the bias term
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Figure 2.5: The symbol-long channel estimate ĥδ with bias removal and |ĥssδ(1 : Ls)|
without bias removal, when SNR is 18 dB

actually does not have to be removed in (2.49), since it is implicitly removed
when we calculate (2.50). Therefore, we do not have to estimate the bias term
explicitly for channel estimation and synchronization.

When the SNR is high, ‖ CsC
H
s ‖F ≫‖ (σ2

0/Ns)I ‖F , (2.49) can be replaced
by

ĥssδ =
1

Ns
FΩ−1FH(X̃ − 12×Ns

⊗ bs)1Ns
. (2.52)

It is a least squares (LS) estimator and equivalent to a deconvolution of the code
sequence in the frequency domain. On the other hand, when the SNR is low,
‖ CsC

H
s ‖F ≪‖ (σ2

0/Ns)I ‖F , (2.49) becomes

ĥssδ =
1

σ2
0

FΩHFH(X̃ − 12×Ns
⊗ bs)1Ns

, (2.53)

which is equivalent to a matched filter (MF). The MF can also be processed in the
frequency domain. The LMMSE estimator in (2.49), the LS estimator in (2.52)
and the MF in (2.53) all have a similar computational complexity. However for
the LMMSE estimator, we have to estimate σ2

0 and the channel energy.

As an example, we show the performance of these channel estimates under high
SNR conditions (the simulation parameters can be found in Section 2.5). Fig. 2.5

indicates the symbol-long channel estimate ĥδ with bias removal and |ĥssδ(1 : Ls)|
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without bias removal, where ĥssδ = CH
s (CsC

H
s +(σ2

0/Ns)I)
−1(1/Ns)X̃1Ns

for the

LMMSE and ĥssδ = (1/σ2
0)FΩHFHX̃1Ns

for the MF. When the SNR is high,
the LMMSE estimator is expected to have a similar performance as the LS estim-
ator. Thus, we omit the LS estimator in Fig. 2.5. The MF for ĥδ (dashed line)

has a higher noise floor than the LMMSE estimator for ĥδ (solid line), since its
output is the correlation of the channel energy vector with the code autocorrela-
tion function. The bias term lifts the noise floor of the channel estimate resulting
from the LMMSE estimator (dotted line) and distorts the estimation, while it
does not have much influence on the MF (dashed line with + markers). The stars
in the figure present the real channel parameters as a reference. The position of
the highest peak for each curve in Fig. 2.5 indicates the timing information and
the area around this highest peak is the most interesting part, since it shows the
estimated channel energy profile. Although the LMMSE estimator without bias
suppresses the estimation errors over the whole symbol period, it has a similar
performance as all the other estimators in the interesting part.

2.4.2 Sample-level synchronization

The channel estimate ĥδ has a duration of one symbol. But we know that the true
channel will generally be much shorter than the symbol period. We would like to
detect the part that contains most of the channel energy, and cut out the other
part in order to be robust against noise. This basically means that we have to
estimate the unknown timing δ. Define the search window length as Lw in terms
of the number of samples (Lw > 1). The optimal length of the search window
depends on the channel energy profile and the SNR. We will show the impact
of different window lengths on the estimation of δ in the next section. Define
ĥwδ = [ĥT

sδ,−ĥT
sδ(1 : Lw − 1)]T , and define δ̂ as the δ estimate

δ̂ = argmax
δ

|
δ+Lw∑

n=δ+1

ĥwδ(n)|. (2.54)

This is motivated as follows. According to the definition of ĥsδ, when δ > Ls−Ph,
ĥsδ will contain channel information partially from skh and partially from −skh,
which have opposite signs. In order to estimate δ, we circularly shift the search
window to check all the possible sample positions in ĥsδ and find the position
where the search window contains the maximum energy. If we do not adjust the
signs of the two parts, the δ estimation will be incorrect when the real δ is larger
than Ls − Ph. This is because the two parts will cancel each other, when both of
them are encompassed by the search window. That is the reason why we construct
ĥwδ by inverting the sign of the first Lw−1 samples in ĥsδ and attaching them to
the end of ĥsδ. Moreover, the estimator (2.54) benefits from averaging the noise
before taking the absolute value.
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2.4.3 Equalization and symbol-level synchronization

Based on the channel estimate ĥδ and the timing estimate δ̂, we select a part
of ĥδ to build three different kinds of equalizers. Since the MF equalizer cannot
handle IFI and ISI, we only select the first P samples (the frame length in terms

of number of samples) of circshift(ĥδ,−δ̂) as ĥp. The code matrix C is specified

by assigning Ph = P . The estimated bias b̂s can be used here. We skip the first
δ̂ data samples and collect the rest data samples in a matrix Xδ̂ of size Ls × N
as in the data model (2.14) but with M = 1. Therefore, the MF equalizer is
constructed as

ŝT = sign{(Cĥp)
T (Xδ̂ − 11×N ⊗ b̂s)}, (2.55)

where ŝ is the estimated symbol vector. Moreover, we also construct a zero-forcing
(ZF) equalizer and an LMMSE equalizer by replacing h with ĥ, which collects
the first P̂h samples (the channel length estimate in terms of number of samples)

of circshift(ĥδ,−δ̂), and using δ̂′ = (Ls − δ̂)mod Ls in the data model (2.14). The
channel length estimate P̂h could be obtained by setting a threshold (e.g., 10% of

the maximum value of ĥδ) and counting the number of samples beyond it in ĥδ.
These equalizers can resolve the IFI and the ISI to achieve a better performance
at the expense of a higher computational complexity. The estimated bias b̂s can
also be used. We collect the samples in a data matrix X of size 2Ls × N similar
as the data model (2.14) with M = 2. Then the ZF equalizer gives

Ŝ = sign{(Cδ̂′(I4 ⊗ ĥ))†(X− 12×N ⊗ b̂s)}, (2.56)

and the LMMSE equalizer gives

Ŝ = sign{(Φ̂HΦ̂ + σ2
0I4)

−1Φ̂H(X − 12×N ⊗ b̂s)}, (2.57)

where Φ̂ = Cδ̂′(I4 ⊗ ĥ). Ŝ is a 4 × N symbol matrix. We can choose either the

second or the third row of Ŝ as the demodulated symbol sequence.

Until now, the sample-level synchronization confirms the boundaries of the
symbols. However it is not able to explore the boundary of the training header,
since the second segment of the training sequence just employs pairs of “+1,-1”
symbols. After the sample-level synchronization, the demodulation is triggered.
The third segment of the training sequence is a known training symbol pattern.
Once we find the matching symbol pattern, we can distinguish the training header.
Symbol-level synchronization is then accomplished. To summarize the training
segments used in every stage, the overall structure of the training sequence is
shown in Fig. 2.6.
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Segment 1, no code Segment 2, PN code Segment 3, the header, PN code

sNM 21 +12M

1−1−1− 1+1+ 1+ 1+ 1+ 1+ ...

Data

...

Training Sequence

Figure 2.6: The signal structure for training sequence

2.5 Simulation results

We evaluate the performance of different detectors and the performance of differ-
ent combinations of channel estimation and equalization schemes for a single user
and single delay TR-UWB system. We use a Gaussian second derivative pulse
that is 0.2 ns wide. The delay interval D between two pulses in a doublet is 4
ns. The first segment of the training sequence is 2M1 = 16 symbols long, all of
which are composed of positive pulses. Hence, the observation window includes
M1 = 8 symbols. The second segment of the training sequence has M1+2Ns = 38
symbols, and employs a pseudonoise (PN) code sequence. The code length Nf

is 15. The frame-period Tf is 30 ns. The IEEE UWB channel model CM3 [58]
is employed and truncated to 90 ns, which represents a NLOS channel. The
oversampling rate P is 3, which results in Tsam = 10 ns. We define Ep/N0 as
the received aggregate pulse energy to noise ratio with Ep =

∫
|h(t)|2dt, where

h(t) represents the composite channel impulse response including pulse shaping
and antenna effects as we have explained before (see Section II.A). The system
sampling rate is 50GHz for Matlab simulations.

The test statistics T (x) in (2.37) and T ′
1(x) in (2.39) are assessed in both

a theoretical way by using the results in Table 2.1 and an experimental way by
running Monte Carlo simulations. Fig. 2.7 shows the probability of detection PD,1

for the test statistics. The theoretical PD,1 of T (x) with P = 3 is evaluated in a
quasi-analytical method. We generate 100 IEEE CM3 channel realizations, and
for each channel realization, we use Table 2.1 to evaluate its PD,1 performance and
average the obtained PD,1’s. In the experimental way, we still employ 100 IEEE
CM3 channel realizations. For each realization, we generate 1000 test statistics
to compare with the threshold and count the probability of detection. In order
to evaluate the detection performance, we divide the SNR into three ranges. For
example, when PFA = 0.1, the low SNR range is below 0dB, the medium range
is from 0dB to 6dB and the high SNR range is above 6dB. According to Fig.
2.7, the PD,1 of T (x) with P = 3 (solid line with ∗ markers) and the PD,1 of
T ′

1(x) (dash-dotted line with ∗ markers) are similar in the low and high SNR
range. But in the medium range, T (x) with P = 3 outperforms T ′

1(x) for about
5% ∼ 10%. For PFA = 10−3 and PFA = 10−5, the performance differences for
these test statistics are large in the SNR range from 2dB to 8dB. T (x) (solid lines
with ◦ or ♦ markers) can have a detection probability as high as 20% more than
T ′

1(x) (dash-dotted lines with ◦ or ♦ markers) under H1. However, when the test
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Figure 2.7: Experimental and theoretical PD,1 performance comparison for T (x) with
P = 3 and T ′

1(x)

statistic T (x) is employed, we have to estimate the channel energy profile first.
On the other hand, if we use the test statistic T ′

1(x), we only have to sum up
the samples, which is easy to implement. But these results are only the detection
probabilities under H1, which are used as boundaries for the overall performance
under real circumstances.

As we have mentioned before, PD,1 and PD,1 + (1 − PD,1)PD,1 can be used
as a lower boundary and an upper boundary for the overall PDo

, respectively.
We run Monte Carlo simulations to evaluate the PDo

under real circumstances.
For each run, the timing offset is randomly generated following a uniform distri-
bution in the range of M1 symbols, meanwhile the channel realization remains
the same in order to exclude the channel influence in the multi-hypotheses case.
In the detection procedure, once the first detection fails, we jump into the next
observation window. When the second detection fails again, we declare a missed
detection. The simulation results are shown in Fig. 2.8. The PDo

’s of T (x) with
P = 3 (solid lines) lie between two boundaries: the upper boundaries (dashed
lines) and the lower boundaries (dotted lines), and these boundaries are getting
tighter as the PFA’s are getting smaller. The PDo

’s of T ′
1(x) (dash-dotted lines)

are a bit higher than the PDo
’s of T (x). Especially for PFA = 10−3, around

SNR= 6dB, the PDo
of T ′

1(x) (dash-dotted line with ◦ markers) is 5% larger than
the PDo

of T (x) (solid line with ◦ markers). That is because T (x) weights each
sample only based on two hypotheses H0 and H1. The weighting coefficients are
not optimal for other hypotheses. The noise samples may be mistakenly weighted
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Figure 2.8: Experimental PDo for T (x) with P = 3 and T ′
1(x)

heavily under real circumstances. On the other hand, T ′
1(x) accumulates all the

frame samples in the observation window, which is equivalent to equally weight-
ing. According to these results, we can employ T ′

1(x) because of its simplicity and
similar performance as T (x).

500 Monte Carlo runs are used to evaluate the mean squared error (MSE)

of ĥδ vs. SNR. In each run, the timing offset and the channel are randomly
generated. The results for the symbol-long estimates and the Lw-long estimates
assuming perfect timing are shown in Fig. 2.9. The MF curves (dotted lines)
always have the highest noise floor, since the MF output is the convolution of the
channel energy vector with the code autocorrelation function. The performance
gap for symbol-long estimates between the LS/LMMSE (dashed lines/solid lines)
estimator and the MF is large. When we concentrate on the channel estimates
in a limited range, such as 30 ns (lines with ◦ markers) and 90 ns (lines with ♦
markers), the gap between the MF and the LS/LMMSE estimator is smaller. The

normalized MSE E[|(δ̂ − δ)/Ls|2] for δ estimation is also assessed with different
values of Lw based on different channel estimators. From Fig. 2.10, we see
that the δ estimates based on MF (dotted lines), LS (dashed lines) and LMMSE
(solid lines) channel estimates with the same Lw have similar performance and
Lw = 30 ns is the best choice among all. The MSE for δ with Lw=30 ns (lines
with ◦ markers) is saturated after the SNR reaches 10dB. This is because we use
NLOS channels, where the first path may not be the strongest and there is always
remaining a fractional timing offset ǫ. Meanwhile the differences of the MSE for
channel estimation with a 90ns range based on different methods (lines with ♦
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markers) are quite small around 10dB in Fig. 2.9, which will be employed to
construct the equalizer. As a result, we choose the MF as the channel estimator.

Furthermore, combinations of the MF channel estimator with different equal-
izers are investigated. We employ Lw = 30 ns for synchronization. Fig. 2.11
shows the BER performance. The BER performance for the MF equalizer (lines
with ◦ markers) approaches 0 after 12dB, while the performances for the ZF (lines
with ∗ markers) and the LMMSE equalizers (lines with 2 markers) approach 0
after 10dB. Hence, the MF equalizer is 2dB worse than the ZF and the LMMSE
equalizer, and all of them employ 90 ns long channel estimates. The curves of
the ZF equalizer and the LMMSE equalizer overlay each other. The bias does
not have much impact on them. They have almost the same performance. As
a result, the optimal combination considering cost and performance would be a
MF channel estimator with a ZF equalizer. According to the results above, we
can remark that the IFI after the I& D is not so serious in our simulation setup,
since the channel energy attenuates exponentially and one frame contains most of
the energy. The performance differences of different equalizers are not so obvious.
However, the LMMSE estimator has the potential to handle more serious IFI and
ISI. The effects of the bias on the BER performance can be ignored, but it has
to be taken into account for the channel estimation (done implicitly, see Section
2.4.1). When we want to shorten the frame length to achieve a higher data rate,
more interference will be generated. We then need a more accurate data model
to handle this interference.
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2.6 Conclusions

We have proposed a complete solution for signal detection, channel estimation,
synchronization and equalization in a TR-UWB system. The scheme is based on
a data model, which takes IPI, IFI and ISI into account and releases the frame
time requirements to allow for higher data rate communications. Several detect-
ors based on a specific training scheme are derived and assessed. We find that
the simple detector, which sums up all the samples in the observation window
and compares the result with a threshold, gives a good balance between perform-
ance and cost. Moreover, the joint channel and timing estimation is achieved in
three different ways. The property of the circulant matrix in the data model is
exploited to reduce the complexity of the algorithms. Then a two-stage synchron-
ization strategy is proposed to first achieve sample-level synchronization and later
symbol-level synchronization. Last but not least, three kinds of equalizers are de-
rived. We evaluate different combinations of channel estimation and equalization
schemes using the IEEE UWB channel model CM3, which shows that the TR-
UWB system can be implemented with low cost and achieve moderate data rate
communications.
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2.A Noise analysis

The noise autocorrelation term n0[n] is

n0[n] =

∫ nTsam

(n−1)Tsam

n(t)n(t + D)dt, (2.58)

where n(t) is band limited AWGN and its autocorrelation function is Rn(τ) =
E[n(t)n(t− τ)] = N0Bsinc(2Bτ). Therefore, n0[n] has approximately zero mean,
as a result of Rn(D) ≈ 0 based on the assumption D ≫ 1/B. According to the
Gaussian joint variable theorem [59] [60], its variance can be derived as

var(n0[n]) ≈ E
[
n2

0[n]
]

≈
∫ nTsam

(n−1)Tsam

∫ nTsam

(n−1)Tsam

[
R2

n(t − u) + Rn(t − u − D)Rn(t + D − u)
]
dtdu.

(2.59)

The second term is the product of two sinc functions offset by 2D, which is
approximately zero by using the property of sinc function saying that
sinc(2Bτ)sinc(2B(τ + ∆)) ≈ sinc2(2Bτ)δ(∆), where δ(∆) is the Kronecker delta.
Recalling Rn(D) ≈ 0 and Tsam ≫ 1/B, and applying Parseval’s theorem, we
derive the variance of n0[n] as (also see [61])

var(n0[n]) ≈ N2
0

4

∫ nTsam

(n−1)Tsam

∫ nTsam

(n−1)Tsam

[
4B2sinc2(2B(t − u))

]
dtdu

≈ N2
0

4

∫ nTsam

(n−1)Tsam

[∫ B

−B

1df

]
dt

=
N2

0 BTsam

2
. (2.60)

In summary, n0[n] is approximately zero mean and white with variance N2
0 BTsam/2.

These noise autocorrelation samples are uncorrelated with each other, due to the
assumption Tsam ≫ 1/B.

Furthermore, the aggregate noise term n1[n] is

n1[n] = n0[n] + sicj

∫ nTsam

(n−1)Tsam

[h(t − τ)n(t) + h(t − D − τ)n(t + D)]dt

+

∫ nTsam

(n−1)Tsam

[h(t − τ)n(t + D) + h(t + D − τ)n(t)]dt. (2.61)
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Defining

γ′[n] = sicj

∫ nTsam

(n−1)Tsam

[h(t − τ)n(t) + h(t − D − τ)n(t + D)]dt, (2.62)

γ′′[n] =

∫ nTsam

(n−1)Tsam

[h(t − τ)n(t + D) + h(t + D − τ)n(t)]dt, (2.63)

we obtain
n1[n] = γ′[n] + γ′′[n] + n0[n]. (2.64)

γ′[n] and γ′′[n] are random variables, resulting from the cross-correlation between
the signal and the noise.

Now we will derive the statistical properties of these two random variables.
Both γ′[n] and γ′′[n] have zero mean. The variance of γ′[n] is calculated as follows

var(γ′[n]) = E[|γ′[n]|2] (2.65)

=

∫ nTsam

(n−1)Tsam

∫ nTsam

(n−1)Tsam

[h(t − τ)h(u − τ)Rn(t − u)

+h(t − D − τ)h(u − D − τ)Rn(t − u)]dtdu. (2.66)

Let us insert Rn(τ) into the first term (also see [61])

∫ nTsam

(n−1)Tsam

∫ nTsam

(n−1)Tsam

h(t − τ)h(u − τ)Rn(t − u)dtdu

=

∫ nTsam

(n−1)Tsam

∫ nTsam

(n−1)Tsam

h(t − τ)h(u − τ)N0Bsinc(2B(t − u))dtdu

=
N0

2

∫ nTsam

(n−1)Tsam

∫ nTsam

(n−1)Tsam

h(t − τ)h(u − τ)

∫ B

−B

ej2πf(t−u)dfdtdu

=
N0

2

∫ nTsam

(n−1)Tsam

h(t − τ)

∫ B

−B

ej2πf(t−τ)dfdt

×
∫ nTsam−τ

(n−1)Tsam−τ

h(u − τ)e−j2πf(u−τ)d(u − τ)

=
N0

2

∫ nTsam

(n−1)Tsam

h(t − τ)

(∫ B

−B

H(f)ej2πf(t−τ)df

)
dt, (2.67)

where H(f) is the Fourier transform of h(u − τ), u ∈ [(n − 1)Tsam, nTsam], which
is a segment of the aggregate channel. Since the bandwidth B of n(t) is assumed
much larger than the bandwidth of h(u − τ), u ∈ [(n − 1)Tsam, nTsam], we obtain∫ B

−B H(f)ej2πf(t−τ)df ≈ h(t − τ), t ∈ [(n − 1)Tsam, nTsam]. As a result, we obtain



2.A. Noise analysis 47

similar results as in [55] [56] [61]

∫ nTsam

(n−1)Tsam

∫ nTsam

(n−1)Tsam

h(t − τ)h(u − τ)Rn(t − u)dtdu

≈ N0

2

∫ nTsam

(n−1)Tsam

h(t − τ)h(t − τ)dt

=
N0

2
R(0, n − δ). (2.68)

In a similar way, the other term of var(γ′[n]) can be deduced. The same method
is applied to var(γ′′[n]) and E

[
γ′[n]γ′′[n]

]
. All the derivations are based on the

assumption that Rn(D) ≈ 0 and Tsam ≫ 1/B. The results are summarized as
follows

var(γ′[n]) ≈





N0

2

(
R(0, n − δ) + R(0, n− δ − D

Tsam
)

)
,

n = δ + 1, . . . , δ + Ph,
0, elsewhere,

(2.69)

var(γ′′[n]) = E[|γ′′[n]|2]

≈





N0

2

(
R(0, n − δ) + R(0, n− δ +

D

Tsam
)

)
,

n = δ + 1, . . . , δ + Ph,
0, elsewhere,

(2.70)

E
[
γ′[n]γ′′[n]

]
≈





N0

2
sicj

(
R(D, n − δ) + R(D, n − δ +

D

Tsam
)

)
,

n = δ + 1, . . . , δ + Ph,
0, elsewhere,

(2.71)

E
[
γ′[n]n0[n]

]
= E

[
γ′′[n]n0[n]

]
=0. (2.72)

In summary, the stochastic properties of n1[n] are

E
[
n1[n]

]
≈ 0, (2.73)

var(n1[n]) ≈





N0

2

{
2R(0, n− δ) + R(0, n − δ − D

Tsam
) + R(0, n − δ +

D

Tsam
)

+ sicj

(
2R(D, n − δ) + 2R(D, n − δ +

D

Tsam
)

)}
+ σ2

0 ,

n = δ + 1, . . . , δ + Ph,
0, elsewhere

(2.74)
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where σ2
0 = N2

0 BTsam/2. These aggregate noise samples are uncorrelated with
each other, recalling that Tsam ≫ 1/B. This assumption has usually been satis-
fied by UWB signals (e.g., in our case Tsam = 10ns, B ≈ 2/Tp = 10GHz, then
2BTsam = 200). Also n0[n] and n1[n] can be assumed as Gaussian random vari-
ables by invoking the sampling theorem and the central limit theorem [59].

2.B Detector derivation

In summary, the statistics of x in (2.31) are

H0 : x
a∼ N (0, σ2

0I), (2.75)

H1 : x
a∼ N (1M1Nf

⊗ zf , diag(λ)). (2.76)

The Neyman-Pearson detector decides H1 if

L(x) =
p(x;H1)

p(x;H0)
> γ, (2.77)

where γ is found by making the probability of false alarm PFA to satisfy

PFA = Pr{L(x) > γ;H0} = α. (2.78)

L(x) can be expressed as

L(x)=

P∏

i=1

exp


− 1

2(2N0zf [i] + σ2
0)

(k+M1−1)Nf−1∑

n=(k−1)Nf

(x[nP + i] − zf [i])2




(2π(2N0zf [i] + σ2
0))

M1Nf
2

1

(2πσ2
0)

M1Nf P

2

exp


− 1

2σ2
0

(k+M1−1)Nf P∑

n=(k−1)Nf P+1

x2[n]




.

(2.79)

Defining σ2
1 [i] = 2N0zf [i] + σ2

0 , inserting it into lnL(x) and eliminating the con-
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stants leads to

lnL(x)

=
P∑

i=1





1

2σ2
0

(k+M1−1)Nf−1∑

n=(k−1)Nf

x2[nP + i] − 1

2σ2
1 [i]

(k+M1−1)Nf−1∑

n=(k−1)Nf

(x[nP + i] − zf [i])2





=

P∑

i=1





2zf [i]

2σ2
1 [i]

(k+M1−1)Nf−1∑

n=(k−1)Nf

x[nP + i] +

(
1

2σ2
0

− 1

2σ2
1 [i]

) (k+M1−1)Nf−1∑

n=(k−1)Nf

x2[nP + i]





=

P∑

i=1





zf [i]

σ2
1 [i]

(k+M1−1)Nf−1∑

n=(k−1)Nf

x[nP + i] +
N0zf [i]

σ2
0σ2

1 [i]

(k+M1−1)Nf−1∑

n=(k−1)Nf

x2[nP + i]





=

P∑

i=1

zf [i]

σ2
1 [i]





(k+M1−1)Nf−1∑

n=(k−1)Nf

x[nP + i] +
N0

σ2
0

(k+M1−1)Nf−1∑

n=(k−1)Nf

x2[nP + i]



 .

(2.80)

Then the test statistic is

T (x)=

P∑

i=1

zf [i]

σ2
1 [i]





(k+M1−1)Nf−1∑

n=(k−1)Nf

x[nP + i] +
N0

σ2
0

(k+M1−1)Nf−1∑

n=(k−1)Nf

x2[nP + i]



 .

(2.81)

2.C Statistic of the detectors

2.C.1 DetectorT1(x)

Since x is assumed to be a Gaussian vector, T1(x) also follows a Gaussian distri-
bution.

H0 : T1(x)
a∼ N (0, M1Nfσ0

2
P∑

i=1

z2
f [i]

σ4
1 [i]

), (2.82)

H1 : T1(x)
a∼ N (M1Nf

P∑

i=1

z2
f [i]

σ2
1 [i]

, M1Nf

P∑

i=1

z2
f [i]

σ2
1 [i]

). (2.83)

Actually, if the condition zf [i]/N0 ≪ BTsam/4 is satisfied, which means the
signal-to-noise ratio (SNR) is low, the term 2N0zf [i] can be ignored in the variance
of x under H1, and then T1(x) can be derived directly.
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2.C.2 Detector T2(x)

Since the different entries of x have different weighting factors in T2(x), we collect
the data samples bearing the same weighting factor into the same group. There-
fore, there are P groups of data samples and they are assumed to be uncorrelated.

Each group
∑(k+M1−1)Nf−1

n=(k−1)Nf
x2[nP + i] follows a chi-squared distribution. How-

ever, T2(x) is still assumed to be a Gaussian variable, as it is the sum of the
weighted groups. Then we can obtain

H0 :
(k+M1−1)Nf−1∑

n=(k−1)Nf

x2[nP + i]

σ2
0

a∼ χ2
M1Nf

,

T2(x)
a∼ N (M1Nfσ0

2
P∑

i=1

zf [i]

σ2
1 [i]

, 2M1Nfσ0
4

P∑

i=1

z2
f [i]

σ4
1 [i]

),

H1 :
(k+M1−1)Nf−1∑

n=(k−1)Nf

x2[nP + i]

σ2
1 [i]

a∼ χ2
M1Nf

(
M1NfE2

f [i]

σ2
1 [i]

)
,

T2(x)
a∼ N

(
M1Nf

P∑

i=1

zf [i]

(
1 +

z2
f [i]

σ2
1 [i]

)
,

2M1Nf

P∑

i=1

z2
f [i]

(
1 +

2z2
f [i]

σ2
1 [i]

))
,

where χ2
ν is the central chi-squared pdf with ν degrees of freedom which has mean

ν and variance 2ν. Meanwhile, χ2
ν(λ) is the non-central chi-squared pdf with ν

degrees of freedom and noncentrality parameter λ. Hence, it has mean ν + λ and
variance 2ν + 4λ.
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CHAPTER 3

Cramér-Rao Bound for Range Estimation

3.1 Introduction

The Cramér-Rao bound (CRB) is a standard benchmark to evaluate the per-
formance of an estimator. In this chapter, we investigate the CRB for range (D)
estimation (the distance between the transmitter and the receiver), which is an
important parameter for localization. There are two elementary measurements
for range estimation: the received signal strength (RSS) and the time of arrival
(TOA–τ) [1]. The existing literature mostly treats them separately to derive the
CRB(D), e.g., see [1] [63]. Some of them [64] insert the path-loss model (indicating
the relationship between the RSS and the range) into the received signal-to-noise
ratio (SNR), which is viewed as a parameter of the CRB(τ)(in this case, we have
CRB(D) = c2CRB(τ)). However, they do not exploit the range information in the
RSS and the TOA jointly. Previous work in [65] proposes to use both the RSS and
the TOA to improve the ranging accuracy and derives a CRB(D) by simply, yet
incorrectly, assuming that they are uncorrelated. Moreover, it does not provide a
method to combine them. Other joint methods [66] are for location estimation.
They propose to fuse the TOA measurements and the RSS measurements to get
a lower bound for localization, meanwhile they assume the estimation error of the
TOA has constant variance regardless of its distance dependency.

We investigate the relationship among the RSS, the TOA and the range D,
and use both the RSS and the TOA for the CRB(D). We do not use the RSS
explicitly as a parameter, but the amplitude of the received signal. Single path
propagation is assumed, yet the path-loss model is taken into account in the

The results in this chapter appeared in [62].
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received signal model to explore the distance dependency of the amplitude of the
received signal. The amplitude and the TOA are represented as a function of D
explicitly in the received signal model. Thus, we can derive the CRB(D) directly.

The rest of the chapter is organized as follows. In Section 3.2, we derive
the true CRB(D) in an additive white Gaussian noise (AWGN) channel with
attenuation. Some results are shown. Further, the maximum likelihood estimator
(MLE) of D is proposed. In Section 3.3, we include shadowing. Due to the
difficulty to derive the true CRB(D) directly in this case, we propose several
CRB-like bounds and suboptimal estimators for D. Numerical results are also
shown in Section 3.3. We conclude the chapter in Section 3.4.

3.2 CRB in an AWGN channel with attenuation

The received signal through an AWGN channel with an attenuation coefficient is

r(t) = αs(t − τ) + n(t), (3.1)

where τ is the unknown deterministic time delay, which is related to the range D as
τ = D/c, with c the signal propagation speed. The channel attenuation coefficient
α is related to D following the distance-power law [67] as α = k0/

√
Dγ0 , with

k0 a constant parameter and γ0 also a constant depending on the environment,
e.g., in free space γ0 = 2. The transmitted waveform is represented by s(t).
We use n(t) to denote AWGN with double-sided power spectral density N0/2,
which is filtered by an ideal anti-aliasing filter of bandwidth B. We assume B
is larger than the signal bandwidth. The continuous signal is sampled at the
Nyquist rate 2B = 1/Ts. The received data samples are collected in a vector
r = [r(0), r(Ts), r(2Ts), . . . , r((N − 1)Ts)]

T , which can be written as

r = k0D
− γ0

2 sD + n, (3.2)

where sD = [s(−τ), s(Ts−τ), . . . , s((N −1)Ts−τ)]T and n contains noise samples
with variance σ2 = N0B. In this model, we find the range information not only
in the time delay, but also in the amplitude of the received signal. Therefore, the
CRB(D) based on the data model (3.2) is

CRB(D) =

{
Er

[
− ∂2

∂D2
ln(p(r; D))

]}−1

. (3.3)

with p(r; D) following a Gaussian distribution [68]. Assuming the observation
window includes the whole waveform, it leads to (see Appendix 3.A for derivation
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details)

CRB(D) =
c2Dγ0+2

2k2
0
E
N0

(
γ2
0c2

4
+ D2F 2 + γ0cDF ′2

) . (3.4)

where To is the length of the observation window (To = NTs), E =
∫ To

0
s2(t)dt

is the transmitted signal energy, F 2 =
∫∞
−∞(2πF )2|S(F )|2dF

/∫∞
−∞ |S(F )|2dF is

the mean square bandwidth of the signal, with S(F ) the Fourier transform of

s(t), and F ′2 =
∫ To

0 s(t)ds(t)
dt dt

/∫ To

0 s2(t)dt = s2(t)
2

∣∣∣
To

0

/
E . Since s(t) is smooth

in [0, To), we may assume s(0) = s(To). As a result, F ′2 = 0. Therefore, the
CRB(D) in (3.4) can be simplified as

CRB(D) =
c2Dγ0+2

2k2
0
E
N0

(
γ2
0c2

4
+ D2F 2

) . (3.5)

We now compare CRB(D) in (3.5) with the results in [64]. We first apply
the method in [64] to derive the CRB(τ), and then obtain the CRB(D) as a
transformation of the CRB(τ). It results into

CRBref (D) =
c2Dγ0

2k2
0
E
N0

F 2
. (3.6)

Though the method in [64] takes the path-loss model into account, it only exploits
the range information in the time delay. The CRB(D) in (3.5) has one more
positive term γ2

0c2/4 in the denominator, as a result of additionally investigating
the range information in the amplitude of the received signal. Setting γ2

0c2/4 =

D2F 2, we can obtain a critical distance Dc = γ0c/(2
√

F 2), which is determined
by the environment, the signal propagation speed and the mean square bandwidth
of the transmitted signal. When D ≫ Dc, CRB(D) ≈ CRBref (D). On the other
hand, when D ≈ Dc, we can gain about 3dB by taking the additional information
into account.

Now, we will give some examples. It is known that E =
∫ To

0
s2(t)dt =

To

∫∞
−∞ Φ(F )dF , where Φ(F ) is the power spectral density of the signal. Assuming

Φ(F ) is uniformly distributed over the bandwidth (W = fH−fL) of the signal, we

get F 2 = 4π2(W 2

3 +fHfL). A larger bandwidth and a higher central frequency (or

a higher carrier frequency) result in a larger F 2 and a lower CRB. Using k0 = 1,
γ0 = 2, c = 3 · 108m/s and the whole bandwidth (W = 10.6GHz − 3.1GHz) of
the ultra-wide band (UWB) signals, Dc is approximately 6.6mm, which is quite
small. Hence, for an indoor environment, where D is in the range of a few meters,
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UWB signals σD(m) NB signals, 0MHz ∼ 5MHz

D(m)
3.1GHz 7.316GHz 3.658GHz

D(m) σD(m) σDref (m)∼ 10.6GHz ∼ 8.684GHz ∼ 4.342GHz

1 9.0786 · 10−8 1.9066 · 10−7 5.3924 · 10−7 10 1.4317 · 10−2 2.7671 · 10−2

3 2.7236 · 10−7 5.7199 · 10−7 1.6178 · 10−6 15 2.7884 · 10−2 4.1507 · 10−2

10 9.0788 · 10−7 1.9066 · 10−6 5.3927 · 10−6 20 4.2648 · 10−2 5.5343 · 10−2

Table 3.1: Theoretical ranging accuracy for an AWGN channel with attenuation, σD =√
CRB(D)

it is sufficient to consider the range information in the delay only. This is due to
the large bandwidth and the high central frequency of the UWB signals. How-
ever, if we only use a narrowband (NB) signal, for example, with a bandwidth
of 5MHz and a carrier frequency of 2.5MHz, Dc would be 16.5m under those cir-
cumstances. Hence, for an indoor environment, we can benefit from taking the
range information in both the amplitude and the delay into account.

The left half of Table 3.1 shows the CRB(D) (3.5) in an AWGN channel with
attenuation employing UWB signals with different bandwidths. The transmitted
power spectral density of the signal Φ(F ) is restricted below the FCC mask (−41.3
dBm/MHz). Further, k0 = 1, γ0 = 2, c = 3 · 108m/s, N0 = 2 · 10−20W/Hz, and
To = 100ns. Clearly, increasing the bandwidth and central frequency, we obtain a
more accurate range estimation. Meanwhile, the right half of Table 3.1 compares
the new CRB(D) (3.5) with the conventional CRBref (D) (3.6) employing NB
signals. The NB signals have a frequency range from 0 to 5MHz (a bandwidth of
5MHz and a carrier frequency of 2.5MHz). The observation time To is 1µs. Other
parameters are kept the same. We can see the new CRB(D) (3.5) is almost 3dB
lower than the conventional CRBref (D) (3.6).

Let us now derive the MLE of D, which can asymptotically attain the bound
in (3.5). We would like to find the D that maximizes p(r; D) or ln p(r; D), leading
to

D̂ = argmin
0<D<cTo

{
k0D

−γ0E − 2D−γ0
2 Ers(D)

}
. (3.7)

where Ers(D) is a function of D: Ers(D) =
∫ To

0
r(t)s(t −D/c)dt. A grid search is

then executed to look for D. The variance of this estimator approaches (3.5) as
long as the data record is large enough.
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3.3 CRBs in an AWGN channel with attenuation
and shadowing

When we include shadowing effects, which represent a more realistic environment,
the received signal is

r(t) = α̃Xs(t − τ) + n(t). (3.8)

where X is a random variable modeling the shadowing effects and following a
lognormal distribution 20log10X ∼ N (0, σ2

x), and α̃ still follows a distance-power

law as α̃ = k̃0

2
/
√

Dγ0 . In order to get a fair comparison, we normalize the average

channel energy, resulting in α̃2E[X2] = α2. Therefore, k̃0

2
= k2

0/E[X2]. The
normalization excludes the influence of the shadowing coefficient to the average
received energy. The definitions for other parameters remain the same as in the
last section. The received signal vector is

r = k̃0D
− γ0

2 XsD + n. (3.9)

Since X is independent of D, it can be viewed as a nuisance parameter. The
MLE for D tries to find the D that maximizes p(r; D). It is known that p(r; D) =∫

p(r|X ; D)p(X)dX . By integration, we can get rid of X leading to a closed
form of p(r; D), which is not only needed for the MLE, but also for the CRB(D).
However, the integration is very difficult to derive in closed form.

Due to the difficulties to obtain the closed form of p(r; D), we will derive
the CRB for θ = [D, X ]T . Since we have prior knowledge of X , the Bayesian
information matrix (BIM) [68] for θ is employed

IB(θ) = Eθ [ID(θ)] + IP (θ), (3.10)

[ID(θ)]ij = −E
r|θ

[
∂2

∂θi∂θj
lnp(r|θ)

]
, (3.11)

[IP (θ)]ij = −Eθ

[
∂2

∂θi∂θj
lnp(θ)

]
. (3.12)

where ID(θ) represents information obtained from the data, IP (θ) indicates the
prior information and p(r|θ) follows a Gaussian distribution. Hence, we obtain

ID(θ) =
2k̃0

2

Dγ0

E
N0




X2
( γ2

0

4D2
+

F 2

c2
+

γ0F ′2

cD

)
−X

( γ0

2D
+

F ′2

c

)

−X
( γ0

2D
+

F ′2

c

)
1




IP (θ) =

[
0 0
0 Xc

]
, where Xc = EX

[
−∂2lnp(X)

∂X2

]
.
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HCRB(D) = A/B (3.13)

A = c2Dγ0+2

B = 2k̃0

2 E
N0

{(
M2 − M2

1 +
M2

1

1 +
2k̃0

2

XcDγ0

E
N0

)(γ2
0c2

4
+ γ0cDF ′2)

+M2D
2F 2 − M2

1

(
1 − 1

1 +
2k̃0

2

XcDγ0

E
N0

)
D2(F ′2)2

}
,

The derivation details are listed in Appendix 3.B.

