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This study deals with the influence of manufacturing-induced geometric variability on the identification
of material properties of composite sandwich panels. The objective of this article is twofold. First, this
work aims to demonstrate the marked influence of geometric uncertainties on a foam core sandwich
panel whose skin material properties need to be identified. Several identification cases are studied based
on experimentally obtained natural frequencies and mode shapes. The second objective is to propose a
numerical method for the identification process in the case where uncertainties can be treated as a ran-
dom field (e.g., thickness distribution). The identification method is built around a classification-based
technique referred to as ‘‘fidelity maps”, which has the ability to simultaneously treat several responses
to match without any assumption on their correlation. The approach uses a proper orthogonal decompo-
sition for the extraction and the selection of the features of the random field considered as important for
the identification. The identification method is demonstrated on a foam core sandwich panel whose
thickness distribution is modeled as a random field.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The identification of material properties of composites can be
made difficult due to numerous sources of uncertainty inherent
to the manufacturing process. Uncertainties can take several forms
such as inhomogeneous material distributions or uneven thickness
distributions. It is now well established that uncertainties can have
a significant effect on the behavior of composites [1–3] and must
therefore be accounted for in any material property identification
or model calibration process. Identification can be performed using
static and/or dynamic experimental tests. In the dynamic case,
which is of interest to this study, natural frequencies and mode
shapes are typically used [4–8]. There exist several methods to per-
form identification such as the widely used least-square minimiza-
tion of a residual [9,10], which quantifies the mismatch between
prediction and experiments. Other techniques, such as maximum
likelihood or Bayesian update [11,12], enable one to include uncer-
tainties in the identification process. The inclusion of uncertainties
is of prime importance since quantities such as natural frequencies
and mode shapes might be highly sensitive to local variations in
stiffness and mass distributions [1–3].
The identification process can be hampered by a number of fac-
tors. First, some uncertainties can be simply overlooked or poorly
quantified (e.g., presence of a crack or local excess of glue) thus
leading to wrong assessments. Second, several, potentially many,
correlated responses might be needed to increase the identifiability
of specific parameters [13,14]. Yet, existing methods do not prop-
erly account for several correlated responses. For instance, one
might want to identify material properties based on several natural
frequencies and mode shapes, which are correlated with each
other. However, the widely used minimization of a residual based
on several correlated responses can be shown to provide biased
results when these responses are assumed independent, as it is
usually done [13,15].

The first objective of this paper is to highlight the difficulties
inherent to the identification process in the case of a manufactured
foam core sandwich panel with unknown skin material properties
[16,17]. Specifically, this study focuses on the influence of geomet-
ric variability on the quality of the modal data-based identification
and corresponding finite element model calibration. This objective
is carried out by comparing identification results, obtained by
maximizing the agreement between model and experiments, for
several scenarios such as a spatially constant thickness distribution
or a measured thickness distribution over the panel.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2017.07.020&domain=pdf
http://dx.doi.org/10.1016/j.compstruct.2017.07.020
mailto:smissoum@email.arizona.edu
http://dx.doi.org/10.1016/j.compstruct.2017.07.020
http://www.sciencedirect.com/science/journal/02638223
http://www.elsevier.com/locate/compstruct
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In light of these results, the second objective is to provide a new
methodology for the identification of material properties in the
case where material or geometric properties form a random field.
The proposed identification approach is based on notion of ‘‘fidelity
maps” developed by the first two authors [13,14]. A fidelity map
defines the region in the parameter space where a given level of
agreement between computational results and measurements is
achieved. The use of fidelity maps, which are approximated using
a classification technique, such as a support vector machine
(SVM) [18], has three major advantages. The first one is that it
facilitates the propagation of uncertainty. In fact, the approach
enables the identification of material properties using either max-
imum likelihood or Bayesian estimates [12,19]. The second advan-
tage is the ability to handle many responses to match
simultaneously, thus leading to more robust estimates. Finally,
fidelity maps naturally capture the correlation structure between
responses which is typically assumed or inexistent if other tech-
niques are used. The fidelity map technique is extended to the case
of random fields [20], which enable a more realistic representation
of uncertainties (e.g., thickness distribution). The extension of the
fidelity map approach to random fields is carried out by using
the coefficients of a snapshot-based proper orthogonal decomposi-
tion (POD) of the field as random variables [20]. That is, the fidelity
map is built in a space made of the parameters to identify as well
as the random coefficients of the POD description. The approach is
applied to a foam core sandwich panel whose thickness is modeled
as a random field.

