
Delft University of Technology
Master of Science Thesis in Computer Science

Speeding up program synthesis using
specification discovery

Jacob de Jong

Speeding up program synthesis using specification

discovery

Master of Science Thesis in Computer Science

Algorithmics Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Van Mourik Broekmanweg 6, 2628XE Delft, The Netherlands

Jacob de Jong

June 26, 2023

Author
Jacob de Jong

Title
Speeding up program synthesis using specification discovery

MSc Presentation Date
July 4, 2023

Graduation Committee
Dr. Matthijs Spaan Delft University of Technology
Dr. Sebastijan Dumančić Delft University of Technology
Dr. Jesper Cockx Delft University of Technology

Abstract

How convenient would it be to have an AI that relieves us programmers from the
burden of coding? Program synthesis is a technique that achieves exactly that:
it automatically generates simple programs that meet a given set of examples
or adhere to a provided specification. This is often done by enumerating all
programs in the search space and returning the first program that satisfies the
requirements. However, these algorithms frequently enumerate redundant pro-
grams because of symmetries in the search space. We propose a new constraint
discovery system that is able to detect these symmetries in a language and
systematically generate symmetry-breaking constraints for them. To test these
constraints, we implemented a novel, re-usable framework for program synthesis
called Herb.jl. The generated constraints are shown to cut down search spaces
to less than 25% of the original size and reduce the enumeration time by a factor
of 3. Furthermore, this approach is extended to automatically discover semantic
specifications without needing an expert. The effectiveness of these specifica-
tions is evaluated with an existing specification-based synthesizer, which shows
that adding these specifications is an effective way to cut the synthesis time
in half for domains where expert-defined specifications are not available. To-
gether, these approaches demonstrate the effectiveness of extracting additional
information from a language and applying it during enumeration.

iv

Preface

The thesis that lies before you has been written as the last step in obtaining my
Master of Science degree in Computer Science at Delft University of Technology.
The research, development and writing of this thesis spanned from November
2022 to June 2023.

During my studies at TU Delft, I mainly took an interest in the algorithmics
and programming languages courses. Program synthesis is related to both of
these fields and therefore it perfectly matched my interests. This thesis shows
a way in which concepts from both fields can be combined. In the past seven
months, I also got the opportunity to work on Herb.jl, a program synthesis
framework that will be introduced in this thesis. It has been very motivating
and fulfilling to see Herb.jl already getting used in several student projects, in
which the framework is extended with new functionality.

I would like to thank Sebastijan Dumančić, Jesper Cockx and Tilman Hinnerichs
for the excellent feedback and guidance I received, both during our meetings,
in the rounds of feedback on this thesis and whenever I had questions. I would
also like to thank Ivar de Bruin for his review of my thesis as someone that is
not involved in program synthesis, allowing me to make the text accessible to
a wider audience. Finally, I want to thank everyone with whom I interacted
during my thesis. It was a pleasure to be able to work with you.

Jacob de Jong

Delft, The Netherlands
26th June 2023

v

vi

Contents

Preface v

1 Introduction 1

2 Theoretical background 5
2.1 Intent specification . 6
2.2 Program space . 7
2.3 Search . 9

3 Related work 11
3.1 Deduction in inductive synthesis 11

3.1.1 Semantic specifications . 11
3.1.2 Example propagation . 13
3.1.3 Discussion . 14

3.2 Popper . 14
3.3 Specification extraction . 14

3.3.1 QuickSpec . 14
3.3.2 HipSpec . 15

4 Problem definition 17
4.1 Program symmetry problem . 17
4.2 Constraint discovery problem . 18
4.3 Specification discovery problem 19

5 A framework for discovering constraints and specifications 21
5.1 Equivalence discovery . 21

5.1.1 Grammar preparation . 22
5.1.2 Data generators . 24
5.1.3 Discovering equivalence classes 25
5.1.4 From equivalence classes to equivalences 26

5.2 Constraint conversion . 26
5.2.1 Generating Forbid constraints 27
5.2.2 Generating Order constraints 28
5.2.3 Removing redundant constraints 29
5.2.4 Duplicating Forbid constraints 29

5.3 Implementing constraints . 30
5.3.1 Enumeration with constraints 30
5.3.2 Forbid constraint . 32

vii

5.3.3 Order constraint . 33
5.3.4 Constraint resolution . 33
5.3.5 Global & local constraints 34

5.4 Specification discovery . 34
5.4.1 Specification grammar . 35
5.4.2 Specification testing . 36
5.4.3 Pruning . 37

6 Herb.jl: A program synthesis framework 39
6.1 Philosophy . 39
6.2 Design choices . 40

6.2.1 Programming language 40
6.2.2 Multi-module architecture 40

6.3 Example usage . 41
6.3.1 Grammar definition: HerbGrammar.jl 41
6.3.2 Adding constraints: HerbConstraints.jl 42
6.3.3 Problem definition: HerbData.jl 42
6.3.4 Search algorithms: HerbSearch.jl 42

7 Evaluation 45
7.1 Setup . 45
7.2 Constraint discovery . 46

7.2.1 Discovering correct constraints 46
7.2.2 Comparing the program space 47
7.2.3 Comparing the runtime 48

7.3 Specification discovery . 52
7.3.1 Discovering specifications 52
7.3.2 Comparing to other levels of specification 52

8 Conclusion & future work 55
8.1 Conclusion . 55
8.2 Future work . 56

8.2.1 Proving the correctness of constraints 56
8.2.2 Discover runtime errors 56
8.2.3 Improved specification pruning 56
8.2.4 Improved deduction . 56
8.2.5 Herb.jl . 56

A Exact results 63
A.1 Integer arithmetic grammar . 63
A.2 Lists grammar . 63

viii

Chapter 1

Introduction

Program synthesis has been a topic since digital computers were just invented
and it has roots in the fields of artificial intelligence and programming lan-
guages. The idea of an ‘automatic’ programmer is considered by many to be
one of the ultimate goals of computer science. Ideally, there would be a pro-
gram synthesizer that is able to quickly generate complicated programs from a
simple specification or description. It is worth noting that the term ‘program’
in program synthesis is a very broad term. Next to traditional computer pro-
grams, program synthesis is employed in domains such as robotics to synthesize
action sequences [23] and in 3D modelling for synthesizing 3-dimensional struc-
tures [10].

Recently, pre-trained large language models such as ChatGPT and GPT-4 have
made some great advancements [28]. These models have the capability to rap-
idly synthesize relatively large and complex programs from a natural language
description. The downside to these large language models is their reliance on
statistical patterns rather than language definitions. Consequently, they cannot
provide guarantees on the efficiency or correctness of the generated code and
frequently create bugs [19].

Language definitions can be divided into two essential components: syntax and
semantics [27]. Although this terminology originates from the field of linguist-
ics, it is equally applicable to programming languages. Syntax pertains to how
parts of a language can be combined to create well-formed programs. Semantics
define the actual meaning and interpretation of these programs.

A common method for synthesizing programs is enumeration, where an al-
gorithm generates every syntactically correct program in a language one by one
and verifies if they meet the user’s requirements. Enumeration is particularly
effective for synthesizing small programs in complex languages [16]. However, it
is also a very inefficient method, since it does not utilize any information from
the semantics of a language. This means that it solely relies on knowledge of
how operators and literals can be combined, without considering their meaning
and characteristics. Consequently, a significant number of semantically equival-
ent programs are explored.

1

To illustrate this, consider a language of simple arithmetic expressions. A pro-
gram enumerator will enumerate the programs 4, 4+0 and 4+(0×9). Although
these programs differ in syntax, they all yield the same result of 4, demonstrat-
ing their semantic equivalence. The enumerator is unaware that these programs
are semantically equivalent since it does not recognize that multiplication with
0 always equals 0, or that adding 0 to a number does not have an effect.

The goal of a program synthesis problem is to find a program for which the
semantics satisfy a certain requirement. Instead of enumerating every syn-
tactically different program, it is a lot more efficient to make use of semantic
knowledge to instead enumerate every semantically unique program. The main
question this thesis aims to answer is:

How can we extract semantic knowledge from a language and utilize it to
reduce redundant enumerations?

The primary focus of this thesis is to automatically discover this semantic know-
ledge and to prevent redundant programs from being enumerated. Of course,
users could also define this semantic information manually. However, this is a
tedious and error-prone task that requires in-depth knowledge of a language. In
addition, a big part of the program synthesis target audience does not have this
knowledge of the language or library they are synthesizing from. Automating
this process will therefore make synthesizing from arbitrary languages or librar-
ies more accessible to a large group of users.

Other algorithms such as Morpheus [12] or Neo [13] make use of specifica-
tions, which express semantic knowledge by defining a relation between the in-
put and the output of a certain operator in the language. The specifications are
combined with problem-specific information to reduce the search space. Both
Morpheus and Neo require a user to manually encode these specifications.
This thesis will therefore also demonstrate how to discover specifications and
compare the extracted information to the information defined by an expert.

Our approach to limiting the number of redundant programs makes use of con-
straints. Constraints that reduce redundant enumerations are called symmetry-
breaking constraints. These constraints prevent certain programs from being
enumerated by the enumeration algorithm. One could for example add a con-
straint that forbids multiplication with 0 since it will always produce 0 as a
result, which has already been enumerated before. A constraint can thus be
used to add some semantic information to the enumeration. We specifically
focus on constraints that forbid a certain combination of operations and con-
straints that forbid a certain ordering of operands, since these can eliminate
most symmetries. This thesis introduces a modular and reusable program syn-
thesis framework called Herb.jl, which is able to enforce these constraints.

Formulating these constraints is still manageable for the case of integer arith-
metic, but for more complex search spaces, it can be a tedious process in which
it is easy for humans to make mistakes. For example, when synthesizing in
a language with lists, reverse(append(reverse(a), b)) is semantically equi-
valent to append(reverse(b), a). This is already significantly more difficult
to come up with, even though the semantics of reverse and append are well-

2

known. Libraries often have more complex functions for which the definition is
a lot less clear. Consequently, humans might create incorrect constraints which
remove potential solutions from the search space. There might also be valuable
constraints that the user is not aware of and therefore does not include, thus
limiting the potential of the constraint system.

The second contribution of this thesis is therefore a new constraint discovery
system that can automatically generate these constraints from the semantics
of a program. Usually, the exact definitions of functions in a language are not
available, so the constraint extraction system has to work without those. In-
stead, it uses an evaluator that can evaluate expressions in the search space and
acts as an oracle. This constraint discovery system works in three steps. It first
generates a bunch of hypotheses in the form of potential semantic equivalences
in the language. In the second step, these hypotheses are tested for correctness
using the evaluator and random input data. The third step converts the correct
hypotheses into constraints that can be used by the constraint system. These
constraints decrease the number of enumerated programs to less than 20% and
the runtime to almost 25% of the unconstrained approach in some grammars.

An enumeration algorithm equipped with constraints still does not use any
problem-specific data. Ideally, one would also incorporate information extrac-
ted from the specification or examples in the enumeration. However, information
about inputs and outputs is only useful if it can eliminate options during enu-
meration. For example, when synthesizing a function that operates on lists, and
the relation between the length of the input list and the output list is known,
we also need information on how operations in the language modify the length
of the list. This is again semantic information that has to be provided by the
user. The third contribution of this thesis demonstrates how this kind of se-
mantic data can be extracted from a language. Since there are a lot of parallels
between discovering equivalences and identifying other semantic properties, this
contribution can be seen as an expansion or modification of the constraint dis-
covery system. Just like the constraints, the extracted specifications are a big
improvement over not using any specifications at all. However, they do still fall
short compared to the specifications that are defined by an expert.

In summary, this thesis makes the following key contributions:

1. We implement a new constraint system made specifically for enumerative
program synthesis.

2. We introduce a constraint discovery system that detects semantic equi-
valences in a language and creates constraints to remove semantically du-
plicate programs.

3. We show how this constraint discovery system can be modified to extract
other kinds of semantic data.

4. We introduce Herb.jl, a modular and reusable program synthesis frame-
work that supports constraints.

The rest of this thesis will provide some background information, explain these
contributions in more detail and evaluate their effectiveness.

3

4

Chapter 2

Theoretical background

Program synthesis is the process of automatically generating (parts of) computer
programs from some sort of description of what the program should do [16]. It
is a topic that mainly occupies researchers with an algorithmic background or
artificial intelligence background but also has connections to the field of pro-
gramming languages.

In some sense, program synthesizers are quite similar to compilers; they trans-
form a program or specification in a higher-level programming language into a
program in a lower-level language. Compilers operate by applying a predeter-
mined sequence of transformations, for instance, desugaring or translating into
another (intermediate) representation. The distinguishing feature of program
synthesizers is that they do not operate with those predetermined steps, but
rather involve some kind of search [16]. This means that we can give them a
specification of what we want the desired program to do, as opposed to giving
it a specification of how the desired program should do it.

A program synthesis framework is mainly defined by three key components:
the intent specification, the program space and the search [16]. This chapter
gives relevant background information on the field of program synthesis by going
over these components and introducing concepts wherever necessary.

sqrt(n)⇐ find z such that

integer(z) and z2 ≤ n < (z + 1)2

where integer(n) and 0 ≤ n

(a) Full specification

4→ 2

36→ 6

23→ 4

1→ 1

(b) Specification by examples

Figure 2.1: Different forms of specification in program synthesis for an
integer square root function [26].

5

2.1 Intent specification

The intent specification is what communicates the wish of the user for what the
program should do to the program synthesizer. It is sometimes also called the
problem specification or more commonly just specification. To avoid confusion
with the language specifications that will also be encountered in this thesis, we
will keep calling it intent specification. Intent specifications can be classified
into complete and incomplete intent specifications. A complete intent specific-
ation fully defines what the program should do. Therefore, the user’s objective
clear to the algorithm. Figure 2.1a shows a classic example of a full intent spe-
cification for synthesizing a square root function. Designing such a specification
can be as difficult as writing the program itself, and one often needs to add
restrictions that are not immediately obvious [16]. For example, it needs to
be explicitly stated that both the input and the output of the integer square
root function must be an integer and that it is not possible to take the square
root of negative numbers. Complete intent specifications are used in deductive
synthesis approaches.

