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SUMMARY

Compared to metals, composite materials offer higher stiffness, more resilience to corro-
sion, have lighter weights, and their mechanical properties can be tailored by their layup
configuration. Despite these features, composite materials are susceptible to a diversity of
damages, including matrix cracks, delamination, and fibre breakage. If these damages are
not detected and mended, they can spread and result in the failure of the whole structure. In
particular, when the structure is under fatigue and vibrations during flight, this process can
expedite. Moreover, if such damages occur in the internal layers of the composite material,
they will be difficult to detect and to characterise. There is thus a huge demand for reliable
and accurate structural health monitoring methods to identify these defects. Such methods
either try to monitor the structural integrity of the composite during service, or they are used
for studying a desired configuration of a composite material during fatigue and tensile tests.
This thesis provides structural health monitoring solutions that can potentially be used for
both these categories. The structural health monitoring applications developed in this thesis
range from accurate strain and displacement measurement, to detection of cracks and the
identification of damages in composites.

In this thesis, fibre Bragg grating (FBG) sensors were chosen for this purpose. The
miniature size and small diameter of these sensors makes them an ideal candidate for em-
bedding them between composite layers, without severely altering the mechanical proper-
ties of the host composite material. They can thus provide us with direct information about
the current state of the laminated composite, potentially at any depth. This is especially use-
ful for acquiring information about the internal layers of the composite material, as barely
visible impact damages and micro-cracks often form beneath the surface of the material
without being visible on its exterior.

In spite of their interesting physical characteristics, applications of FBG sensors are
typically limited to point strain or temperature sensors. Further, it is often assumed that
the strain field along the sensor length is uniform. For this reason, there is currently a gap
in the field of structural health monitoring in retrieving meaningful information about the
non-uniform strain field to which the FBG sensor is subjected in damaged structures. The
focus of this thesis is on analysing the response of FBG sensors to highly non-uniform
strain fields, which are a characteristic of the existence of damage in composites.

To tackle this problem, first a new model for the analysis of FBG responses to non-
uniform strain fields will be presented. Using this model, two algorithms are presented to
accurately estimate the average of such non-uniform axial strain fields, which conventional
strain estimation algorithms fail to deliver. In fact, it is shown that the state-of-the-art
strain estimation methods using FBG sensors can lead to errors of up to a few thousand
microstrains, and the presented algorithms in this thesis can compensate for such errors. It
was also shown that these methods are robust against spectral noise from the interrogation
system, which can pave the way for more affordable FBG based strain estimation solutions.

Another contribution of this thesis is the demonstration of two new algorithms for the
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xii SUMMARY

detection of matrix cracks, and for accurate monitoring of the delamination growth in com-
posites, using conventional FBG sensors. These algorithms are in particular useful for
studying the mechanical behaviour of laminated composites in laboratory setups. For in-
stance, the matrix crack detection algorithm is capable of characterising internal transverse
cracks along the FBG length during tensile tests. Along the same lines, the delamination
growth monitoring algorithm can accurately localise the delamination crack tip along the
FBG length in mode-I tensile and fatigue tests. These algorithms can perform in real-time,
which makes them ideal for dynamic measurement of crack propagation under fatigue, and
their spatial resolution and accuracy is superior to the other state-of-the-art damage detec-
tion techniques.

Finally, to enhance the precision of the damage detection schemes presented in this
thesis, two different methods are proposed to accurately determine the active gauge length
of the FBG sensor, and its position along the optical fibre. This information is generally
not provided for commercial FBG sensors with such accuracy, which can adversely affect
the precision of crack tip localisation algorithms. Following the algorithms provided in this
thesis, the sensor position can be marked on the optical fibre with micrometer accuracy.



SAMENVATTING

Composietmaterialen bieden, vergeleken met metalen, een hogere stijfheid, betere weer-
stand tegen corrosie, zijn lichter van gewicht, en de mechanische eigenschappen kunnen
worden aangepast door verschillende gelaagde configuraties. Ondanks deze eigenschappen
zijn compositiematerialen vatbaar voor verschillende beschadigingen: matrix scheuren, de-
laminatie en vezelbreuken. Als deze beschadigingen niet worden gedetecteerd en hersteld,
kunnen ze zich verspreiden en de gehele structuur beschadigen. Dit proces versnelt met
name wanneer vermoeiing optreedt in de structuur en vibraties aanwezig zijn zoals tijdens
een vlucht. Bovendien zijn dit soort beschadigingen in de interne lagen van compositie-
materialen moeilijk te detecteren en karakteriseren. Hierdoor is er een grote vraag naar
betrouwbare en nauwkeurige structural health monitoring methodes om deze defecten te
identificeren. Zulke methodes proberen de structurele integriteit van het compositiema-
teriaal tijdens het gebruik te meten, of ze worden gebruikt in onderzoek naar gewenste
configuraties van compositiematerialen tijdens een vermoeidheidstest en een trekproef. In
dit proefschrift worden oplossingen beschreven die potentieel voor beide van de genoemde
categorieën gebruikt kunnen worden. De toepassingen in de structural health monitoring
die in dit proefschrift worden beschreven variëren van nauwkeurige rek- en verplaatsings-
metingen tot de detectie van scheuren en de identificatie van schade in compositen.

Voor deze metingen is gekozen voor Fiber Bragg grating (FBG) sensoren. Het mini-
atuur formaat en kleine diameter van deze sensoren maakt ze de ideale kandidaat om ze
tussen de lagen in te sluiten zonder dat de mechanische eigenschappen van het compositie-
materiaal daardoor ernstig veranderingen. Hierdoor kunnen deze sensoren direct informatie
bieden over de huidige conditie van de gelamineerde compositie, mogelijk op elke diepte.
Dit is met name nuttig voor het verkrijgen van informatie over de interne lagen van het
compositiemateriaal, aangezien nauwelijks zichtbare impact schade en microscheuren vaak
onder het oppervlak van het materiaal vormen zonder dat het zichtbaar is aan de buitenkant.

Ondanks de interessante fysieke eigenschappen, worden FBG sensoren vaak slechts
toegepast als puntsensoren of temperatuursensoren. Verder wordt vaak aangenomen dat de
rek uniform is langs de vezel van de sensor. Om deze reden is er momenteel een gebrek aan
kennis in de structural health monitoring op het gebied van bruikbare metingen van de niet-
uniforme rek langs een FBG sensor. De nadruk van dit proefschrift ligt op het analyseren
van de respons van FBG sensoren in sterk niet-uniforme spanningsvelden, welke typisch
verantwoordelijk zijn voor schade aan composieten.

Om dit te bereiken wordt eerst een nieuw model gepresenteerd voor de FBG respons
analyse in niet-uniforme spanningsvelden. Met dit model worden twee algoritmes gepre-
senteerd om nauwkeurig het gemiddelde van de niet-uniforme axiale spanningsvelden te
schatten, die conventionele algoritmes niet kunnen leveren. Het is aangetoond dat de
nieuwste rek schattingsalgoritmes die gebaseerd zijn op FBG sensoren fouten maken die
op kunnen lopen tot een paar duizend microstrains. Het door dit proefschrift voorgestelde
algoritme kan voor deze fouten corrigeren. Ook werd aangetoond dat deze methodes be-
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stand zijn tegen spectrale ruis van het uitleessysteem, wat kan leiden tot goedkopere FBG
gebaseerde schattingsmethodes.

Een andere bijdrage van dit proefschrift is de demonstratie van twee nieuwe algoritmes
voor de detectie van matrix scheuren en nauwkeurige monitoring van de groeiende delami-
natie in compositen met gebruik van conventionele FBG sensoren. Deze algoritmes zijn met
name bruikbaar in onderzoek naar het mechanische gedrag van gelamineerde compositen in
laboratorium opstellingen. Het matrix scheur detectiealgoritmen is bijvoorbeeld in staat om
interne transversale scheuren langs een FBG sensor te karakteriseren tijdens een trekproef.
Op dezelfde manier kan het monitoring algoritme voor groeiende delaminatie nauwkeurig
het kraakpunt bepalen van de delaminatiescheur langs de FBG sensor tijdens een mode-I
vermoeidheidstest en een trekproef. Deze algoritmes kunnen real-time uitgevoerd worden,
waardoor het ideale kandidaten zijn voor dynamische metingen van scheurpropagatie onder
vermoeiing. En de ruimtelijke resolutie en nauwkeurigheid is superieur ten opzichte van de
nieuwste schade detectietechnieken.

Tot slot worden, om de nauwkeurigheid van de schade detectiealgoritmen te verbeteren,
twee verschillende methodes voorgesteld om nauwkeurig de lengte van de FBG sensor
te bepalen en zijn positie in de optische glasvezel. Deze informatie wordt meestal niet
nauwkeurig verstrekt voor commerciële FBG sensoren. Dit kan ongunstig invloed hebben
op de nauwkeurigheid van het kraakpunt lokalisatie-algoritme. Met de algoritmes uit dit
proefschrift kan de positie van de FBG sensoren in de optische glasvezel bepaald worden
met micrometer nauwkeurigheid.



1
INTRODUCTION

... and a fact is the most stubborn thing in the world.

Mikhail Bulgakov, The Master and Margarita

In the past few decades, fibre Bragg grating (FBG) sensors have developed significantly in
structural health monitoring applications. Their light weight and small size, along with their
immunity to electromagnetic interferences and long distance interrogation capability, has
made them an ideal candidate for embedded and remote sensing applications [1]. In these
applications, FBG sensors are typically used for point stress measurements, where the stress
fields along the sensors’ lengths are assumed to be uniform [1, 2]. In such conditions, the
amount of strain applied over the length of the sensor can be estimated in a straightforward
way. However, uniformity of the strain field is not a valid assumption in most applications
of FBG sensors, especially not when the FBG length is bare and is not encompassed in a
casing [3, 4]. For instance, in embedded applications, the sensor is already under transverse
loads, which results in birefringence effects [5], and in surface mounting applications, the
adhesive material creates a non-uniform residual stress field over the length of the sensor [2,
6].

The research underlying this thesis is part of the "Smart Sensing for Aviation" project
at Delft University of Technology, which aims to improve the safety, security and effi-
ciency over the life cycle of aircrafts, with a focus on the safety of composite structures in
aircrafts. This thesis, provides fundamental contributions to the interpretation of the FBG
sensor output under non-uniform strain fields, with a focus on their application in aerospace
composite structures. The analyses presented in this work are meant to give a better under-
standing of the strain field to which the sensor is subjected, which can be further developed
into damage detection schemes. In this chapter, the reader will be first provided with some
basic information about aerospace composite materials. Then, an introduction to structural
health monitoring (SHM) and the application of FBG sensors in SHM will be given. In
Section 1.6 the scope and the outline of this thesis will be discussed, and finally, the main
contributions of this thesis are detailed.

1
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2 1. INTRODUCTION

1.1. AEROSPACE COMPOSITE MATERIALS

(a) (b)

Figure 1.1: (a): A schematic representation of different layers of a unidirectional fibre reinforced composite
material (b): An actual piece of a woven carbon fibre composite material.

Figure 1.2: The amount of composite content in aircrafts has increased significantly in the past few decades [10].

A composite material, based on definition, is a material that consists of two or more
composing materials, which, when combined, produces a material with physical and chem-
ical characteristics significantly different than its individual components [7]. In continuous
fibre reinforced composite materials, which have dominated the aerospace field [8], the
composite material consists of long reinforcement fibres and a matrix material. These rein-
forcement fibres can be oriented in desired directions or be in woven form to improve the
strength and stiffness of the material, and the matrix material, which is usually in form of a
liquid or gel resin mixture which has been cured to fill the volume between the reinforce-
ment fibres. Fig. 1.1 presents a schematic and a real example of a composite material.

The resulting composite material has several advantages over metals. They are lighter in
weight, have higher stiffness, are more resilient to temperature changes, and are becoming
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more and more affordable for aerospace applications [8]. Before composites, aluminium
alloys were the most commonly used material in aerospace structures. Although they have
many suitable physical properties, they are prone to ageing, corrosion, fatigue and me-
chanical damage due to surface contact, which makes them expensive to maintain and re-
pair. Composite materials, and in particular fibre reinforced composites have shown to be
a good substitute for aluminium alloys, with much less maintenance costs and a better per-
formance [8]. Fig. 1.2 is a good demonstration of the increasing popularity of composites
in commercial aircrafts.

1.2. STRUCTURAL HEALTH MONITORING IN COMPOSITES
One of the main concerns regarding the use of composite materials in aerospace appli-
cations is the formation and growth of damages in them, and in particular, barely visible
damages [8, 9]. Such barely visible damages can be induced during the operational life-
time of an aircraft due to low velocity impacts, and they cannot be detected by routine
visual inspections, especially if they occur in the internal layers of composites [2, 8]. These
damages are usually in the form of matrix micro-cracks, or delamination of the composite
layers. Under fatigue and stress, if left unattended, these damages can grow and result in
catastrophic incidents [8]. Fig. 1.3 shows an example of such micro-cracks in the internal
layers of a unidirectional carbon fibre composite specimen under two different stress levels.

(a) (b)

Figure 1.3: (a): A side-view of a healthy composite specimen before applying any load. (b): Applying tensile
load on the specimen and the formation of transverse micro-cracks (indicated by the red arrows) in the middle
layers of the composite specimen.

Structural health monitoring is the process of detection and characterisation of damage
and stress in engineering structures [8]. This process is performed by incorporating an array
of sensors to collect data about the mechanical behaviour of the structure, and analysing the
changes in the sensors’ outputs. In general, structural health monitoring techniques are used
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for

1. studying the behaviour of composites under various load scenarios,

2. detecting barely visible damages at early stages.

In the first group of the above categorisation, the stress analysis of the composite spec-
imens are first carried out in computer simulations by using engineering models [11]. The
data collected from these simulations (usually using finite element methods) are then com-
pared to experimental measurements from the actual specimens [11]. It is therefore essen-
tial to have accurate and precise measurements from the physical experiments. The sensors
used in the research underlying this thesis are a specific kind of fibre optic based sensors,
called fibre Bragg gratings (FBG). This thesis will try to answer a few fundamental ques-
tions in both categories mentioned above. In the next section, the properties and advantages
of FBG sensors will be discussed in details.

1.3. FIBRE BRAGG GRATINGS (FBGS)
Fibre Bragg grating sensors are manufactured by inducing a refractive index modulation in
the core of an optical fibre. This modulated length, called the grating, is typically around
1 cm in length, and is created by exposing the optical fibre to ultraviolet (UV) light with a
specific pattern [4]. In uniform FBG sensors, which is the focus of this thesis, the afore-
mentioned refractive index modulation has a constant period throughout the length of the
sensor [4, 12]. The active length of the sensor partially reflects certain wavelengths of the
input light, and the peak wavelength of the amplitude of the reflected spectrum (which is
theoretically symmetrical), depends linearly on the period of the grating. This means that if
the FBG sensor undergoes a uniform axial strain, the period of the grating will be mechan-
ically altered (increased under tension and decreased under compression), and hence, the
peak wavelength of the reflected spectrum will shift towards higher or lower wavelengths,
respectively. This simple relationship between the strain value and the peak wavelength of
the reflection spectrum has made FBGs an attractive choice for stress analyses in mechani-
cal structures, and in particular in point strain and temperature measurements [12, 13]. Fig.
1.4 demonstrates this property schematically.

Apart from the simple relationship between the Bragg wavelength and the strain value,
FBG sensors have several advantages over other sensor types, including their extremely low
sensitivity to electromagnetic interferences, their resistance to corrosion and long working
lifetime, the low loss of fibre optics in long distances, and their remote sensing capabili-
ties [2]. However, the two features that makes them an ideal option for aerospace applica-
tions is their light weight and the small diameter of the optical fibre. This small diameter
(ranging from around 40µm [14] to around 125µm for standard FBG sensors [15]), allows
them to be embedded between the layers of composite materials, without severely altering
their mechanical properties [14, 16]. By doing so, one can have direct information about
the internal layers of composites, which can possibly help them to interpret the applied load
or the damage state within the internal layers.



1.3. FIBRE BRAGG GRATINGS (FBGS)

1

5

Figure 1.4: The principle of operation of uniform FBG sensors under uniform strain fields. I is the intensity of
the reflected light, λ is the wavelength domain, λB is the peak wavelength of the reflected light, n is the effective
refractive index of the core, and Λ and Λ′ are the grating periods of the unstrained and strained FBG respectively.

1.3.1. INTERROGATION OF FBG SENSORS
There are several methods for the interrogation of FBG sensors, and they all have their
limitations and advantages. Here, only the most basic interrogation types will be discussed.
The simplest approach is to use conventional spectrometers in combination with a light-
source such as a superluminescent diode or a tunable laser [17]. This is an affordable and
simple approach for recording the amplitude of the reflection spectrum, but its wavelength
resolution is low and it is not suitable for full spectrum analysis of the FBG output.

Another approach is to incorporate a tunable Fabry-Perot filter in the design of the in-
terrogator, along with a broadband source and a photodetector for recording the amplitude
of the reflection spectrum [18]. This approach offers a high wavelength resolution and
accuracy, and a high dynamic range. However, its scanning frequency is relatively low
(typically less than 1 kHz), and high speed and dynamic interrogation is challenging with
such systems [19]. Despite these drawback, this system will be used throughout this the-
sis, as it offers multiplexing capabilities and full reflection spectra recordings with a high
wavelength resolution. Such detailed reflection spectra with a high wavelength resolution
contains essential information about the non-uniform strain field around the FBG sensor,
and since the focus of this thesis is on static measurements, the low speed of Fabry-Perot
based interrogation systems is not an issue.

So far, only the interrogation types that recorded the amplitude of the FBG reflection
spectrum were discussed. There is another class of interrogators, based on the optical low-
coherence reflectometry (OLCR), that record the complex reflection spectrum of the FBG
sensor [20]. The principles of operation of such systems will be discussed in the next
chapter in detail. Using such systems, it is possible to retrieve the local coupling coef-
ficients along the FBG length, and consequently to reconstruct the continuous (so-called
distributed) axial strain field along the FBG length [21]. With this method it is possible to
retrieve a significant amount of information about the non-uniform strain field, and to use
that information for damage characterisation in different engineering structures. However,
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Figure 1.5: FBG reflection spectrum under (a) no external stress, and (b) a non-uniform strain field. The reflection
spectrum in (b) is from an experiment where embedded FBG sensors were in contact with delaminated composite
layers.

the setup of the OLCR system limits its multiplexing capabilities, is sensitive to transverse
loads and polarisation effects, and due to the existence of moving arms in the interrogation
system, its speed is relatively low [22]. Further, strain distribution reconstruction algorithms
take several seconds to converge [23], which limits its application. For these reasons, the
application of the OLCR system for damage identification will not be further discussed
in this thesis, as here the focus is on reducing the computational complexity of structural
health monitoring methods and increasing their speed and reliability.

1.3.2. FBG SENSORS FOR STRAIN MEASUREMENT

Despite the simplicity of interpreting the FBG reflection spectrum under uniform strain
fields under non-uniform strain fields, the reflection spectrum becomes complicated con-
taining multiple peaks. An example is shown in Fig. 1.5b where an FBG sensor is in
contact with a non-uniform strain field from delaminated composite layers.

Even though in embedded applications and composite materials the strain field is usu-
ally non-uniform, and to our knowledge there has not been many studies to interpret the
FBG reflection spectra for strain estimation under such conditions. Therefore, the first re-
search question can be posed as:

Q1: With only the magnitude of the FBG reflection spectra available, is it possible to
provide a meaningful measure of non-uniform strain fields?

We first present a model for the analysis of FBG sensors under non-uniform strain fields
in Chapter 3, which will be used in Chapters 3 and 4 to answer this question.
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1.4. IMPROVING THE PERFORMANCE OF FBG SENSORS IN

DAMAGE CHARACTERISATION
In damage detection and localisation applications, it is essential to know the precise position
of the FBG sensor along the optical fibre. The reason is that, for instance, the precision of
the delamination tip localisation is directly determined by our precise knowledge of the
position of the FBG sensor. Upon ordering FBG sensors from manufacturing companies,
there is usually ambiguity on the precise location of the FBG sensor along the length of the
optical fibre, as the markings on the fibre only indicate the approximate position of the FBG
sensor. Therefore, the second question that will be addressed in this thesis is:

Q2: Can we extract knowledge on the precise position of the FBG sensor?

In Chapters 5 and 6, this question will be answered.

1.5. FBG SENSORS AND DAMAGE CHARACTERISATION
The strain field around the damaged area in composites is highly non-uniform. For instance,
the strain distribution in the direction transverse to matrix cracks will have high amplitude
peaks at the crack locations [24], and the strain distribution along the delamination area will
have a sudden strain change at the delamination tip [25] (see Fig. 1.5). As mentioned in
the previous sections, when FBG sensors get in contact with non-uniform strain fields, their
reflection spectra lose their symmetry and usually become wider (similar to Fig. 1.5b).

In the past decades, a lot of research has been conducted to exploit these phenomena and
to design a reliable damage detector using FBG sensors [23–27]. However, due to the com-
plications associated with the analysis of FBG reflection spectra under non-uniform strain
fields, most of this research was only limited to a qualitative assessment of the changes in
the FBG reflection spectra. In Chapters 7 and 8 of this thesis, the following two related
subquestions will be answered.

Q3.1: Having access to only the magnitude of the FBG reflection spectra available, is it
possible to quantifiably characterise matrix cracks in composites?

Q3.2: Is it possible to monitor the delamination growth direction and extent in composites,
both accurately and dynamically?

1.6. THESIS OUTLINE AND CONTRIBUTIONS
In general, the direct application of FBG sensors in SHM can be classified into two cate-
gories. The first category, which is also the most prevalent application in the industry, is
to use FBG sensors for point strain (or temperature) measurement. The second category is
concerned with damage identification and detection in engineering structures. This thesis
makes contributions to certain applications within both categories, and is particularly fo-
cused on the case of the effects of non-uniform strain fields on FBG reflection spectra. It
should be noted that each of these categories consists of several different classes of methods
and algorithms, each of which is most suited for a particular set of structural health moni-
toring problems. Fig. 1.7 presents a diagram of the typical applications of FBG sensors in
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SHM, and highlights the main contributions of this thesis. In the next chapter, a selection
of these methods will be explained in further detail.

FBG sensors in SHM

Point strain
measurement

Damage
characterisation

Hot spot measurement
Temperature and strain separation
Strain estimation in uniform fields
Strain estimation in non-uniform fields
Shape sensing
Transverse load measurement

Crack detection
Delamination monitoring
Corrosion monitoring
Distributed strain measurement
Impact localisation and detection

Figure 1.7: Typical applications of FBG sensors in SHM, classified into two categories. The contributions of this
thesis lie within the highlighted areas.

The remainder of this chapter, provides a brief description of the thesis contributions
summarised per chapter.

Chapter 2 - Literature review. This chapter covers the required background in order to
read this thesis, along with a selection of the existing methods of structural health monitor-
ing using FBG sensors. The chapter contains the presentation of the transfer matrix model,
which is a method for modelling the FBG reflection spectra under non-uniform strain or
grating distributions, and will form the backbone of this thesis. The existing strain estima-
tion algorithms and damage assessment methods in composite structures using FBG sensors
in the literature will be discussed as well. Furthermore, there are also several practical con-
siderations that need to be taken into account for using FBG sensors in structural health
monitoring applications, especially in embedded applications. This chapter will briefly dis-
cuss some of these challenges and some solutions to overcome them as well.