This article is structured as follows: Section I aims at demon-
strating the influence of geometric uncertainties on the identifica-
tion of material properties. The section also describes the foam
core composite plate and the modal analysis experimental setup.
Section II describes the fidelity map approach and its extension
to random fields. Section III provides the results of the random field
approach applied to the sandwich panel.

2. Influence of geometry on material identification

This section aims at providing insight into the difficulties inher-
ent to the identification process due to geometric uncertainties. For
this purpose, the identification of the skin properties of a foam core
sandwich panel is performed using experimental modal data.

2.1. Foam core sandwich panel. Experimental setup

The panel, constituted of a foam core and two identical external
skins, has a length A = 900 mm and a width L = 460 mm, and an
average total thickness of h = 3.3 mm (Fig. 1a). The top and bottom
skins are each constituted of a two layer Carbon/Epoxy (0/90) lay-
up (where the 0 angle is the exterior layer, with fibers parallel to
Fig. 1. (a) Top view of the foam core sandwich plate; (b) Schematic representation with d
core and the external skins.
the length direction). The thickness hc of each Carbon/Epoxy layer
is 0.17 mm. The plate has been manufactured at the Structures and
Composite Materials laboratory at McGill University using a vac-
uum bag processing equipment. The plate has a DIAB Divinycell
foam core with Eco = 40 MPa, Gco = 9.5 MPa, qco ¼ 339:4 kg/m3,
and an average core thickness hco of 2.62 mm (Fig. 1b). Details on
the experimental setup can be found in [17].

The modal analysis of the plate was performed using a plate
under free edge conditions which was subjected to random excita-
tion using a shaker. The free edge conditions were achieved by
hanging the plate using low stiffness elastics. The measurements
were performed using a non-contact laser scanning vibrometer
by Polytec, Inc. A depiction of the experimental setup is provided
in Fig. 2. The natural frequencies and damping ratios are provided
in Table 1. The corresponding experimentally obtained modes are
depicted in Fig. 3.

2.2. Basic identification through deterministic optimization

A first estimate of the skin material properties was carried out
through deterministic optimization using the four first natural fre-
quencies of the plate. The skin properties found are: E1 ¼ 127 GPa,
E2 ¼ 6:05 GPa, G12 ¼ 5 GPa, G13 ¼ G23 ¼ 3:3 GPa and m ¼ 0:35
where the subscript 1 stands for the fiber direction, and 3 is the
out-of-plane direction.

A linear Finite Element (FE) model of the sandwich panel was
constructed using ANSYS shell 181 elements [21]. The shell 181
element is a multilayered shell element for thin to moderately
thick shell structures and has the ability to account for transverse
shear deformation (Mindlin-Reissner theory) [22–25]. While the
stiffness matrix is numerically integrated, a consistent mass matrix
with close form integration is used.

The numerical prediction for the first eight modes were
obtained using the FE model. Table 2 provides the relative errors
ei between the experimental ith natural frequencies and the FE pre-
dictions. The maximum relative error is provided in cases where 4
and 8 modes are compared. The nature and sequence of the FE
mode shapes (Fig. 4) is similar to the experimental mode shapes
depicted in 3. However, it is observed that a 13:25% error is
obtained for the 6th mode. This difference can be partially
explained by inspection of mode 6 obtained computationally and
experimentally (see Figs. 3 and 4): although the computational
mode 6 exhibits a perfect double symmetry, it is not the case for
the experimental mode, which is only perfectly symmetrical with
respect to the length-wise axis.

2.2.1. Uniform thickness assumption
In order to reduce the error, the total thickness h of the plate,

considered uniform over the whole plate, is introduced as a
imension labeling. hc is the thickness of one skin layer; (c) Detail showing the foam



Fig. 2. Experimental setup. Front view (left); side view (right).