In contrast, incomplete intent specifications are much more flexible and allow
the user to be less precise, with the trade-off being that it might be ambiguous
what the user wants since the problem is under-specified. A program synthesis
algorithm for this kind of intent specifications, therefore, has the additional
task of not just finding a program that satisfies the specifications, but also the
program that the user envisaged. Incomplete specifications can only be used
in inductive synthesis approaches. Therefore, algorithms that take incomplete
intent specifications are sometimes also called inductive synthesizers. There are
multiple kinds of incomplete intent specifications, of which input-output ex-
amples, traces and sketches are the most well-known.

Using input-output examples as a specification is perhaps the most accessible
way of providing specifications in program synthesis. They are frequently used
for data processing [15, 16]. Figure 2.1b illustrates how input-output examples
are shaped by giving a specification for the integer square root function. Using
this kind of intent specification in program synthesis is also called Programming
By Example (PBE) [16].

Traces are essentially an extension of input-output examples [16, 35]. In ad-
dition to the input and the output, they also contain intermediate steps. For
example, consider that one wants to synthesize the program x× 3 + 2. Instead
of having an example 5→ 17, we would have 5→ 15→ 17. Using traces as an
intent specification is also called Programming by Demonstration (PBD) [16,
24].

A third way of providing an incomplete specification is by sketching [35, 36].
A sketch is a program where some parts are not filled in yet. Constraints on
how the program synthesizer has to fill these holes can be provided in the form
of assertions. This way of giving specifications is designed to aid programmers
by allowing them to give a high-level structure of a program and letting the
program synthesizer figure out the low-level details.

6

2.2 Program space

The program space is the search space of a program synthesis problem. It con-
sists of all syntactically correct programs in a certain language. A program in
the program space is sometimes also called a ‘hypothesis’ since it is a possible
solution to a program synthesis problem [16]. The program space is usually
infinite in size, with the exception of some rudimentary languages. Every pro-
gram in the program space adheres to certain rules that define the program
structure. These rules are called the syntax of a language [33]. The syntax does
not consider the meaning of the operators or values in the language, but only
how they can be put together. Just like in linguistics, the syntax can be defined
using a grammar [4], in this case, a Context-Free Grammar (CFG).

A CFG is a collection of production rules, which are also called ‘rewrite rules’.
These rules are built from terminal symbols and non-terminal symbols. A ter-
minal symbol represents an operator or value that can appear in a program.
Non-terminal symbols are placeholders that represent a set of combinations of
terminal symbols. Each grammar has one special non-terminal symbol which is
called the start symbol. This symbol represents all programs in the language.

A production rule in a CFG has a single non-terminal symbol on the left-hand
side and a combination of terminal and non-terminal symbols on the right-hand
side. The combination on the right-hand side is a possible replacement for the
non-terminal symbol on the left-hand side. The language of a grammar is each
combination of terminal symbols that can be created by recursively applying
the production rules to non-terminal symbols, starting with the start symbol.

Figure 2.2a describes the simple integer arithmetic grammar that is used in
Chapter 1. Int is the only non-terminal symbol in the language, and +, ×, −,
0, . . . , 9 and x are the terminal symbols. The first three symbols are the oper-
ators, and 0 to 9 are the literals of this language. x is the input variable. When
evaluating a program defined by this grammar, a value from an input example
is assigned to this input variable. Since Int is the only non-terminal symbol, it
is also the start symbol in this grammar.

Often, grammars have more than one non-terminal symbol. Such a grammar
can be seen in Figure 2.2b, which represents a language consisting of lists of
integers. In this grammar, List is the start symbol.

The programs in the program space are represented as Abstract Syntax Trees
(ASTs) [12, 13]. Sometimes, these are also called derivation trees or program
trees [16]. ASTs define the structure of a program as a tree. Each node cor-
responds to a production rule in the grammar. Figure 2.3 shows two example
ASTs from the integer arithmetic grammar in Figure 2.2a.

A grammar does not define the semantics of a language. Inductive program
synthesis techniques usually do not have access to a full semantic specification
of the language, but they do need access to an evaluator to evaluate any hypo-
thesis they find.

7

Int ::= Int + Int

Int ::= Int× Int

Int ::= Int− Int

Int ::= 0

...

Int ::= 9

Int ::= x

(a) Integer Arithmetic

List ::= []

List ::= List :: Int

List ::= reverse(List)

List ::= sort(List)

List ::= append(List,List)

Int ::= 1

...

Int ::= 9

Int ::= x

Int ::= y

(b) Lists

Figure 2.2: Grammar production rules for an integer arithmetic lan-
guage and a list language.

×

+

3 x

2

(a) AST for the pro-
gram (3 + x)× 2

+

−

x 0

+

×

x 3

2

(b) AST for the program (x−0)+((x×3)+2)

Figure 2.3: Examples of ASTs in the integer arithmetic grammar.

8

Defining a grammar is relatively straightforward. The definition does never-
theless affect the performance of program synthesis. It is best to limit the
number of equivalent programs that are allowed by the grammar. Different
syntactic representations for semantically equivalent programs are called sym-
metries [35]. When symmetries are removed from the program space, we reduce
our program space without eliminating any potential solutions. One of the most
accessible ways of reducing symmetries is by modifying the grammar [35]. For
example, the grammar below removes the symmetry caused by the associativity
of addition from the integer arithmetic grammar.

Int ::= Int′ | Int + Int′

Int′ ::= x | Int− Int | Int× Int | 0 . . . 9

The original non-terminal symbol Int now has a variant Int′ that excludes ad-
dition. Using the new non-terminal symbol, the production rule for addition
(Int + Int′) now only allows other addition rules as the left child. This enforces
left-associativity of the addition operator, and thus no longer allows programs
such as (1 + (x+3)) to be generated. Since the program ((1 + x) + 3) is still in
the grammar, there is no loss of expressive power in the program space. This
method can be an effective and easy solution for eliminating symmetries. How-
ever, its applicability is limited, since it can not eliminate symmetries such as
commutativity of operators. Furthermore, eliminating multiple symmetries by
modifying the grammar can make the definition really complex.

Researchers working on constraint satisfaction or combinatorial optimization
problems have been eliminating symmetries for decades with so-called symmetry-
breaking constraints [11]. A symmetry-breaking constraint is a constraint on the
search space that effectively forbids one-half of a symmetry. Symmetry-breaking
constraints have not yet been applied to program spaces for program synthesis.
The idea of breaking the symmetries in a program space using constraints is
something that will be explored in this thesis.

2.3 Search

The search component of a program synthesis algorithm is responsible for find-
ing a program in the program space that meets the given intent specification.
Depending on the type of intent specification, the search component might look
very different.

In deductive approaches, the search component rewrites and transforms the
complete intent specification into a program from the program space [26, 35].
Deciding which transformations to apply is not always obvious, and thus a
search algorithm is used.

A lot of inductive program synthesis algorithms are based on an enumeration
search technique. The idea of enumeration is to systematically explore the pro-
gram space for ASTs that satisfy the intent specifications. Naturally, this is not
a very efficient approach. Enumeration can either be done top-down or bottom-
up [35, 7]. Some approaches also combine these two methods [16].

9

+

? ?

(a) Original
partial tree

+

1 ?

+

+

? ?

?

+

-

? ?

?

(b) Possible expansions of the left-most hole

Figure 2.4: A partial tree and some possible expansions of its left-most
hole.

In bottom-up enumeration, the leaves (bottom) of the AST are first constructed
and evaluated individually. Larger trees are then discovered by combining these
leaves in various ways. By continually combining the lower-level components
that were found, it is possible to enumerate arbitrarily large trees. For example,
in the search space defined in Figure 2.2a, the programs 1, 2, ..., 9, and x will
be enumerated first. After that, +, × and − are used to get combinations of
the previously enumerated rules, such as 5 + x. Repeating this last step also
enumerates for example 3 + (5 + x) or (2× 5)− (5 + x).

In top-down enumeration, an AST is constructed top-down. This means that
the main structure of the program is first discovered, and the lower-level com-
ponents are filled in later. Lower-level components that are not filled in yet are
called holes and an AST containing holes is called a partial tree or an open hy-
pothesis, as opposed to closed hypotheses that do not have any holes. Consider
the search space from Figure 2.2a again. Just like with bottom-up enumeration,
0, 2, ..., 9, and x are enumerated for the hole. However, some partial trees are
also generated: ?+?, ?×? and ?−?. In the next iteration, one open hypothesis is
picked, and one hole in the tree is expanded. Consider filling the left-most hole
of the partial tree ?+?, also shown in Figure 2.4a. This hole can be filled using
every production rule for the non-terminal symbol Int. As a result, the tree is
expanded to 0+?, 1+?, ..., 9+?, x+?, (?+?)+?, (?×?)+? and (?−?)+?. Figure
2.4b shows a selection of these expanded trees.

In this thesis, top-down enumeration will be used. However, the approaches
to symmetry-breaking described in this thesis can also be applied to bottom-up
enumeration. Some algorithms exploit the use of deduction in inductive syn-
thesis to complement their enumeration [12, 13, 14]. This is covered in more
detail in the related work in the next chapter.

10

Chapter 3

Related work

The program synthesis field lacks approaches that specifically address semantic
information discovery or automated symmetry breaking. However, that does
not mean that there is no relevant literature. This chapter primarily focuses
on algorithms that leverage semantic knowledge to perform deduction in Sec-
tion 3.1. These algorithms are the potential use cases of semantic information
discovery. Additionally, Section 3.2 explores Popper [8], an Inductive Logic
Programming system that utilizes semantic knowledge that transfers between
domains and hence does not require manual encoding. Lastly, two existing
algorithms for extracting semantic knowledge from languages or libraries are
discussed in Section 3.3.

3.1 Deduction in inductive synthesis

Section 2.2 showed that enumerative synthesizers generally only rely on syn-
tactical information. The synthesizers that are covered in this section also in-
corporate semantic information in the search by performing deduction. The
main purpose of deduction in a search is to use reasoning to ‘reject’ an open
hypothesis, in other words, an AST with holes in it. Since exploring this open
hypothesis will potentially lead to a large number of closed hypotheses, reject-
ing it early can cut off large parts of the search space. There are a couple of
related works that make use of some form of constraint, semantic specification
or learned lemma to do deduction in combination with their search [12, 13, 14,
18].

3.1.1 Semantic specifications

Morpheus [12] and Neo [13] are both algorithms that make use of semantic
specifications. These specifications describe how certain properties of the out-
put of an operator relate to the input.

The intended use case of Morpheus is table transformation tasks in the pro-
gramming language R. Morpheus utilizes specifications for specific operators or
functions that mainly enforce the size of the input and output of a particular

11

operator. For example, the constraint for the filter operator is:

Tout.row < Tin.row ∧ Tout.col = Tin.col

Tin and Tout represent the input and output tables, and row and col are the
numbers of rows or columns of a table. When a (partial) hypothesis is generated,
the operator specifications are combined into a hypothesis specification, which
contains placeholders for the intermediate tables:

?1.row <?3.row ∧ ?1.col =?3.col ∧
?0.row =?1.row ∧ ?0.col <?1.col

This is then combined with data from a specific example with input x1 and
output y by adding the following:

x1 =?3 ∧ y =?0 ∧
x1.row = 3 ∧ x1.col = 4 ∧ y.row = 2 ∧ y.col = 4

A Satisfiability Modulo Theories (SMT) solver checks this function for satis-
fiability. If this formula is not satisfiable, the hypothesis can be rejected. If
the hypothesis was partial, we do not have to fill it in any more. Morpheus
is a synthesis tool that is optimized for table transformations. Nevertheless, it
is capable of handling any constraint as long as it is encodable in first-order
logic since this is what the SMT-solver accepts. It is however important that
a constraint that enforces a certain property is present in multiple operators of
the language for the constraint to be effective. If this is not the case, there is
little propagation possible, and thus the probability that this constraint causes
a hypothesis to be rejected is very low.

Neo [13] is more advanced than Morpheus. It uses similar operator spe-
cifications to Morpheus. After the search algorithm filled a certain hole, the
following actions are taken:

1. Propagate: Any choices that can be inferred from the existing hypothesis
are filled in. This is done with a SAT-solver, which simply checks for a
certain hole if there is a single way of filling it.

2. CheckConflict: After propagation, the hypothesis is tested for any con-
flicts. This is quite similar to what Morpheus does, and also uses an
SMT solver. However, if a conflict is detected, it is analysed to find the
root cause of the conflict. This root cause is turned into a constraint that
prevents further conflicts. For example, if the fact that the input and out-
put of reverse have the same length causes a conflict, we already know
that sort will also not work in that scenario.

One of the main strengths of Morpheus is that it improves the effectiveness
of deduction with partial evaluation. Combined with its statistical language
model, Morpheus is shown to be very effective in data transformation tasks.
However, the specifications that are made Morpheus is specifically made for
table transformation tasks, which makes it difficult to apply to other domains.

12

The propagate step of Neo is an optimization over Morpheus. The propaga-
tion prevents the search from trying multiple ways of filling the hole in a later
iteration. Another big benefit is the ability to identify the root cause of a conflict
since this provides insight into what can be done to prevent this kind of conflict
later in the search. However, both algorithms suffer from the same restriction of
having to manually provide specifications. Applying them to a different domain
is therefore a tedious process.

3.1.2 Example propagation

Some program synthesizers use deduction to divide the problem of finding a suit-
able program into multiple sub-problems. A good example of such an algorithm
is λ2 [14]. It is able to divide a search into smaller parts by using inference rules
to infer a new set of input-output examples for certain holes. In addition, it also
checks for conflicts, similar to Neo and Morpheus. The inference rules either
conclude unsatisfiability or translate the input-output examples. For example,
consider a map function that takes an input list and a function f and returns
an output list. The input and output examples for synthesizing the function f
can be inferred from the input list and the output list of the map function. An
inference rule defines how these examples can be inferred, or alternatively reject
a hypothesis if the transformation is not possible using a map function. Solving
the problem defined by the new set of examples is equivalent to filling the hole.