We now have all the ingredients to derive several bounds. The first bound
is the Hybrid CRB (HCRB) [69], which is HCRB(D) =

[
I−1
B (θ)

]
11

as shown in

(3.13), with M2 = E[X2] and M1 = E[X ]. It covers the case where the desired
deterministic parameter and random nuisance parameters are jointly estimated,
and it is a bound for the estimators that take the prior knowledge of X into
account.

The second bound is the Modified CRB (MCRB) [70]: MCRB(D)
= 1/[IB(θ)]11, which is

MCRB(D) =
c2Dγ0+2

E[X2]2k̃0

2 E
N0

(
γ2
0c2

4
+ D2F 2 + γ0cDF ′2

) . (3.14)

It is a loose bound to cope with nuisance parameters, when it is difficult to get the
true CRB. The MCRB(D) (3.14) depends on the average received energy. Taking

k̃0

2
= k2

0/E[X2] into (3.14), we find it is equal to the CRB(D) (3.4). Due to the
normalization, the average received energy in an AWGN channel with attenuation
and shadowing is the same as the received energy in an AWGN channel only with
attenuation.

The third bound is the Miller-Chang bound (MCB) proposed in [71]: MCB(D) =
EX {1/[ID(θ)]11}, which is

MCB(D) = EX

[
1

X2

]
c2Dγ0+2

2k̃0

2 E
N0

(
γ2
0c2

4
+ D2F 2 + γ0cDF ′2

) . (3.15)

It covers the estimator that is locally unbiased for all the values of the nuisance
parameter X . This kind of estimator may not be achieved, since for extremely low
signal strengths, the receiver can not detect the signal any more [71]. The term
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1/[ID(θ)]11 in MCB(D) is the bound for the estimator with perfect knowledge of
X .

The fourth bound is the extended MCB (EMCB) [69]: EMCB(D)
= EX

{[
I−1
D (θ)

]
11

}
, which is

EMCB(D) = EX

[
1

X2

]
c2Dγ0

2k̃0

2 E
N0

{
F 2 − (F ′2)2

} . (3.16)

It is the average over X of the joint estimation bound, which assumes X is an
unknown deterministic parameter in each realization.

All the above bounds are related to each other as follows

CRB(D) ≥ HCRB(D) ≥ MCRB(D), (3.17)

EMCB(D) ≥ MCB(D) ≥ MCRB(D). (3.18)

The order (3.17) has already been proved in [72] [73]. The first inequality indic-
ates that the CRB(D) (the true CRB for an AWGN channel with attenuation
and shadowing) applied directly to D using a marginal probability density func-
tion is tighter than the HCRB(D). There is no performance improvement when
estimating more parameters in the given system. However, due to calculation
difficulties as we mentioned before, there is no closed form CRB(D) available.

When we have F ′2 = 0, for UWB signals, in the relevant ranges, we would ob-
serve HCRB(D) ≈ MCRB(D), since γ2

0c2/4 ≪ D2F 2. For NB signals, we expect
to see that the MCRB(D) is looser than the HCRB(D). The order (3.18) is also
verified in [69]. The inequality [I−1

D (θ)]11 ≥ 1/[ID(θ)]11 always holds, which con-

firms the inequality EMCB(D) ≥ MCB(D). Again relying on F ′2 = 0, for UWB
signals, we would have MCB(D) ≈ EMCB(D). For NB signals, differences will
be obvious.

Table 3.2 collects the ranging accuracy obtained by different bounds for UWB
signals and NB signals. The parameters are set the same values as in the last
section. The shadowing parameter X follows a lognormal distribution 20log10X ∼
N (0, σ2

x). The upper part of Table 3.2 is for UWB signals, while the lower part is
for NB signals. The MCRB(D) is independent of the shadowing effects, due to the
channel energy normalization. It is equal to the CRB in an AWGN channel only
with attenuation. The order EMCB(D) ≈ MCB(D) ≥ HCRB(D) ≈ MCRB(D)
is established from Table 3.2 for UWB signals in the relevant ranges similarly as
we discussed in the last paragraph. It also indicates that the prior knowledge
of X helps range estimation. As the shadowing effects increase, the estimators
perform worse regardless of the prior knowledge of shadowing. For different σx,
the HCRB(D) and the MCRB(D) remain the same for UWB signals. That’s

because we normalize the average channel energy, k̃0E[X2] is a constant. For
NB signals, the differences between the HCRB(D) and the MCRB(D), as well
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σHCRB(m) σMCRB(m) σMCB(m) σEMCB(m)

D(m) Shadowing σx = 3dB, UWB signals, 3.1GHz ∼ 10.6GHz

1 9.0788 · 10−8 9.0786 · 10−8 1.0089 · 10−7 1.0090 · 10−7

3 2.7236 · 10−7 2.7236 · 10−7 3.0269 · 10−7 3.0269 · 10−7

10 9.0788 · 10−7 9.0788 · 10−7 1.0090 · 10−6 1.0090 · 10−6

D(m) Shadowing σx = 6dB, UWB signals, 3.1GHz ∼ 10.6GHz

1 9.0788 · 10−8 9.0786 · 10−8 1.3822 · 10−7 1.3822 · 10−7

3 2.7236 · 10−7 2.7236 · 10−7 4.1466 · 10−7 4.1466 · 10−7

10 9.0788 · 10−7 9.0788 · 10−7 1.3822 · 10−6 1.3822 · 10−6

D(m) Shadowing σx = 3dB, NB signals, 0MHz ∼ 5MHz

10 2.5908 · 10−2 1.4317 · 10−2 1.5910 · 10−2 3.0750 · 10−2

15 4.0265 · 10−2 2.7884 · 10−2 3.0986 · 10−2 4.6125 · 10−2

20 5.4390 · 10−2 4.2648 · 10−2 4.7393 · 10−2 6.1500 · 10−2

D(m) Shadowing σx = 6dB, NB signals, 0MHz ∼ 5MHz

10 2.2456 · 10−2 1.4317 · 10−2 2.1793 · 10−2 4.2121 · 10−2

15 3.7419 · 10−2 2.7884 · 10−2 4.2445 · 10−2 6.3182 · 10−2

20 5.2070 · 10−2 4.2648 · 10−2 6.4919 · 10−2 8.4242 · 10−2

Table 3.2: Theoretical ranging accuracy for an AWGN channel with attenuation and
shadowing σ =

√
CRB

as between the MCB(D) and the EMCB(D) are obvious for the relevant ranges.
The order EMCB(D) > HCRB(D) still holds. The HCRB(D) benefits from
the prior knowledge of X . When σx = 3dB, the HCRB(D) is larger than the
MCB(D) around the critical distance. However, this relationship does not retain,
when σx = 6dB. As the shadowing effects become more serious, the MCB(D)
becomes larger even if we know the exact value of X as assumed by the bound
MCB(D). This is due to the fact that it bounds the average performance of a kind
of estimator, which relies on the instantaneous received energy. Its performance
is unfavorable, when the instantaneous received energy is low. On the other hand,
the HCRB(D) is smaller when the shadowing is more severe and the MCRB(D)
remains the same the under the condition that the average channel energy is
normalized. The prior knowledge of X helps out when the instantaneous received
energy is very low. In summary, it is important to take the prior knowledge into
account to handle the shadowing effects.

Now let us investigate some estimators for X and D. There are two different
ways to estimate X and D depending on whether to employ the prior knowledge
of X in the estimation procedure. Method 1: If both X and D are assumed as
unknown deterministic parameters, then the classic MLEs are derived. Method
2: if X is assumed as a random variable and p(X) is known, D is assumed as an
unknown deterministic parameter, then the Bayesian estimator is employed.

Method 1: we would like to find the X and the D that maximize p(r|X ; D),

∂lnp(r|X ; D)

∂X
= 0, (3.19)

∂lnp(r|X ; D)

∂D
= 0. (3.20)
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Solving (3.19), we obtain X̂ =
D

γ0
2 Ers(D)

k̃0E
. Inserting X̂ into (3.20) says that the

estimation of D should satisfy the following equation

∫ To

0

r(t)
∂s(t − τ)

∂τ
dt + F ′2Ers(D) = 0. (3.21)

Define F ′
rs

2(D) =
∫ To

0
r(t)∂s(t−τ)

∂τ dt
/
Ers(D) conditioned on Ers(D) 6= 0. Then

the MLE of D is equivalent to

D̂ = argmin
0<D<cTo

∣∣∣F ′
rs

2(D)
∣∣∣ . (3.22)

In reality, we do not check the condition Ers(D) 6= 0, but test whether Ers(D) is
above the noise floor. If it is true, then we conclude that Ers(D) 6= 0 is satisfied.
Otherwise, Ers(D) equals zero and we have to check other D candidates. The
average performance of this estimator can asymptotically approach EMCB(D).

Method 2: In this case, we have prior knowledge of X , and a Bayesian estim-
ator can be employed. The well-known minimum mean square error (MMSE) es-
timator is first employed X̂ = E(X |r; D) =

∫
Xp(X |r; D)dX, where p(X |r; D) =

p(r|X ; D)p(X)
/∫

p(r|X ; D)p(X)dX . The integration in the denominator pre-

vents us from finding a closed form. Hence, we resort to a maximum a posteriori
(MAP) estimator, which boils down to finding the X that maximizes p(X |r; D).
It is equivalent to maximizing p(r|X ; D)p(X) or ln (p(r|X ; D)p(X)). Then, the
joint estimation of X and D is

[X̂, D̂] = argmax
X,0<D<cTo

{ln(p(r|X ; D)p(X))}

= argmin
X,0<D<cTo

{J(X, D)} . (3.23)

where J(X, D) = g1(X, D) + g2(X),

g1(X, D) =
E
N0

(
k̃0X

D
γ0
2

− Ers(D)

E

)2

− E2
rs(D)

N0E
,

g2(X) =
200

σ2
xln210

(
lnX +

σ2
xln210

400

)2

− σ2
xln210

800
.

Method 2 is much more complicated than Method 1, since it has to execute a
two-dimensional search compared to a one-dimensional search in Method 1. The
performance limitation of Method 1 and Method 2 for range estimation can be
indicated by the bound EMCB(D) and the bound HCRB(D), respectively.



62 CRB for Range Estimation

3.4 Conclusions

In this chapter, we have investigated the accuracy for range estimation by a new
method, which exploits the range information in both the amplitude and the time
delay of the received signal. Several bounds are derived not only in an AWGN
channel with attenuation, but also in an AWGN channel with attenuation and
shadowing. For UWB signals, the new method does not show obvious benefits
compared to an estimate exploring the range information in the delay only. How-
ever, it indeed improves the ranging accuracy using NB signals for ranges smaller
than a threshold. Furthermore, taking the prior knowledge of the shadowing
effects into account lowers the bounds for range estimation.

Remark that this chapter has focused on the relations among the bounds, and
not their concrete values. In practice, it is always difficult to develop an optimal
estimator to approach the bound. Many error sources besides noises, such as
sampling effects, dense multipaths and unknown channel models, can dramatically
increase gap between the theoretical bound and the achievable performance of
practical estimators. In the next chapter, we will focus on a practical method for
TOA-based range estimation using UWB signals in multipath environments.
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3.A Derivation of CRB(D)(3.4)

Plugging (3.2) into (3.3), we derive the CRB for D as follows:

CRB(D) = −
{

Er

[
∂2

∂D2
lnp(r; D)

]}−1

= σ2





N−1∑

n=0

(
∂k0D

− γ0
2 sD

∂D

)2




−1

= σ2

{
1

Ts

∫ To

0

(
∂

∂D
k0D

−γ0
2 s(t − τ)

)2

dt

}−1

=
N0

2

{∫ To

0

(
∂

∂D
k0D

− γ0
2 s(t − τ)

)2

dt

}−1

=
N0

2

{∫ To

0

(
−γ0

2
k0D

− γ0
2 −1s(t − τ) + c−1k0D

− γ0
2

∂s(t − τ)

∂τ

)2

dt

}−1

=
N0

2

{∫ To

0

(
γ2
0

4
k2
0D

−γ0−2s2(t − τ) + c−2k2
0D

−γ0

(
∂s(t − τ)

∂τ

)2

−γ0c
−1k2

0D−γ0−1s(t − τ)
∂s(t − τ)

∂τ

)
dt

}−1

=
N0

2

{∫ To

0

(
γ2
0

4
k2
0D

−γ0−2s2(t − τ) + c−2k2
0D

−γ0

(
−∂s(t− τ)

∂(t − τ)

)2

+γ0c
−1k2

0D−γ0−1s(t − τ)
∂s(t − τ)

∂(t − τ)

)
dt

}−1

=
N0

2

c2Dγ0+2

k2
0

{∫ To−τ

−τ

(
γ2
0c2

4
s2(t) + D2

(
∂s(t)

∂t

)2

+γ0cDs(t)
∂s(t)

∂t

)
dt

}−1

(3.24)

Using the definitions of E , F 2 and F ′2, we can rewrite (3.24) as (3.4).
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3.B Derivation of ID( θ)

We derive each element of ID(θ):

[ID(θ)]11 = −E
r|θ

[
∂2

∂D2
lnp(r|θ)

]

=
1

σ2

N−1∑

n=0

(
∂k̃0D

− γ0
2 XsD

∂D

)2

=
2X2

N0

∫ To

0

(
∂

∂D
k̃0D

− γ0
2 s(t − τ)

)2

dt

=
2k̃2

0

Dγ0

X2

N0

∫ To−τ

−τ

(
γ2
0

4D2
s2(t) +

1

c2

(
∂s(t)

∂t

)2

+
γ0

cD
s(t)

∂s(t)

∂t

)
dt

(3.25)

[ID(θ)]12 = −E
r|θ

[
∂2

∂D∂X
lnp(r|θ)

]

=
1

σ2

N−1∑

n=0

(
∂k̃0D

− γ0
2 XsD

∂D

)(
∂k̃0D

− γ0
2 XsD

∂X

)

=
2

N0
X

∫ To

0

k̃0D
− γ0

2 s(t − τ)

(
−γ0

2
k̃0D

− γ0
2 −1s(t − τ) − c−1k̃0D

−γ0
2

∂s(t − τ)

∂(t − τ)

)
dt

= − 2k̃2
0

Dγ0

X

N0

∫ To−τ

−τ

(
γ0

2D
s2(t) +

1

c
s(t)

∂s(t)

∂t

)
dt (3.26)

[ID(θ)]22 = −E
r|θ

[
∂2

∂X2
lnp(r|θ)

]

=
1

σ2

N−1∑

n=0

(
∂k̃0D

− γ0
2 XsD

∂X

)2

=
2k̃2

0

Dγ0

1

N0

∫ To

0

s2(t − τ)dt (3.27)

Based on the above results and recalling E , F 2 and F ′2, we can write ID(θ) as
(3.13).



CHAPTER 4

Time-of-Arrival Estimation by UWB Radios

4.1 Introduction

Ultra-wideband (UWB) impulse radio (IR) is a promising technology for high
resolution time-of-arrival (TOA) estimation [1, 74–78]. It enables precise ranging
and facilitates accurate positioning, which has a wide range of applications such
as environment monitoring and control, target tracking, industrial quality control
and emergency services [79–81]. From an estimate of the first arriving component
of UWB IR in a dense multipath environment, we can estimate the TOA with
high accuracy. In a line-of-sight (LOS) environment, the first path component is
usually the strongest one and we can perform peak selection (PS) [77], whereas
in a non-line-of-sight (NLOS) scenario, the first path component normally is not
the strongest one, in which case we have to resort to other alternatives, such as
jump back and search forward (JBSF) [77, 82].

Due to the large bandwidth of UWB IR, its multipath components are resolv-
able, which is benefit for accurate TOA estimation. However, for the same reason,
the IR-UWB system requires a Nyquist sampling rate of several GHz, which is
prohibitively high for practical implementation [15,16]. Most ranging systems are
based on Nyquist sampling in order to take full advantage of the large bandwidth
to achieve high accuracy, such as the generalized maximum likelihood (ML) TOA
estimator proposed in [74], and various TOA estimation strategies applied to the
Nyquist-rate sampled output of a matched filter (MF) in [83]. Recently, more
and more research has been devoted to sub-Nyquist TOA estimation due to its
simplicity. The energy detector (ED) [41, 84, 85], the transmitted-reference (TR)

The results in this chapter appeared in [32]

65
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receiver [41, 86] and the stored reference correlator [41] use the received signal
itself, its delayed version and a noiseless template respectively as templates to
generate energy samples at a sub-Nyquist sampling rate. Different kinds of TOA
estimation techniques can be used to extract timing information from these energy
samples, such as maximum energy sum selection (MESS), weighted MESS [41,87],
P-Max selection [83], threshold crossing (TC) [83,84,86,88], consecutive threshold
crossing [85], serial backward search (SBS) and serial backward search for mul-
tiple clusters (SBSMC) [82]. However, in all these schemes, the accuracy of TOA
estimation is sacrificed for sub-Nyquist sampling. According to these previous re-
search work, the high accuracy and the low sampling rate are regarded as conflict
aspects. It seems impossible to achieve them in UWB systems at the same time.

In this chapter, we take the challenge to obtain a high resolution TOA estimate
using UWB IR with low sampling rate. We make use of stroboscopic sampling,
which is widely used in channel measurements [32, 89]. It can obtain an effective
sampling rate as high as several GHz using a low-rate analog-to-digital converter
(ADC) running at several tens or hundreds of MHz with the penalty of repetit-
ively transmitting the same waveform. Since we have to transmit several identical
pulses in order to collect the same samples as when transmitting one pulse sampled
by an equivalent high sampling rate, the preamble for ranging is long. The longer
preamble is the cost to obtain the high accuracy and the low sampling rate at the
same time, which is still affordable for a UWB system in purpose of accurate ran-
ging. Furthermore, whenever we consider TOA estimation for ranging, the clock
always plays an essential role. Due to the randomness of the clocks in reality, the
clock drift, which refers to the phenomenon where the clock does not run at the
nominal frequency, becomes one of the main error sources [75, 90]. It does not
only cause problems in ranging computation, but also in TOA estimation. The
problems are more severe in a stroboscopic sampling system, since it needs more
time to collect sufficient samples. Although a symmetric double-sided two-way
ranging (SDS-TWR) protocol as presented in [75, 76] can reduce the ranging er-
ror due to clock drift significantly by relating the drift to the difference of the
processing times at the two devices instead of the processing time at one device,
it cannot calibrate for the TOA estimation error caused by the clock drift. The
protocol works under the assumption that the TOA is estimated correctly. A
delay-locked-loop (DLL) circuit is used in [90] to lock the clock frequency of the
ranging responder to the estimated clock of the ranging initiator. However, a DLL
may not be appropriate for a stroboscopic sampling scheme, since the responder
and the initiator employ different clock frequencies. A trellis-based ML crystal
drift estimator is introduced in [91,92] to solve this problem. However, the system
sampling rate is still as high as several GHz. Furthermore, it does not consider
the code mismatch due to the drift and the unknown TOA. Therefore, we design
a ranging preamble, solve the code mismatch problem and apply an ML estim-
ator (MLE) to determine the clock drift in our stroboscopic sampling IR-UWB
system. After the drift calibration, various TOA estimation methods are invest-
igated to choose proper ones considering performance and cost. Consequently, we
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calibrate for the timing error caused by the clock drift and achieve an accurate
TOA estimate with low sampling rate. Moreover, the Cramèr-Rao bound (CRB)
is derived to indicate a theoretical performance limit for joint estimation of the
clock drift ratio and the parameters of the multipath components, which is dif-
ferent from the conventional CRBs only taking the multipath components into
account [1, 77, 93, 94].

The rest of this chapter is organized as follows. In Section 4.2, we will first
introduce the stroboscopic sampling principle. The clock drift is taken into ac-
count in the system model and the preamble is designed to facilitate the drift
calibration. In Section 4.3, we propose a method to accurately estimate the TOA
with drift calibration. In Section 4.4, we derive the Cramèr-Rao bound (CRB)
for joint estimation of the clock drift ratio and the parameters of the multipath
components. Simulation results are shown in Section 4.5. Conclusions are drawn
at the end of the chapter.

4.2 System model

The preamble for ranging is composed of many frames. Each frame period Tf

holds one pulse. We design Tf to be larger than the delay spread of the chan-
nel in order to avoid inter-frame interference (IFI) and reserves some margin to
accommodate noise only to facilitate the TOA estimation later. The receiver em-
ploys a front-end filter to select the band of interest as shown in Fig. 4.1. The
impulse response of the front-end filter does not have to be the received pulse
shape, which is unknown due to the distortions caused by the channel and the
antennas. For instance, it can be the transmitted pulse. In general, we specify
the filter in the frequency domain in order to capture most of the signal energy
in the band of interest. The bandwidth B of the front-end filter is quite large
because of the bandwidth of the UWB signal. Hence, the Nyquist sampling rate
becomes prohibitively high. Therefore, we resort to stroboscopic sampling [89]
to sample the output of the front-end filter at rate 1/Tsam, which is much smal-
ler than its Nyquist sampling rate 2B, i.e., Tsam ≥ 1/(2B). Consequently, each
frame produces ⌊Tf/Tsam⌋ or ⌈Tf/Tsam⌉ samples. Since we apply stroboscopic
sampling, several identical frames have to be transmitted in order to collect a
sufficient number of samples that are equivalent to those obtained by sampling
one frame at a higher rate. We define the equivalent high sampling rate as 1/Tb,
which satisfies the condition Tb ≤ 1/(2B) in order to prevent frequency aliasing.
The resolution of TOA estimation, which is the smallest resolvable time differ-
ence, is determined by the equivalent sampling period Tb (≤ Tsam). The sample
vector x in Fig. 4.1 is the input of a digital signal processing (DSP) block. The
DSP block would accomplish TOA estimation with clock drift calibration. We
remark that the analog-to-digital convertor (ADC) used in stroboscopic sampling
is comparable to one subconvertor of a time-interleaved ADC [95], which employs
multiple subconvertors running at low rate in parallel to achieve an overall high



68 TOA Estimation by UWB Radios

Figure 4.1: The receiver’s analog front-end. The output of the front-end filter is
sampled at rate 1/Tsam, which is smaller than its Nyquist sampling rate 2B.

sampling rate. Ideally, the resolution of TOA estimation using time-interleaved
ADC and using stroboscopic sampling should be the same. They make different
trade-offs between the time and the hardware cost. In general, the ADC starts
with a sample-and-hold (S/H) operation followed by digital quantization. In the
case of stroboscopic sampling, the S/H circuit has to be fast enough to follow
the change of the UWB signal [96]. The aperture jitter or aperture uncertainty
of the ADC [97], which refers to the random variation of the sampling instant,
should be negligible compared to the equivalent sampling period Tb [98]. For
example, if the targeted equivalent sampling period Tb is 1 ns, the aperture jit-
ter should be limited to a few picoseconds, which is feasible as reported in [15].
Moreover, since the stroboscopic sampling only employs one ADC, it would not
suffer from the subconvertor mismatch problem, which imposes a big challenge to
the time-interleaved ADC [99].

The relationships among Tsam, Tf , and Tb are given as follows

Tsam = mTb, (4.1)

Tf = (mP + q)Tb, (4.2)

Tf

Tb
= m

Tf

Tsam
, (4.3)

where m ≥ 1 is the sampling-rate gain, P = ⌊Tf/Tsam⌋ is the minimum number of
samples collected from one frame through stroboscopic sampling and m > q > 0.
These parameters are all integers. Moreover, m and mP + q should be relatively
prime. Under the condition that m = 1 and q = 0, the system becomes a Nyquist
sampling system. When designing the sampling-rate gain m, we would like it to
be as large as possible to lower the sampling rate. On the other hand, it has to
be small to shorten the preamble to save transmission energy. So there clearly
is a design trade-off. Using m frames to collect mP + q samples is equivalent to
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∆

Figure 4.2: The noiseless output of the front-end filter at the receiver at rate 1/Tsam.
(a) The ideal case, no drift and τ = 0, (b) no drift and τ 6= 0, and (c) with drift and
τ 6= 0.

sampling one frame at rate 1/Tb. Fig. 4.2(a) shows an example. The waveform
x(t) represents the output of the front-end filter. In the example, m = 3, P = 3
and q = 2, which leads to Tf = (mP+q)Tb = 11Tb. We collect 11 samples in a time
duration of 3Tf . These samples are equivalent to those obtained by sampling one
frame at the output of the front-end filter at rate 1/Tb, and permuting as shown
at the right side of Fig. 4.2(a).

The relative clock drift between the transmitter and the receiver violates the
relation in (4.2). That is because Tf is with respect to the transmitter, while
Tsam is with respect to the receiver. When we apply stroboscopic sampling at
the receiver, we require a long preamble in order to obtain a sufficient number of
samples. But since the relative clock drift ratio can be as large as 80 ppm [75], the
drift of the preamble can lead to serious problems in TOA estimation. Therefore,
we have to calibrate for the clock drift at the receiver for accurate ranging. Figs.
4.2(b) and 4.2(c) indicate examples without and with clock drift, respectively,
where ∆ is the relative clock drift ratio and τ is the TOA. In Fig. 4.2(b), the
timing information can be retrieved after permuting the sample sequence, whereas
in Fig. 4.2(c) the original waveform can not be regained due to the clock drift,
and the timing information is lost.

Assuming the clock drift ratio remains constant, the clock drift linearly in-
creases with time. In order to suppress the noise, we define a group of frames
as a cluster according to the prior knowledge of the maximum drift ratio. The
duration of a cluster is assumed smaller than the minimum time period required
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to observe a drift of Tb. Therefore, relation (4.2) is roughly maintained within the
cluster. Recalling that 1/Tb is larger than 2B, a maximum drift of Tb within a
cluster is much smaller than the width of the pulse, which is one of the paramet-
ers to decide the bandwidth of the UWB system. Hence, frame samples can be
averaged within the cluster without severe pulse mismatch. The cluster period is
defined as NfTf , where Nf = mM and M > 0 is the processing gain. It has to
satisfy the following condition [91, 92]

NfTf∆max = mMTf∆max ≤ Tb, (4.4)

where ∆max is the maximum clock drift ratio at the transmitter relative to the
receiver. For instance, if the targeted Tb is 1 ns, Tf = 150 ns, and ∆max is 80
ppm, then Nf ≤ 83, which means mM ≤ 83. A proper choice of m could be 7,
which indicates a sampling rate of 1/Tsam = 142.9 MHz or a sampling period of
Tsam = 7 ns. As a result, the largest processing gain M can be 12. The outcome
of the cluster averaging are mP + q samples of one frame.

In order to achieve TOA estimation, we could design the preamble to be
composed of several segments, each of which is dedicated to serve a different
purpose, such as signal detection, coarse synchronization and fine synchronization.
Each segment could have a different structure to facilitate its task. The structural
design of the whole preamble is out of the scope of this chapter. We assume coarse
synchronization has already been carried out. More specifically, we assume that
the TOA τ is in the range of one frame period with respect to the receiver, i.e.,
τ ∈ [0, (1 + ∆)Tf ), where (1 + ∆)Tf ≈ Tf , since Tf is only several hundreds of
ns and ∆ ≤ 80 ppm. Therefore, we only concentrate on designing the preamble
for the fine synchronization stage where τ is estimated. We assign a code to
each cluster instead of each frame in order to avoid code mismatch during the
averaging due to the unknown τ and the clock drift, which is not considered
in [91,92]. We remark that the purpose of the code here is for spectrum smoothing
and multiuser accessing, not for drift calibration, which can still work without
any code assignment. Therefore, we have not considered the code design in this
chapter. Based on the analysis above, the structure of the transmitted preamble
is shown in Fig. 4.3(a). The preamble is composed of Nc clusters, where every
cluster is made up of Nf frames, each one containing one pulse. The transmitted
signal can thus be written as

s(t) =

Nc−1∑

i=0

cib(t − iNfTf ), (4.5)

where b(t) =
∑Nf−1

j=0 p(t − jTf ), ci is the cluster code and p(t) is the transmitted
pulse shape of a very narrow width. Figs. 4.3(b) and 4.3(c) show the noiseless
received preamble through an additive white Gaussian noise (AWGN) channel
with unknown τ and different clock drifts. As we can observe from the figures,
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Figure 4.3: The structure of (a) the preamble, (b) the received preamble with negative
drift, and (c) the received preamble with positive drift.

there is a code mismatch due to the unknown τ and the clock drift. The last
several frames of the clusters in Fig. 4.3(b) are mismatched due to the unknown
τ and the negative drift, while the first several frames of the clusters in Fig. 4.3(c)
are mismatched as a result of the unknown τ and the positive drift. We cut off
the first and last m frames of each cluster to get rid of the code mismatch in
the averaging process at the price of reducing the processing gain from M to
M − 2. As illustrated in the previous example, an 80 ppm drift ratio may cause
an 80 ns clock drift for a 1 ms preamble. Due to this drift and the unknown
τ ∈ [0, 150 ns), the timing offset at the last frame of the preamble will be in
the range of [τ − 80 ns, τ + 80 ns), which leads to a timing offset range of [−80
ns, 230 ns]. The m frames we omit provide a guard time, which is larger than
the timing offset range. Hence, it can prevent code mismatch. When m = 1,
which indicates Nyquist sampling, however, the timing offset range is larger than
the guard time, and the first/last frame still suffers from a code mismatch even
after frame removal. Nevertheless, since we average lots of frames over the cluster
in case of Nyquist sampling (m = 1), a code mismatch in one frame does not
introduce a big influence. The received preamble is

r(t) =

L−1∑

l=0

αls(t − τl,0 − τ, ∆) + n(t), (4.6)

where n(t) is the zero-mean AWGN with double sided power spectral density
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N0/2,

s(t, ∆) =

Nc−1∑

i=0

cib(t − iNfTf(1 + ∆), ∆), (4.7)

b(t, ∆) =

Nf−1∑

j=0

p(t − jTf (1 + ∆)), (4.8)

∆ is the clock drift ratio, L indicates the number of multipath components, and
αl and τl,0 represent the amplitude and the relative time delay of the lth path
with respect to the first path, respectively. Note that τl,0 = τl−τ0, where τl is the
multipath delay and τ0 = τ . We remark here the frame period at the transmitter
is Tf , and the one at the receiver is Tf (1 + ∆). With the received signal r(t), the
output of the front-end filter sampled using stroboscopic sampling is

x(nTsam) =

∫ +∞

−∞
r(t)g(nTsam − t)dt, n = 0, 1, . . . , MNcLf , (4.9)

where g(t) is the impulse response of the front-end filter, whose bandwidth is
large enough to include the band of interest, and Lf = Tf/Tb = mP + q is
the frame length in terms of the number of samples at rate 1/Tb. Let us intro-

duce xk =
[
x
(
(kLf)Tsam

)
x
(
(kLf + 1)Tsam

)
. . . x

(
(kLf + Lf − 1)Tsam

)]T
, k =

0, 1, . . . , NcM −1, which is an Lf -long sample vector for the kth equivalent frame.
Notice that xk is the result of sampling m frames at rate 1/Tsam at the receiver.
Every M sample vectors are grouped as a cluster. We exclude the first and last
sample vectors in each cluster to get rid of the code mismatch in the averaging
process. The results are collected in a data matrix X of size Lf × Nc, which is
given by

X =
1

M − 2

[
M−2∑

i=1

xi

M−2∑

i=1

xM+i . . .

M−2∑

i=1

x(Nc−1)M+i

]
, (4.10)

where each column of X contains its own specific code.

4.3 TOA estimation with clock drift calibration

4.3.1 Recovery from stroboscopic sampling

Due to the stroboscopic effects, we have to permute all the averaged frame samples
in each column of X before we calibrate for the drift and estimate the TOA τ .
The adjacent Tsam-spaced samples obtained by stroboscopic sampling are not the
adjacent Tb-spaced samples in the equivalent high sampling rate scheme as shown
in Fig. 4.2(a). The maximum drift observed in a cluster is Tb, which is much
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smaller than the sample spacing Tsam in the stroboscopic sampling scheme, and
exactly equal to the sample spacing in the equivalent high sampling rate scheme.
Therefore, we have to recover the equivalent high sampling rate sequence before
drift calibration to appropriately represent the drift between the adjacent clusters.
Recall that m is the sampling-rate gain. According to (4.2), we define a permuta-
tion matrix W of size Lf × Lf with first column [W]:,1 = [0T

m−1 1 0T
Lf−m]T and

every other column a circulant shift of the previous column. This means that

[W]:,i+1 = circshift([W]:,i, m), i = 1, . . . , Lf − 1, (4.11)

where circshift(a, n) circularly shifts the values in the vector a by |n| elements
(down if n > 0 and up if n < 0). The rearrangement is accomplished by

Xo = WX, (4.12)

where each column of Xo collects the permuted averages for each cluster. Now,
the equivalent sample spacing in Xo is Tb.

4.3.2 An estimator of clock drift

In order to estimate the TOA, we would like to use all the data samples in Xo.
This allows us to obtain an averaged sample vector over all the clusters and
thereby reduces the noise. However, due to the clock drift, the equivalent frame
waveforms do not align with each other. We have to calibrate for the drift before
TOA estimation. Let us define the row index of the data matrix Xo as the
frame phase, similar to the pulse repetition period (PRP) phase in [91, 92] (see
an example in Fig. 4.4). We recall that the maximum drift accumulated over a
cluster duration is Tb, and the difference between two adjacent phase is also at
most Tb. We have assumed that the accumulated drift, which is the total drift
observed over the duration from the beginning of the preamble to the interested
time point, is zero at the start of the preamble. The frame phase of a cluster
may correspond to the same or an adjacent phase in the next cluster due to the
accumulated drift. This kind of correspondence is called the transition between
frame phases. The drift estimation traces the correct transition path of the frame
phase within the duration of the preamble. A transition takes place between two
contiguous clusters, when the accumulated drift increases by Tb. The transition
path pattern is generated by quantizing the accumulated drift over clusters. The
quantization step size is Tb, and a ceiling quantization is employed. Every frame
phase has the same set of transition paths. We remark that the exact value of
the drift ratio is not the main concern, but the transition path is the target of
the drift estimation. Based on this path, we can calibrate for the drift, obtain
an averaged sample vector for the whole preamble, and then estimate the TOA.
The resolution of the drift estimation is Tb/((Nc − 1)NfTf). The total number of
transition paths for each frame phase is 2Nc−1, where Nc −1 is the path number
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for positive drift (or negative drift), and one path is for the case without any
drift. Therefore, the longer the preamble, the more accurate the drift estimation.
Nevertheless, the complexity of the estimation would also increase as the number
of transition paths increases.

Fig. 4.4 shows some examples of transition paths. In the example, Nc = 5
and Lf = 13. The dots represent the elements of the matrix Xo. The spacing
between contiguous samples is Tb. Based on Fig. 4.4, we reconfirm that the data
matrix X can not be used directly. Some of the transition paths for frame phase
7 are shown. As mentioned before, we have assumed that the accumulate drift
at the beginning of cluster 1 is zero. Path 1 indicates that we can observe a
phase transition for every cluster, and the kth phase of the ith cluster transfers
to the (k − 1)th phase of the (i + 1)th cluster. It reaches the negative maximum
drift. In path 5, no clock drift is observed. Path 6 shows Tb drift over five
clusters, which corresponds to a resolution of the drift ratio estimation given by
∆max/4. We remark that path 6 is the only transition path for which we observe
a positive drift of Tb over five clusters, according to the quantization rules and
the assumption of the zero accumulated drift at the start of the preamble. The
number of all possible transition paths for each frame phase is 2Nc−1 = 9. There
are special cases we have to be careful with. For example, in path a for phase 2,
there is a negative shift of one phase every cluster. Therefore, phase 1 of cluster 2
transfers to phase 13 of cluster 3 as shown by the dashed line with solid arrow in
the figure. Meanwhile, path b for phase 10 describes a positive shift of one phase
every cluster propagates in a similar way. The transition takes place circularly.
Since we have excluded the code mismatch during the cluster averaging process
by cutting off the first and last sample vectors, each column of Xo corresponds
to its own specific code. However, the phase mismatch due to the clock drift still
causes serious problems for TOA estimation.

All the transition paths for any phase are modeled in a matrix Λ of size (2Nc−
1)×Nc. For instance, Λ for Nc = 5 is shown at the right side of Fig. 4.4. The path
number in Fig. 4.4 corresponds to the row index of Λ. Making use of the transition
matrix and recalling the cluster code, we can estimate the transition path and
calibrate for the clock drift. Since all the phases have the same set of transition
paths, in order to be more robust to noise we perform an exhaustive search of
the transition path that leads to an averaged frame waveform with the maximum
energy, which can be regarded as the maximum likelihood (ML) estimator for
the clock drift. We remark that instead of jointly considering drift calibration
with other TOA estimation techniques, we decouple these two problems and solve
them sequentially in order to obtain lower computation complexity. A simple joint
approach is to estimate the clock drift and the strongest multipath component at
the same time [32]. However, it requires a two-dimensional search. Moreover, in a
NLOS scenario, the first multipath component is in general not the strongest one,
so looking for the strongest path is not always the best option for TOA estimation.
We define jmax as the row index of the selected path in Λ. The problem we then
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Figure 4.4: The diagram of the transition paths and the corresponding matrix Λ for
Nc = 5 and Lf = 13.

would like to solve is

jmax = arg max
j∈{1,...,2Nc−1}

Lf∑

k=1

∣∣∣∣∣

Nc∑

n=1

cn−1[Xo]p(k,n,j),n

∣∣∣∣∣

2

, (4.13)

p(k, n, j) = mod
(
(k − 1 +

n∑

i=1

Λ(j, i)), Lf

)
+ 1, (4.14)

where the function mod(a, b) computes a modulo b. It is equivalent to searching for
the transition path, which results an averaged frame waveform with the maximum
energy. The clock drift ratio corresponding to the selected transition path can be
estimated as

∆̂ =
(jmax − Nc)Tb

(Nc − 1)NfTf
, (4.15)

which is the ratio between the accumulated clock drift and the total observation
duration. We remark that the complexity of the drift estimator depends on the
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total searching space. In the scope of the thesis, we have not considered the
complexity to decide the maximum value and the optimal searching strategy. For
the clock drift estimator, in the worst case scenario, we carry out an exhaustive
search over all the possible paths. According to (4.13) and (4.14), the number of
operations required by the clock drift estimator is in the order of O(LfNc(2Nc −
1)).

