

Delft University of Technology

The Effects of Adaptive Control on Learning Directed Locomotion

Diggelen, Fuda Van; Babuska, Robert; Eiben, A. E.

DOI
10.1109/SSCI47803.2020.9308557
Publication date
2020
Document Version
Final published version
Published in
Proceedings of the IEEE Symposium Series on Computational Intelligence, SSCI 2020

Citation (APA)
Diggelen, F. V., Babuska, R., & Eiben, A. E. (2020). The Effects of Adaptive Control on Learning Directed
Locomotion. In Proceedings of the IEEE Symposium Series on Computational Intelligence, SSCI 2020 (pp.
2117-2124). IEEE. https://doi.org/10.1109/SSCI47803.2020.9308557

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/SSCI47803.2020.9308557
https://doi.org/10.1109/SSCI47803.2020.9308557

The Effects of Adaptive Control on Learning
Directed Locomotion

Fuda van Diggelen
Technische Universiteit Delft,

The Netherlands
Email: f.vandiggelen@student.tudelft.nl

Robert Babuska
Technische Universiteit Delft,

The Netherlands
Email: r.babuska@tudelft.nl

A.E. Eiben
Vrije Universiteit Amsterdam,

The Netherlands
Email: a.e.eiben@vu.nl

Abstract—This study is motivated by evolutionary robot
systems where robot bodies and brains evolve simultaneously. In
such systems robot ‘birth’ must be followed by ‘infant learning’
by a learning method that works for various morphologies
evolution may produce. Here we address the task of directed
locomotion in modular robots with controllers based on Central
Pattern Generators. We present a bio-inspired adaptive feedback
mechanism that uses a forward model and an inverse model that
can be learned on-the-fly. We compare two versions (a simple and
a sophisticated one) of this concept to a traditional (open-loop)
controller using Bayesian Optimization as a learning algorithm.
The experimental results show that the sophisticated version
outperforms the simple one and the traditional controller. It
leads to a better performance and more robust controllers that
better cope with noise.

Keywords—Adaptive Control; Evolutionary Robotics; Reality
Gap; Directed Locomotion

I. INTRODUCTION

The behaviour of a robot is determined by its morphol-
ogy (‘body’) and its controller (‘brain’) and the field of
Evolutionary Robotics (ER) successfully demonstrated that
good controllers can be evolved for various tasks [1], [2].
To maximize the potential of the evolutionary approach mor-
phologies and controllers should be evolved together, but this
implies particular challenges. Specifically, since the inherited
brain of a newborn robot may not match its inherited body,
evolution can end up with premature convergence of the
robot population [3]. It has therefore been argued that a fully
evolving robot system must contain a learning stage, directly
following the ‘birth’ of offspring robots [4], [5]. In such a
system, the design and optimization of good robots take place
through two processes: 1) the evolutionary process, where
both the body and the brain evolve to obtain a higher fitness,
2) a lifetime learning loop, where the brain is optimized to
control a given body (produced by the evolutionary process)
to obtain high task performance. This idea motivates the
development of controllers that can be optimized quickly for
a broad range of morphologies.

Currently, most controllers in ER are evolved on using
an open-loop control architecture in simulation [6]. For real-
world applications, this is clearly limiting, since in practice
feedback control is often preferred. Unfortunately, feedback

control can be hard to implement, especially when the envi-
ronment and morphologies are not known beforehand. Many
feedback mechanisms require a lot of engineering per robot,
which is infeasible if robots are (re)produced automatically
by an evolutionary process. Furthermore, PID controllers
will likely fail in accommodating complex morphologies, as
they are hard to design optimally and not well-suited for
nonlinear systems [7]. In this paper, we address this problem
by introducing an adaptive bio-inspired feedback controller
called Internal Model Control (IMC), which can be used as an
extension to already available designs. This allows for simple
real robot implementation, while minimally affecting the way
evolution improves the original controllers. To this end, we
add our IMC as an extension to an existing CPG controller
([8], [9]) used for learning directed locomotion (see Figure 1).

Open loop controller design:

CPG Robotu φ

Adaptive IMC design:

CPG modelinv Robot

modelff

φref

+
u φ

+φpred

−
e

−

Figure 1: A schematic overview of open-loop CPG controller with
and without our adaptive IMC. For the IMC the inverse model
calculates the required motor input (modelinv → ui) to follow a
reference (φref,i), while the feedforward model predicts the robots
state based on its input (modelff → φpred). Differences between
the predictied and actual state (φ) are sent back (e).

The idea behind the IMC design is grounded both in
industry and in neuroscience [10] as a way for (human)
controllers to compensate for errors in (movement) control. As
an extension to an open-loop controller (in Figure 1, the CPG)
we add two models that work together for proper movement
execution. The inverse model calculates the required control
input u to get the robot from the current state to the reference
state, modelinv : φref → u. The feedforward model predicts
the result of that command, modelff : u → φpred. A
perfect model will allow the IMC to subtract any error in the
movement. For applications in ER, we will need to learn these
models since we do not know the morphologies beforehand.
We propose the use of Deep Neural Network (DNN) to learn978-1-7281-2547-3/20/$31.00 c©2020 IEEE

2117 2020 IEEE Symposium Series on Computational Intelligence (SSCI)

December 1-4, 2020, Canberra, Australia

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2021 at 07:03:12 UTC from IEEE Xplore. Restrictions apply.

the models of the IMC scheme. To this end, we will evaluate
two different DNN types for our IMC: IMC vanilla, in which
the two DNN internal models learn on all their layers; and
IMC reservoir, in which the DNNs only learn on the output
layers, much like in reservoir computing [11].