A more advanced example is DryadSynth [18]. In contrast to the aforemen-
tioned algorithms, this is not a programming-by-example synthesizer but rather
a synthesizer that takes an (incomplete) specification as input. It relies on a
divide-and-conquer approach to tackle the program synthesis problem. The
algorithm starts with the input specification. Each time a new sub-problem
is made, it is put through a deductive synthesizer that simplifies the problem
as much as possible. This simplification is performed by exhaustively and re-
peatedly applying a set of predefined deductive rules, such as the following
deduction rule for a language with conditionals:

f(e) ≥ e1 ∧ f(e) ≥ e2 =⇒ f(e) ≥ if(e1 ≥ e2, e1, e2)

Here, if is the conditional if-then-else function. Note that if(e1 ≥ e2, e1, e2) is
equivalent to the max function. This rule essentially describes that in case the
output of a function should be greater than both inputs, a max function can be
synthesized.

If the deductive synthesizer is not able to completely solve the problem, the
problem is handed to the Divide-and-Conquer splitter. If a problem is indivis-
ible, it is solved with an enumeration technique.

DryadSynth is a good example of a program synthesizer that heavily relies on
deduction. It is able to completely solve some problems without using search.
A downside to both λ2 and DryadSynth is that the deduction rules have to be
expertly designed in order to transform an input specification into a program.
For example, if the direction of the implication in the example deduction rule
of DryadSynth was reversed, it would have counteracted the efforts of the al-
gorithm to find a program for the specification. Small mistakes in the inference

13

rules for λ2 would lead to the algorithm confidently returning the wrong pro-
grams since it filled holes with subprograms that are generated with the wrong
examples.

3.1.3 Discussion

All mentioned program synthesizers have to be provided with semantic specific-
ations or deduction rules. The quality of the specifications or rules can have a
big effect on the effectiveness of deduction. Providing something that is incor-
rect can remove potential solutions, and in the case of DryadSynth, providing
correct but unhelpful rules can counteract the program synthesis. Furthermore,
manually crafting specifications or deduction rules can be quite tedious and
difficult, especially for people that are not familiar with the specific operators.
Automating this task can make these tools accessible to a larger audience. For
the purposes of this research, the approach taken by Morpheus is the most at-
tractive since the simple specifications that are used are easier to automatically
discover.

3.2 Popper

Popper is an Inductive Logic Programming (ILP) system [8]. ILP can be seen
as a specific form of program synthesis that restricts itself to logic programs [7].
Instead of working with input-output examples, logic programs work with pos-
itive and negative examples. The goal is to synthesize the most general set of
rules such that all positive and no negative examples are a logical consequence
of the synthesized rules.

Popper makes use of the inherent semantic knowledge of the ILP problem
definition to constrain the search space after an incorrect hypothesis was tested,
which means that it learns from failures. Learning from failures closely relates
to what Neo and Morpheus do. However, the benefit of Popper is that it is
not specific to a certain domain. The knowledge that is used for creating the
constraints comes purely from the failure and the semantics of ILP, and not
from the domain to which ILP is applied.

3.3 Specification extraction

Specification extraction is a topic from the programming languages field. Auto-
matically extracting specifications from function definitions and proving them
is a useful feature for many applications, such as testing, proof assistants and
documentation generation. This topic is also relevant to this thesis since equi-
valence specifications can be used to detect symmetries in a program space.

3.3.1 QuickSpec

A well-known tool for specification extraction is QuickSpec [5]. QuickSpec
takes a set of functions and variables with their types and a data generator for
each type. The algorithm is simple and elegant:

14

1. A set of terms is generated out of the functions and variables.

2. Every term is put into the same equivalence class. Essentially, this means
that every term is considered to be equivalent.

3. Tests are generated by using a data generator for each variable. If pro-
grams of the same equivalence class have a different outcome for a test,
the equivalence class is split into different new classes in such a way that
every term in a class has the same outcome for every test executed so far.
The testing continues until there is no change in the equivalence classes
for a certain number of tests.

4. Every term is considered equal to any other term in the same equivalence
class. Pruning is applied to filter redundant equations from the output.

This approach works very well in toy examples, but it fails to scale to real-world
scenarios. This problem is addressed in the second version of QuickSpec [34].
Here, pruning and symmetry-elimination techniques are used during the testing
phase to reduce the testing of redundant terms.

One shortcoming of QuickSpec is that it never has complete certainty about
an extracted lemma. Terms are considered equal only if they show equal be-
haviour in a sufficient number of tests. Unless the terms are tested on every
possible input, their equivalence cannot be ensured with an approach based
purely on testing. Therefore, the lemmas that are found by QuickSpec should
be considered conjectures.

3.3.2 HipSpec

We can give those conjectures to a proof assistant to try to automatically prove
them. This is exactly what HipSpec [6] does; it uses QuickSpec to generate
the conjectures and hands them off to Hip, a Haskell Inductive Prover [32].
Hip translates the conjectures to first-order logic and proves them by utilizing
an external automated prover, such as Z3 [9]. A big limitation of HipSpec is
its exclusive compatibility with Haskell. However, it does offer specifications
accompanied by proof of correctness, which is something that QuickSpec does
not provide. Ideally, these two approaches should be combined to get a system
with the flexibility of QuickSpec and the proofs from HipSpec. However, this
is a challenging endeavour, since the flexibility of QuickSpec originates from
utilizing evaluators instead of relying on operator definitions. This means that
one could for example provide it with a Python evaluator. In contrast, HipSpec
requires definitions for the operators in Python in a specific format, which is
more difficult to provide.

15

16

Chapter 4

Problem definition

This thesis aims to make semantic information more accessible by automat-
ically discovering it. The first goal is to discover symmetries in the program
space and eliminate those in the search. The second goal is to discover semantic
specifications that can be combined with problem-specific knowledge to prune
the program space. To reach these goals, three problems have been formu-
lated. The first problem is the program symmetry problem, which addresses
the need for a way of instructing the enumeration algorithm to remove part of a
symmetry. The second problem is called the constraint discovery problem and
focuses on automatically discovering the symmetries and generating constraints
to eliminate them. The specification discovery problem is the last problem and
it addresses automatically discovering semantic specifications. The rest of this
chapter is dedicated to motivating and formulating these three problems more
in-depth.

4.1 Program symmetry problem

Enumerative program synthesis algorithms use an enumerator to enumerate
every program in the program space. However, the program space might have
a lot of symmetries. For example, consider the running example of the integer
arithmetic program space. A possible symmetry in this program space is mul-
tiplication with one. The operation takes a program a and multiplies it with
one to obtain the program a× 1. Even though a× 1 is different from a, it still
has the same meaning. Another operation could be to multiply the program 0
with any other expression. Since multiplication with zero always results in 0,
the behaviour of the transformed programs will not change. The operation that
swaps the operands of multiplication or addition also defines a symmetry that
is caused by commutativity.

Symmetries in a search space are usually undesirable. This also applies to
the program space. Depending on the language, symmetries can make up large
portions of the program space. This will become visible in the evaluation of this
approach in Chapter 7. These programs all have to be enumerated and evalu-
ated with the intent specification, but they do not contribute anything to the
expressiveness of the program space. Section 2.2 already showed that other do-

17

mains utilize symmetry-breaking constraints for this issue. However, the idea of
symmetry breaking has not been explored with enumerative program synthesis.
The question that we aim to answer in this thesis is:

How can symmetries in the program space be broken?

This thesis proposes a custom constraint system specifically for enumerative
program synthesis that can be used to create symmetry-breaking constraints.

4.2 Constraint discovery problem

In a lot of applications of program synthesis, there is a human user that has to
directly interact with the program synthesizer. Therefore, it is crucial to invest
time and effort in the user experience and ease of use.

An inherent consequence of making program synthesis algorithms generalize
to arbitrary user-defined languages is that language-specific knowledge such as
symmetry-breaking constraints needs to be supplied together with the language.
Section 3.1 showed that existing algorithms that make use of language-specific
information rely on the user or an expert to provide this information. Manually
producing language-specific information in the correct format is often a tedious
and error-prone task that requires a profound knowledge of the semantics of
the language. However, for many of the applications of program synthesis, the
target audience does not necessarily have this knowledge. Moreover, individuals
that have the necessary semantic knowledge might be more efficient by coming
up with the program themselves instead of going through the tedious process of
encoding this information.

In the constraint generation problem, the aim is to automatically detect sym-
metries in the program space by using the evaluator for a language as an oracle.
Once a symmetry has been discovered, a symmetry-breaking constraint can be
generated to eliminate the symmetry from the program space. This relieves end
users of having to define the constraints themselves, while still enjoying the be-
nefits of symmetry-breaking constraints. There are a couple important factors
to take into account when generating symmetry-breaking constraints.

1. The discovered symmetries and corresponding constraints should be cor-
rect; incorrect constraints will remove potential solutions without leaving
an equivalent program in the program space.

2. The combination of different constraints should not lead to both sides of
an equivalence being removed.

3. Since the goal of a program synthesis problem is often to find the smallest
program that satisfies the intent specification, the more complex half of a
symmetry should be removed in favour of the simpler half.

Even though it is difficult to directly assess the quality of the discovered con-
straints, it is essential to take these considerations into account, since they have
a big influence on the efficiency and correctness of the enumeration algorithm
using the symmetry-breaking constraints.

18

The problem of generating symmetry-breaking constraints can be split into dis-
covering symmetries and converting them to constraints. This gives us the
following two questions:

How can symmetries be discovered?
How can these symmetries be converted to symmetry-breaking constraints?

Combining the answers to these questions should give a functioning system that
automatically discovers symmetry-breaking constraints.

4.3 Specification discovery problem

Until now, we have focussed on language-specific knowledge in the form of
symmetry-breaking. However, existing program synthesis solvers exploit other
variants of language-specific knowledge. Morpheus [12] and Neo [13] use the
relation between certain properties of input and output values of operators in
the language. These relations are an over-approximate incomplete semantic spe-
cification of operators in the language.

A semantic specification (partially) describes the behaviour of a language. Com-
bined with problem-specific knowledge, semantic specifications can prune large
parts of the program space. Morpheus and Neo rely on the user to come
up with these specifications. As motivated in Section 4.2, manually provid-
ing language-specific knowledge is cumbersome and requires a deep insight into
the semantics of a language. Automating this step would make synthesizing
with custom languages or libraries a lot more accessible to the average user.
Therefore, the last question that needs answering is:

How can semantic specifications be discovered?

The next chapter will present the solutions to the questions that are posed in
this chapter.

19

20

Chapter 5

A framework for
discovering constraints and
specifications

This section describes the way in which constraints and specifications are gen-
erated. Section 5.1 demonstrates how equivalences can be discovered in the
program space. This is followed by an explanation of how these equivalences,
which can be seen as symmetries, are converted into symmetry-breaking con-
straints in Section 5.2. The implementation of the constraints themselves is
discussed in Section 5.3, as well as their application to a top-down enumeration
algorithm. Finally, Section 5.4 shows how the equivalence discovery approach
can be modified to discover semantic specifications.

5.1 Equivalence discovery

The structure of the equivalence discovery algorithm is based onQuickSpec [5].
QuickSpec generates equivalences for Haskell and Erlang programs in a few
steps. First, a set of terms is generated and grouped inside a single equivalence
class. This equivalence class is divided into smaller classes by repeatedly testing
these terms on different inputs and splitting them according to their output.
Once the testing has finished, the equivalence classes are converted to a list of
equivalences. Finally, a pruning step removes equivalences that are implied by
other equivalences and are thus redundant. Section 3.3.1 explains the algorithm
in more detail.

To make the QuickSpec algorithm work for equivalence discovery for program
synthesis, some modifications had to be made:

1. The equivalence discovery is made more general: it works for any grammar
that a user can define. The only prerequisite is that the functions in the
grammar must be pure, in other words, deterministic and without side
effects. The algorithm also needs access to an evaluator for the language.

2. In the QuickSpec algorithm, a data generator has to be provided for

21

every type that is used in the grammar. The algorithm described in
Section 5.1.2 is able to automatically create such a generator from the
grammar, alleviating the user of this task.

3. The equivalence pruning step is replaced by a procedure tailored to cre-
ating symmetry-breaking constraints. QuickSpec prunes equivalences
that can be derived by the remaining equivalences. In contrast, the prun-
ing procedure in this algorithm is separated from the equivalence discov-
ery, and executed after equivalences have been converted to constraints
for the first time. The pruning prunes equivalences using the generated
constraints and converts the remaining equivalences into a pruned set of
constraints. Since this pruning step is no longer part of discovering equi-
valences, it is not covered in this section, but rather in Section 5.2.3.

The purpose of the equivalence discovery is to detect equivalences between cer-
tain programs in the program space. These equivalences can be seen as sym-
metries. The remainder of this section will explain the design of the equivalence
discovery algorithm in more detail.

5.1.1 Grammar preparation

The grammar preparation step prepares a grammar for generating the terms
between which equivalences will be detected. These terms could be generated
directly from the language grammar, but this limits the generality of the dis-
covered equivalences. To illustrate this, consider the integer arithmetic grammar
again. Terms such as 1 + 2 and 2 + 1 will be generated, which causes the equi-
valence 2 + 1 ≡ 1 + 2 to be generated at a later stage. Ideally, we would also
discover the much more general equivalence of a+ b ≡ b+ a, showing the com-
mutativity of the addition operator.

Terms such as a + b or b + a are called patterns because they contain vari-
ables that can match multiple sub-terms. These variables are different from the
input variables already present in the language. An input variable is assigned
values from input examples, or a value that a user provides once a program is
being used. In the context of equivalence discovery, a pattern variable repres-
ents all sub-terms that are applicable to its location.

A pattern consists of reference nodes and variable nodes. A reference node
references a specific production rule in the grammar. This node only matches
this specific production rule in the program. For example, a reference node that
references + with two child nodes 1 and 2 only matches 1+2 in the program. A
variable node signifies a variable and contains an identifier symbol. Such a vari-
able can match any production rule in the grammar. An example of this is the
pattern a+ b, which matches every addition, e.g. 2 + 3 where a = 2 and b = 3.
A single pattern tree can also have multiple instances of the same variable. In
this case, all these instances must have the same assignment. For example, the
pattern a+ a matches every addition of equal terms, such as 1+1, where a = 1
and (2 × 4) + (2 × 4) where a = 2 × 4. To avoid confusion between pattern
variables and input variables in the synthesized programs, we will use a, b, c, ...
for pattern variables and x, y and z for program variables in the remainder of
this thesis.