Chapter 3 - FBG model and average strain estimation. In this chapter, a new model
for the analysis of FBG reflection spectra under non-uniform strain or grating distributions
will be proposed. This model is an approximation of the transfer matrix model and is the
basis of all the analyses in this thesis. Using this model, we are able to express the re-
flection spectra under non-uniform strain fields with a closed-form approximation. This
closed-form expression will help us to develop several new applications for FBG sensors in
areas such as accurate strain estimation and damage detection. As an example an algorithm
will be presented for estimating the average of non-uniform strain distributions that uses
the aforementioned closed-form approximation. The chapter concludes with some com-
puter simulations and experimental measurements to validate our claims.
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Chapter 4 - Average strain estimation with uniform FBGs. One of the methods of
strain estimation using FBG sensors is to replace the peak wavelength tracking approach
by tracking the centre of mass of the reflection spectrum. This method is called the cen-
troid method, and a mathematical proof for the superior performance of this method over
the other commonly used existing average strain estimation methods will be given. The
centroid method is also one of the steps of the algorithm that will be presented in Chap-
ter 3. Chapter 4 thus complements Chapter 3. The performance of the centroid method
under spectral noise will be investigated as well. This chapter will be concluded with some
computer simulation results.

Chapter 5 and 6 - Accurate FBG length and position determination. In these two
chapters, a new method will be presented to determine the exact length of the FBG sensor
(Chapter 5) and its exact position along the optical fibre (Chapter 6). This information will
become useful in the next chapters of this thesis, as the precision of the damage identi-
fication methods directly depends on our precise knowledge of the position of the sensor.
However, manufacturing companies only offer the approximate position of the sensor along
the optical fibre, whose accuracy is at best around 1 mm. In these chapters, a method will
be presented that will improve this accuracy by a factor of around 100.

Chapter 7 - Matrix crack detection with FBG sensors. In this chapter, the informa-
tion presented in Chapters 3 and 5 and 6 will be exploited to devise a new method for the
characterisation of transverse matrix cracks in composite materials. First, McCartney’s the-
ory will be presented which analyses the strain field around transverse cracks in composites.
This theory suggests that when subject to transverse cracks, the strain distribution along the
FBG length will have sudden changes at the crack locations. Using the aforementioned
closed-form expression of the reflection spectrum, it will be shown that such sudden strain
changes along the FBG length translate into the addition of new harmonics in the Fourier
transform of its reflection spectrum side-lobes. Using this novel method, high resolution
information about the formation of matrix cracks in the internal layers of uni-directional
composites can be provided. Experimental results from carbon fibre and glass fibre com-
posite specimens will be presented to confirm these claims.

Chapter 8 - Delamination tip monitoring with FBG sensors. This chapter will in-
vestigate the possibility of delamination growth monitoring in mode-I fracture tests. The
damage type that will be investigated in this chapter is delamination of the composite lay-
ers. It will be argued that under delamination, there is also a sudden strain change at the
delamination tip. By increasing the amount of the tensile load on the specimen (and pro-
gression of the delaminated area), that delamination tip moves along the FBG length. Such
conditions result in a moving harmonic in the Fourier transform of the reflection spectrum
side-lobes, which can be monitored to determine the exact position of the delamination
tip. This is a novel and useful application for FBG sensors, as it can potentially provide a
real-time, precise and distributed evaluation of the delamination tip growth in composites,
within their internal layers, and independent of the type of composite material. Computer
simulations and experimental results also confirm these claims.
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Chapter 9 - Conclusions. This thesis is concluded in this chapter by summarising our
main contributions. The possible directions for future work based on our contributions will
be discussed afterwards, as well as the limitations and challenges that might be in the way.

1.7. LIST OF PAPERS
In this section, all the papers that were submitted and published during the course of this
PhD project are listed.
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2
STRUCTURAL HEALTH

MONITORING WITH FBG
SENSORS

A man trusts another man when
he sees enough of himself in him.

Gregory David Roberts, Shantaram

In this chapter, the focus will be on reviewing the background knowledge on fibre Bragg
grating (FBG) sensors in structural health monitoring (SHM) that is required to read this
thesis. Since the introduction of fibre Bragg gratings as strain and temperature sensors [1],
their performance and accuracy has improved significantly [2], their mechanical strength
has increased [3], and their applications in structural health monitoring have become much
more diverse [4–7]. These applications range from the conventional point axial strain es-
timation applications under different adverse conditions to non-uniform strain estimation,
damage identification in smart structures, and distributed strain measurements. In this chap-
ter, a selection of the most significant contributions in the field of structural health monitor-
ing using FBG sensors will be discussed.

This chapter starts with the case of uniform axial strain or temperature fields, which is
the simplest case of using fibre Bragg gratings as sensor elements in structural health mon-
itoring. However, even within this framework, there can be complications in retrieving the
strain or temperature values. For instance, if the wavelength resolution of the interrogation
unit is low but a high strain resolution is desired, or if the recorded FBG output from the
interrogator has a low signal-to-noise ratio. In Section 2.1.1, a number of different methods
will be presented that try to increase the strain accuracy and resolution of the interrogation
by using signal processing techniques, without altering the hardware of the signal interro-
gation unit.

The second part of this chapter (Section 2.2) addresses the analysis of the FBG output
under non-uniform axial strain fields. Section 2.2 is an essential part of this thesis, as all
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damage types in engineering structures lead to non-uniform strain fields at the affected
area. This phenomenon is the foundation for the remaining chapters of this thesis, where
the extent and the size of different damage types in composites will be characterised. This
subsection will start with a mathematical model for the analysis of the FBG output under
non-uniform grating structures or stress fields. Then, several studies will be mentioned and
discussed that have tried to interpret the FBG output from a damaged composite structure
in order to detect the mere existence of the damage, its type, its location, or the direction of
its progression.

In the last part of this chapter, the use of FBG sensors as distributed sensors will be
investigated. For such applications, the interrogation system needs to record the complex
reflection spectrum of the sensor, which requires adjustments to the interrogation method
and its setup. This part is beyond the scope of the current thesis, however, exploring the
benefits of these methods, as well as understanding the complications associated with them
and their limitations, will help the reader to better understand the contributions of this the-
sis. This chapter concludes with some remarks about the embedding process of fibre optic
sensors between composite laminates.

2.1. FBG SENSOR UNDER UNIFORM STRAIN
The basic principle of operation of FBG sensors under uniform strain fields is to track the
wavelength shift of the reflected light from the grating region. In its simplest form, the peak
wavelength of the FBG reflection spectrum (also called the Bragg wavelength) is given
by [8]

λB = 2neffΛ, (2.1)

where neff is the effective index of the core and Λ is the grating period of the sensor. As
evident from Eq. (2.1), the Bragg wavelength of the sensor linearly depends on the grating
period and on the effective index of the core. Therefore, under the application of physical
stresses such as temperature changes or mechanical strains, the Bragg wavelength will shift
toward higher (under tension) or lower (under compression) wavelengths. It is notewor-
thy that this linear response is most valid for small temperature and strain changes. For
larger temperature variations and at cryogenic temperatures, the thermo-optic coefficient of
the silica fibre also becomes a dominant factor and changes the FBG response from linear
dependence to temperature to quadratic dependence or sometimes higher-order polynomi-
als [9].

Based on this linearity property, the amount of uniform axial strain or temperature
change applied over the sensor length can be determined by tracking the shift of this peak
wavelength under stress with respect to that of the unstressed sensor. This property was de-
picted in Fig. 1.4, where the shift of the reflection spectrum of the FBG sensor (throughout
this thesis the reflection spectrum is denoted by R(λ)) was depicted to linearly depend on
the amount of uniform strain applied over the sensor length. Another parameter in Eq. (2.1)
that is affected by these physical stresses is changes in the effective refraction index or
∆neff. This index can have components in both x and y axes (transverse directions), which
will be denoted as ∆neff,x and ∆neff,y respectively. The shift of the effective refraction index
is given by [10]
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∆neff,x =−n3
eff
2

[
p11εx +p12(εy +εz )

]
+ dneff

dT
∆T, (2.2)

∆neff,y =−n3
eff
2

[
p11εy +p12(εx +εz )

]
+ dneff

dT
∆T. (2.3)

In the above equations, the εi ’s are the strain components along different axes, p11 and p12

are the strain-optic coefficients, and dneff
dT represents the thermal-optic effect [11]. It can

be seen from Eq. (2.2) that if the transverse load has unequal components along the x and
y directions, the shift of Bragg wavelength will also have different changes due to each
component [12]. This phenomenon results in birefringence or the split of the reflection
spectrum into two or more peaks, as shown in Fig. 2.1.
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Figure 2.1: Experimental results, showing the birefringence effect of the FBG reflection spectrum under a uniform
transverse load of 5 N.

Nonetheless, assuming almost equal transverse strains along both the x and y directions
is a valid assumption for several applications of FBG sensors in structural health monitor-
ing, especially when appropriate coatings are used for the optical fibre [13]. With this
simplification, the shift of the Bragg wavelength with respect to both temperature change
and axial strain is determined as ∆λB =∆λBε +∆λBT , where

∆λBε = ks s and ∆λBT = kT∆T. (2.4)

In Eq. (2.4), s = εz is the axial strain, and both ks and kT are constants and are deter-
mined by the composition of the optical fibre. For instance, in silica based optical fibres
operating at λB = 1550 nm, ks ≈ 1.209×10−3 nm/µε and kT ≈ 10.075×10−3 nm/◦C [8].

As it is evident from Eq. (2.4), the shift of the Bragg wavelength is sensitive to both
strain and temperature changes. Therefore, in the case that the sensor is subjected to a
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mixed environment with both effects present, separating the amount of mechanical strain
from the change in temperature based on a single FBG measurement will become a problem
as the system of equations in underdetermined. To solve this problem, the most straightfor-
ward solution is to incorporate two FBG sensors in the object under test, one as a reference
for measuring the temperature changes and not undergoing strain, and another FBG sensor
that undergoes both effects [14]. Then, solving a linear system of two equations and two
unknowns (temperature and strain), both parameters can be obtained. Another solution is to
use individual Bragg grating sensors with two or multiple peaks, including FBG sensors in-
scribed in PANDA fibres [15], birefringence-induced FBG sensors [16], or π-phase shifted
FBG sensors [17]. The demodulation method is again based on solving a linear system of
equations, and retrieving both the temperature and the strain values.

Nevertheless, in well-controlled laboratory conditions one can assume the temperature
field to be constant. This is also the case within the scope of this thesis, and from here
onwards the effect of temperature fields will be neglected. That being said, the methods
presented for damage detection in composites, both in this chapter and in the future chap-
ters, are insensitive to uniform temperature changes.

2.1.1. STRAIN ESTIMATION UNDER UNIFORM AXIAL STRAIN FIELDS
As mentioned in the previous section, under uniform strain distributions, the most common
demodulation technique for retrieving the strain value using FBG sensors is peak detection.
Within this framework, there have been several methods proposed in the literature, each of
which takes a different analysis approach of the reflection spectrum to track and estimate the
strain value. In this section we will discuss the most common methods of strain estimation
under such uniform strain fields. The most common method of FBG interrogation was
already discussed in the previous section, which entails tracking the wavelength at which
the FBG reflection spectrum is at its maximum amplitude [8]. Another approach is to track
the shift of the centre of mass of the reflection spectrum [18], given by

λBc =
∫
λλR(λ)dλ∫
λR(λ)dλ

, (2.5)

in which λ is the wavelength region that covers the reflection spectrum under investigation.
The advantage of this approach (also called the centroid method in the literature) compared
to the maximum peak tracking method, is the higher accuracy of strain estimation as the
retrieved shift of the centre of mass is not limited to the sample locations [18]. In particular,
when the wavelength resolution of the FBG interrogation system is not high enough (for
example the case with optical spectrometers), the quality of the centroid method becomes
more beneficial. The centroid method will be discussed in much more detail in Chapter 4,
where it will be argued that when used with non-apodized FBG sensors, this method can
accurately retrieve the average of non-uniform strain fields.

The above-mentioned methods take into account the information in the FBG reflection
spectrum directly. There exist several other methods that rely on curve fitting on the re-
flection spectrum. These include, but are not limited to Gaussian [19], polynomial [20],
and spline fitting [21], in which the shift of the peak wavelength of the fitted curve is taken
into account. Such methods are more suitable for reflection spectra with high spectral noise
levels and they provide a better accuracy compared to the classic maximum peak track-
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ing method. However, their computational complexity is higher than the direct methods of
demodulation.

Other demodulation techniques include calculating the cross correlation between the
reference and the shifted reflection spectrum [22], upsampling and interpolating the re-
flection spectrum [23], or demodulation techniques that are based on tracking the shift of
certain features from the transformed reflection spectrum in other domains. For instance,
transformations such as the Fourier transform [24], the discrete wavelet transform [25],
and the Karhunen-Loeve transform [26] have been used in such studies. In [20] and [27],
the performance of these methods have been benchmarked under different load scenarios,
different interrogator resolutions, and different spectral noise levels.

In many of the above-mentioned methods the basic assumption is that the morphology
of the reflection spectrum does not change under stress. Although this is also the underly-
ing assumption for uniform strain distributions there are several cases in structural health
monitoring where the strain distribution becomes non-uniform along the FBG length. In
the next section, we will investigate the case with non-uniform strain distributions.

2.2. FBG SENSOR UNDER NON-UNIFORM STRAIN
The application of FBG sensors in structural health monitoring could include numerous
cases where the strain field (in case of having damages in contact with the FBG), or the
grating distribution (the case with chirped FBGs, phase shifted FBGs, or apodized sensors)
along the sensor length is not uniform. In such cases the overall reflection spectrum of the
FBG can be calculated by dividing the length of the sensor into several smaller reflective
elements and taking into account the interaction of the electric waves between them. With
such basis, there are several approaches in the literature that successfully determine the
FBG reflection spectrum under non-uniform strain or grating distributions, including the
Rouard’s method [28], the lattice filter model [29] and the transfer matrix method [30].
This thesis focuses on the transfer matrix model, as within the context of this thesis it can
adequately reconstruct the reflection spectrum [31], and it provides a mathematical basis
that can be further developed for new applications. The transfer matrix model assumes
a piece-wise uniform approximation of the strain (or grating) distribution along the FBG
length where the length L of the sensor is divided into M virtual segments of length ∆z =
L/M . The transfer matrix model characterises the interaction of the forward and backward
electric waves at each segment i (denoted by Ai and Bi respectively) with their previous
segment i −1 through the following relations

(
Ai−1

Bi−1

)
= Fi

(
Ai

Bi

)
, (2.6)

where

Fi =
(

cosh(γi∆z)− j ∆βi
γi

sinh(γi∆z) − j κi
γi

sinh(γi∆z)

j κi
γi

sinh(γi∆z) cosh(γi∆z)+ j ∆βi
γi

sinh(γi∆z)

)
, (2.7)

∆β= 2πneff(
1
λ − 1

λB
)+ π

λδneff, δneff is the ac amplitude of the effective index modulation, λ

is a given wavelength in the interrogation range of the sensor output, and γi =
√
κ2

i −∆β2
i .
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In Eq. (2.7), κi (the local coupling coefficient) and λBi depend on the local Bragg wave-
length shift and local effective refractive index, or equivalently on the local strain value and
local refractive index at segment i along the FBG length. Looking back at Eq. (2.6) it is
evident that the electric waves at the start of the first segment of the FBG model can be
linked to the last segment through(

A0

B0

)
= F

(
AM

BM

)
, where F =

M∏
i=1

Fi . (2.8)

Taking into account the boundary conditions of full transmission and no reflection in
the last segment (or AM = 1 and BM = 0) we can calculate A0 and B0 in the first segment.
The reflected spectrum, R(λ), is then determined as

R(λ) =
∣∣∣∣ B0

A0

∣∣∣∣2

=
∣∣∣∣F21

F11

∣∣∣∣2

, (2.9)

where F21 and F11 are entries of the composite matrix F given in Eq. (2.8). Using the rela-
tions given in Eq. (2.7) through Eq. (2.9) we can reconstruct the FBG reflection spectrum
under any arbitrary axial strain or grating distribution, with examples given in Fig. 2.2. In
Fig. 2.2a, the reflection spectrum of a chirped Bragg grating is shown where the grating
period is increased linearly along the grating length of length L = 1 cm, and Fig. 2.2b shows
the reflection spectrum of a Gaussian apodized FBG sensor in which the induced index
change (or subsequently the κi values) along the FBG length follow a Gaussian function
with its highest index change at the centre of the sensor.
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Figure 2.2: (a): The calculated reflection spectrum from a chirped Bragg grating with a chirp rate of dλB /d z =
3.34 nm/cm. (b): The calculated reflection spectrum of a Gaussian apodized FBG sensor with fully suppressed
side-lobes.

2.3. NON-UNIFORM STRAIN ESTIMATION WITH FBG SEN-
SORS

In most applications of fibre Bragg grating sensors only the magnitude of the reflection
spectrum (given in Eq. (2.9)) is recorded. In the literature there has only been a few stud-
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ies to address the case of non-uniform strain estimation using only the amplitude of the
FBG reflection spectrum. Such studies either try to reconstruct the whole strain distribution
along the FBG length, or to retrieve certain statistics from the strain field. As examples of
the studies from the latter category, Ling et al. tried to incorporate finite element modelling
results into the transfer matrix model of the FBG sensor in order to estimate the average
strain along the FBG length in a three point bending test setup [32]. In [33] the maxi-
mum value of the axial strain field was estimated using an iterative minimisation approach
including results from the finite element modelling and the transfer matrix model for the
FBG sensor. In Chapters 3 and 4 alternative analytical methods will be presented, using
which the average of the non-uniform axial strain fields can be calculated.

In the studies of the first category there has been some research focusing on the recon-
struction of the whole strain field based on the amplitude of the FBG reflection spectrum
without having the phase information. Most of such studies try to reconstruct the strain field
by considering a limited number of segments for the transfer matrix model and applying op-
timisation algorithms such as genetic algorithms to minimise the amplitude difference be-
tween the calculated and the measured reflection spectrum [34, 35]. Within this framework,
it is claimed these reconstructed strain distributions yield in normalised reflection spectra
with root mean squares of less than 0.04 within a few hundreds of a second [35]. However,
the biggest problem with such methods is their unreliability and ambiguousness. Firstly,
these methods are highly sensitive to non-axial strain components and imperfections in the
FBG production and interrogation, which can easily alter the reconstructed strain field re-
sults. Secondly, by ignoring the phase information the reconstructed strain field will have
a reflection line of symmetry ambiguity. Because of these reasons, studies of this kind will
not be further discussed in this thesis.

2.4. DAMAGE DETECTION USING FBG SENSORS
As presented in the block diagram of Fig. 1.7, one of the research areas related to damage
detection in composites is related to impact localisation and detection where the dynamic re-
sponse of FBG sensors to impact damages are taken into account. In such studies, usually a
few number of FBG sensors are incorporated into the structure under investigation at certain
orientations and distances from each other. At the moment of impact their peak wavelength
is recorded, using which the location of the impact and its severity is assessed. In [36],
Coelho et al. showed that by recording the dynamic strain values of several equidistant
FBG sensors (cases of two and five sensors were investigated in the paper) and by compar-
ing the transient maximum strain value at each FBG sensor the location of the impact can be
determined. Shrestha et al. [37] followed a similar approach based on multiple equidistant
FBG sensors and some reference FBG recordings from prior known impacts. Then, the test
impact responses of the FBG sensors were compared with the reference signals, and from
the differences between the two signals the location of the impact was inferred. In [38]
and [39], the dynamic response of FBG sensors (their peak wavelength) was recorded with
a high temporal resolution (with microsecond resolution), using several FBG sensors sur-
face mounted on a composite plate. Taking into account the time of arrival of the vibrations
resulted from the impact and the difference in the velocity of the propagating waves along
different directions in the composite material the localisation of the impacts was carried out.
These are only a few examples of such studies, and other different approaches of this kind
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can also be found in the literature, including, the use of machine learning and regression
methods in impact localisation [39], and Lamb wave sensing with FBG sensors [40].

In another group of studies the static response of FBG sensors to damage is analysed
and the type and the extent of the damage is investigated. In this group of studies the main
advantage is the possibility of damage assessment after its occurrence and high frequency
dynamic measurements are not required. However, since FBG sensors are only locally
sensitive to static defects, the damaged area and the resulting non-uniform strain field has
to reach the length of the sensor in order to be recognised. Considering the small size of
FBG sensors and their high cost, this limitation makes static damage identification in large
composites almost impractical. However, due to the high spatial resolution of these methods
and their accuracy, FBG sensors can be suitable candidates for the study of composite
structures and the assessment of the propagation of defects in them. As examples of such
studies, Okabe et al. showed that there is a relationship between the density of matrix cracks
in the internal layers of composites and the full width at quarter maximum (FWQM) of
the embedded FBG reflection spectra in contact with the cracks [41]. In [42] the extent
and the direction of delamination type damages in laminated composites were assessed
using chirped FBG sensors. In [42] delamination type damages resulting from low-velocity
impacts were assessed under different energy release levels. As a final example, Riccio et al.
used FBG sensors for the monitoring of skin buckling in stiffened composite panels [43].
Most of the studies of this category focus on analysing the morphology of the full FBG
reflection spectrum, and the fact that under the non-uniform strain field of the damaged
composite the reflection spectrum broadens. An example of this phenomenon is shown
in Fig. 2.3. While these changes in the morphology of the FBG reflection spectra take
place during sharp non-uniform strain fields of the damaged area they are not necessarily
an indication of damage. Later, in Chapter 7, it will be shown that the broadening of the
reflection spectrum can be attributed to other effects and it is not always the result of a
damaged composite. In this thesis, the focus will be on using FBG sensors for damage
detection under static conditions, and offering reliable assessments of the damage state in
composites.
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Figure 2.3: (a): The reflection spectrum from an embedded FBG sensor in contact with 2 transverse matrix cracks.
(b): The reflection spectrum from an embedded FBG sensor in contact with 6 transverse cracks.
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2.5. CONTINUOUS STRAIN FIELD RECONSTRUCTION AND DAM-
AGE DETECTION WITH FBG SENSORS

Until now, in all the applications given in this chapter, it was assumed that only the am-
plitude of the FBG reflection spectrum was available, and as mentioned in the previous
chapters, the reconstruction of the continuous (or also called distributed) strain field using
only the amplitude of the FBG reflection spectrum does not offer reliable results. However,
there are some interrogation techniques that can be used to measure the complex reflec-
tion spectrum. One of the most robust measurement techniques capable of recording the
complex reflection spectrum is called optical low-coherence reflectometry or OLCR. In
this technique, a low coherence length light source (for example an LED with a coherence
length of around 10µm) is used, along with a moving mirror (reference arm) and an FBG
(test arm) in a Michelson interferometer setup [44]. Due to the low coherence length of the
LED light source, the input light to the FBG will interfere with the light in the reference
arm that has travelled the same distance (adjusted by moving the mirror), thus, resulting in
a position dependent interrogation of the FBG [45]. Fig. 2.4 depicts a simplified schematic
of the OLCR setup.

Figure 2.4: The OLCR setup, where by moving the translating mirror and using a low-coherence optical source
spatially modulated coupling coefficients along the FBG length can be retrieved.

The resulting signal, which is the convolution of the complex impulse response of
the optical source and the sensor, is then input to an inverse-scattering algorithm that re-
trieves both the amplitude and the phase of the local coupling coefficients along the FBG
length [46]. The local Bragg wavelengths and consequently the local strain values are thus
calculated (using methods such as the discrete layer peeling method described in [47]).