With the IMC controller we can accommodate two im-
portant user needs in ER, 1) applicability to a wide range
of morphologies, 2) easy implementation as an extension of
already existing controller designs. However, it is possible that
the adaptability might influence the lifetime learning process.
Thus, the overarching research question behind this paper is:

What is the effect of adding the IMC on learning control for
directed locomotion in a variety of different morphologies?

II. RELATED WORK

Most of the work in ER in simulation does not address
feedback control. ER experiments in which evolution is solely
done in real robots do implement feedback control, but not
learning, see e.g. the publications by Brodbeck et al. [12],
Vujovic et al. [13], and Nygaard et al. [14]. In these papers,
feedback control is implemented using P(I)D controllers on
simple robots. As PID control is limited in its capability, we
believe that it can greatly influence the resulting morpholo-
gies. The idea behind our IMC controller is to be minimally
invasive to the evolutionary process with the controllers that
are currently used in ER.

The benefits of adaptive feedback control have been shown
before by Bongard et al. [15]. They showed that their four-
legged robot was able to learn locomotion rapidly through
efficient sampling and continuous self-modelling. Further-
more, the adaptive self-modelling made their machine able
to reconfigure its self-representation and control policy after
physical damage. Other forms of adaptive feedback have been
studied in the form of coupling sensory information back to
the controller ([16], [17]). In the case of CPGs, this means
modulation of frequency or amplitude of the signals to the
motors. For other types of neural networks like HyperNEAT
and recurrent neural networks ([18], [19], [20]), feedback
allowed switching on and off certain parts of the network
based on sensory information. Such an adaptive feedback
control changes the overall robot behavior based on the
sensory feedback, which is different from our aim to follow
a reference trajectory as closely as possible. In other words,
our feedback control is much more focused on the correct
execution of movements at the local joint level while the other
studies change the combined motor behaviours as a whole.

Similarly to our feedback design, Kawato et al. [21] imple-
mented an inverse model controller that learned to follow a
reference signal with a three-link manipulator using a neural
network. In a study by Miyamoto et al. [22], two neural
networks were used in a similar IMC structure with feedback
error learning to control a simulated manipulator as well.
Hunt and Sbarbaro [10] implemented IMC with two neural
networks that learned their models by example (a pre-existing
feedback controller), before testing it on a simulated plant.
Li and Deng [23] implemented an IMC design in which a

single neural network was used to compensates for model
mismatches in both internal models. More recently, [24]
compared two adaptive feedback controllers (a PID with and
without a convolutional neural network) that used evolution
to learn locomotion in a real quadruped robot. These studies
show that the IMC structure can be used to obtain high-
performance nonlinear control. To our knowledge, we are the
first to test an adaptive IMC controller within ER.

Our work positions itself in a rare intersection of adaptive
feedback control and ER. Many (adaptive) feedback control
studies focus primarily on the dynamics of the errors when
following a reference and not on the robot behaviour itself.
However, in the context of our paper, the robot’s behaviour
is also influenced by the changing feedforward CPG. Con-
versely, much research in ER is solely focused on the be-
haviour of the controllers, while overlooking the influence
of feedback control. We suspect a strong coupling between
both within ER, thus playing a vital role in transferring
from simulation to the real world. From this perspective,
we position ourselves uniquely in comparison to other (bio-
inspired) controllers, in that we implement both learning
directed locomotion as well as adaptive feedback control. On
top of that, we require learning to occur quickly, on a broad
range of different robot morphologies.

III. EXPERIMENTAL SETUP

A. Test suite

We will use 6 different robots (N = 6) that are made
of off-the-shelf components based on the modular RoboGen
framework, see Figure 2. Spider, Gecko, and Snake (top row)
are designed beforehand, while BabyA and BabyB are first
generation children from the Gecko and Spider. Finally, the
6677 is a product of the evolution of multiple generations.

(a) Spider (b) Gecko (c) Snake

(d) BabyA (e) BabyB (f) 6677

Figure 2: Test suite with custom (top) and evolved (bottom) designs.

B. Test Procedure

Each robot is tested in 10 different experiments with three
different controllers. The original open-loop controller [9],
and the two IMCs (vanilla and reservoir). Each experiment
consists of 300 learning trials in which the controller improves
on the task of directed locomotion. This makes the total of
3 × 6 × 10 × 300 = 5400 learning trials. At the start of
each learning trial, we place the robot in the center of a

2118

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2021 at 07:03:12 UTC from IEEE Xplore. Restrictions apply.

flat horizontal plane with a gravitational pull of 9.81m/s2

downward. Each trial takes 60s in simulation. In total we
simulate 5400 × 60 = 3.24 × 106 s, which equals 900 h.
Simulation is done in Gazebo using the ODE physics engine
with Runge-Kutta 4 integration (dt = 0.05 s). The sampling
period of the controller is 0.125 s.

IV. CONTROLLER DESIGN

We start with explaining the open-loop CPG controller
based on the work by Lan et al. [9]. The added IMC controller
will use the same CPG controller extended with the two DNN
as internal models. The two flavors of IMC (IMC vanilla or
IMC reservoir) will be explained in detail later on. Learning
locomotion is done by updating the CPG weights in between
learning trials while the weights of the DNN models in the
IMC are updated during each trial.