Table 1
Mode sequence, natural frequencies, and damping ratios obtained experimentally on
the foam core sandwich panel. The letters A and S stand for ‘‘Antisymmetric” and
‘‘Symmetric” mode with respect to the two main axes of symmetry of the plate.

Mode Sequence Natural Frequency (Hz) Damping Ratio (%)

A,A-1 19.00 1.2
S,S-1 31.56 0.45
S,A-1 48.13 0.64
A,S-1 83.76 0.12
A,A-2 99.83 0.18
S,S-2 101.2 0.17
A,S-2 108.8 0.19
S,S-3 125.6 0.31
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quantity to identify in addition to the two skin material properties
E1 and G12. Other parameters are kept to the values provided in the
previous section as they are either known or deemed not
influential. The skin thickness is constant at 0.17 mm. For this
identification, a pattern search algorithm [26] was used to find a
Fig. 3. First 8 mode shapes, experimentally identified. (a) 1st mode, A,A-1; (b) 2nd mode,
S-2; (g) 7th mode, A,S-2; (h) 8th mode, S,S-3.
set of parameters that minimizes the maximum absolute value of
the relative error between the model and the experimental natural
frequencies. For comparison, the optimization was successively
based on the four and eight first natural frequencies (Table 3).
Table 4 shows the estimated values for these three parameters
for the two cases.

These results indicate that, using 8 natural frequencies, the
error cannot be reduced below 6.87%. This could be attributed to
the fact that the experimental setup was optimized for the first 4
modes. Note that the mode shapes are qualitatively similar to
the ones in Fig. 4. In addition, the two optimizations converge to
different optima for the cases where 4 modes and 8 modes are
used. Therefore, the properties are not clearly identifiable and the
results cannot be used with the present setting.

2.2.2. Actual thickness measurements
In an effort to further understand the discrepancies, spatial

measurements of the thickness were performed along each side
S,S-1; (c) 3rd mode, S,A-1; (d) 4th mode, A,S-1; (e) 5th mode, A,A-2; (f) 6th mode, S,



Table 2
Experimental and FE-predicted natural frequencies. ei is the maximum relative error
for the ith mode.

Experimental (Hz) FE (Hz) ei (%)

k1 19.00 18.90 0.49
k2 31.56 31.74 0.58
k3 48.13 47.76 1.32
k4 83.76 82.67 1.29
k5 99.83 97.49 2.34
k6 101.24 114.65 13.25
k7 108.80 119.42 9.76
k8 125.66 135.98 8.21

maxðe1; . . . ; e4Þ 1.32

maxðe1; . . . ; e8Þ 13.25

Table 3
Identification of the (uniform) total thickness h; E1 and G12 using 4 or 8 frequencies
ðkiÞ.

Use of 4 nat.
freq.

Use of 8 nat.
freq.

Experimental (Hz) FE (Hz) ei (%) FE (Hz) ei (%)

k1 19.00 18.76 1.28 18.89 0.56
k2 31.56 31.90 1.07 29.74 5.76
k3 48.13 48.75 1.28 47.58 1.14
k4 83.76 83.41 0.42 78.00 6.87
k5 99.83 98.14 1.69 93.82 6.02
k6 101.24 115.75 14.33 108.20 6.87
k7 108.80 120.54 10.79 113.34 4.17
k8 125.66 137.20 9.18 130.53 3.87

maxðe1; . . . ; e4Þ 1.28 6.87

maxðe1; . . . ; e8Þ 14.33 6.87

Table 4
Estimated material properties with a uniform plate thickness.

# of freq. h (mm) E1 (GPa) G12 (GPa)

4 3.6 101 4.88
8 3.3 110 6.07
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of the plate. The observed variations are reported on Fig. 5. Based
on these measurements, the thickness was assumed to be varying
along the width of the plate and constant along its length. It can
clearly be observed that there is a rather sharp change in the thick-
ness about 0.2 m along the width, which might therefore substan-
tially modify the bending stiffness of the plate locally. In order to
apply this thickness distribution to the FE model, a polynomial
was fitted to the measured data (Fig. 6). Analogous to the previous
section with an overall constant thickness, a similar deterministic
optimization was performed and the results are summarized in
Table 5.