Using this technique, there have been some studies in which the axial strain field along
the FBG sensor in contact with damages in composites have been characterised. In [48]
and [49] the application of distributed non-uniform estimation in delamination growth mon-
itoring in composites was investigated. It was shown that the delamination tip (which was
considered to be the inflection point of the strain distribution along the FBG length) can be
accurately estimated. With that, an online monitoring scheme for monitoring of the delam-
ination growth in composites was presented. The upper limit of for the spatial resolution of
these methods is the translation step size of the moving mirror, which could range from a
few micrometers to a few millimetres. In another work, the non-uniform strain field along
the FBG length embedded between composite layers was estimated [50], and in [51], the
residual stresses in cured composites were estimated.
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Although the above mentioned techniques have a good potential for the study of com-
posites and the non-uniform strain fields within them they have some shortcomings. Firstly,
the strain reconstruction algorithms are sensitive to birefringence effects and transverse
loads. To overcome this, some methods have been proposed to adapt the OLCR system for
polarisation sensitive measurements by incorporating a polarisation controller into the setup
and manually adjusting its alignment with the input light [52]. However, this approach, as
well as the standard OLCR technique itself, suffer from high computational complexity and
a relatively slow interrogation speed. The other problem with the current OLCR setup is
the multiplexing limitation and the time-consuming process of the initial adjustment of the
setup to make the reference and the test arms equal in length.

Due to these practical issues, this thesis will focus on developing algorithms for damage
identification using only the amplitude of the reflection spectrum and real-time evaluation
of the damage state in composites. This real-time monitoring of the damage state also
creates a platform for the analysis of the transient response of the composite material to
different load scenarios and damage types. In the coming chapters, these approaches and
applications will be discussed in more detail.

2.6. EMBEDDING FBG SENSORS INSIDE COMPOSITES

Embedding optical fibres between the layers of composite laminates raises some concerns
regarding the structural integrity of the host material. For this reason there has been several
papers in the literature that studied the behaviour of the composite with embedded optical
fibres both experimentally and theoretically. In one of the earliest works on this subject,
Eaton et al. used finite element modelling to show that at the interface of the optical fibre
and the host material there will be a high stress concentration that might affect the structural
integrity of the composite [53]. In another study published in the same year, Lee et al. used
finite element modelling and experimental measurements to show that under static loads,
embedding optical fibres between composite layers has a small effect on the stiffness and
the strength of the composite. However, the fatigue life of the composite material is ad-
versely affected by the embedded optical fibre [54]. In [55], Surgeon et al. reported that the
embedding of the optical fibre between the composite layers has an insignificant effect on
the fatigue life and the performance of the host unidirectional composite material. As seen
from these examples, some of the results are rather contradictory. However, the general
tendency is that when the embedded optical fibre ares in the same direction as the rein-
forcement fibres in the host material the degradation of the composite is insignificant [56].
Further, there has been some studies with the use of small diameter optical fibres, such as
40µm diameter [57] to minimise this degradation.

Another factor that should be taken into account is the health of the optical fibre sensor
itself, especially at the ingress and egress points of the composite material. In [58] Kinet
et al. reviewed some methods to protect the optical fibre at the ingress points including
a method with the use of teflon tubes [59], and another method with especially designed
embedded connectors [60]. This topic is beyond the scope of this thesis, and will not be
further discussed here.
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2.7. CONCLUDING REMARKS
From the previous sections, it is evident that FBG sensors have diverse applications in
structural health monitoring, ranging from point strain estimation to damage detection and
identification. However, there are some practical limitations associated with them that it-
self has given rise to several studies. The embedding process, the interrogation system,
the non-axial strain components and birefringence effects, and the cross sensitivity of the
sensor to different physical parameters are a few examples of such issues. In this chapter,
some examples from literature were mentioned and some solutions to these issues were
discussed along with the potential and the limitations of each study. Due to the extent of
these subjects this thesis will only focus on improving the accuracy and the spatial resolu-
tion of structural health monitoring methods using FBG sensors, with a focus on simplicity
of the implementation of the test setup and algorithms that can run in real-time for online
monitoring of the damage state with high frequencies. Considering the discussions of this
chapter, this thesis will therefore focus on extracting information on the damage state and
retrieving statistics from the strain field along the FBG length, given only the magnitude of
the reflection spectrum. In the coming chapters, these applications and algorithms will be
discussed in detail and their results and potentials will be compared with the state-of-the-art
methods.
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3
CALCULATION OF THE MEAN

STRAIN OF SMOOTH
NON-UNIFORM STRAIN FIELDS

USING CONVENTIONAL FBG
SENSORS

Being alone never felt right.
Sometimes it felt good, but it never felt right.

Charles Bukowski, Women

In the past few decades, fibre Bragg grating (FBG) sensors have gained a lot of attention
in the field of distributed point strain measurement. One of the most interesting properties
of these sensors is the presumed linear relationship between the strain and the peak wave-
length shift of the FBG reflected spectra. However, subjecting sensors to a non-uniform
stress field will in general result in a strain estimation error when using this linear rela-
tionship. In this chapter a new strain estimation algorithm will be proposed that accurately
estimates the mean strain value in the case of smooth non-uniform strain distributions. To
do so, first an approximation of the classical transfer matrix model will be presented, which
will be referred to as the approximated transfer matrix model (ATMM). This model facili-
tates the analysis of FBG reflected spectra under arbitrary strain distributions, particularly
by providing a closed-form approximation of the side-lobes of the reflected spectra. Based
on this new formulation, a maximum likelihood estimator of the mean strain value will

This chapter is published as "Calculation of the mean strain of smooth non-uniform strain fields using conventional
FBG sensors", by A. Rajabzadeh, R. Heusdens, R. C. Hendriks, and R. M. Groves, in IEEE/OSA Journal of
Lightwave Technology, vol. 36, no. 17, pp. 3716-3725, 2018.
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be derived. The algorithm is validated using both computer simulations and experimental
FBG measurements. Compared to state-of-the-art methods, which typically introduce er-
rors of tens of microstrains, the proposed method is able to compensate for this error. In the
typical examples that were analysed in this study, mean strain errors of around 60µε were
compensated.

3.1. INTRODUCTION
Fibre Bragg grating (FBG) sensors have been shown to be one of the most robust and
versatile sensors in strain sensing applications. With the possibility of multiplexing several
sensors on a single optical fibre and their immunity to electromagnetic interferences, FBG
sensors are an ideal candidate for applications in adverse environments such as the oil and
gas industries or aviation [1]. Because of their small diameter, they can be embedded inside
composite structures to acquire internal strain measurements [2, 3] and can also be used for
damage detection purposes including delamination and matrix cracks [4–7]. In addition,
strain (or temperature) changes along the length of the sensor are directly related to the
peak wavelength shift of the reflected spectra of FBG sensors (the intensity of the reflected
light), making strain measurements straightforward. This relationship was described in
detail in Section 2.1. However, FBG sensors have several complications which need to be
addressed properly. The first problem is that the strain and temperature jointly contribute to
the peak wavelength shift. This problem was discussed in detail in Chapter 2.

The second problem with FBG strain measurements is the sensor response under non-
uniform strain distributions. Under uniform strain distributions, the relationship between
the strain and the peak wavelength shift of the FBG reflection spectrum is linear. How-
ever, this does not necessarily hold under non-uniform strain distributions. Such non-
uniformities could be the result of embedding the sensor in or surface mounting on a
structure, when a non-uniform stress is applied. For instance, an embedded FBG sensor
in a composite structure in the vicinity of a crack or delamination defect experiences dif-
ferent non-uniform strain distributions and, therefore, responds with rather distinguishable
reflected spectra [5–9]. The resulting non-uniform strain distributions under these circum-
stances could most possibly complicate strain measurements using FBG sensors.

Despite the fact that in many practical situations the strain distribution is non-uniform,
existing algorithms for estimating the mean strain value are still based on the shift of the
peak wavelength. When the sensor is subject to non-uniform strain fields, however, each
segment of the sensor will experience a different strain, resulting in different peak wave-
length shifts along the length of the sensor. As a consequence, looking to the (global) shift
of the peak wavelength will in general lead to an estimation error in the mean strain value.
In this chapter, a new algorithm will be proposed that accurately estimates the mean strain
value when the strain distribution is non-uniform. It will be shown that the mean strain
value is related to the average shift of the peak wavelength along the length of the sensor
and that this information can be found in the side lobes of the reflected spectra. In order
to analyse the reflected spectra a model will be presented that describes the interaction of
the forward and backward electric wave propagation between consecutive segments, which
is an approximation of the widely used transfer matrix model (TMM). This approximated
transfer matrix model (ATMM) enables us to accurately find the average wavelength shift.
The codes for the approximated transfer matrix model and the mean strain estimation algo-



3.2. BACKGROUND

3

33

rithm can be accessed online1.

3.2. BACKGROUND
FBG sensors are spatially modulated patterns of refractive index changes in the core of
optical fibres that act as a mirror for certain wavelengths. The linear relationship between
the peak wavelength of the reflected spectra, usually referred to as the Bragg wavelength
and denoted by λB , and the grating period Λ of the FBG is given by [10, 11]

λB = 2neffΛ ,

where neff is the effective refractive index of the core. Under uniform strain (or temperature)
fields, say s, the change in the grating period is constant along the length of the sensor,
resulting in a shift ∆λB of the Bragg wavelength. That is,

∆λB = ks s, (3.1)

where the constant ks depends on the physical properties of the sensor2. In theory, this is
without any change in the morphology of the reflected spectra, and the peaks will either
be shifted towards shorter wavelengths (under compression) or longer wavelengths (under
tension). Therefore, under a uniform strain field, Eq. (3.1) results in an accurate measure-
ment of the mean strain value over the length of the sensor. However, perfect uniform strain
distributions are unlikely in practice. The more common strain fields are non-uniform and
result in nontrivial overall reflected spectra, possibly asymmetric and having multiple peaks,
leading to an error in the mean strain estimation. In order to compensate for this error, the
full spectrum of the signal should be analysed, for which the transfer matrix method has
been shown to be a proper tool.

3.2.1. TRANSFER MATRIX MODEL
Consider the case of a non-uniform strain distribution over the length of the FBG sensor.
The length of the sensor will be divided into a series of small virtual segments of length ∆z,
where ∆z is taken sufficiently small such that each of these segments has approximately
a uniform strain distribution. As a consequence, the strain distribution will affect each
segment’s grating period differently. To be more precise, let si denote the strain field of
segment i . The Bragg wavelength shift ∆λBi of segment i is then given by

∆λBi =λBi −λB = ks si ,

where λBi is the Bragg wavelength of segment i . As a consequence, the mean strain distri-
bution, denoted by s̄, satisfies

ks s̄ = λ̄B −λB , (3.2)

where λ̄B = 1
M

∑
i λBi is the mean Bragg wavelength of the sensor. Hence, when the sensor

is subject to non-uniform strain fields, each segment of the model experiences a different
Bragg wavelength shift and λ̄B does not necessarily correspond to the peak wavelength
anymore.

1http://cas.tudelft.nl/Repository/
2For the sensors used in this study, based on the datasheet, ks = 1.209×10−3nm/µε.
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Figure 3.1: Schematic view of the FBG structure.

In order to analyse the FBG reflected spectra under an arbitrary grating distribution,
the transfer matrix model (TMM) will be used [12]. The TMM models the interaction of
the forward and backward electric wave propagation between consecutive segments, where
it is assumed that the length of the individual segments ∆z satisfies ∆z À Λ. Let Ai and
Bi denote the forward and backward propagating waves in segment i , respectively (see
Fig. 3.1). In this model, it is assumed that at the end of the final segment, there will be a full
transmission of the incident wave (A0 = 1) and no reflection from further along the optical
fibre (B0 = 0).

In Section 2.2 the relation between the forward and the backward propagating waves
between each two segments of this model was described in detail, and the transfer matrices
that described this relation were presented as

Fi =
(

cosh(γi∆z)− j ∆βi
γi

sinh(γi∆z) − j κi
γi

sinh(γi∆z)

j κi
γi

sinh(γi∆z) cosh(γi∆z)+ j ∆βi
γi

sinh(γi∆z)

)
. (3.3)

In Eq. (3.3), κi is the coupling coefficient between forward and backward waves, ∆βi =
2πneff(

1
λ − 1

λBi
) is the difference between the propagation constants in the longitudinal (or

z) direction, γi =
√
κ2

i −∆β2
i , and λ is a given wavelength under investigation. Here, it is

assumed that the total number of segments considered in the model is M . In the next sec-
tion, an approximation of the transfer matrix model will be introduced which significantly
simplifies the analysis of FBG reflected spectra.

3.3. APPROXIMATED TRANSFER MATRIX MODEL
In this section it will be shown that, for sufficiently small ∆z, the TMM can be accurately
approximated, resulting in a model that facilitates the analysis of non-uniform strain fields.
This approximated model will be referred to as the approximated transfer matrix model
(ATMM). Note that the length ∆z can be chosen to be arbitrarily small (as long as ∆z ÀΛ)
and that this choice has no effect on the physical properties of the sensor.

Suppose that ∆z is sufficiently small. We will show that in this case the matrix Fi can
be approximated as

Fi ≈
(

e− j∆βi∆z − jκi∆z sinc(∆βi∆z)
jκi∆z sinc(∆βi∆z) e j∆βi∆z

)
, (3.4)
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where sinc(·) = sin(·)
(·) .

To show under what conditions the approximations hold, an element-wise compari-
son will be made between the formulations in Eq. (3.3) and Eq. (3.4). Recall that ∆βi =
2πneff(

1
λ − 1

λBi
) and γi =

√
κ2

i −∆β2
i , where λBi is the Bragg wavelength of segment i .

In the near infrared wavelength range, which is the region of interest for almost all FBG
sensors, we have ∆βi

2 À κi
2, and thus γi ≈ j |∆βi |, except for a small wavelength range

centred around λBi (a few tens of picometres which depends on the production and reflec-
tivity levels of the FBG sensor) where the values of κi and ∆βi are of the same order of
magnitude. In order to make the analysis of the formulation easier, the wavelength range
will be divided into the two above mentioned regions, as different strategies are needed to
verify the correctness of the approximation for these regions.

Region 1: In this region |∆βi |À κi . As already mentioned, for this region γi ≈ j |∆βi |, and
therefore, the first term of Fi11 in Eq. (3.3), i.e., cosh(γi∆z), can be approximated as

cosh(γi∆z) ≈ cosh( j |∆βi |∆z) = cos(∆βi∆z),

where the absolute value is omitted since cos is an even-symmetric function. The second
term of Fi11 in Eq. (3.3) can in this wavelength region be approximated as

− j
∆βi

γi
sinh(γi∆z) ≈−sign(∆βi )sinh( j |∆βi |∆z) =− j sin(∆βi∆z),

where the absolute value is omitted since sin is an odd-symmetric function. Combining
these relations gives the required result for Fi11 in Eq. (3.4). The remaining term (Fi21 ) can
in this wavelength region be approximated as

j
κi

γi
sinh(γi∆z)≈ j

κi

|∆βi |
sin(|∆βi |∆z) = jκi∆z sinc(∆βi∆z).

Region 2: In this wavelength range, the values of κi and ∆βi are of the same order of
magnitude so that |γi∆z| ¿ 1. Hence, the Taylor series expansion for the first term of Fi11

in Eq. (3.3) will be

cosh(γi∆z) = 1+ 1

2
|γi∆z|2 + 1

4!
|γi∆z|4 +·· · .

In order to keep the representation of the Fi matrices consistent in both regions, cosh(γi∆z)
is replaced by cos(∆βi∆z), which leads in Region 2 to an absolute error of

|cosh(γi∆z)−cos(∆βi∆z)| (3.5)

= 1

2
∆z2 (|∆βi |2 +|γi |2

)+ 1

6!
∆z6 (|∆βi |6 +|γi |6

)+·· · ,

which is negligible when ∆z is sufficiently small3. Along the same lines and using the
Taylor series expansion of sin and sinh, the second term of Fi11 is approximated as

j
∆βi

γi
sinh(γi∆z) ≈ j

∆βi

γi
(γi∆z) ≈ j sin(∆βi∆z).

3In this study, using computer simulations, it was seen that for ∆z ≤ 0.001m (corresponding to M ≥ 10 for a sensor
of length 1cm), the relative error of the amplitude of the reflected spectra was less than 0.05%.
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From this it is seen that the approximation of Fi11 from Eq. (3.3) to Eq. (3.4) can be argued
to be also accurate in region 2. With respect to Fi21 in Eq. (3.3), this can in a similar way be
approximated by

j
κi

γi
sinh(γi∆z) ≈ jκi∆z ≈ jκi∆z sinc(∆βi∆z),

which shows that the approximation of Eq. (3.3) by Eq. (3.4) can be argued to be accu-
rate also in region 2. Finally, Eq. (3.4) is rewritten in a slightly more convenient form by
a variable substitution. As stated in Section 3.2.1, the difference between the propagation
constants is ∆βi = 2πneff(

1
λ − 1

λBi
). Therefore, the argument ∆βi∆z in Eq. (3.4) can be

expressed as ∆βi∆z =α−αi , where

α= 2πneff∆z

λ
and αi = 2πneff∆z

λBi

. (3.6)

With this, Eq. (3.4) can be rewritten as

Fi =
(

e− j (α−αi ) − jκi∆z sinc(α−αi )
jκi∆z sinc(α−αi ) e j (α−αi )

)
, (3.7)

which will be the basis of the analyses in this chapter.

3.4. MEAN STRAIN ESTIMATION
To get a better understanding of the problem with the inaccuracy of Eq. (3.1) under non-
uniform strain distributions, this section will start with an example in which the simulation
results of an FBG sensor under non-uniform strain distributions are presented. Suppose
the strain distribution of Fig. 3.2a, with an average strain of 253.5µε, is applied over the
length of the FBG sensor. The resulting calculated FBG reflected spectrum will have a
non-symmetrical shape and is depicted in Fig. 3.2b. According to Fig. 3.2b, the distance
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Figure 3.2: (a): A non-uniform strain distribution (b): The resulting calculated FBG reflected spectra.
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sensor is 344pm, which corresponds to a (mean) strain of 344/ks = 284.5µε. Hence, in this
example, an error of approximately 31µε is introduced which needs to be compensated.

By inspection of (3.2) it is concluded that when subject to a non-uniform strain distri-
bution, instead of finding the peak wavelength of the reflected spectrum of the sensor, the
average Bragg wavelength λ̄B of the sensor needs to be found. In the next subsection, it will
be seen that λ̄B can be found by inspection of the side lobes of the FBG reflected spectra
and does not necessarily correspond to the peak wavelength. To do so, the ATMM will be
used to derive a closed-form approximation for the side lobes.

3.4.1. CLOSED-FORM APPROXIMATION OF THE SIDE LOBES
In what follows, we assume the coupling coefficient (κi ) to be constant and equal to κ

throughout the length of the sensor. The reason for this assumption is that first, the coupling
coefficient does not affect the oscillation frequency of the FBG reflected spectra in neither
the main nor side peaks, and second, due to the fact that it often has only a small variation
along the length of the sensor, its effect on the amplitude is negligible.

Suppose there is an arbitrary non-uniform strain distribution over the length of the FBG
sensor. Each segment i of the FBG sensor undergoes a local strain si , resulting in an
asymmetric overall reflected spectrum. Multiplying all M approximated transfer matrices
Fi defined in Eq. (3.7), resulting in the composite matrix F , entry F11 will have the form

F11 = e− j (Mα−∑M
i=1αi ) +

⌊ M
2

⌋∑
n=1

(M
2n

)∑
l=1

{
∏

i∈xl

(−1)nκ∆z sinc(α−αi )
∏

i∈xC
l

e(−1)v j (α−αi )}, (3.8)

where xl ∈ X2n with X2n being the set of all possible combinations of 2n numbers taken
from the setΩ= {1,2, ..., M }. As an example, assuming n = 1, we will have X2 = {{1,2}, {1,3}, ...{M−
1, M }}. Also, xC

l =Ω\ xl is the complement of the set xl in Ω, and v ∈ {0,1} which depends
on the set xl . Similarly, we find that

F21=
M∑

i=1
κ∆z sinc(α−αi )e

− j
(
(M−2i+1)α+ ∑

k<i
αk−

∑
k>i

αk

)

+
⌊ M

2

⌋∑
n=1

( M
2n+1

)∑
l=1

{
∏

i∈yl

(−1)nκ∆z sinc(α−αi )
∏

i∈yC
l

e(−1)v j (α−αi )}, (3.9)

where yl ∈ Y2n+1 with Y2n+1 being the set of all possible combinations of 2n +1 numbers
taken from Ω. By inspection of Eq. (3.8), it can be seen that when the sinc terms are
sufficiently damped, the dominant term will be the first exponential, which has magnitude
1. As a consequence

R(λ) ≈ |F21|2 , for ∀i ∈Ω, |λ−λBi | >λth, (3.10)

where λth > 0 is a threshold wavelength for which (3.10) holds. Note that the condition
|λ−λBi | >λth is approximately the same as |α−αi | >αth. Using similar arguments, it can
be shown that the dominant terms in Eq. (3.9) are given by those in the first summation,
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as the second summation contains products of sinc functions whose amplitudes are small
when |λ−λB | >λth. For notational convenience, let ξi = κi∆z

2 j (α−αi ) . With this, we have

F21 ≈
M∑

i=1
κ∆z sinc(α−αi )e

− j
(
(M−2i+1)α+ ∑

k<i
αk−

∑
k>i

αk

)

(a)=
M∑

i=1
ξi

(
e
− j

(
(M−2i )α+ ∑

k≤i
αk−

∑
k>i

αk

)
−e

− j
(
(M−2(i−1))α+ ∑

k<i
αk−

∑
k≥i

αk

) )
(b)=

M−1∑
i=1

(ξi −ξi+1)e
− j

(
(M−2i )α+ ∑

k≤i
αk−

∑
k>i

αk

)
+ξM e j M(α−ᾱ) −ξ1e− j M(α−ᾱ), (3.11)

where (a) follows by applying Euler’s equation and (b) is obtained by re-arranging terms.
The following results are obtained.

Lemma 1. Let λBi = λ̄B +∆i and ∆2 = 1
M

∑
i ∆

2
i . If |∆i |¿ λ̄B for all i , then

1) ᾱ= 2πneff∆z

λ̄B
+O

(
∆2

λ̄3
B

)
. (3.12)

If, in addition, |λ− λ̄B | >λth and |λBi −λBi+1 |¿λth for all i , then

2) |ξi −ξi+1|¿ |ξ1|, |ξM |.

Proof. See Appendix A.1.

Assuming that the conditions of Lemma 1 are satisfied, it is concluded that

F21 ≈ ξM e j M(α−ᾱ) −ξ1e− j M(α−ᾱ), (3.13)

so that

R(λ)
(a)≈ 4Re(ξ1ξ

∗
M )sin2 (M(α− ᾱ))+ (ξM −ξ1)2

= (κ∆z)2

(α−α1)(α−αM )
sin2 (M(α− ᾱ))+ (ξM −ξ1)2

(b)≈ (κL)2 sinc2 (M(α− ᾱ))+ (ξM −ξ1)2, (3.14)

where (a) follows from (3.13) using elementary trigonometric identities and (b) follows
from the presumption that small variations in the amplitude of the sin function in Eq. (3.14),
caused by replacing the α1 and αM terms by ᾱ are negligible. Also note that M∆z = L, the
length of the sensor.