A. Learning Locomotion with CPG

The CPGs are based on the design by Ijspeert et al.
[25]. A single CPG is represented by a neuron pair (xi,yi)
that reciprocally inhibit and excite each other to produce
oscillatory behaviour. Here, i denotes the specific joint that
is associated with this CPG. The dynamics of a single
CPG is defined by the current state of its neuron pair. The
change of every neuron state is calculated by multiplying the
current state of the opposite neuron with a weight (w), as
shown in Figure 3a. The weights wxiyi

and wyixi
represent

a connection strength between each neuron pair within the
CPG, while wxioi represents the coupling strength from the x-
neuron to an output neuron that controls a joint (i.e. servo). By
changing the weights of the CPGs, we can learn locomotion.

xiyi outi
wxiyi

wyixi
wxioi

(a) CPG

4 3

2

1

6 5

8

7

(b) CPG network

Figure 3: a: A single CPG b: The CPG network for our Spider,
containing 8 CPGs (numbers) with 10 connections (blue lines).

To enable complex output patterns, we allow CPG con-
nection to exist between neighbouring joints, see Figure 3b.
The set of neighbouring joints (Ni) at joint i, consists of
all the joints j positioned within a distance of 2 modules.
The ordinary differential equations of the resulting CPG
network are described in Equation 1. Connections between
neighboring joints j are denoted as wxjxi .

ẋi = wyixi
yi +

∑
j∈Ni

xjwxjxi
ẏi = wxiyi

xi (1)

For the output neuron a tangent hyperbolic activation
function is used (see Equation 2). To simplify the search space

we implement the following ralations between the weights:
wxiyi

= −wyixi
;wxjxi

= wxixj
;wxioi = 1. At the start of

each learning trial all neuron states will be set to a predefined
value (x, y) =

(
− 1√

2
, 1√

2

)
.

outi(xi) =
2

1 + e−2xiwxioi
− 1 (2)

To improve the weights of the CPG network, we define a
performance measure (F). During a learning trial the CPG
network commands the robot to move through space, which
can be described by a trajectory p(t), see Figure 4a. In the
case of directed locomotion, we want this movement to 1) be
as far as possible in the target direction (βT), and 2) have as
minimum possible deviations from this direction (δ). To this
end, we formulate F as follows:

1) First obtain δ:

δ(β0, β1) =

{
2π − |β1 − β0| (|β1 − β0| > π)

|β1 − β0| (|β1 − β0| ≤ π)
(3)

Note that δ ranges from [−π, π), with the range
(− 1

2π,
1
2π

)
being (partly) towards the target direction.

2) Calculate the distance travelled in the target direction
at the end of a trial, Ddir:

Ddir = |Pend − P0| cos δ (4)

Here |Pend−P0| denotes the Euclidean distance between Pend

and P0.
3) Calculate the total distance deviated from the target

direction at the end of the trial, Ddev:

Ddev = |Pend − P0| sin δ (5)

4) Now we formulate F as follows:

F(Ddir,Ddev) = |Ddir|Ddir −D2
dev (6)

Ddev is squared to penalize strong deviation from the target
direction, Ddir is multiplied by its absolute value to en-
courage movement towards the target direction. The units of
our performance measure are [F]= m2. A contour plot of
F(Ddir,Ddev) is shown in Figure 4b.

The optimization of the weight will be done using a
Bayesian Optimization (BO) algorithm, which models the
fitness function using Gaussian Processes (GP) [26]. With
GP BO efficiently selects promising samples for subsequent
trials. The hyperparameters of the BO are derived from [9],
which shown in Table I. We initialize the BO algorithm by
pseudo-randomly evaluating 50 evenly distributed samples in
search-space using Latin Hypercube Sampling (LHS).

B. Adaptive IMC Control

for the implementation of optimal feedback control, we
extend the open-loop CPG controller with our IMC controller.
For the internal models we will use two different DNN. The
design of the DNN for the inverse model consists of an input

2119

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2021 at 07:03:12 UTC from IEEE Xplore. Restrictions apply.

�
���

�
�

�

�

�

�
���	�

�

�
���

� �����

(a) Performance variables (b) Contour plot

Figure 4: (a): Visualization of the variables necessary for the
performance measure. βT shows the target direction, while βend

the actual direction, P0 start, Pend end positions. The difference
in direction is denoted by angle δ and the projection of Pend onto
the target direction by Pend,⊥. (b): contour plot of the performance
measure. The black isolines show monotonically increasing perfor-
mance values ranging [-6,8] with steps of 2, from the bottom to top
in target direction (red arrow).

Parameters Value Description

Initial sampling LHS Sampling method
Initial samples 50 Number of samples
Learning iterations 250 Number of evaluations
Kernel type Matérn 5/2 Approximation kernel
Kernel variance 1.0
Kernel length 0.2
UCB alpha 3.0 Acquisition function weight

Table I: Hyperparameters of the BO algorithm, from [9].

layer containing 4k neurons (input layer modelinv = [φ1:k,
φ̇1:k, φref,1:k, φ̇ref,1:k]

T), with k being the total number of
servomotors; two hidden layers of the same size (4k) with
Rectified Linear activation units (ReLU); and an output layer
of k neurons (output layer modelinv = [u1:k]

T), which sends
the control signals to the servomotors. For the output layer, we
choose the same tangent hyperbolic neuron as in Equation 2.

The DNN for the feedforward model has an input layer
of 3k neurons (input layer modelff = [φ1:k, φ̇1:k, u1:k]

T);
two hidden layers of the same size (3k) with ReLU; and
an output layer of 2k neurons (output layer modelff =
[φpred,1:k, φ̇pred,1:k]

T). For the output neurons we also use
the tangent hyperbolic function.