4.3.3 TOA estimation

Until now, we have estimated the transition path for the clock drift using (4.13).
Before we continue to discuss the TOA estimation strategies, we first average the
related phases of Xo over the whole preamble according to the transition path
Λ(jmax, :) to calibrate for the drift and further mitigate the noise, and collect the
outcomes in a sample vector y, which is actually a circularly shifted version of
the channel estimate. Its elements are computed as

[y]k =
1

Nc

Nc∑

n=1

cn[Xo]p(k,n,jmax),n, k = 1, 2, . . . , Lf . (4.16)

The vector y is used for TOA estimation. As a result, the total processing gain
for TOA estimation is Nc(M − 2).

We define kmax as the index of the strongest multipath component, which is
found by

kmax = arg max
k∈{1,2,...,Lf}

|[y]k|. (4.17)

Thus, the TOA estimation according to the PS method [41, 83] is given by τ̂p =
Tbkmax − Tb

2 . In a NLOS scenario, the problem to detect the leading edge arises,
since the first path may not be the strongest one. Therefore, we have to resort to
other alternatives. The challenge in TOA estimation is imposed by the unknown
statistical properties of the channel.

There are various kinds of TOA estimation strategies as we mentioned in
the introduction [77, 83, 88]. They are summarized in Table 4.1. An example
of how these TOA strategies can be applied to |y| is shown in Fig. 4.5. The
TOA estimation based on P-Max selection chooses the index of the first sample
among the P largest samples |[y]k|. Its performance is sensitive to P and it may
lock to the strongest cluster as shown in Fig. 4.5, in which we choose P = 5.
The threshold crossing (TC) method [83, 84, 86, 88] selects the index of the first
sample, whose absolute value exceeds the threshold. It is not appropriate to be
applied in our case: as y is a circularly shifted version of the channel estimate,
the TC method may regard the channel tail as the leading edge. An incorrect
choice by the TC method is indicated in Fig. 4.5. The TOA estimation based
on the serial backward search (SBS) method [77] first finds out the index of the
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k

Figure 4.5: An example of applying different TOA strategies to a noiseless |y|.

strongest path component, and then starts from the strongest path to search
backward in a predefined window to look for the first threshold crossing. It has
the problem that it may choose the index from a later arriving cluster instead
of the first cluster. An example of the SBS method that has this problem is

Table 4.1: TOA Estimation Strategies

Parameters Algorithms
PS τ̂ = Tb argmax

k∈{1,...,Lf}

|[y]k| − Tb/2

P-Max P

τ̂ = Tb min
{

k ∈ {k1, . . . , kP }
}
− Tb/2,




k1 = argmax
k∈{1,...,Lf }

|[y]k|

ki = argmax
k∈{1,...,Lf}∧k/∈{k1,...,ki−1}

|[y]k|,

i = 2, . . . , P

TC γ τ̂ = Tb min
{

k ∈ {1, . . . , Lf} | |[y]k| > γ
}

JBSF Lw, γ τ̂ = Tb min
{

k ∈ {kmax − Lw, . . . , kmax} | |[y]k| > γ
}

SBS Lw, γ
τ̂ = Tb max

{
k ∈ {kmax, . . . , kmax − Lw}

| (|[y]k| > γ) ∧ (|[y]k−1| < γ)
}

SBSMC Lw, γ, D
τ̂ = Tb max

{
k ∈ {kmax, . . . , kmax − Lw}

| (|[y]k| > γ) ∧ (|[y]k−1| < γ) ∧ . . .

∧(|[y]k−D| < γ)
}
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shown in Fig. 4.5. The serial backward search for multiple clusters (SBSMC) [82]
works following the same principle as the SBS, but it additionally checks whether
D consecutive samples before the candidate sample are all below the threshold
or not. We can see the advantage of SBSMC over SBS in Fig. 4.5. Although
it can partially solve the problem of the SBS method, it is still not favorable,
because it needs more parameters related to the channel properties compared to
other methods. Therefore, we employ the jump back and search forward (JBSF)
method [77], which relies on two parameters, the threshold γ and the search back
window length Lw. It first aligns with the strongest component, and jumps back
to start from the index of (kmax − Lw) to find out the first |y| exceeding the
threshold γ. In the example, the TOA estimate obtained by the JBSF method is
the closest to the true TOA.

The optimal way to detect the leading edge would be a likelihood ratio test
(LRT) [100] for multiple hypotheses. However, this requires full statistical know-
ledge of the channel, which is impractical. In the absence of channel information
or lack of sufficient channel information, we could follow a heuristic approach
and set the threshold to γ1 = ηt|[y]kmax |, where 0 ≤ ηt ≤ 1 is the threshold ra-
tio [101]. However, the optimal ηt would depend on the SNR in this scheme and
there is no unique ηt that works well under all SNRs. On the other hand, we
could set the threshold based on the stochastic properties of |y|, when there is
only noise. A threshold can be derived for a fixed probability of early false alarm
Pefa , which indicates the event where we incorrectly select a noise sample before
the true TOA as the first multipath component. If there is no absolute sample
value exceeding the threshold in the predefined window, we use the result of the
PS method τ̂ = Tbkmax − Tp/2 as the estimated TOA. When there is only noise,
[y]k is an averaged AWGN sample with variance σ2 = 1

Nc(M−2)N0B. This means

|[y]k| follows a one-degree chi distribution (half-normal distribution).

y
a∼ N (0, σ2I), (4.18)

1

σ
|y| a∼ X1, (4.19)

Pefa = P (|y| > γ2; noise only) = 2Q(
γ2

σ
), (4.20)

γ2 = σQ−1(
Pefa

2
), (4.21)

where the function Q(·) is the right-tail probability function for a Gaussian dis-
tribution.

The length Lw of the backward search window should be large enough to
recover the first path instead of deadlocking to the strongest one and depends
on the delay between the strongest path and the first path, which could be as
large as 60 ns for IEEE 802.15.4a CM1 [102] as shown in [88]. Due to the lack of
channel knowledge, we choose Lw to be ηlTf , where 0 ≤ ηl ≤ 1 is the length ratio.
We remark that Tf should also be long enough, not only to avoid IFI but also to
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accommodate enough margin for the backward search window in order to prevent
the window from including the channel tail. Therefore, Tf should be decided by
the delay spread of the channel and the maximum delay between the strongest
path and the first path together. For example, if we assume the channel length
is 90 ns and the maximum delay between the first path and the strongest path is
60 ns, Tf should be at least 150 ns.

The complexity of the TOA estimator is negligible compared to the clock drift
estimator. The peak selection finds the maximum value in |y|. On the other hand,
the JBSF method finds the maximum of |y|, aligns the search back window with
the maximum of |y|, and then looks for the first |[y]k| exceeding the threshold.
The number of their operations is linear with Lf .

4.4 Theoretical performance limits

The main purpose of the CRB analysis here is to indicate the influence of the
clock drift on the TOA estimation. In a multipath environment, TOA estima-
tion consists of estimating the delay of the first multipath component. It can be
regarded as part of the channel estimation. Although the parameters of other
multipath components are nuisance parameters, we cannot get rid of them. Fur-
thermore, we assume that the multipath components are independent and do not
overlap with each other. Therefore, based on the received multipath signal, we
would like to derive the CRB for θ = [∆ τ0 τ1 . . . τL−1 α0 . . . αL−1]

T , which de-
notes the theoretical performance limits to jointly estimate the clock drift ratio
and the multipath channel parameters. This CRB is different from the conven-
tional CRBs [1,77,93,94], which only consider the multipath channel parameters.
For instance, [93] and [94] calculate the CRBs for data-aided and non-data-aided
ML channel estimation, respectively. We remark that the CRB derived here is not
a favorable benchmark to compare with our practical TOA estimates, since our
TOA estimation employs heuristic methods with low complexity. It is suboptimal,
and its performance can never be beyond the resolution of the system. One the
other hand, the CRB is derived based on the continuous waveform. Although the
Ziv-Zakai bound (ZZB) is proposed in [103] to provide a tighter bound in the low
SNR region, it has a similar behavior as the CRBs at the high SNR region. New
bounds should be investigated to obtain useful benchmarks. It is left to future
work.

Recall that τl and αl are the delay and the amplitude of the lth received
multipath component as we defined for (4.6) before. τ0 = τ is the TOA of interest.
We assume that the multipath components do not overlap with each other. θ is
treated as deterministic unknown. The received signal r(t) goes through the
front-end filter to obtain

x(t) =

∫ +∞

−∞
r(z)g(t − z)dz, (4.22)
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where g(t) is assumed to be the ideal bandpass filter, which includes the band of
interest B as we defined before and x(nTsam) defined in (4.9) is the nth sample
of x(t) using stroboscopic sampling. The output of the front-end filter x(t) can
be decomposed of a signal part and a noise part

x(t) = z(t) + ng(t), (4.23)

where ng(t) is the bandlimited AWGN with double sided power spectral density
N0/2 and bandwidth B, and

z(t) =
L−1∑

l=0

αlsg(t − τl, ∆), (4.24)

sg(t, ∆) =

Nc−1∑

i=0

cibg(t − iNfTf (1 + ∆), ∆), (4.25)

bg(t, ∆) =

Nf−1∑

j=0

φ(t − jTf (1 + ∆)), (4.26)

where φ(t) =
∫ +∞
−∞ p(τ)g(t−τ)dτ is the one-pulse signal resulting from the channel,

antenna and filter effects. We assume that φ(t) is known. Recalling Nf = mM
and Tf = (mP + q)Tb, we collect mM(mP + q)Nc samples at rate 1/Tb, while
M(mP +q)Nc samples at rate 1/Tsam from the above waveform. Since we exclude
the first and last sample vector in each cluster to get rid of the code mismatch
in the averaging process, we actually only use (M − 2)(mP + q)Nc samples. We
remark that if we use these stroboscopic samples instead of Nyquist rate samples

to derive the CRBs, the new CRBs would be
mM

M − 2
times the ones using Nyquist

rate samples. The SNR penalty for the stroboscopic sampling compared to the
Nyquist sampling is indicated by the reduced number of samples achieved from
the same preamble.

The Fisher information matrix (FIM) I(θ) is employed, with entries defined
as:

[I(θ)]ij = −E
x(t);θ

[
∂2

∂θi∂θj
lnp
(
x(t);θ

)]
, (4.27)

where

lnp
(
x(t);θ

)
= − 1

2σ2

∫ To

0

(x(t) − z(t))2dt (4.28)

is the log-likelihood function without constant terms and To is the observation
time. The derivation of the FIM and its inverse can be found in Appendix 4.A.
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We can obtain the CRBs for ∆ and τ based on the inverse of the FIM:

CRB(∆) = [I−1(θ)]1,1 (4.29)

=
6

Ep

N0
F 2NfNcT 2

f

1

(N2
f N2

c − 1)
∑L−1

l=0 α2
l

, (4.30)

CRB(τ) = [I−1(θ)]2,2 (4.31)

≈ 1

2
Ep

N0
F 2NfNc

(
1

α2
0

+
1

1
3

∑L−1
l=0 α2

l

) (4.32)

≈ 1

2
Ep

N0
F 2NfNcα2

0

. (4.33)

where Ep =
∫ To

0 φ2(t)dt is the pulse energy,

F 2 =

∫ To

0

(
dφ(t)

dt

)2

dt/

∫ To

0

φ2(t)dt (4.34)

=

∫ ∞

−∞
(2πF )2|Φ(F )|2dF/

∫ ∞

−∞
|Φ(F )|2dF, (4.35)

which is the mean square bandwidth of the pulse signal with Φ(F ) the Fourier
transform of φ(t). Note that F 2 does not only depend on the bandwidth of the
pulse signal φ(t), but also on its shape. A larger NcNf , which is the total number
of pulses employed by the preamble, helps all of the estimates, because more
frames and clusters enhance the SNR. A longer Tf facilitates the ∆ estimation,
since we can observe more drift with longer duration. CRB(∆) is independent
of τ . Each multipath component contributes a part in the drift estimation. The
more multipath energy we collect, the more accurate the drift estimate. CRB(τ)
is independent of ∆. The first approximation in the derivation of CRB(τ) is bases

on NfNc ≫ 1. Comparing the two factors 1/α2
0 and 1/(1

3

∑L−1
l=0 α2

l ) in CRB(τ),
the former one is usually much larger than the later one. Therefore, the accuracy
of the TOA estimation is mainly decided by the factor 1/α2

0, which is the strength

of the first path. The factor 1/(1
3

∑L−1
l=0 α2

l ) introduced by the drift does not have
much influence on the TOA estimation, since the drift is taken into account in
the estimation approach.

If we assume that ∆ or τ is known, we only have to estimate τ or ∆, respect-
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ively. CRB′(∆) or CRB′(τ) can be derived as

CRB′(∆) =
1

[I(θ)]2,2
(4.36)

=
3

Ep

N0
F 2NfNcT 2

f

1

(2N2
f N2

c − 3NfNc + 1)
∑L−1

l=0 α2
l

, (4.37)

CRB′(τ) =
1

[I(θ)]1,1
(4.38)

=
1

2
Ep

N0
F 2NfNcα2

0

. (4.39)

where CRB′(τ) is equal to the conventional CRB of τ in [1, 77]. Because the
estimation performance degrades when more parameters in a given system have
to be estimated, we would have the relations as follows

CRB′(∆) ≤ CRB(∆), (4.40)

CRB′(τ) ≤ CRB(τ). (4.41)

We will show examples of the CRBs in the next section.

4.5 Simulation results

The performance of TOA estimation is evaluated by simulations using the IEEE
802.15.4a channel model CM1 - indoor residential LOS [102]. The channel impulse
responses are truncated to 90 ns to avoid IFI in order to simplify the simulation.
In practice, we can increase the frame period to avoid IFI. One hundred channel
realizations are generated, and we randomly choose one for each Monte Carlo
run. To speed up the simulations, we generate the output of the cluster averaging
process directly, since the maximum drift of Tb within a cluster is smaller than the
pulse width. The averaging process would not suffer from severe pulse mismatch
as we mentioned before. Ec/No defines the cluster energy to noise variance ratio.
The number of clusters Nc is 68. Further, we randomly select the drift ratio ∆
among {−67.2 ppm, −50.4 ppm, −33.6 ppm, −16.8 ppm, 0 ppm, 16.8 ppm, 33.6
ppm, 50.4 ppm, 67.2 ppm} in each run. The frame period Tf is 150 ns, which
not only depends on the channel length, but also on the maximum delay between
the first path and the strongest path. Since the maximum delay between the first
path and the strongest path is 60 ns for CM1 [88], the frame period is set as the
sum of the channel length and the maximum delay. The stroboscopic sampling
period Tsam is chosen to be 7 ns. The targeted resolution Tb is 1 ns. Based on
(4.2), we obtain P = 21, m = 7 and n = 3. The maximum M is 12 according
to (4.4). The number of frames in one cluster Nf = mM = 84. Therefore, the
processing gain of the cluster averaging process is M − 2 = 10, or approximately
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Figure 4.6: CRBs for TOA and drift estimation

10 dB. The total processing gain is Nc(M − 2) = 680, or approximately 28 dB.
The second derivative of a Gaussian pulse is employed as the transmitted pulse,
and the pulse width is truncated to 4 ns, which includes the main lobe and two
side lobes. Its bandwidth is approximately 500 MHz. The pulse is also used
as the impulse response of the front-end filter at the receiver. Moreover, the
timing offset τ ∈ [0, Tf) is randomly generated in each run. The threshold ratio
is ηt ∈ {0.1, 0.2, . . . , 0.8}. The length ratio of the backward search window is
ηl ∈ {0.1, 0.2, . . . , 0.7}, which leads to Lw ∈ {10 ns, 20 ns, . . . , 70 ns}.

We first show the CRBs under above simulation conditions. The CRBs are
much lower than the performance of the PS method or the JBSF method shown
later. It is because that for the CRB derivation, we use the assumption that
the multipath components are independent and do not overlap with each other.
We also have the prior knowledge of the number of the multipaths. But in the
simulations, we only use a signal with a bandwidth of 500 MHz, the multipaths
may not be resolvable. Therefore, the suboptimal TOA estimation methods have
performance gaps compared to the CRBs. As we can see in Fig. 4.6, CRB(τ)
is inferior to CRB′(τ). The difference is very small, which indicates that the
influence of the drift is very small in the TOA estimation, when it is taken into
consideration. CRB′(∆) is lower than CRB(∆) since we assume that τ is known
to derive the former one.

Secondly, we evaluate the performance of TOA estimation using the PS method,
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Figure 4.7: RMSE of TOA estimation using peak selection.

which consists of choosing the strongest component. The root mean square error
(RMSE) of τ̂p vs. Ec/No is illustrated in Fig. 4.7. There are large performance
gaps between the cases with drift calibration (solid lines) and the cases without
drift calibration (dashed lines with ◦ or △ markers). The drift causes serious
problems to TOA estimation as indicated by the high error floor for the curves
without calibration. The Nyquist sampling system, where m = 1 and n = 0, is
used as a reference. The same preamble is used for the Nyquist sampling system,
the stroboscopic sampling system and the CRB derivation. No matter how large
m, the RMSE of TOA estimation with drift calibration always converges to the
same error floor (solid lines). Nyquist sampling gains about 8 dB over strobo-
scopic sampling (m = 7) due to the sampling-rate gain m. For both systems, we
also show the performance of the ideal case without any drift. They show similar
error floors as the ones with drift calibration, which proves that the drift is not the
reason for the error floor. However, due to the fact that we employ a signal with
a bandwidth of 500 MHz, we may not be able to resolve fine multipaths. Because
of inter-pulse interference (IPI), the suboptimal PS method always chooses the
strongest resolvable signal component instead of the strongest single path, which
causes a high error floor. We may improve the performance of the PS method by
employing a signal with a larger bandwidth. Furthermore, the first path is not
always the strongest one in CM1, which is also indicated by the error floor.

We also investigate the performance of TOA estimation using the JBSF method,



4.5. Simulation results 85

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

E
c
/N

0
(dB)

R
M

S
E

(n
s
)

RMSE for TOA estimation using the JBSF method

 

 

Fixed L
w
 = 60 ns, η

t
 = {0.1,0.2,...,0.8}, γ

1
 = η

t
|[y]

kmax
|

Peak selection

Increasing γ
1

η
t
=0.4

Figure 4.8: RMSE of TOA estimation using the JBSF method for a fixed window
length Lw = 60 ns and different thresholds γ1 = ηt|[y]kmax |, (m = 7).

which achieves much better accuracies than the PS method. Fig. 4.8 shows
the RMSE of τ̂ for a fixed window length Lw = 60 ns and different thresholds
γ1 = ηt|[y]kmax

|. There is no single threshold which could outperform the oth-
ers over the whole SNR range. A smaller threshold can achieve a better ac-
curacy at high SNR, but also performs worse at low SNR, which is consistent
with the conclusions in [101]. The error floor of peak selection is higher than
any error floor encountered by the JBSF method. According to Fig. 4.8, the
performance of ηt = 0.4 yields a good tradeoff over the whole SNR range. It
only has a 2dB performance loss in the SNR range of 0 − 25dB compared to
larger thresholds, and its error floor is still close to the low error floors obtained
by smaller thresholds. Furthermore, the performance of the JBSF method with
a fixed threshold γ1 = 0.4|[y]kmax

| under different backward search windows is
shown in Fig. 4.9. The larger the window length, the smaller the error floor. The
performance differences in the low SNR range are smaller than the ones with a
fixed window length and various thresholds γ1. There is no more performance
improvement, when the window length is larger than 60 ns. Since we know that
60 ns is the best window length according to the maximum delay between the first
path and the strongest path, a window length larger than 60ns may introduce the
problem of regarding the channel tail as the leading edge.

When we observe the performance of the JBSF method using different thresholds
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Figure 4.9: RMSE of TOA estimation using the JBSF method for a fixed threshold
γ1 = ηt|[y]kmax |, ηt = 0.4 and different window lengths, (m = 7).

γ2 = σQ−1(Pefa/2) for a fixed window length Lw = 60 ns in Fig. 4.10, they all
have the same performance in the SNR range of 0−25dB as the PS method. This
is because in the low SNR range, the received signal is overwhelmed by noise.
The chance of a sample value exceeding the threshold is low. As we use the res-
ult of peak selection when there is no threshold crossing, the performance of the
JBSF method using γ2 in the low SNR range is the same as the PS method. In
the high SNR range, the larger the Pefa, the better the TOA estimate. The PS
method still has the highest error floor. Further, we use a fixed threshold related
to Pefa = 0.1 to test the estimation performance under different window lengths
as shown in Fig. 4.11. The larger the window length, the lower the error floor.
The exception happens when Lw = 70 ns. Then the search window is too long,
and includes the channel tail, which causes an estimation error. This observation
is consistent with Fig. 4.9.

In Fig. 4.12, we finally compare the performance of the JBSF method for
γ1 = ηt|[y]kmax

|, ηt = 0.4 and γ2 = σQ−1(Pefa/2), Pefa = 0.1 using a fixed
window length Lw = 60 ns. There are still large performance gaps between the
methods with drift calibration and the ones without. In general, the PS method
has a higher error floor than the JBSF method. The JBSF method using γ2 could
converge to a lower error floor than the JBSF method using γ1, but it has a worse
performance in the middle SNR range of 20 − 30 dB for m = 7 (11 − 28dB for
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Figure 4.10: RMSE of TOA estimation using the JBSF method for a fixed window
length Lw = 60 ns and different threshold γ2 = σQ−1(Pefa/2), (m = 7).

m = 1). Based on the above observations, we could employ γ2 in the low and
middle SNR range and γ1 at high SNR.

4.6 Conclusions

In this chapter, we have applied stroboscopic sampling for an IR-UWB system to
achieve accurate TOA estimation with a low sampling rate. Due to the long pre-
amble required by stroboscopic sampling, the clock drift is one of the main error
sources in TOA estimation. Hence, we include the drift into our system model and
obtain an drift estimate by an exhaustive search. Further, we apply peak selec-
tion and the JBSF method to estimate the TOA using the averaged data samples
corrected for the drift. Simulation results confirm that the drift calibration dra-
matically reduces the TOA estimation errors due to the drift, and stroboscopic
sampling can achieve the same estimation resolution as Nyquist sampling. We
have proposed a practical low sampling rate solution for TOA estimation using
UWB signals.
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Figure 4.11: RMSE of TOA estimation using the JBSF method for a fixed threshold
γ2 = σQ−1(Pefa/2), Pefa = 0.1 and different window lengths, (m = 7).

4.A CRB derivation

We assume that the multipath components do not overlap with each other. Then
the derivatives of z(t) w.r.t. ∆, τl and αl are given respectively by

∂z(t)

∂∆
=

L−1∑

l=0

αl
∂sg(t − τl, ∆)

∂∆
, (4.42)

∂z(t)

∂τl
= −αl

∂sg(t − τl, ∆)

∂(t − τl)
, (4.43)

∂z(t)

∂αl
= sg(t − τl, ∆). (4.44)

Next, we calculate each entry of the FIM. We assume that there is no IFI than
Tf and the observation window To includes the whole received waveform, it leads
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Figure 4.12: RMSE of TOA estimation using the JBSF method, Lw = 60 ns, γ1 =
ηt|[y]kmax |, ηt = 0.4 and γ2 = σQ−1(Pefa/2), Pefa = 0.1.
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where
∫ To

0
φ(t)φ(t)

dt dt =
∫ To

0
φ(t)dφ(t) = φ2(t)

2

∣∣∣
To

0
. We assume φ(0) = φ(To) = 0.

It leads us to
∫ To

0 φ(t)φ(t)
dt dt = 0. The above equation equals to zero.
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Filling in all the entries, we calculate the inverse of the FIM based on the
block matrix inversion as

I−1(θ) =
1

2
Ep

N0
F 2NfNc




1

d
−1

d
bT A−1

−1

d
A−1b (A − 1

c
bbT )−1


 , (4.51)

where

b =
Tf

2
(NfNc − 1)[α2

0 α2
1 . . . α2

L−1 0T
L]T , (4.52)

c =
T 2

f

6
(2N2

f N2
c − 3NfNc + 1)

L−1∑

l=0

α2
l , (4.53)

A = diag([α2
0 α2

1 . . . α2
L−1

1

F 2
1T

L]), (4.54)

d = c − bT A−1b

=
T 2

f

12
(N2

f N2
c − 1)

L−1∑

l=0

α2
l . (4.55)

According to the Woodbury identity [104], the bottom right entry can be rewritten
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as
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c
bbT
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A−1bbT A−1
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(4.56)
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]
.
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In this part, we focus on localization and tracking for WSNs, which have
a wide range of applications, such as target tracking, surveillance, environment
monitoring, geographical routing and smart home, and also impose a number
of particular challenges on accuracy, complexity, and robustness for localization
and tracking. We remark that the approaches proposed in this part can not
only be applied to WSNs, but also be adopted to other localization systems,
such as the global positioning system (GPS) [3], acoustic systems [6, 7], cellular
networks [8], etc. In general, the range-based methods follow two steps [1, 2, 9]:
firstly measure the metrics bearing location information, the so-called ranging or
bearing, and secondly estimate the positions based on those metrics, the so-called
location information fusion. There are mainly four metrics: time-of-arrival (TOA)
or time-of-flight (TOF) [11], time-difference-of-arrival (TDOA) [6, 12], angle-of-
arrival (AOA) [13], and received signal strength (RSS) [14]. The ranging methods
using RSS can be implemented by energy detectors, but they can only achieve a
coarse resolution. Antenna arrays are required for AOA-based methods, which
encumbers their popularity. On the other hand, the high accuracy and potentially
low cost implementation make TOA or TDOA based on ultra-wideband impulse
radios (UWB-IRs) a promising ranging method [1].

This part consists of four chapters: Chapter 5-8. As we mentioned in Chapter 1,
localization methods can be categorized as singular or aggregate approaches based
on whether there are enough anchors (nodes with known positions) to assist the
localization for each target sensor node. In Chapter 5, we assume there are no an-
chors, and propose an extension of the classical multidimensional scaling (MDS)
algorithm to estimate the positions of all the nodes given partial pairwise distance
measurements up to a translation, rotation, and reflection, as the classical MDS
can only deal with fully connected networks. Moreover, the proposed algorithm
can be categorized as an aggregate localization method.

Note that in Chapter 5 we do not care about how to obtain the distance
measurements. Hence, we intentionally isolate the ranging from the ranging fu-
sion in order to simplify the localization problem. However, this strict separation
between the ranging and the ranging fusion burdens the first one and relieves the
second one. It is difficult to obtain accurate range measurements independently.
Therefore, we try to balance these two steps. The cross-layer philosophy inspires
us to explicitly model ranging errors and handle them in the ranging fusion step.
It provides a totally new look at the localization problem. From Chapter 6 to
Chapter 8, we employ TOA (or TDOA) as range measurements, and thus clock
synchronization becomes essential for ranging to achieve accurate localization.
Based on the cross-layer philosophy, we take clock parameters into account to de-
velop the localization algorithms. In these chapters, we consider M anchor nodes
and one target node, and would like to estimate or track the position of the target
node. All the nodes are again distributed in an l-dimensional space. The coordin-
ates of the anchor nodes are known and defined as Xa = [x1, x2, . . . , xM ], where
the vector xi = [x1,i, x2,i, . . . , xl,i]

T of length l indicates the known coordinates
of the ith anchor node. We employ a vector x of length l to denote the unknown
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Synchronization level
Clock modelw.r.t. anchors

and Chapters
Synchronous Ci(t) = t + θ, i = 1, 2, . . . , M ,
Chapter 6 where θ is the unknown common clock offset.

Quasi-synchronous Ci(t) = t + θi, i = 1, 2, . . . , M ,
Chapter 7 and 8 where θi is the unknown clock offset.

Fully asynchronous Ci(t) = αit + θi, i = 1, 2, . . . , M ,
Chapter 7 where αi is the unknown clock skew.

Table 4.2: Clock models for anchor nodes.

coordinates of the target node. The localization and tracking approaches proposed
in these chapters are singular methods. We remark that these methods can easily
be extended for multiple target nodes. Therefore, we can locate the target nodes
in a sequential way for a large scale WSN [27]. The target nodes that have enough
anchors are localized first. Then, the located target nodes can be viewed as new
anchors that can facilitate the localization of other target nodes. As a result,
the multiple-anchors-one-target scenario discussed from Chapter 6 to Chapter 8
is of practical interest. Furthermore, we consider three different kinds of networks
with different synchronization levels w.r.t. to the anchor clock. Note that these
synchronization requirements are related to the anchors, and no synchronization
requirements are upon the target node, which indicates that the clock of the tar-
get node can run freely. Strictly speaking, they are all asynchronous networks.
Consequently, the target clock Cs(t) can be modeled as [29]

Cs(t) = αst + θs, (4.57)

where αs and θs denote the unknown clock skew and clock offset of the target node
clock. We summarize all the anchor clock models for Chapter 6 - 8 in Table 4.2.

Based on the same cross-layer philosophy, different chapters focus on differ-
ent aspects. Chapter 6 investigates reference-free localization estimators based
on TOA measurements with the help of synchronous anchors. Instead of using
TDOAs to allow an asynchronous target, we model the range error due to the
asynchronous effect as a common bias, and propose various reference-free local-
ization estimators. The reference-free LS estimators that are different from the
reference-based ones do not suffer from a poor reference selection. Furthermore,
we expose the relations among existing reference-based localization estimators and
the proposed ones in order to clarify some confusions that still persist in recent
literature. In Chapter 7, we propose robust TOA-based localization strategies to
locate a target node in quasi-synchronous and fully asynchronous networks, re-
spectively. Time-based localization is tightly coupled with clock synchronization.
Thus, we explicitly take the clock parameters into account in our data model,
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and further we consider the reliability of timestamps. A novel ranging protocol is
developed, namely asymmetric trip ranging (ATR), to reduce the communication
load and explore the broadcast property of WSNs. Regardless of the reliability
of the timestamp report from the target node, several closed-form least-squares
(LS) estimators are derived. As a result, we counter the uncertainties caused
by the target node by ignoring the timestamps from this node. Since we have
already developed approaches to linearize the measurement models in the pre-
vious chapters, a Kalman filter (KF) based tracking approach follows naturally
in Chapter 8 to track a target node in quasi-synchronous networks. We again
employ the ATR protocol, and inherit the linearization methods from the previ-
ous chapters to derive a linear measurement model from the TOA measurements.
Thus, the proposed KF has the advantages of a zero modeling error and a low
computational complexity compared to the extended KF.
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CHAPTER 5

Extending the Classical MDS

5.1 Introduction

Node localization from pairwise Euclidean distance measurements has become a
fundamental research topic with the growing interest in wireless sensor networks
[2]. The classical MDS algorithm [106] transforms the problem into an eigenvalue
problem of a so-called projected distance matrix which solely depends on the
distances. This matrix has rank two (for a planar geometry) and its first two
eigenvectors provide the coordinates of all nodes up to a translation, rotation,
and reflection [107–111]. Applying the MDS algorithm requires a fully connected
sensor network, i.e., given a sensor network with N nodes, we need N(N − 1)/2
distance measurements.

However, in practice, only a limited number of distance measurements are
given due to communication limits imposed on the nodes (e.g., battery con-
straints). For simplicity, assume we have an ad-hoc sensor network with N nodes
where the positions of all the nodes are unknown. Only M nodes (in practice,
M ≪ N) in the network can communicate with all the other nodes. Such nodes
can be anchor nodes which usually have less stringent communication constraints.
We assume that the other nodes N − M cannot communicate with each other
due to communication limits, but communicate with the first nodes. One pos-
sible solution to this setup is the “scaling by majorizing a complicated function”
(SMACOF) algorithm, which is based on iteratively minimizing a global stress

The results in this chapter appeared in [105]. This is a joint work with Dr. A. Amar. My
main contribution is to develop Projection Type B and its corresponding localization approach,
and further to accomplish all the simulations.
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cost function [107, 112] composed of a weighted least squares (LS) part and pos-
sibly a penalty term that includes prior information about node positions. This
approach involves a highly nonlinear cost function which requires many initial
guesses of the node positions to ensure convergence to the global minimum. As a
result, suboptimal solutions have been investigated, which can possibly be used
as an initial point of this algorithm. Examples are MDS-MAP [110], and SVD-
Reconstruct [113], which both are based on first completing the missing entries
in the distance matrix and then applying the classical MDS, or Nyström’s al-
gorithm [114] which is used to reduce the complexity of the singular value decom-
position step involved in the classical MDS algorithm. With Nyström’s algorithm
the positions of the first group are estimated using the classical MDS method,
while the positions of the second group are estimated using the LS method based
on the former results and the mutual measurements between the two groups [10,
eqs. (8)-(9)].

Herein, we develop a localization approach which extends the classical MDS
to the current setup. We localize the nodes of the first group by exploiting their
distance measurements to the disconnected nodes. At the same time, the second
group’s positions are obtained up to a translation relative to the former nodes.
If recovering this translation is also of interest, then a possible additional step
can be implemented. We examine our results with Monte-Carlo simulations by
evaluating the normalized root mean square error (RMSE) between the true inter-
node distances and their estimates. We compare our two-step approach with the
MDS-MAP [110], the SVD-Reconstruct [113], and Nyström’s algorithm [114].
Simulation results show that our proposed approach outperforms these previous
solutions.

5.2 Problem formulation

Consider N sensor nodes randomly distributed in a two-dimensional plane. Let
X = [x1,x2, . . . ,xN ] ∈ R2×N consist of all the node positions, where xn ∈ R2×1,
n = 1, 2, ..., N , is the position of the nth node. We assume that we have two
groups of nodes: 1) M nodes which are fully connected; 2) N − M nodes which
are fully disconnected (i.e., each of the nodes in the second group does not com-
municate with the other nodes in this group, but communicates with each node in
the first group.) Let X1 = [x1,x2, · · · ,xM ] ∈ R2×M and X2 = [xM+1, . . . ,xN ] ∈
R2×(N−M) represent the set of node positions of the first group and the second
group, respectively. The distance measurement between the ith and jth nodes
(given they are connected) is ri,j = di,j + ei,j , where di,j = ‖xi − xj‖, and
ei,j ∼ N (0, σ2) is the uncorrelated additive noise, where σ2 is a known noise
variance. The problem discussed herein is briefly stated as follows: Given the
available pairwise measurements {ri,j}, determine the positions of the nodes (up
to rotation, reflection and translation). In other words, our goal is to reconstruct
the constellation of the sensor network given partial pairwise node measurements.
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5.3 Review of the classical MDS

Let us first review the classical MDS [112] in the noiseless case. For a fully
connected network, we collect all the true distances in D, where [D]i,j = [D]j,i =
di,j . By expanding d2

i,j = ‖xi − xj‖2 = ‖xi‖2 + ‖xj‖2 − 2xT
i xj , we can model D

as

D ⊙ D = ψ1T
N − 2XTX + 1Nψ

T , (5.1)

where ψ =
[
‖x1‖2, . . . , ‖xN‖2

]
, and 1n ∈ Rn×1 is a vector with all elements

equal to one. Based on (5.1), we would like to estimate X. We employ an
orthogonal projection P onto the orthogonal complement of 1N , which is given by
P = IN − 1

N 1N1T
N . Since P1N = 0N , P can be used to eliminate the terms ψ1T

N

and 1Nψ
T at the right hand side of (5.1). Therefore, pre- and post- multiplying

P to both sides of (5.1), we obtain

P(D ⊙ D)P = −2PXTXP, (5.2)

where PX is a shifted version of X, and the gravity of PX is in the origin. Note
that PX is a N × 2 “tall” matrix, which can be recovered up to a rotation and
reflection. Then, we can recover X up to a translation, rotation and reflection by
the eigenvalue decomposition of − 1

2P(D ⊙ D)P, and we achieve

X = diag(λ
1/2
1 , λ

1/2
2 )[U]T:,1:2, (5.3)

where − 1
2P(D ⊙ D)P = Udiag(λ1, . . . , λN )UT is the eigenvalue decomposition

of − 1
2P(D ⊙ D)P with U collecting the eigenvectors and λi the ith eigenvalue.

5.4 Possible position projections

As the classical MDS requires a fully connected network, it cannot be directly
applied to our partially connected network in Section 5.2. Thus, we tailor it for
our problem. Let us again consider the noiseless case (ri,j = di,j). The available
squared distance measurements can then be modeled in a matrix form as

(R ⊙ R) ⊙ W =
(
ψ1T

N − 2XTX + 1Nψ
T
)
⊙ W

= Wdiag(ψ) − 2XTX ⊙ W + diag(ψ)W (5.4)

with [R]i,j = [R]j,i = ri,j , and W ∈ RN×N is the symmetric communication
connectivity matrix of the network, where its (i, j)th element equal to one if the
ith node and the jth node communicate with each other, and equal to zero if
they do not communicate with each other. The elements on the diagonal of this
matrix are arbitrary. The positions of the nodes directly appear in the second
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term of (5.4). The idea is therefore to omit the first and the last terms in (5.4)
while keeping the second term. We omit these two terms by pre- and post-
multiplying (5.4) by an orthogonal projection matrix Pw ∈ RN×N such that
PwW = WPw = 0. This operation can be considered as an extension of the
classical MDS. We assume that the structure of W is

W =

[
1M1T

M 1M1T
N−M

1N−M1T
M Λ

]
(5.5)

where Λ = diag(λ1, λ1, . . . , λN−M ). Given {λj}N−M
j=1 we determine Pw. Let

W̃ be the matrix containing a basis for the column span of W. Then Pw =

IN − W̃
(
W̃T W̃

)−1

W̃T . We discuss two possible types of W̃, and present

the effect of each projection on the node positions. We emphasize that in the
proposed localization approach these projections are not directly applied to the
positions. Still, the purpose is to give an intuition for choosing these projections
by presenting their effect on the positions of the nodes.