Some remarks are in place here. The assumptions for which the results of Lemma 1 hold
are met in most practical scenarios. Indeed, in practice the deviations from the mean Bragg
wavelength is less than a few nanometers. As an example, the strain distribution as depicted



3.4. MEAN STRAIN ESTIMATION

3

39

1548 1548.5 1549 1549.5 1550 1550.5 1551 1551.5 1552

Wavelength (nm)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

R
e

fl
e

c
te

d
 s

p
e

c
tr

a
 [

-]

Reflected Spectra

Sinc approximation of the side lobes

1548.4 1548.6 1548.8 1549 1549.2

0

5

10

10
-5

Figure 3.3: FBG reflected spectra under an arbitrary non-uniform strain field (in blue) and the approximation for
the side lobes in red.

in Fig. 3.2a gives rise to a maximum deviation of about 250 pm, which is, compared to
the average Bragg wavelength (λ̄B ≈ 1550 nm), three to four orders of magnitude smaller.
Larger deviations are unrealistic in the sense that too large ∆i will result in breaking the
FBG sensor or require unrealistically long sensors. In addition, if ∆z are chosen sufficiently
small and it is assumed that the strain distribution cannot change arbitrarily fast along the
length of the sensor, we will have |λBi −λBi+1 | ¿ λth, where λth is in the order of 1-2
nm. By inspection of Fig. 3.2a, if the number of segments is chosen to be M = 100, the
maximum difference between successive Bragg wavelengths λBi is approximately 5 pm,
which is three orders of magnitude smaller than λth.

Coming back to the approximation (3.14), it is seen that the reflected spectrum can be
approximated by a scaled (squared) sinc function having a possible offset. This approxi-
mation only holds in the wavelength range |λ−λB | > λth. To illustrate this approximation,
Fig. 3.3 compares the reflected spectrum of a simulated FBG sensor under the non-uniform
strain field depicted in Fig. 3.2a, along with its approximation given by (3.14). It can be
seen that this approximation does not hold for the main lobe, but does hold for the wave-
length region for which |λ−λB | > λth, where λth is in the order of 1-2 nm which can be
identified by setting a threshold level on the amplitude of the reflected spectra4.

As was shown in Section 3.2.1, it is λ̄B that needs to estimated in order to compute the
mean strain distribution s̄ using (3.2). However, the result of Lemma 1, which gives the re-
lation between λ̄B and ᾱ, shows that this can be accomplished by estimating ᾱ, which is the
phase shift of the sinc approximation of the reflected spectrum. A maximum likelihood es-
timator of ᾱ is therefore given by the phase-shift value that maximises the cross-correlation
between the observed reflected spectrum and sinc2 (M(α− ᾱ)) [13, p. 192], where the cor-
relation in this case is only taken over the range |λ−λB | > λth. Note that since the cross-
correlation is shift and scale invariant, neither any discrepancy between the magnitude of
the reflected spectrum and its sinc approximation, as is present in the example shown in
Fig. 3.3, nor a possible offset in the spectrum will affect the estimation of ᾱ. In addition,
even when the first M −1 exponential terms in (3.11) cannot be completely neglected, mak-
ing the approximation (3.13) less accurate, this will not have a significant impact on the

4Here the threshold level was set at 1 percent of the peak amplitude (20dB difference in the amplitude).
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estimation of ᾱ since the exponentials give low correlation with the sinc function (they
have different oscillating frequencies), making the proposed method robust against inaccu-
racies in (3.14). Also, this method is not subject to any additional spectral noise or errors
compared with conventional FBG interrogation methods, and due to the filtering properties
of the correlation function, it is robust against amplitude noise as well. It is worth mention-
ing that the proposed mean strain estimation method uses the information in the side-lobes
of the reflected spectra, therefore, FBG sensors whose side-lobes are suppressed and have
really small amplitudes (such as Gaussian or raised-cosine apodized FBG sensors) will not
perform well with our methods.

3.4.2. PRACTICAL CONSIDERATIONS
In practical scenarios the output of the FBG sensor is obtained using an interrogator. As
a consequence, the data available for processing are samples of the reflected spectra, uni-
formly spaced in the λ-domain. Instead of performing the processing in the α-domain,
which would require a non-uniform re-sampling of the data, we could equally well perform
the correlation in the wavelength domain directly. To see this, let λ = λ̄B +∆λ > λth, and
assume that |∆λ| ¿ λ̄B . This assumption is generally met in practice since |∆λ| is in the
order of a few nanometers, which is three orders of magnitude smaller than λ̄B . Moreover,
let ρ = 2πneff∆z. As a consequence, the α as defined in Eq. (3.6), can be rewritten as

α= ρ

λ̄B +∆λ
(a)≈ ρ

λ̄B

(
1− ∆λ

λ̄B

)
(b)≈ ᾱ− ρ

λ̄2
B

∆λ,

where (a) is a first-order Taylor series approximation of α and (b) follows from (3.12).
Hence, a linear change of the wavelength manifests itself as a linear change in α, and as a
consequence, uniform sampling of λ will result in uniform sampling of α and vice versa,
assuming |∆λ|¿ λ̄B .

Although the above introduced method for retrieving λ̄ will work for computer simula-
tions, due to the presence of birefringence effects and other unwanted artefacts on real FBG
measurements like non-longitudinal strains, the algorithm might lead to unwanted maxima
in the cross-correlation function and therefore to incorrect phase retrieval. To overcome this
problem in practical scenarios, a slight modification is introduced to the above proposed al-
gorithm. Instead of computing the cross-correlation between the reflected spectrum and the
sinc function directly, first the two reflected spectra are aligned (recorded before and after
applying the strain) based on their centre of mass [14]

λBc =
∫
λλR(λ)dλ∫
λR(λ)dλ

(3.15)

where λ is the wavelength region that covers the reflection spectrum. This shift, ∆λBc , can
be used to find a rough estimate of λ̄, say λ̃=λB +∆λBc . After this, the final phase shift is
calculated by maximising the cross-correlation of the side lobes of both observations over
a small interval around λ̃, resulting in an additional phase shift δλB . Experiments have
shown that this modification results in more robust mean strain estimates and is illustrated
in Fig. 3.4a and 3.4b. The modified algorithm is summarised in Algorithm 1. Note that, as
mentioned in the introduction, existing algorithms for estimating the mean strain value are
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Algorithm 1 Mean strain estimation

1: Align the centre of mass of the reflected spectra of the FBG sensor measured with and
without applying a (non-uniform) strain, thereby defining ∆λBc .

2: Maximise the cross-correlation of the side lobes of both measurements over a small
interval with a typical value of 1nm around λ̃ = λB +∆λBc , resulting in an additional
phase shift δλB .

3: Calulate the required phase shift λ̄B −λB =∆λBc +δλB .

4: Calculate the mean strain using Eq. (3.2).

based on the shift of the peak wavelength. That is, they estimate the mean strain value based
on ∆λB . In that sense, δλB can be interpreted as an error compensating term for methods
based on peak wavelength alignment.
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Figure 3.4: The FBG reflected spectra of the unstrained sensor (blue) and the strained sensor (red) where (a) shows
both spectra aligned with respect to their centre of mass and (b) with respect to maximising the cross-correlation
of the side peaks.

3.5. EXPERIMENTAL RESULTS
In this section, experimental results for non-uniform strain distributions on FBG sensors
will be presented, obtained by both computer simulations and experimental FBG measure-
ments.

In the first experiment, which is a computer simulation, the strain distribution of Fig. 3.2a
is applied over the length of the sensor, resulting in the FBG reflected spectrum of Fig. 3.2b,
where M = 500. In order to create a more realistic experiment, the sensor was assumed to
have random fluctuations on the magnitude of the refractive index change, which results in
random variations of the coupling coefficient along the length of the sensor, and eventually,
in the emergence of unwanted lower frequency harmonics on the side-lobes of the FBG
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Figure 3.5: (a): A polynomial type strain distribution, applied over the length of the LCFBG sensor. (b): The
unstressed and stressed LCFBG reflected spectra are aligned with respect to maximising the correlation of their
side peaks.

reflection spectra. Following the steps outlined in Algorithm 1, first the reflected spectra
with respect to their centre of mass are aligned, as shown in Fig. 3.4a, and the shift ∆λBc

is measured. In the example at hand, this shift is given by ∆λBc = 296pm. The next step is
then to shift the reflected spectrum such that the cross-correlation of the side lobes is max-
imised, as shown in Fig. 3.4b, resulting in an additional phase shift of δλB =+12pm. After
computing the final phase shift as ∆λBc +δλB = 308pm (step 3 of Algorithm 1), the mean
strain is computed using (3.2), resulting in s̄ = 254.7µε. It can be seen that the resulting
estimation for the mean strain over the length of the sensor is quite close to the actual mean
strain (253.5µε), where the proposed algorithm compensates for an error of around 30µε
as compared to traditional strain measurement algorithms, see Section 3.4.
In the second experiment, which is another computer simulation, the performance of the al-
gorithm when a non-uniform strain distribution is applied on a linearly chirped fibre Bragg
grating (LCFBG) sensor is investigated. The designed sensor, again containing refractive
index fluctuations, has a grating distribution with dλB

d z = 2.5nm/cm, and a length of 1cm.
The strain distribution applied over the length of the sensor is shown in Fig. 3.5a. The mean
strain value in this experiment is 93µε, but the traditional strain estimation algorithm in
LCFBGs which is solely based on the shift of the centre of mass of the stressed and un-
stressed signals, show a wavelength shift of around 42.6pm or a strain estimation of 35µε.
Using our algorithm, the compensating shift that results from maximising the cross correla-
tion of the side-lobes was δλB =+72pm, which accounts for a mean strain error of 59.5µε.
The final mean strain estimation based on our algorithm is therefore, 94.5µε. Fig. 3.5b
shows the reflected spectra of the stressed and unstressed LCFBG after the compensating
shift. Note the synchronised side-lobes of the two reflected spectra.

In the third experiment, the proposed method will be evaluated using experimental FBG
measurements in a controlled laboratory environment. The FBG sensors used in this study
are the LBL-1550-125 draw tower grating (DTG) type sensors (FBGS International NV).
The length of the sensors are 10mm, with a nominal Bragg wavelength of 1550.08nm and
maximum reflectivity level of about 10%. Although the algorithm would work at its best in
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(a) (b)

(c) (d)

Figure 3.6: (a): A schematic design of the specimen and the location of the sensors. (b): The test specimen
(bottom view) with the surface mounted strain gauge and the FBG. (c): The test specimen under load, while the
signals were being recorded. (d): Finite element modelling of the specimen under a similar load.

sensors with higher reflectivity levels, we have two reasons for choosing DTG sensors with
such low reflectivity levels in our experiments. The first reason is that DTG sensors have a
much higher tensile strength compared to FBG sensors that are produced using traditional
strip and recoating methods. They can easily endure static strains of more than 10000µε
which can commonly occur in practical applications. The second reason is to show that our
algorithm can equally well perform, even at such low reflectivity levels, provided that the
sensor is interrogated with a high dynamic range interrogator.

Since the information in the side lobes of the reflected spectra plays a significant role in
this study, a high dynamic range interrogator was used to record the output of the sensors.
The PXIe-4844 FBG interrogator from National Instruments, which has a dynamic range
of 40dB and a wavelength accuracy of 4pm, was used to interrogate the sensors. The
wavelength range for this device ranges from 1510nm to 1590nm.

In order to validate the results, both electrical strain gauge measurements and results
obtained by finite element modelling (FEM) were used as reference strain measurements.
For the strain gauge measurements, an array of 10 miniature strain gauges with a pitch
of 1mm (HBM 1-KY11-1/120), spatial resolution of 1mm, and nominal strain accuracy of
less than 5µεwas used. The data acquisition of the analogue output of the strain gauges was
performed using the NI-9219 universal analogue input modules from National Instruments.
The data acquisition was carried out using the National Instruments LabVIEW software,
and the signal processing and conditioning was performed in MATLAB R2016b. To avoid
unwanted artefacts and complications associated with finite element modelling, the test
setup was designed as simply as possible by using specimens with isotropic properties and
subjecting them to a static three point flexural test. The FBG sensor was surface mounted
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Figure 3.7: (a): The strain distributions recorded from the strain gauges (in blue) and calculated with FEM (in
red). (b): The primary and secondary FBG reflected spectra are aligned with respect to maximising the correlation
of their side peaks.

to a piece of 6082 aluminium alloy with dimensions 200mm× 35mm× 2mm, and the
strain gauge array was pasted on the specimen in a symmetrical position with respect to
the FBG. Fig. 3.6a and 3.6b depict the configuration of this setup. To induce the desired
strain field, the specimen was placed in a 10kN tensile machine, with a force of 150N
applied on the loading pin (see Fig. 3.6c). The finite element modelling of the specimen
under such force is shown in Fig. 3.6d in which the element size was set to 1mm, equal
to the spatial resolution of the strain gauges. Note that both sensors are adhered to the
specimen on the opposite to the contact surface of the loading pin. To align the two sensors,
we referred to the markings on the FBG sensor which had a spatial accuracy of less than
1mm, and we also used a rolling pin to determine the position of the FBG sensor more
accurately. Based on the FEM analysis and the recordings of the strain gauges, the strain
distributions shown in Fig. 3.7a were obtained. The mean strain value of the FEM was
3291µε, whereas the recordings of the electrical strain gauges showed a mean strain value
of 3294µε. In order to estimate the mean strain with the proposed method, the steps outlined
in Algorithm 1 were followed again. That is, first the centre of masses of the reflected
spectra of the unstrained and strained sensor were aligned, resulting in a wavelength shift
of ∆λBc = 3.932nm, after which the cross-correlation of the side lobes were maximised,
as shown in Fig. 3.7b, resulting in an additional wavelength shift of δλB = +56pm. With
this, the resulting mean strain estimate becomes s̄ = (3932+ 56)/ks = 3298µε. Note that
classical methods would estimate the mean strain value from (3.1) resulting in s̄ =∆λB /ks =
3328µε. Furthermore, different force loads were applied on the loading pin of the same
experimental setup, in which we started from 10N and then linearly increased the force to
150N with increments of 10N. The results of the compensated mean strain estimation using
our algorithm, and the mean strain values based on the shift of the Bragg wavelength are
presented in Fig. 3.8, and the compensated mean strain values are in accordance with the
data from the electrical strain gauges. It is noteworthy that as the applied force increases,
the error associated with the traditional strain estimation method increases too, which is due
to further deviating from a uniform strain field.
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Figure 3.8: (a): Strain estimation using the traditional strain measurement method (red), and the compensated
mean strain values based on our algorithm (blue). (b): The mean strain error associated with uncompensated mean
strain estimations.

3.6. CONCLUSIONS
In this chapter, the focus was on estimating the mean strain value in the case of smoothly
varying non-uniform strain distributions. A new algorithm was proposed that accurately
estimates the mean strain value and showed that this shift is related to the average shift of
the peak wavelength along the length of the sensor. In order to find this average shift, an
approximation of the well known transfer matrix model was presented, and it was shown
that the information needed can be found by inspection of the side lobes of the reflected
spectra. That is, the maximum likelihood estimator of the mean strain is obtained by cross-
correlating the side lobes of the reflected spectra of the strained and unstrained sensor.
In order to overcome possible estimation problems in practical scenarios, an alternative
two step algorithm was proposed, where first the centre of mass of the reflection spectra
from a strained and an unstrained sensor are aligned, and then the estimate is refined by
cross-correlating the side lobes of both spectra over a small range around the shifted Bragg
wavelength. The algorithm was validated using both computer simulations and experi-
mental FBG measurements and showed that the newly proposed algorithm clearly outper-
forms state-of-the-art strain estimation algorithms by compensating for mean strain errors
of around 60µε. However, in case of non-smooth strain distributions with high variations,
and also under extreme birefringence effects, the cross correlation function could lead to
local maxima and an incorrect mean Bragg wavelength retrieval. Developing a more robust
technique for retrieving the mean Bragg wavelength should be the focus of future studies.
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4
ON THE CENTROID METHOD

FOR AVERAGE STRAIN
ESTIMATION IN UNIFORM FBG

SENSORS

No one dies of fatal truths nowadays: there are too many antidotes.

Friedrich Nietzsche, Human, All Too Human

One of the most interesting properties of fibre Bragg grating sensors is the linear relation-
ship between the amount of uniform strain over the length of the sensor and the shift of the
peak wavelength of the sensor’s reflection spectrum. In previous works, it has been shown
that this measure does not offer reliable results under non-uniform strain fields and in noisy
setups. In this paper, we will show that for uniform FBG sensors under any arbitrary axial
strain field, the centre of mass of the reflection spectrum corresponds to the average strain
value. We will also analyse the effect of spectral noise and noise on the grating period
on the overall performance of the centre of mass method. Using computer simulated and
laboratory experiments, we will show that substituting the existing peak tracking based ap-
proaches with the centre of mass approach could eliminate average strain estimation errors
of nearly 1000µε.

4.1. INTRODUCTION
In the literature, several methods for demodulation of FBG sensors have been described.
Zhang et al. studied the accuracy of several demodulation techniques from an experimental
point of view in [1]. In [2], Negri et al. created benchmarks for different demodulation

*This chapter is submitted to the Journal of Strain, as "On the Centroid Method for Average Strain Estimation in
Uniform FBG Sensors", by A. Rajabzadeh, R. Heusdens, R. C. Hendriks, and R. M. Groves, 2020.
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methods, including maximum peak tracking, the centroid method [3], polynomial fitting or
Gaussian fitting [4], and neural networks [2]. Using experimental and simulated measure-
ments under uniform strain fields, they argued that for uniform FBG sensors, the centroid
method has a high accuracy. However, they claimed that when using the centroid algorithm
for apodized FBG sensors (either Gaussian or raised-cosine apodization) [5], the accuracy
declines. Among other things, these claims will be investigated in this chapter.

In recent years, there have also been several studies in which new methods have been
proposed for low sample spectral resolution conditions. The most recent of these methods
are based on the principle of fast phase correlation [6], and based on the Karhunen-Loeve
Transform [7]. Although these methods have a reported enhanced accuracy under uniform
strain fields and under coarse interrogation, they do not perform well under non-uniform
strain fields, and can result in significant average strain errors. This claim will be discussed
in more detail in section 4.6.

In this study, we will focus on the already presented centroid method [3], which tracks
the shift of the centre of mass of the reflection spectrum as a measure for average strain
estimation. This method was first introduced by Askins et al. as an approach towards in-
terrogation of FBG sensors using low spectral resolution and noise sensitive interrogation
systems [3]. However, to our knowledge, there has not yet been any study to analytically
investigate its performance in non-uniform strain fields, and its robustness against different
sources of noise in the system. In this study we will analytically show that in theory, the
centre of mass of the reflection spectrum corresponds to the average of the arbitrary axial
strain field applied over the active length of the uniform FBG sensor. Such non-uniform
strain fields are mostly common when an FBG sensor gets in contact with damaged areas in
engineering structures. For instance, in the application of embedded FBG sensors between
composite laminates, such strain fields can result from having micro-cracks in the matrix
material along the FBG length [8, 9], or from the delamination of the composite layers [10].
To obtain the average of the axial strain field, we first need a closed form approximation
of the FBG reflection spectrum, which can be achieved using the recently proposed ap-
proximated transfer matrix model (ATMM) (see Chapter 3 or [11]). The ATMM has been
used before in a diversity of applications. For example, in [12] we used this formulation
to prove that under anti-symmetrical strain fields or grating structures, the FBG reflection
spectrum will be symmetrical. Furthermore, in this chapter we analyse the performance of
the centroid method when subject to noise in the different stages of the measurement pro-
cess, and also investigate its use for apodized FBG sensors. Using simulated experiments
and experimental measurements, we will validate the presented theory.

4.2. CLOSED FORM APPROXIMATION OF THE FBG REFLEC-
TION SPECTRUM

In this section we summarise some of the main results derived in [11], which we use later on
in Section 4.3 to show that the centre of mass of the reflection spectrum corresponds to the
average of the axial strain field applied over the active length of the uniform FBG sensor.
Suppose an arbitrary axial stress field is applied to the length of the sensor. The effect of
applying a non-uniform strain field on an FBG sensor is that each point along the length
of the sensor experiences a different amount of strain. One way to analyse the FBG sensor
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response to such strain fields is to discretise the length of the FBG sensor, and assume a
piece-wise uniform strain field over the length of the sensor. In the ATMM, which is an
approximation of the transfer matrix model [13] as shown in Chapter 3, the length L of the
sensor is assumed to be divided into M segments of equal length ∆z. In Section 3.4.1 we
showed that under such conditions, the reflection spectrum can be approximated as

R(α) ≈
∣∣∣∣ M∑

i=1
κi∆z sinc(α−αi )e

− j
(
(M−2i+1)α+ ∑

k<i
αk−

∑
k>i

αk

)∣∣∣∣2

, (4.1)

where the κi ’s are the coupling coefficients between the forward and backward waves,

α= 2πneff∆z

λ
and αi = 2πneff∆z

λi
. (4.2)

In Eq. (4.2) λ is the wavelength range under analysis, λi is the local Bragg wavelength of
the i ’th segment, and neff is the effective refractive index of the core. Therefore, α can
be considered as a representation of the frequency samples under analysis, and the αi ’s as
scaled local Bragg frequencies. In the next section, we will use this closed-form expression
to calculate the centre of mass of the reflection spectrum.

As an example, we applied an arbitrary axial strain distribution over the length of a
simulated FBG sensor. Fig. 4.1 shows the original reflection spectrum from the TMM [13],
and the approximated reflection spectrum given in Eq. (4.1).
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Figure 4.1: (a): A non-uniform strain field applied on the length of a simulated FBG (b): Comparison between
the FBG reflection spectrum from the TMM [13] and the approximated FBG reflection spectra from Eq. (4.1), the
ATMM [11].

In Chapter 3 it was shown that the impact of the approximation in Eq. (4.1) in the re-
gion of interest is insignificant, while it leads to simple analytic expressions of the reflection
spectrum. However, a few remarks are in order. It can be seen that this approximation is
most accurate when the amplitude of the refractive index modulation is relatively small (and
consequently for smaller κi values), and the reflectivity levels are below around ninety per-
cent. As it can be seen from Fig. 4.1, in this case, the difference between the approximated
and the original reflection spectra is negligible and can be ignored for the current study.
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It is noteworthy that for sensors with high reflectively levels where the difference between
the approximated and the original reflection spectrum are significant, the accuracy of the
centroid method will decline as well.

4.3. CENTRE OF MASS AS A MEASURE FOR AVERAGE STRAIN

ESTIMATION
The linear relationship between the local Bragg wavelengths and the uniform strain si ap-
plied over the length of the piece-wise uniform segments of the sensor is given by [14]

kssi = (λBi −λN). (4.3)

In this equation, ks is a constant characterised by the mechanical and physical properties
of the sensor, λN is the nominal Bragg wavelength of the unstressed sensor, and λBi is the
local Bragg wavelength of the segment i . Therefore, by taking the mean over the segments
i on both sides of Eq. (4.3) we get

ks s̄ = (λ̄B −λN), (4.4)

where λ̄B is the average of the local Bragg wavelengths. On the other hand, in Section 3.4.2
we showed that

ᾱ= 2πneff∆z

λ̄B
+O

(
∆2

λ̄3
B

)
. (4.5)

In this equation, ᾱ= 1
M

∑
i αi is the average of the local Bragg frequencies over the segments

i , ∆2 = 1
M

∑
i ∆

2
i where ∆i is the local deviation from the Bragg wavelength λ̄B for segment

i . The second term of Eq. (4.5) can be neglected, since λ̄B is orders of magnitude larger than
∆2. Therefore, by calculating ᾱ, we know λ̄B , and the average strain of the non-uniform
axial strain field follows from Eq. (4.4).