The implementation of the DNN is done in C++ using
libtorch v1.4.0. For optimization, we update both biases
and weights. Only at the beginning of an experiment (i.e.
at the start of the first trial) we randomly initialize these
parameters by sampling from a Gaussian distribution with
zero mean and variance of one. To train the models in
the IMC vanilla we continuously update all the weights
and biasses for the hidden and output layers. For the IMC
reservoir, we freeze the weights and biases of the hidden
layers after initialization and only optimize the output layer.
Updating of the weights and biases is done whenever a new

reference signal is sent to the IMC. For the IMC vanilla
controller the total number of parameters to be optimized in
the modelinv is 4(4 + 4 + 1)2k = 72k, and for the modelff
3(3 + 3 + 2)2k = 48k. While for the IMC reservoir the
total number of parameters in the modelinv is defined as
4(0 + 1)2k = 8k, and for the modelff 3(0 + 2)2k = 12k.

The goal of the IMC is to minimize the error between the
reference state and the actual state. This is achieved by 1)
the modelinv providing correct motor inputs to follow the
desired state, and 2) the modelff correctly predicting the
next robot state. To improve our DNN, we will learn these
tasks separately for each model by updating the weights and
biases of the DNN with the well-known ADAM optimizer not
re-initializing the parameters in each subsequent trial [27].
The ADAM optimizer requires a loss function, which will
be different for each model based on the error it makes. For
modelinv the desired output is the reference state, with the
error being the difference between the reference and the actual
robot state (Einv = φ − φref). For modelff , the desired
model output is the actual robot state, with the error being
the difference between the actual and the predicted robot state
(Eff = e = φpred − φ). The loss function is defined as the
summed squared error (L = E 1

2E
T). With L we calculate

the gradients for ADAM. For regularization, we implement
L2 weight decay [27]. The hyperparameters for the ADAM
optimizer are shown in Table II.

Parameters Value Description

α 0.005 Learning rate
β1 0.9 First moment decay
β2 0.99 Second moment decay
ε 1 e−6 Division constant

L2 0.001 Weight decay

Table II: Hyperparameters of the ADAM optimizer.

Below we have summarized the most important differences
between our controller conditions (see Table III). For all con-
ditions, we learn directed locomotion in a CPG network using
BO to adjust the weights of the CPG network. The number
of CPG weights is dependent on the number of servomotors
(k) and neighbour pairs (|N |) in a specific morphology. In
addition, the IMC controllers also learn feedback control
with their two DNN models using the ADAM optimizer.
The IMC vanilla and IMC reservoir differ in the number of
parameters that are adapted during feedback learning (based
on the number of servomotors as well). The full code is
publicly available on github here.

To test the validity of the feedback control, we will select
the final open-loop controller and the best performing IMC
controller (either vanilla or reservoir) and re-test them in
a noisy environment for all experiments (in total, 120 re-
evaluations). The noise (a Gaussian with mean 0 and STD
0.05) will be applied on the servomotor input at every
iteration. We will compare the mean difference (Δ) between
the open-loop and best IMC.

2120

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2021 at 07:03:12 UTC from IEEE Xplore. Restrictions apply.

Parameters Open-loop IMC vanilla IMC reservoir

Directed Controller CPG CPG CPG
Locomotion Optimizer BO BO BO

nr. param. k + |N | k + |N | k + |N |
IMC Models - 2 DNN 2 DNN
Conrol Optimizer - ADAM ADAM

nr. param. - (72 + 48)k (8 + 12)k

Table III: Summary of the different controller conditions. The open-
loop controller is also implemented in the two IMC controllers,
which differ in the number of parameters to optimize.

C. Statistical analysis

For the data analysis, we compare the progression of the
performance measure as a function of evaluations for all
controllers (open-loop, IMC vanilla, IMC reservoir) per robot.
Additionally, we compare differences between the perfor-
mance end-values of each controller within a certain robot
morphology, as well as a grouped comparison. Similarly,
in the noisy condition, we compare the mean difference in
performance (Δ) between the open-loop and the best IMC
per robot morphology, and aggregated in a group. Per robot
morphology comparison is done using an independent sam-
ples t-test (N = 10), while for the grouped comparison we use
a paired samples t-test (N=6). Assumptions on normality and
equal variance are checked by performing a Shapiro–Wilk test
(normality for p > 0.95) and an F-test (normal ratio between
variances 1

2 and 2). Additional report on the effects size are
done using Cohens-d.

V. RESULTS

In total conducting all 180 experiments took approxi-
mately 45 h in real-time, which is an average of 15min
per experiment. In comparison to the 900 h of simulated
time this equates to a 20× speedup. In Figure 5 we plotted
the progression of the mean performance (±SE confidence
interval) over the number of evaluations for all six robots.
Four of these plots show an usual improvement over time, but
the Snake and 6677 do not seem to learn much. The reason
is the orientation of the robots at the start of the learning
period. Unfortunately, both the snake and 6677 were placed
orthogonal to the required direction to follow. This made the
learning task extremely hard as they should have discovered
the strategy of turning 90 degrees first and then walking into
the right direction (video1). Occasionally this occurred for the
Snake, but not for 6677.

The learning curves show that the IMC reservoir performed
better or just as good as the other controllers for half of the
morphologies. Furthermore the open-loop performed similarly
to the IMC reservoir except for the Spider and BabyB in
which it performed worse. Lastly, the IMC vanilla performed
worse or just as good as the open-loop for all morphologies
except for the Spider. The rate of learning is similar for all
controllers at the start of the learning task (evaluations < 100),

1https://youtu.be/TgC0gHII7mg

except for the Gecko in which the IMC vanilla learns slower
than the others. After about 100 evaluations learning diverges
for the Spider, BabyA, and BabyB.