22

Int ::= Int + Int

Int ::= Int× Int

Int ::= Int− Int

Int ::= 0

...

Int ::= 9

Int ::= x

(a) Integer arithmetic grammar

Int ::= Int + Int

Int ::= Int× Int

Int ::= Int− Int

Int ::= 0

...

Int ::= 9

Int ::= a

Int ::= b

(b) Pattern grammar

Figure 5.1: The conversion of the integer arithmetic grammar to the
pattern grammar for discovering constraints in the integer arithmetic
grammar.

Taking this into account, there are two changes that need to be made. Firstly,
a user-defined number of pattern variables needs to be added for each non-
terminal in the grammar. Secondly, all existing input variable production rules
need to be disabled. These variables are not relevant to the patterns and since
the equivalence extraction step does not always have access to problem-specific
data such as input values, it is not possible to evaluate these variables. For
example, in the integer arithmetic grammar from Figure 5.1a, the production
rule Int→ x would be disabled, and the production rules Int→ a, Int→ b, etc.
would be added. Theoretically, the rule Int → x could be reused as a pattern
variable, but this would be confusing. This results in the grammar given in
Figure 5.1b. Theoretically, the rule Int → x could also be reused as a pattern
variable. However, this would be very confusing, which is why it is removed
instead.

The choice of the number of pattern variables can have a significant effect on
the constraints that are generated. Pattern variables allow constraints to be
more general. Including more pattern variables can make the equivalences and
thus the constraints more general. Consequently, these general constraints often
make multiple less-general constraints redundant, therefore reducing the total
number of constraints. A good rule of thumb for setting the number of pattern
variables per nonterminal is to make sure that every production rule can be
filled with unique variables. For example, if there would be a production rule
Int ::= Bool ? Int : Int, which contains the ternary operator, then at least two
variables should be included for Int and at least one for Bool.

23

1: procedure GetAutoGenerator(Grammar ⟨V,Σ, R, S⟩, type T , evalu-
ator E, max depth)

2: Remove all variable production rules from R
3: H ← Enumerate(⟨V,Σ, R, T ⟩, [],max depth,∞)
4: O ← {E(⟨V,Σ, R, S⟩, x), x ∈ H} ▷ Set of evaluated hypotheses
5: return a function that randomly draws an item from O
6: end procedure

Algorithm 1: Auto-generator creation

5.1.2 Data generators

In QuickSpec [5], the user has to provide data generators for every type of
the grammar. These data generators are used to generate values that will be
assigned to the pattern variables. Defining data generators can be quite tedious
and we should not make this an obligation for the user. In our implementa-
tion, it is not necessary to manually define data generators, even though it is
still possible. When data generators are not provided, the algorithm creates
an auto-generator. The auto-generator is created from the original grammar.
Algorithm 1 outlines how such a generator is created. The first step is to re-
move all variable production rules from the grammar (line 2). The variable rules
cannot be used because in order to evaluate them, there needs to be an assign-
ment, which is not available by default. This modified grammar is then used to
enumerate all possible hypotheses without variables up to a certain maximum
depth in line 3. These hypotheses are then evaluated in line 4 to get their output
values. The output values are stored in a set, meaning that duplicate values are
removed. This set of output values is used to create the generator in line 5. The
generator that is returned is a function that draws a random value from the set
of values each time it is called.

An obvious downside of using auto-generators is that they only generate values
that can be created using the grammar. If these values are not general enough,
incorrect equivalences could be generated. This can become a problem at a
later stage if input variables introduce values that are substantially different
from the values in the grammar. To illustrate this problem, consider the lists
grammar again. Since the grammar only has integers up to 9, and no arithmetic
operators, the largest integer value that can be constructed is 9. As a result,
the equivalence push(sort(a), 9) ≡ sort(push(a, 9)) is generated at a later stage
in the equivalence discovery. This equivalence is valid as long as the input vari-
ables in the original grammar do not introduce values greater than 9. However,
there might be cases where the data that can be generated by the grammar is
not general enough for the possible assignments to the input variables.

The auto-generator has therefore been extended to also accept a list of pos-
sible values for certain input variables. These lists can be hand-made or taken
from existing data sets. If such a list is provided for one or more of the input
variables, these variables are not deleted from the grammar beforehand. In-
stead, whenever they have to be evaluated, a random value is sampled from this
list. This allows users to also insert dataset-specific data into the generators

24

1: Input: list of patterns P , evaluator E
2: Output: Set of equivalence classes
3: Q← {P}
4: repeat
5: Q′ ← ∅
6: T ← batch of n test cases generated using D
7: for q ∈ Q do
8: O ← empty dict
9: for p ∈ q do

10: outputs ← outputs of tests T on p
11: push p to O[outputs]
12: end for
13: for (outputs, P) ∈ O do
14: Add P as a new equivalence class to Q′

15: end for
16: end for
17: Q← Q′

18: Remove equivalence classes with a size smaller than 2 from Q
19: until there has not been a split in the last m iterations

Algorithm 2: Equivalence extraction

without having to define their own data generator.

5.1.3 Discovering equivalence classes

The next step after preparing the grammar and getting the data generators is
to generate equivalence classes. An equivalence class is a set of hypotheses that
are assumed to be extensionally equivalent. Algorithm 2 shows the procedure
for extracting equivalences. The first step in obtaining equivalences is obtaining
the set of patterns P between which equivalences should be detected. This set
can be constructed by utilizing a top-down enumeration algorithm (see Section
5.3.1). After that, every pattern is placed in the same equivalence class in line 3.
This essentially means that we assume every pattern to be extensionally equi-
valent. Of course, this is not actually the case, and the goal of the remainder
of this procedure is to falsify most of these assumptions by creating counter-
examples.

This falsification starts by generating a batch of test cases in line 6. A test
case consists of an assignment to each pattern variable. These assignments are
generated using the data generators, that are either provided by the user or
automatically made using Algorithm 1. The batch of test cases is used in line
10 to evaluate the patterns in each equivalence class. Since there are only pat-
tern variables in a generated pattern, filling in those variables returns a program
without variables that can directly be evaluated. The patterns are then grouped
in line 11 based on their outcomes on the batch of test cases. Lines 13-15 turn
these groups into new equivalence classes. After each pattern in each equival-
ence class has been evaluated on the batch of tests, any equivalence class that
has only one element is removed (line 18). The goal is to detect equivalences

25

between patterns, and if there is only one pattern in an equivalence class, it is
not possible to generate an equivalence. The process of generating a batch of
tests and splitting the equivalence classes is repeated until there have not been
any splits in a user-defined number of iterations. Of course, there is never a
point of absolute certainty about an equivalence. However, the confidence goes
up with the evaluated number of tests.

5.1.4 From equivalence classes to equivalences

After there have been enough iterations that we are confident enough about the
equivalence classes, it is time to turn the equivalence classes into equivalences
of the form A ≡ B. The first step is to pick the least complex pattern in
the equivalence class. This pattern represents the programs in the equivalence
that will remain in the search space. The other patterns represent equivalent
programs that can be removed. The goal of the search algorithm is generally to
find the smallest program that satisfies the examples. Consequently, we want
to prevent removing the smallest program from an equivalence class as much as
possible. The least complex node in the order of complexity is therefore defined
as follows:

1. It has the lowest number of nodes. This is important because this will
cause the larger program to be removed from the program space. If the
numbers of nodes are equal:

2. It has the lowest number of pattern variables. This is also essential since
variables may represent a large part of the program in the program space,
whereas the size of a literal is always equal to one. If the numbers of
pattern variables are equal:

3. Any total order. If this step were to be omitted, the transitive property
of the order would not be guaranteed and equivalences could prune each
other in the pruning step.

Once the least complex pattern has been established, it gets combined with each
other pattern in the equivalence class to form an equivalence. For instance, if
the equivalence class has the patterns 0, 0× 1, 0× a, a− a, the pattern 0 gets
chosen as the least complex pattern because it has the lowest maximum depth,
and 0× 1 ≡ 0, 0× a ≡ 0 and a− a ≡ 0 are the equivalences that get generated.
0 × 1, 0 × a and a − a are the patterns that will be removed from the search
space in favour of 0.

5.2 Constraint conversion

The constraint conversion step converts an equivalence to an actual constraint
that can be used in the search. In most cases, converting an equivalence is quite
straightforward. There already is an equivalence in the form of X ≡ Y , and
it is known that X is the least complex pattern in the equivalence class that
generated this equivalence. For each equivalence, an attempt is made to convert
it into a Forbid constraint. This constraint forbids a certain pattern from
occurring in the program space, which is useful for removing symmetries such as
multiplication with 0. In case this fails, the algorithm tries to create an Order

26

constraint. The Order constraint enforces an order over variables. This can
eliminate symmetries caused by the commutativity of operators. An important
thing to keep in mind is that this constraint conversion step is not complete:
there will be some equivalences that are not turned into constraints. However,
the generated constraints are sound, meaning that they do not remove potential
solutions from the program space without leaving an equivalent program.

5.2.1 Generating Forbid constraints

A Forbid constraint removes every occurrence of a pattern from the search
space. In most cases, this is all that is necessary, but there is a complication
in the case where X and Y are equal by variable renaming. To illustrate this
problem, consider the commutativity equivalence again: a + b ≡ b + a. The
pattern a+ b is able to match every addition. Adding this pattern in a Forbid

constraint thus completely removes addition from the search space. In the case
of this equivalence, it is rather obvious that a Forbid constraint does not work
correctly. There are also equivalences where this is less obvious because it
only wrongly removes a single program. For example, consider the equivalence
a + 6 ≡ 6 + a. If the left-hand side of this equivalence is turned into a Forbid

constraint, the program 6+ 6 is removed from the search space, even though it
is its own ‘equivalent program’.

The underlying issue in these scenarios is that there are programs that match
both the pattern on the right-hand side of the equivalence and the pattern on
the left-hand side of the equivalence. In order to turn an equivalence into a
Forbid constraint without accidentally removing part of the search space, we
need to make sure that such a program does not exist for the equivalence. De-
termining the absence of such a program is not a problem that can easily be
brute-forced. This problem is known as the unification problem [22].

Programs that match both patterns of an equivalence can be found by em-
ploying a unification algorithm. Such an algorithm finds an assignment to the
variables in both patterns that make both patterns equal, which is equivalent
to finding the program that matches both patterns. The following examples
illustrate this process a bit more intuitively:

� Consider the equivalence a+ 6 ≡ 6 + a. First, the left-hand side and the
right-hand side are separated and the variables are renamed for clarity:

al + 6 6 + ar

These two equations can then match each other by assigning al = 6 and
ar = 6. This means that 6 + 6 matches both sides and is not included in
the search space anymore when this equivalence would have been turned
into a Forbid constraint.

� For an example that can be turned into a Forbid constraint, consider
a + a ≡ a × 2. Again, the sides are separated and the variables are
renamed:

al × 2 ar + ar

27

Here it is not possible to assign values to al and ar to make the sides match.
Therefore, there does not exist a program that matches both sides. The
equivalence can hence safely be turned into a Forbid constraint.

As demonstrated, if the match attempt ends up being successful, there must
be an instance of the right-hand side on which the left-hand side will match.
Therefore, the equivalence should not be turned into a constraint since it might
remove a program and all its equivalences from the search space.

This detection mechanism gives no false positives, meaning that it does not al-
low constraints to be produced that remove parts of the search space. However,
there are some false negatives. For example, the equivalence for associativity of
addition (a + b) + c ≡ a + (b + c) is not turned into a Forbid constraint, even
though it could be.

5.2.2 Generating Order constraints

An Order constraint can be created from a pattern and a list of variables in the
pattern to which the constraint should apply. The Order constraint can enforce
an arbitrary order between two variables in a pattern. If an equivalence cannot
be turned into a Forbid constraint, an attempt is made to turn it into an Order

constraint. The only prerequisite is that the left-hand side and the right-hand
side of the equivalence must only be different by swapping two variables. So,
the equivalence (a+ b)+ c ≡ (b+ a)+ c will be turned into an Order constraint
where a and b are ordered. The equivalence (a+ b) + c ≡ (c+ a) + b will not be
turned into an Order constraint, because more than two variables are swapped.
This equivalence still contains a useful equivalence that we would like to make
use of during the search. However, all the information can also be captured by
other equivalences where only two variables are swapped. In other words, we
can infer (a+ b) + c ≡ (c+ a) + b from the equivalence (a+ b) + c ≡ (b+ a) + c
and (a+ b) + c ≡ (a+ c) + b. Therefore, we can discard the equivalences where
more than two variables change place and only include three constraints:

1. Order a and b in (a+ b) + c

2. Order b and c in (a+ b) + c

3. Order a and c in (a+ b) + c

This combination of constraints rules out any permutation of a, b and c except
for the one that is ordered. There might be some exceptional cases in which
these other equivalences are not generated because they are falsified during the
falsification stage. However, in these cases, the original equivalence cannot be
turned into an Order constraint without reducing the expressiveness of the pro-
gram space, and therefore it should also be disregarded.

A downside to using three different constraints is that it causes the pattern
(a + b) + c to be checked multiple times in the search since each constraint is
enforced separately. This problem is solved by including an extra step after the
constraint generation that combines Order constraints. Every Order constraint
that we have so far describes the equivalence of swapping two variables. The

28

constraint removes one part of this equivalence by enforcing the variable assign-
ments to be ordered. What is very helpful in this case is that the operation
of ordering variables is transitive. Furthermore, how the variables are actually
ordered is irrelevant. Therefore, using the transitive property of ordering, it is
possible to combine Order constraints with the same pattern by ordering the
union of the variables that the individual constraints ordered. Consider the con-
straints that order [a, b], [b, c] and [a, c] again. By combining these constraints,
a more general constraint is obtained that orders a, b and c in the pattern
(a+ b) + c.