In this section, we will evaluate the performance of the centroid method in uniform
FBG sensors. We show that theoretically, for uniform FBG sensors, the centre of mass of
the reflection spectrum corresponds to ᾱ, the average of the local Bragg frequencies of all
the segments, or equivalently to the average strain over the length of the sensor. In other
words, we will show that

ᾱ=
∫ +∞
−∞ αR(α)dα∫ +∞
−∞ R(α)dα

, (4.6)

or instead, we can rearrange the terms in Eq. (4.6) and equivalently show that

∫ +∞

−∞
(α− ᾱ)R(α)dα= 0. (4.7)
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To do so, the reflection spectrum from Eq. (4.1) can be expanded and rewritten as

R(α)≈∆z2
{ S1︷ ︸︸ ︷

M∑
i=1

κ2
i sinc(α−αi )2+

S2︷ ︸︸ ︷
2

m>n

∑
m

∑
n
κmκnsinc(α−αm)sinc(α−αn)cos

(
(2m −2n)α−βm,n

)}
, (4.8)

where βm,n = (
∑

k<mαk +∑
k<nαk −∑

k>mαk −∑
k>nαk ). Assuming that for a uniform

FBG sensor, the variation of the coupling coefficients along the length of the sensor is
negligible (κi ≈ κ), the reflection spectrum from Eq. (4.1) can be rewritten as

R(α)≈(κ∆z)2
{ S′

1︷ ︸︸ ︷
M∑

i=1
sinc(α−αi )2+

S′
2︷ ︸︸ ︷

2

m>n

∑
m

∑
n

sinc(α−αm)sinc(α−αn)cos
(
(2m −2n)α−βm,n

)}
. (4.9)

Let us split the summation in Eq. (4.9) into two terms, S′
1 and S′

2, as indicated in Eq. (4.9).
Factoring the (κ∆z)2 term and working out Eq. (4.7) for the first term S′

1 yields

∫ +∞

−∞
(α− ᾱ)S′

1dα=
∫ +∞

−∞

M∑
i=1

(α−αi +αi − ᾱ)sinc(α−αi )2dα

=
M∑

i=1

∫ +∞

−∞
(α−αi )sinc(α−αi )2dα+

M∑
i=1

(αi − ᾱ)

(∫ +∞

−∞
sinc(α−αi )2dα

)
. (4.10)

The first summation term in Eq. (4.10) is zero, since it is the integration of an odd symmetric
function. Since

∫ +∞
−∞ sinc(α−αi )2dα=π, we conclude that

∫ +∞

−∞
(α− ᾱ)

(
M∑

i=1
sinc(α−αi )2

)
dα=π

(
M∑

i=1
(αi − ᾱ)

)
= 0. (4.11)

Now we analyse the S′
2 term of Eq. (4.9) when substituted in Eq. (4.7), for which we

use the following lemma:

Lemma 2.

I =
∫ +∞

−∞
(x −θc )sinc(x −θ1)sinc(x −θ2)cos(nx −θ3)dx = 0,

∀θc ,θ1,θ2,θ3 ∈R, n ∈Z. (4.12)
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Proof. See Appendix A.2.

Using Lemma 2 and working out Eq. (4.7) for the second term S′
2, we have∫ +∞

−∞
2(α− ᾱ)

m>n

∑
m

∑
n

(
sinc(α−αm)sinc(α−αn)cos

(
(2m −2n)α−βm,n

))
dα= 0. (4.13)

Hence, we have ∫ +∞

−∞
(α− ᾱ)R(α)dα= 0, (4.14)

which completes the proof. To summarise, by following the steps given in the following
algorithm, the average of non-uniform axial strain fields can be calculated, while the peak
tracking or curve fitting algorithms generally fail to do so.

Algorithm 2 Average strain estimation

1. Calculate ᾱ by taking the centre of mass of the reflection spectrum.

2. Use Eq. (4.5) to retrieve λ̄B .

3. Use Eq. (4.4) to calculate the average strain over the FBG length.

4.4. EFFECT OF NOISE ON THE CENTROID ALGORITHM
Real FBG sensors can be affected by various sources of noise and imperfection that could
happen either during the production, or during their interrogation. Here, we investigate the
effect of two of the main sources of noise, namely noise on the grating period of the FBG
sensor, and additive noise on the overall reflection spectrum due to the interrogation system
in use. We will analyse each of these cases in the following subsections, and we assume
zero-mean stationary noise that is ergodic in the mean in all our analysis.

4.4.1. NOISE ON THE GRATING PERIOD OF THE FBG
Theoretically, the variations of the grating period of the FBG sensor can be considered as
variations in the axial strain distribution along the length of the FBG sensor, through the
following relation [15]

Λi =
λBi

2neff
= ks si +λN

2neff
, (4.15)

where Λi is the grating period in the i ’th segment. Therefore, zero-mean noise on the
grating period can be regarded as additive zero-mean noise on the axial strain distribution.
Since this noise is zero-mean and ergodic in the mean along the length of the sensor, it does
not change the overall average strain along the length of the FBG sensor. Hence, the centre
of mass of the FBG reflection spectrum would still correspond to the average of the strain
distribution along the length of the sensor. In fact, the same holds for any kind of zero-mean
strain or grating distribution over the length of the sensor (including linearly chirped Bragg
gratings).
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4.4.2. SPECTRAL NOISE DUE TO THE INTERROGATION SYSTEM AND PRAC-
TICAL CONSIDERATIONS

As mentioned before, we assume the spectral noise to be zero-mean and additive to the
overall FBG reflection spectrum, or

R̂(α) = R(α)+Z (α), (4.16)

where R(α) is the ideal noiseless reflection spectrum, and Z (α) is the additive noise. In
this subsection, we will show that the centroid method is a consistent estimator of the av-
erage strain, meaning that it is unbiased, and that by increasing the sampling frequency of
the interrogation system, the variance of the estimated average strain decreases (and ulti-
mately leads to zero). In contrast to the presentation of the other sections of this chapter,
we will carry out our analysis in the discrete domain so that the effect of the sampling fre-
quency becomes clearer. Furthermore, the analyses are performed over a finite window of
interrogation in the α domain. With that, Eq. (4.6) becomes

ᾱ=
∑i2

i=i1
i As (R(i As ))∑i2

i=i1
R(i As )

, (4.17)

where As is the sampling frequency, and i1 and i2 = i1+N−1 are integers which indicate the
bounds of the interrogation window, and N is the number of samples within this window.
Let us substitute ai = i As , where ai ’s are discrete samples of the continuous α domain
and should not be confused with the local Bragg frequencies αi . Consequently, at each
frequency instant along the α domain, the noisy reflection spectrum is as follows

R̂(ai ) = R(ai )+Z (ai ). (4.18)

Suppose the centre of mass of the noisy reflection spectrum, ˆ̄α, is calculated as

ˆ̄α=
∑i2

i=i1
ai (R(ai )+Z (ai ))∑i2

i=i1
R(ai )+Z (ai )

. (4.19)

Let us divide both the nominator and the denominator of Eq. (4.19) by N . Considering
the ergodicity of the noise, for a large enough N we have

∑i2
i=i1

Z (ai )/N ≈ 0. Therefore,
Eq. (4.19) becomes

ˆ̄α≈ ᾱ+
∑i2

i=i1
ai Z (ai )∑i2

i=i1
R(ai )

= ᾱ+ε, (4.20)

where we introduced ε for notational convenience. Based on Eq. (4.4) and Eq. (4.5), the
average strain value is inversely related to ˆ̄α as follows,

ˆ̄s = C1

ˆ̄α
+C2 = C1

ᾱ

1

1+ ε
ᾱ

+C2
(a)≈ C1

ᾱ

(
1− ε

ᾱ

)
+C2 = s̄ − C1ε

ᾱ2 . (4.21)

In the above equation, C1 and C2 are constants, and (a) is a first-order Taylor series approx-
imation in which we used the fact that in the current problem ε¿ ᾱ. Since E[Z (ai )] = 0,
taking the expected value of both sides of (4.21) leads to
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E[ ˆ̄s] ≈ s̄ − C1

ᾱ2

∑i2
i=i1

aiE[Z (ai )]∑i2
i=i1

R(ai )
= s̄, (4.22)

which proves our first claim. For our second claim, we take the variance of the two sides of
Eq. (4.21), which leads to

Var( ˆ̄s) = E[ ˆ̄s2]− s̄2 ≈ C 2
1

ᾱ4

∑i2
i=i1

a2
i σ

2
z(∑i2

i=i1
R(ai )

)2 , (4.23)

where σ2
z = E[Z (ai )2] is the variance of the noise. Now suppose the sampling frequency is

increased by a factor of n. This means that the summations in Eq. (4.23) will be carried
out over nN samples. In this case, the variance of the average strain corresponding to the
oversampled reflection spectrum, Var( ˆ̄s2), will be given by

Var( ˆ̄s2) ≈ C 2
1

ᾱ4

∑i1+nN
i=i1

a2
i ,2σ

2
z(∑i1+nN

i=i1
R(ai ,2)

)2 ≈ C 2
1

ᾱ4

n
∑i2

i=i1
a2

i σ
2
z(

n
∑i2

i=i1
R(ai )

)2 = 1

n
Var( ˆ̄s1), (4.24)

where ai ,2 are the samples of the α domain in the oversampled reflection spectrum. In
Eq. (4.24), we approximated the oversampled reflection spectrum with a quasi-linear inter-
polation of the original reflected spectrum. Furthermore, we used the property that using
such interpolation, the average value of the deterministic functions

∑
a2

i and
∑

R(ai ) ap-
proximately remain unchanged. With this, we showed that by increasing the sampling fre-
quency by a factor of n, the variance of ˆ̄s decreases by approximately a factor of n, which
concludes the proof of our second claim. In Section 4.6, we will illustrate these properties
using some computer simulated experiments.

4.5. APODIZED FBG SENSORS
Now, let us consider the case of apodized FBG sensors. For these sensors, the assump-
tion is that κi ≈ κ does not hold anymore, since in these sensors the variation of the cou-
pling coefficients along the length of the sensor is rather huge. In this case, we will use
Eq. (4.8) to calculate the centre of mass of the FBG reflection spectrum. It can be seen that∫
α(α−ᾱ)S2dα→ 0, since introducing the different κi parameters only scales the integral of

Lemma 2. However, for the S1 term we have

∫
α

(α− ᾱ)S1dα=
M∑

i=1
κ2

i

∫
α

(α−αi )(sinc(α−αi )2)dα

+
M∑

i=1
κ2

i (αi − ᾱ)(
∫
α

(sinc(α−αi )2dα)) =π
M∑

i=1
κ2

i (αi − ᾱ), (4.25)

which does not necessarily equal zero. In other words, for apodized FBG sensors, ᾱ is
not necessarily the centre of mass of Eq. (4.8), and therefore, does not correspond to the
average of the strain field over the length of the sensor. As a consequence, the centre of
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mass approach does not offer reliable measurements for apodized FBG sensors in general,
which is in agreement with the benchmarks presented in [2].

4.6. RESULTS
In this section we will present some computer simulated experiments and a laboratory ex-
periment to validate the performance of the average strain estimation algorithm based on
the centroid method. In order to visualise the effect of the aforementioned noises on the re-
sult of the centroid method, the experiments of this section are organised as follows. In the
first two experiments, we include the FBG production noise as an additive Gaussian noise
to the refractive index of the core (with signal-to-noise ratio (SNR) of 14dB), and on the
grating period of the FBG sensor (with variations of around 0.02nm on the grating period),
but we do not include the spectral noise from the interrogation unit. In this paper, SNR is
defined as

SNR= 10log10

Psignal

Pnoise
.

In the third simulated example, we introduce additive Gaussian spectral noise to the in-
terrogation, and compare the effect of increasing the sampling frequency in reducing the
estimation error. In our simulated experiments, we set λn = 1550nm for the sensor, and the
resolution of the interrogation system is assumed to be 1pm. Finally, the fourth example is
a laboratory experiment to validate the claims made in this paper.

1. In the first example, we consider the strain field given in Fig. (4.1a). The average
of this non-uniform strain field is s̄ = 186µε. Using the centroid method, we derive
that λ̄B = 1550.2116nm which corresponds to the estimate ˆ̄sc = 175µε1. The error
of this method in such an imperfect FBG sensor is around 10µε, which is due to the
presumed high level of noise on the refractive index of the core, whereas using the
peak tracking algorithm we obtain a Bragg wavelength of λB = 1549.632nm which
is equivalent to a strain of ˆ̄sp =−304.38µε, with an error of e = | ˆ̄sp − s̄| = 485.7µε.

2. In the second example, we consider a strain distribution that is increasing as a func-
tion of a second order polynomial. This strain field and the resulting FBG reflection
spectrum is depicted in Fig. 4.2. In this example, the average strain value is s̄ =
233.84µε, and the centre of mass of the reflection spectrum is at λ̄B = 1550.2843nm,
which corresponds to an estimate of ˆ̄sc = 235.21µε. It is noteworthy that the peak
tracking approach in this example will lead to ˆ̄sp =−532.67µε, which has an error of
e = | ˆ̄sp − s̄| = 766.5µε.

3. As discussed in Section 4.4.2, in order to get a better estimate of the average strain
in higher noise levels, the reflection spectrum could be sampled with a higher sam-

1in these experiments we set ks = 1.209×10−3 nm/µε for the FBG sensors [5].
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Figure 4.2: (a): A monotonicly increasing strain field along the length of the FBG (b): The resulting reflection
spectrum.

pling frequency. As an example, consider the FBG reflection spectrum from the sec-
ond example to be affected by additive Gaussian noise, with SNR = 20dB, given in
Fig. (4.3a). For this example, we compare the results of the average strain estimation
for two cases. First, having an interrogation system with a resolution of 10pm, and
second, an interrogation system with a resolution of 1pm. The results of the average
strain estimation for 100 different trials are given in Fig. (4.3b). In this example, the
variance of the estimator with a resolution of 10pm is Var( ˆ̄s1) = 260.5µε2, and by
increasing the resolution to 1pm, it becomes Var( ˆ̄s2) = 24.2µε2, which, as expected
from Eq. (4.24), has decreased by a factor of 10. These results are also in agreement
with the centroid method performance benchmarks presented in [16]. Also it is im-
portant to note that since the centroid method is a consistent estimator, the average
of all the estimations from the different trials equals the actual average strain. There-
fore, the demodulation of the FBG reflection spectrum under noisy setups can be
implemented by averaging several strain estimation measurements from the centroid
method and get an accurate strain estimation, even under high spectral noise levels.

4. As a final experimental example, we subjected a uniform FBG sensor, surface mounted
on an aluminium plate, to a non-uniform strain field. The sensor was from the com-
pany FBGS, with a nominal Bragg wavelength of λB = 1535 nm and length of 8
mm. The FBG sensor was interrogated with a PXIe-4844 interrogator from National
Instruments with a wavelength resolution of 4pm. The non-uniform strain field was
created by drilling a slot on the aluminium plate, and the FBG sensor was mounted
over this slotted region with a cyanoacrylate solution. Therefore, under an axial ten-
sile test (either under tension or under compression), a non-uniform strain field was
created over the FBG length. For reference strain measurements, we painted the
surface of the specimen with a speckle pattern by spraying the specimen’s surface
with contrasting spray paints, and used a 18 MP camera to take images of the spec-
imen. The reference average strain value over the sensor length was calculated by
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Figure 4.3: (a): FBG reflection spectrum affected by spectral noise with SNR = 7dB (b): The estimated average
strain using the centroid method for 100 different trials of additive Gaussian noise with different interrogation
resolutions.

monitoring the shift of the speckled pattern between the ends of the sensor, under
no stress and under tension. Fig. 4.4 shows the setup of the experiment in more de-
tails. Fig. 4.5a shows the resulting reflection spectra before and after applying the
tensile load. As it can be seen from this figure, after applying the non-uniform strain
field, the reflection spectrum has split into several peaks, and has widened. Using the
peak tracking method, the estimated average strain under tension was calculated to
be ˆ̄sp =∆λp /ks = 1.868/ks = 1532.4µε, whereas using the centroid method, we have
ˆ̄sc = ∆λc /ks = 1.652/ks = 1355.2µε. In the same experiment, the reference average
strain was estimated at around 1328µε. The reasons for the difference between the
reference measurement and the estimated average strain using the centroid method
are the limitation of the accuracy of the strain estimation with camera images, the
non-perfect strain transfer of the cyanoacrylate solution to the FBG sensor, and the
calibration error in the FBG demodulation. That being said, having used the peak
tracking method instead of the centroid method in this example would have lead to
an average strain error of around e = 200µε.

The experiments presented in this section, clearly demonstrate the superiority of the
centre of mass approach over the peak tracking approaches in average strain estimation. It
is also noteworthy that for all these experiments, the Gaussian and polynomial fitting algo-
rithm for demodulation do not perform well either. In particular, in the second example,
even without the additive spectral noise, the Gaussian fitting approach and polynomial fit-
ting approach will result in ˆ̄s = −132µε, ˆ̄s = 101µε respectively, which are still far from
being accurate. Moreover, methods such as KLT [7] that are reportedly suitable for coarse
wavelength interrogation, do not perform well under higher sampling frequencies (such as
sampling frequencies below 10 pm). Also, under non-uniform strain fields, they lead to
unreliable and inaccurate strain estimations in the presented examples. The reason is that
under non-uniform strain fields, the FBG reflection spectra will have several new harmonics
frequencies [9]. Therefore, the underlying assumption of the KLT algorithm, which is based



4

58
4. ON THE CENTROID METHOD FOR AVERAGE STRAIN ESTIMATION IN UNIFORM

FBG SENSORS

Fixed clamp

Axial load

Slot opening

FBG sensor

PXIe-4844 
interrogator

15 cm

5 cm

Figure 4.4: The experimental setup used for creating a non-uniform strain field. In order to give an overview of
the test setup, the photographed area of the specimen is mounted on a schematic representation of the experiment
setup.

on tracking the shift of the dominant eigenvalue of the toeplitz matrix of the Fourier trans-
form of the reflection spectrum [7], is no longer valid. In particular, in the last experiment,
the first 30 eigenvalues of the toeplitz matrix of the Fourier transform of the stressed FBG
reflection spectrum (the red graph in Fig. 4.5a) had comparable amplitudes, and setting a
cut-off threshold was not possible (see Fig. 4.5b).

Finally, it is noteworthy that the application of the centroid method is not limited to
uniform FBG sensors, as it is currently the most prevalent demodulation algorithm for load
measurement schemes using linearly chirped FBG sensors as well. Based on the discus-
sions in subsection 4.4.1, it can be seen that applying a non-uniform strain field over a
chirped FBG sensor is analogous to applying a summation of two simultaneous strain fields
over the length of the sensor, one corresponding to the chirped grating structure, and one
corresponding to the axial load itself. Therefore, we can conclude that the centroid ap-
proach would lead to reliable and meaningful strain estimation in chirped FBG sensors as
well, under both uniform and non-uniform strain fields.

4.7. CONCLUSIONS
In this paper we analytically proved that for uniform FBG sensors, the centre of mass of the
FBG reflection spectrum corresponds to the average of the local Bragg wavelengths along
the length of the FBG sensor, which equivalently, corresponds to the average strain value
of the strain field to which the sensor is subjected. Furthermore, we showed the robustness
of this method against noise on the grating period of the FBG, and the spectral noise from
the interrogation system. We also claimed that the results of this chapter can be extended to
chirped Bragg grating sensors as well, however, they do not necessarily hold for apodized
FBG sensors. Moreover, we argued that for FBG sensors with high reflectivity levels,
the accuracy of the centroid method declines. With computer simulated and laboratory
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Figure 4.5: (a): The reflection spectra under no tension (in blue) and under tension (in red). The difference
between the shift of the peak wavelength and centres of masses of the two reflection spectra is annotated on the
figure. (b): The first 50 eigenvalues of the toeplitz matrix of the Fourier transform of the stressed FBG reflection
spectrum after applying tension.

experiments, we demonstrated that using the peak tracking demodulation techniques could
possibly lead to significant errors of up to a few thousand microstrains in estimating the
average of non-uniform strain fields, whereas the centre of mass approach would lead to
close to accurate results. Furthermore, even under high noise values on the grating period
and on the ac modulation of the refractive index of the core, or when the reflectivity level
of the sensor is high, one can use our side-lobes synchronisation method given in Chapter 3
to compensate for the remaining average strain error accurately.
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5
A METHOD FOR DETERMINING
THE LENGTH OF FBG SENSORS

ACCURATELY

It would have been so pointless to kill himself that,
even if he had wanted to, the pointlessness

would have made him unable.

Franz Kafka, The Trial

In this chapter a method will be proposed for estimating the length of single mode fibre
Bragg grating type sensors with high accuracy. This method is based on calculating the
maximum oscillation frequency of the side-lobes of the FBG reflection spectrum. It will be
shown that this frequency is independent of the stress field to which the sensor is subjected,
and is dependent on the length of the sensor. This method can be used to characterise
the gauge length of already installed FBG sensors so that they can provide useful data for
engineering models of structural integrity. All the analyses are based on the approximated
transfer matrix model, which is a newly developed numerical method for analysis of the
FBG reflection spectrum under various stress fields.

5.1. INTRODUCTION
Fibre Bragg grating (FBG) sensors are produced by creating a predetermined modulation in
the refractive index of the optical fibre’s core, for lengths typically between a few millime-
tres to a few centimetres. This length of refractive index modulation (grating) is the active
length of the FBG sensor, which partially reflects certain wavelengths of the input light in

This chapter is published as "A Method for Determining the Length of FBG Sensors Accurately", by A. Ra-
jabzadeh, R. Heusdens, R. C. Hendriks, and R. M. Groves, in IEEE Photonics Technology Letters, vol. 31, no. 2,
197-200, 2019.
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the optical fibre. The main application of FBG sensors is in point strain or temperature
sensing, and in vibration and pressure sensing [1]. Since FBG sensors are generally only
locally sensitive, it is crucial to know the active length of the sensors. Due to the small
diameter of the optical fibre (usually in the order of 125µm or less), it is not possible to
inspect the position of the sensor and its length without special equipment. Usually, the ap-
proximate position of the sensor is marked on the optical fibre by the producing company.
However, sometimes the information regarding the exact active gauge length of the sensor
is not available, is not accurate enough, or is not reported in the datasheet of the sensor, and
once the sensor is embedded in a structure, it is usually impossible to visually inspect the
sensor element. In this chapter, a method is proposed to determine the active length of the
sensor accurately, and it will be shown that the results are not affected by subjecting the
sensors to different stress fields, making the method suitable for on-site and remote length
determination applications.

It is already known from the literature that for an unstressed uniform FBG, the oscilla-
tion frequency of the side-lobes of the reflection spectrum linearly depends on the length of
the FBG [2]. However, to our knowledge, there have not been any studies on analysing the
sensitivity of the aforementioned oscillation frequency to parameters other than the FBG
length, and also retrieving the length of non-uniformly grated or partially apodized FBG
sensors under stress (uniform or non-uniform). The proposed method in this chapter is
based on the approximated transfer matrix model presented in 3, which is a model for the
analysis of FBG reflection spectra under non-uniform (and uniform) stress fields. A direct
result of this model was to show that it is possible to approximate the side-lobes of the FBG
reflection spectra with a closed-form representation. From this closed-form expression, it
can be seen that the highest oscillation frequency of the side-lobes (which is generally the
dominant frequency) linearly depends on the length of the sensor, and the effective refrac-
tive index of the fundamental core mode. In this chapter, this phenomenon will be exploited
to estimate the length of the sensor, and show the robustness of this approach under non-
uniform and transverse stress fields.