���������	
�	���	 ��	�������	
�	��� ��	���������	
�	���

(a) Spider (b) Gecko (c) Snake

(d) BabyA (e) BabyB (f) 6677

Figure 5: Mean learning curves (±SE) of the task of directed
locomotion for the Spider, Gecko, Snake, BabyA, BabyB, and 6677.
The blue lines denote the open-loop controller, red lines the IMC
vanilla controller, and the green lines the IMC reservoir.

Checks on the performance end-values met the require-
ments on normality (Shapiro-Wilk p > 0.95), and homo-
geneity of variance (12 <F-test< 2) between the different
groups that were being compared. In Figure 6 we can see that
there was no significant difference found between the end-
values of the open-loop controller (blue bars) and the IMC
reservoir (green bars) for all morphologies. Spider p = 0.24,
Gecko p = 0.36, Snake p = 0.20, BabyA p = 0.77,
and 6677 p = 0.90. BabyB was closest to a statically
significant difference p = 0.08 with MEAN±STD for the OL:
0.81±0.55 and IMC reservoir: 1.65±1.21, effect size= 0.89.

When comparing the performance of the open-loop control
and the IMC vanilla (red bars), no significant difference was
found in the end-values for the Spider (p = 0.88), Snake
(p = 0.57), BabyB (p = 0.63) and 6677 (p = 0.32)
morphologies. Significant difference in learning locomotion
performance was found between the open-loop control and
the IMC vanilla for the Gecko (p = 0.02, OL: 1.72 ± 0.81
and IMC vanilla: 0.90± 0.48, effect size= 1.15), and BabyA
(p < 0.007, OL: 1.34 ± 0.81 and IMC vanilla: 0.50 ± 0.18,
effect size= 1.43).

In the final comparison, no significant difference was found
between the IMC vanilla and the IMC reservoir, for the Spider
(p = 0.82), Snake (p = 0.23), and 6677 (p = 0.25). Here, a
statistically significant difference in performance end-values
was found for the morphology Gecko (p = 0.003, IMC
vanilla: 0.90 ± 0.48, and IMC reservoir: 2.11 ± 0.93, effect
size= 1.63), BabyA (p = 0.003, IMC vanilla: 0.50±0.18, and
IMC reservoir: 1.24 ± 0.64, effect size= 1.57), and BabyB
(p = 0.05, IMC vanilla: 0.76 ± 0.32, and IMC reservoir:
1.65± 1.21, effect size= 0.99).

The grouped comparison (N = 6) between the controllers
did not show any statistical significant difference between
mean performance end-values over all morphologies (OL
= 0.77 ± 0.61; IMC vanilla = 0.50 ± 0.35; IMC reservoir

2121

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2021 at 07:03:12 UTC from IEEE Xplore. Restrictions apply.

���������	
� ���	 ��	�������	
�					�	�� �����	���������	
�	

(a) Spider (b) Gecko (c) Snake

(d) BabyA (e) BabyB (f) 6677
Figure 6: Mean end-values (±SE) of the performance (N = 10)
per robot (Spider, Gecko, Snake, BabyA, BabyB, and 6677) for the
open-loop controller (blue), IMC vanilla (red), and IMC reservoir
(green). Here, * denotes p < 0.05, and ** p < 0.01.

= 0.98 ± 0.78). OL vs. IMC vanilla controller = p = 0.19;
OL vs. IMC reservoir = p = 0.23; and IMC reservoir vs.
IMC vanilla p = 0.08 (with d= 0.79).

Based on the results from Figure 6, we choose to compare
the open-loop against the IMC reservoir controller in the
noisy condition experiment. The results of the statistical
analysis on the feedback validation experiment with added
noise are shown in Table IV. It should be noted that a negative
difference means that the performance decreased after adding
noise. Here we can see that for most morphologies the
average performance decreased after adding noise (except
for the Δopen-loop in the 6677, and ΔIMC reservoir in the
BabyB morphology). Furthermore, we found that there was
a statistically significant difference between the Δopen-loop
and the ΔIMC reservoir controller for the Gecko (p = 0.008,
Δopen-loop: -0.66±0.42, and ΔIMC reservoir: -0.18±0.25,
d= 1.40), Snake (p = 0.03, IMC vanilla: -0.19 ± 0.23, and
IMC reservoir: -0.46 ± 3.62 · e−2, d= 1.10), and BabyB
(p = 2.56 ·e−6, IMC vanilla: -0.51±0.20, and IMC reservoir
= 4.14± 0.11 · e−4, d= 3.10).

For the grouped comparison we did not find any statistical
difference between the mean difference of the open-loop
control and the IMC reservoir when adding noise (p = 0.08).

Controller Δ open-loop Δ IMC reservoir p-value d

Spider -0.24 ± 0.29 -0.03 ± 0.12 0.07 0.92
Gecko* -0.66 ± 0.42 -0.18 ± 0.25 <0.01 1.40
Snake* -0.19 ± 0.23 -0.46 ± 3.62 · e−2 0.03 1.10
BabyA -0.18 ± 0.38 -0.27 ± 0.39 0.62 0.24
BabyB* -0.51 ± 0.20 4.14 ± 0.11 · e−4 <0.001 3.10
6677 0.46 ± 3.39 · e−3 -1.60 ± 2.87 · e−3 0.18 0.65

Grouped -0.30 ± 0.22 -0.08 ± 0.10 0.08 1.24

Table IV: Mean difference (±STD) in performance after adding
noise to the best controllers of each experiment (N = 10). Negative
differences indicate that the performance decreased.