In contrast with the previous analysis, these results show that
an error of 3.11% can be achieved and both optimizations converge
to approximately the same optimum. These results are consistent
and therefore are more likely to estimate the material properties
of this specific plate. The mode shapes are qualitatively similar to
the ones in Fig. 4. Note that the optimal values from this analysis
(Table 6) are different from either solution of the first analysis. This
clearly demonstrates the strong influence of the thickness
distribution.

2.3. Sensitivity analysis

In order to assess the effect of material and geometric parame-
ters on the natural frequencies and calibration error, a global
sensitivity analysis is performed. This analysis is performed using
Sobol indices [27], which quantify the fraction of the total variance
of a response f (e.g., a natural frequency) due to a specific param-
eter xi. Sobol indices are defined as follows:

First order indices, which provide the ‘‘main effect” of each
parameter:
Fig. 4. First 8 mode shapes obtained computationally following the same sequence as exp
1; (d) 4th mode, A,S-1; (e) 5th mode, A,A-2; (f) 6th mode, S,S-2; (g) 7th mode, A,S-2; (h
Si ¼ V½Eðf jxiÞ�
V½f � ð1Þ

where V and E are the variance and expected value operators
respectively.

Second order indices, which represent the variance contribution
directly due to the coupling between the variables xi and xj:

Sij ¼ V½Eðf jxi; xjÞ� �V½Eðf jxiÞ� �V½Eðf jxjÞ�
V½f � ð2Þ

Finally, the total indices include first and second order effects:

STi ¼ E½Vðf jx�iÞ�
V½f � ð3Þ

where x�i is the set of all the parameters expect xi. Note that higher
order coupling terms could also be calculated. For the study at hand,
we will compare the total indices to measure the relative contribu-
tion of the parameters. From mechanics, the following parameters
were chosen for the sensitivity analysis. The corresponding ranges
are also provided:
erimental mode shapes. (a) 1st mode, A,A-1; (b) 2nd mode, S,S-1; (c) 3rd mode, S,A-
) 8th mode, S,S-3.



Fig. 5. Thickness measurement along the 4 sides of the plate. Measurements were performed using a digital caliper.

Fig. 6. Finite element model with varying thickness. The thickness distribution was
measured experimentally and fitted with a polynomial.

Table 5
Calibration using fixed thickness distribution.

Use of 4 nat.
freq.

Use of 8 nat.
freq.

Experimental (Hz) FE (Hz) ei (%) FE (Hz) ei (%)

k1 19.00 18.64 1.90 18.70 1.56
k2 31.56 31.91 1.11 31.25 0.99
k3 48.13 49.04 1.90 48.70 1.18
k4 83.76 82.68 1.29 81.15 3.11
k5 99.83 99.27 0.56 98.04 1.79
k6 101.24 106.45 5.14 104.39 3.11
k7 108.80 112.18 3.11 110.28 1.36
k8 125.66 131.01 4.26 129.39 2.97

maxðe1; . . . ; e4Þ 1.90 3.11

maxðe1; . . . ; e8Þ 5.14 3.11

Table 6
Estimated material properties (GPa) using fixed varying thickness.

ks E1 (GPa) G12 (GPa)

4 136 6.63
8 131 6.69
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� E1: Young’s modulus of the skin layers in the fiber direction. E1

will substantially influence bending modes. E1 2 ½100;150� GPa.
� G12: In plane shear modulus, which will torsional modes.
G12 2 ½3:5;7:5� GPa.

� h: Total thickness which substantially influences the bending
stiffness. h 2 ½3:0;3:6�mm.
� hc: Skin thickness (included in the total thickness).
hc 2 ½0:17;0:23�mm.

� qco: foam core density. qco 2 ½300;350� kg/m3.

While G12 and E1 are to be identified, the three other parame-
ters, h; hc , and qco can be measured. They are added to the sensitiv-
ity study to show their relative influence.