5.2. CLOSED FORM APPROXIMATION OF THE SIDE-LOBES

OF FBG REFLECTION SPECTRUM
In Chapter 3 we showed that for any type of FBG sensor, for wavelengths λ that are

sufficiently far away from the Bragg wavelength λB , the reflection spectrum can be approx-
imated by

R(λ) ≈
∣∣∣∣M−1∑

i=1
(ξi −ξi+1)e

− j
(
(M−2i )α+ ∑

k≤i
αk−

∑
k>i

αk

)
+ (

ξM e j M(α−ᾱ) −ξ1e− j M(α−ᾱ) )∣∣∣∣2

, (5.1)

where ᾱ=∑M
i=1αi /M, ξi = κi∆z

2 j (α−αi ) , κi is the coupling coefficient between the i ’th and the
(i −1)’th segment, and α and αi are defined in Section 3.3. The particular λ range in which
the approximation in Eq. (5.1) holds, corresponds to the side-lobes of the reflection spectra.

As seen from Eq. (5.1), the maximum oscillation frequency of the side-lobes of the
FBG reflection spectrum is 2Mα, and all the other harmonics that appear in the side-lobes
have lower oscillation frequencies. The 2Mα harmonic always has a fairly high amplitude,
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especially in wavelength regions where the (ξi − ξi+1) terms in Eq. (5.1) are sufficiently
damped. In this region, which is associated with side-lobes with lower amplitudes, the
dominant harmonic in Eq. (5.1) will be 2Mα, and Eq. (5.1) can be approximated as (see
Section 3.4.1)

R(λ) ≈ |ξ1|2 +|ξM |2 −2Re[ξ1ξ
∗
m]cos(2M(α− ᾱ)). (5.2)

In Eq. (5.2) all the lower frequency harmonics that result from imperfections in the produc-
tion of the sensor, and from the non-uniform stress field to which the sensor is subjected,
have been neglected. As mentioned before, it can be seen from Eq. (5.2) that the dominant
oscillating term is cos(2π2Mneff∆z( 1

λ − 1
λ̄

)). Therefore, considering the fact that L = M∆z,
the maximum oscillation frequency is fmax = 2Lneff, which only depends on the length of
the sensor L and the effective refractive index of the core. The proposed method of deter-
mining the length of FBG sensors is based on exploiting this phenomenon and retrieving the
length of the sensor from this maximum oscillation frequency. However, it is first needed
to analyse the sensitivity of ” fmax” to the effective refractive index of the core.

5.3. FBG LENGTH DETERMINATION
Commercial FBG sensors are usually inscribed in single mode optical fibres, whose ef-
fective refractive index are usually in the order of neff ≈ 1.45. In fact, the most common
optical fibre for FBG inscription is the SMF28 with neff ≈ 1.447 [3]. An example of a fibre
with a higher refractive index is the PR2008 fibre with neff ≈ 1.453 [3]. As it can be seen
from these values, the difference between the initial effective refractive index of different
types of single mode optical fibres are less than 0.2%. Furthermore, during the inscription
of the gratings on an optical fibre, the changes of the refractive index of the fundamental
core mode is less than ∆nDC ≤ 2.5×10−3, even under long exposure times and high input
impulse energies [4]. This DC effective refractive index change is significantly larger for
sensors that are produced by exposure to femto-second laser pulses. They are in the order
of around ∆nDC ≤ 6× 10−3 [5]. This means that the sensitivity of the dominant oscilla-
tion frequency in Eq. (5.2) to the variations of the refractive index of the core is less than
1%. Therefore, without having any knowledge about the type of the optical fibre in use,
the exposure time or the pulse energy of the FBG production process, or even the method
of production, the maximum error in length determination that is introduced by setting a
conventional fixed value for neff is at most less than 1%. This will make the method reliable
for blind measurements of the length of FBG sensors, without any prior knowledge about
the origin of the sensor.

Another factor that needs to be considered here is the effect of transverse loads and bire-
fringence effects. Birefringence can be caused by external perturbations such as transverse
loads or bending of the fibre. In addition, birefringence can affect the FBG sensor during
production. In either scenario, the result is that the propagating light along the length of
the fibre experiences different refractive indices along the slow and fast polarisation axes.
Under these conditions, the overall reflection spectrum of the disturbed FBG will be

R(λ) = Rx (λ)+Ry (λ), (5.3)
where Rx is the reflection spectrum along the x-axis and Ry is the reflection spectrum along
the y-axis. In both of these polarisation axes, the maximum oscillation frequency is still
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equal to 2Lneff. Therefore, the maximum frequency of the side-lobes of the summation
term given in Eq. (5.3) will also be equal to 2Lneff.

Based on the discussions above, it can be concluded that by inspection of the maximum
frequency of the side-lobes of the FBG reflection spectra, it is possible to retrieve the length
of the sensor, as this frequency linearly depends on the length of the sensor. This approach
is rather insensitive to the external media to which the sensor is subjected and other physical
properties of the sensor. The proposed method of retrieving the length of the FBG is simply
to take the Fourier transform of the side-lobes of the FBG reflection spectrum, and to deter-
mine the maximum frequency at which the amplitude of the Fourier transform is above the
noise level. In other words, by taking the Fourier transform of Eq. (5.2) and the cosine term
within this equation, we expect to find high amplitude harmonics at δ( f ±2Lneff) frequen-
cies. Note that as mentioned before, in the side-lobes, this maximum oscillation frequency
is the dominant term, and its amplitude is also relatively large compared to the lower os-
cillation frequencies. The identification of this dominant peak is based on its amplitude,
which should be comparable to the lower frequency components and above a noise floor
that can be determined based on the physical properties of the sensor and the interrogator.

5.4. RESULTS AND DISCUSSION
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Figure 5.1: (a) A simulated FBG sensor with refractive index fluctuations under an extremely non-uniform strain
field, with both transverse and axial components, and (b) Fourier transform of the side-lobes given in (a).

In this section we validate the proposed method for determining the length of FBG
sensors using two experiments. In the first experiment, which is a computer simulation, an
FBG sensor with a nominal length of 10mm was designed, and a non-uniform stress was
applied on it with both axial and transverse components. We also included imperfections to
the designed sensor by adding fluctuations in the refractive index of the core. The resulting
reflection spectrum is shown in Fig. 5.1a. Fig. 5.1b shows the amplitude of the Fourier
transform of the side-lobes of this sensor (denoted by the zoomed-in rectangle in Fig. 5.1a).
Note that the oscillation terms in Eq. (5.2) are described in ”α” or ”1/λ” domain, therefore,
the unit on the x-axis of its Fourier transform will be in metres.
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Figure 5.2: (a) Reflection spectrum of an actual FBG sensor under an extremely non-uniform strain field, with
both transverse and axial components, and (b) Fourier transform of the side-lobes given of the reflection spectrum.

It can be seen from the figure that the maximum dominant frequency in the Fourier
transform is at fmax = 0.029m, therefore, the length calculated based on this frequency
and the given effective refractive index (neff = 1.4469) is L̃ = fmax/(2neff) = 0.01002m or
10.02mm. The error of calculation in this example is therefore around 0.2%.

In the second example, the method was tested on a real FBG sensor. Fig. 5.2a shows the
reflection spectrum of a draw tower grating (DTG) sensor with a nominal length of 10mm
under an arbitrary non-uniform strain field, with components in both axial and transverse
directions. The FBG sensor used in this experiment is partially apodized, with a side-lobe
suppression ratio of 10 dB. The FBG sensor was interrogated with a PXIe 4844 interrogator
from National Instruments with a spatial resolution of 4pm and dynamic range of 40dB.
The amplitude of the Fourier transform and the maximum frequency are shown in Fig. 5.2b.

The same sensor underwent several other load scenarios, where the sensor was subject
to various arbitrary transverse and axial loads. Those results are summarised in Table 5.1.
As it is evident from this table, the location of the highest oscillating harmonic barely
changes under different force loads. In these calculations, the presumed effective refractive
index of the core was neff = 1.447+2×10−3 = 1.449, which was based on the assumption
that the optical fibre has similar properties to the SMF28 fibre, with a DC offset of 2×10−3

due to being exposed to UV light.
Based on the length estimation results, the standard deviation of the estimated length

is around 0.01mm. Furthermore, since there can always be fluctuations on the specified
nominal length of the sensor in the datasheet, a more accurate reference was needed for
the validation of the proposed method by locating the exact position of the sensor along
the fibre length. The most accurate method that could offer a better accuracy than the
specified nominal length was to put the optical fibre under the microscope, and to locate
the gratings along the fibre length. However, due to the small refractive index modulation
of the DTG sensors and the small diameter of their core, it was impossible to locate the
gratings through the cladding and the coating layer. Therefore, first the Ormocer coating of
the fibre was removed using a thermal stripper, and then the fibre was chemically etched off
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Table 5.1: FBG sensor under different stress fields, the resulting maximum oscillation frequency, and the
resulting estimated sensor length.

Stress field
Maximum oscillation

frequency (m)
Estimated sensor

length (mm)

Unstressed sensor 0.02922 10.0828
Load scenario #1 0.02919 10.0725
Load scenario #2 0.02925 10.0932
Load scenario #3 0.02919 10.0725
Load scenario #4 0.02916 10.0621
Load scenario #6 0.02922 10.0828

Figure 5.3: A small part of the gratings structure of the optical fibre’s core under an optical microscope.

its cladding layer in order to be left with only the core of the fibre. For the etching process,
a solution of 15wt% of NH4F and 16wt% of H2SO4 [6] was used, and the sensor part of
the optical fibre with an original diameter of 125µm was submerged in the solution for a
period of around 5 hours, during which time the diameter was reduced to around 10µm.
Afterwards, the etched fibre was put under an optical microscope with a magnification of
around 2500 in order to locate the FBG length. Fig. 5.3 shows a small part of the grating
under the microscope. Based on the microscopy results, the overall length of the sensor
with significant variations in its refractive index was determined as 10.093mm. Based on
the reference values for the FBG length, in this particular example, our method offers a
better accuracy for the FBG length, even compared to the datasheet of the sensor, with a
maximum error of around 0.3%.

It is noteworthy that the proposed method could potentially perform well for other types
of short Bragg grating sensors too, as long as a high dynamic range interrogator is be-
ing used and the side-lobes have not been deliberately fully suppressed (such as Gaussian
apodized sensors [1]). Nevertheless, the proposed method works perfectly well for partially
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apodized FBG sensors, as well as non-apodized FBG sensors. Furthermore, it can be em-
ployed for length determination of chirped FBG sensors [1], phase shifted FBG structures,
and for other types of aperiodic grating structures as well.

5.5. CONCLUSIONS
In this chapter, it was shown that the length of conventional FBG sensors can be estimated
based on calculating the maximum oscillation frequency of the side-lobes of the FBG re-
flection spectrum. It was shown that this oscillation frequency is independent of the stress
(or temperature) field to which the sensor is subjected, and that its sensitivity to the vari-
ations of the effective refractive index of the core is negligible, making the method reli-
able for FBG length determination without having a prior knowledge about the production
method, optical fibres in use and etc. Furthermore, the results of the proposed method can
be extended to other types of non-uniform gratings and partially apodized FBG sensors.
Computer simulations and experimental measurements were used to validate the proposed
method, and the results were in line with our expectations on the presented model.
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6
A METHOD FOR DETERMINING

THE POSITION OF FBG
SENSORS ACCURATELY

Three o’clock is always too late or
too early for anything you want to do.

Jean-Paul Sartre, Nausea

Fibre Bragg grating sensors have gained a lot of attention in damage detection and strain
measurement applications in the past few decades. These applications include matrix crack
detection and delamination tip monitoring in composite structures, crack detection in con-
crete and civil engineering structures and etc. The damage localisation accuracy of such
methods, directly depends on precise knowledge on the position of the FBG sensor. How-
ever, this information is not commonly provided by manufacturing companies with such
accuracy. In this chapter, a novel approach will be presented to accurately determine the
position of an FBG sensor with a low complexity setup. The proposed method offers an
accuracy of below 10µm, and can consequently increase the spatial resolution of damage
detection methods.

6.1. INTRODUCTION
Fibre Bragg grating (FBG) sensors are typically used in point strain and temperature mea-
surement applications [1, 2]. In recent years, the application of FBG sensors in damage
detection of a variety of materials and structures has gained a lot of attention as well [3–5].
Due to the small diameter and low weight of these sensors, they can be embedded between

This chapter is published as "A Method for Determining the position of FBG Sensors Accurately", by A. Ra-
jabzadeh, R. C. Hendriks, R. Heusdens, and R. M. Groves, in the proceedings of the Seventh European Workshop
on Optical Fibre Sensors (EWOFS), 11199, 111990U, 2019
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the layers of composite structures, and provide useful information about the structural in-
tegrity of the internal layers of the composite material [6].

In all the above mentioned applications, it is essential to know the precise position of the
FBG sensor along the optical fibre, so that it provides useful data for engineering models of
structural integrity. For instance, using the FBG sensors in the detection of barely visible
matrix cracks in composites [3, 5], or monitoring the growth and progress of delaminated
composite layers, the knowledge of the precise location of the cracks or the delamination
tip [4] can be very useful in studying the fatigue and stress behaviour of composites. The
accuracy of damage localisation and progression in these applications directly depends on
having a precise knowledge of the exact position of the FBG sensor. However, when the
FBG is received from the manufacturer, there is usually ambiguity in the exact position
of the FBG, as the sensor markings only indicate the approximate position of the sensor.
For some manufacturing methods (e.g. strip and recoat method), it is possible to achieve
higher accuracies using more precise translation stages, but the production costs increase
significantly.

In this chapter, a method will be presented for the localisation of the exact position of
the FBG with a high accuracy. This method is non-invasive and can be utilised at very low
complexity, its labour intensity is minimal, and it does not risk the health and the integrity
of the optical fibre. The most common alternative to this approach is using a rolling pin over
the FBG length, and observe the changes in the reflection spectrum, marking the starting
point and ending point of observing changes in the reflection spectrum. However, this
method is labour intensive, and its accuracy could be low, since for approximately the first
1 mm of the sensor length, the changes in the reflection spectrum are negligible, and might
be confused with different noise sources. The proposed method is based on mechanically
exciting two arbitrary points along the FBG length, and analysing the side-lobes of the
FBG reflection spectrum under that momentary stress. For this purpose, the closed form
representation of the reflection spectrum that is derived from the approximated transfer
matrix method will be used [7].

6.2. PROBLEM FORMULATION
When an FBG sensor experiences a non-uniform strain field (or grating structures), its
reflection spectrum can be calculated using numerical methods such as the transfer matrix
model [2]. In such cases, it is assumed that the length L of the FBG sensor is divided into M
piece-wise uniform segments, each undergoing a uniform strain field. In Section 3.4.1, we
showed that under non-uniform strain fields, the reflection spectrum R of the FBG sensor
can be approximated as

R(α) ≈
∣∣∣∣ M∑

i=1
κi∆z sinc(α−αi )e

− j
(
(M−2i+1)α+ ∑

k<i
αk−

∑
k>i

αk

)∣∣∣∣2

, (6.1)

in which the κi ’s are the coupling coefficients between the forward and backward electric
waves, and α and αi are given by

α= 2πneff∆z

λ
and αi = 2πneff∆z

λi
, (6.2)
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respectively. Here, λ is the wavelength region under interrogation, λi is the local Bragg
wavelength of the i ’th segment, and neff is the effective mode index of the core. In Chapter 5
we showed that there is a linear relationship between the active gauge length of the FBG
(even under extremely non-uniform stress fields) and the maximum harmonic frequency of
Eq. (6.1). This approach was used to accurately calculate the active gauge length of the
FBG sensor. By rearranging the terms in Eq. (6.1), we showed that the complex reflection
spectrum can be presented as [7]

r (α) =
M−1∑
i=1

ζi︷ ︸︸ ︷
(ξi −ξi+1) e

− j
(
(M−2i )α+ ∑

k≤i
αk−

∑
k>i

αk

)
+ (
ξM e j M(α−ᾱ) −ξ1e− j M(α−ᾱ)), (6.3)

where

ξi = κi∆z

2 j (α−αi )
. (6.4)

In this chapter, the focus will be on the ζi = ξi −ξi+1 terms given in Eq. (6.3). As shown
in Section 3.4.1, when there is a smooth stress field over the length of the FBG, the values
of ζi will be negligible, and the first summation term in Eq. (6.3) can be neglected. On
the other hand, if there is a drastic change in the stress or grating distribution at a certain
segment of the FBG model, the values of ζi at that particular segment will not be negligible
anymore. In this work, this principle will be exploited in order to determine the position of
the FBG sensor. We put stress at arbitrary (controlled) points along the FBG length, which
results in large ζi values at the excited segments. As seen from Eq. (6.3), large values
of ζi result in powerful harmonics at the angular frequency ω = M − 2i in the complex
reflection spectrum. The frequency of such an harmonic is thus directly related to the point
of excitation. By finding the precise position of the excitations along the FBG length, the
exact position of the sensor can be derived as well. Since in most applications only the
amplitude of the reflection spectrum is available, we first need to expand Eq. (6.3). For that
purpose, suppose there is only one mechanical excitation at segment t of the FBG model
(which means large values for ζi at i = t), with which, as presented in Section 3.4.1, the
following will be obtained

R(α)=|r (α)|2≈
M−1∑
i=1

|ζi |2 +2Re[ζtζ
∗
M ]cos

(
(2M −2t )α+θt−Mᾱ

)
−2Re[ζtζ

∗
1 ]cos

(
(2t )α−θi −Mᾱ

)+Rr +Rs , (6.5)

where

Rs ≈|ξ1|2 +|ξM |2 −2Re[ξ1ξ
∗
M ]cos(2M(α− ᾱ)) (6.6)

refers to the reflection spectrum under a smooth strain field, and Rr is the summation of
all remaining terms from the expansion (with lower amplitudes than the other terms in
Eq. (6.5)). Note that the information regarding the length of the sensor is in Rs , as the
oscillating term in Rs is cos(2π2M∆zneff(1/λ−1/λ̄)), which linearly depends on L = M∆z.
In fact, this term has the highest oscillation frequency among all the harmonics presented
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in Eq. (6.5), with a value of fmax = 2Lneff, from which the exact length of the sensor can be
retrieved [8].

As seen from Eq. (6.5), for a single excitation of the FBG at segment t , two new har-
monics will emerge in the reflection spectrum with angular frequenciesω= 2M−2t and one
at ω= 2t . This means that with a single excitation, one cannot determine the exact location
of the excitation, as there will be a reflection line of symmetry ambiguity in localising the
excitation. In other words, exciting the sensor at segment t results in the same harmonics
as exciting it at segment M − t .

In order to overcome this ambiguity, we propose exciting the FBG length at two (or
more) locations, and at different time instances, wherein the distance between the excita-
tions is fixed and known. Assume the first excitation is applied at an arbitrary segment,
and by inspection of the Fourier transform of the reflection spectrum, we see that the newly
generated harmonics have angular frequencies at ω= 2t and ω= 2M −2t . With this single
excitation, it can deduced that the sensor was stressed either at segment t , or at segment
M − t . Now, another excitation is applied over the sensor at a known distance of l seg-
ments from the first excitation. If the second set of new harmonics are at ω = 2(t + l ) and
ω = 2M −2(t + l ), it means that the first excitation was at the t’th segment. Otherwise, if
new harmonics are seen at ω = 2(M − t + l ) and ω = 2(t − l ), it means that the first excita-
tion was at the (M − t )’th segment. The ambiguity of the excitation point is thus resolved.
Moreover, the exact length of the sensor can be retrieved using the method presented in
Chapter 5, which determines the overall number of segments M in the FBG model. With
the knowledge of the accurate length of the sensor, and the exact excitation segment, the
precise start and end point of the sensor can be determined.

The accuracy of this method depends on the width of the excitation, and the narrower
the width of the excitation (or the finer the FBG segmentation), the more accurate the local-
isation accuracy. As a practical example, using small diameter Tungsten wires, excitation
points with a width of 10µm can be implemented, using which, a localisation accuracy of
10µm can be achieved. Moreover, by increasing the number of measurements, and averag-
ing the results, the accuracy of the method can be further improved.

6.3. IMPLEMENTATION
There are several ways to induce the aforementioned local excitations along the FBG length.
It can be purely mechanical, using piezo-electric actuators [9], or by locally heating the
FBG sensor. In this chapter, the latter option was chosen, as it is more easily controllable
(in terms of the setup itself, and the width of the excitation). The difference between the
mechanical and the thermal excitation is that in the thermal option, the thermo-optic ef-
fect is much more dominant than the thermal expansion effect. In fact, the contribution of
the thermal expansion to the overall local phase shift has been shown to be around 10%
of that of the thermo-optic effects [10]. In such a case, the main effect of locally heating
the FBG at segment t is that the effective mode index of the core at that particular seg-
ment increases, since ∆nefft = a∆T , where a is the thermo-optic coefficient. A qualitative
assessment (which is sufficient for the current chapter) suggests that

∆nefft ↑ ⇒∆αt ↑ ⇒∆ξt ↑ ⇒∆ζt ↑ . (6.7)
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It is noteworthy that by mechanically exciting segment t of the FBG, the same effect as
Eq. (6.7) will be induced, except that the origin of the change will be from the local expan-
sion of the FBG at segment t or ∆λt . With that, the suggested setup for determining the
precise position of an FBG sensor is shown in Fig. 6.1.

Power
supply

Potentio-
meter

PXIe-4844
interrogator

Bragg
grating

optical
fibre

Kanthal
wires

1 mm

ref

d1d2wire 1

wire 2

Figure 6.1: The setup used for determination of the position of the FBG sensor. The manual switch determines
which of the two Kanthal wires, denoted by wire 1 and wire 2, will be connected to the power supply. "ref"
denotes the starting point of the sensor, and d1 and d2 are the distances of wire 1 and wire 2 from the "ref" point,
respectively.

In this setup, the Kanthal wires had a diameter of 300µm, and we passed around 1A
of current through each of them to heat them up for short periods of time, resulting in tem-
perature changes of around 250◦C. The FBG used in this chapter was a partially apodized
DTG type sensor from FBGS company, with a Bragg wavelength of 1550nm and a nominal
length of 8mm. The PXIe-4844 interrogation unit has a wavelength accuracy of 4pm, and
a dynamic range of 40 dB. The objective of this experiment is to determine lengths d1 and
d2, shown in Fig. 6.1. Also note that by design d2 ≈ d1 +1 mm. Since the relative location
of the two Kanthal wires are already known, the starting point of the sensor, depicted by
"ref" in the figure, can be determined.

In order to analyse the reflection spectrum side-lobes given in Eq. (6.5), a Hann win-
dow was applied on the reflection spectrum, starting at the centre of mass of the reflection
spectrum, given by

λBc =
∫
λλR(λ)dλ∫
λR(λ)dλ

, (6.8)

where λ is the wavelength region under investigation. The upper bound was chosen by
setting a threshold on the amplitude of the reflection spectrum, and truncating the spectrum
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Figure 6.2: (a): Reflection spectrum from a healthy FBG, along with the reflection spectra of the same sensor
when wire 1 and wire 2 were heated. (b): The associated Fourier transform of the windowed side-lobes.

outside this interval. This threshold value can be determined by the physical setup of the in-
terrogator and the sensor used, and it is based on the noise floor (in the wavelength domain)
when the sensor is connected to the interrogator. In this chapter, we assumed a threshold
equal to 2 times the maximum amplitude of the noise floor. Fig. 6.2a shows the reflection
spectra of the sample DTG sensor in Fig. 6.1, in three different time instances associated
with the unstressed sensor, and with heating of the two Kanthal wires. Applying the Hann
window on the reflection spectrum, and taking the Fourier transform of the side-lobes re-
sults in the graphs of Fig. 6.2b. Note that in Fig. 6.2b, the ’x’ axis is scaled by a factor of
∆z, and thus, the retrieved distances will be in ’mm’ rather than segment numbers.