5.2.3 Removing redundant constraints

The final step in the process of obtaining constraints is to prune any unnecessary
or redundant constraints. Enforcing a constraint is a relatively expensive oper-
ation that happens for every constraint with every expansion in the search tree.
Often, constraints can be removed in favour of a more general version that has
also been discovered. For example, the programs that the Forbid constraint for
1× a removes is a superset of the programs that are removed with the Forbid

constraint for 1 × 2. Therefore, the pattern 1 × 2 can be removed if 1 × a is
also discovered. This is a result of matching being a transitive operation; if a
pattern a is able to match another pattern b, a also matches all patterns and
programs that b matches.

The pruning is applied to the equivalence classes, where redundant patterns
are removed. This is done by viewing a pattern as a program and enforcing the
generated constraints on it. Each equivalence is used separately to prune all re-
maining patterns in the equivalence classes. An equivalence is first converted to
a constraint using the method described earlier in this section. After obtaining
the constraint, it is applied to every pattern in every equivalence class. If the
constraint can prune the pattern, the pattern is removed. There are some extra
checks to make sure that a constraint does not remove the pattern on either
side of the equivalence that generated the constraint. If these checks were to
be omitted, every constraint would remove itself. At the end of the pruning
step, the pruned equivalence classes are again converted to equivalences and
constraints, and this pruned set of constraints is finally returned by the con-
straint discovery algorithm.

The essence of this pruning step is to retroactively apply the discovered con-
straints in the enumerator that enumerated the patterns before testing them.
This means that equivalences between the patterns are detected and removed.

5.2.4 Duplicating Forbid constraints

One issue with applying the discovered constraints in the pattern enumerator
is that sometimes the Order constraints prune patterns that generated valid
Forbid constraints. To illustrate this, consider the following constraints being
generated before pruning: Forbid a × 1, Forbid 1 × a and Order a and b in

a× b. The Order constraint will prune the Forbid a× 1 constraint during the
pruning phase since 0 is ordered before the pattern variable a in the integer
arithmetic grammar. However, a is a pattern variable that can be filled in in

29

multiple ways during the search. The assignment to this pattern variable might
be ordered differently. Consequently, there could be programs such as 0×1 that
are redundant, but no longer get removed because 0 and 1 are ordered, and the
only Forbid constraint left is removing programs that match the pattern 1× a.
This is an inherent consequence of treating patterns as programs.

This issue only occurs when there are symmetric Forbid constraints, in this
case, Forbid a× 1 and Forbid 1× a. If one of these patterns is kept during the
pruning, the equivalent pattern needs to be added back. The simple solution is,
therefore, to check each Forbid constraint for a symmetry that gets pruned by
an Order constraint. If such a symmetry exists, we simply produce the other
half of the symmetry for the pattern and turn it back into a Forbid constraint,
while making sure that no duplicate constraints are generated.

After this step, we are left with a set of symmetry-breaking constraints that
can be given to a program enumerator to break symmetries and reduce the
number of redundant enumerations.

The diagram in Figure 5.2 provides an overview of the most important steps
that are necessary to generate constraints. Section 5.1 covered the top half of
this diagram, showing how equivalences can be discovered by testing candidate
patterns. These candidate patterns were enumerated from a pattern grammar,
which is obtained by modifying the original program grammar.

This section discussed how these equivalences, which represent symmetries in
the program space, can be converted to symmetry-breaking constraints. First,
constraints are generated from the equivalences. These constraints are then
used to prune the equivalences. Finally, this pruned set of equivalences is again
converted to obtain a pruned set of constraints. The next section will show
how these constraints are implemented and how they can be enforced in an
enumerative search algorithm.

5.3 Implementing constraints

Constraints are a means of limiting the search space. They can be used to rule
out any undesirable program from being generated by an enumerator. This sec-
tion shows how constraints fit into the context of an enumeration algorithm and
how they are enforced. We conclude by showing how the overhead of constraint
propagation can be limited by introducing global and local constraints.

5.3.1 Enumeration with constraints

Constraints are used in the top-down enumeration algorithm to limit the hypo-
theses that are enumerated. Algorithm 3 shows a simplified top-down enumer-
ation algorithm. The input to the enumeration algorithm is the search space,
defined by the grammar consisting of the nonterminals V , terminals Σ, produc-
tion rules R and start symbol S. Next to that, it also gets a list of constraints

30

Grammar preparation

Program
grammar

Enumeration

Pattern
grammar

Testing

Data
generators

Candidate
patterns

Constraint conversion

Pruning

Equivalences

Constraints

Constraint conversion

Pruned
equivalences

Pruned
constraints

Figure 5.2: Diagram showing the structure of the discovery process for
symmetry-breaking constraints.

that should be enforced in the enumeration procedure. The algorithm maintains
a priority queue of possibly partial programs. In every iteration, the program
with the highest priority is taken from this queue. If this program does not have
any holes, it is returned by the enumerator, after which it can be evaluated on
the intent specification. If this program is partial, one of the holes has to be
expanded. To illustrate this, consider again the top-down enumeration from
Section 2.3. The AST of the current program is ?+?. The FindHole procedure
does a simple depth-first search of the AST to find a hole, which means that it
finds the left-most hole. Once a hole has been selected, the grammar is consul-
ted to obtain the set of production rules that can be used to fill the hole. This
set of production rules is the domain of a hole. In the running example, the
domain consists of every rule in the grammar, so the operators +, − and ×, the
numbers 0− 9 and the variable x.

The grammar does not take the constraints into account, so this set of produc-
tion rules still needs to be pruned. Every constraint has an Enforce-procedure,
which can take a set of production rules together with the entire tree and the
position of the hole. This Enforce-procedure checks which production rules

31

1: procedure Enumerate(grammar ⟨V,Σ, R, S⟩, constraints C, max depth,
max size)

2: Q←PriorityQueue((Hole (S) ,Priority (Hole (S))))
3: O ← []

4: while Q is not empty do
5: f ← tree with highest priority in Q
6: if f does not contain a hole then
7: Append f to O
8: else
9: h← FindHole(f)

10: t← type of h
11: R′ ← all rules of type t from R
12: for all c ∈ C do
13: R′ ← Enforce(c, f, h,R′)
14: end for
15: for all r ∈ R′ do
16: f ′ ← replace h in f with r
17: if Depth(f ′) ≤ max depth and Size(f ′) ≤ max size then
18: Enqueue f ′ with Priority(f ′) in Q.
19: end if
20: end for
21: end if
22: end while
23: return O
24: end procedure

Algorithm 3: Top-down enumeration

would make the partial program violate the constraint and removes those rules.
After enforcing each constraint, the only production rules that are left are the
ones that do not violate any constraint when they replace the hole. If there
would be constraints for removing addition with zero, then 0 would be removed
from the domain in the example.

The final step is to make a copy of the partial tree for each production rule
that is left and replace the hole in each copy with the corresponding produc-
tion. For example, ?+? gets expanded to trees like 1+?, (?+?)+?, (?−?)+?, as
can be seen in Figure 2.4b. Each copy can then be enqueued in the priority
queue to get expanded again at a later point. The position in the queue is
determined by the Priority function. In our implementation, the goal is to
find the smallest program that satisfies the intent specification. Therefore, the
priority function, uses the size of the program.

5.3.2 Forbid constraint

The Forbid constraint has a particular pattern that is not allowed in the search
space. When a Forbid constraint is enforced at Line 13 in Algorithm 3, every
rule in the domain that would complete the pattern is removed. A simple ex-
ample of a pattern is 3 + 2. This would remove every program that contains

32

3 + 2, such as 1 + (3 + 2), from the search space. It is also possible to use the
variables introduced in Section 5.1.1. For example, multiplication with zero can
be removed using the pattern a× 0 and 0× a, and addition of equal terms can
be removed using the pattern a+ a.

If a regular unification algorithm were to be used, we would have to first create
a new tree for every rule in the domain and then match the pattern on this tree.
This means that there is a linear relation between the number of production
rules for a certain nonterminal and the number of match attempts. This adds
a lot of overhead, especially for grammars with a large number of production
rules and a small number of nonterminals. Therefore, a custom algorithm was
developed that only has to do a single match attempt and can remove any pro-
duction rule from the domain that violates the pattern. This algorithm traverses
the tree and prunes the domain of a hole the moment it encounters it. If the
attempt to match was successful, then this pruned domain is kept, otherwise, it
is reset to the original domain.

5.3.3 Order constraint

Even though the Forbid constraint is quite flexible, it is still limited in what it
can do. If we want to eliminate a symmetry from the search space that is caused
by commutativity (e.g. a+b ≡ b+a), we need a different kind of constraint since
the pattern a+ b matches every addition. The Order constraint can be applied
in this scenario. For the Order constraint to work, an order must be defined
over ASTs. The specific order is not important, as long as it is consistent and
transitive. In our implementation, programs are ordered based on the index of
the grammar rule defining the root node of the AST. If two ASTs have the same
root node, we simply do a depth-first traversal of both trees to find a node that
differs and compare this. This essentially means that there is a lexicographical
ordering of the nodes in preorder. The only reason for choosing specifically this
method is efficiency.

The Order constraint consists of a pattern with at least two variables, e.g.
a+ b. Furthermore, it also has a list with a minimum length of two, containing
a subset of the variables in the pattern, defining how they should be ordered.
For example, in the previously mentioned pattern, this list could be [a, b]. This
constraint checks for every pattern match whether the assignments to the vari-
ables (a and b) are ordered, so it checks a ≤ b.

5.3.4 Constraint resolution

A match attempt can result in either a match, no match or an inconclusive
result:

1. Match: The match attempt was successful. The assignments for the
variable nodes are also returned.

2. Inconclusive: It is not yet possible to know if the pattern matches,
because holes in the partial program have been encountered. The pattern
might match if the holes are filled in.

33

3. No match: The pattern does not match, and there is no way to fill in
the holes to make it match.

5.3.5 Global & local constraints

Every time a constraint containing a pattern is checked, a pattern match at-
tempt must be executed at multiple points in the tree. However, the previous
section showed that it is possible to know when a pattern will not match any-
more. Using this information, it is possible to reduce the number of match
attempts.

This is achieved by using local and global variants of the Order and Forbid

constraints. Local constraints are associated with a specific partial program
and also include a reference to a location within the AST of the program. The
enforcement of this constraint is limited to this designated location in the spe-
cific AST. When enforcing the constraint, an attempt is made to align the root
of the pattern with the node in the AST with which the AST is associated.
There can be multiple local constraints for a single program. When a hole in
the open program is expanded, it is not necessary to check every constraint.
Since only the subtrees containing the hole are changing, we only have to check
the constraints that reference a node on the path from the root to the hole that
is being expanded. As mentioned in Section 5.3.4, the result of a pattern match
is one of three options. With a local constraint, we can exploit this option. Since
a constraint only has an effect if the output of the pattern match is successful,
we can remove any local constraint for which we get ‘No match’ as an output.
This also saves a lot of time, as pattern matching is an expensive operation that
is done for every constraint at every expansion.

Global constraints are enforced in every tree and at every location in this tree.
Just like with local constraints, it is not necessary to check the pattern of a
global constraint on nodes that are not part of the path from the root to the
hole we are expanding since nothing has changed in these subtrees. Still, doing
a pattern match for every node on the path from the root to the hole that is be-
ing expanded adds considerable overhead. The global constraints that are used
in this thesis, therefore, add a local variant of their constraint to the partial
program, with a reference to the node that is being expanded. This is done at
every expansion, so a local constraint that enforces the same property as the
global constraint is created for every node. This has the same effect as enfor-
cing the global constraint. However, we now have the additional feature of local
constraints being deleted after it is known that they will no longer be of use.

5.4 Specification discovery

There is more useful information that can be extracted from the grammar. In
addition to symmetry-breaking constraints, it is also possible to create specific-
ations for operators in the grammar. These specifications can be utilized by a
tool like Morpheus [12] to prevent programs that are infeasible for the problem
to be generated at an early stage in the search, thereby improving the efficiency
of the search. It is worth noting that the specifications do not have to be com-

34

plete or precise, but they must be correct. Morpheus is specifically made for
transforming data frames using functions from the dplyr and tidyr R librar-
ies. Data frames can be seen as tables equipped with some extra features that
are not relevant to this explanation. As Chapter 7 will evaluate this method
with Morpheus, it will also serve as a running example in this section.

A specification creates a relationship between certain properties of input val-
ues and properties of the output value of a function. Since Morpheus works
with data frames, the row and col property are used, representing the num-
ber of rows and columns respectively. Below you can find an example of the
hand-made first-order specifications for the filter function in Morpheus:

Tout.row < Tin.row

Tout.col = Tin.col

These specifications state that the output of a filter function on a data frame
always has the same number of columns and a lower number of rows than the in-
put. Section 7.3.1 will discuss the correctness of this specification in more detail.

Two noteworthy observations can be made from these specifications. First of
all, specifications only consider properties of a single operator, which negates
the need for having an enumerator generate multiple combinations of operators.
Secondly, the specifications are not limited to equivalences. This introduces a
challenge since the algorithm from Section 5.1.3 can only discover equivalences.
To address this, a new approach is adopted: instead of generating patterns and
discovering equivalences between them, possible specifications are generated and
the correct ones are identified in a testing phase. The rest of this section will
delve into the details of the realisation of this approach.

5.4.1 Specification grammar

The first step is to generate the specifications, similar to how patterns were
generated. The specifications can be generated separately for each operator in
the program grammar. Therefore, it is not necessary to make use of the program
grammar in this step. A user can instead provide a specification grammar, which
defines the kind of specifications that can be found. In the case of Morpheus,
the specifications need to be in first-order logic since they will be given to an
SMT solver. Therefore, the following grammar is used for the specifications of

35

operators operating on tables or data frames.