VI. DISCUSSION

The issue we address here is rooted in evolutionary robot
systems, where robot bodies and brains evolve simultaneously.

In such systems robot ‘birth’ must be followed by ‘infant
learning’ with a robust learning method that works for all
possible morphologies [4], [5]. Here, we consider a specific
type of evolvable robots (modular morphologies) with specific
controllers (based on CPGs) learning a specific task (directed
locomotion). The key idea of the paper is to extend the usual
open-loop controller used frequently in ER by an adaptive
feedback mechanism that uses a forward model and an inverse
model that can be learned on-the-fly.

The straightforward way to test this concept would be to
perform evolutionary runs with and without it. However, such
runs would take enormous amounts of time. Therefore, we
choose to use a test suite of six robots with various mor-
phologies – akin to a single generation in an ER experiment.
The actual experiments compare the open-loop controller and
two versions the extended controller concept on the robots of
our test suite. The results show that using the IMC reservoir
approach can have a positive effect on the achieved speed
and the robustness of the controller compared to an open-
loop controller.

At the start of learning, we see similar learning curves
for all controllers (Figure 5), which is to be expected since
sampling was done pseudo-randomly for the first 50 samples
with LHS. After this initial sampling, divergence starts around
100 evaluations in the Spider, Gecko, BabyA and BabyB,
where the less performing controllers begin to plateau. The
plateauing indicates to us that the end-values truly represents
differences in task-performance between controllers, and were
not caused by ending the experiments too soon. In support of
our findings, it seems that the differences in end-values could
have been more pronounced since performance in the IMC
reservoir was still increasing in most morphologies.

Overall, we did not find any significant differences between
the grouped mean performance end-values. We suspect that
this is mainly due to the low number of robots in our study
(6 morphologies). Especially in the case of the IMC reservoir
vs. IMC vanilla where there is a clear trend visible (p =
0.08, d = 0.79). In hindsight, this probably means that we
could have increased the number of morphologies while still
retaining a medium to large effect size. Additionally, the low
performance of the Snake and the 6677 may have reduced
the mean end-values considerately. In retrospect rotating the
morphologies might have been sufficient to find a statistically
significant difference between the controllers. A rerun of these
morphologies in the ‘correct’ direction did result in end-values
that were similar to the Gecko and BabyB (not shown).

The use of adaptive IMC has some interesting conse-
quences for learning directed locomotion with the BO algo-
rithm, due to the additional learning of the internal models.
As the internal models change over time, we can see that the
IMC controllers might behave inconsistently. This means that
with retesting the same CPG weights a second time, after a
period of DNN adaptations, we would likely see a slightly
different behaviour and thus a difference in performance.
As a consequence, instead of a crisp representation of the
performance, we should consider each data point more as a

2122

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2021 at 07:03:12 UTC from IEEE Xplore. Restrictions apply.

probability. Luckily, the BO algorithm is well equipped to
do this as it evaluates samples with a certain uncertainty.
Nevertheless, we did not put any extra effort into fine-
tuning the BO algorithm for this, as we wanted to keep the
locomotion learning equal between the controllers.

Learning two internal models at the same time might be
another cause for inconsistency. changing two interdependent
systems can increase the risk of unstable adaptations that are
unpredictable [21]. A way to show this is by imagining a
special case in which one DNN internal model is perfect.
Here it could happen that the other imperfect model causes
an error that will change the weights of the perfect DNN. For
future work, it might be better to learn each model differently,
for example, switch which model learns for a period of time,
store different sets of data in a buffer (odd vs. even samples),
or decrease the learning rate of one of the models making the
other model adapt to it.

Additionally, adaptations of the IMC in combination with
the adaptation of the CPG weights for the locomotion task
can lead to over-fitting of the DNNs. Namely, as the CPG
network keeps improving its weights we will likely see that
behaviour converges to a (local) optimum. This may lead
to the internal models recognizing which output is desired
based on the robots state instead of the reference signal
presented by the CPG. Resulting in bad behaviour when
the robot revisits the same state with a different reference
signal. As a consequence, badly functioning feedback control
causes bad performance during exploratory samples, which
in return reinforces the convergence of the CPGs leading to
early plateauing of the fitness. We addressed over-fitting in
the IMC with L2 regularization on the weights. Other possible
solutions may be to change the BO accordingly, implementing
dropout in the DNN [27] or to reduce the size of the models.

Inconsistency of control can cause the resulting perfor-
mance to be badly represented by the GP [26]. The sample ef-
ficient nature of the BO algorithm becomes counterproductive
if bad samples are regarded higher and/or good samples lower,
as it will negatively affect the likelihood of samples being
picked in the neighbourhood of those points. The sensitivity
to this bad sampling is different for each morphology, as a
morphology with a narrow region of high performance in
search space would be more sensitive than a morphology with
a wider optimal region. Additionally, inconsistency in control
leads to high variability in neighbouring points, which can
cause a very erratic and/or uncertain GP approximation of
the fitness function. This is highly dependent on the amount
of data and the type of kernel being used [26]. Inconsistency
in control will also occur in other types of feedback controller
besides our IMC. For future work, we can take this into
account when learning locomotion in real robots using BO.
An interesting option might be to incorporate the total amount
of loss by the DNNs per evaluation in the covariance matrix
of the BO to directly indicate its uncertainty.