5.4.1 Projection type A

Assume Λ = 0N−M0T
N−M , where 0n ∈ Rn×1 is a vector with all elements equal

to zero. Then W̃(A) and its associated orthogonal projection matrix P
(A)
w are

W̃(A) =

[
1M 1M

1N−M 0N−M

]
∈ RN×2 (5.6)

P(A)
w =

[
IM − 1

M 1M1T
M 0M0T

N−M

0N−M0T
M IN−M − 1

N−M 1N−M1T
N−M

]
(5.7)

The projected node positions are P
(A)
w XT =

[
X̃T

1 X̃T
2

]T
where

X̃1 = X1 − x
(c)
1 1T

M (5.8)

X̃2 = X2 − x
(c)
2 1T

N−M (5.9)

with x
(c)
1 = 1

M

∑M
j=1 xj and x

(c)
2 = 1

N−M

∑N
j=M+1 xj the centers of gravity of

the first and second node group, respectively. The advantage of this projection
is that it decouples the two groups, but the disadvantage is that both groups are
translated to the origin. To obtain the relative distance between the centers of
gravity of the two groups we need the following projection.
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5.4.2 Projection type B

Assume Λ = (N−M)IN−M . Then W̃(B) and its associated orthogonal projection

matrix P
(B)
w are

W̃(B) =

[
1M1T

N−M

Λ

]
∈ RN×(N−M) (5.10)

P(A)
w =

[
IM − 1

N 1M1T
M − 1

N 1M1T
N−M

− 1
N 1N−M1T

M
M

(N−M)N 1N−M1T
N−M

]
(5.11)

The projected node positions are

P(B)
w XT =

[
IM q1

0N−M0T
M −q2

] [
X̃T

1

uT

]
(5.12)

where the relative distance vector between the centers of gravity of the two groups
is defined as

u = x
(c)
1 − x

(c)
2 (5.13)

and q1 = N−M
N 1M , q2 = M

N 1N−M . The advantage of using this projection is that
it retains the relative translation between the centers of gravity of the two groups,
while the disadvantage is that all the nodes of the second group are translated to
the same position.

5.5 The proposed localization approach

The idea of reconstructing the configuration of the sensor network is as follows: use

P
(A)
w to estimate X̃1, and X̃2. If one is also interested in the relative translation

vector u, then first use P
(B)
w to estimate u (given the estimate of X̃1), and then

update the estimate of X̃2 by X̃′
2 = X̃2 + u. We now discuss each of these steps

in detail.

5.5.1 The result of using projection P(A)
w

By post- and pre- multiplying the left hand side of (5.4) by 1√
2
P

(A)
w we achieve a

measurement matrix B, which is defined as

B
∆
=

[
B11 B12

BT
12 B22

]
= −1

2
P(A)

w ((R ⊙ R) ⊙ W)P(A)
w . (5.14)
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Meanwhile, by post- and pre- multiplying the right hand side of (5.4) by 1√
2
P

(A)
w ,

and making use of P
(A)
w W = WP

(A)
w = 0, we arrive at

P(A)
w (XT X⊙ W)P(A)

w =

[
X̃T

1 X̃1 X̃T
1 X̃2

X̃T
2 X̃1 0N−M0T

N−M

]
(5.15)

As a result, in the noiseless case, we can model B as

[
B11 B12

BT
12 B22

]
=

[
X̃T

1 X̃1 X̃T
1 X̃2

X̃T
2 X̃1 0N−M0T

N−M

]
(5.16)

Due to the noise, we recover X̃1, X̃2 (up to rotation, reflection and translation)

as [ ˆ̃X1,
ˆ̃X2] = argmin[X̃1,X̃2]

J(X̃1, X̃2) where

J(X) =
∥∥∥B− P(A)

w (XTX ⊙ W)P(A)
w

∥∥∥
2

F

=
∥∥∥B11 − X̃T

1 X̃1

∥∥∥
2

F
+ 2

∥∥∥B12 − X̃T
1 X̃2

∥∥∥
2

F
(5.17)

It is clear that X̃2 which minimizes (5.17) is

ˆ̃X2 =
(
X̃1X̃

T
1

)−1

X̃1B12 (5.18)

Substituting (5.18) into (5.17) yields

J(X̃1) =
∥∥∥B11 − X̃T

1 X̃1

∥∥∥
2

F
+ 2

∥∥∥∥B12 − X̃T
1

(
X̃1X̃

T
1

)−1

X̃1B12

∥∥∥∥
2

F

(5.19)

= tr
(
BT

11B11 + 2BT
12B12 − 2B11X̃

T
1 X̃1

+X̃T
1 X̃1X̃

T
1 X̃1 − 2BT

12X̃
T
1

(
X̃1X̃

T
1

)−1

X̃1B12

)

By taking the derivative with respect to (w.r.t.) X̃T
1 we obtain that

∂J(X̃1)

∂X̃T
1

= −B11X̃
T
1 + X̃T

1 X̃1X̃
T
1 + X̃T

1

(
X̃1X̃

T
1

)−1

X̃1B12B
T
12X̃

T
1

(
X̃1X̃

T
1

)−1

−B12B
T
12X̃

T
1

(
X̃1X̃

T
1

)−1

(5.20)

Since no closed-form expression for ˆ̃X1 that zeros (5.20) exists, we estimate it as

detailed in Algorithm . The final estimate is denoted by ˆ̃X1. After obtaining ˆ̃X1,

we substitute the result in (5.18) and obtain ˆ̃X2.
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Algorithm Estimating the positions of the fully connected nodes

• Initial step1: Construct B according to (5.14).

• Initial step2: ˆ̃X
(MDS)
1 = Φ1/2CT , where Φ ∈ R2×2, C ∈ RM×2 contain

the two largest eigenvalues of B11, and their two associated orthonormal
eigenvectors, respectively.

• Updating step: Given ˆ̃X
(MDS)
1 determine ˆ̃X1 as follows:

1. Let ˆ̃X
(k)
1 be the value of ˆ̃X1 at the kth iteration step.

2. Calculate the gradient G(k) = ∂J(X̃1)

∂X̃T
1

∣∣∣ ˆ̃
X1= ˆ̃

X
(k)
1

according to (5.20).

3. Update the step size, µ(k), as µ(k) = argminµ J
(

ˆ̃X
(k)
1 − µG(k)

)
using

(5.19).

4. Update the estimate, ˆ̃X
(k+1)
1 = ˆ̃X

(k)
1 − µ(k)G(k).

5. if
∣∣∣J
(

ˆ̃X
(k+1)
1

)
− J

(
ˆ̃X

(k)
1

)∣∣∣ < ǫ where ǫ is a predefined tolerance, then

ˆ̃X1 = ˆ̃X
(k+1)
1 , else perform steps 1-4.

5.5.2 The result of using projection P(B)
w

Given the estimated positions of the previous step, we are interested in estimat-
ing the relative distance vector between the two groups in order to reconstruct
the complete network configuration. Similarly as in the previous subsection, by

post- and pre- multiplying the left hand side of (5.4) by 1√
2
P

(B)
w , we obtain a

measurement matrix F, which is defined as

F =

[
F11 F12

FT
12 F22

]
= −1

2
P(B)

w ((R ⊙ R) ⊙ W)P(B)
w (5.21)

At the same time, by post- and pre- multiplying the right hand side of (5.4) by
1√
2
P

(B)
w , we arrive at

P(B)
w (XT X⊙ W)P(B)

w =

[
X̃T

1 X̃1 + q1u
T X̃1 + X̃T

1 uqT
1 −X̃T

1 uqT
2

−q2u
T X̃1 0N−M0T

N−M

]

+γqqT (5.22)

where q =
[

qT
1 −qT

2

]T
, γ = ‖u‖2 + η2, and η2 = 1

N−M

∑N
j=m+1 ‖xj‖2 −∥∥∥x(c)

2

∥∥∥
2

. Note that η2 describes the scattering radius around the center of gravity
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of the positions of the nodes in the second group. Then in the noiseless case, F
can be modeled as
[

F11 F12

FT
12 F22

]
=

[
X̃T

1 X̃1 + q1u
T X̃1 + X̃T

1 uqT
1 −X̃T

1 uqT
2

−q2u
T X̃1 0N−M0T

N−M

]
+ γqqT

(5.23)

We are interested in estimating the relative distance u given the translated posi-
tions of the first group X̃1, and consider γ as a nuisance parameter. Due to the
noise, we estimate u by minimizing

H(u, γ) =
∥∥∥F11 −

(
X̃T

1 X̃1 + q1u
T X̃1 + X̃T

1 uqT
1 + γq1q

T
1

)∥∥∥
2

F

+2
∥∥∥F12 −

(
X̃T

1 uqT
2 − γq1q

T
2

)∥∥∥
2

F
+
∥∥F22 − γq2q

T
2

∥∥2

F
(5.24)

By taking the derivative w.r.t. u and equating the result to zero, and using the
fact that N−M

N 1T
MX̃T

1 u = 0 (since the center of gravity of X̃1 is in the origin), we
get that the estimated relative distance vector is

û =
(
X̃1X̃

T
1

)−1

X̃1

(
1

M
F111M − 1

N − M
F121N−M

)
(5.25)

Note that û does not depend on the estimate of the nuisance parameter γ, and

we therefore do not proceed in estimating it. We now substitute ˆ̃X1 (obtained

in the first step) instead of X̃1 in (5.25). We then update ˆ̃X (obtained in the

first step) by ˆ̃X′
2 = ˆ̃X2 + û1T

N−M . Finally, X̂ =
[

ˆ̃X1
ˆ̃X′

2

]
∈ R2×N contains

the estimated node positions up to rotation, reflection, and translation w.r.t. the
original configuration (which can be corrected using anchors in the network).

5.6 Simulation results

We compare our proposed algorithm with the MDS-MAP method [110], the SVD-
Reconstruct method [113] (where each missing entry is replaced by zero since it
is the optimal choice as indicated in [113]), and with Nyström’s method [114].
We also show some results for the SMACOF algorithm [112, pp. 150-157], one
for a random initial point and one for an improved initial point (our proposed
method). We consider a square area of 100 × 100 [m × m], and N = 100 nodes
randomly positioned. The tolerance of the iterative search in the first estimation
step is ǫ = 0.005.

In the first simulation, we consider the cases of M = 10, M = 50 and M = 90.
For each case we varied the noise variance from σ2 = 0.2 to σ2 = 5. For
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each noise variance we consider K = 50 configuration realizations, and for each
configuration we perform Nexp = 50 Monte-Carlo (MC) trials. Since all posi-

tions are unknown, we define the RMSE as ε̄ =
√

1
KNexp

∑KNexp

k=1 ε̄2
k[m], where

ε̄k =

√
1

Nd

∑N−1
i=1

∑N
j=i+1 wi,j

(
d̂i,j − di,j

)2

[m], with d̂i,j the estimated distance

between the connected nodes i and j at one configuration and one MC trial, and
Nd is the number of connections (in this case Nd = 1

2M (N − 1)). The results are
shown in Fig. 5.1. As can be seen, our proposed algorithm has the smallest RMSE,
compared to other MDS-like solutions. Both MDS-MAP and SVD-Reconstruct
have worse performance when the number of connections is small (M = 10), how-
ever, when the number of the connections is large (M = 90), MDS-MAP has a sim-
ilar performance as the proposed algorithm and the Nyström’s method. From the
results, we observe that a good initial point for the SMACOF algorithm is crucial
and it is clear that the better the initial point, the faster the convergence of SMA-
COF. That is why our method is preferred over other MDS-like solutions if an ini-
tial point for SMACOF is sought for. In Fig. 5.2 (left plot) we compare the RMSE

of ˆ̃X1 with that of the initial estimate ˆ̃X
(MDS)
1 (in this case Nd = M(M − 1)/2),

and in Fig. 5.2 (right plot) we compare the RMSE of ˆ̃X′
2 of the proposed method

with that of Nyström’s method (in this case Nd = 1
2M (N − M)). For both cases

we assume that M = 10. As can be seen, when the noise variance increases, the

gap between the RMSEs of ˆ̃X1 and ˆ̃X
(MDS)
1 increases, and thus the iterative solu-

tion improves the RMSE of the initial estimate. The RMSE of ˆ̃X′
2 is also improved

w.r.t. the Nyström’s method. So, our algorithm outperforms this algorithm for
all values of σ2.

In the second simulation, we compare the RMSE versus M/N of our proposed
algorithm with the other methods. We varied M from 10 to 90 with a step of 5.
We assume that σ2 = 0.2[m2] . The results are shown in Fig. 5.3. As can be seen,
our algorithm outperforms the other MDS-like methods for all values of M/N .

5.7 Conclusions

We consider the problem of reconstructing the configuration of a sensor network
(up to rotation, reflection, and translation) from pairwise distance measurements
assuming the network is composed of two groups: one group contains nodes that
communicate with each other, and the second group contains nodes that do not
communicate with each other, and only communicate with each of the nodes in
the first group. The classical MDS algorithm cannot be applied in this case. Our
approach is based on performing two projections on the available set of distance
measurements. Simulations show that the proposed algorithm outperforms other
methods based on matrix completion techniques. Future work will focus on: 1)
examining other projections and their effect on the node positions; 2) analyzing
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Figure 5.1: RMSEs versus the noise variance for M = 10 (left), M = 50 (center), and
M = 90 (right).

the performance of the first step; 3) evaluating the complexity of the proposed
approach.
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Figure 5.2: RMSEs of the initial solution and the iterative solution of the first group
(left), and the RMSE of the second group using the proposed method and Nyström’s
method (right).
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CHAPTER 6

Reference-free Time-based Localization

6.1 Introduction

Closed-form localization solutions based on TOAs or TDOAs are used to locate
a target node with the help of anchors (nodes with known positions). They are
appreciated for real-time localization applications, initiating iterative localization
algorithms, and facilitating Kalman tracking [116]. They have much lower com-
plexity compared to the optimal maximum likelihood estimator (MLE), and also
do not require prior knowledge of noise statistics. However, a common feature of
existing closed-form localization solutions is reference dependency. The reference
here indicates the time associated with the reference anchor. For instance, in
order to measure TDOAs, a reference anchor has to be chosen first [9]. The refer-
ence anchor is also needed to cancel nuisance parameters in closed-form solutions
based on TOAs or TDOAs [117]. Thus, the localization performance depends
heavily on the reference selection. There are some efforts to improve the ref-
erence selection [87, 118, 119], but they mainly rely on heuristics. Furthermore,
when TOAs are measured using the one-way ranging protocol for calculating
the distance between the target and the anchor, stringent synchronization is re-
quired between these two nodes in the conventional methods [9, 11]. However,
it is difficult to maintain synchronization due to the clock inaccuracy and other
error sources. Therefore, various closed-form localization methods resort to us-
ing TDOA measurements to relax this synchronization constraint between the
target and the anchor. These methods only require synchronization among the
anchors, e.g., the source localization methods based on TDOAs using a passive

The results in this chapter appeared in [115]
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sensor array∗ [6, 120–123].
In this chapter, we also relax the above synchronization requirement, and con-

sider a scenario, where anchor nodes are synchronized, and the clock of the target
node runs freely. However, instead of using TDOAs, we model the asynchronous
effect as a common bias, and propose reference-free least-squares (LS), weighted
LS (WLS), and constrained WLS (CWLS) localization estimators based on TOA
measurements. Furthermore, we generalize existing reference-based localization
solutions using TOA or TDOA measurements, which are scattered over different
research areas, and provide new insights into their relations, which have been
overlooked. We clarify that the reference dependency for reference-based WLS
estimators using TOA measurements can be decoupled by the optimal weighting
matrix, which also makes all those estimators identical. However, the influence
of the reference selection for reference-based WLS estimators using a nonredund-
ant set of TDOA measurements cannot be compensated by the optimal weighting
matrix. But the optimal weighting matrix can make the estimators using the same
set equivalent as well. Moreover, the Cramér-Rao bounds (CRBs) are derived as
benchmarks for comparison.

The rest of this chapter is organized as follows. In Section 6.2, different kinds
of reference-free TOA-based estimators are proposed, as well as existing reference-
based estimators using TOA measurements. Their relations are thoroughly in-
vestigated. In Section 6.3, we generalize existing reference-based localization al-
gorithms using TDOA measurements, and shed light on their relations as well.
Simulation results and performance bounds are shown in Section 6.4. Conclusions
are drawn at the end of the chapter.

6.2 Localization based on TOA measurements

Considering M anchor nodes and one target node, we would like to estimate the
position of the target node. We recall Xa and x defined in Chapter III, which
indicate the known coordinates of the anchor nodes and the unknown coordinates
of the target node, respectively. Our method can also be extended for multiple
target nodes. We remark that in a large scale WSN, it is common to localize target
nodes in a sequential way [27]. Therefore, the multiple-anchors-one-target scenario
here is of practical interest. We can even consider a case with a moving anchor,
in which a ranging signal is periodically transmitted by the target node, and all
the positions where the moving anchor receives the ranging signal are viewed as
the fixed positions of some virtual anchors. We assume that all the anchors are
synchronized, and their clock skews are equal to 1, whereas the clock of the target
node runs freely. Furthermore, we assume that the target node transmits a ranging
signal, and all the anchors act as receivers. We remark that other systems may
share the same data model such as a passive sensor array for source localization
or a GPS system, where a GPS receiver locates itself by exploring the received

∗The sensor elements of a passive sensor array are equivalent to the anchor nodes here.
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ranging signals from several satellites [3]. All the satellites are synchronized to
an atomic clock, but the GPS receiver has a clock offset relative to the satellite
clock. Note that this is a stricter synchronization requirement than ours, as we
allow the clock of the target node to run freely. Every satellite sends a ranging
signal and a corresponding transmission time. The GPS receiver measures the
TOAs, and calculates the time-of-flight (TOF) plus an unknown offset. In this
section, TOA measurements are used, and TDOA measurements are employed in
the next section.

6.2.1 System model

In this section, all localization algorithms are based on TOA measurements. When
the target node transmits a ranging signal, all the anchors receive it and record
a timestamp upon the arrival of the ranging signal independently. We define a
vector u of length M to collect all the distances corresponding to the timestamps,
which is given by u = [u1, u2, . . . , uM ]T . We employ b to denote the distance
corresponding to the true target node transmission instant, which is unknown.
We remark that if we consider a GPS system, then u collects the distances cor-
responding to the biased TOFs calculated by the GPS receiver, and b indicates
the distance bias corresponding to the unknown clock offset of the GPS receiver
relative to the satellite. Consequently, the TOA measurements can be modeled
as

u− b1M = d + n, (6.1)

where d = [d1, d2, . . . , dM ]T , with di = ‖xi − x‖ the true distance between
the ith anchor node and the target node, and n = [n1, n2, . . . , nM ]T with ni

the distance error term corresponding to the TOA measurement error at the ith
anchor, which can be modeled as a random variable with zero mean and variance
σ2

i , and which is independent of the other terms (E[ninj] = 0, i 6= j). We remark
that instead of using TDOAs to directly get rid of the distance bias, we use TOAs
and take the bias into account in the system model.

6.2.2 Localization Based on Squared TOA Measurements

Proposed localization algorithms

Note that (6.1) is a nonlinear equation with respect to (w.r.t.) x. To solve
it, a maximum likelihood estimator (MLE) can be derived, which is optimal in
the sense that for a large number of data it is unbiased and approaches the
CRB. However, the MLE has a high computational complexity, and also requires
the unknown noise statistics. Therefore, low-complexity solutions are of great
interest for localization. From ‖xi − x‖2 = ‖xi‖2 − 2xT

i x + ‖x‖2, we derive
that d ⊙ d = ψa − 2XT

a x + ‖x‖21M , where ψa = [‖x1‖2, ‖x2‖2, . . . , ‖xM‖2]T .
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Element-wise multiplication at both sides of (6.1) is carried out, which leads to

u⊙ u − 2bu + b21M = ψa − 2XT
a x + ‖x‖21M + 2d⊙ n + n⊙ n. (6.2)

Moving knowns to one side and unknowns to the other side, we achieve

ψa − u ⊙ u = 2XT
a x − 2bu + (b2 − ‖x‖2)1M + m, (6.3)

where m = −(2d⊙ n + n⊙ n). The stochastic properties of m are as follows

E[[m]i] = −σ2
i ≈ 0, (6.4)

[Σ]i,j = E[[m]i[m]j ] − E[[m]i]E[[m]j ]

= E[(2dini + n2
i )(2djnj + n2

j)] − σ2
i σ2

j

= 4didjE[ninj ] + E[n2
i n

2
j ] − σ2

i σ2
j

=

{
4d2

i σ
2
i + 2σ4

i ≈ 4d2
i σ

2
i , i = j

0, i 6= j
, (6.5)

where we ignore the higher order noise terms to obtain (6.5) and assume that
the noise mean E[[m]i] ≈ 0 under the condition of sufficiently small measurement
errors. Note that the noise covariance matrix Σ depends on the unknown d.

Defining φ = ψa−u⊙u, y = [xT , b, b2−‖x‖2]T , and A = [2XT
a , −2u, 1M ],

we can finally rewrite (6.3) as

φ = Ay + m. (6.6)

Ignoring the parameter relations in y, an unconstrained LS and WLS estimate of
y can be computed respectively given by

ŷ = (AT A)−1ATφ, (6.7)

and

ŷ = (AT WA)−1ATWφ, (6.8)

where W is a weighting matrix of size M × M . Note that M ≥ l + 2 is required
in (6.7) and (6.8), which indicates that we need at least four anchors to estimate
the target position on a plane. The optimal W is W∗ = Σ−1, which depends on
the unknown d as we mentioned before. Thus, we can update it iteratively, and
the resulting iterative WLS can be summarized as follows:

1. Initialize W using the estimate of d based on the LS estimate of x;

2. Estimate ŷ using (6.8);

3. Update W = Σ̂
−1

, where Σ̂ is computed using ŷ;
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4. Repeat Steps 2) and 3) until a stopping criterion is satisfied.

The typical stopping criteria are discussed in [124]. We stop the iterations when
‖ŷ(k+1)− ŷ(k)‖ ≤ ǫ, where ŷ(k) is the estimate of the kth iteration and ǫ is a given
threshold [125]. An estimate of x is finally given by

x̂ = [Il 0l×2]ŷ. (6.9)

To accurately estimate y, we can further explore the relations among the
parameters in y. A constrained weighted LS (CWLS) estimator is obtained as

ŷ = argmin
ŷ

(φ− Ay)T W(φ− Ay) (6.10)

subject to

yT Jy + ρTy = 0, (6.11)

where ρ = [0T
l+1 1]T and

J =




Il 0l 0
0T

l −1 0
0T

l 0 0


 . (6.12)

Solving the CWLS problem is equivalent to minimizing the Lagrangian [6, 11]

L(y, λ) = (φ− Ay)T W(φ− Ay) + λ(yT Jy + ρT y), (6.13)

where λ is a Lagrangian multiplier. A minimum point for (6.13) is given by

ŷ = (AT WA + λJ)−1(AT Wφ− λ

2
ρ), (6.14)

where λ is determined by plugging (6.14) into the following equation

ŷT Jŷ + ρT ŷ = 0. (6.15)

We could find all the seven roots of (6.15) as in [6, 11], or employ a bisection
algorithm as in [126] to look for λ instead of finding all the roots. If we obtain
seven roots as in [6, 11], we discard the complex roots, and plug the real roots
into (6.14). Finally, we choose the estimate ŷ, which fulfills (6.10). The details
of solving (6.15) are mentioned in Appendix 6.A. Note that the proposed CWLS
estimator (6.14) is different from the estimators in [6,11]. The CLS estimator in [6]
is based on TDOA measurements, and the CWLS estimator in [11] is based on
TOA measurements for a synchronous target (b = 0). Furthermore, we remark
that the WLS estimator proposed in [127] based on the same data model as
(6.1), is labeled as an extension of Bancroft’s algorithm [128], which is actually
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similar to the spherical-intersection (SX) method proposed in [129] for TDOA
measurements. It first solves a quadratic equation in b2−‖x‖2, and then estimates
x and b via a WLS estimator. However, it fails to provide a solution for the
quadratic equation under certain circumstances, and performs unsatisfactorily
when the target node is far away from the anchors [129].

Many research works have focused on LS solutions ignoring the constraint
(6.11) in order to obtain low-complexity closed-form estimates [9]. As squared
range (SR) measurements are employed, we call them unconstrained squared-
range-based LS (USR-LS) approaches, to be consistent with [126]. Because only
x is of interest, b and b2 −‖x‖2 are nuisance parameters. Different methods have
been proposed to get rid of them instead of estimating them. A common charac-
teristic of all these methods is that they have to choose a reference anchor first,
and thus we label them reference-based USR-LS (REFB-USR-LS) approaches. As
a result, the performance of these REFB-USR-LS methods depends on the refer-
ence selection [9]. However, note that the unconstrained LS estimate of y in (6.7)
does not depend on the reference selection. Thus, we call (6.7) the reference-free
USR-LS (REFF-USR-LS) estimate, (6.8) the REFF-USR-WLS, and (6.14) the
REFF-SR-CWLS estimate.

Moreover, we propose the subspace minimization (SM) method [123] to achieve
a REFF-USR-LS estimate of x alone, which is identical to x̂ in (6.7), but shows
more insight into the links among different estimators. Treating b and b2−‖x‖2 as
nuisance parameters, we try to get rid of them by orthogonal projections instead
of random reference selection. We first use an orthogonal projection P = IM −
1
M 1M1T

M of size M × M onto the orthogonal complement of 1M to eliminate
(b2 − ‖x‖2)1M . Sequentially, we employ a second orthogonal projection Pu of
size M × M onto the orthogonal complement of Pu to cancel −2bPu, which is
given by

Pu = IM − PuuT P

uTPu
. (6.16)

Thus, premultiplying (6.3) with PuP, we obtain

PuPφ = 2PuPXT
a x + PuPm, (6.17)

which is linear w.r.t. x. The price paid for applying these two projections is
the loss of information. The rank of PuP is M − 2, which means that M ≥
l + 2 still has to be fulfilled as before to obtain an unconstrained LS or WLS
estimate of x based on (6.17). In a different way, PuP can be achieved directly by
calculating an orthogonal projection onto the orthogonal complement of [1M ,u].
Let us define the nullspace N (UT ) = span(1M ,u), and R(U) ⊕ N (UT ) = R

M ,
where R(U) is the column space of U, ⊕ denotes the direct sum of two linearly
independent subspaces and R

M is the M -dimensional vector space. Therefore,
PuP is the projection onto R(U). Note that the rank of PuPXT

a has to be



6.2. Localization based on TOA measurements 117

equal to l, which indicates that the anchors should not be co-linear for both 2-D
and 3-D or co-planar for 3-D. A special case occurs when u = k1M , where k is
any positive real number. In this case, P can cancel out both (b2 − ‖x‖2)1M

and −2bu, and one projection is enough, leading to the condition M ≥ l + 1.
The drawback though is that we can then only estimate x and b2 − ‖x‖2 − 2bk
due to the dependence between u and 1M according to (6.3). The SM method
indicates all the insights mentioned above, which cannot be easily observed by
the unconstrained estimators.

Based on (6.17), the LS and WLS estimate of x is respectively given by,

x̂ =
1

2
(XaPPuPXT

a )−1XaPPuPφ, (6.18)

and

x̂ =
1

2
(XaQXT

a )−1XaQφ, (6.19)

where Q is an aggregate weighting matrix of size M ×M . The optimal Q is given
by

Q∗ = PPu(PuPΣPPu)†PuP (6.20)

= (PuPΣPPu)†, (6.21)

where the pseudo-inverse (†) is employed, because the argument is rank deficient.
Note that PuP is the projection onto R(U), and is applied to both sides of Σ.
Thus, (PuPΣPPu)† is still in R(U), and would not change with applying the
projection again. As a result, we can simplify (6.20) as (6.21). Consequently, Q∗

is the pseudo-inverse of the matrix obtained by projecting the columns and rows
of Σ onto R(U), which is of rank M −2. We remark that x̂ in (6.18) (or (6.19)) is
identical to the one in (6.7) (or (6.8)) according to [123]. The SM method and the
unconstrained LS (or WLS) method lead to the same result. Therefore, x̂ in (6.18)
and (6.7) (or in (6.19) and (6.8)) are all REFF-USR-LS (or REFF-USR-WLS)
estimates.

Revisiting existing localization algorithms

As we mentioned before, all the REFB-USR-LS methods suffer from a poor
reference selection. There are some efforts to improve the reference selection
[87,118,119]. In [118], the operation employed to cancel ‖x‖21M is equivalent to
the orthogonal projection P. All anchors are chosen as a reference once in [119]
in order to obtain M(M − 1)/2 equations in total. A reference anchor is chosen
based on the criterion of the shortest anchor-target distance measurement in [87].
However, reference-free methods are better than these heuristic reference-based
methods in the sense that they cancel nuisance parameters in a systematic way.
To clarify the relations between the REFB-USR and the REFF-USR approaches,
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we generalize the reference selection of all the reference-based methods as a lin-
ear transformation, which is used to cancel nuisance parameters, similarly as an
orthogonal projection. To eliminate (b2 − ‖x‖2)1M , the ith anchor is chosen as a
reference to make differences. As a result, the corresponding linear transformation
Ti of size (M−1)×M can be obtained by inserting the column vector −1M−1 after
the (i − 1)th column of IM−1, which fulfills Ti1M = 0M−1, i ∈ {1, . . . , M}. For
example, if the first anchor is chosen as a reference, then T1 = [−1M−1, IM−1].
Furthermore, we can write Tid = Ti1d − di1M−1, where Ti1 is achieved by re-
placing the ith column of Ti with the column vector 0M−1. Applying Ti to both
sides of (6.3), we arrive at

Tiφ = 2TiX
T
a x − 2bTiu + Tim. (6.22)

Sequentially, we investigate the second linear transformation Mj of size (M −2)×
(M − 1), which fulfills MjTiu = 0M−2, j ∈ {1, . . . , M} and j 6= i. As a result,
the nullspace N (MjTi) = span(1M ,u) = N (UT ), and R(TT

i MT
j ) = R(U). Note

that b = 0 in [9,87,118,119,123,126], which means that there is no need to apply
Mj in these works. But the double differencing method in [117] is equivalent to
employing Mj , and thus the results of [117] can be used to design Mj . Let us first
define a matrix T̄j1 of size (M − 2)× (M − 1) similarly as Ti1 using the column
vector 0M−2 instead of 0M−1. When the jth anchor is chosen as a reference and
j < i, Mj can be obtained by inserting the column vector −(1/(uj − ui))1M−2

after the (j − 1)th column of the matrix diag(T̄j1(1M−1 ⊘ (Tiu))), where ⊘
is element-wise division. If j > i, then Mj can be obtained by inserting the
column vector −(1/(uj − ui))1M−2 after the (j − 2)th column of the matrix
diag(T̄(j−1)1(1M−1 ⊘ (Tiu))). For example, if the first anchor is chosen to cancel
out (b2 − ‖x‖2)1M (T1 is used), and the second anchor is chosen to eliminate
T1u, then M2 is given by

M2 =




−1/(u2 − u1) 1/(u3 − u1)
−1/(u2 − u1) 1/(u4 − u1)

...
. . .

−1/(u2 − u1) 1/(uM − u1)


 .

(6.23)

Premultiplying MjTi to both sides of (6.3), we achieve

MjTiφ = 2MjTiX
T
a x + MjTim. (6.24)

Consequently, the general form of the REFB-USR-LS and the REFB-USR-WLS
estimates are derived in the same way as (6.18) and (6.19) by replacing PPuP and
Q with TT

i MT
j MjTi and Qi,j , respectively. We do not repeat these equations

for the sake of brevity. Note that Qi,j is an aggregate weighting matrix of size
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M × M . The optimal Qi,j is given by

Q∗
i,j = TT

i MT
j (MjTiΣTT

i MT
j )−1MjTi (6.25)

=
[
(MjTi)

†MjTiΣTT
i MT

j (TT
i MT

j )†
]†

, (6.26)

where (MjTi)
†MjTi = TT

i MT
j (TT

i MT
j )† = TT

i MT
j (MjTiT

T
i MT

j )−1MjTi, which
is also the projection onto R(U), and thus is equivalent to PuP. The equality
between (6.25) and (6.26) can be verified using a property of the pseudo-inverse†.
Hence, Q∗

i,j is of rank M − 2, and Q∗
i,j = Q∗, i, j ∈ {1, . . . , M} with i 6= j. As

a result, the REFB-USR-WLS estimate and the REFF-USR-WLS estimate are
identical if the optimal weighting matrix is used. Hence, the optimal weighting
matrix can compensate the impact of random reference selection. However, since
Σ depends on the unknown d, the optimal weighting matrix can only be approx-
imated iteratively. Also note that the REFB-USR-LS estimate suffers from the
ad-hoc reference selection, while the REFF-USR-LS estimate is independent of
the reference selection.

6.2.3 Localization Based on Squared Differences of TOA
measurements

Proposed localization algorithms

Let us recall (6.1) here, i.e.,

u− b1M = d + n. (6.27)

In general, b is regarded as a nuisance parameter. Instead of first carrying out
element-wise multiplication at both sides of (6.27), we can also try to get rid of
b before element-wise multiplication. By choosing a reference anchor, and then
subtracting the TOAs of other anchors from the TOA of the reference anchor [9],
M − 1 TDOAs are obtained and b is canceled out. Note that these TDOAs are
achieved differently from the TDOAs obtained directly by cross-correlating the
received signals from different anchors. The obvious drawback of this conventional
scheme is again the reference dependency. On the other hand, since b is a common
term in (6.1), we can again apply P to eliminate −b1M instead of randomly
choosing a reference anchor. Then we arrive at

Pu = Pd + Pn. (6.28)

Note that Pu = u − ū1M , where ū is the average TOA. Thus, Pu represents
the differences between the anchor TOAs and the average TOA. Moreover, Pd =
d− d̄1M , where d̄ = 1

M

∑M
i=1 di is the unknown average of the distances between

†Given the matrix C of size n × r and the matrix D of size r × m both of rank r, then if
A = CD, it holds that A† = D†C† [130].
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the target node and the anchors, and Pn = n − n̄1M , where n̄ = 1
M

∑M
i=1 ni.

Thus, (6.28) can be rewritten as

Pu + (d̄ + n̄)1M = d + n, (6.29)

By making element-wise multiplication of (6.29) and re-arranging all the terms,
we achieve

ψa − (Pu) ⊙ (Pu)

= 2XT
a x + 2d̄Pu + (d̄2 − ‖x‖2)1M + m + n̄21M + 2n̄(d̄1M + Pu),(6.30)

where ψa = [‖x1‖2, ‖x2‖2, . . . , ‖xM‖2]T and m = −(2d ⊙ n + n ⊙ n) as before.
Using the SM method to obtain an unconstrained LS estimate of x alone, we
employ again two projections P and Pu, and arrive at

PuP(ψa − (Pu) ⊙ (Pu)) = 2PuPXT
a x + PuPm, (6.31)

the right hand side of which is exactly the same as the one in (6.17), and thus we
can state PuP(ψa−(Pu)⊙(Pu)) = PuPφ. Note that although (6.30) is different
from (6.3), we find that (6.31) and (6.17) become equivalent after premultiplying
PuP. Furthermore, (Pu) ⊙ (Pu) can be labeled as a squared range difference
(SRD) term. As a result, the unconstrained LS and WLS estimate of x based on
(6.31), which are named the reference-free USRD-LS (REFF-USRD-LS) estimate
and the REFF-USRD-WLS estimate, are exactly the same as the REFF-USR-LS
estimate (6.18) and the REFF-USR-WLS estimate (6.19), respectively. We do
not repeat them here in the interest of brevity. Moreover, the constrained LS and
WLS based on (6.30), namely the REFF-SRD-CLS estimate and the REFF-SRD-
CWLS estimate, are identical to the REFF-SR-CLS and the REFF-SR-CWLS
estimate (6.14) as well.

Revisiting existing localization algorithms

Existing methods choose a reference anchor to obtain range differences, and fur-
ther investigate low-complexity closed-form LS or WLS solutions. Thus, we call
them reference-based USRD-LS (REFB-USRD-LS) and REFB-USRD-WLS ap-
proaches. To expose interesting links among the different reference-based or
reference-free squared-range-based or squared-range-difference-based approaches,
we generalize the conventional REFB-USRD-LS and REFB-USRD-WLS approaches
[9] in the same way as in Section 6.2.2. The reference selection can be general-
ized by a linear transformation similarly as in Section 6.2.2. In order to elim-
inate −b1M in (6.27), the ith anchor is chosen as a reference, thus Ti defined
in Section 6.2.2 is employed, which fulfills Ti1M = 0M−1. Applying Ti instead
of P to (6.27), following the same operations to obtain (6.30), and noting that
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(Ti1(d + n)) ⊙ (Ti1(d + n)) = Ti1((d + n) ⊙ (d + n)), we arrive at

Tiψa − (Tiu) ⊙ (Tiu) = 2TiX
T
a x + 2diTiu + Tim + 2niTiu, (6.32)

which is different from (6.30), and has only one nuisance parameter di at the right
hand side. Ignoring the relation between x and di, we still have two ways to deal
with di. The first one is to estimate x and di together [123], which means we
only use a reference once for calculating the TDOAs. The second one is again to
apply Mj , which fulfills MjTiu = 0M−2. It employs two different references, one
for calculating the TDOAs, and the other for eliminating the nuisance parameter.
In order to distinguish these two, we call them the REFB-USRD-LS(1) and the
REFB-USRD-LS(2) estimate, respectively, where the number between brackets
indicates the number of references used in the approach. In the same way as
we clarified the equivalence between the REFF-USRD-LS and the REFF-USR-
LS estimate in the previous subsection, we can easily confirm the equivalence
between the REFB-USRD-LS(2) (or the REFB-USRD-WLS(2)) and the REFB-
USR-LS (or the REFB-USR-WLS) estimate of Section 6.2.2. We omit the details
for the sake of brevity. Furthermore, we recall that similarly as above we could
have dealt with −2bTiu in (6.22) in two different ways. But since b = 0 in
[9,87,118,119,123,126], there are no discussions about these two different ways in
literature, and we do not distinguish between them in the REFB-USR-LS method.