Bool ::= InputInt ≤ OutputInt

Bool ::= InputInt < OutputInt

Bool ::= InputInt > OutputInt

Bool ::= InputInt ≥ OutputInt

Bool ::= InputInt = OutputInt

InputInt ::= InputDF.row

InputInt ::= InputDF.col

InputInt ::= InputInt− InputInt

InputInt ::= InputInt+ InputInt

InputInt ::= 1...9

OutputInt ::= OutputDF.row

OutputInt ::= OutputDF.col

The first few rules in the grammar describe how properties of the input and the
output can be related to each other, which is done in this case with the four
different comparison operators and the equality operator. This is followed by
two rules that define which properties should be compared for the input data
frames, which are the row and col properties in our example. There are also
rules for addition, subtraction and literals, which allow for more complex spe-
cifications to be discovered. The last two rules of the grammar define that the
row and col properties should also be used for the output data frames.

Depending on the operator that is being evaluated, some variables for the input-
and output values of this operator need to be added. The filter function takes
a data frame and a predicate function for filtering. It returns a data frame in
which the rows are filtered by the predicate function. Therefore, three input
variables are automatically added by the procedure:

InputDF ::= FilterInputDF1

InputPredicate ::= FilterInputPredicate1

OutputDF ::= FilterOutput

For the first two input variables, data generators have to be provided. The last
input variable represents the output of the filter function and does not need
a data generator.

Once this step is done, hypothesis specifications such as FilterInputDF1.col+
1 = FilterOutput.row or FilterInputDF1.col = FilterOutputDF1.col can be
generated.

5.4.2 Specification testing

Just like in the constraint discovery algorithm, a test is an assignment to the
input variables. For the variables that correspond to the input values of the
operator that is being evaluated, the assignment is taken from the data gener-
ators. For the variable corresponding to the output value, the operator (filter

36

in this example) is evaluated on the input values to obtain the filtered list as an
output value.

With these value assignments, each specification can be evaluated. Specific-
ations that evaluate to false can immediately be discarded; they do not hold. In
theory, only the correct constraints should remain after enough iterations. Of
course, this has the same limitations as the constraint discovery: if the input
data is not general enough, there is a probability that incorrect constraints are
generated.

5.4.3 Pruning

At this point, there is a set of specifications that are correct with a very high
probability. However, there is still a lot of redundancy in the specifications.
Some specifications are implied by other specifications, which becomes apparent
in the following example for the filter function:

FilterInputDF1.row ≥ FilterOutput.row

FilterInputDF1.row + 1 ≥ FilterOutput.row

FilterInputDF1.row + 1 > FilterOutput.row

FilterInputDF1.row + 2 ≥ FilterOutput.row

...

The topmost specification is the one that is the most specific and thus con-
tains the most information. All other specifications are weaker versions and can
be implied by the first specification. These implied specifications need to be
pruned since they will unnecessarily slow down the deduction inside Morpheus.
This pruning is achieved by passing the specifications to a symbolic reasoning
library called SymPy [37]. SymPy is able to simplify the set of specifications
and remove every specification that is implied by (a combination of) other spe-
cifications. In the example above, only the first specification is kept.

After pruning, the specifications are ready to be used. In our use case, they
need to be rewritten in the format that is accepted by Morpheus. This results
in the following specifications for our original example considering the filter

function:

Tout.row ≤ Tin.row

Tout.col = Tin.col

Observant readers might notice a small difference with the hand-made specific-
ation, where the ‘<’ operator is used instead of the ‘≤’ operator for comparing
the number of rows. Section 7.3.1 will discuss this difference and explain why
both versions are correct.

Unfortunately, based on our anecdotal evidence, the runtime of SymPy grows
exponentially with the number of specifications that need to be pruned. This
makes the pruning step the bottleneck of the entire algorithm, and it limits the
size of the specifications that can be discovered. To combat this, we used the

37

constraint discovery system to generate symmetry-breaking constraints for the
relation grammar. While this did have an effect, it did not completely solve the
issue. Section 8.2.3 will discuss other ways of overcoming this problem.

This chapter demonstrated how symmetry-breaking constraints for program
synthesis can be generated by discovering equivalences in the program space
and converting these to constraints that can be used during enumeration. The
Forbid and Order constraints are introduced as a way of breaking symmetries.
Furthermore, it was shown how the constraint discovery approach can be modi-
fied to discover semantic specifications. Chapter 7 will evaluate the effectiveness
of these approaches.

38

Chapter 6

Herb.jl: A program
synthesis framework

Chapter 5 already demonstrated how constraints and top-down enumeration
can be implemented. However, a fully functional program synthesis algorithm
consists of several other components. Currently, there is little reuse of these
components, even though they are not necessarily unique to specific program
synthesis techniques. To address this, a novel program synthesis framework
called Herb.jl has been developed alongside this thesis [17].

Specific implementation details will not be discussed in this thesis. However,
the code for Herb.jl is open-source and can be found online1. This chapter does
explain a bit more about the philosophy behind Herb.jl in Section 6.1, and mo-
tivates the important design choices that were made in Section 6.2. Finally, we
will demonstrate how Herb.jl can be used to synthesize programs in Section 6.3.

6.1 Philosophy

Herb.jl was designed to unify program synthesis algorithms and optimizations.
Currently, there are a lot of exciting and promising techniques in program syn-
thesis, but it is very difficult to explore the potential of combining these tech-
niques. When they are developed within a single framework, the data structures
are automatically shared and experimenting with the combinations of these ap-
proaches is suddenly a viable option. For instance, it would require relatively
little work to combine the constraint system and discovery described in this
thesis with stochastic search techniques or search heuristics. Another benefit
of a common framework is that developing a new technique does not require
reimplementing data structures, helper functions or other shared functionality,
which can save valuable time that can now be spent on the relevant and inter-
esting parts of an algorithm.

The goal is to create a framework with the following properties:

1. Easy to use: People with minimal knowledge of program synthesis should

1https://github.com/Herb-AI/Herb.jl

39

https://github.com/Herb-AI/Herb.jl

be able to use it for simple tasks. This is important for end users that
might want to solve a program synthesis problem using the framework.

2. Easy to extend: It should be easy to implement existing and future
program synthesis techniques in Herb.jl.

3. General: There should be minimal restrictions on the kinds of program
synthesis Herb.jl can support. For example, it should also be capable of
solving ILP problems.

4. Reasonably efficient: Even though efficiency is not (yet) the main focus
of Herb.jl, it should not be significantly slower than existing approaches,
since this will limit its usefulness and appeal.

Even though a lot of Herb.jl has been developed in parallel with this thesis, it
is not made solely for the purpose of this thesis. It is an open-source framework
to which everyone is welcome to contribute. Herb.jl is also being used in some
course projects already, where students work on adding new functionality and
techniques.

6.2 Design choices

The most important design choices are made before the first line of code is
written. These choices dictate how well the goals mentioned in the previous
section can be met, and therefore it is important to put some thought into
them. This section explains the most important design choices behind Herb.jl,
namely the programming language and the architecture.

6.2.1 Programming language

Herb.jl is being implemented in Julia since the Julia programming language fits
the goals well [2]. The following features of Julia are especially helpful for us:

1. The syntax is quite similar to that of Python [31]. Therefore, stu-
dents, researchers and other users do not have to spend a lot of time get-
ting familiar with the programming language. Furthermore, the language
is high-level enough that the time investment for implementing features
stays low.

2. Julia is quite a fast language [29]. Program synthesis often relies
on enumerative techniques, and Julia has significantly more efficient loops
compared to e.g. Python, R or Java, making it a logical choice.

3. Julia also has strong support for meta-programming [30]. This is
used in Herb.jl to make it easy for users to define their search space. The
Julia evaluation function is also used by default in Herb.jl.

6.2.2 Multi-module architecture

To make Herb.jl easy to extend, it is designed within a multi-module architec-
ture. This makes it easy to extend or swap out individual components without
needing to change functionality inside other modules. For the purposes of this
thesis, the most important modules are:

40

1. Herb.jl: This is the main module that connects all other modules and
provides an interface to the user.

2. HerbData.jl: HerbData.jl is a small module that defines the data struc-
tures that can be used to specify program synthesis problems.

3. HerbGrammar.jl: This is one of the most important modules, as it
is used by almost every other module. It provides functionality to the
user to easily define the search space by providing a grammar. It also
includes data structures to efficiently represent programs in the search
space and lots of related utility functions. Some of the functionality in
HerbGrammar.jl is taken from the ExprRules.jl Julia package [25].

4. HerbSearch.jl: Perhaps the most interesting module is HerbSearch.jl.
This module interacts with a lot of other modules. The module con-
tains various algorithms for systematically searching and enumerating the
search space.

5. HerbConstraints.jl: - HerbConstraints.jl contains several constraints
that can be imposed on the search space. It also provides structures that
can be extended for defining custom constraints.

6. HerbEvaluation.jl: - This module contains useful evaluators. It is not
necessary to use this module, since one can also provide custom evaluators.

6.3 Example usage

This section demonstrates how Herb.jl can be used to perform a simple program
synthesis task. Please note that the development of Herb.jl is ongoing, and the
presented code might not work in future versions. More complete and up-to-date
tutorials can be found in HerbExamples.jl2.

6.3.1 Grammar definition: HerbGrammar.jl

Using Julia’s powerful metaprogramming, the user is able to write their grammar
in an intuitive syntax. The integer arithmetic grammar that is given in Section
2.2 can be defined as follows in Herb.jl:

1 grammar = @csgrammar begin

2 Int = Int + Int

3 Int = Int - Int

4 Int = Int × Int

5 Int = |(0:9)

6 Int = x

7 end

The first few lines add some operators. Line 5 adds the numbers 0-9 to the
grammar. Line 6 adds the input variable x. For these variables, we expect
assigned values in a problem definition from HerbData.jl. The default evaluator
does not need definitions for the operators, since the Julia definition is used by
default. In fact, it is also possible to define custom operators and functions in
the scope where the grammar is declared and use those in the grammar. The

2https://github.com/Herb-AI/HerbExamples.jl

41

https://github.com/Herb-AI/HerbExamples.jl

evaluator will make use of these custom definitions.

An important prerequisite for being able to use this syntax is that the grammar
should be able to be parsed by Julia’s built-in parser. If this is not the case,
and a custom evaluator is being used, it is also possible to use Julia strings and
string interpolation to represent the syntax.

6.3.2 Adding constraints: HerbConstraints.jl

HerbConstraints.jl is the module that is responsible for handling the con-
straints. The most important constraints it contains are the Forbid constraint
and the Order constraint. To illustrate this, we will add two constraints that
together forbid addition with the integer literal 0:

1 addconstraint !(grammar , Forbidden(MatchNode (1, [MatchNode (5),

MatchVar (:x)])))

2 addconstraint !(grammar , Forbidden(MatchNode (1, [MatchVar (:x),

MatchNode (5)])))

A constraint is added to a grammar. The Forbid constraint contains a pat-
tern defined as a tree of MatchNodes (reference nodes) and MatchVars (variable
nodes). MatchNodes correspond to a specific rule in the grammar and are thus
defined using the index of this rule in the grammar. This can be quite confusing
to new users. For example, the index for 0 in the grammar is 5. Changing
this to a more user-friendly way is something that is planned for the future3.
MatchVars define a variable that can match any rule. If a pattern has multiple
instances of the same variable, they must correspond to the same tree. Section
5.1.1 gives a more detailed explanation of patterns.

6.3.3 Problem definition: HerbData.jl

HerbData.jl provides data structures for defining the program synthesis problem
that should be solved. The main data structure is a Problem consisting of a list
of examples and a name. The most common type of example is the IOExample,
which represents input-output examples.

1 problem = Problem(

2 [

3 IOExample(Dict(:x => 0), 1),

4 IOExample(Dict(:x => 2), 5),

5 IOExample(Dict(:x => 4), 17)

6],

7 "My first problem!"

8)

An IOExample consists of an input and an output, as the name suggests. The
input is a dictionary with an assignment for each variable in the grammar. The
output is a single value.

6.3.4 Search algorithms: HerbSearch.jl

After defining the program space and the requirements for the program that
should be synthesized, the synthesis can begin. HerbSearch.jl contains various

3https://github.com/Herb-AI/HerbGrammar.jl/issues/11

42

https://github.com/Herb-AI/HerbGrammar.jl/issues/11

search algorithms for finding the program in the program space that satisfies
(the most) examples. The basic search procedure just uses a simple breadth-first
search that finds the smallest program that satisfies all examples.

1 solution = search(grammar , problem , :Int)

The search algorithm is provided with the grammar, the problem and the start-
ing symbol of the grammar. After running this code, the program 1 + x× x is
returned. This program does indeed solve all of the provided examples.

43

44

Chapter 7

Evaluation

The goal of this thesis is to extract semantic knowledge from a language and
apply it in a program synthesis algorithm to reduce redundant enumeration.
We discussed two different methods with which this can be achieved. For the
first method, which involves removing symmetries, we asked how symmetries
can be broken, how they can be discovered and how a discovered symmetry
can be converted into a constraint. We evaluate whether our proposed solution
from Chapter 5 is an appropriate answer by investigating the following follow-up
questions:

1. Can the constraint discovery discover correct constraints?

2. How much of the program space is pruned by the constraints?

3. Does the benefit of a smaller program space outweigh the overhead of
enforcing the constraints?

The second method is to discover the semantic specifications of the operators in
a language. In Chapter 4, we asked how these specifications can be discovered.
This chapter will show that the proposed solution from Section 3.3 answers our
question, and evaluate their usefulness and performance. To do this, we answer
the following questions:

1. Does the specification discovery discover correct specifications?

2. Do the discovered specifications improve the performance of Morpheus
without specifications?

3. How do the discovered specifications compare to the expert-defined spe-
cifications?

However, we first discuss the setup for the experiments. After that, these six
questions will be answered one by one.

7.1 Setup

The results are gathered on a system running an Intel i7-8750h processor with
16 GB of RAM. Runtime data is gathered using the BenchmarkTools.jl Julia

45

package [20]. The runtime results that are displayed are the median of n = 5
samples. It is not necessary to use multiple samples for determining the search
space size, since this is deterministic and thus constant between runs.