How the adaptive IMC influenced the learning locomotion
task is difficult to tell. It is interesting to see that for the IMC
vanilla the added feedback during learning seemed detrimen-

tal to its performance, while the IMC reservoir seemed to
benefit. The differences in the number of parameters to be
learned (Table III) result in a reduced amount of learning
capabilities and an increased rate of learning for the DNNs
in the IMC reservoir [11]. The difference in performance
indicates that there might be an optimal amount of learning
for the IMC. For example, to prevent over-fitting one would
like to have a DNN with a slow learning rate and low
learning capacity, but, taking this into the extreme might lead
to bad adaptations towards new behaviors and limitations in
the complexity of the model. Additionally, slow adaptations
increases the robustness of the feedback controller, while fast
adaptation can cause it to adapt better to changes in control.

The fact that the IMC reservoir outperforms the open-loop
controller also indicates that some inconsistencies in control
can be beneficial. It can be argued that the aforementioned
argument, bad samples are regarded higher and/or good
samples lower is conversely beneficial, but we disagree.
Even though higher valued good samples might attract more
samples in their neighbourhood, bad samples would already
be regarded as bad and ignored by the BO, thus not affecting
the outcome at all. In the end, this would cause the net
influence of inconsistencies to be more harmful than good.
We, believe the source of improvement to lie in an increase
in the amount of uncertainty of the GP for the IMC reservoir.
This would encourage more exploration, which explains the
extended periods of learning.

We tested the validity of our feedback controller in the
added noise experiments. The results show that the IMC
reservoir controller is able to reduce the effects of the per-
turbation more than the open-loop in the Gecko, Snake, and
BabyB morphology. Differences between Δfitness was most
apparent in the BabyB with a huge effect size (d = 3.1).
Overall, we found that the IMC reservoir tends to perform
better (p = 0.08, with very large effect size d = 1.24). This
difference was mainly caused by a deviation from the target
direction (decrease in Ddir and increase in Ddev , not shown).
For the open-loop controller in BabyA the addition of noise
does not seem to affect it that much. Visual inspection of
these controllers with and without noise (same video) did
not reveal anything noticeable. Noteworthy, the reduction in
performance of the best movement behaviour in the open-
loop Snake (the one that rotated 90 degrees first) was due to
a failure in rotation before rolling. This strengthens our belief
that learning with open-loop control can lead to exploitation
of behaviours that are very sensitive to the reality gap.

Many controllers that were evolved in ER literature seem
to have a problem with bridging the reality gap [28]. The
results of our experiments revealed that small changes in
controllers can lead to very different results in performance,
which will eventually affect the whole ER process. In this
paper, we addressed this issue in two ways simultaneously
with our IMC implementation. First of all, we learned directed
locomotion on a more realistic robot that uses feedback
control instead of open-loop control. Secondly, the added
feedback allows for more robust control in the sense that the

2123

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2021 at 07:03:12 UTC from IEEE Xplore. Restrictions apply.

effects of perturbations and noise on the robots are being
actively reduced. Several other solutions to the reality gap
have been proposed which we did not cover [28]. As a
consequence, we may have overestimated the effect of the
IMC reservoir on its ability to reduce the reality gap. We
ignored these techniques as we were only interested to see the
capabilities of the IMC controller and its effect on learning
directed locomotion.

The necessity of a learning loop in ER is based on the
difficulties that arise with simultaneous body and brain evolu-
tion [3], [4]. Learning prevents potentially good morphologies
with initially bad controllers to be discarded right away, which
allows for ‘hard to control’ morphologies to be more present.
Another approach that has been proposed is protecting new
morphologies that have recently been mutated during selec-
tion [29]. Here, controller adaptation to occur within the
evolutionary process rather than an additional learning loop.
For simple morphologies this method seems to work, but
[29] noted that for larger creatures novelty protection is only
beneficial with a minimum mutation threshold (which was
obtained by a parameter sweep). The advantage of learning
over novelty protection is the speed and scalability to more
complex morphologies (as such tuning is not required be-
forehand). For further research we would like to test lifetime
learning within an fully evolving robot system with robots
that use our IMC design.

VII. CONCLUSION

The advances of 3D-printing, rapid prototyping and auto-
mated assembly make Evolutionary Robotics with physical
robots increasingly feasible. This implies that using realistic
feedback control in the robots is becoming more important. To
this end, we developed a bio-inspired IMC feedback system
based on two internal models that can be learned on-the-fly.
Our experiments showed that adding this system to existing
controllers helps learn proper movement execution without
hampering the learning of a locomotion task. The system also
can reduce the learning effort and increase the robustness of
the learned controllers.

REFERENCES

[1] J. C. Bongard, “Evolutionary robotics,” Communications of the ACM,
vol. 56, no. 8, pp. 74–83, 2013.

[2] S. Doncieux, N. Bredeche, J.-B. Mouret, and A. E. Eiben, “Evolutionary
robotics: what, why, and where to,” Frontiers in Robotics and AI, vol. 2,
p. 4, 2015.

[3] N. Cheney, J. Bongard, V. Sunspiral, and H. Lipson, “On the difficulty
of co-optimizing morphology and control in evolved virtual creatures,”
in Artificial Life Conference Proceedings 13. MIT Press, 2016, pp.
226–233.

[4] A. E. Eiben, N. Bredeche, M. Hoogendoorn, J. Stradner, J. Timmis,
A. M. Tyrrell, and A. Winfield, “The triangle of life: Evolving robots
in real-time and real-space,” in Artificial Life Conference Proceedings
13. MIT Press, 2013, pp. 1056–1063.