Since there is no counterpart of the REFB-USRD-LS(1) estimate in Section
6.2.2 for the squared-range-based methods, we briefly discuss the REFB-USRD-
LS(1) estimate to complete the investigation of the links among all the estimat-
ors based on TOA measurements. Employing the SM method, we again use an
orthogonal projection Pi of size (M − 1) × (M − 1) onto the orthogonal com-
plement of Tiu to fulfill PiTiu = 0M−1, which can be derived in the same way
as (6.16) by replacing IM and Pu with IM−1 and Tiu, respectively. As a res-
ult, N (PiTi) = span(1M ,u) = N (UT ) and R(TT

i Pi) = R(U). Premultiplying
(6.32) with Pi, we obtain

PiTiψa − Pi((Tiu) ⊙ (Tiu)) = 2PiTiX
T
a x + PiTim. (6.33)

Note that Pi((Tiu) ⊙ (Tiu)) = PiTi(u ⊙ u) (see Appendix 6.B for a proof),
and thus we can state PiTiψa −Pi((Tiu) ⊙ (Tiu))=PiTiφ. Consequently, the
REFB-USRD-LS(1) and the REFB-USRD-WLS(1) estimates can also be written
as (6.18) and (6.19) by replacing PPuP and Q with TT

i PiTi and Qi, respectively.
We do not repeat the equations in the interest of brevity. We remark that Qi is
again an aggregate weighting matrix of size M × M , and the optimal Qi of rank
(M − 2) is given by

Q∗
i = TT

i Pi(PiTiΣTT
i Pi)

†PiTi (6.34)

= (ViV
T
i ΣViV

T
i )†, (6.35)
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where Vi is of size M × (M − 2), and collects the right singular vectors cor-
responding to the M − 2 nonzero singular values of PiTi. We derive (6.35) in
Appendix 6.C, and prove that ViV

T
i is the projection onto R(U). As a result,

Q∗
i = Q∗

i,j = Q∗, i, j ∈ {1, . . . , M} and i 6= j.

Based on the above discussions, we achieve the important conclusion that
the REFF-USRD-WLS, the REFB-USRD-WLS(1), the REFB-USRD-WLS(2),
the REFF-USR-WLS, and the REFB-USR-WLS estimate are all identical if the
optimal weighting matrix is adopted. The optimal weighting matrix releases
the reference-based methods from the influence of a random reference selection.
Moreover, the REFF-USR-LS and the REFF-USRD-LS estimate are identical,
and free from a reference selection, whereas the REFB-USR-LS and the REFB-
USRD-LS(2) estimate are equivalent, but still suffer from a poor reference selec-
tion.

To further improve the localization accuracy, a constrained WLS estimate
based on (6.32) can be pursued considering the relation between x and di similarly
as in [126]. We call it the reference-based SRD CWLS (REFB-SRD-CWLS)
estimate. Denoting z = [xT , di]

T , Bi = 2Ti[X
T
a , u] and ̺i = Tiψa − (Tiu) ⊙

(Tiu), it is given by,

ẑ = argmin
ẑ

(̺i − Biz)
T Wi(̺i − Biz) (6.36)

subject to

(z − zi)
TL(z − zi) = 0 and [z]l+1 ≥ 0, (6.37)

where Wi is a weighting matrix of size (M − 1) × (M − 1), zi = [xT
i 0]T and

L =

[
Il 0l

0T
l −1

]
. (6.38)

The method to solve this CWLS problem is proposed in [126]. We do not review
it for the sake of brevity. Note that there are two constraints for (6.36) compared
to one for (6.10), thus the method to solve (6.36) is different from the one to solve
(6.10).

All the estimators based on TOA measurements are summarized in Tables 6.1 -
6.3. They are characterized by the number of references, the reference dependency,
the minimum number of anchors, and the optimal weighting matrices. We also
shed light on their relations and categorize the existing methods from literature.
We remark that the authors in [131] claim that the error covariance of the optimal
position estimate using TOAs with a distance bias is equivalent to the one using
TDOAs regardless of the reference selection, where the error covariance is defined
as the product of the position dilution of precision (PDOP) and a composite
user-equivalent range error (UERE). However, a more appropriate indication of
the localization performance is the Cramér-Rao bound (CRB), which is a bound



6.3. Localization based on TDOA measurements 123

REFF REFB REFF REFB REFB
-USR-LS -USR-LS -USRD-LS -USRD-LS(1) -USRD-LS(2)

Relations
The REFF-USR-LS and the REFF-USRD-LS estimate are identical.

The REFB-USR-LS and the REFB-USRD-LS(2) estimate are identical.
no. of references 0 2 0 1 2

reference dependency No Yes No Yes Yes
literature Proposed [7, 87, 119] Proposed [9, 123] [117]

min. no. of anchors,
l + 2

x of length l

Table 6.1: LS estimators based on TOAs for locating an asynchronous target.

REFF REFB REFF REFB REFB
-USR-WLS -USR-WLS -USRD-WLS -USRD-WLS(1) -USRD-WLS(2)

Relations
The REFB-USR-WLS and the REFB-USRD-WLS(2) estimate are identical.

They are all identical with optimal weighting matrices Q∗ = Q∗

i,j = Q∗

i .

no. of references 0 2 0 1 2

reference dependency No
Yes, with Qi,j No

Yes, with Qi Yes, with Qi,j

No, with Q∗

i,j No, with Q∗

i No, with Q∗

i,j

literature Proposed Proposed
min. no. of anchors,

l + 2
x of length l

Table 6.2: WLS estimators based on TOAs for locating an asynchronous target.

REFF-SR-CWLS REFF-SRD-CWLS REFB-SRD-CWLS
Equations (6.14) (6.36)

no. of references 0 0 1

reference dependency No No
Yes, with Wi

No, with W∗
i

literature Proposed Proposed [126]
min. no. of anchors,

l + 2
x of length l

Table 6.3: CLS estimators based on TOAs for locating an asynchronous target.

for unbiased estimators. Therefore, the CRB based on (6.1) for TOAs with a
distance bias is derived in Appendix 6.D. Since the TDOAs in Section 6.2.3 are
calculated by making differences of the TOAs in (6.1), the CRB based on these
TDOAs is the same as the one based on (6.1).

6.3 Localization based on TDOA measurements

6.3.1 System Model

Let us now focus on TDOA measurements. In passive sensor array or microphone
array localization, TDOA measurements are obtained directly by cross-correlating
a pair of received signals. Thus, no correlation template is needed, and the clock-
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offset can be canceled out immediately. We reemphasize that these TDOA meas-
urements are different from the TDOAs calculated by subtracting the TOAs. The
data model for these TDOA measurements is given by [132]

ri,j = dj − di + ni,j , i, j ∈ {1, 2, . . . , M}, i 6= j, (6.39)

where ri,j is the TDOA measurement, which is obtained by cross-correlating the
received signal from the jth anchor with the one from the ith anchor. Note
that the stochastic properties of the noise terms ni,j are totally different from
the ones of the noise terms ni of (6.1). We approximate ni,j as zero-mean
random variables, where cov(ni,j , np,q) = E[(ni,j − E[ni,j ])(np,q − E[np,q])] =
E[ni,jnp,q], i, j, p, q,∈ {1, 2, . . . , M}, i 6= j, and p 6= q. Defining ri as the
collection of the corresponding distances to the M − 1 TDOA measurements
using the ith anchor as a reference, ri = [ri,1, . . . , ri,i−1, ri,i+1, . . . , ri,M ]T , and
ni = [ni,1, . . . , ni,i−1, ni,i+1, . . . , ni,M ]T as the related noise vector, we write (6.39)
in vector form as

ri = Ti1d − di1M−1 + ni. (6.40)

Moving −di1M−1 to the other side, making an element-wise multiplication and
re-arranging, we achieve

ϕi = 2TiX
T
a x + 2diri + mi, (6.41)

where ϕi = Tiψa − ri ⊙ ri and mi = −(2(Ti1d) ⊙ ni + ni ⊙ ni). The stochastic
properties of mi are as follows

E[[mi]k] = −E[[ni]k ⊙ [ni]k] ≈ 0, (6.42)

[Σi]k,l = E[[mi]k[mi]l] − E[[mi]k]E[[mi]l]

≈





4dkdlE[ni,kni,l], k < i and l < i
4dk+1dl+1E[ni,k+1ni,l+1], k ≥ i and l ≥ i
4dkdl+1E[ni,kni,l+1], k < i and l ≥ i
4dk+1dlE[ni,k+1ni,l], k ≥ i and l < i

, (6.43)

where we ignore the higher order noise terms to obtain (6.43) and assume that the
noise mean E[[mi]k] ≈ 0 under the condition of sufficiently small measurement
errors. Note that the noise covariance matrix Σi of size (M−1)×(M−1) depends
on the unknown d as well.

6.3.2 Localization Based on Squared TDOA measurements

We do not propose any new algorithms in this section, but summarize existing
localization algorithms spread over different research areas and shed light on their
relations. All these algorithms are categorized as reference-based SRD approaches.
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Note that (6.41) looks similar to (6.32). Only the available data and the noise
characteristics are different, which leads to totally different relations among the es-
timators as we will show in the following paragraphs. The approach to achieve the
REFB-USRD-LS(1) estimate, the REFB-USRD-LS(2) estimate and the REFB-
SRD-CWLS estimate (6.36) based on TOA measurements in Section 6.2.3 can be

adopted here as well. The orthogonal projection P̃i of size (M − 1) × (M − 1)
onto the complement of ri is employed, which is given by (6.16), where we replace

IM and Pu with IM−1 and ri. Let us define the nullspace N (ŨT
i ) = span(ri),

and R(Ũi) ⊕ N (ŨT
i ) = R

M−1. Therefore, P̃i is the projection onto R(Ũi). As
a result, the REFB-USRD-LS(1) and REFB-USRD-WLS(1) estimate based on
TDOA measurements is respectively given by,

x̂ = −1

2
(XaT

T
i P̃iTiX

T
a )−1XaT

T
i P̃iϕi, (6.44)

and

x̂ = −1

2
(XaT

T
i Q̃iTiX

T
a )−1XaT

T
i Q̃iϕi, (6.45)

where Q̃i is an aggregate weighting matrix of size (M − 1) × (M − 1) as well.
Note that (6.44) (or (6.45)) differs from (6.18) (or (6.19)) since M − 1 TDOA

measurements are used instead of M TOA measurements. The optimal Q̃i is
given by

Q̃∗
i = P̃i(P̃iΣiP̃i)

†P̃i (6.46)

= (P̃iΣiP̃i)
†, (6.47)

where Q̃∗
i , i ∈ {1, . . . , M} is the pseudo-inverse of the matrix achieved by project-

ing the columns and rows of Σi onto R(Ũi), which is of rank M − 2. We remark
that the REFB-USRD-LS(1) estimate (6.44) is equivalent to the ones in [123,133].

Let us also revisit the REFB-USRD-LS(2) estimate and the REFB-USRD-

WLS(2) estimate based on TDOA measurements. A linear transformation M̃j of

size (M − 2) × (M − 1), which fulfills M̃jri = 0M−2, can be devised in the same
way as Mj by replacing Tiu and 1/(uj − ui) with ri and 1/ri,j , respectively.

Thus, R(M̃T
j ) = R(Ũi). Note that another heuristic method to obtain M̃j is

proposed in [121]. As a result, the general form of the REFB-USRD-LS(2) and
the REFB-USRD-WLS(2) estimates can be derived in the same way as (6.44) and

(6.45) by replacing P̃i and Q̃i with M̃T
j M̃j and Q̃i,j, respectively. Note that Q̃i,j

is also an aggregate weighting matrix of size (M −1)× (M −1). The optimal Q̃∗
i,j
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is given by

Q̃∗
i,j = M̃T

j (M̃jΣiM̃
T
j )−1M̃j (6.48)

=
[
(M̃j)

†M̃jΣiM̃
T
j (M̃T

j )†
]†

, (6.49)

where (M̃j)
†M̃j = M̃T

j (M̃T
j )† = M̃T

j (M̃jM̃
T
j )−1M̃j is also the projection onto

R(Ũi), which means that Q̃∗
i,j = Q̃∗

i , i, j ∈ {1, . . . , M} and i 6= j. The REFB-
USRD-LS(2) estimate and the REFB-USRD-WLS(2) estimate based on TDOA
measurements are generalizations of the estimators proposed in [121]. However,
the noise covariance matrix in [121] is a diagonal matrix, and the noise covariance
matrix Σi here is a full matrix.

We remark here that with the optimal weighting matrix, the REFB-USRD-
WLS(1) estimate (6.45) and the REFB-USRD-WLS(2) estimate based on the
same set of TDOA measurements are identical. However, the optimal weighting
matrix cannot decouple the reference dependency. The performance of all the
estimates still depends on the reference selection, since the reference dependency
is an inherent property of the available measurement data. To further improve the
localization performance, the REFB-SRD-CWLS estimate based on (6.41) can be
derived in the same way as the estimate (6.36) by replacing ̺i and Bi with ϕi and
2[TiX

T
a , ri], respectively. A solution to this CLS problem is presented in [126].

Note that all the above estimators are based on a so-called nonredundant set
of TDOA measurements [132], resulting in reference dependency. Recently, a SM
method based on the full set of TDOA measurements has been proposed in [105],
labeled “reference-free TDOA source localization”. It is reference-free in the sense
that every anchor plays the role of reference, as in [119], thus there is no need to
specifically choose one. We revisit the proposed method in [105] here to clarify
its relation to our framework. Let us define Dr = [r̃1, r̃1, . . . , r̃M ], where r̃i can
be achieved by inserting a 0 in ri between ri,i−1 and ri,i+1. Using our notations,
we can rewrite (22) of [105] as

1

2M
(Dr ⊙ Dr)1M − 1

M
Drd =

1

2
Pψa − PXT

a x. (6.50)

Then, a matrix G of size (M − 2) × M , which fulfills GDr = 0M−2, can be
obtained by exploring the nullspace of Dr using the singular value decomposition
(SVD). Consequently, an LS estimator of x is given by

x̂ =
1

2
(XaPGT GPXT

a )−1XaPGT G(Pψa − 1

M
(Dr ⊙ Dr)1M ). (6.51)

Note that Dr = [d, 1M ]

[
1T

M

−dT

]
without noise, and GDr = 0M−2. Thus, 1M

is in the nullspace of G. As P is the projection onto the orthogonal complement
of 1M , GP is still of rank M − 2 with probability 1. In a different way, we can
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REFB REFB REFB REFB REFB
-USRD-LS(1) -USRD-WLS(1) -USRD-LS(2) -USRD-WLS(2) -SRD-CWLS

Relations
The REFB-USRD-WLS(1) and the REFB-USRD-WLS(2) estimate are identical

with the optimal weighting matrices Q̃∗

i = Q̃∗

i,j .

no. of references 1 1 2 2 1
reference dependency Yes Yes Yes Yes Yes

literature
[120, 134]

[122] [121] [121] [6, 126]
[105, 123, 133]

min. no. of anchors,
l + 2

x of length l

Table 6.4: LS, WLS and CWLS estimators based on TDOAs for locating an asyn-
chronous target.

make use of the full set of TDOA measurements similarly as the second extension
of the approach proposed in [133]. We collect (6.41) in vector form as




ϕ1

ϕ2
...
ϕM


 = 2




T1

T2

...
TM


XT

a x + 2




r1

r2

. . .

rM


d +




m1

m2

...
mM




(6.52)

As a result, a LS estimator of x and d can be derived based on (6.52). We do not
detail it in the interest of brevity.

Furthermore, as indicated in [132], an optimal nonredundant set can be achieved
by the optimum conversion of the full TDOA set in order to approach the same
localization performance, and the use of this optimal nonredundant set is recom-
mended to reduce the complexity. Because [132] relies on the assumption that
the received signals at the anchors are corrupted by noise with equal variances,
the optimal nonredundant set can be estimated by a LS estimator. This is not
the case here however, where it should be estimated by a WLS estimator, which
requires the knowledge of the stochastic properties of the noise.

We summarize the characteristics of all the estimators based on TDOA meas-
urements in Table 6.4. With the nonredundant TDOA measurement set of length
M − 1, the estimator performance suffers from a poor reference selection. Al-
though the performance improves with the full set or the optimal nonredundant
set, it first has to measure the full set of TDOAs of length M(M − 1)/2.

6.4 Numerical Results

6.4.1 Noise statistics

In order to make a fair comparison between the localization performance of the
different estimators using TOA measurements and TDOA measurements, we de-
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rive the statistics of ni and ni,j based on the same received signal models. The
received signal is modeled by [105]

zi(n) =
κ

di
s(n − τi) + ei(n), n = 0, 1, . . . , N − 1, (6.53)

where N is the number of samples, κ is a constant parameter, s(n) is the source
signal, and ei(n) and τi are respectively the additive noise and the delay at the
ith node. We assume that s(n) is a zero-mean white sequence with variance σ2

s ,
and ei(n) is also a zero-mean white sequence with variance σ2

e , independent from
the other noise sequences and s(n).

For the TOA-based approaches, we assume knowledge of the template s(n),
and estimate τi by cross-correlating the received signal with the clean template:

τ̂i = argmax
τi

{
N−1∑

n=0

zi(n)s(n − τi)

}
. (6.54)

Since there is an unknown bias due to asynchronous nodes, the distance ui cor-
responding to the timestamp is modeled as ui = cτ̂i = di + b + ni, where c is
the signal propagation speed. The statistical properties of ni can be derived in a
similar way as in [132], and are given by

E[ni] = 0, (6.55)

cov(ni, nj) = E[ninj ]

=





σ2
i =

3c2

Nπ2κ2

d2
i

SNR
i = j

0 i 6= j
, (6.56)

where SNR = σ2
s/σ2

e . We remark that in reality, it is very difficult to obtain a
clean template, since there are various kinds of error sources, such as multipath
fading, antenna mismatch, pulse distortion, etc. Plugging (6.55) and (6.56) into
(6.5), the entries of the covariance matrix Σ are given by

[Σ]i,j = 4didjE[ninj ] + E[n2
i n

2
j ] − σ2

i σ2
j

=





4d2
i σ

2
i + 2σ4

i ≈ 12c2

Nπ2κ2

d4
i

SNR
, i = j

0, i 6= j
. (6.57)

On the other hand, the TDOA estimates can be achieved by cross-correlating
two received signals as follows

τ̂i,j = argmax
τi,j

{
N−1∑

n=0

zi(n)zj(n − τi,j)

}
. (6.58)
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Thus, the estimate of the distance difference is ri,j = cτ̂i,j = dj − di + ni,j , where
the bias is canceled out naturally. The statistical properties of ni,j can also be
derived in a similar way as in [105,132], and are given by

E[ni,j ] = 0, (6.59)

cov(ni,j , np,q) =





3c2

Nπ2κ2

(
d2

i

SNR
+

d2
j

SNR
+

d2
i d

2
j

SNR2

)
i = p and j = q

3c2

Nπ2κ2

d2
i

SNR
i = p and j 6= q

3c2

Nπ2κ2

d2
j

SNR
j = q and i 6= p

− 3c2

Nπ2κ2

d2
i

SNR
i = q and j 6= p

− 3c2

Nπ2κ2

d2
j

SNR
j = p and i 6= q

0 else

.

(6.60)

Note that similarly as in [105] the signal attenuation is taken into account in order
to obtain more general noise statistics than in [132], but we correct the derivation
errors in [105]. We remark that in reality, the TDOA estimates may face similar
problems as the TOA estimates, since the received signals at different anchors
may be totally different. Plugging (6.59) and (6.60) into (6.43), the entries of the
covariance matrix Σi are given by

[Σi]k,l ≈





4dkdlE[ni,kni,l], k < i and l < i
4dk+1dl+1E[ni,k+1ni,l+1], k ≥ i and l ≥ i
4dkdl+1E[ni,kni,l+1], k < i and l ≥ i
4dk+1dlE[ni,k+1ni,l], k ≥ i and l < i

=





12c2d2
k

Nπ2κ2

(
d2

i

SNR
+

d2
k

SNR
+

d2
i d

2
k

SNR2

)
, k = l and k < i

12c2d2
k+1

Nπ2κ2

(
d2

i

SNR
+

d2
k+1

SNR
+

d2
i d

2
k+1

SNR2

)
, k = l and k ≥ i

12c2dkdl

Nπ2κ2

d2
i

SNR
, k 6= l, k < i and l < i

12c2dk+1dl+1

Nπ2κ2

d2
i

SNR
, k 6= l, k ≥ i and l ≥ i

12c2dkdl+1

Nπ2κ2

d2
i

SNR
, k < i and l ≥ i

12c2dk+1dl

Nπ2κ2

d2
i

SNR
, k ≥ i and l < i

.

(6.61)

In the simulations, we generate ni and ni,j as zero-mean Gaussian random vari-
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ables with covariance matrices specified as above.

6.4.2 Performance evaluation

As a well-adopted lower bound, the Cramèr-Rao bound (CRB) is derived for
localization estimators based on TOA measurements and TDOA measurements,
respectively. Note that the estimators derived in this chapter are biased. We
remark that although the CRB is a bound for unbiased estimators, it still is
interesting to compare it with the proposed biased estimators. Here, we exemplify
the CRBs for location estimation on a plane, e.g., we take l = 2. We assume that
ni and ni,j are Gaussian distributed. The Fisher information matrix (FIM) I1(θ)
based on model (6.1) in Section 6.2 for TOA measurements is derived in Appendix
6.D, where θ = [xT , b]T , and x = [x1, x2]

T . Consequently, we obtain CRB(x1) =
[I−1

1 (θ)]1,1. We observe that b is not part of I−1
1 (θ). Therefore, no matter how

large b is, it has the same influence on the CRB for TOA measurements. The FIM
I2(x) and I3(x) based on model (6.39) in Section 6.3 are derived in Appendix 6.E
for the nonredundant set and the full set of TDOA measurements, respectively.

We consider three simulation setups. In Setup 1 and Setup 2, eight anchors are
evenly located on the edges of a 100 m×100 m rectangular. Meanwhile the target
node is located at [200 m, 30 m] and [10 m, 20 m] for Setup 1 and Setup 2, respect-
ively. Thus, the target node is far away from the anchors in Setup 1, but close to
them in Setup 2. In Setup 3, all anchors and the target node are randomly distrib-
uted on a grid with cells of size 1 m×1 m inside the rectangular. The performance
criterion is the root mean squared error (RMSE) of x̂ vs. a reference range SNR

(SNRr = Nπ2κ2

3c2 SNR), which can be expressed as
√

1/Nexp

∑Nexp

j=1 ‖x̂(j) − x‖2,

where x̂(j) is the estimate obtained in the jth trial. Each simulation result is
averaged over Nexp = 1000 Monte Carlo trials. The bias b corresponding to the
clock offset is randomly generated in the range of [0 m, 100 m] in each Monte Carlo
run. We would like to compare all the REFF and REFB estimators, as well as
the estimator proposed in [127] (first iteration) using TOA measurements, labeled
the LS1 estimator, and the estimator proposed in [105] using the full TDOA set,
namely the REFF-LS2 estimator.

Estimators using TOA measurements

Fig. 6.1 shows the localization performance of the REFF estimators using TOA
measurements under the three considered setups. The CRB I−1

1 (θ) (the dotted
line with “×” markers) is used as a benchmark. The REFF-USR-WLS estimator
(6.8) with the optimal weighting matrix (the solid line with “+” markers) achieves
the best performance, while the iterative approach to update the weighting matrix
(the solid line with “♦” markers) also helps the REFF-USR-WLS estimator to
converge to the best performance. The REFF-SR-CLS estimator (6.14) (the solid
line with “◦” markers) benefits from the constraints, and thus outperforms the
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Figure 6.1: RMSE of x for the REFF estimators using TOAs for locating an asyn-
chronous target.

REFF-USR-LS estimator (6.7) (the solid line with “∗” markers). The concrete
value of the bias b does not influence the localization performance. The curve of
the REFF-USR-LS estimator with fixed b (the solid line with “▽” markers) and
the one with random b overlap. Furthermore, the LS1 estimator [127] (the solid
line with “2” markers) is sensitive to the geometry. It performs better than the
REFF-USR-LS estimator in Setup 2, but worse in Setup 1. This observation is
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Figure 6.2: RMSE of x for the REFF and the REFB estimators using TOAs for
locating an asynchronous target.

consistent with the one in [120]. In Setup 3 (random geometry), it fails under
some cases due to its inherent instability, and performs unsatisfactorily.

Fig. 6.2 compares the localization performance of the REFF with the one of
the REFB estimators using TOA measurements under Setup 1 and Setup 2. Since
there are no fixed anchors in Setup 3, we skip it in the comparison. We show both
the performance of the best and the worst reference selection, which indicates the
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Figure 6.3: The CRBs using TOAs I−1

1
(θ), the nonredundant TDOA set I−1

2
(θ), and

the full TDOA set I−1

3
(θ) for locating an asynchronous target.

performance limits of the REFB estimators. The dashed lines with “+” and
“▽” markers denote the performance bounds for the REFB-USRD-LS(1) and
the REFB-USRD-LS(2), respectively. The best reference choice for the REFB-
USRD-LS(1) estimator is the reference anchor with the shortest distance to the
target node. Meanwhile, we do not observe the best reference pair selection for
the REFB-USRD-LS(2) estimator following any rules. The curves for the REFF-
USR-LS estimator (6.7) (the solid line with “∗” markers) and the REFF-SR-CLS
estimator (6.14) (the solid line with “◦” markers) lie inside these limits. Their
performances are neither too bad nor too good, but they do not suffer from a
poor reference selection. As we have already proved that the optimal weighting
matrix can compensate the impact of the reference selection, the curves of all
the WLS estimators with optimal weights will overlap. Thus, we do not show the
performance of the REFF-USR-WLS estimator again, which is already illustrated
in Fig. 6.1.

Estimators using TDOA measurements

Let us first compare the CRBs employing different measurements in Fig. 6.3. We
observe the same tendency for both Setup 1 and Setup 2. All the CRBs overlap
above a specific SNRr threshold, which is 55 dB for Setup 1, and 50 dB for Setup 2.
Below the threshold, the CRB using TOA measurements (the solid line with “×”
markers) is lower than the other CRBs. Meanwhile, the CRB using the full
TDOA set (the dotted line with “×” markers) is lower than the ones using a
nonredundant TDOA set (the dotted lines). The observations are consistent with
the ones in [132]. On the other hand, the SNRr ranges of interest corresponding
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Figure 6.4: RMSE of x for the REFF estimators using the full set of TDOAs for
locating an asynchronous target.

to a RMSE smaller than 100 = 1 m, are SNRr > 60 dB and SNRr > 30 dB for
Setup 1 and Setup 2, respectively. Within this range of interest, there are no
differences among the CRBs in Setup 1, and only small differences in Setup 2.
Therefore, using different measurements would not cause obvious differences in
the CRB at high SNR.

Fig. 6.4 shows the localization performance of the REFF estimators using
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the full TDOA set under three setups. The CRB I−1
3 (θ) (the dotted line with

“×” markers) is still used as a benchmark. We observe similar tendencies as in
Fig. 6.1. The REFF-WLS estimator based on (6.52) with the optimal weighting
matrix (the solid line with “+” markers) achieves the best performance, while
the iterative approach to update the weighting matrix (the solid line with “♦”
markers) also facilitates the REFF-WLS estimator based on (6.52) to converge
to the best performance. Moreover, the performance of the REFF-LS2 estimator
(6.51) [105] (the solid line with “2” markers) is slightly worse than the REFF-LS
estimator based on (6.52) (the solid line with “∗” markers) in Setup 1. In general,
their performances are very close. In Setup 3 (random geometry), they almost
overlap with each other.

Fig. 6.5 compares the localization performance of the REFF estimator using
the full TDOA set with the one of the REFB estimators using the nonredundant
TDOA set under Setup 1 and Setup 2. Since there are no fixed anchors in Setup 3,
we again skip it in the comparison. We show both the performance of the best and
the worst reference selection, which indicates the performance limits of the REFB
estimators. The dashed lines with “+” and “▽” markers denote the performance
limits for the REFB-USRD-LS(1) (6.44) and the REFB-USRD-LS(2) estimator,
respectively. The best reference choice for the REFB-USRD-LS(1) estimator is
again the reference anchor with the shortest distance to the target node, which
means we cross-correlate the received signal at the reference anchor with the ones
at other anchors in order to achieve a nonredundant set of TDOA measurements.
Meanwhile, we do not observe the best reference pair selection for the REFB-
USRD-LS(2) estimator following any rules either. The curves for the REFF-LS
estimator based on (6.52) (the solid line with “∗” markers) and the REFF-LS2 es-
timator (6.51) [105] (the solid line with “2” markers) lie inside these limits. They
are very close to the lower limits in Setup 1, and in the middle of the performance
band in Setup 2. The performance band of the REFB-USRD-LS(1) estimator is
quite narrow in Setup 2. On the other hand, the performance variation is very
obvious for the REFB-USRD-LS(2) estimator.

Finally, we verify the equivalence of the REFB-USRD-WLS estimators with
the same optimal weighting matrix in Fig. 6.6. As we have discussed before,
the optimal weighting matrix can only release the impact of the second reference
selection. The first reference selection decides the obtained data set. Therefore,
using the same nonredundant set of TDOAs, the curves of the REFB-USRD-
WLS(1) (6.45) (the solid lines with “♦” markers) and the REFB-USRD-WLS(2)
estimators (the solid lines with “+” markers) overlap. A different performance can
be obtained by employing different nonredundant TDOA sets. However, similarly
as the CRB, the performance converges after some SNRr threshold. Finally, in
Fig. 6.7, we compare the localization performance of the REFF estimators using
TOAs and the full TDOA set, respectively. They are very close at high SNRr,
but diverge at low SNRr.
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Figure 6.5: RMSE of x for the REFF estimator using the full set of TDOAs and the
REFB estimators using the nonredundant set of TDOAs for locating an asynchronous
target.

6.5 Conclusions

In this chapter, we have proposed reference-free localization estimators based on
TOA measurements for a scenario, where anchors are synchronized, and the clock
of the target node runs freely. The reference-free estimators do not suffer from a
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Figure 6.6: RMSE of x for the REFB-USRD-WLS estimators using the nonredundant
set of TDOAs for locating an asynchronous target.
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Figure 6.7: RMSE of x for the REFF estimator using TOAs and the full set of TDOAs
for locating an asynchronous target.

poor reference selection, which can seriously degrade the localization performance
of reference-based LS estimators. Furthermore, we generalized existing reference-
based localization estimators using TOA or TDOA measurements, and expose
their relations. Based on analysis and simulations, we have obtained the following
important conclusions:

1. Applying a projection is always preferred over making differences with a
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reference to get rid of nuisance parameters.

2. The optimal weighting matrix can compensate for the impact of the ref-
erence selection for reference-based WLS estimators using TOA measure-
ments, and make all those estimators equivalent. However, the optimal
weighting matrix cannot release the reference influence for reference-based
WLS estimators using a nonredundant set of TDOA measurements, but can
make the estimators using the same set identical as well.

3. There are corresponding equivalences between the squared-range-based and
the squared-range-difference-based methods, which are all using TOA meas-
urements.

4. Beyond some SNR threshold, there are no obvious differences among the
CRBs using TOA measurements, the nonredundant set and the full set of
TDOA measurements, respectively.

5. The performance of the reference-free LS estimators is neither too bad nor
too good, but they do not suffer from a poor reference selection.

6. The concrete value of the distance bias caused by the inaccurate clock does
not affect the localization performance of the LS or WLS estimators.
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6.A Derivation of λ for CLS

Substituting (6.14) into the constraint (6.11), we obtain

(φTWT A− λ

2
ρT )(AT WA + λJ)−1J(AT WA + λJ)−1(AT Wφ− λ

2
ρ)

+ρT (AT WA + λJ)−1(ATWφ− λ

2
ρ) = 0, (6.62)

which has to be solved for λ, leading to the estimate λ̂. We exemplify how to
solve (6.62) for localization on a plane, i.e., l = 2. Since J is of rank 3, there are
only three non-zero eigenvalues of (AT WA)−1J. Therefore, the square matrix
(ATWA)−1J of size 4×4 can be diagonalized as (ATWA)−1J = VΛV−1, where
V is of size 4×3, collecting the singular vectors corresponding to the three nonzero
singular values, and Λ is a diagonal matrix with the three nonzero singular values
(γi, i = 1, 2, 3) on its diagonal. According to the Kailath variant [104] and plugging
the eigenvalue decomposition of (AT WA)−1J into (ATWA + λJ)−1, we obtain

(AT WA + λJ)−1

= (AT WA)−1 − λ(AT WA)−1J(I + λ(AT WA)−1J)−1(AT WA)−1

= V(I + λΛ)−1V−1(AT WA)−1 (6.63)

Substituting (6.63) into the constraint (6.62), we achieve

0 = eT (I + λΛ)−1Λ(I + λΛ)−1f +
λ2

4
hT (I + λΛ)−1Λ(I + λΛ)−1g

−λ

2
hT (I + λΛ)−1Λ(I + λΛ)−1f − λ

2
eT (I + λΛ)−1Λ(I + λΛ)−1g

+hT (I + λΛ)−1f − λ

2
hT (I + λΛ)−1g (6.64)

where

eT = φTWTAV = [e1 e2 e3 e4], (6.65)

f = V−1(AT WA)−1AT Wφ = [f1 f2 f3 f4]
T , (6.66)

hT = ρTV = [h1 h2 h3 h4], (6.67)

g = V−1(AT WA)−1ρ = [g1 g2 g3 g4]
T . (6.68)
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Now, (6.64) can be simplified as a seven-order equation as follows

0 =

3∑

i=1

eifiγi

(1 + λγi)2
+

λ2

4

3∑

i=1

higiγi

(1 + λγi)2
− λ

2

3∑

i=1

eigiγi

(1 + λγi)2
− λ

2

3∑

i=1

hifiγi

(1 + λγi)2

+

3∑

i=1

hifiγi

(1 + λγi)
− λ

2

3∑

i=1

higiγi

(1 + λγi)
+ h4f4 −

λ

2
h4g4. (6.69)

After obtaining the seven roots of (6.69), we discard the complex roots, and plug
the real roots into (6.14). Finally, we choose the estimate ŷ, which fulfills (6.10).
Note that (6.14) is a CLS estimate of y with W = I. Since the optimal W∗

depends on the unknown d, the CWLS problem can be solved in a similar way by
iteratively updating the weights and the estimates, thus we do not repeat it here.

6.B Proof of Pi((Tiu) ⊙ (Tiu)) = PiTi(u ⊙ u)

Recalling that Tiu = Ti1u − ui1M−1, Ti1M = 0M−1, and PiTiu = 0M−1, we
prove that Pi((Tiu) ⊙ (Tiu)) in (6.33) is equivalent to PiTi(u ⊙ u) as follows

Pi((Tiu) ⊙ (Tiu)) = Pi((Ti1u − ui1M−1) ⊙ (Ti1u − ui1M−1))

= Pi((Ti1u) ⊙ (Ti1u) − 2uiTi1u + u2
i1M−1)

= Pi((Ti1u) ⊙ (Ti1u) − 2ui(Ti1u − ui1M−1) − u2
i 1M−1)

= Pi((Ti1u) ⊙ (Ti1u) − 2uiTiu− u2
i 1M−1)

= Pi((Ti1u) ⊙ (Ti1u) − u2
i 1M−1)

= PiTi(u ⊙ u)

6.C Derivation of (6.35)

The singular value decomposition (SVD) of PiTi is given by PiTi = UiΛiV
T
i ,

where Ui is of size (M−1)×(M−2) and Vi is of size M×(M−2), which collect the
left and right singular vectors corresponding to the M−2 nonzero singular values,
and Λi is a diagonal matrix with the M−2 nonzero singular values on its diagonal.
Note that UT

i Ui = IM−2, VT
i Vi = IM−2, VT

i 1M = 0M−2 and VT
i u = 0M−2.

As a result, the nullspace N (VT
i ) = span(1M ,u), and R(Vi) = R(U). Using the

SVD and the property of the pseudo-inverse, we can write (PiTiΣTT
i Pi)

† as

(PiTiΣTT
i Pi)

† = (UiΛiV
T
i ΣViΛiU

T
i )†

= (ΛiU
T
i )†(VT

i ΣVi)
−1(UiΛi)

†

= UiΛ
−1
i (VT

i ΣVi)
−1Λ−1

i UT
i . (6.70)
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Plugging (6.70) and the SVD of PiTi into (6.34), and making use of the property
of the pseudo-inverse again, we arrive at

TT
i Pi(PiTiΣTT

i Pi)
†PiTi = ViΛiU

T
i UiΛ

−1
i (VT

i ΣVi)
−1Λ−1

i UT
i UiΛiV

T
i

= Vi(V
T
i ΣVi)

−1VT
i

= (ViV
T
i ΣViV

T
i )†, (6.71)

where ViV
T
i is the projection onto R(U).