For the results of the constraints and the constraint discovery contributions,
two benchmarks are used. The first benchmark uses the integer arithmetic
grammar, given in Figure 2.2a. The second benchmark uses the lists grammar
from Figure 2.2b. Performance on these grammars is tested by enumerating
every program that is smaller than a certain maximum number of nodes.

Morpheus is used to assess the performance of the discovered specifications.
As a benchmark, we use the dataset of 50 problems that can be found in the
GitHub repository that contains the implementations of both Neo and Morph-
eus1 [12, 13]. These problems are real data analysis tasks taken from Stack-
Overflow. Specifications were added by removing existing specifications for the
number of rows and columns from the specs files and replacing them with the
discovered specifications.

7.2 Constraint discovery

7.2.1 Discovering correct constraints

Generating the constraints for the integer arithmetic grammar and the lists
grammar is an effortless process. The procedure is configured as follows:

1. The maximum number of nodes in a pattern is 5.

2. There is a maximum of 2 different variables in the patterns for the integer
arithmetic grammar and a maximum of 3 different variables for the lists
grammar. See Section 5.1.1 for the considerations on picking this value.

3. The automatic data generators consider expressions with a maximum size
of 5 nodes when generating programs for the integer arithmetic grammar.
For the lists grammar, programs are allowed to have a maximum of seven
nodes. This slightly higher limit is due to the recursively defined lists,
requiring a greater number of nodes to generate adequately long lists.

Executing the procedure for the integer arithmetic grammar and the lists gram-
mar takes 3.12 and 3.72 seconds respectively (median from n = 10 samples).
The following constraints are extracted for the integer arithmetic grammar:

Forbid a× 0

Forbid a− a

Forbid a− 0

Forbid a+ 0

Forbid a× 1

Forbid a× 2− a

Forbid a+ a

Forbid a× 3− a

Forbid 0 + a

Forbid 0× a

Forbid 1× a

Order [a, b] in a+ b

Order [a, b] in a ∗ b

1https://github.com/utopia-group/neo/tree/master/problem/Morpheus-PLDI

46

https://github.com/utopia-group/neo/tree/master/problem/Morpheus-PLDI

(a) Integer arithmetic (b) Lists

Figure 7.1: Results of running enumeration with and without con-
straints on the program space size

The lists grammar has slightly more constraints:

Forbid append(a, [])

Forbid append([], a)

Forbid reverse(reverse(a))

Forbid sort(reverse(a))

Forbid sort(sort(a))

Forbid sort(push([], d))

Forbid append(a, push(b, d))

Forbid append(a, append(a, b))

Forbid sort(push(a, 9))

Forbid append(a, append(c, b))

Forbid append(reverse(b), reverse(a))

Forbid sort(append(b, reverse(a)))

Forbid sort(append(b, sort(a)))

Forbid sort(push(sort(a), d))

Forbid append(push([], d), a)

Forbid reverse(push([], d))

Forbid reverse(sort(push(a, 0)))

Forbid reverse(append(reverse(a), b))

Forbid reverse(append(b, reverse(a)))

Order [a, b] in sort(append(a, b))

A noteworthy observation in these constraints is the presence of the Forbid

sort(push(a, 9)) and Forbid reverse(sort(push(a, 0))) constraints. These con-
straints are generated based on the assumption that the minimum value in a list
is 0, and the maximum value is 9, as this assumption holds true for all values
generated by the data generators. These constraints remain valid as long as the
input variable values are inside this range. If the input values from the data set
deviate from this range, they have to be passed to the data generator to make
the constraints more general, as explained in Section 5.1.2. A good thing to
keep in mind is that the discovered constraints are only as general as the data
from the data generators. The effectiveness and applicability of the constraints
are heavily dependent on the representativeness of the underlying data.

7.2.2 Comparing the program space

In the first test, the effect of the automatically generated constraints on the size
of the program space is assessed. Figure 7.1 shows the size of the program space

47

for an increasing limit on the number of nodes in the AST of the program. The
y-axis is in a logarithmic scale since the size of the program space increases ex-
ponentially with the size limit on programs. The figures show that the inclusion
of symmetry-breaking constraints does have a significant effect on the size of
the program space for larger programs.

Figure 7.3 shows the program space size with constraints as a ratio of the
program space size without constraints. This paints a clearer picture of the
benefit of the constraints. In the integer arithmetic grammar limited to pro-
grams with at most 7 nodes in the AST, the constraints reduce the program
space to 19.84% of the original size. In the lists grammar, the program space is
reduced to 19.79% when limited to programs of size 9 or smaller. From these
figures, it is clear that the constraints do have a significant positive effect on
the size of the search space.

An interesting observation in the search space size of the integer arithmetic
grammar is that the search space size has ‘plateaus’ between each odd number
and the following even number. The cause for these plateaus lies solely in the
grammar that was chosen. Since every production rule either has 0 children or
2 children, every AST from this grammar is a so-called full binary tree. An in-
teresting property of full binary trees is that they always have an odd number of
nodes. Consequently, every AST produced by the enumerator for this grammar
has an odd number of nodes, and thus there are just as many enumerations for
an even maximum number of nodes as there is for the previous odd maximum
number of nodes.

7.2.3 Comparing the runtime

The runtime of enumeration is also influenced by constraints. Constraints re-
duce the size of the search space, and therefore also the number of (partial)
programs that are generated. However, the constraints also have to be enforced
at every expansion step in the enumeration procedure, which can take up a
significant amount of time. Figure 7.2 shows that this overhead makes the enu-
meration with constraints perform worse than enumeration without constraints
for small programs. Again, this is captured in more detail in Figure 7.3. The
runtime with constraints as a ratio to the runtime without constraints is higher
than one for small programs. However, the same figures also show that for
larger programs, there is a big improvement in the runtime. In the arithmetic
grammar, the runtime of enumeration with constraints is only 26.03% of the
runtime of enumeration without constraints of programs of at most 7 nodes. In
the lists grammar, the relative runtime is 33.88% for programs up to 9 nodes.
This shows that the discovered symmetry-breaking constraints can also signific-
antly reduce the runtime of enumeration.

An important thing to note is that in a program synthesis problem, each enumer-
ation is also evaluated several times. Evaluation can be expensive, depending on
the number of examples and the grammar. Since the cost of evaluation depends
on the number of enumerated programs, constraints might be even more useful
in this scenario.

48

(a) Integer arithmetic (b) Lists

Figure 7.2: Results of running enumeration with and without con-
straints on the runtime

Appendix A contains the exact values for the results presented in this section.
Now that we investigated the correctness, program space size and runtime of the
versions with and without symmetry-breaking on two grammars, it becomes ap-
parent that the symmetry-breaking has a significant positive effect, especially
when synthesizing non-trivial programs. Coming back to the questions from
Chapter 4, we can conclude that the proposed symmetry-breaking constraints,
as well as the symmetry discovery and constraint conversion algorithms, do
work.

49

(a) Integer arithmetic (b) Lists

Figure 7.3: The cost of enumeration with constraints, represented as a
ratio of the cost of enumeration without constraints.

50

Lib Component Description Expert specification Discovered specification

ti
d
y
r

spread Spread a key-value pair across multiple columns.
Tout.row ≤ Tin.row
Tout.col ≥ Tin.col

Tout.row ≤ Tin.row
Tout.col ≥ Tin.col

gather Takes multiple columns and collapses into key-value
pairs, duplicating all other columns as needed.

Tout.row ≥ Tin.row
Tout.col ≤ Tin.col

Tout.row ≥ Tin.row
Tout.col ≤ Tin.col

d
p
ly
r

select Project a subset of columns in a data frame.
Tout.row = Tin.row
Tout.col < Tin.col

Tout.row = Tin.row
Tout.col ≤ Tin.col

filter Select a subset of rows in a data frame.
Tout.row < Tin.row
Tout.col = Tin.col

Tout.row ≤ Tin.row
Tout.col = Tin.col

inner join Takes two tables and joins them on a certain column,
discarding rows that do not have a corresponding row
in the other table.

Tout.col ≤ T1,in.col + T2,in.col − 1
Tout.col ≥ T1,in.col
Tout.col ≥ T2,in.col

Table 7.1: Sample specifications from Morpheus and the specification discovery algorithm for a few components

51

7.3 Specification discovery

7.3.1 Discovering specifications

Discovering specifications is more involved than discovering constraints. This
is mainly caused by the fact that more data generators are needed. The data
generator for data frames is easy to define; it just has to return a random data
frame from the dataset. However, for filter, the function that filters rows
from a data frame, a predicate function needs to be defined that decides which
rows to keep. Instead of coming up with a wide range of functions, it is also
possible to provide a random predicate function that does a coin toss for each
row. The probability of keeping a row is also picked at random. Using simple
tricks like these made creating definitions for data generators a lot less tedious.
The specification extraction algorithm was configured to find specifications with
a maximum size of 5 nodes. This limit is necessary because otherwise, the prun-
ing step is not able to finish the pruning within a reasonable amount of time.
As a result, only very basic specifications are discovered.

Table 7.1 shows a selection of the specifications that are discovered in the last
column. Two interesting differences can be found when comparing the dis-
covered specifications with the specifications defined by an expert. Firstly, the
discovered specifications for the inner join operator are quite different from the
expert-defined specification. This stems from the imposed specification size limit
of five nodes. As a consequence, two less accurate alternatives are discovered
instead of finding the more precise specification. These alternatives are still
valid, but some information is lost. Another interesting difference can be seen
in the specifications for the select and filter operators. For the filter op-
erator, the expert defined the specification Tout.row < Tin.row. However, if the
filter operator is supplied with a predicate function that always returns true,
it returns exactly the input data frame. Hence, the discovered specification cor-
rectly states Tout.row ≤ Tin.row. It is worth noting that the expert specification
is technically also correct, and arguably more optimal, since having a filter

operator that does not filter anything is redundant for the specific input-output
example. Since Morpheus always works with a single input-output example,
the filter can thus be omitted.

7.3.2 Comparing to other levels of specification

Figure 7.4 illustrates the performance of Morpheus under different scenarios:

1. without using any specifications on the number of rows and columns,

2. using the discovered specifications, and

3. using the specifications that are defined by an expert.

In Figure 7.4a, it can be seen that adding the discovered specifications does
not affect the number of solved problems. Both the versions without specifica-
tions and with the discovered specifications are able to solve a mere 9 out of 50
problems within a timeout of 5 minutes. Morpheus with the expert-defined
specifications can solve 15 of the problems. Based on this data, it seems that
the discovered specifications do not have an effect.

52

(a) Percentage of solved problems
within a 5-minute timeout

(b) Runtime on the 9 examples that
all specifications solved

Figure 7.4: The performance of Morpheus without specifications, with
the discovered specifications and the original specifications defined by
an expert

However, when comparing the runtime of Morpheus on the nine problems
that every version can solve within the timeout, this effect is a lot more appar-
ent. Figure 7.4b shows this comparison. When Morpheus operates without
specifications, the median runtime for these problems is 143.3 seconds. The
version with the discovered specifications is on average more than twice as fast,
solving them with a median time of 70.0 seconds. The expert-defined specific-
ations are still the fastest with a median runtime of 51.3 seconds. Hence, it
becomes evident that the discovered specifications do indeed have an effect, and
are superior to not having any specifications at all. Nonetheless, they are not
yet suitable for replacing specifications defined by a domain expert.

In Chapter 4, we asked how the symmetry-breaking approach can be modi-
fied to discover semantic specifications from a language. The experiments in
this section demonstrated that the proposed solution from Section 3.3 produces
specifications of decent quality, which shows that the outlined approach works.

53

54

Chapter 8

Conclusion & future work

8.1 Conclusion

This thesis presents a novel approach to eliminating symmetries in enumerat-
ive program synthesis by utilizing semantic knowledge. The proposed approach
is able to automatically generate symmetry-breaking constraints by generating
hypothetical equivalences, empirically testing them to obtain equivalences and
converting these equivalences into constraints. The experimental results demon-
strate that this approach significantly reduces the size of the program space and
enhances the runtime efficiency of the enumeration algorithm. However, it is es-
sential to acknowledge a pitfall of this approach, since the discovered constraints
are only as general as the data that is used for discovering equivalences. Con-
sequently, it is crucial to carefully configure the constraint discovery procedure
and provide it with data that is sufficiently general.

Another contribution is the adaptation of the equivalence discovery proced-
ure, aiming to discover semantic knowledge in the form of specifications. The
performance of these specifications is assessed in Morpheus, and they prove to
be a significant improvement compared to not having specifications. However,
the expert-defined specifications still outperformed the discovered specifications,
highlighting the need for further advancements in this area.

Finally, we also introduced Herb.jl, a new program synthesis framework that
is modular and reusable. Herb.jl still needs a lot of time and effort before be-
coming a mature program synthesis framework. However, we were already able
to use it for this thesis by equipping it with a constraint system. Herb.jl has also
found some use in course projects, where students were able to efficiently create
new functionality. This functionality can also be used in combination with other
techniques since everything uses the same underlying data structures.

55

8.2 Future work

8.2.1 Proving the correctness of constraints

One important shortcoming of the constraint discovery procedure is that it is not
completely certain that a certain constraint is correct. In practice, the approach
has been very reliable, provided it is configured correctly. Nevertheless, complete
certainty about the correctness of the constraints might be a desired property
in some scenarios. To achieve this, it might be worth looking into connecting
to HipSpec [6] for Haskell programs. It is important to note that this does
require access to the implementation of the operators in the grammar, which
the procedure currently does not have.

8.2.2 Discover runtime errors

Some programs are syntactically correct but result in a runtime error when eval-
uated. Examples include taking the head function of an empty list or dividing
by zero. The constraint discovery procedure could be extended to also detect
programs that always result in a runtime error. These can then be turned into
Forbid constraints that prune programs that will always cause runtime errors
from the program space.

8.2.3 Improved specification pruning

The pruning step for specification discovery currently is a bottleneck which
limits the size of the specifications that can be discovered. A possible solution
could be to include another testing step to find out which specifications imply
other specifications. Specifications would be evaluated with data from data
generators. The output data does not have to be the valid output for the
operator that is being tested. If a certain specification A evaluates to true on a
superset of the tests on which another specification B evaluates to true, we can
conclude that B implies A, and thus A can be pruned from the specifications.
Another option could be to simplify the specifications using an SMT solver such
as Z3. Z3 has some built-in rudimentary simplifiers, but it is also possible to
define custom ones [3].