The calculation of accurate Sobol indices is based on sampling
and is computationally intensive. In fact, a brute force sampling
approach to obtain converged Sobol indices in a five dimensional
space (i.e., with five parameters) with frequencies obtained using
an FE code is not tractable. Instead, the frequencies and error mea-
sures are approximated using Kriging surrogates [28]. This consid-
erably improves the computational efficiency.

The Sobol indices were computed using the CODES toolbox
developed by the first author’s group [29]. The relative impor-
tance of the total indices are presented in Fig. 7 for the eight first
natural frequencies as well as the calibration error used in this
article (i.e., maxðeiÞ). The material properties and the geometric
parameters have a varying relative importance as a function of
the mode. For instance, modes 1 and 3, which are torsional modes
are largely influenced by the shear modulus G12, while for a bend-
ing mode such as modes 2 and 4, E1 will have a large influence.
For all the modes, h and hc are important, which is expected.
Relatively to the other parameters, qco as a minor importance
except for mode 5. The results also show the similarity of sensi-
tivities between mode 6 and the maximum error. This was
expected as the maximum error was driven by mode 6. For the
reader not familiar with Sobol indices, it is important to remem-
ber that the relative importance of the indices is a function of the
parameter ranges chosen.

3. Identification method based on random fields and fidelity
maps

This section proposes a general identification approach in the
case where uncertainties form a random field as for the sandwich
plate previously described. The approach is based on the notion of
fidelity maps [13] and the extraction of a random field features
through proper orthogonal decomposition (POD). Both techniques
are presented in the subsequent sections.



Fig. 7. Total sensivity indices relative importance for the first 8 natural frequencies ki as well as the maximum error maxðeiÞ used for identification.
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3.1. Fidelity maps

Consider the responses y of a model and the corresponding
experimental measurements yexp. The responses of the system
are governed by two types of parameters: the first set are the
parameters to estimate p (e.g., material property) while the second
one, A, are the ‘‘aleatory” parameters which are not to be estimated
but introduce uncertainty (e.g., loading or boundary conditions). A
fidelity map is defined as the region of the parameter space corre-
sponding to responses within a user-defined interval of the exper-
imental data:

FM ¼ ðp;aÞ j ri 6 ei; i ¼ 1; . . . ;nf g ð4Þ
where n is the number is the number of responses (e.g., 8 frequen-
cies in the case of the foam core plate) and

ri ¼ yiðp;aÞ � yexpi

yexpi

����
����

This notion is illustrated in Fig. 8. It can be shown that the like-
lihood of any given p� can be efficiently approximated (up to a con-
stant) as the probability that p� lies within the fidelity map,
P ðp�;AÞ 2 FM½ � [13,30]. In general, the computation of such proba-
bility would lead to prohibitive computational cost. Therefore, the
boundary of the fidelity map is approximated using a support vec-
tor machine (SVM) classifier. Probabilities can then be efficiently
computed using Monte-Carlo simulations to provide maximum
likelihood estimates of the parameters to identify.

3.2. Support vector machine (SVM)

An SVM defines the boundaries between samples of two distinct
classes (e.g., acceptable and non-acceptable) [18,31–33]. Given Q
training sample, an SVM classifier is expressed as:
sðxÞ ¼ bþ
XQ
k¼1

kðkÞlðkÞKðxðkÞ;xÞ ð5Þ

where xðkÞ is the kth training sample, kðkÞ is the corresponding

Lagrange multiplier, lðkÞ is the label (class) that can take values +1
or �1, K is a kernel function (e.g., Gaussian in this work) and b is
the bias. The boundary is defined as sðxÞ ¼ 0 which splits the space
into a positive and a negative region.

In order to build the fidelity map, an SVM is initially trained
using a design of experiments (DOE). The class of each sample is
defined based on the discrepancy between the model outputs
and the experimental measurements. To be feasible (i.e., to belong
to the fidelity map), a training sample must correspond to relative
differences ri between the model outputs yi and the measurements
yexpi less than a given threshold ei (i.e., the outputs lie within a ‘‘con-
fidence region”). Therefore, the labels used to train the SVM are
defined as:

lðkÞ ¼ þ1 if rðkÞi 6 ei; i ¼ 1; . . . ;n
�1 otherwise

(

where

rðkÞi ¼ yðkÞi � yexpi

yexpi

�����
�����
3.3. Adaptive sampling for fidelity map refinement

In order to get an accurate approximation of the fidelity map
boundary, an SVM, initially trained using a design of experiments,
is sequentially refined. The adaptive sampling scheme used is
based on a ‘‘max–min” sampling technique [34]. New samples



Fig. 8. Schematic representation of the fidelity map concept.