6.D CRB derivation for localization based on TOA

measurements

We analyze the CRB for jointly estimating x and b based on (6.1), and assume
ni is Gaussian distributed. The FIM I1(θ) is employed, where θ = [xT , b]T , with
entries defined as:

I1(θ) = −E

[
∂2lnp(u;θ)

∂θ∂θT

]

=

[
∂ν

∂θ

]T

C−1

[
∂ν

∂θ

]
, (6.72)

where

ν = d + b1M , (6.73)

C = diag([σ2
1 , σ2

2 , . . . , σ2
M ]T ),

=
3c2

Nπ2κ2SNR
diag([d2

1, d2
2, . . . , d2

M ]T ), (6.74)

∂ν

∂b
= 1M , (6.75)

[
∂ν

∂xl

]

j

=
xl − xl,j

‖x − xj‖
. (6.76)

6.E CRB derivation for localization based on TDOA
measurements

We analyze the CRB for estimating x based on (6.40), and assume ni,j is Gaussian
distributed. The FIM I2(x) for the nonredundant set of TDOA measurements is
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employed, with entries defined as:

I2(x) = −E

[
∂2lnp(ri;x)

∂x∂xT

]

=

[
∂µi

∂x

]T

C−1
i

[
∂µi

∂x

]
, (6.77)

where

µi = Ti1d− di1M−1, (6.78)

[Ci]k,l =





3c2

Nπ2κ2

(
d2

i

SNR
+

d2
k

SNR
+

d2
i d

2
k

SNR2

)
k = l and k < i

3c2

Nπ2κ2

(
d2

i

SNR
+

d2
k+1

SNR
+

d2
i d

2
k+1

SNR2

)
k = l and k ≥ i

3c2

Nπ2κ2

d2
i

SNR
else

,(6.79)

[
∂µi

∂xj

]

k

=





xj − xj,k

‖x− xk‖
− xj − xj,i

‖x − xi‖
, k < i

xj − xj,k+1

‖x− xk+1‖
− xj − xj,i

‖x − xi‖
, k ≥ i

. (6.80)

Furthermore, let us define µ = [µT
1 , [µT

2 ]2:M , . . . , [µT
M−1]M−1]

T , where µi =
[µi,1, . . . , µi,i−1, µi,i+1, . . . , µi,M ]T , and C as the covariance matrix of this full set
of TDOA measurements. Then the FIM I3(x) for the full set can also be derived
based on (6.77) by replacing µi and Ci with µ and C, respectively. We can obtain
[µ]k = µi,j , where k = (i−1)M − i2/2− i/2+ j, k ∈ {1, 2, . . . , M(M −1)/2}, i ∈
{1, 2, . . . , M − 1}, j ∈ {2, 3, . . . , M} and j > i. Consequently, we achieve

[
∂µ

∂xl

]

k

=
xl − xl,j

‖x− xj‖
− xl − xl,i

‖x− xi‖
. (6.81)

In the same way, [C]k,l = cov(ni,j , np,q), where l = (p−1)M −p2/2−p/2+ q, l ∈
{1, 2, . . . , M(M − 1)/2}, p ∈ {1, 2, . . . , M − 1}, q ∈ {2, 3, . . . , M} and q > p.



CHAPTER 7

Robust Time-Based Localization

7.1 Introduction

In this chapter, we employ TOA measurements for our localization methods be-
cause of their high accuracy and potentially low cost implementation based on
ultra-wideband impulse radios (UWB-IRs). Since TOA measurements are time-
based, clock synchronization is essential to achieve accurate localization. Clock
synchronization alone plays a critical role to guarantee general operations of
WSNs. It is under intensive investigation [29,139–141] and results in various pro-
tocols, such as the Reference Broadcast Synchronization (RBS) protocol [142], the
Timing-sync Protocol for Sensor Networks (TPSN) [27], and the Flooding Time
Synchronization Protocol (FTSP) [143]. On the other hand, clock synchronization
can also be handled by signal processing tools: a maximum likelihood estimator
(MLE) for the clock offset is designed in [144], whereas theoretical performance
limits for clock synchronization and MLEs for the clock offset and skew under
different delay models, are developed in [145] and [146].

Because of the stringent cost and power constraints of WSNs, low-cost clocks
are normally employed. This makes time-based localization and synchronization
tightly coupled and challenging [141]. However, only recently the two entangled
problems are jointly considered. A time-based positioning scheme (TPS) is de-
veloped in [147], where only the clock offset is considered. In [148], location in
time and space is proposed, but only at the MAC and application layers. The
two-way ranging (TWR) protocol proposed in the IEEE 802.15.4a standard [75]
is employed in [149] for asynchronous networks. The relative clock skews are first

The results in this chapter appeared in [135–138].
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calibrated, and then the node positions are estimated by a distributed maximum
log-likelihood estimator (MLLE). Furthermore, a localization approach based on
triple-differences, which are the differences of two differential TDOAs, is proposed
in [150], where the corrupted one-way TOA measurements due to the relative clock
offset and clock skew are corrected by several steps. The TWR protocol is also
employed in [151], which considers TOA-based localization using practical clocks
with internal delays and clock skews. Only recently, the joint estimation of the
clock skew, the clock offset, and the position of the target node is proposed in [28]
for networks with synchronous anchors. A total least-squares (TLS) estimator is
further proposed in [28] to take the uncertainties of the anchor positions and clock
parameters into account. Moreover, the target node position and clock offset are
estimated by a weighted least-squares (WLS) estimator in [127]. An asynchronous
position measurement system is developed in [152] for indoor localization.

Due to the burgeoning of WSNs, localization is vulnerable to many types of
attacks (see e.g., [22–24]). Lazos and Poovendran [153] propose Secure Range-
independent Localization (SeRLoc) methods by taking advantage of antenna sec-
tors in the presence of malicious adversaries. Capkun et al. [154] design Secure
Positioning In sensor NEtworks (SPINE), which deal with distance modification
attacks. Moreover, Chen et al. [155] design several attack detection schemes for
wireless localization systems. Li et al. [118] propose to use least median squares
(LMS) as the metric to develop localization algorithms, which tolerate outliers.
Liu et al. [156] use the minimum mean square error (MMSE) as an indicator to
filter out outliers, and further propose another method to bear with outliers by
adopting an iteratively refined voting scheme.

In this chapter, we consider time-related attacks which tightly connect with
localization and synchronization. UWB-IRs are employed for high resolution TOA
ranging [1, 76]. Low duty cycle, low probability of detection and speed of light
transmission make UWB-IRs ideal for secure communication and localization.
The TWR protocol in the IEEE 802.15.4a standard [75] promotes UWB ranging.
However, this TWR protocol is vulnerable to an internal ranging attack by deceit-
ful target nodes, which means that target nodes can send fraudulent timestamps
to spoof their processing time. Furthermore, target nodes may submit inaccurate
timestamps due to their asynchronous clocks or other reasons. Thus, the current
protocol is not efficient and can even fail under the above circumstances.

We adopt UWB transmissions and propose robust TOA-based localization
methods for asynchronous networks with possible internal attacks. We deal with
two kinds of networks w.r.t. the synchronization level of anchors: one with only
clock offsets among the anchors, referred to as quasi-synchronous networks, and
the other with not only clock offsets but also clock skews among the anchors,
referred to as fully asynchronous networks. Note that there is no synchronization
requirement for the target node, whose clock can run freely. A novel ranging
protocol, namely the asymmetric trip ranging (ATR) protocol is proposed in this
chapter by taking advantage of the broadcast property of WSNs. All the anchors
can obtain ranging information in one ranging procedure. The ATR protocol
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reduces the communication load dramatically compared to the TWR protocol.
In addition, by ignoring the processing time report from the target node, we es-
timate the target node position based only on the reliable timestamps from the
anchors. As a result, the fact that the target node is not synchronized to the an-
chors, or an internal attack is mounted by a compromised target node, does not
have any influence on the performance of our method. Furthermore, closed-form
least-squares (LS) (and WLS) estimators using the ATR protocol are proposed
for quasi-synchronous and fully asynchronous networks, respectively. In the case
of fully asynchronous networks using the ATR protocol, we develop two different
methods. One aims to achieve a small communication load, and practical issues
are taken into account to simplify the estimators. To further simplify these es-
timators, synchronization and localization can be decoupled with almost no cost
in performance. The other method relaxes the communication load constraint in
order to cancel the error floor at high SNR due to approximations in the first
method. But it still has a smaller communication load compared to the TWR
protocol. To the best of our knowledge, this is the first study that combines all
three aspects: localization, synchronization and security. Moreover, we also pro-
pose closed-form LS estimators for fully asynchronous networks using the TWR
protocol, which overcome some drawbacks of previous work in literatures.

The rest of the chapter is organized as follows. In Section 7.2, we review the
TWR protocol, analyze its error sources and explain its vulnerability. The robust
time-based localization algorithms for quasi-synchronous and fully asynchronous
networks are proposed in Section 7.3 and Section 7.4, respectively. In Section 7.5,
we propose a joint synchronization and localization method using the TWR pro-
tocol for fully asynchronous networks. Performance bounds and simulation results
are shown in Section 7.6. The conclusions are drawn at the end of this chapter.

7.2 The TWR protocol

The TWR protocol used in the IEEE 802.15.4a standard [75] facilitates ranging
between two nodes. The packet structure proposed by the standard is composed
of a synchronization header (SHR) preamble, a physical layer header (PHR) and
a data field (see Fig. 7.3). The first pulse of the PHR is called the ranging marker
(RMARKER). The moment when the RMARKER leaves or arrives at the antenna
of a node is critical to ranging. An example of the TWR protocol is shown in
Fig. 7.1. Node A (or Node B) records TAT (or TBT ) and TAR (or TBR) upon
the departure and the arrival of the RMARKER, respectively. Thus, the time of
flight (TOF) t0, which is linear to the distance d (the ranging target) between
node A and node B (d = ct0, where c is the speed of light), is given by

t0 =
1

2

(
TAR − TAT

αA
− τ0

αB

)
+ n, (7.1)
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where τ0 = TBT −TBR is the processing time at node B, αA and αB are the clock
skews of node A and node B, respectively, and n is the aggregate error term. In
general, τ0 is several hundreds of milliseconds and t0 is several tens of nanoseconds
for an indoor environment. As a result, τ0 is heavily influenced by clock drift due
to the relative clock skew between node A and node B.

As the differences of the timestamps are employed in (7.1), the clock offsets
are canceled. The aggregate error term n in (7.1) accounts for different kinds
of errors, such as the leading edge detection (LED) errors [75] [157], and the
uncertainties of the internal delays [75, 151], which we explain next. The LED
errors are due to the detection of the first multipath component of the received
RMARKER. It is not a trivial task to detect the first multipath component, or in
other words, the leading edge of the first cluster of the arriving RMARKER. It
depends on the multipath channel, the signal bandwidth, the signal-to-noise ratio
(SNR) and the detection strategy [1] (see our investigations in Part II). Even if
we can detect the leading edge accurately, there may still be a ranging bias due
to different kinds of environments. The LED could lead to accurate ranging for
line-of-sight (LOS). However, the TOF of the first arriving multipath component
in non-line-of-sight (NLOS) environments may not indicate the correct distance
information due to the obstacles between two ranging nodes. In that case, the
TOF estimates are biased, and calibration is indispensable to remove the bias. A
ranging model that can distinguish between different environments is proposed
in [157]. A more sophisticated ranging model as an enhancement of [157] is
presented in [149], which takes the detection noise and the drift compensation
into account. Next to LED errors, internal delays are caused by the difficulty
to measure events at the antenna exactly. Since the ranging counter is typically
somewhere in the digital section, the signal has to go through some transmitting
(or receiving) chain after (or before) the ranging counter records the timestamp
to reach the antenna (or the ranging counter). There is a difference between the
real time the RMARKER leaves or arrives at the antenna and the recorded time
by the ranging counter. This time-varying internal delay can be a few hundreds of
nanoseconds depending on the transceiver structure [151]. The standard proposes
a calibration mechanism to compensate for the internal propagation time but
some uncertainties still remain. Note that n can also contain communication and
quantization errors as discussed next. Since the timestamps are distributed over
the two nodes, they have to be brought together, which cannot be accomplished
perfectly due to the limited communication resources. Furthermore, the abstract
ranging counter, which assigns values to the timestamps, runs at a nominal 64
GHz in the standard, which causes some quantization effects.

We remark that the timestamps employed for ranging are different from the
timestamps used in traditional clock synchronization protocols. Since the timestamps
used here are recorded at the physical layer when the RMARKER leaves or arrives
at the antenna, it excludes most of the conventional sources of uncertainty of mes-
sage delivery delays in clock synchronization [27] [143] [158], including send time,
access time, reception time and receive time, which are the main error sources in
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Figure 7.1: An example of the TWR protocol

clock synchronization. The TOF for ranging, called the propagation time in clock
synchronization, is one of the sources of uncertainty of message delivery delays,
but it only contributes a little compared to other sources in traditional clock syn-
chronization. Therefore, if these timestamps are used not only for ranging, but
also for clock synchronization, a much better accuracy could be achieved than the
existing clock synchronization protocols (see [27, 29, 143] and references therein).
This kind of physical layer synchronization is also referred to as the pulse coupling
method in [139].

Let us now focus on the security issues of the TWR protocol. The standard
provides optional private ranging as a secure mode. The dynamic preamble selec-
tion and the encryption of the timestamp reports are used to facilitate the private
ranging [75, 76]. However, the TWR protocol is vulnerable to an internal attack,
which cannot be addressed by conventional cryptographic countermeasures. Ac-
cording to (7.1), the TOF t0 depends not only on the timestamps TAR and TAT

at node A, but also on the processing time τ0 at node B. The dependence on
the reliability and synchronization of two different nodes is a weak point of the
TWR protocol. For example, assume node B is compromised and tries to cheat
node A about its distance by tampering its processing time as τ ′

0. Then, t0 will
be miscalculated, since node A is not aware of the attack. In the following, we
adopt the same signal structure as in Fig. 7.3 and propose a new protocol which
is immune to internal attacks.

7.3 Localization for quasi-synchronous networks

We again consider M anchor nodes and one target node, and would like to estimate
the position of the target node. We recall that Xa indicates the known coordinates
of the anchor nodes, and x denotes the unknown coordinates of the target node.
In this section, we tackle quasi-synchronous networks, and we leave the fully
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Figure 7.2: An illustration of the ATR protocol

asynchronous case to the next section.

7.3.1 System model

In quasi-synchronous networks, the target node clock runs freely, and the clock
skews of all the anchors are equal to 1 or treated as 1. There are only clock offsets
among all the anchors. The timing relation between the ith anchor clock Ci(t)
and the absolute time t can be described as [29]

Ci(t) = t + θi, i = 1, 2, . . . , M, (7.2)

where θi is the unknown clock offset of Ci(t) relative to the absolute clock.
Moreover, the model for the target clock is given by

Cs(t) = αst + θs, (7.3)

where αs and θs denote the unknown clock skew and clock offset of the target
node clock relative to the absolute clock.

A novel asymmetric trip ranging (ATR) protocol is shown in Fig. 7.2, which
subsumes the protocol used in [135] as a special case. The ATR protocol makes
all the other anchors listen to the ranging packets and record timestamps locally,
when one anchor and the target node exchange their ranging packets. It can
obtain more information than the TWR protocol, where all the other nodes are
idle, when two nodes exchange their ranging packets. The ATR protocol starts
with one of the anchors initiating the ranging request and recording a timestamp
when its RMARKER departs, which can also be interpreted as the time when that
anchor receives its own RMARKER without any delay. Without loss of generality,
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we assume the Mth anchor initiates the ranging request, and we denote the time
recorded at the Mth anchor as TMM . Consequently, all the other anchors and the
target node receive the ranging request and record their own timestamps TiM , i =
1, 2, . . . , M−1 and TSM , respectively, as soon as they detect the RMARKER from
the Mth anchor. The target node processes the ranging request and broadcasts a
response. The departure time of the target RMARKER is recorded as RSM , and
we define τ = RSM − TSM as the true processing time of the target node. Each
anchor in the network detects the broadcasted ranging response from the target
node, and records its own timestamp for the arrival of the target RMARKER as
RiM , i = 1, 2, . . . , M . If a compromised target node tampers its processing time
as τ ′, or a target node reports τ ′ due to the clock skew or the internal delay, all
the distance measurements would be decreased or enlarged by c|τ −τ ′| (where c is
the speed of light), which would lead to a meaningless position estimate. Hence,
this problem will be addressed later.

For the ith anchor node, the difference between RiM and TiM relates to the
distance as

c(RiM − TiM ) = di + dM + ∆M − diM + niM − miM , i = 1, 2, . . . , M,

(7.4)

where di = ‖xi − x‖ =
√

‖xi‖2 − 2xT
i x + ‖x‖2 is the unknown distance between

the ith anchor and the target node, ∆M = cτ is the unknown distance cor-
responding to the target node processing time in response to the Mth anchor,
and diM = ‖xi − xM‖ is the known distance between the ith and the Mth an-
chors. Furthermore, niM and miM denote the distance errors translated from
the measurement errors of RiM and TiM , respectively, which are aggregate error
terms, as we have discussed in Section 7.2. Note that the recordings of RiM and
TiM , i = 1, 2, . . . , M − 1 are triggered by the received RMARKERs, and thus the
same internal delays are involved, which are canceled out by making differences
of timestamps recorded at the same node as indicated in (7.4). By making these
differences, the clock offsets at the anchors are also canceled∗. The situation is
different for the Mth anchor, since it records TMM and RMM upon transmit-
ting and receiving the RMARKERs, respectively. As a result, the internal delays
of the transmission path and the receiving path are added up when computing
RMM − TMM . Thus, we assume that the main part of the Mth anchor’s in-
ternal delay is compensated beforehand as accomplished in [151]. But different
from [151], compensation is not required for the other anchors in our scheme. Con-
sequentially, niM and miM can be modeled as zero-mean random variables with
variance σ2

i and σ2
iM , respectively [157]. Note that the timestamps employed here

are recorded at the physical layer, which are totally different from the conventional
timestamps recorded at the MAC or other upper layers in clock synchronization,

∗Note that this is different from the traditional TDOA approach, which requires synchron-
ization among anchor nodes [9].
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which have different error sources. A NLOS environment would introduce a biased
LED error, and in that case niM or miM will have a non-zero mean. However, since
this bias is not known, the only safe assumption is to view it as zero mean, or we
assume that a calibration is carried out to remove it beforehand. More sophist-
icated error models such as the one in [149] can be considered in future work.
Defining uM = c[R1M , R2M , . . . , RMM ]T , vM = c[T1M , T2M , . . . , TMM ]T ,
d = [d1, d2, . . . , dM ]T , gM = [d1M , d2M , . . . , d(M−1)M , 0]T ,
nM = [n1M , n2M , . . . , nMM ]T and mM = [m1M , m2M , . . . , mMM ]T , we can
write (7.4) in vector form as

uM − vM = d + (dM + ∆M )1M − gM + nM − mM . (7.5)

In order to be immune to an internal attack by the compromised target node
or to incorrect timestamps due to the randomness of the target node clock, we do
not employ the timestamp report from the target node, but only use it as a trigger
at each anchor. We estimate the target position only based on the timestamps
TiM and RiM , i = 1, 2, . . . , M , recorded locally at the M anchors. Because we
do not use the timestamps of the target node, its clock parameters, such as clock
skew, clock offset and internal delay, do not have any impact on our scheme. This
distinguishes our algorithm from others that use the timestamps of the target
node, such as [28, 149, 151]. It is easy for the target node to cheat one anchor,
but it is almost impossible to cheat all the anchors simultaneously. We remark
that the cooperative positioning protocol proposed in [159] is similar to our ATR
protocol. However, our method differs from [159] in several aspects: (i) we do not
use the timestamps from the target node, and thus our method is more robust
to unreliable timestamps; (ii) the target node processing time is unknown; and
(iii) we propose low-complexity closed-form solutions for localization, instead of
complex MLEs.

7.3.2 Localization algorithm

Since we do not use the timestamps from the target node, the clock parameters
of the target node do not impact its position estimate. More specifically, we treat
∆M (the distance corresponding to the target node processing time) in (7.5) as
an unknown parameter. Note that (7.5) is a linear equation w.r.t. ∆M , but
it is a complicated nonlinear equation w.r.t. x due to dM and d. We are not
interested in methods with a high computational complexity, such as the MLE
which also requires the unknown noise pdf. Because of the low-cost and low-
power constraints of a WSN, we explore low-complexity closed-form solutions for
localization.

Since ∆M ≫ di, ∆M is a dominant term at the right hand side of (7.5). In
order to extract useful distance information, we have to preprocess (7.5). Instead
of choosing a reference anchor node as proposed in [135], we employ an orthogonal
projection P onto the orthogonal complement of 1M , which is given by P = IM −
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1
M 1M1T

M . Since P1M = 0M , P can be used to eliminate the term (dM +∆M )1M

in (7.5). As a result, premultiplying both sides of (7.5) with P, we obtain

P(uM − vM ) = Pd − PgM + P(nM − mM ). (7.6)

Note that Pd = d − d̄1M , where d̄ = 1
M

∑M
i=1 di is the unknown average of the

distances between the target node and the anchors. Thus, (7.6) can be rewritten
as

P(uM − vM ) = d− d̄1M − PgM + PnM − PmM . (7.7)

Keeping d on one side, moving the other terms to the other side, and making an
element-wise multiplication, we achieve

ψa − 2XT
a x + ‖x‖21M = (P(uM − vM + gM )) ⊙ (P(uM − vM + gM ))

+d̄21M + 2d̄P(uM − vM + gM ) + nrs, (7.8)

where ψa = [‖x1‖2, ‖x2‖2, . . . , ‖xM‖2]T , and

nrs

= (P(mM − nM )) ⊙ (P(2(uM − vM + gM ) + mM − nM )) + 2d̄P(mM − nM )

= −(P(nM − mM )) ⊙ (P(nM − mM )) − 2d⊙ P(nM − mM ). (7.9)

Defining PmM = mM − m̄M1M and PnM = nM − n̄M1M , where m̄M =
1
M

∑M
i=1 miM and n̄M = 1

M

∑M
i=1 niM , we can write the entries of nrs as

[nrs]i =2di(miM − m̄M − niM + n̄M ) − (miM − m̄M − niM + n̄M )2,

i = 1, 2, . . . , M. (7.10)

Recall that E[niM ] = 0, E[n2
iM ] = σ2

i and E[niMnjM ] = 0, i 6= j, leading to

E[n̄M ] = 0, E[n̄2
M ] = 1

M2

∑M
i=1 σ2

i and E[n̄MniM ] = 1
M σ2

i . The stochastic prop-
erties of miM can be obtained in a similar way. Moreover, niM and miM , i =
1, 2, . . . , M are uncorrelated. As a result, the stochastic properties of nrs are
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given by

E[[nrs]i] =
2 − M

M
(σ2

iM + σ2
i ) − 1

M2

M∑

k=1

(σ2
kM + σ2

k) ≈ 0, (7.11)

[Σrs]i,j = E[[nrs]i[nrs]j ]

= E[(2di(miM − m̄M − niM + n̄M ) − (miM − m̄M − niM + n̄M )2)

×(2dj(mjM − m̄M − njM + n̄M ) − (mjM − m̄M − njM + n̄M )2)],

≈ 4didjE[(miM − m̄M − niM + n̄M )(mjM − m̄M − njM + n̄M )],

≈





4d2
i

(
M−2

M (σ2
iM + σ2

i ) + 1
M2

∑M
k=1(σ

2
kM + σ2

k)
)

i = j,

4didj

(
1

M2

∑M
k=1(σ

2
k + σ2

kM ) − 1
M (σ2

i + σ2
j + σ2

iM + σ2
jM )

)

i 6= j,

(7.12)

where we ignore the higher order noise terms to obtain (7.12) and assume E[[nrs]i] ≈
0 under the condition of sufficiently small measurement errors. Note that the noise
covariance matrix Σrs depends on the unknown d.

As (7.8) is still a nonlinear equation w.r.t. x, we make again use of the ortho-
gonal projection P to eliminate the terms ‖x‖2 and d̄2 in (7.8). By premultiplying
both sides of (7.8) with P and rearranging the terms, we arrive at

Pψa − P((P(uM − vM + gM )) ⊙ (P(uM − vM + gM )))

= 2PXT
a x + 2d̄P(uM − vM + gM ) + Pnrs.

(7.13)

As a result, (7.13) becomes a linear equation w.r.t. both x and d̄. Defining φq =

ψa−((P(uM−vM+gM ))⊙(P(uM−vM+gM ))), Hq = 2
[
XT

a , P(uM − vM + gM )
]
,

and sq = [xT , d̄]T , we can finally rewrite (7.13) as

Pφq = PHqsq + Pnrs. (7.14)

We can find the LS and WLS solutions for (7.14) as

ŝq = (HT
q PHq)

−1HT
q Pφq, (7.15)

and

ŝq = (HT
q PWPHq)

−1HT
q PWPφq, (7.16)

respectively, where W is a weighting matrix. The optimal weighting matrix Wo
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is given by

Wo = (PΣrsP)†, (7.17)

where we use the pseudo inverse because the M×M projection matrix P has rank
M − 1. Furthermore, PHq should be a full rank tall matrix. Thus, the number
of anchors M should be no less than l + 3 to facilitate two projection operations,
which indicates that we need at least five anchors to estimate the target position
on a plane. Since Wo depends on the unknown d, we can update it iteratively.
Consequently, the iterative WLS is summarized as follows

1. Initialize W using the estimate of d based on the LS estimate of x;

2. Estimate ŝq using (7.16);

3. Construct W using (7.17), where Σrs is computed using ŝs;

4. Repeat Steps 2) and 3) until no obvious improvement of the cost function
(φq − Hqsq)

T PWP(φq − Hqsq) is observed.

An estimate of x is finally given by

x̂ = [Il 0l]ŝq. (7.18)

We remark that the estimator (7.15) (or (7.16)) is equivalent to the unconstrained
LS (or WLS) estimator to obtain x, d̄ and d̄2 − ‖x‖2 all together as discussed
in [123]. We may even improve the estimation performance by exploring the
relations among x, d̄ and d̄2 − ‖x‖2 as constraints. Constrained LS (CLS) and
weighted CLS estimators can be derived as in [6, 11]. However, it is extremely
difficult to take the relation between x and d̄ into account, since it is highly
non-linear.

The distance ∆M corresponding to the target node processing time in response
to the Mth anchor can be estimated as

∆̂M = 1T
M (uM − vM − d̂ + gM ) − d̂M , (7.19)

where d̂i = ‖x̂ − xi‖, i = 1, 2, . . . , M are the distance estimates between the
target node and the anchors based on x̂. We remark that there are mathematical
similarities between our data model (7.5) and the data model in [151], if we regard
dM + ∆M in (7.5) as an unknown internal delay. However, we employ a novel
ATR protocol and estimate the parameters in a different way.

7.4 Localization for fully asynchronous networks

In this section, we relax all the synchronization constraints on the anchors and
the target node. There are not only clock offsets, but also clock skews among all
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the anchors and the target node. We use the same clock model (7.3) here for the
target node to indicate its clock skew αs and clock offset θs. The anchor clock
model Ci(t) is now given by

Ci(t) = αit + θi, i = 1, 2, . . . , M, (7.20)

where αi denotes the unknown clock skew of Ci(t) relative to the absolute clock,
and θi again is the unknown clock offset. Thus, the relations between the clocks
Ci(t) and Cj(t) are given by,

Ci(t) =
αi

αj
Cj(t) −

αi

αj
θj + θi. (7.21)

Applying the same ATR protocol as in Section 7.3.1, we obtain TiM and
RiM , i = 1, 2, . . . , M , which are in total 2M timestamps. Fig. 7.3 shows an
example of a transmitted ranging packet and a received ranging packet. The time
intervals in Fig. 7.3 are measured by the local clocks of the nodes. The length of
the preamble is defined as Tp. Since the ranging packet is generated by the Mth
anchor, it generates the preamble of length Tp relative to its own clock. The ith
anchor regards the length of the received preamble as αiTp/αM due to the relative
clock skew. Therefore, the difference between TiM and TMM is not only related
to the TOF between the anchors (measured by the ith anchor as αidiM/c), but
also to the relative clock drift over the whole preamble. However, the relations
between RiM and TiM the timestamps recorded at the same anchor are relatively
simple. By making differences of the timestamps from the same anchor, the clock
offsets are again canceled out. As a result, the difference between RiM and TiM

can be described as

c

αi
(RiM − TiM ) = di + dM + ∆M − diM +

niM

αi
− miM

αi
, i = 1, 2, . . . , M.

(7.22)

There is no impact of the relative clock drift over the whole preamble in (7.22).
Note that the error terms niM and miM are also influenced by the clock skew
of the ith anchor. We remark that the target clock does not have any impact
on (7.22), but the influence of the asynchronous anchors remains. This again
confirms that ignoring the timestamps from the target node can thwart internal
attacks.

7.4.1 Localization approach I

In (7.22), there are M equations and M + l + 1 unknown parameters in total.
It is clear that there are not enough observation data (timestamps) to estimate
all the parameters, if the ranging procedure is only executed once. To solve that
problem, we propose two different approaches. In a power-hungry WSN, data
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Figure 7.3: An example of a transmitted ranging packet and a received ranging packet

communications could consume much more power than data processing [160], and
the communication load should be reduced as much as possible. Therefore, we
propose localization approach I in order to achieve the minimum communication
load. On the other hand, if we can afford a bit more communication load, the
ranging procedure can be repeated several times in order to obtain sufficient
observations for accurate estimation, which is referred as localization approach II.
We will first introduce localization approach I in this subsection, and explain
localization approach II in the next subsection.

System model

As we mentioned before, in a power-hungry WSN, the communication load should
be reduced as much as possible. Therefore, we propose localization approach I to
add another RMARKER in the ranging packet to facilitate the clock synchron-
ization in order to achieve a small communication load. The new ranging packet
not only includes RMARKER1 in the PHY header (PHR), but also has another
RMARKER2 as the first pulse in the last symbol of the data field as shown in
Fig. 7.3. Although in the standard, there is only one RMARKER, we can liter-
ally define the second one without changing anything in the ranging packet. We
further make use of the prior knowledge about the length of the ranging packet,
and thus the time interval TI between RMARKER1 and RMARKER2 is known
to all the anchors. The length of the received ranging packet can be extended
or reduced due to the relative clock skew of the receiver clock, and thus yields
the parameter bearing the information of the relative clock skew. This parameter
is different from the ones used in [151, 157], where ranging packets have to be
consecutively or periodically transmitted. By making use of the known length of
the ranging packet [157] or the known transmission period [151], they also obtain
parameters bearing the relative clock skew information. However, our scheme has
a smaller communication load than theirs. In Fig. 7.3, we show an example of
an extended ranging packet, where the clock skew difference between the receiver
and the transmitter is positive. We remark that TI should be long enough to
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observe sufficient clock drift, which means that after TI the clock drift should be
larger than the resolution of the TOA estimation. According to the standard, the
time interval TI could be several milliseconds, e.g. 5 ms. With a typical value of
the relative clock skew of 40 ppm, we will observe 200 ns clock difference after
5 ms, whereas the resolution of TOA estimation using an UWB signal with a 1
GHz bandwidth can reach several nanoseconds [1]. Therefore, using a standard
ranging packet, it is sufficient to estimate the drift between RMARKER1 and
RMARKER2. Consequently, each anchor records two timestamps, when it re-
ceives a ranging packet during the procedure. The first set of timestamps is still
represented by TiM and RiM , while the second one is denoted by T̃iM and R̃iM .
Their relations are summarized as

c

αi
(T̃iM − TiM ) =

cTI

αM
+

m̃iM

αi
− miM

αi
, i = 1, 2, . . . , M, (7.23)

c

αi
(R̃iM − RiM ) =

cTI

αs
+

ñiM

αi
− niM

αi
, i = 1, 2, . . . , M, (7.24)

where m̃iM and ñiM are the corresponding distance errors due to the measure-
ment errors of T̃iM and R̃iM , respectively. We assume that the variances of the
measurement errors for RMARKER1 and RMARKER2 in the same packet are
the same, and thus m̃iM and ñiM are also modeled as zero-mean random vari-
ables with variances σ2

iM and σ2
i , respectively. Note that the clock skew of the

target αs in (7.24) influences the time difference TI between RMARKER1 and
RMARKER2 of the ranging response, which is generated by the target node. We
remark that the other clock parameters of the target node, i.e. the clock offset
and the internal delay, do not influence our scheme, since we still do not use the
timestamps from the target node.

We can now write (7.22), (7.23) and (7.24) in vector form as

F1γ =
cTI

αM
1M + diag(γ)(m̃M − mM ), (7.25)

F2γ =
cTI

αs
1M + diag(γ)(ñM − nM ), (7.26)

F3γ = d + (dM + ∆M )1M − gM + diag(γ)(nM − mM ), (7.27)

where γ = [1/α1 1/α2 . . . 1/αM ]T , F1 = diag(ṽM − vM ), F2 = diag(ũM −
uM ), F3 = diag(uM − vM ), ṽM = c[T̃1M , T̃2M , . . . , T̃MM ]T ,

ũM = c[R̃1M , R̃2M , . . . , R̃MM ]T , m̃M = [m̃1M , m̃2M , . . . , m̃MM ]T and ñM =
[ñ1M , ñ2M , . . . , ñMM ]T . Recall that uM = c[R1M , R2M , . . . , RMM ]T and
vM = c[T1M , T2M , . . . , TMM ]T . Our goal is to estimate x, γ and ∆M based
on (7.25) - (7.27). Note that the last equation in (7.25) does not offer any useful
information, since 1/αM is at both sides of the equation. Thus, we collect the
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3M − 1 equations related to γ and write them in vector form as

Fγ =




0M−1
1

αs
cTI1M

d + (dM + ∆M )1M − gM


+




Zdiag(γ)(m̃M − mM )
diag(γ)(ñM − nM )
diag(γ)(nM − mM )


 ,

(7.28)

where F = [FT
1 ZT − ET

1 , FT
2 , FT

3 ]T , E1 = [0(M−1)×(M−1), cTI1M−1] and Z =
[IM−1, 0M−1].

Localization algorithm

From now on, we ignore the error terms in the analysis for simplicity. The localiza-
tion algorithms based on (7.25)-(7.27) are also naturally immune to the unreliable
timestamps from the target node, and robust to the randomness of the target node
clock, since we do not use the timestamps from the target node. We would like to
investigate low-complexity localization methods. Although the data model (7.28)
is a complicated nonlinear equation w.r.t. x, it is linear w.r.t. to γ. We can
first estimate γ as a function of x and 1/αs based on (7.28), and then estimate x
based on (7.27) by plugging in the estimate of γ. From (7.28), the LS estimate
of γ is given by

γ̂=(FTF)−1
( 1

αs
cTI(ũM − uM ) + FT

3 (d + (dM + ∆M )1M − gM )
)
. (7.29)

Plugging (7.29) into (7.27), and rearranging the terms, we achieve

K1(d + (dM + ∆M )1M − gM )=
1

αs
cTIF3(F

T F)−1(ũM − uM ), (7.30)

where K1 = IM −F3(F
T F)−1FT

3 , which is full rank, and whose inverse is explored
in Appendix 7.A. Premultiplying both sides of (7.30) with K−1

1 , we arrive at

d + (dM + ∆M )1M − gM =
1

αs
h, (7.31)

where h = cTIK
−1
1 F3(F

TF)−1(ũM − uM ). We remark that at this point an
MLE can be derived to jointly estimate x, ∆M and 1/αs based on (7.31) via
exhaustive search. It needs at least four anchors to locate a target node on a
plane in this case. However, it has a high computational complexity. Thus, we
continue to investigate low-complexity closed-form solutions. Applying P to get
rid of (dM + ∆M )1M , recalling that Pd = d − d̄1M , and moving d to one side
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and the other terms to the other side, we obtain

d =
1

αs
Ph + d̄1M + PgM . (7.32)

Executing element-wise multiplication and rearranging the equation, we obtain
the linear equation

φ = Hs, (7.33)

where φ = ψa − (PgM )⊙ (PgM ), s = [xT , d̄,
1

αs
, (d̄2 −‖x‖2),

1

α2
s

, 2
d̄

αs
]T , and

H = [2XT
a , 2PgM , 2(Ph) ⊙ (PgM ), 1M , (Ph) ⊙ (Ph), Ph]. However, as in-

vestigated in Appendix 7.B, H is always rank-deficient in the noiseless case or
with sufficiently small noise. Hence, it is impossible to have a unique estimate of
s based on (7.33). We can also interpret this problem from another point of view.
Our method is equivalent to first jointly estimating γ, d, 1/αs, and dM +∆M (in
total 2M + 2 parameters) based on (7.25)-(7.27), then plugging the estimate of γ
into (7.27), linearizing the equations w.r.t. x, and finally estimating x. But (7.25)
and (7.26) are linearly dependent in the noiseless case or with sufficiently small
noise, and there are only 2M independent equations in (7.25)-(7.27). Therefore,
we cannot estimate γ without ambiguities, and that is why (7.33) does not have
a unique solution.

However, let us take some practical issues into account to solve this problem.
The clock skew of the ith anchor relative to the absolute time is αi − 1, which is
in the order of several tens of ppm (10−6). The typical range of αi − 1 is from 2
ppm to 80 ppm according to the standard, which means that αi is in the range
of 0.99992 to 1.00008, and also αs is in the same range. Thus, we can make a
first-order Taylor expansion of 1/α2

s as a function of 1/αs around 1 by ignoring
the higher order terms as 1/α2

s ≈ 2/αs − 1. We can plug it into (7.33), rearrange
the terms, and then obtain an equation w.r.t. x, d̄, d̄/αs, 1/αs and d̄2 −‖x‖2 (in
total l + 4 unknowns). However, if we make further use of the prior knowledge
that αs is very close to 1, we can obtain an equation with even fewer unknowns,
leading to a better estimation performance. Thus, we can further assume that
d̄/αs ≈ d̄, and plug this together with 1/α2

s ≈ 2/αs − 1 into (7.33), which leads
to

φd = Hdsd, (7.34)

where φd = φ + (Ph) ⊙ (Ph), sd = [xT , d̄,
1

αs
, (d̄2 − ‖x‖2)]T and Hd =

[2XT
a , 2P(gM + h), 2Ph ⊙ (PgM + Ph), 1M ]. Note that there are only l + 3

unknowns in (7.34). The LS estimate of sd is then given by

ŝd = (HT
d Hd)

−1HT
dφ. (7.35)
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Note that the rank of Hd should be l + 3 in order to estimate all the parameters,
which indicates M − 1 ≥ l + 3. It needs at least six anchors to estimate all the
parameters in a plane.