It can be seen from Fig. 6.2b that the retrieved length of the sensor in this example is
L = fmax/(2neff) = 7.8892 mm [8]. In the first instance of locally heating the FBG via wire
1, the emerging harmonics are at f1 = 0.005336 m and f ′

1 = 0.0177 m. Note the symmetry
of the location of the new harmonics with respect to the central frequency in the Fourier
domain at fc = fmax/2 = 0.0114 m. From this first measurement, it can be deduced that
wire 1 is either at d1 = f1/(2neff) = 1.8439 mm or at d ′

1 = f ′
1/(2neff) = 6.1165 mm distance

from the reference point "ref". By inspection of the FBG reflection spectrum when locally
heated via wire 2, the retrieved distance of wire 2 from the reference point is either d2 =
f2/(2neff) = 2.8094 mm or d ′

2 = f ′
2/(2neff) = 5.0901 mm. Based on these two measurements,

and taking into account the fact that d2 ≈ d1 +1mm, it can be concluded that d1 = 1.8439
mm and d2 = 2.8094 mm, and the precise location of the "ref" point (start point of the
sensor) is determined to be at a distance of d1 from wire 1.

6.4. CONCLUSIONS AND DISCUSSIONS
In this chapter, it was shown that using two sets of measurements in a controlled setup of
locally exciting arbitrary points of an FBG sensor, the precise position of the FBG can be
retrieved. Such accurate information is beneficial in damage detection type applications of
FBG sensors, to provide information about the location of the damage (matrix cracks of
delamination tip) with a high spatial resolution. The proposed method can also be used for
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accurate marking of the sensor position on optical fibres during their production as well.
Furthermore, by altering the setup to simultaneous excitations of the two Kanthal wires at
different distances from each other, our method can work for fully apodized FBG sensors
as well.
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7
CHARACTERISATION OF

TRANSVERSE MATRIX CRACKS
IN COMPOSITE MATERIALS

USING FIBRE BRAGG GRATING
SENSORS

There was a door to which I found no key:
There was the veil through which I might not see.

Omar Khayyam

In this chapter a novel approach is proposed to characterise barely visible transverse matrix
cracks in composite structures using fibre Bragg grating optical sensors. Matrix cracks are
one of the most prevalent types of damage in composite structures, and detecting them in
the internal layers of composites has remained a challenge. In this chapter, it will be shown
that the formation of cracks in the internal layers of composite structures alters the side-
lobes of the reflection spectra of FBG sensors by adding new harmonics to them. It is then
argued that the spread and the location of these harmonics depends on both the mechanical
properties of the composite material and the location of the crack along the length of the
FBG sensor. Via computer simulations and experimental measurements these hypotheses
were validated, and the results were in agreement with our model.

This chapter is published as "Characterisation of Transverse Matrix Cracks in Composite Materials Using Fibre
Bragg Grating Sensors", by A. Rajabzadeh, R. Heusdens, R. C. Hendriks, and R. M. Groves, in IEEE/OSA Journal
of Lightwave Technology, vol. 37, no. 18, pp. 4720-4727, 2019
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7. CHARACTERISATION OF TRANSVERSE MATRIX CRACKS IN COMPOSITE

MATERIALS USING FIBRE BRAGG GRATING SENSORS

7.1. INTRODUCTION

The small diameter of FBG sensors allows them to be embedded between the layers of
composite laminates without severely changing the mechanical properties of the composite
structure [1]. This makes FBG sensors interesting for structural health monitoring of com-
posite materials. FBG sensors can provide insight into the internal layers of composites,
including internal strain and temperature measurements [1], monitoring the behaviour of
composites during the curing process [2], and for the detection of cracks and damages [3–
5]. Although the main application of FBG sensors has been in the field of point strain and
temperature measurements [6, 7], in the last few decades several studies have been carried
out on the subject of damage detection in composites, including the most prevalent types of
damages in composites such as delamination and matrix cracks.

The current study belongs to the latter category, with a focus on the characterisation of
barely visible matrix cracks that occur along the length of embedded FBG sensors within
the internal layers of composites. Within this framework, several studies have been con-
ducted in the past few decades. Although most of these methods can potentially distinguish
between a uniform and a non-uniform stress field over the composite panel, they lack the
capability of differentiating a composite part that is affected by cracks from other sorts of
non-uniform stress fields, transverse loads and birefringence effects. In [8], chirped FBG
sensors were used for crack detection. It was argued that the formation of cracks along the
length of such chirped FBG sensors will result in the emergence of dips and valleys in the
reflection spectra. The case of transversal crack formation around holes in composite struc-
tures was investigated in [9]. Chambers et al. argued that the shift of the Bragg wavelength
of FBG sensors (or equivalently a change in strain) is a measure good enough to detect
impact damages and cracks [10]. In [5, 11] Okabe et al. argued that there is an empirical
relation between the width of the FBG reflection spectra and the transverse crack density.
Based on the modelling that will be presented in this chapter, it will shown that the argu-
mentation on the empirical relation between the width of the FBG reflection spectra and the
transverse crack density given in [5, 11] is indeed correct. However, it will shown that a
widened FBG reflection spectrum can also be associated with non-uniform stress fields that
are not related to transversal cracks. The width of the FBG reflection spectrum can thus not
unambiguously be used to indicate the presence of transversal cracks.

In this chapter, the effect of transverse cracks on FBG reflection spectra will be inves-
tigated from a new perspective. A mathematical model for the analysis of FBG reflection
spectra from sensors that are affected by transverse cracks will be presented, and it will be
shown that the information regarding the formation of cracks lies within the side-lobes of
these spectra. This hypotheses will be substantiated with both computer simulations and
experimental measurements on composite coupons.

7.2. FBG REFLECTION SPECTRA UNDER NON-UNIFORM STRAIN

FIELDS

Expanding on the closed-form approximation of the side-lobes of the FBG reflection spec-
trum, presented in Section 3.4.1, the following will be obtained
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R(λ)
(a)≈

∣∣∣∣ M∑
i=1

κi∆z sinc(α−αi )e
− j

(
(M−2i+1)α+ ∑

k<i
αk−

∑
k>i

αk

)∣∣∣∣2

(7.1)

(b)=
∣∣∣∣M−1∑

i=1

ζi︷ ︸︸ ︷
(ξi −ξi+1) e

− j
(
(M−2i )α+ ∑

k≤i
αk−

∑
k>i

αk

)
+ (
ξM e j M(α−ᾱ) −ξ1e− j M(α−ᾱ))∣∣∣∣2

, (7.2)

where (a) is obtained by neglecting the products of the sinc functions with the low ampli-
tudes in the F11 and F21 elements (see [12]), and (b) follows by re-arranging the terms in
(7.1). Further,

ξi = κi∆z

2 j (α−αi )
. (7.3)

The approximation in Eq. (7.1) is most accurate in the side-lobes of the reflection spec-
trum (Chapter 3). To analyse the effect of different kinds of strain fields on the reflection
spectrum, the focus will be on the ζi terms given in Eq. (7.2) as ζi = ξi −ξi+1.

From Eq. (7.2) it can be seen that the reflection spectrum is a function of the local Bragg
frequencies (αi ), that are a function of the strain field over the length of the sensor, via the
following relation [12]

αi = ρ

λi
= ρ

λ̄B +∆λi
≈ ᾱ− ρ

λ̄2
B

∆λi = ᾱ−ks
ρ

λ̄2
B

si , (7.4)

where ρ = 2πneff∆z, and λ̄2
B is the mean of all Bragg wavelengths along the length of the

sensor, and the si ’s are the local strain values of each segment of the FBG model. Indeed,
Eq. (7.4) suggests that a linear shift in the local Bragg wavelengths (or a shift in strain along
the FBG length) results in a linear shift in the local Bragg frequencies, i.e., the αi ’s.

When the strain field along the length of the FBG sensor is smooth (no discontinuity
along the length of the FBG sensor), the ζi parameters will be small and the first M − 1
terms in Eq. (7.2) can be neglected, so that the side-lobes of the reflection spectrum can be
approximated by

R(λ)≈(κL)2 sinc2 (M(α− ᾱ))+ (ξM −ξ1)2, (7.5)

where ᾱ = ∑
(αi )/M , and L = M∆z is the sensor length. In other words, the side-lobes

of the reflection spectra will only have one dominant oscillating frequency. On the other
hand, if the strain field is not smooth and has sharp variations along the FBG length, the ζi

variables will not be negligible anymore and additional harmonics will appear.
In the next section, the effect of transverse cracks on the strain field along the sensor

length will be analysed, the highly non-uniform strain distribution they impose on the FBG
sensor, and the consequent large ζi values at the crack locations. In Section (7.4) the effect
of such large ζi values on the frequency content of the side-lobes of the FBG reflection
spectra will be investigated.
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MATERIALS USING FIBRE BRAGG GRATING SENSORS

7.3. STRAIN FIELD UNDER TRANSVERSE CRACKS
In this section, we will present a model that explains the stress behaviour of composite
materials under transverse matrix cracks in their internal layers. Consider an FBG sensor
embedded between the layers of a healthy unidirectional carbon fibre reinforced plastic
(CFRP) composite structure. Due to the brittle nature of the matrix material, under fatigue
or impact damages, matrix cracks could form in the internal layers of composite. Based
on McCartney’s theory [13], for a composite material with given mechanical properties,
the strain distribution along the length of an embedded optical fibre can be analytically
calculated. A schematic diagram of a composite structure and its dimensions is shown in
Fig. 7.1a and an FBG sensor with a length of 10mm embedded between two layers with
orthogonal unidirectional layer direction is shown in Fig. 7.1b.

(a) (b)

Figure 7.1: (a): A schematic of the cross section of the unidirectional composite structure affected by transverse
cracks in its internal layers (b): The position of the FBG sensor between the layers of the composite structure.

Based on McCartney’s theory, in the presence of transversal cracks in the middle layer
of the composite, the stress field in the 0◦ layer along the length of the FBG can be calcu-
lated as [14]

σ0
zz =σ

E0

E 0
z

(
1+ t90E90

t0E0

cosh(ηaz/l )

cosh(ηa)

)
, (7.6)

where σ is the axial stress applied to the composite structure, E0 and E90 are the Young’s
moduli of the 0◦ (in the optical fibre direction) and the 90◦ plies respectively. The parame-
ters t0 and t90 are the thicknesses of the 0◦ and 90◦ plies, denoted in Fig. 7.1a, l is half the
distance between the two consecutive cracks, and a = l

t90
is the aspect ratio of the transverse

cracking. The parameter η is the load transfer parameter given by

η2 = 3(1+ 1

υ
)

GE 0
z

E0E90
, (7.7)

in which υ= t0
t90

is the ply thickness ratio, G is the shear parameter (refer to [14]), and E 0
z is

the longitudinal Young’s modulus of the undamaged laminate, given by

E 0
z = υE0 +E90

1+υ .
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The strain field along the z direction is then calculated as

s0
zz =

σ0
zz

E0
.

In the above equations the effect of thermal expansion, which is the result of the difference
between the manufacturing temperature and operating temperature, is neglected for two
reasons. The first is that its effects are comparatively small on the strain distribution, and the
second is that in the current application the variations of the strain field are of importance,
and thermal expansion effects (and also the residual thermal stress from the curing process)
only add an offset to the calculated strain field. It is noteworthy that McCartney’s theory
is derived with the assumption that the transversal cracks are equally spaced. In reality
that is generally not the case, but the effect of this non-uniformity in the distribution of
cracks on the strain distribution is negligible [5]. In this study, we will focus on transverse
crack formation in two different types of composites, namely carbon fibre and glass fibre
composites. In Section 7.5 we will discuss the layup and the materials in more detail.
Nevertheless, it is important to emphasise that the shape of the strain peaks along the length
of the sensor, their amplitude, and their width depends on the axial stress, the physical
dimensions and the mechanical properties of the composite structure. Fig. 7.2 shows the
axial strain distribution along the length of an FBG sensor that is embedded between the
layers of a carbon fibre composite, with two transverse cracks along its length, calculated
with McCartney’s theory and using the properties given in Table 7.1 (table is presented in
the next section).
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Figure 7.2: The strain distribution along the FBG length embedded between the layers of a carbon fibre composite
structure, calculated using McCartney’s theory at σ= 550MPa.

7.4. FBG REFLECTION SPECTRA UNDER TRANSVERSE CRACKS
In Section 7.2 it was mentioned that when we have sharp strain changes along the length of
the FBG sensor, the first terms in Eq. (7.2) are not negligible anymore. A particular example
of such strain fields is when the sensor is in contact with transverse cracks in composite
structures (similar to Fig. 7.2). Suppose there are N arbitrarily distributed cracks along the
FBG length located at segments tp , p = 1,2, ..., N . In this case, the largest changes of the
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strain field are expected at the boundaries of each segment tp . Consequently, the largest
values of the ζi parameters will be at the boundaries of segment tp as well. Therefore, Eq.
(7.2) can be rewritten as

Rc (λ) ≈
∣∣∣∣ ∑

i∈Ic

ζi e
− j

(
(M−2i )α+ ∑

k≤i
αk−

∑
k>i

αk

)
(7.8)

+ ∑
i∈I

ζi e
− j

(
(M−2i )α+ ∑

k≤i
αk−

∑
k>i

αk

)
+ξM e j M(α−ᾱ) −ξ1e− j M(α−ᾱ)

∣∣∣∣2

,

where I = {t1−1, t1, t2−1, t2, ..., tN −1, tN }, and Ic =Ω\I is the complement of the set I

in Ω= {1,2, ..., M }. Note that in the case of having both the magnitude and phase spectrum,
one can take the Fourier transform of the side-lobes of the reflection spectrum where each
of the non-negligible exponential terms in Eq. (7.8) will be translated into a unique peak
in the Fourier domain. In that case, an exact localisation of the transverse cracks along the
FBG length can be obtained. However, since practically the most convenient methods of
FBG interrogation only have access to the magnitude of this spectrum, the focus will be on
the amplitude of the reflection spectrum in this study.

In Eq. (7.8), the largest contribution of the ζi terms to the amplitude is due to the
second summation (corresponding with i = tp −1, tp ). With that in mind, Eq. (7.8) can be
approximated as

Rc (λ) ≈
M−1∑
i=1

|ζi |2 +
∑∑
i ,k∈I

ζiζ
∗
k e j

(
(2i−2k)α+θk−θi

)
(7.9)

+∑
i∈I

2Re[ζiζ
∗
M ]cos

(
(2M −2i )α+θi −Mᾱ

)−∑
i∈I

2Re[ζiζ
∗
1 ]cos

(
(2i )α−θi −Mᾱ

)+Rr +Rs ,

where θi = ∑
k≤i

αk − ∑
k>i

αk , Rs is the reflection spectrum for smooth strain fields given in

Eq. (7.5), and Rr is the summation of the remaining terms with lower amplitudes than the
ones mentioned in Eq. (7.9), which are the cross terms resulting from the first summation
term in Eq. (7.8). As seen from Eq. (7.9), the formation of each transverse crack at loca-
tion t along the length of the FBG model results in the emergence of new harmonics at
the angular frequencies ω= 2M −2t and ω= 2t . Additionally, for every two cracks along
the FBG length at locations i and k, there will be a non-negligible cross term with oscil-
lation frequency of ω = 2(i −k). Furthermore, it can be seen from Eq. (7.9) that for each
crack at segment tp , each summation term consists of pairs of harmonics corresponding
with i = {tp −1, tp } (associated with large strain changes before and after the crack). Conse-
quently, the emerging harmonics due to these consecutive segments are only separated by
a frequency distance of ω= 2. Due to the decaying nature of the ζi terms in the α domain,
the harmonics associated with each of these segment pairs overlap in the Fourier domain.

In order to analyse these new emerging harmonics, the Fourier transform of the side-
lobes of the FBG reflection spectrum can be taken when the FBG sensor is in contact with
transverse cracks. However, using a rectangular window will result in spectral leakage in
the Fourier domain. In order to resolve this problem, and to also avoid the ambiguity of
defining a proper range for the side-lobes, we propose replacing the rectangular window
with a Hann window [15]. In this chapter, the lower bound of the window is chosen to be
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Figure 7.3: (a): Reflection spectrum of a sensor near two cracks and the scaled Hann window. (b): Fourier
transform of the windowed side-lobes for both stressed and unstressed sensors.

at the centre of mass of the reflection spectrum, given by

λBc =
∫
λλR(λ)dλ∫
λR(λ)dλ

, (7.10)

where λ is the wavelength region that covers the reflection spectrum. The upper bound of
the window is case dependent and is set by the user. It should cover the wavelength region
where the side-lobes’ amplitudes are above the noise level. After applying this window
(w), the Fourier transform of Eq. (7.9) will be calculated, resulting in

F {Rc } ≈F {Rr w}+F {Rs w}+
M∑

i=1
F {|ζi |2w} (7.11a)

+4
∑

i ,k∈I , i<k
Ψi ,k (ω∓ (2i −2k))e±(θk−θi ) (7.11b)

+4
∑

i∈I

Ψi ,M (ω∓ (2M −2i ))e±(θi−Mᾱ) (7.11c)

−4
∑

i∈I

Ψi ,1(ω∓2i )e±(−θi−Mᾱ), (7.11d)

where Ψi , j (ω∓ (2i −2 j )) =F {Re[ζiζ
∗
j ]w}∗δ(ω∓ (2i −2 j )), and ∗ denotes the convolution

operator. Based on equations Eq. (7.11a) through Eq. (7.11d), a single peak in the strain
distribution results in 4 new peaks in the Fourier domain in Eq. (7.11c) and Eq. (7.11d)
(plus 6 other peaks that overlap with already existing harmonics), and two cross terms
that emerge for each pair of peaks in the strain distribution in Eq. (7.11b). Out of these
harmonics, the harmonics at ω= {0,±2M } (included in the F {Rs } term) are always present
and are independent of the strain field to which the sensor is subjected. Note that there are
several other harmonics within the F {Rr } term in Eq. (7.11a) as well. However, since in the
transverse crack scenario, the amplitude of all the ζi for ∀ i 6= {tp −1, tp } terms are smaller
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than ζtp−1 and ζtp , the corresponding F {ψi w} terms will also have smaller amplitudes and
will not form new peaks.

As mentioned before in this section, for N transverse cracks along the FBG length, there
will be 2(

(N
2

)+2N ) new harmonics in the Fourier domain with relatively large amplitudes.
In the case that the number of transverse cracks along the FBG length increases, it is likely
that due to the limited resolution, several of the new peaks in the Fourier domain appear to
be overlapping. This makes the localisation of the cracks challenging for the cases where
more than one or two cracks along the length of the sensor are formed, without any prior
knowledge about the strain field. However, for early stages of crack formation (having
one or two cracks along FBG length), this information can be used to precisely localise
the cracks as well (except for a reflection line of symmetry ambiguity). Furthermore, by
choosing FBG sensors with shorter lengths, the spatial resolution can be improved.

In order to visualise the analyses, the focus will be on transverse crack formation in
two different types of composites, namely carbon fibre and glass fibre composites. The
mechanical and physical properties of the materials that were used in this study are listed
in Table 7.1.

Table 7.1: Mechanical properties of the composite structure (using the data in the datasheet of the Hexply 8552
and [16]). The FBG sensor is embedded in the 0◦ layer, in the proximity of the 90◦ layer and the cracks.

Material Carbon fibre Glass fibre
Elastic moduli (GPa) E0 148 36.5

E90 9.57 12.6
Shear modulus (GPa) Gxz 5.6 3.9

Dimensions (mm) t0 0.732 0.34
t90 1.46 0.51

Axial stress (MPa) σ 550 250

Consider the strain field given in Fig. 7.2 in a carbon fibre composite material, where
the transverse cracks are located at z = 2.5mm and at z = 8.5mm from the start of a
simulated FBG sensor with a total length of 10mm and a nominal Bragg wavelength of
1550nm. The calculated reflection spectrum in response to the FBG sensor being sub-
jected to such a strain field is shown in Fig. 7.3. The FBG model was assumed to have
M = 500 segments, therefore, the location of the crack will lie within the t1 = 125’th
and t2 = 425’th segments. In all the computer simulations in this study, an additive zero
mean Gaussian noise was considered on the ac amplitude of the refractive index of the
core (SNR = 18dB), and also on the grating period of the FBG structure. This addi-
tive noise could lead to the emergence of new arbitrary peaks in the Fourier domain be-
tween ω = 0rad and ω = 1000rad angular frequencies, but for an unstressed sensor, they
have much lower amplitudes than those resulting from transverse cracks. From equations
Eq. (7.11b) through Eq. (7.11d) it is expected to see new peaks emerging at angular fre-
quencies ω= {0,±150,±250,±600,±750,±850,±1000}rad.

As seen from Fig. 7.3, new peaks have emerged in the Fourier transform of the side-
lobes of the reflection spectra at the predetermined frequencies, which are more noticeable
in the stressed sensor signal when compared with the healthy unstressed sensor signal (Fig.
7.3b).
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Figure 7.4: (a): Strain distribution along the length of the sensor when subjected to 6 transverse cracks, at
σ = 250MPa (b): Reflection spectrum of a sensor near six cracks and the scaled Hann window. (b): Fourier
transform of the windowed side-lobes of the reflection spectrum.

In a second computer simulation, a glass fibre composite material was considered, of
which the physical properties are given in Table 7.1. In this example the composite structure
was assumed to have 6 cracks along the length of the FBG sensor. The resulting reflection
spectrum, and the Fourier transform of its side-lobes, are given in Fig. 7.4. Based on the
discussions, for 6 transverse cracks, it is expected to have 54 new peaks in the Fourier do-
main. However, due to the overlap of several of these peaks, there are only 14 peaks visible
in the figure, which mostly correspond with cross terms that are defined in Eq. (7.11b) (due
to their relatively higher amplitudes).

7.5. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, our hypotheses will be validated using experimental measurements. For
this purpose, embedded FBG sensors were used within the layers of two different types
of unidirectional (UD) composites. In the first example, AS4-UD carbon/Hexply 8552
prepreg sheets from Hexcel corporation were used, with the layup of [04,9016,04], and an
FBG sensor with a length of L = 10mm embedded between the 4th and 5th layer of the
composite (at the interface of the 0◦ and 90◦ layers). The precise position of the FBG
sensor was determined by using the methods presented in Chapters 5 and 6.

The curing process specified in the datasheet of the material was followed. The FBG
sensor was a DTG type sensor from the company FBGS, with a nominal Bragg wavelength
of λn = 1570nm. The DTG sensors had an Ormocer coating, which according to the pro-
ducing company, allows a 1:1 strain transfer to the sensor. The mechanical and physical
properties of the material are given in Table 7.1. After the production, the specimens were
cut into coupons of 2.5 by 15 centimetres, with the FBG at the centre of the coupon. The
specimens were then subjected to a quasi-static test using a 100kN MTS machine, where
the tensile stress was increased from σ= 50MPa to σ= 400MPa in steps of ∆σ= 10MPa.