8.2.4 Improved deduction

The current implementation of constraints does not deduce information from
the domains of other holes in the tree when enforcing constraints. Adding
this could mean that partial trees get removed from enumeration at an earlier
point in time, thus reducing the number of expansions the enumerative search
algorithm has to perform. To perform the deduction from the hole domains,
an SMT solver could be employed. Further research should investigate if the
benefits of this approach outweigh the added overhead of deduction.

8.2.5 Herb.jl

The contributions to Herb.jl are a big part of this thesis. Nevertheless, Herb.jl
still needs a lot of development before becoming a mature program synthesis
toolbox. This thesis only uses a basic working version of Herb.jl and extended

56

this with constraints. In a lot of other aspects, Herb.jl is still very basal, and
even the constraints are not handled very efficiently.

One important area that needs work is the enumeration. It could be made
significantly more efficient by optimizing the code and parallelizing it. An-
other goal is to add implementations of multiple existing algorithms such as
Morpheus [12], Neo [13] and DeepCoder [1]. Please note that Herb.jl is an
open-source project, and contributions are always welcome!

57

58

Bibliography

[1] Matej Balog et al. “Deepcoder: Learning to write programs”. In: arXiv
preprint arXiv:1611.01989 (2016).

[2] Jeff Bezanson et al. “Julia: A fresh approach to numerical computing”. In:
SIAM review 59.1 (2017), pp. 65–98. url: https://doi.org/10.1137/
141000671.

[3] Nikolay Bjorner. Simplifiers — Online Z3 Guide. url: https://microsoft.
github.io/z3guide/docs/strategies/simplifiers (visited on 15/06/2023).

[4] Noam Chomsky. Three models for the description of language. 1965.

[5] Koen Claessen, Nicholas Smallbone and John Hughes. “QuickSpec: Guess-
ing Formal Specifications Using Testing”. In: Tests and Proofs. Ed. by
Gordon Fraser and Angelo Gargantini. Berlin, Heidelberg: Springer Ber-
lin Heidelberg, 2010, pp. 6–21. isbn: 978-3-642-13977-2.

[6] Koen Claessen et al. “Automating inductive proofs using theory explora-
tion”. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7898
LNAI (2013), pp. 392–406. issn: 03029743. doi: 10.1007/978-3-642-
38574-2_27.

[7] Andrew Cropper and Sebastijan Dumančić. “Inductive Logic Program-
ming at 30: A New Introduction”. In: Journal of Artificial Intelligence
Research 74 (2022), pp. 765–850. issn: 10769757. doi: 10.1613/jair.1.
13507. arXiv: 2008.07912.

[8] Andrew Cropper and Rolf Morel. Learning programs by learning from
failures. Vol. 110. 4. Springer US, 2021, pp. 801–856. isbn: 1099402005934.
doi: 10.1007/s10994-020-05934-z. arXiv: 2005.02259. url: https:
//doi.org/10.1007/s10994-020-05934-z.

[9] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient SMT Solver”.
In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 4963 LNCS
(2008), pp. 337–340. issn: 03029743. doi: 10.1007/978-3-540-78800-
3_24.

[10] Tao Du et al. “InverseCSG: Automatic conversion of 3D models to CSG
trees”. In: SIGGRAPH Asia 2018 Technical Papers, SIGGRAPH Asia
2018 37.6 (2018). issn: 15577368. doi: 10.1145/3272127.3275006.

59

https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://microsoft.github.io/z3guide/docs/strategies/simplifiers
https://microsoft.github.io/z3guide/docs/strategies/simplifiers
https://doi.org/10.1007/978-3-642-38574-2_27
https://doi.org/10.1007/978-3-642-38574-2_27
https://doi.org/10.1613/jair.1.13507
https://doi.org/10.1613/jair.1.13507
https://arxiv.org/abs/2008.07912
https://doi.org/10.1007/s10994-020-05934-z
https://arxiv.org/abs/2005.02259
https://doi.org/10.1007/s10994-020-05934-z
https://doi.org/10.1007/s10994-020-05934-z
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3272127.3275006

[11] Torsten Fahle, Stefan Schamberger and Meinolf Sellmann. “Symmetry
breaking”. In: Principles and Practice of Constraint Programming—CP
2001: 7th International Conference, CP 2001 Paphos, Cyprus, November
26–December 1, 2001 Proceedings 7. Springer. 2001, pp. 93–107.

[12] Yu Feng et al. “Component-based synthesis of table consolidation and
transformation tasks from examples”. In: ACM SIGPLAN Notices 52.6
(2017), pp. 422–436. issn: 0362-1340. doi: 10.1145/3140587.3062351.
url: https://doi.org/10.1145/3140587.3062351.

[13] Yu Feng et al. “Program synthesis using conflict-driven learning”. In: ACM
SIGPLAN Notices 53.4 (2018), pp. 420–435. issn: 15232867. doi: 10.
1145/3192366.3192382. arXiv: 1711.08029.

[14] John K. Feser, Swarat Chaudhuri and Isil Dillig. “Synthesizing data struc-
ture transformations from input-output examples”. In: ACM SIGPLAN
Notices 50.6 (2015), pp. 229–239. issn: 0362-1340. doi: 10.1145/2813885.
2737977.

[15] Sumit Gulwani. “Automating string processing in spreadsheets using input-
output examples”. In: ACM Sigplan Notices 46.1 (2011), pp. 317–330.

[16] Sumit Gulwani, Oleksandr Polozov and Rishabh Singh. Program syn-
thesis. Vol. 4. 1-2. 2017, pp. 1–119. isbn: 9781680832921. doi: 10.1561/
2500000010.

[17] Herb-AI. Herb.jl. url: https://github.com/Herb-AI/Herb.jl (visited
on 08/06/2023).

[18] Kangjing Huang et al. “Reconciling enumerative and deductive program
synthesis”. In: Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI) (2020), pp. 1159–
1174. doi: 10.1145/3385412.3386027.

[19] Naman Jain et al. Jigsaw: Large Language Models meet Program Syn-
thesis. Vol. 2022-May. 1. Association for Computing Machinery, 2022,
pp. 1219–1231. isbn: 9781450392211. doi: 10.1145/3510003.3510203.
arXiv: 2112.02969.

[20] JuliaCI. BenchmarkTools.jl. 2022. url: https://github.com/JuliaCI/
BenchmarkTools.jl/tree/v1.3.2 (visited on 09/05/2023).

[21] Pepijn Klop. “Augmenting Program Synthesis with Large Language Mod-
els”. MSc thesis. 2023.

[22] Kevin Knight. “Unification: A multidisciplinary survey”. In: ACM Com-
puting Surveys (CSUR) 21.1 (1989), pp. 93–124.

[23] Hadas Kress-Gazit, Morteza Lahijanian and Vasumathi Raman. “Syn-
thesis for Robots: Guarantees and Feedback for Robot Behavior”. In:
Annual Review of Control, Robotics, and Autonomous Systems 1 (2018),
pp. 211–236. issn: 25735144. doi: 10.1146/annurev-control-060117-
104838.

[24] Tessa Lau et al. “Programming by demonstration using version space al-
gebra”. In: Machine Learning 53 (2003), pp. 111–156.

[25] Ritchie Lee and Mykel Kochenderfer. sisl/ExprRules.jl: Functions for de-
claring and working with grammars and expression trees in Julia. url:
https://github.com/sisl/ExprRules.jl (visited on 22/06/2023).

60

https://doi.org/10.1145/3140587.3062351
https://doi.org/10.1145/3140587.3062351
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3192366.3192382
https://arxiv.org/abs/1711.08029
https://doi.org/10.1145/2813885.2737977
https://doi.org/10.1145/2813885.2737977
https://doi.org/10.1561/2500000010
https://doi.org/10.1561/2500000010
https://github.com/Herb-AI/Herb.jl
https://doi.org/10.1145/3385412.3386027
https://doi.org/10.1145/3510003.3510203
https://arxiv.org/abs/2112.02969
https://github.com/JuliaCI/BenchmarkTools.jl/tree/v1.3.2
https://github.com/JuliaCI/BenchmarkTools.jl/tree/v1.3.2
https://doi.org/10.1146/annurev-control-060117-104838
https://doi.org/10.1146/annurev-control-060117-104838
https://github.com/sisl/ExprRules.jl

[26] Zohar Manna and RichardWaldinger. “A Deductive Approach to Program
Synthesis”. In: ACM Transactions on Programming Languages and Sys-
tems (TOPLAS) 2.1 (1980), pp. 90–121. issn: 15584593. doi: 10.1145/
357084.357090.

[27] Bertrand Meyer. Introduction to the theory of programming languages.
Prentice-Hall, Inc., 1990.

[28] OpenAI. GPT-4. 2023. url: https://openai.com/product/gpt- 4
(visited on 23/05/2023).

[29] The Julia Project. Julia Micro-Benchmarks. 2023. url: https://julialang.
org/benchmarks/ (visited on 05/05/2023).

[30] The Julia Project. Metaprogramming - The Julia Language. 2022. url:
https : / / docs . julialang . org / en / v1 / manual / metaprogramming/

(visited on 05/05/2023).

[31] The Julia Project. Noteworthy differences from Python. 2022. url: https:
//docs.julialang.org/en/v1/manual/noteworthy- differences/

#Noteworthy-differences-from-Python (visited on 05/05/2023).

[32] Dan Rosén. “Proving equational Haskell properties using automated the-
orem provers”. Master’s thesis, University of Gothenburg, Sweden, 2012.

[33] Kenneth Slonneger and Barry L Kurtz. Formal syntax and semantics of
programming languages. Vol. 340. Addison-Wesley Reading, 1995.

[34] Nicholas Smallbone et al. “Quick specifications for the busy program-
mer”. In: Journal of Functional Programming 27.January (2017). issn:
14697653. doi: 10.1017/S0956796817000090.

[35] Armando Solar-Lezama. Introduction to Program Synthesis. 2018. url:
https://people.csail.mit.edu/asolar/SynthesisCourse/index.

htm (visited on 04/01/2023).

[36] Armando Solar-Lezama. “The sketching approach to program synthesis”.
In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 5904 LNCS
(2009), pp. 4–13. issn: 03029743. doi: 10.1007/978-3-642-10672-9_3.

[37] SymPy Development Team. SymPy. url: https://www.sympy.org/en/
index.html (visited on 03/06/2023).

61

https://doi.org/10.1145/357084.357090
https://doi.org/10.1145/357084.357090
https://openai.com/product/gpt-4
https://julialang.org/benchmarks/
https://julialang.org/benchmarks/
https://docs.julialang.org/en/v1/manual/metaprogramming/
https://docs.julialang.org/en/v1/manual/noteworthy-differences/#Noteworthy-differences-from-Python
https://docs.julialang.org/en/v1/manual/noteworthy-differences/#Noteworthy-differences-from-Python
https://docs.julialang.org/en/v1/manual/noteworthy-differences/#Noteworthy-differences-from-Python
https://doi.org/10.1017/S0956796817000090
https://people.csail.mit.edu/asolar/SynthesisCourse/index.htm
https://people.csail.mit.edu/asolar/SynthesisCourse/index.htm
https://doi.org/10.1007/978-3-642-10672-9_3
https://www.sympy.org/en/index.html
https://www.sympy.org/en/index.html

62

Appendix A

Exact results

A.1 Integer arithmetic grammar

Without constraints With constraints
Max program size Search space Runtime (s) Search space Runtime (s)

1 11 3.46E-05 11 4.01E-05
2 11 2.43E-04 11 3.20E-04
3 374 4.59E-03 201 4.17E-03
4 374 5.75E-02 201 4.12E-02
5 24332 8.38E-01 7786 3.68E-01
6 24332 1.03E+01 7786 3.46E+00
7 2000867 1.43E+02 397056 3.73E+01

A.2 Lists grammar

Without constraints With constraints
Max program size Search space Runtime (s) Search space Runtime (s)

1 2 1.48E-05 2 4.27E-05
2 6 1.32E-04 6 2.75E-04
3 40 1.39E-03 31 2.04E-03
4 168 1.23E-02 106 1.24E-02
5 950 9.47E-02 467 8.22E-02
6 4706 7.41E-01 1967 5.39E-01
7 26128 5.99E+00 8375 3.16E+00
8 140272 4.02E+01 36684 1.72E+01
9 789498 2.85E+02 156227 9.66E+01

63

	Preface
	Introduction
	Theoretical background
	Intent specification
	Program space
	Search

	Related work
	Deduction in inductive synthesis
	Semantic specifications
	Example propagation
	Discussion

	Popper
	Specification extraction
	QuickSpec
	HipSpec

	Problem definition
	Program symmetry problem
	Constraint discovery problem
	Specification discovery problem

	A framework for discovering constraints and specifications
	Equivalence discovery
	Grammar preparation
	Data generators
	Discovering equivalence classes
	From equivalence classes to equivalences

	Constraint conversion
	Generating Forbid constraints
	Generating Order constraints
	Removing redundant constraints
	Duplicating Forbid constraints

	Implementing constraints
	Enumeration with constraints
	Forbid constraint
	Order constraint
	Constraint resolution
	Global & local constraints

	Specification discovery
	Specification grammar
	Specification testing
	Pruning

	Herb.jl: A program synthesis framework
	Philosophy
	Design choices
	Programming language
	Multi-module architecture

	Example usage
	Grammar definition: HerbGrammar.jl
	Adding constraints: HerbConstraints.jl
	Problem definition: HerbData.jl
	Search algorithms: HerbSearch.jl

	Evaluation
	Setup
	Constraint discovery
	Discovering correct constraints
	Comparing the program space
	Comparing the runtime

	Specification discovery
	Discovering specifications
	Comparing to other levels of specification

	Conclusion & future work
	Conclusion
	Future work
	Proving the correctness of constraints
	Discover runtime errors
	Improved specification pruning
	Improved deduction
	Herb.jl

	Exact results
	Integer arithmetic grammar
	Lists grammar