Now that we can simplify the problem by considering practical issues, let
us revisit the data model (7.32). Since αs is very close to 1, we may assume
1

αs
Ph ≈ Ph by ignoring the effect of 1/αs, which means we treat αs as 1,

although it may not be exactly equal to 1. Note that this approximation can be
improved by first applying conventional synchronization methods to the target
node. We can then rewrite (7.32) as

d ≈ Ph + d̄1M + PgM . (7.36)

Sequentially, after element-wise multiplication and moving terms, we arrive at

φa = Hasa, (7.37)

where φa = ψa − (P(gM + h)) ⊙ (P(gM + h)), sa = [xT , d̄, d̄2 − ‖x‖2]T , and
Ha = [2XT

a , 2P(gM + h), 1M ]. The LS estimate of sa is then given by

ŝa = (HT
a Ha)−1HT

aφa. (7.38)

The rank of Ha should be l + 2 in order to estimate all the parameters, which
indicates M−1 ≥ l+2. It needs at least five anchors to estimate all the parameters
in a plane. As a result, taking such practical issues into account can dramatically
simplify the problem. Moreover, we remark that the data model (7.36) is similar
to the data model (7.7) in Section 7.3.2. Thus, the localization algorithms in
Section 7.3.2 for quasi-synchronous networks can also be applied here to estimate
x.

Since it is always complicated to estimate γ and x jointly, we can also resort
to simple solutions to decouple the synchronization and the localization. Defining
βM = αM [1/α1, 1/α2, . . . , 1/αM−1]

T of length M−1, and β̃M = [βT , αM/αs]
T

of length M , we can first estimate β̃M based on (7.25) and (7.26), which means
that we first make use of TI between the two RMARKERs to Calibrate the
Clock Skews, and then Estimate the Node Position (CCS-ENP). As αM is tightly
coupled with the other clock skews, we can only estimate their ratios. We combine
(7.25) and (7.26) ignoring the noise terms as

Fββ̃M = bβ , (7.39)

where bβ = [cTI1
T
M−1, 0T

M−1, ũM − uM ]T , and

Fβ =




ZF1Z
T 0M−1

ZF2Z
T −cTI1M−1

0T
M−1 −cTI


 . (7.40)
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Consequently, the LS estimates of β̃M and βM are given by

ˆ̃
βM = (FT

β Fβ)−1FT
β bβ , (7.41)

β̂M = Z
ˆ̃
βM , (7.42)

respectively. Since only (7.27) is related to x, we rewrite it as an equation in βM

and x without noise terms

F3βa = αM (d − gM + (dM + ∆M )1M ), (7.43)

where βa = [βT
M , 1]T . Due to the fact that αM ≈ 1, we can write αMd ≈ d and

αMgM ≈ gM . Thus, we can rewrite (7.43) as

F3βa ≈ d + (dM + αM∆M )1M − gM , (7.44)

where αM is tightly coupled with ∆M . Again, we can improve this approxima-
tion by first synchronizing the Mth anchor in order to improve the localization
performance. Plugging β̂M into (7.44), we observe that it is equivalent to the pos-
ition estimation based on (7.5). Therefore, the time-based localization algorithms
in Section 7.3.2 for quasi-synchronous networks can again be applied here to es-
timate x. For brevity, we do not repeat the algorithms here. We remark that
employing this separate method, we also need five anchors to calibrate the clock
skews and estimate the target position in a plane. As an extension, even if some of
the anchors are manipulated by attackers to report misinformation, we could still
combine our approach with the methods in [118] or [156] to mitigate the influence
of outliers. This is left for future work.

7.4.2 Localization approach II

System Model

If we may relax the communication load constraint, we can repeat the ATR pro-
tocol using different anchors as initiators to obtain additional information. Note
that if an additional anchor plays the role of initiator, we obtain M new equations
and one extra unknown distance corresponding to the processing time. Thus, we
generalize (7.27), which is based on the Mth anchor to the following equation,
where the jth anchor is used as initiator:

diag(uj − vj)γ=d + (dj + ∆j)1M − gj + diag(γ)(nj − mj), (7.45)

where ∆j is the unknown distance corresponding to the processing time of the
target node formulating a response to the jth anchor. Moreover,
uj = c[R1j , R2j , . . . , RMj ]

T , vj = c[T1j , T2j , . . . , TMj ]
T , gj = [d1j , d2j , . . . , dMj ]

T ,
nj = [n1j , n2j , . . . , nMj ]

T , and mj = [m1j , m2j , . . . , mMj ]
T .
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Assuming that n anchors play the role of initiator, we have to fulfill the con-
dition nM ≥ M + l + n in order to obtain enough equations to estimate all
the parameters, where M ≥ n > 0. It is possible that only a subset of an-
chors plays the role of initiator. However, since we are interested in the min-
imum number of anchors required for this approach, we take n = M , which
means that all anchors participate. The minimum value of M is then given by
Mmin = min{M ∈ {1, 2, . . .}|M2 − 2M ≥ l}, for instance, when l = 2, Mmin = 3.
From now on, we ignore the error terms for simplicity, and assume n = M . We
then obtain in total M2 equations and can write them in vector form as follows

Aγ = (B + C)d + C∆ − g, (7.46)

where A = [diag(u1 −v1), diag(u2 −v2), . . . , diag(uM −vM )]T , B = 1M ⊗ IM ,
C = IM ⊗ 1M , ∆ = [∆1, ∆2, . . . , ∆M ]T , g = [gT

1 , gT
2 , . . . , gT

M ]T , and ⊗
denotes Kronecker product. We remark that the target node is required to use
different processing times in response to different anchors. If ∆i = ∆j , we obtain
the relation (Rij − Tij)/(Rji − Tji) = αi/αj without error terms, and it is only
possible to estimate the relative clock skew. In that case, the equations (7.46) are
not independent. Therefore, we assume that ∆i 6= ∆j , i, j ∈ {1, 2, . . . , M}.

Localization Algorithm

We would like to estimate x, γ and ∆, in total 2M + l unknown parameters
based on (7.46), which is a complicated nonlinear equation w.r.t. x. When we
ignore the relations among the distances in d and regard them as independent
unknowns, (7.46) is linear w.r.t. γ, d and ∆. Therefore, we propose a two-step
approach. We first jointly estimate γ, d and ∆, obtaining a unique estimate for
γ but ambiguous estimates of d and ∆. Secondly, we plug the estimate of γ into
(7.46), linearize the equation w.r.t x via mathematical manipulations and then
estimate x. We remark that although our approach is accomplished in two steps,
the first step is still a joint approach to estimate γ, d and ∆, and in the second
step the estimate of γ is used and the relation between d and x is explored.
Furthermore, we use the same set of measurements to obtain all the estimates,
and thus our method yields a joint synchronization and localization approach.

In the first step, there are 3M unknowns (γ, d and ∆) and M2 equations.
Thus, Mmin = 3 is still valid. However, we note that [B + C, C] is rank
deficient because of the common basis of B and C. Therefore, we can only
jointly estimate d and ∆ with ambiguities. Since we are only interested in
the result for γ based on (7.46), the subspace minimization method [123] is
employed due to its computational efficiency, which is equivalent to the joint
estimation of all the unknowns. Let us define D = [[B]:,1:M−1, C] of size
M2 × (2M − 1), and obtain an orthogonal projection matrix onto the orthogonal
complement of D as Pd = IM2 −D(DT D)−1DT , which fullfills the condition that
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PdB = PdC = 0M2×M . Premultiplying Pd to both sides of (7.46), we arrive at

PdAγ = −Pdg. (7.47)

Consequently, the LS estimate of γ is given by

γ̂ = −(AT PdA)−1AT Pdg. (7.48)

We remark that in order to obtain the LS estimate of γ, the condition M2 + 1 −
2M ≥ M has to be fullfilled taking the penalty of the projection into account,
which means Mmin = 3 is still valid.

In the second step, plugging γ̂ into (7.46), we achieve

Aγ̂ = (B + C)d + C∆ − g, (7.49)

where we would like to get rid of the nuisance parameter ∆, and investigate the
nonlinear relation between d and x in order to obtain a unique estimate of x.
Thus, the orthogonal projection matrix Pc onto the orthogonal complement of C
is used, which is given by Pc = IM2 − 1

M (IM ⊗ (1M1T
M )). Moreover, we find that

PcBd = Bd− d̄1M2 , where d̄ = 1
M

∑M
i=1 di. Consequently, premultiplying Pc to

both sides of (7.49), we obtain

PcAγ̂ = Bd− d̄1M2 − Pcg. (7.50)

Due to the special structure of B, we have 1
M BTB = IM . Therefore, premul-

tiplying 1
M BT to both sides of (7.50), moving d to one side, the other terms to

the other side, and simplifying the equations, we arrive at

d =
1

M
BTPcAγ̂ + d̄1M +

1

M
BTPcg. (7.51)

After element-wise multiplication on both sides of the equation, moving unknown
parameters to one side, known terms to the other side, we achieve

φs = Hsss, (7.52)

where φs = ψa − 1
M2 (BT Pc(Aγ̂ + g)) ⊙ (BTPc(Aγ̂ + g)),

Hs = [2XT
a , 1M , 2

M BT Pc(Aγ̂+ g)] and ss = [xT , d̄2 −‖x‖2, d̄]T . Thus, the LS
estimate of ss is given by

ŝs = (HT
s Hs)

−1HT
s φs. (7.53)

We remark that the rank of Hs should be l + 2, and thus M ≥ l + 2, e.g., M ≥ 4
for l = 2. One more anchor is required due to the linearization compared to
Mmin = 3 mentioned before.
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Figure 7.4: An illustration of the TWR protocol

7.5 Localization using the TWR protocol

7.5.1 System Model

Since the TWR protocol is proposed in the standard [75], we also develop an ap-
proach based on this protocol to jointly synchronize and localize fully asynchron-
ous networks thereby overcoming some of the drawbacks in [149,151]. In [149,151],
the consecutive [149] or periodic [151] transmission of ranging packets is required
in order to make use of the prior knowledge of the packet length for relative
clock skew estimation. Moreover, due to the fact that the relative clock skew
is expressed in ppm (10−6), [149, 151] ignores the clock drift during the time of
flight, which is in the order of tens of nanoseconds for an indoor environment, and
thus [149, 151] introduces an approximation. In our proposed scheme, we do not
require a consecutive or periodic packet transmission, and do not ignore any clock
drift. Furthermore, closed-form LS estimators are developed with computational
efficiency.

Each anchor carries out multiple iterations of the TWR protocol to measure
its distance to the target node as shown in Fig. 7.4. As a result, the ith anchor
measures its round trip time at the jth iteration of the TWR protocol as Vij ,
which is obtained by making the difference of its two timestamps recorded upon
the departure and the arrival of the RMARKERs of the ranging request and
the ranging response, respectively. The target node correspondingly measures its
processing time Dij in the same way. The clock offset of the node is eliminated in
the same way as for the ATR protocol by making the difference of its timestamps.
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However, the clock skews of the nodes still remain. Thus the relation between Vij

and Dij for the jth iteration can be modeled as

c

2
(
Vij

αi
− Dij

αs
) = di +

n̆ij

αi
− m̆ij

αs
, i = 1, 2, . . . , M, (7.54)

where n̆ij and m̆ij are the distance error terms translated from the measurement
errors in Vij and Dij , which can be modeled as zero-mean Gaussian random
variables. Once all the anchors execute the TWR protocol for one time, we
obtain M equations, but M + l + 1 unknowns in total. Hence, the TWR protocol
is executed N times by each anchor to obtain extra information. Defining pi =
c
2 [Vi1, Vi2, . . . , ViN ]T and qi = c

2 [Di1, Di2, . . . , DiN ]T obtained by the ith
anchor-target pair, we arrive at

1

αi
pi −

1

αs
qi = di1N +

1

αi
n̆i −

1

αs
m̆i, i = 1, 2, . . . , M. (7.55)

Note that for quasi-synchronous networks, where αi = 1, i = 1, 2, . . . , M , if we
have αs = 1, (7.55) boils down to the following equation after averaging

1

N
1T

N (pi − qi) = di +
1

N
1T

N (n̆i − m̆i), i = 1, 2, . . . , M. (7.56)

We can write (7.56) in vector form collecting all the timestamps for each anchor-
target pair. Consequently, the target position can then be estimated based on
the vector form of (7.56) using the same LS estimator as in Section 7.3. We
do not repeat it here for the interest of brevity. We remark that we first have
to calibrate the clock skew of the target clock in a quasi-synchronous network
in order to employ the TWR protocol. Otherwise, the target clock skew will
influence its processing time record and corrupt the location estimate.

7.5.2 Localization algorithm

Now let us explore closed-form localization methods for fully asynchronous net-
works using the TWR protocol. For simplicity, we ignore the noise terms from
now on. The equations (7.55) for different anchor-target pairs are coupled through
αs and x. They are nonlinear w.r.t. x due to the nonlinear relation d ⊙ d =
ψa−2XT

a x+‖x‖21M , but each of them is linear w.r.t. 1/αi, 1/αs and di. There-
fore, we can first estimate the relative clock skew βsi = αs/αi based on a set of
equations modified from (7.55):

βsipi − qi = αsdi1N . (7.57)

Note that αs and di are coupled together. According to (7.57), N ≥ 2 in order
to estimate both βsi and αsdi. Since we are only interested in βi, an orthogonal
projection matrix PN = IN − 1

N 1N1T
N onto the complement of 1N is constructed.
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Applying PN to both sides of (7.57), we can estimate βsi as

β̂si =
pT

i PNqi

pT
i PNpi

. (7.58)

We remark that a different processing time is again required in each iteration of the
TWR protocol. Otherwise, pi and qi would be canceled out by the projection in
the noiseless case. Sequentially, we plug β̂si into (7.57) and average it to mitigate
the noise, which leads to

1

Nαs
1T

N(β̂sipi − qi) = di, i = 1, 2, . . . , M. (7.59)

After element-wise multiplication of (7.59), moving knowns to one side and un-
knowns to the other side, we achieve

ψa = Htst, (7.60)

where st = [xT , ‖x‖2, 1
α2

s
]T , Ht = [2XT

a , −1M , f ] and the ith element of f is

defined as [f ]i = 1
N2 (1T

N (β̂sipi − qi)) ⊙ (1T
N (β̂sipi − qi)). Consequently, the LS

estimate of st is given by

ŝt = (HT
t Ht)

−1HT
t ψa. (7.61)

We remark that the rank of Ht should be l + 2, thus M ≥ l + 2, e.g., M ≥ 4 for
l = 2.

Let us now compare the communication load of this approach with localization
approach II using the ATR protocol in Section 7.4.2. Note that localization
approach I using the ATR protocol has an even lower communication load than
localization approach II. Thus, we just compare this approach with localization
approach II. In the worst case, the ATR protocol is executed by every anchor
in the network (in total M anchors) in localization approach II. Therefore, 2M
ranging packets are transmitted, and 2M2 timestamps are recorded. On the other
hand, if we run the minimum number of iterations for each anchor-target pair in
the TWR protocol, which is Nmin = 2, 2NminM ranging packets are transmitted,
and 4NminM timestamps are recorded. Obviously, using localization approach II
based on the ATR protocol, we obtain more information and have a smaller
communication load. Moreover, the estimate of γ is based on the whole set of
measurements, but the estimate of βsi only depends on a subset of measurements.
Furthermore, the computational complexities of the estimator (7.53) for ss and
(7.61) for st are similar, while the one of the estimator (7.58) for βsi is smaller
than the one of (7.48) for γ.
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7.6 Performance bounds and simulation results

As a well-adopted lower bound, the Cramèr-Rao bound (CRB) is derived for
quasi-synchronous and fully asynchronous networks, respectively. Although the
CRB is a bound for unbiased estimators, the estimators derived in this chapter are
biased. It is still interesting to compare them. Here, we exemplify the CRBs for
location estimation on a plane, e.g., we take l = 2. The Fisher information matrix
(FIM) I1(θ1) based on the model (7.5) in Section 7.3.1 for quasi-synchronous
networks is derived in Appendix 7.C, where θ1 = [∆M , xT ]T , and x = [x1, x2]

T .
Consequently, we obtain CRB(x1) = [I−1

1 (θ1)]2,2 and CRB(x2) = [I−1
1 (θ1)]3,3.

We observe that ∆M is not part of I−1
1 (θ1). Therefore, no matter how large ∆M

is, it has the same influence on the CRB for quasi-synchronous networks. On
the other hand, the FIM I2(θ2) based on the model (7.25)-(7.27) in Section 7.4.1
for fully asynchronous networks employing localization approach I is derived in
Appendix 7.D, where θ2 = [xT , ∆M , αT , 1/αs]

T , and α = [α1, α2, . . . , αM ]T .
As a result, we achieve CRB(x1) = [I−1

2 (θ2)]1,1 and CRB(x2) = [I−1
2 (θ2)]2,2. All

the parameters of θ2 appear in I2(θ2), and thus they all influence the CRB for
fully asynchronous networks.

Let us now evaluate the performance of the proposed robust localization al-
gorithms by Monte Carlo simulations, and compare it with the CRB. We consider
two simulation setups: Setup 1 and Setup 2. In Setup 1, the anchors are evenly
located on the edges of a 40 m × 40 m rectangular to mimic an indoor geometry
scale. Meanwhile the target node is randomly located on a grid with cells of size
1 m × 1 m inside the rectangular. In Setup 2, all anchors and the target node
are randomly distributed on the grid inside the rectangular. Furthermore, mij ,
mji and m̃ij , i, j ∈ {1, 2, . . . , M} have the same variance σ2

ij = σ2
ji, while nij , ñij ,

n̆il and m̆il, l ∈ {1, 2, . . . , N} have the same variance σ2
i . Due to the broadcast

property of the ranging protocol, we assume that σ2
i and σ2

ij are related to the
distances according to the path loss law. Thus we define the average noise power
as σ̄2 = 1/M

∑M
i=1 σ2

i , where σ2
ij and σ2

i are chosen to fulfill the condition that all

σ2
ij/d2

ij and σ2
i /d2

i are equal as in [11]. Note that since dii = 0, we simply assume

σ2
ii = 0 and mii = m̃ii = 0. The clock skews of the anchors and the target are ran-

domly generated in the range of [1− 100 ppm, 1 + 100 ppm], and the clock offsets
are randomly generated in the range of [1ns, 10ns]. For localization approach I,
the processing time of the target node in response to the Mth anchor is 5 ms,
and as a result the corresponding distance ∆M is 3 × 108 × 5 × 10−3 = 1.5× 106

m. The time interval TI between RMARKER1 and RMARKER2 is 1 ms. For
localization approach II, the processing time at the target node is randomly gen-
erated, uniformly distributed in the range of 2.5 ms to 7.5 ms. As a result, the
corresponding distance ∆i is in the range of 7.5× 105 m (3× 108 × 2.5× 10−3) to
2.25 × 106 m. The performance criterion is the root mean square error (RMSE)

of x̂ vs. SNR, which can be expressed as
√

1/Nexp

∑Nexp

j=1 ‖x̂(j) − x‖2, where

x̂(j) is the estimate obtained in the jth trial. Each simulation result is averaged
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over Nexp = 1000 Monte Carlo trials. We would like to compare our localiza-
tion algorithms with the localization algorithm using the TWR protocol, which
is clarified in Section 7.5, and the algorithm LS-I in [28]. We assume that the
algorithm LS-I in [28] is employed with accurate knowledge of the anchor clock
parameters and positions. The number of rounds of two-way message exchanges
for LS-I in [28] is four, as with more than four rounds, the estimation performance
improvement is only marginal [28].

7.6.1 Localization for quasi-synchronous networks

Fig. 7.5(a) and Fig. 7.5(b) show the localization performance of respectively Setup
1 and Setup 2 with eight anchors that do not suffer from clock skews. In each
Monte Carlo run, we generate a new geometry. In both figures, the dashed lines
with no and “♦” markers represent the conventional localization algorithm with
the TWR protocol using the fraudulent timestamp report from the target node
with 3 m and 15 m errors, respectively. According to the figures, they cannot
estimate the target position correctly even with sufficiently small noise terms.
A larger timestamp error introduces a higher error floor. The dashed line with
“▽” markers illuminates the conventional localization algorithm with the TWR
protocol using the correct timestamp report. It is slightly better than the CRB of
our method for Setup 1 (the dotted line with “×” markers), but much better than
the one for Setup 2. This is reasonable, since the conventional method estimates
less parameters than the proposed method. The performance of the algorithm LS-
I (the dashed line with “△” markers) in Setup 1 and Setup 2 is quite different. It is
worse than our method (the solid lines with different markers) in Setup 1, whereas
it is better than our method in Setup 2. As a result, the algorithm LS-I seems to
be sensitive to the geometry, when the target node is inside the region restricted
by the anchors. Moreover, 8M ranging packets are transmitted in the algorithm
LS-I compared to only 2 ranging packets in our scheme, so our communication
load is much smaller. Furthermore, the method in Section 7.3.2 is immune to
a fraudulent timestamp report and robust to the randomness of the target node
clock. Moreover, its localization performance is accurate with sufficiently small
noise terms. The solid line with “2” markers shows the performance of the LS
estimator using the eighth anchor as the reference node [135], whereas the solid
line with “+” markers indicates the performance of our proposed LS estimator
using the projection P. Note that they almost overlap. The solid lines with
“◦” and “∗” markers denote the performance of our proposed WLS method with
an optimal weighting and an iterative weighting matrix, respectively. The fact
that they almost overlap indicates that if we use the LS estimate as an initial
point, the iterative WLS can converge to the WLS with optimal weighting. The
performance of the WLS with optimal weighting is slightly better than the LS and
the iterative WLS estimators. Considering the computational complexity and the
performance, the LS estimator would be the best option.
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Figure 7.5: RMSE of target node position x for quasi-synchronous networks

7.6.2 Localization for fully asynchronous networks

Localization approach I

Fig. 7.6(a) and Fig. 7.6(b) illustrate the localization performance of respectively
Setup 1 and Setup 2 with eight anchors in fully asynchronous networks using
localization approach I. The dotted lines with “♦” markers depict the performance
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of the conventional TWR algorithm without clock skew calibration. The high
error floors indicate that it cannot estimate the correct position of the target
even with sufficiently small noise. The dotted line with “▽” markers indicates
the performance of the conventional TWR algorithm using a correct timestamp
report and with clock skew calibration. It is lower than the dotted line with
“×” markers, which represents the CRB and serves as a benchmark for fully
asynchronous networks. There are performance gaps between the CRB and the
proposed methods in both figures. However, the gap is smaller in Setup 2. The
proposed methods make a tradeoff between performance and complexity. The
performance of the algorithm LS-I (the dashed line with “△” markers) in Setup 1
and Setup 2 is again quite different. It is slightly worse than our method (the solid
lines with different markers) in Setup 1, whereas it is better than the CRB in Setup
2. Note that it estimates much fewer parameters than ours, since it assumes the
exact knowledge of the anchor clock parameters. On the other hand, we estimate
the anchor clock skews and the target node position together. The algorithm LS-I
still seems to be sensitive to the geometry, and has much more communication
load than ours. The estimator ŝa (7.38) (the lines with “+” markers) and the
CCS-ENP method (the lines with “2” markers) achieve the same performance.
The performance of the estimator ŝd (7.35) (the lines with “◦” markers ) is worse
than them in general, as it estimates more parameters. Note that ŝa treats αs as
1, and ŝd treats 1/α2

s as 2/αs − 1 and d̄/αs as d̄. Therefore, there are error floors
when αs 6= 1 (the solid lines with “+” and “◦” markers), but these floors only
appear at high SNR. The performance degradation at high SNR caused by the
approximation error in ŝa is more important than the benefit of less unknowns.
Thus, ŝa has a slightly higher error floor than ŝd when αs 6= 1 at high SNR.
However, as long as the condition αs = 1 is fulfilled, both ŝa and ŝd (the dashed
lines with “+” and “◦” markers) can achieve accurate estimates, even for high
SNR. The CCS-ENP method is developed by treating αM as 1. Thus, it has a
similar error floor at high SNR when αM 6= 1, which is indicated by the solid
line with “2” markers. Based on the above analysis, both the estimator ŝa and
the CCS-ENP method are good choices considering the implementation cost and
performance.

Localization approach II

We now compare localization approach II with the localization method using the
TWR protocol proposed in Section 7.5. We only consider Setup II, where all
the anchors and the target node are randomly distributed inside a 40 m × 40 m
rectangular. Fig. 7.7(a) and Fig. 7.7(b) show the RMSE of x vs. 1/σ̄2 for both
protocols, respectively. We have tested different numbers of anchors. As M = 5 is
just one more than the minimum number of anchors required by the approaches,
the curves with M = 5 (the lines with circle markers) are not as smooth as the
ones with more anchors. More anchors improve the accuracy of the estimates.
In Fig. 7.7(a), the performance gap between M = 5 and M = 7 (the line with
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Figure 7.6: RMSE of target node position x for fully asynchronous networks

+ markers) is larger than the one between M = 7 and M = 9 (the line with
rectangular markers). Thus the improvement reduces as the number of anchors
increases. In Fig. 7.7(b), we choose N = 3. We observe that the improvement
first increases and then reduces along with the number of anchors. Although the
approach based on the TWR protocol transmits N − 1 times more packets than
the one based on the ATR protocol, we observe in general better performance
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Figure 7.7: RMSE of x for different protocols

achieved by the latter one.

7.7 Conclusions

In this chapter, we have proposed robust localization strategies based on TOA
measurements to localize a target node with the help of anchors for asynchronous
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ATR TWR
Broadcast property Yes No

Internal attack by the target node Immune Vulnerable
Processing Time of the target node Unknown Measured

Communication load Low High

Table 7.1: Comparison between the ATR and the TWR protocol

networks. We have dealt with two kinds of asynchronous networks: one only with
clock offsets referred to as quasi-synchronous networks, and the other not only
with clock offsets but also with clock skews referred to as fully asynchronous net-
works. Regardless of the reliability of the timestamps from the target node, we
have proposed a novel ranging protocol, namely asymmetric trip ranging (ATR),
which leads to localization methods that are naturally immune to internal at-
tacks mounted by a compromised target node. The comparison between the ATR
and the TWR protocol is listed in Table 7.1. Furthermore, closed-form LS and
iterative WLS estimators have been proposed to localize the target node for quasi-
synchronous networks. For fully asynchronous networks, we have developed two
different approaches to jointly estimate the position and clock parameters. Local-
ization approach I with the minimum communication load takes practical issues
into account to simplify the estimators by appropriate approximations. The price
paid by localization approach I is the error floor at high SNR due to approxim-
ations. Localization approach II relaxes the communication load constraint in
order to obtain accurate estimates and avoid the error floor at high SNR. The
appropriate estimators can be chosen according to system specifications. We have
further designed closed-form LS estimators for joint synchronization and localiz-
ation using the TWR protocol. Moreover, the CRBs for both quasi-synchronous
and fully asynchronous networks have been derived, respectively. Simulation res-
ults have corroborated the efficiency of our localization methods.
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7.A Computation of K−1

Since K1 = IM − F3(F
TF)−1FT

3 , K−1
1 can be written as

K−1
1 = (IM − F3(F

TF)−1FT
3 )−1

= (IM − ((FT
3 )−1(FTF)F−1

3 )−1)−1

= (FT
3 )−1(FTF)F−1

3 ((FT
3 )−1(FT F)F−1

3 − IM )−1

= (FT
3 )−1(FTF)((FT

3 )−1(FT F) − F3)
−1

= (FT
3 )−1(FTF)(FT F − FT

3 F3)
−1FT

3 . (7.62)

Recalling that F = [FT
1 ZT − ET

1 , FT
2 , FT

3 ]T , we arrive at

FTF− FT
3 F3 = FT

1 ZT ZF1 + FT
2 F2 + ET

1 E1 − FT
1 ZT E1 − ET

1 ZF1

=

[
Λ ρ

ρT f

]
, (7.63)

where ρ = cTIZ(ṽM −vM ), f = (M − 1)c2T 2
I + [r2]M , Λ = Z

(
diag

(
r1 + r2

))
ZT ,

which is a diagonal matrix of size (3M − 1) × (3M − 1) with r1 = (ṽM − vM ) ⊙
(ṽM − vM ) and r2 = (ũM − uM ) ⊙ (ũM − uM ). The inverse of FTF − FT

3 F3 is
given by

(FTF − FT
3 F3)

−1 =




Λ−1 +
1

w
Λ−1ρρTΛ−1 1

w
Λ−1ρ

1

w
ρTΛ−1 1

w


 , (7.64)

where w = f − ρTΛ−1ρ. We further have

Λ−1 = Z
(
diag

(
r1 + r2

))−1

ZT ,

Λ−1ρ = cTIZ
(
diag

(
r1 + r2

))−1

ZT Z(ṽM − vM ),

Λ−1ρρT Λ−1 = c2T 2
I Z
(
diag

(
r1 + r2

))−1

ZT Z(ṽM − vM )

×(ṽM − vM )T ZTZ
(
diag

(
r1 + r2

))−1

ZT ,

ρT Λ−1ρ = c2T 2
I (ṽM − vM )TZT Z

(
diag

(
r1 + r2

))−1

ZT Z(ṽM − vM ).

K−1
1 can be obtained by plugging the expression of (FT F−FT

3 F3)
−1 into (7.62).
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7.B Computation of H

In the noiseless case or with sufficiently small noise, Ph = αs(Pd − PgM ).
Recalling that H = [2XT

a , 2PgM , 2(Ph) ⊙ (PgM ), 1M , (Ph) ⊙ (Ph), Ph],
we explore the properties of H. With Pd = d − d̄1M , PgM = gM − d̄a1M

(where d̄a = 1
M

∑M
i=1 diM ), d ⊙ d = ψa − 2XT

a x + ‖x‖21M , and gM ⊙ gM =
ψa − 2XT

a xM + ‖xM‖21M , we obtain

Pd ⊙ PgM = gM ⊙ d − d̄ad − d̄gM + d̄ad̄1M , (7.65)

(Ph) ⊙ (PgM ) = αs(Pd − PgM ) ⊙ (PgM ) (7.66)

= αs

(
gM ⊙ d − gM ⊙ gM − d̄ad− (d̄ + 2d̄a)gM

+(d̄ad̄ − d̄2
a)1M

)
,

Ph ⊙ Ph = α2
s((Pd) ⊙ (Pd) − 2(Pd) ⊙ (PgM ) + (PgM ) ⊙ (PgM ))

= α2
s(d ⊙ d + gM ⊙ gM − 2gM ⊙ d

+(d̄2
a + d̄2 − 2d̄ad̄)1M + 2(d̄ − d̄a)gM + 2(d̄a − d̄)d).

(7.67)

Based on (7.66) and (7.67), we have

Ph⊙ Ph + 2αs(Ph) ⊙ (PgM )

= α2
s(2X

T
a (xM − x) + (‖x‖2 − ‖xM‖2 + d̄2 − d̄2

a)1M − 6d̄agM − 2d̄d).

(7.68)

Consequently, the independent columns of H are XT
a ,1M ,d,gM ,Ph⊙PgM . The

rank of H is l + 4, but its size is M × (l + 5). Thus, H is rank-deficient.

7.C CRB derivation for quasi-synchronous net-

works

We analyze the CRB for jointly estimating ∆M and x based on (7.5). The FIM
I1(θ1) is employed, with entries defined as:

[I1(θ1)]ij = −E

[
∂2

∂[θ1]i∂[θ1]j
lnp(uM ,vM ;θ1)

]
, (7.69)

where

p(uM ,vM ;θ1)=

exp

(
−∑M

i=1
(ui − vi − di − dM + diM − ∆M )2

2(σ2
i + σ2

iM )

)

√
(2π)M

∏M
i=1(σ

2
i + σ2

iM )
. (7.70)
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In the case of localization on a plane (l = 2), I1(θ1) can be specified as

I1(θ1) =

[
G r
rT k

]
, (7.71)

where k =
∑M

i=1 1/(σ2
i + σ2

iM ), and

G=




M∑

i=1

1

σ2
i + σ2

iM
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‖x− xi‖
+

x1 − x1,M

‖x− xM‖

)2

M∑
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1

σ2
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iM

(
x2 − x2,i

‖x− xi‖
+

x2 − x2,M

‖x− xM‖

)(
x1 − x1,i

‖x− xi‖
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x1 − x1,M

‖x− xM‖

)
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1

σ2
i + σ2
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x1 − x1,i

‖x− xi‖
+

x1 − x1,M

‖x− xM‖

)(
x2 − x2,i

‖x− xi‖
+

x2 − x2,M

‖x− xM‖

)

M∑

i=1

1

σ2
i + σ2

iM
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x2 − x2,i

‖x− xi‖
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x2 − x2,M
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(7.72)

r=




M∑

i=1

(
x1 − x1,i

‖x− xi‖
+

x1 − x1,M

‖x− xM‖

)

σ2
i + σ2

iM

M∑

i=1

(
x2 − x2,i

‖x− xi‖
+

x2 − x2,M

‖x− xM‖

)

σ2
i + σ2

iM




T

.

(7.73)

7.D CRB derivation for fully asynchronous net-

works

We rewrite (7.25) - (7.27) as

Z(ṽM − vM ) =
cTI

αM
Zα+ Z(m̃M − mM ), (7.74)

ũM − uM =
cTI

αs
α+ ñM − nM , (7.75)

uM − vM = α⊙ (d + (dM + ∆M )1M − gM ) + nM − mM . (7.76)
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We analyze the CRB for jointly estimating x, ∆M , α and 1/αs based on (7.74) -
(7.76). The FIM I2(θ2) is employed, with entries defined as:

I2(θ2) = −E

[
∂2lnp(uM ,vM , ṽM , ũM ;θ2)

∂θ2∂θ
T
2

]

=

[
∂µ(θ2)

∂θ2

]T

C−1

[
∂µ(θ2)

∂θ2

]
, (7.77)

where

µ(θ2) =




(cTI/αM )Zα
(cTI/αs)α

α⊙ (d + (dM + ∆M )1M − gM )


 , (7.78)

C =




2diag(Zσr) 0(M−1)×M Zdiag(σr)
0M×(M−1) 2diag(σs) diag(σs)

diag(σr)Z
T diag(σs) diag(σr + σs)


 , (7.79)

where σr = [σ2
1M , σ2

2M , . . . , σ2
(M−1)M , 0]T and σs = [σ2

1 , σ2
2 , . . . , σ

2
M ]T . Further-

more, we achieve

∂µ(θ2)/∂∆M = [0T
M−1, 0T

M , αT ]T , (7.80)

∂µ(θ2)/∂
1

αs
= [0T

M−1, −cTIα
T , 0T

M ]T , (7.81)

[∂µ(θ2)/∂αi]j =





cTI/αM , j = i and i 6= M
cTI/αs, j = i + M − 1
di + dM + ∆M − diM , j = i + 2M − 1
0 else

,

for i = 1, . . . , M, j = 1, . . . , 3M − 1, (7.82)

[∂µ(θ2)/∂xi]j =





αj+1−2M

(
xi − xi,j+1−2M

‖x − xj+1−2M‖ +
xi − xi,M

‖x− xM‖

)
,

2M ≤ j ≤ 3M − 1,
0, else

for i = 1, . . . , l, j = 1, . . . , 3M − 1. (7.83)

We obtain ∂µ(θ2)/∂θ2 by plugging in the above results. Then we can derive
I2(θ2) based on (7.77).



CHAPTER 8

Tracking a Mobile Node

8.1 Introduction

Tracking a mobile target node is an important issue in many wireless sensor
network (WSN) applications [161–163]. In general, tracking systems follow two
steps. In the first step, metrics bearing location information are measured, such
as time-of-arrival (TOA) or time-difference-of-arrival (TDOA), angle-of-arrival
(AOA), and received signal strength (RSS) [1]. High accuracy and potentially low
cost implementation make TOA or TDOA based on ultra-wideband impulse radios
(UWB-IRs) a promising ranging method [1]. Consequently, clock synchronization
has to be taken into account for a localization or a tracking system using TOA
or TDOA measurements [136, 137, 162, 163]. In the second step, the ranging
measurements are used to track the target position. Due to the nonlinear relations
between these ranging measurements and the coordinates of the mobile target
node, the conventional Kalman filter (KF) cannot be used. The extended Kalman
filter (EKF) [25] is most widely used to linearize the non-linear model. However,
the performance of the EKF is decided by how well the linear approximation is.
Furthermore, the unscented Kalman filter (UKF) [164] is proposed to overcome
the drawbacks of the EKF. The UKF follows the principle that it is easier to
approximate a probability distribution than a random nonlinear model, and it
calculates the stochastic properties of a random variable undergoing a nonlinear
transformation. Moreover, the particle filter [26] is also a powerful tool to deal
with nonlinear models and non-Gaussian noise for tracking. However, both the
UKF and the particle filter are computationally intensive. An EKF and a UKF

The results in this chapter appeared in [116].
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are proposed in [162] to track a target node with fixed anchors (nodes with known
positions) in asynchronous networks with clock skews and clock offsets. The target
node periodically transmits a pulse. The TDOAs of these pulses received by the
same anchor are calculated in order to cancel the anchor clock offset. Then the
impact of the clock skews on the TDOAs is approximated as a zero mean Gaussian
noise term. However, in practice the variation of the clock skew is observed by
hours [165], and should thus be viewed as a random variable with an unknown
mean rather than a zero mean random variable. A sequential Monte Carlo (SMC)
method is proposed in [163] to jointly estimate the clock offsets and the target
trajectory for asynchronous WSNs, which is also computationally intensive.