Fig. 9. An instance of the simulated random field representing the thickness
distribution.
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are defined as the points in space that maximize the minimum dis-
tance to existing samples (i.e., they are located in sparse regions)
while lying on the SVM boundary:

xmm ¼ argmax
x

min
i

kx� xik ð6Þ

s:t: sðkÞðxÞ ¼ 0 ð7Þ
l 6 x 6 u ð8Þ

where xi is the ith sample in the training set and l (resp. u) are the
lower (resp. upper) bounds of x.

3.4. Identification with random fields. Proper orthogonal
decomposition (POD)

A more general way to describe uncertainties is through a ran-
dom field description. Consider a spatial random field defined as
wðxÞ (e.g., thickness distribution). In most applications, a random
field can be discretized into a random vector (e.g., thickness at each
element of a finite element model). A realization of the M compo-
nent random vector (e.g., measurements of the thickness atM loca-
tions) is noted:

C ¼
wðxð1ÞÞ

..

.

wðxðMÞÞ

2
664

3
775 ¼

w1

..

.

wM

2
664

3
775 ð9Þ

In order to characterize such field, one typically relies on N real-
izations (e.g., repeated measurements over different plates manu-
factured using the same process) grouped as:

W ¼
w11 � � � w1N

..

. . .
. ..

.

wM1 � � � wMN

2
664

3
775 ¼

R1

..

.

RM

2
664

3
775 ¼ C1 � � � CN½ � ð10Þ

In order to drastically reduce the dimensionality of the problem,
the main features of the random fields must be identified . This is
achieved through proper orthogonal decomposition (POD).The
general idea of POD is to analyze the covariance between the com-
ponents of a random vector in order to extract the most important
features of the field.

The first step of POD is to generate the mean random field:

C ¼
R1

..

.

RM

2
664

3
775 ð11Þ

where Ri ¼ 1
N

PN
j¼1wij. This allows one to generate a matrix with cen-

tered snapshots:
U ¼ C1 � C � � � CN � C
� � ¼ U1 � � � UN½ � ð12Þ

The covariance matrix is defined as:

R2 ¼ 1
N � 1

UUT ð13Þ

One can extract the eigenvalues ki and the eigenvectors Vi of R
2.

As M is typically larger than N it is numerically more efficient to
consider:

R20 ¼ 1
M � 1

UTU ð14Þ

R2 and R20 have the same eigenvalues. Their eigenvectors are
related as follows [20]:

Vi ¼ UV 0
i ð15Þ

Assuming that the eigenvectors are normalized to unity and the
eigenvalues ordered in decreasing order, the random field can be
approximated as follows:

Ci � C þ
Xt

j¼1

aijV j with aij ¼ UT
i Vj ð16Þ

where t is the number of eigenvalues considered. The eigenvalues
represent the importance of a feature in the description of the ran-
dom field. t is typically calculated so that the selected features pro-
vide the largest contribution to the field. This is done by computing
the relative weight of each eigenvalue:

qi ¼
kiPN
j¼1kj

ð17Þ

t is chosen as the smallest number of features so thatPt
i¼1qi P c. Typical values for c are 0.95 or 0.99 which can be

reached in some cases even for a rather small number of selected
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features (i.e., small t). It is important to realize that for a given j;aij

are N ði ¼ ½1; . . . ;N�Þ independent realizations of a unique random
variable aj such that:

C � C þ
Xt

j¼1

ajV j ð18Þ

In this study, the coefficients aj are considered as aleatory vari-
ables which are added to the dimensions of the space where the
fidelity map is constructed. This way, the identification process
will now account for random spatial variability.