[5] A. Eiben and E. Hart, “If it evolves it needs to learn,” in Proceed-
ings of the 2020 Genetic and Evolutionary Computation Conference
Companion, 2020, pp. 1383–1384.

[6] A. F. Winfield and J. Timmis, “Evolvable robot hardware,” in Evolvable
Hardware. Springer, 2015, pp. 331–348.

[7] R. Babuška, Fuzzy modeling for control. Springer Science & Business
Media, 2012, vol. 12.

[8] G. Lan, M. Jelisavcic, D. M. Roijers, E. Haasdijk, and A. E. Eiben,
“Directed locomotion for modular robots with evolvable morphologies,”
in International Conference on Parallel Problem Solving from Nature.
Springer, 2018, pp. 476–487.

[9] G. Lan, M. De Carlo, F. van Diggelen, J. M. Tomczak, D. M. Roijers,
and A. E. Eiben, “Learning directed locomotion in modular robots with
evolvable morphologies,” arXiv preprint arXiv:2001.07804, 2020.

[10] K. Hunt and D. Sbarbaro, “Neural networks for nonlinear internal model
control,” in IEE Proceedings D (Control Theory and Applications), vol.
138, no. 5. IET, 1991, pp. 431–438.

[11] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,” Computer Science Review, vol. 3,
no. 3, pp. 127–149, 2009.

[12] L. Brodbeck, S. Hauser, and F. Iida, “Morphological evolution of
physical robots through model-free phenotype development,” PloS one,
vol. 10, no. 6, p. e0128444, 2015.

[13] V. Vujovic, A. Rosendo, L. Brodbeck, and F. Iida, “Evolutionary
developmental robotics: Improving morphology and control of physical
robots,” Artificial life, vol. 23, no. 2, pp. 169–185, 2017.

[14] T. F. Nygaard, C. P. Martin, D. Howard, J. Torresen, and K. Glette,
“Environmental adaptation of robot morphology and control through
real-world evolution,” arXiv preprint arXiv:2003.13254, 2020.

[15] J. Bongard, V. Zykov, and H. Lipson, “Resilient machines through
continuous self-modeling,” Science, vol. 314, no. 5802, pp. 1118–1121,
2006.

[16] J.-K. Ryu, N. Y. Chong, B. J. You, and H. I. Christensen, “Locomo-
tion of snake-like robots using adaptive neural oscillators,” Intelligent
Service Robotics, vol. 3, no. 1, p. 1, 2010.

[17] K. Inoue, T. Sumi, and S. Ma, “Cpg-based control of a simulated snake-
like robot adaptable to changing ground friction,” in 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2007, pp. 1957–1962.

[18] J.-Q. Huang and F. L. Lewis, “Neural-network predictive control for
nonlinear dynamic systems with time-delay,” IEEE Transactions on
Neural Networks, vol. 14, no. 2, pp. 377–389, 2003.

[19] J. Drchal, J. Koutník, and M. Snorek, “Hyperneat controlled robots
learn how to drive on roads in simulated environment,” in 2009 iEEE
congress on evolutionary computation. IEEE, 2009, pp. 1087–1092.

[20] J. Nordmoen, T. F. Nygaard, K. O. Ellefsen, and K. Glette, “Evolved
embodied phase coordination enables robust quadruped robot locomo-
tion,” in Proceedings of the Genetic and Evolutionary Computation
Conference, 2019, pp. 133–141.

[21] M. Kawato, K. Furukawa, and R. Suzuki, “A hierarchical neural-
network model for control and learning of voluntary movement,”
Biological cybernetics, vol. 57, no. 3, pp. 169–185, 1987.

[22] H. Miyamoto, M. Kawato, T. Setoyama, and R. Suzuki, “Feedback-
error-learning neural network for trajectory control of a robotic manip-
ulator,” Neural Networks, vol. 1, no. 3, pp. 251–265, 1988.

[23] H.-X. Li and H. Deng, “An approximate internal model-based neural
control for unknown nonlinear discrete processes,” IEEE transactions
on neural networks, vol. 17, no. 3, pp. 659–670, 2006.

[24] E. Massi, L. Vannucci, U. Albanese, M. C. Capolei, A. Vandesompele,
G. Urbain, A. M. Sabatini, J. Dambre, C. Laschi, S. Tolu et al.,
“Combining evolutionary and adaptive control strategies for quadruped
robotic locomotion,” Frontiers in Neurorobotics, vol. 13, p. 71, 2019.

[25] A. J. Ijspeert, “Central pattern generators for locomotion control in
animals and robots: a review,” Neural networks, vol. 21, no. 4, pp.
642–653, 2008.

[26] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian opti-
mization of machine learning algorithms,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 2, ser. NIPS’12, USA, 2012, pp. 2951–2959.

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[28] N. Jakobi, P. Husbands, and I. Harvey, “Noise and the reality gap: The
use of simulation in evolutionary robotics,” in European Conference on
Artificial Life. Springer, 1995, pp. 704–720.

[29] N. Cheney, J. Bongard, V. SunSpiral, and H. Lipson, “Scalable co-
optimization of morphology and control in embodied machines,” Jour-
nal of The Royal Society Interface, vol. 15, no. 143, p. 20170937, 2018.

2124

Authorized licensed use limited to: TU Delft Library. Downloaded on February 02,2021 at 07:03:12 UTC from IEEE Xplore. Restrictions apply.