In this chapter, a KF based tracking method is developed to track the tar-
get node position with the help of anchors in asynchronous networks with clock
offsets. Our work is inspired by [166], where pseudomeasurements linear to the
state are constructed based on conventional ranging measurements, and a KF is
proposed based on the linear model. But [166] only discusses a scenario, which
is composed of three anchor nodes and one target. We consider asynchronous
networks with clock offsets among the anchors, and no synchronization require-
ment for the target node. The asymmetric trip ranging (ATR) protocol proposed
in [136, 137] is employed here to obtain TOA measurements and facilitate clock
offset cancellation. Since all the TOA measurements are obtained at the anchors,
our KF tracker can avoid any influence of the asynchronous target clock. Con-
sequently, a linear measurement model is derived from the TOA measurements via
projection and element-wise multiplication. This exact linearization is different
from the first order approximation of the EKF. Thus, the KF based on this linear
measurement model does not have the modeling errors inherently contained in
the EKF. Furthermore, low computational complexity makes the proposed KF a
promising solution for practical use. We compare the proposed KF with the EKF
by simulations. In future work, we would like to propose low complexity trackers
for asynchronous WSNs not only with clock offsets but also with clock skews.

8.2 Linearization of the measurement model

We assume a multiple-anchors-one-target scenario here. We recall that Xa indic-
ates the known and fixed coordinates of the anchor nodes similarly as the previous
chapters. Moreover, a vector x(k) of length l denotes the unknown coordinates
of the target node at time k. In an asynchronous network with clock offsets, the
target node clock runs freely, and the clock skews of all the anchors are equal to
1 or treated as 1. There are only clock offsets among all the anchors. Thus, the
model for the anchor clock [29] is given by Ci(t) = t + θi, i = 1, . . . , M , where
θi denotes the unknown clock offset of the ith anchor clock Ci(t) relative to the
absolute clock.

To make full use of the broadcast property of wireless signals, we employ
the ATR protocol proposed in [136, 137] to make all the other anchors listen to
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Figure 8.1: An example of the ATR protocol for mobile asynchronous networks

the ranging packets and record their timestamps locally, when one anchor and
the target node exchange their ranging packets. This way, anchors obtain more
information than for the two-way ranging (TWR) protocol proposed in the IEEE
802.15.4a standard [75] without increasing the communication load. The same
packet structure as used in the standard is employed here, which is composed of
a synchronization header (SHR) preamble, a physical layer header (PHR) and a
data field. The first pulse of the PHR is called the ranging marker (RMARKER).
The moment when the RMARKER leaves or arrives at the antenna of a node is
critical to ranging. Without loss of generality, we assume that the Mth anchor
initiates the ATR protocol as illustrated in Fig. 8.1. The ith anchor records the
timestamps TiR(k) and TiS(k) upon the arrival of the RMARKERs of the ranging
request from the Mth anchor and of the ranging response from the target node,
respectively, where k is a label to indicate that the timestamp measurements
correspond to x(k). Note that TMR(k) can be interpreted as the time upon which
the Mth anchor receives its own ranging request without any delay, and it is
recorded when the Mth anchor transmits a ranging packet. Because we do not
use any timestamps from the target node, the clock parameters of the target node
do not have any influence on our scheme. This is an important advantage of the
ATR protocol compared to the TWR protocol. For the ith anchor, the difference
between TiR(k) and TiS(k) relates to the distance as

c(TiS(k) − TiR(k))=di(k) + dM (k′) + ∆(k) − diM + niS(k) − niR(k),

i=1, . . . , M, (8.1)
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where k′ = k − ∆(k)/c, c is the signal propagation speed, ∆(k) is the un-
known distance corresponding to the processing time of the target node, di(k)=

‖xi − x(k)‖ =
√
‖xi‖2 − 2xT

i x(k) + ‖x(k)‖2 is unknown, and dij = ‖xi − xj‖ is
known. Since the target node is moving continuously, the position where it re-
ceives the RMARKER from the Mth anchor is different from the position where
it sends out its RMARKER, and the time interval is the processing time ∆(k)/c.
Thus, the distance between the target node and the Mth anchor is dM (k′), when
the target node receives the RMARKER from the Mth anchor. As a result,
there are two unknown target positions x(k) and x(k′) in (8.1). Furthermore,
niS(k) and niR(k) are the distance error terms translated from the measurement
errors in TiS(k) and TiR(k), which can be modeled as zero mean random vari-
ables with variance σ2

iS(k) and σ2
iR(k), respectively. By making differences of the

timestamps from the same anchor, the clock offsets are canceled out. Moreover,
the internal delays of all the anchors except the Mth anchor are also eliminated,
since both TiR(k) and TiS(k) are recorded upon the arrival of the RMARKERS
at the same node. The internal delay of the Mth anchor can be compensated
beforehand [151]. Consequently, defining q(k)=c[T1S(k)−T1R(k), . . . , TMS(k)−
TMT (k)]T , d(k) = [d1(k), . . . , dM−1(k), dM (k)]T , da = [d1M , . . . , d(M−1)M , 0]T ,
ns = [n1S(k), . . . , nMS(k)]T , and nr =[n1R(k), . . . , nMR(k)]T , we can now write
(8.1) in vector form as

q(k) = d(k) + (dM (k′) + ∆(k))1M − da + ns(k) − nr(k). (8.2)

As (8.2) is a nonlinear model w.r.t. x(k) and x(k′), it is impossible to de-
rive the conventional KF for (8.2). Inspired by [166], we would like to linearize
(8.2) without any approximation by projection and element-wise multiplication.
We employ an orthogonal projection P onto the orthogonal complement of 1M

similarly as in [137], which is defined as P = IM − 1
M 1M1T

M . Since P1M = 0M ,
P can be used to eliminate the term (dM (k′) + ∆(k))1M in (8.2). As a result,
premultiplying both sides of (8.2) with P, we obtain

Pq(k) = d(k) − d̄(k)1M − Pda + Pns(k) − Pnr(k), (8.3)

where Pd(k) = d(k) − d̄(k)1M with d̄(k) = 1
M

∑M
i=1 di(k) being the unknown

average of the distances between the target node and the anchors. Note that
(8.3) is now only related to x(k) with the penalty of losing some information due
to the projection. Keeping d(k) on one side, moving the other terms to the other
side, and making an element-wise multiplication, we can write

ψa − 2XT
a x(k) + ‖x(k)‖21M = (P(q(k) + da)) ⊙ (P(q(k) + da))

+d̄2(k)1M + 2d̄(k)P(q(k) + da) + n(k),

(8.4)

where ψa =[‖x1‖2, . . . , ‖xM‖2]T , and n(k)=−(P(ns(k)−nr(k)))⊙ (P(ns(k)−
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nr(k)))− 2d(k)⊙P(ns(k)−nr(k)) with ⊙ denoting element-wise product. Since
the unconstrained least squares (LS) estimation method is equivalent to the sub-
space minimization (SM) method [123], we employ the latter one in order to es-
timate x(k) alone. We first apply P again to eliminate ‖x(k)‖21M and d̄2(k)1M ,
leading to

Pψa − P((P(q(k) + da)) ⊙ (P(q(k) + da)))

= 2PXT
a x(k) + 2d̄(k)P(q(k) + da) + Pn(k). (8.5)

We then apply an orthogonal projection Pd(k) onto the orthogonal complement
of P(q(k) + da) to both sides of (8.5), which is given by

Pd(k) = IM − P(q(k) + da)(q(k) + da)T P

(q(k) + da)TP(q(k) + da)
. (8.6)

As a result, we arrive at

b(k) = F(k)x(k) + Pd(k)Pn(k), (8.7)

where b(k)=Pd(k)Pψa −Pd(k)P((P(q(k) + da))⊙ (P(q(k) + da))) and F(k)=
2Pd(k)PXT

a . Note that Pd(k), b(k) and F(k) all depend on time-varying meas-
urements. We remark that in order to facilitate all the linearizations, the condition
M ≥ l + 3 has to be fulfilled, which indicates that we need at least five anchors
on a plane or six anchors in space to accomplish the linearization.

Let us now explore the statistical properties of the noise. Defining Pnr(k)=

nr(k) − n̄r(k)1M and Pns(k)=ns(k) − n̄s(k)1M , where n̄r(k)= 1
M

∑M
i=1 niR(k)

and n̄s(k)= 1
M

∑M
i=1 niS(k), we can write the entries of n(k) as

[n(k)]i = 2di(niR(k) − n̄r(k) − niS(k) + n̄s(k))

−(niR(k) − n̄r(k) − niS(k) + n̄s(k))2, i=1, 2, . . . , M. (8.8)

Recall that E[niS(k)]=0, E[n2
iS(k)]=σ2

iS(k) and E[niS(k)njS(k)]=0, i 6= j, which

leads to E[n̄s(k)]=0, E[n̄2
s(k)]= 1

M2

∑M
i=1 σ2

iS(k) and E[n̄s(k)niS(k)]= 1
M σ2

iS(k).
The statistical properties of niR(k) can be obtained in a similar way. Moreover,
niS(k) and niR(k), i = 1, . . . , M are uncorrelated. As a result, the statistical
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properties of n(k) are given by

E[[n(k)]i]

=
2 − M

M
(σ2

iR(k) + σ2
iS(k)) − 1

M2

M∑

p=1

(σ2
pR(k) + σ2

pS(k)) ≈ 0, (8.9)

E[[n(k)]i[n(k)]j ]

≈





4di(k)2
(

M−2
M (σ2

iR(k) + σ2
iS(k)) + 1

M2

∑M
p=1(σ

2
pR(k) + σ2

pS(k))
)

, i = j,

4di(k)dj(k)
(

1
M2

∑M
p=1(σ

2
pS(k) + σ2

pR(k))

− 1
M (σ2

iS(k) + σ2
jS(k) + σ2

iR(k) + σ2
jR(k))

)
, i 6= j,

(8.10)

where we ignore the higher order noise terms to obtain (8.10) and assume E[[n(k)]i] ≈
0 under the condition of sufficiently small measurement errors. Thus, we still treat
n(k) as a zero mean Gaussian random vector. We remark that the noise covari-
ance matrix depends on the unknown d(k). To solve this problem, we can plug

in the predicted d̂(k|k − 1), which makes use of the prediction x̂(k|k − 1) (these
notations will be defined later on). Note that n(k) is not a stationary process but
it is independent, leading to

Pd(k)PE[n(k)n(j)T ]PPd(j) =

{
Λ(k) k = j
0 k 6= j

, (8.11)

where Λ(k) is rank-deficient due to the projections.

8.3 Dynamic state model and Kalman filter

Let us define the state at time k as s(k) = [x(k)T , ẋ(k)T , ẍ(k)T ]T , where x(k),
ẋ(k) and ẍ(k) are the coordinate, the velocity and the acceleration vectors of
the target node at time k, respectively. We assume a general linear state model,
which is given by (see also [25])

s(k + 1) = A(k)s(k) + B(k)u(k) + w(k), (8.12)

where A(k) is a 3l×3l state transition matrix, B(k) is a 3l× l input matrix, u(k)
is an acceleration input vector of length l, and w(k) is a driving noise vector of
length l with zero mean and a covariance matrix R(k), which is given by

E[w(k)w(j)
T
] =

{
R(k) k = j
0 k 6= j

. (8.13)

We assume that A(k), B(k) and u(k) are all known exactly. Moreover, the
driving noise and the measurement noise are assumed independent. In practice,
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u(k) has to be estimated first. In [167] for instance, u(k) is modeled as a semi-
Markov process with a finite number of possible acceleration inputs, which are
selected based on the transition probabilities of a Markov process. As a result,
u(k) can be estimated by a minimum mean square error (MMSE) estimator. On
the other hand, [168] does not require a statistical model for u(k), and derives a
LS estimator of u(k).

Let us now rewrite the measurement model (8.7) using s(k) as

b(k) = C(k)s(k) + Pd(k)Pn(k), (8.14)

where C(k) = [F(k), 0M×2l]. Based on (8.12) and (8.14), we can easily develop
the corresponding KF tracker. The prediction equations are given by

ŝ(k|k−1)=A(k−1)ŝ(k−1|k−1)+B(k−1)u(k−1), (8.15)

Ps(k|k−1)=A(k−1)Ps(k−1|k−1)A(k−1)T +R(k−1). (8.16)

The update equations are given by

K(k)=Ps(k|k − 1)C(k)
T
(C(k)Ps(k|k − 1)C(k)

T
+ Λ(k))†, (8.17)

ŝ(k|k)= ŝ(k|k − 1) + K(k) (b(k) − C(k)ŝ(k|k − 1)) , (8.18)

Ps(k|k)= (IM − K(k)C(k))Ps(k|k − 1). (8.19)

Note that since C(k)Ps(k|k − 1)C(k)
T

+ Λ(k) may be rank-deficient, we use the
pseudo-inverse instead of the inverse, which is denoted here by (·)†.

8.4 Extended Kalman filter

In this section, we derive the EKF as a benchmark for our KF tracker. In order
to apply the EKF, we first have to use a Taylor expansion to linearize the non-
linear measurement model. Recall the data model (8.3) here, which is the result
of applying the projection P to (8.2) in order to get rid of the dominant term
(dM (k′) + ∆(k))1M , where ∆(k) is the unknown distance corresponding to the
processing time, and dM (k′) is the distance between x(k′) and the Mth anchor.
As a result of the projection, (8.3) is only related to x(k):

Pq(k) = d(k) − d̄(k)1M − Pda + P(ns(k) − nr(k)), (8.20)

where we recall that d̄(k) = 1
M

∑M
i=1 di(k). Let us define the function f(x(k)) as

f(x(k)) = d(k)− d̄(k)1M −Pda(k), where we recall that di(k) = ‖x(k)− xi(k)‖.
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The Jacobian H(k) of f(x(k)) w.r.t. s(k) can be expressed as

[H(k)]i,j =
∂[f(x(k))]i

∂[s(k)]j

∣∣∣∣
s(k)=ŝ(k|k−1)

, with

∂[f(x(k))]i
∂x(k)

∣∣∣∣
x(k)=x̂(k|k−1)

=

(
(x(k) − xi(k))T

‖x(k) − xi(k)‖ (8.21)

− 1

M

M∑

j=1

(x(k) − xj(k))T

‖x(k) − xj(k)‖



∣∣∣∣∣∣
x(k)=x̂(k|k−1)

(8.22)

(8.23)

∂[f(x(k))]i
∂ẋ(k)

∣∣∣∣
ẋ(k)=ˆ̇x(k|k−1)

=
∂[f(x(k))]i

∂ẍ(k)

∣∣∣∣
ẍ(k)=ˆ̈x(k|k−1)

= 0T
l . (8.24)

Recall that ns(k) and nr(k) are zero mean independent Gaussian random vari-

ables with variance σ2
iS(k) and σ2

iR(k), respectively. Defining Λ̃(k) as the noise
covariance matrix of the noise term P(ns(k)−nr(k)), which is a zero mean Gaus-

sian random vector, we can write Λ̃(k)=Pdiag([σ2
1S(k)+σ2

1R(k), . . . , σ2
MS(k)+

σ2
MR(k)])P.

Consequently, the EKF is developed as follows. The prediction equations are
the same as (8.15) and (8.16). The update equations are

K̃(k)= P̃s(k|k−1)H(k)
T
(H(k)P̃s(k|k−1)H(k)

T
+Λ̃(k))†, (8.25)

ˆ̃s(k|k)= ˆ̃s(k|k−1)+K̃(k)(Pq(k)−f(x̂(k|k−1))), (8.26)

P̃s(k|k)= (IM − K̃(k)H(k))P̃s(k|k − 1). (8.27)

8.5 Simulation results

Let us now evaluate the performance of the proposed KF tracker by Monte Carlo
simulations, and compare it with the EKF. We consider a simulation setup, where
the first anchor is located at the origin, and the other four anchors are located
at the corners of a 100 m× 100 m rectangular centered around the origin. Due to
the broadcast nature of the ATR protocol, we assume that σ2

iS(k) and σ2
iR(k) are

related to the distances according to the path loss law. Thus we define the average
noise power as σ̄2 = 1/M

∑M
i=1 σ2

iS(k), where σ2
iR(k) and σ2

iS(k) are chosen to
fulfill the condition that all σ2

iR(k)/d2
iM and σ2

iS(k)/d2
i (k) are equal. Note that

since dMM = 0, we simply assume σ2
MR(k) = 0 and nMR = 0. The processing time

of the target node is 5 ms, and the signal propagation speed c is the speed of the
light. As a result the corresponding distance ∆(k) is 3×108×5×10−3 = 1.5×106

m, which is much larger than the scale of the considered set-up. We employ a
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Figure 8.2: An example of the trajectories estimated by the proposed KF and the
EKF

random walk state model as in [57], where (8.12) is reduced to

s(k + 1)=




Il TsIl 0l×l

0l×l Il 0l×l

0l×l 0l×l 0l×l


 s(k) +




0l

wẋ(k)
0l


 , (8.28)

where wẋ(k) is a zero mean white random process with covariance matrix σ2
wIl,

and Ts is the sampling interval. For a true initial state s(−1) = [x(−1)T , v(−1)T , 0T
l ]T ,

the initial state estimate ŝ(−1|−1) is randomly generated in each Monte Carlo run
according to N (s(−1),Ps(−1|−1)), with Ps(−1|−1) = 100diag([1T

l , 1T
l , 0T

l ]T ).
The same initial state estimate is also used for the EKF. In each run, we generate
a trajectory of 100 points based on the state model. The performance criterion is
the root mean square error (RMSE) of x̂ (or ˆ̇x) vs. the time index k, which can

be expressed as
√

1/Nexp

∑Nexp

j=1 ‖x̂(j) − x‖2, where x̂(j) is the estimate obtained

in the jth trial. Each simulation result is averaged over Nexp = 500 Monte Carlo
trials. The rest of the parameters are given by x(−1) = [13 m, 4 m]T ,v(−1) =
[0.05 m/s, −0.05 m/s]T , Ts = 1 s , σ2

x = σ2
ẋ = σ2

w = 0.01, 1/σ̄2 = 20 dBm.

Fig. 8.2 shows an example of the trajectories estimated by the proposed KF
(the line with “+” markers) and the EKF (the line with “×” markers), respect-
ively. The true trajectory is the line with “◦” markers. Fig. 8.3(a) illustrates
the performance of the position estimate x̂ by the proposed KF and the EKF,
respectively. The proposed KF achieves better accuracy than the EKF. Both
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(a) RMSE of the target node location x vs. time index k

0 10 20 30 40 50 60 70 80 90 100
0.1

0.5

1

Time index k

R
M

S
E

o
f
ẋ
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(b) RMSE of the target node velocity ẋ vs. time index k

Figure 8.3: RMSE of the proposed KF and the EKF

RMSEs increase with time, since the covariance matrix of the state also increases
with time. Furthermore, the true RMSE (the solid line) of the proposed KF
closely follows its estimated RMSE (the dashed line), which is calculated by√

1/Nexp

∑Nexp

j=1 ([P(j)(k|k)]1,1 + [P(j)(k|k)]2,2) with P(j)(k|k) the covariance es-

timate obtained in the jth trial. On the other hand, the true RMSE (the solid line
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with “◦” markers) of the EKF is below its estimated RMSE (the solid line with
“+” markers), which shows that the estimated RMSE of the EKF is pessimistic.
We observe the same tendency in Fig. 8.3(b), which illustrates the performance
of the velocity estimate ˆ̇x by the proposed KF and the EKF, respectively.

8.6 Conclusions

In this chapter, a KF based tracking method is developed to track the target
node with the help of anchors in asynchronous networks with clock offsets. Since
we make difference of the TOA measurements obtained by the same anchor, the
clock offsets are canceled out, and the influence of the asynchronous target clock
is avoided. Moreover, a linear measurement model is derived. Thus, the proposed
KF based on this exact linear measurement model does not have the modeling
errors inherently contained in the EKF. Furthermore, low computational com-
plexity makes the proposed KF a promising solution for practical use. According
to the simulation results, the proposed KF outperforms the EKF. In future work,
we would like to propose low complexity trackers for asynchronous WSNs not only
with clock offsets but also with clock skews.
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CHAPTER 9

Conclusions and Future Work

9.1 Conclusions

The research presented in this thesis is simulated by the great demand for location-
aware wireless sensor networks (WSNs). The unique characteristics of WSNs im-
pose numerous challenges on localization and communication. In this thesis, we
tackle some key challenges and provide affordable solutions. Impulse radio ultra
wideband (IR-UWB) is employed as the backbone technology for both localiza-
tion and communication due to its distinctive advantages in ranging and reliable
communication. Moreover, synchronization is the red thread running through the
whole thesis. We review the main results of the thesis in this section, and discuss
possible future work in the next section.

We started with a transmitted-reference (TR) UWB communication system.
The TR-UWB scheme obtains sub-Nyquist rate samples by correlating the re-
ceived pulse sequence with its delayed version in the analog domain. Thus, it
avoids the daunting Nyquist sampling rate, relaxes the stringent synchroniza-
tion requirements, and only asks for aggregate channel coefficients. We aimed
at a moderate data rate for WSNs, then adopted a data model taking various
kinds of interferences into account, and proposed a complete solution for sig-
nal detection, channel estimation, synchronization and equalization. We found
that the simple detector, which sums up all the samples in the observation win-
dow and compares the result with a threshold, gives a good balance between the
detection performance and the implementation cost. Moreover, a two-stage syn-
chronization strategy was proposed to first achieve sample-level synchronization
and later symbol-level synchronization. Different combinations of channel estim-

189
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ation and equalization schemes were investigated using the IEEE UWB channel
model (IEEE 802.15.3a, CM3, none-line-of-sight (NLOS, 4-10 m) channels). In
our simulation setup (with a data rate of 2.2 Mb/s), the optimal combination
considering cost and performance would be a matched filter (MF) channel estim-
ator with a zero-forcing (ZF) equalizer. All the above results indicate that the
TR-UWB system can be implemented with low cost and obtain moderate data
rate communications.

Next, we investigated the theoretical ranging accuracy of a novel method,
which exploits the range information in both the amplitude and the time delay
of the received signal. Several bounds were derived not only in an additive white
Gaussian noise (AWGN) channel with attenuation, but also in an AWGN channel
with both attenuation and shadowing. For UWB signals, the proposed novel
method does not show obvious benefits. However, it indeed improves the ranging
accuracy using narrow band (NB) signals. Moreover, taking the prior knowledge
of the shadowing effects into account can further lower the bounds for range
estimation.

As we have already explored the theoretical bounds for ranging, we continued
to develop a practical ranging method. We employed the stroboscopic sampling
for an IR-UWB system to achieve accurate time-of-arrival (TOA) estimation for
ranging. Hence, we avoided Nyquist sampling at the cost of transmission ef-
ficiency, but maintained the same ranging resolution as Nyquist sampling can
achieve. Due to the long preamble required by stroboscopic sampling, the clock
drift, which is an accumulative effect over time caused by the relative clock skew
between different clocks, is one of the main error sources in TOA estimation.
Therefore, we proposed TOA estimation methods with clock drift calibration,
which dramatically reduces the TOA estimation errors due to the drift. As a
result, we have proposed a practical low sampling rate solution for accurate TOA
estimation using IR-UWB.

Since we developed all ingredients for ranging fusion, we further investigated
low-complexity methods to fuse all range measurements for location estimation
in WSNs. We first considered a scenario, where no anchors (sensors with known
positions) are available, and our goal is to jointly estimate the positions of all the
nodes given partial pairwise distance measurements up to a translation, rotation,
and reflection. We extended the classical multi-dimensional scaling (MDS) al-
gorithm by two projections to handle networks composed of two groups: the first
group contains nodes that communicate with each other, and the second group
contains nodes that do not communicate with each other, but only communicate
with each of the nodes in the first group. As there are missing links in this kind of
networks, the classical MDS cannot be applied. Our approach outperforms other
methods based on matrix completion techniques.

Note that in Chapter 5 we have assumed that the distance measurements are
available, and do not care about how to obtain them. The ignorance imposes
great challenges on the ranging step. Therefore, inspired by the cross-layer philo-
sophy, we relax the strict separation between the ranging and the ranging fusion,
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explicitly model ranging errors and handle them in the ranging fusion step. It
leads us to a new way to deal with the localization problem. In the rest part
of the thesis, we considered a scenario, where a target sensor node is connec-
ted with many anchors. We proposed reference-free localization estimators based
on TOA measurements for networks, where anchors are synchronized, and the
clock of the target node runs freely. The ranging bias due to the asynchronous
target clock was explicitly taken into account in the data model. For such kind
of networks, a reference anchor is conventionally selected to get rid of this bias,
or time-difference-of-arrival (TDOA) measurements are directly obtained, where
this bias is canceled out inherently. However, a poor reference selection can ser-
iously degrade the localization performance of reference-based least-squares (LS)
estimators. On the other hand, the reference-free estimators do not suffer from it.
In this thesis, we also generalized existing reference-based closed-form localiza-
tion estimators using TOA or TDOA measurements, and exposed their relations.
We obtained several important conclusions based on analysis and simulations:
(i) applying a projection is always preferred over making differences with a ref-
erence to get rid of nuisance parameters; (ii) the optimal weighting matrix can
compensate for the influence of the reference selection for reference-based WLS
estimators using TOA measurements, however it cannot decouple the reference de-
pendency for WLS estimators using a nonredundant set of TDOA measurements;
(iii) there are corresponding equivalences between the squared-range-based and
the squared-range-difference-based methods, which are all using TOA measure-
ments; (iv) beyond some SNR threshold, there are no obvious differences among
the CRBs using TOA measurements, the nonredundant set and the full set of
TDOA measurements, respectively; (v) the performance of the reference-free LS
estimators is neither too bad nor too good, but they do not suffer from a poor
reference selection; and (vi) the concrete value of the distance bias caused by the
inaccurate clock does not affect the localization performance of the LS or WLS
estimators.

Sequentially, we proposed robust localization strategies based on TOA meas-
urements to localize a target node with the help of anchors for asynchronous
networks. We dealt with two kinds of asynchronous networks with respect to
(w.r.t) anchor clocks: one only with clock offsets referred to as quasi-synchronous
networks, and the other not only with clock offsets but also with clock skews
referred to as fully asynchronous networks. Note that the target clock can always
run freely in both networks. We take the clock parameters into our data model to
jointly estimate clock parameters and target position. Furthermore, regardless of
the reliability of the timestamps from the target node, we proposed a novel ran-
ging protocol, namely asymmetric trip ranging (ATR), which leads to localization
methods that are naturally immune to internal attacks mounted by a compromised
target node. Compared to the conventional two-way ranging (TWR) protocol, the
ATR protocol makes use of the broadcast property of wireless networks, and has a
smaller communication load. Closed-form LS and iterative WLS estimators were
proposed to localize the target node for quasi-synchronous networks. For fully
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asynchronous networks, we developed two different approaches with low com-
plexity to jointly estimate the position and clock parameters. The one with the
minimum communication load takes practical issues into account to simplify the
estimators by appropriate approximation. The other relaxes the communication
load constraint in order to obtain accurate estimates. We can choose between
them according to system specifications. Furthermore, we designed closed-form
LS estimators for joint synchronization and localization using the TWR protocol,
and compared them with the proposed closed-form estimators employing the ATR
protocol.

Last but not least, a Kalman filter (KF) based tracking method was developed
to track the target node with the help of anchors in quasi-synchronous networks
defined in the previous paragraph. The ATR protocol was employed again to
facilitate clock offset cancelation. A linear measurement model based on TOA
measurements was derived by projection and element-wise multiplication. Hence,
the proposed KF based on this exact linear measurement model does not have
the modeling errors inherently contained in the extended KF (EKF). Moreover,
the low computational complexity makes the proposed KF a promising solution
for practical use.

The Smart PEAS project is a good application for the above results. We have
developed a prototype system (see Fig. 1.5 in Chapter 1) together with 3UB (a
TU Delft spin-off company) and Delft Engineering Services (DES) for the Smart
PEAS project, which aims at investigating the use of smart moving process en-
vironment actuators and sensors (PEAS) based on UWB technology inside the
process equipment for product quality control. An aquarium (1 m × 1 m × 1 m)
full of water is used in the prototype system to mimic a process environment. A
mechanical system precisely controls the target sensor position. The ball-shaped
PEAS (see Fig. 1.6 in Chapter 1) are designed with a bow-tie antenna on the
surface and the sensor electronics embedded inside. Several anchors are employed
and directly connected to high speed scopes to capture the signals. Online local-
ization using this platform is currently under test.

9.2 Future work

The adventure of pursuing a PhD trains our skills, strengthens our capabilities,
and matures our thoughts. Then, the completion of a PhD study opens the door
to a more fascinating research world. In this section, we discuss a few possible
directions for future work.

• Distributed localization

The conventional localization methods for WSNs are centralized, where all
the anchors and target sensors transmit their local measurements to a fu-
sion center (FC). Location estimates for WSNs are computed at the FC.
However, the centralized scheme has inherent limits: i) to transmit local in-
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formation to a FC requires lots of resources, such as energy and bandwidth;
and ii) the dependency on a single FC makes it the most powerful, but also
the most vulnerable point in the whole network. Hence, the centralized
scheme might not be well suitable for large scale WSNs. On the other hand,
a distributed scheme gets rid of these limits, and provides a more robust
solution. A distributed localization scheme for WSNs aims at obtaining
globally optimal location estimates based on local information exchange.
It iteratively refines local estimates maintained by each sensor node. The
localization problem is difficult enough due to the nonlinear and nonconvex
properties. Thus, it is even more challenging to solve it in a distributed
fashion. To make full use of the convex optimization toolbox, the non-
convex localization problem was relaxed to a convex problem in [169, 170].
Moreover, quite a few distributed schemes were proposed for linear systems,
such as consensus-based distribution methods [171–173], and distributed
approaches via dual decomposition techniques [174]. Some research work
formulates the localization problem in a distributed way, and optimizes the
nonlinear and nonconvex cost function in each iteration. For example, the
majorization method was employed in each iteration in [107], and second-
order cone programming (SOCP) relaxation was applied in [175]. However,
the computational complexity for each iteration is still quite high. As we
have explored methods to linearize the localization problem in this thesis,
there could be possibilities to obtain low-complexity linear localization es-
timators in a distributed fashion.

• Robust localization

As we have mentioned in Chapter 1, the localization for WSNs can be
accomplished sequentially. The sensors that reach enough anchors are loc-
alized first. Then, these located sensors can be viewed as new anchors that
can facilitate the localization of other sensors. But the position estimates
of these new anchors include estimation errors, which will propagate and
eventually corrupt other estimates, if they are not taken into account. Fur-
thermore, due to various kinds of error sources (e.g., NLOS, asynchronous
clocks, uncertainty of the signal propagation speed or sensor failure), the
range measurements may be contaminated by outliers. Even one outlier can
break down all the estimates. Therefore, robust localization methods are in
need to deal with these errors to obtain accurate estimates. Some pioneer
work considers robust linear regression against outliers. The M-estimator
exploiting the Huber cost function was proposed in [176]. Least median
squares (LMS) was used as the criterion to counter outliers in [118, 177].
Furthermore, in [178,179], outliers were explicitly modeled and an ℓ1 norm
regularization term was added to the standard LS criterion. Since the ori-
ginal localization problem is nonlinear, existing robust linear regression can-
not be directly applied. Hence, we have to tailer our localization problem
to take benefits from it.
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• Tracking

Sensor nodes in WSNs are often not static. They could be moving around.
Tracking mobile sensors is definitely not trivial for the successful deploy-
ment of WSNs. Due to the nonlinear relation between the ranging (or
bearing) measurements and the sensor positions, the conventional Kalman
filter (KF) cannot be directly applied. Restricted by the cost and the power
constraints of WSNs, computationally intensive methods, which deal with
nonlinear models, such as the particle filter and the unscented KF (UKF),
are not appropriate for WSNs. By linearizing the measurement model, we
have revived the conventional KF. However, as long as the KF-like meth-
ods are employed, the measurement model and the state model have to be
available. In practice, it is difficult to have an accurate state model, since
there are always model mismatches [180–182]. Furthermore, inspired by the
same reasons as for distributed localization, we would also like to imple-
ment tracking in a distributed fashion [183,184]. Hence, robust distributed
tracking approaches are of great interest for future work.
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Samenvatting

De grote vraag naar plaatsbewuste draadloze sensornetwerken motiveert het on-
derzoek in dit proefschrift. De unieke eigenschappen van draadloze sensornetwerken
geven tal van uitdagingen op het gebied van plaatsbepaling en communicatie.
In dit proefschrift behandelen we een aantal belangrijke uitdagingen en bieden
betaalbare oplossingen.

Impuls-radio ultra breedband (IR-UWB) wordt gebruikt als de onderliggende
technologie voor zowel plaatsbepaling als communicatie vanwege de specifieke
voordelen die het biedt voor nauwkeurige afstandsbepaling en betrouwbare com-
municatie. De volgende aspecten worden behandeld in dit proefschrift.

• Meegestuurde-referentie (TR) UWB communicatiesystemen: IR-UWB de-
modulatie in het digitale domein vraagt meestal om zeer hoge bemonster-
ingfrequenties. Het TR-UWB systeem zorgt voor sub-Nyquist bemonstering
door middel van het correleren van de ontvangen pulsreeks met een ver-
traagde versie in het analoge tijddomein. Zodanig wordt de vrijwel onmo-
gelijke Nyquist bemonstering vermeden, worden de strenge eisen aan de syn-
chronisatie verlaagd, en zijn enkel de uiteindelijke kanaalcoëficiënten nodig.
Het gebruikte datamodel wordt uitgebreid om ook de verschillende vormen
van interferentie te omvatten, en vervolgens wordt een complete ontvanger
voorgesteld, waaronder signaaldetectie, kanaalschatting, synchronisatie en
egalisatie.

• Theoretische grenzen aan de afstandsbepaling en praktische afstandsbepaling-
stechnieken gebaseerd op IR-UWB: We onderzoeken de theoretische nauwkeur-
igheid van de afstandsbepaling met een nieuwe methode, die de lokatie-
informatie benut die aanwezig is in zowel de amplitude als de tijdsvertraging
van het ontvangen signaal. Dit wordt niet enkel onderzocht voor gedempte
kanalen met toegevoegde witte Gaussische ruis (AWGN), maar ook voor
een AWGN kanaal met zowel demping als schaduweffecten. Verder is een
praktische afstandsbepalingsmethode gebaseerd op een schatting van de tijd
van aankomst (TOA) van het UWB-IR signaal ontwikkeld. Stroboscopis-
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che bemonstering wordt gebruikt om transmissie-efficiëntie uit te wisselen
voor een lagere bemonsterfrequentie, terwijl dezelfde afstandsresolutie als
bij Nyquist bemonstering wordt bereikt. Doordat een lange uitbreiding
voorafgaand aan het signaal vereist is voor stroboscopisch bemonsteren,
is de klok drift (een cumulatief effect dat na verloop van tijd veroorzaakt
wordt door de relatieve klokverschuivingen tussen twee klokken) een van de
belangrijkste foutbronnen in de TOA schattingstechniek. Daarom worden
schattingsmethoden voor de TOA inclusief klokdrift-kalibratie onderzocht
om de invloed van de drift drastisch te verminderen.

• Diverse plaatsbepalings- en volgmethoden:

– Uitgebreide multi-dimensionale schaling (MDS): Omdat het klassieke
MDS algoritme niet kan worden toegepast op algemene netwerken met
ontbrekende verbindingen, breiden we het MDS-algoritme uit om om te
kunnen gaan met een speciaal soort netwerk met specifieke ontbrekende
verbindingen. Ons doel is om, gegeven paarsgewijze afstandsmetingen,
een gemeenschappelijke schatting te bepalen van de posities van alle
knooppunten, afgezien van een een translatie, rotatie en reflectie.

– Referentie-vrije tijdgebaseerde plaatsbepaling: Uit de literatuur zijn di-
verse kleinste kwadraten (LS) schatters met lage complexiteit bekend,
gebaseerd op metingen van de aankomsttijd (TOA) of verschillen in
aankomsttijd (TDOA), met het doel een object te lokaliseren met de
hulp van ankers (knooppunten met bekende posities). Hierbij moet een
anker aangewezen worden als referentiepunt, om hierdoor additionele
parameters te verwijderen en de sterke eisen aan synchronisatie af te
zwakken. Er is een probleem als hierbij een slechte keuze gemaakt
wordt.

We ontwikkelen een algoritme voor referentie-vrije lokatie-schatting,
gebaseerd op TOA metingen, om de afhankelijkheid van de referen-
tiekeuze te ontlopen. Verder generaliseren we bestaande referentie-
gebaseerde gesloten-vorm oplossingen die gebruik maken van TOA of
TDOA metingen, en werpen een nieuw licht op hun relaties om hier-
mee een aantal verwarringen die nog bestaan in de recente literatuur
te verduidelijken.

– Robuuste tijd-gebaseerde plaatsbepaling: Tijd-gebaseerde plaatsbepal-
ingsalgoritmes staan in de belangstelling vanwege hun hoge nauwkeur-
igheid en potentieel lage kosten voor WSNs. Echter, deze vorm van
lokalisatie is nauw verbonden met kloksynchronisatie. Zo is de be-
trouwbaarheid van de tijdmetingen een belangrijk maar moeilijk as-
pect om rekening mee te houden. Zonder gebruikmaking van de tijd-
metingen door het doelobject, stellen wij een nieuw afstandsbepaling-
sprotocol voor, genaamd asymmetrische trip afstandsbepaling (ATR),
welke leidt tot lokalisatiemethoden die van nature immuun zijn voor
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aanvallen opgezet door een gecompromitteerd doelobject. Robuuste
lokalisatiestrategieën op basis van TOA metingen met behulp van het
ATR-protocol worden voorgesteld, om hiermee een doelobject te lokalis-
eren met de hulp van ankers voor asynchrone netwerken.

– Kalman volgers: Vanwege de niet-lineariteit van het plaatsbepalings-
probleem wordt een Kalman filter (KF) meestal vervangen door een
uitgebreid KF (EKF) voor het volgen van een mobiel doel. Echter,
de modelfouten die inherent vervat zijn in het EKF degraderen de
prestatie hiervan. Daarom maken we opnieuw gebruik van het ATR-
protocol, ontwikkelen we exacte lineariseringen, en bereiken we een KF
gebaseerd op een lineair model voor de metingen, om een mobiel opject
te volgen met de hulp van vaste ankers.
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