4. Random field-based identification. Application to the foam
core sandwich panel

The previous identification provided accurate estimates of the
material properties of a specific plate. However, if another plate
were to be produced from the same manufacturing process, would
these estimates still be valid? A more robust approach consists of
treating the thickness as a random field and to estimate the mate-
rial properties under uncertainties. At this time, only one set of
measurements of the thickness is available to the authors. There-
fore, in order to demonstrate the methodology, a random field is
assumed.
Fig. 10. Histogram and fitted distribution of the ai parameters. Four ais
The thickness, defined as a random field, is defined as (in mm):

hðx; yÞ ¼ 3:3þ b1 sin 2p x
L
þ b3

� �
þ b2 sin 2p y

A
þ b4

� �
ð19Þ

where bi are random coefficients with the following distributions:

b1; b2 � Uð0;0:15Þ

b3; b4 � Nð0;1Þ
Based on this random field description of the thickness, we wish

to identify the skin properties E1 and G12. The finite element model
uses M ¼ 840 elements over which the random field is discretized
as a random vector. A realization of this field is depicted on Fig. 9. A
matrix of N ¼ 200 snapshots of the thickness distribution was cre-
ated using Eq. 19. Using POD, t ¼ 4 important features were iso-
lated ðc ¼ 0:99Þ. Fig. 10 shows the histograms and the fitted
distributions using kernel density estimation [35] for the four rel-
evant ais.

In the absence of actual experimental values for the identifica-
tion, a set of artificial experimental measurements was created
using Eact

1 ¼ 130:5 GPa, Gact
12 ¼ 5 GPa and a ¼ ½1;2;1;1� 	 10�3.

An SVM-based fidelity map was constructed for different
thresholds e (5%, 2%, and 1%) in the six dimensional space
ðE1;G12;a1;a2;a3;a4Þ. For simplicity, the same threshold was used
were selected using a POD of the random field with 200 snapshots.



Fig. 11. Approximated likelihood using two fidelity maps for two values of e.

Table 7
Random field analysis. Identified value of the skin properties Eest

1 and Gest
12 based on fidelity maps constructed with actual parameter values Eact

1 ¼ 130:5 GPa and Gact
12 ¼ 5 GPa.

e (%) DOE size # of adap. samp. Eest1 (error1
a) Gest

12 (error2
b)

5 60 100 132.94 GPa (1.87) 5.22 GPa (4.45)
2 60 200 131.55 GPa (0.80) 5.02 GPa (0.40)
1 60 300 130.85 GPa (0.27) 5.06 GPa (1.21)

a error1 ¼ 100	 Eact1 �Eest1j j
Eact1

b error2 ¼ 100	 Gact
12 �Gest

12j j
Gact
12

S. Missoum et al. / Composite Structures 179 (2017) 695–704 703
for all 8 frequencies. For each threshold, an initial DOE of 60 points
was used and the SVM was sequentially refined using 100, 200 and
300 adaptive samples. The lower e is, the more adaptive samples
are required to reach convergence.

Using the constructed fidelity maps, the likelihoods were
approximated as shown on Fig. 11. Once again, it is important to
realize that the fidelity maps are defined in a six dimensional space
and that while E1 and G12 are to be identified, the ais are treated as
aleatory variables. The results are summarized in Table 7. They
clearly demonstrate that as e reduces, the estimation error reduces.
For instance, in the case where e ¼ 1%, the estimation error for the
Young’s modulus is below 0.3%.
5. Conclusion

In this article, the difficulties inherent to the identification of
material properties of a sandwich panel were demonstrated. It
was observed that geometric variability such as the thickness dis-
tribution might have a very large effect on the identification
results. It was shown that assuming a constant thickness could
lead to poor results as even small spatial variation of the thickness
can significantly influence the modal properties. To improve the
identification process under uncertainty, a methodology based on
fidelity maps and a random field description was introduced for
the modal data-based identification of the sandwich panel.

Subsequent steps of this research will include an actual charac-
terization of the random field using experimental data from several
sandwich panels. In addition, other sources of uncertainties, such
as local or distributed changes in mass due to the presence of glue,
will be investigated. The identification will also be extended to the
case of nonlinear behavior, including large deformations.
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