The FBG reflection spectra were recorded using a PXIe-4844 FBG interrogator from
National Instruments, which has a dynamic range of 40dB and a wavelength resolution of
4pm. Also, in order to localise the cracks, a camera was placed facing the side of the spec-
imens (therefore directly viewing the crack formation in the 90◦ layers of the composite,
as seen in Fig. 7.5a). As expected from our model and the literature, before the formation
of the cracks the FBG reflection spectrum held its general shape without much difference
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during the tensile test. It is noteworthy that since the curing of the carbon fibre panel was
performed in an autoclave with pressures as high as 8bar, there was already a residual trans-
verse load on the FBG sensor. Therefore, even a sensor in an unloaded coupon was already
affected by birefringence effects and had a widened reflection spectrum (widened by more
than 2 times), and hence the asymmetrical shape of the sensor at the start of the experiment.
Right after the formation of the first crack, the reflected spectrum changed shape and new
harmonics were created.
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Figure 7.5: (a): Carbon fibre specimen under a quasi-static tensile test, (b): Reflection spectra of the FBG before
any cracks (blue) and after the formation of a crack (red), and (c): Fourier transform of the windowed side-lobes
of the reflection spectrum.

Fig. 7.5 shows the specimen under tensile testing, the FBG reflection spectrum before
and after crack formation, and the emerged new harmonics in the Fourier transform of the
side-lobes of the reflection spectrum. As seen from this figure, at this particular time during
the test (at σ = 330MPa), one single crack was formed at location z = 1.65mm from the
start of the sensor, which results in the emergence of two additional peaks at ω= {165,835}
rad in the Fourier domain. The resulting new harmonics due to this crack are shown in Fig.
7.5c, and it can be seen that they are located at the expected locations with respect to the
location of the crack.

In the second experiment, UD glass fibre materials from Saertex GmbH were used, with
a density of 228g/m2, a layup of [02,906,02] and an overall thickness of 1.65mm. The FBG
sensors were embedded between the 2nd and the 3rd layers of the composite (again at the
interface of the 0◦ and 90◦ layers). For this material, the fusion method was used to produce
the composites, from Epikote 04908 resin and curing agent from Hexion Ltd. The material
was initially cured at room temperature for 24 hours, and then for 6 hours in the oven at
80◦C and at a pressure of 1000mbar. After the curing process, the specimens were cut
into 3 by 25 centimetre coupons, with the FBG sensor at the centre of the coupon. For this
example we also used a camera to record the crack formation, but since glass is translucent,
the camera was facing the surface of the material, and the formation of the cracks in the
internal layers of the composite were seen from the surface. The GFRP specimens were
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subjected to a similar test as the CFRP specimens, but starting at σ= 10MPa to σ= 150MPa
in steps of ∆σ = 5MPa, as the GFRP specimens were less stiff than the CFRP specimens
used in this study.
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Figure 7.6: (a): Glass fibre specimen under a quasi-static tensile test, (b): Reflection spectra of the FBG before any
cracks (blue) and after the formation of two cracks (red), and (c): Fourier transform of the windowed side-lobes
of the reflection spectrum.

Fig. 7.6 shows the specimen under tensile test at σ = 50MPa, where two transverse
cracks have already formed at locations z = 6mm and z = 7.68mm from the start of the
sensor. The localisation of the cracks from the recorded images was performed by visu-
ally comparing consecutive images at different force loads. The FBG reflection spectra
before and after crack formation, and the emerged new harmonics in the Fourier transform
of the side-lobes of the reflection spectrum are also shown in this figure. Also note that
since the sensor did not undergo high transverse pressures during its production, the FBG
reflection spectrum looks more pristine and is less affected by birefringence effects. Given
the locations z = 6 mm and z = 7.68 mm, we expect the emergence of additional peaks
at ω = {600,768,400,232,336}rad in the Fourier domain, which correspond well with the
resulting peaks from the experiment. Note that in both experiments, since the number of
cracks were limited to just 1 or 2, the cracks could also be localised. But having more than
2 cracks and having no access to the phase of the reflection spectrum will make their local-
isation much more difficult.

As it is evident from these experiments, our model could perfectly explain the emer-
gence of the new peaks in the Fourier transform of the side-lobes of the reflection spectrum,
and the peaky nature of the strain field due to the transverse cracks has a clear effect on these
new harmonics. It can be also seen that birefringence effects and other noise sources did not
affect the results. Note that the sensors used in these experiments were partially apodized,
and hence, the lower amplitude of the ω= 1000 peaks compared with the simulated exam-
ples.

As a last example, we tried to create a widened FBG reflection spectrum under a smooth
non-uniform strain field, without having any cracks along the FBG length. A three point
bending test (loading pin on the sensor location) was applied on one of the glass fibre spec-
imens with an embedded FBG. Due to the non-uniformity of this strain field, the resulting
reflection spectrum (shown in Fig. 7.7) became wider (the FWHM of an unstressed sen-
sor was 84 pm, and it was widened by three times under the test), however, as seen from
Fig. 7.7b, no meaningful new harmonics have been added to the Fourier transform of the
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side-lobes of the reflection spectrum.
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Figure 7.7: (a): Reflection spectrum of an FBG under a three point bending test, (b): Fourier transform of the
windowed side-lobes of the reflection spectra from the stressed and unstressed sensor.

In summary, it was argued that if there is a sudden change of strain distribution along the
FBG length, it will have a direct effect on the reflection spectrum side-lobes. In this chap-
ter, this phenomenon was analysed in the formation of transverse cracks in uni-directional
composite materials, but it can be extended to any other structure or material as well, in-
cluding metals or concrete. The conditions that need to be met in order to perceive this
effect are firstly, a direct contact of the sensor with the sharply varying strain field, and
secondly, a high enough strain peak amplitude. The latter condition depends on the type
of sensor in use, and also, the host material under investigation. For instance, in the glass
fibre composite specimens with the given dimensions used in this study, and using DTG
type sensors, computer simulations suggest that a strain peak of around 400µε will result
in distinguishable new harmonics in the Fourier transform of the FBG reflection spectrum
side-lobes, whereas for the carbon fibre specimens, this value was around 300µε, which is
due to the stiffer nature of the carbon fibre samples. With that in mind, it should be noted
that in the laboratory experiments, the first cracks were forming under strain peak values
of more than 1000µε, which is already far more than the theoretical sensitivity threshold of
the FBG sensors.

7.6. CONCLUSIONS
In this chapter a clear relationship between the transverse cracks along the length of FBG
sensors, and the emergence of new harmonics in the Fourier transform of the side-lobes of
the FBG reflection spectra was demonstrated. It was argued that the mere widening of the
FBG reflection spectra is not a reliable measure for detection of cracks, as it might also
occur in response to other types of non-uniform strain fields, and we suggested to focus on
the information in the side-lobes of the reflection spectra as a more reliable indication of
cracks along the sensor length. Our model was validated with both computer simulations
and experimental measurements, and the results were in good agreement with our model.
Future works in this subject could include analysis of the crack formation in different layup
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configurations of composite materials, and their effects on the FBG reflection spectra. Also,
extending the current model to the other types of damages in composite structures could also
be beneficial to the community.
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8
ACCURATE DELAMINATION TIP

MONITORING OF LAMINATED
COMPOSITES IN MODE-I

FATIGUE TESTS USING FBG
SENSORS

She had never imagined that curiosity was one of the many masks of love.

Gabriel Garcia Marquez, Love in the Time of Cholera

One of the most common and crucial types of damages in composite structures is the delam-
ination of composite laminates. Therefore, there has been a lot of research on the behaviour
of delaminated composite materials under fatigue and tensile tests, where uncertainty in
determining the crack tip position can adversely affect the accuracy of the experimental
results. Due to the formation of the delaminated areas in the internal layers of compos-
ites, localising the delamination tip and determining its growth rate with the state-of-the-art
structural health monitoring methods can be time consuming, and/or provide a limited spa-
tial resolution. Moreover, the commonly used delamination growth monitoring method
based on camera images of the sides of the composite specimens does not account for the
non-uniform delamination tip growth across the delamination plane, and only provides in-
formation about the (visible) outer edge of the delamination plane. Further, using camera

*This chapter is submitted to the Journal of Experimental Mechanics as "Accurate Delamination Tip Monitoring
of Laminated Composites in Mode-I Fatigue Tests Using FBG Sensors", by A. Rajabzadeh, R. C. Hendriks, R.
Heusdens, and R. M. Groves, 2020
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images for delamination tip monitoring limits the designed setup of the fatigue test, as the
delamination tip must always face the camera. In this chapter, we will present a novel ap-
proach using fibre Bragg grating sensors, for accurate, distributed and dynamic localisation
of the delamination tip in composite materials with sub-millimetre accuracy.

8.1. INTRODUCTION
Laminated composites are used extensively in recent aerospace applications. Their versa-
tility and flexible design, have enabled researchers and engineers to tailor the physical and
mechanical properties of the overall composite product based on their needs [1]. However,
despite their high strength and stiffness, laminated composite structures are susceptible to
fatigue and impact damages, and the progression of the damage under different loads hugely
depends on the layup, fibre orientation, and the composition of the laminated composite
structure. For these reasons, there is a lot of demand for reliable and accurate structural
health monitoring techniques for behavioural analysis of laminated composite materials
when affected by such defects [1]. Among the different damage types in laminated com-
posites, delamination of the layers is among the most prevalent ones [2]. However, due
to the complicated mechanical response of these materials under different layups, and the
non-uniform strain fields from delamination cracks, a reliable and high-speed experimental
analysis of the progression of such damages has remained a challenge.

Currently, methods such as ultrasonic scanning [3, 4], Terahertz sensing [5], acoustic
emission [6], thermography [7], and shearography [8], are among the most commonly used
tools to gather information about the damage state in composites, and in particular, on the
detection of delamination. However, these methods can be time consuming, rely heavily on
the expertise of the operator, limit the type of reinforcement fibres used for the composite,
or have a poor spatial resolution. There have also been alternative studies in which fibre
optic sensors or fibre Bragg grating sensors were used for delamination size and growth
direction monitoring. In [9] it was shown that there is a relationship between the delamina-
tion length and the changes measured in the spectrum of chirped Bragg gratings. In [10],
FBG sensors were used to monitor the low velocity impact induced delamination in com-
posites. A similar comparison was made between the bandwidth and the intensity level of
FBG reflection spectra, and the delamination length in woven composites in [11]. In [12],
Farmand et al. used an integrated multiplexed system of short FBG sensors (each with
a length of 1 mm and 3 mm spacing between each two consecutive sensors) to monitor
the progression of the delamination crack quasi-distributedly. However, in studies of this
kind, the spatial resolution is usually poor, and an accurate determination of the crack tip
is not offered. Along the same lines, in [13] Sorensen et al. proposed a method using long
FBG sensors (in the range of 22 to 35 mm long sensors) and optical low coherence reflec-
tometry (OLCR) to calculate the complex FBG reflection spectrum, and then iteratively
reconstruct the strain distribution along the FBG length under delamination defects, using
which, the crack tip was calculated. Using the same OLCR interrogation approach, Sans et
al. also presented a method for identification of the crack tip in mixed-mode delamination
defects [14]. Although the accuracy and the spatial resolution of these approaches are high,
they are time-consuming (both the interrogation and the data processing), and multiplexing
several sensors and interrogating multiple delamination paths is cumbersome and requires
several parallel interrogation systems.
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Another approach that is often taken in monitoring the delamination tip growth, is to use
camera images from the side of the composite specimen [13, 15, 16]. This method provides
useful information about the current state of the delamination tip in real time, and with high
accuracy, however, it only monitors the delamination tip from the side of the specimen. As
shown in [17] and also later in this chapter, the delamination growth plane in composites
can be non-uniform across the specimen. Therefore, camera images overlook the non-
uniform damage growth across the delamination plane. Furthermore, using camera images
for delamination monitoring limits the test setup, as the delamination tip must always face
the camera.

In this chapter, we propose a novel approach, in which we use commercial uniform fibre
Bragg grating (FBG) sensors to accurately, reliably, and dynamically monitor the delami-
nation plane growth in composite materials in mode-I fatigue and tensile tests. Based on
finite element modelling and previous studies [9, 14], we make in this study the underlying
assumption that there is a sudden strain change at the delamination tip in composites. Based
Chapters 3 and 7, we know that a sudden strain change along the FBG length translates into
an addition of a new harmonic frequency in the FBG reflection spectrum. We will show
that the peak frequency of this newly added harmonic, linearly depends on the location of
the delamination tip along the FBG sensor. Monitoring the frequency of he newly added
harmonic, we can accurately determine the delamination tip location in the internal layers
of the composite material. Furthermore, due to the small diameter of FBG sensors, mul-
tiple optical fibres can be embedded between the composite layers parallel to each other,
without severely altering the structural integrity of the composite [18], to provide us with
a semi-distributed delamination tip monitoring across the entire delamination plane. We
will validate the claims made in this chapter with computer simulations and experimental
measurements.

8.2. DELAMINATION TIP MONITORING METHOD
In progressive delamination type damages that occur in the embedded FBG area, such as
those found in mode-I fatigue and tensile tests, the delamination propagation is mostly
confined within the delamination plane. Specifically, in mode-I delamination tests, the
delamination tip along the FBG length will start at one end of the sensor, and progresses
through its whole length. In this case, using the closed-form representation of the FBG
reflection spectrum (embedded along the delamination plane), we will obtain

R(α)≈
M−1∑
i=1

|ζi |2 +2Re[ζtζ
∗
M ]cos

(
(2M −2t )α+θt−Mᾱ

)
−2Re[ζtζ

∗
1 ]cos

(
2tα−θi −Mᾱ

)+Rr +Rs . (8.1)

Eq. (8.1) shares the same set of parameters as Eq.(7.9) in the previous chapter. From
Eq. (8.1) it can be seen that at the start of the delamination, i.e., for t = 1, the additional
harmonic (due to the delamination) will overlap with the harmonic already present in the
term Rs (which is present already under uniform stress) having the maximum frequency
of ω= 2M . As the delamination progresses, the frequency of the additional harmonic will
monotonically decrease towards lower frequencies. As discussed in the previous section,
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Algorithm 3 Delamination tip monitoring algorithm

1: Determine the side-lobes of the FBG reflection spectrum by setting a threshold on the
amplitude.

2: Apply a Hann window [19] on the reflection spectrum side-lobes, and take the Fourier
transform of the windowed signal.

3: Determine the angular frequency of the highest frequency component in the Fourier
transform signal.

4: Track the angular frequency of this high frequency component as the delamination tip
progresses.

assuming that the delamination tip has reached the t’th segment of the FBG, the associ-
ated high amplitude harmonic frequency will be at ω = 2M −2t . From this frequency, the
location of the delamination tip can be continuously monitored. In summary, the delamina-
tion tip monitoring algorithm can be expressed as Algorithm 3. In step 1 of this algorithm,
the window function boundaries were chosen based on the noise floor of the interrogator
system with the FBG sensor was connected to it. The upper bound of the window was set
at a wavelength at which the amplitude of the reflection spectrum passed a threshold of
two times the maximum amplitude of the noise floor. The lower bound of the window was
chosen with a fixed distance from the upper bound, as long as it does not cover the main
lobe of the reflection spectrum. In the experiments of this chapter, the window length was
assumed to be 2 nm. The experiments of this chapter showed that as long as the main lobe
of the spectrum is not included in the window, the choice of the window boundaries has
little effect on the accuracy of the delamination monitoring algorithm, but it can alter its
precision up to a few tens of micrometers. As an example, Fig. 8.3 shows the relationship
between the angular frequency of the new harmonics, and the position of the delamination
tip along the FBG length. The choice of the window function (changing the upper bound
threshold and a fixed 2 nm window length) in this example could change the offset of the
linear regression in Fig. 8.3d by as much as 0.12 mm, but did not have a noticeable effect
on its slope.

In the following sections we will also investigate the effect on the performance of our
delamination tip monitoring algorithm of embedding the sensor in other layers of the com-
posite that are not in the delamination plane. This effect will be first discussed in the next
section, with finite element analysis of the composite specimens under mode-I tensile tests.

8.3. FINITE ELEMENT ANALYSIS
In this section, we will use finite element analysis (FEA) to model the behaviour of a unidi-
rectional glass fibre composite material under mode-I delamination. The mechanical char-
acteristics of the glass fibres used in the FEA are the same as the materials used in the
experimental measurements, with longitudinal and transverse moduli of E0 = 36.5 GPa,
E90 = 12.6 GPa, respectively, and an in-plane shear modulus of G = 3.9 GPa [20]. These
properties belong to glass fibres from Saertex GmbH, with a density of 228 g/m2, a layup
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Figure 8.1: 2D finite element model of a mode-I delamination test in a glass fibre composite material. The colour
bar shows the longitudinal strain values.

of [904, 08, 904], and an overall thickness of 2.7 mm. The dimensions of the specimens are
20×5 cm, and the delamination is assumed to start from the side of the specimen between
the 8th and the 9th layer. The initial opening had a length of 2 cm, and a cohesive model
was assumed between each pair of two laminates with different fibre orientations. The sim-
ulations were performed in ABAQUS software, with a mesh size of 0.1 mm and a presumed
2D model. With that, we applied a symmetrical displacement of 5 mm on the specimen (see
Fig. 8.1).

The axial strain was calculated along three different paths along different layers of the
composite, along the x direction, which is parallel to the 0 degree laminates and the em-
bedded optical fibre. The first path was in the delamination plane (called the delamination
path throughout this chapter), the second path was at the interface of the 0 degree and the
90 degree layers (at a distance of around 0.7 mm from the delamination plane and called
middle path in this chapter), and the final path was on the surface of the specimen (called
top path throughout the chapter). The resulting axial strain distributions at a certain time
and along all three paths are plotted in Fig. 8.2a, and their corresponding derivatives are
plotted in Fig. 8.2b. In these figures, the location of the delamination tip is at a position
where the derivative of the strain field along the delamination path reaches its peak, which
is at a distance of 4.1 mm along the FBG length.

As is evident from these figures, the distances at which the derivative of the strain field
is at its peak have small differences from each other along different paths. In the middle
path, this peak is located at a distance of 0.3 mm from the delamination path, and in the
top path, it is located at a distance of 0.6 mm from the delamination path. However, these
simulations suggest that an FBG sensor along each of these paths would experience a large
enough strain difference along its length to be used as a delamination monitoring sensor.
This is obviously regardless of the fact the sensor is under tension (in the delamination
plane) or under compression (in the middle or top planes).
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Figure 8.2: (a): The strain distribution along the FBG sensor embedded or surface mounted on a composite
affected by delamination. (b): The derivative of the strain field along the FBG length at different distances from
the delamination plane.

It is noteworthy that in the results of this section, only the trend of the strain field at the
delamination area is of interest. There are several factors that contribute to the amplitude of
the strain distribution and the delamination growth rate (such as the elastic moduli and the
thickness of the adhesive layer between the laminates), and a precise comparison between
the finite element model results, and those from the laboratory experiments are beyond the
scope of this chapter. However, the sharp strain shift at the delamination tip is a mutual trait
in all such results, even within an order of magnitude of variation for the adhesive layer
dependent parameters.

The hypotheses of this section will be tested in the experimental results section. In the
next section, these strain fields will be used as input to the forward transfer matrix model,
in order to test the performance of the delamination tip monitoring algorithm in computer
simulations.

8.4. EXPERIMENTS AND RESULTS
In this section, we will first use computer simulations to visualise the performance of our
delamination tip monitoring algorithm. Afterwards the algorithm will be validated with
laboratory experiments and FBG recordings under mode-I tensile tests.

8.4.1. COMPUTER SIMULATIONS
In this subsection, we use the axial strain fields that were generated from the finite element
analysis in the previous section and input them to the transfer matrix model to generate
the corresponding FBG reflection spectra. In the experiments of this section, we consider
a uniform FBG sensor of length 10 mm, with a Bragg wavelength of 1550 nm, and the
FBG model was assumed to consist of M = 500 piece-wise uniform segments. As the
delamination damage progresses along the FBG sensor, the strain fields were calculated
at different time instances using the finite element model. Fig. 8.3a shows a number of
these strain fields that were calculated along the delamination plane and at different time
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instances. It can be seen from this figure that as the delamination is progressing along the
FBG length, the peak of the strain field is shifted along the FBG length.
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Figure 8.3: (a): The strain distribution along the FBG length (from the FEM), resulted from the progression of the
delamination defect in the delamination plane. (b): FBG reflection spectra at different delamination stages along
the sensor length. The window length for the side-lobes selection was assumed to be 2 nm. (c): The amplitude of
the Fourier transform of the side-lobes. The progression of the delamination defect is linearly translated into the
shift of theω= 2M−2t frequency component to lower frequencies. (d): The linear dependence of the delamination
tip position and the estimated delamination tip location retrieved from the FBG sensor.

Using the axial strain fields of Fig. 8.3a and the transfer matrix model [21], the corre-
sponding FBG reflection spectra were calculated (Fig. 8.3b). Then, the Fourier transform
of the side-lobes (shown in Fig. 8.3b) were calculated and depicted in Fig. 8.3c. Finally,
the linear dependence of the maximum harmonic frequency (ω= 2M −2t) and the delam-
ination tip location along the FBG length, was plotted and is shown in Fig. 8.3d. It can be
seen from Fig. 8.3d that the linear regression line has a small offset of 0.0374 mm. This
small offset, is due to the uncertainty in the choice of the side-lobes region and its length.
However, once these values are set, the estimator can be calibrated with another reference
method to remove this bias.

The algorithm was also run on virtual FBG reflection spectra that were embedded in the
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middle layer (in the intersection of the 0 degree and 90 degree layers of the composite), and
surface mounted on the top of the specimen. As expected from Fig. 8.2b and depicted in
Fig. 8.4a, the estimated delamination tip location from the virtual FBG sensor in the middle
path and in the top path of the composite have a small offset compared to the retrieved
tip from the delamination plane. Hence, the offset values get larger the further the sensor
is from the delamination plane. Also, note that since in the middle layer and on the top
layer, the strain field is compressive, the window function was applied on the flip side of
the reflection spectra (at lower wavelengths). The compression or tension effect on the
sensor in these delamination defect setups can be determined by looking at the position of
the main lobe of the spectrum. If the side-lobes progress towards lower wavelengths, it can
be concluded that the load is compressive, and vice-versa for the tensive loads. A sample
reflection spectrum of a virtual FBG sensor on the top layer is shown in Fig. 8.4b. As shown
in Fig. 8.4a, the offset values associated with the linear regressions of the FBG outputs at
the middle path and top path correspond well with the location of the derivative peaks of
their associated strain fields (see Fig. 8.2b). For example, the offset value of the regression
line from the FBG output at the top layer is 0.5878, which represents the relative derivative
peak shift of the strain field at the top layer with respect to the delamination plane, which
was around 0.6 mm (see Fig. 8.2b).
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Figure 8.4: (a): Different offset values for the linear regression along different composite planes. (b): The effect
of the compressive strain field of the delamination defect on the FBG reflection spectrum on the top layer of the
composite.

8.4.2. LABORATORY EXPERIMENTS
EXPERIMENT SETUP

In this part, we will analyse the FBG reflection spectra from laboratory experiments. The
FBG sensors were from the company FBGS, with Bragg wavelengths at 1530, 1550 and
1570 nm. The fibres had an Ormocer coating, that according to the producing company
allows a 1:1 strain transfer to the sensor. In particular, based on the finite element modelling
results presented in [22], for the cases where the difference between the Young’s modulus
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of the host material and the optical fibre is not significant, and also the cases where the
thickness of the laminates are thick in comparison with the optical fibres, the strain transfer
increases and becomes more stable. This is also the case with the experiments of this study.

The length of the sensors is 10 mm, with reflectivity levels of around 40 percent. The
FBG sensors were interrogated using a PXIe-4844 tunable laser Fabry-Perot based inter-
rogator from National Instruments, with a wavelength resolution of 4 pm, and a dynamic
range of 40 dB. The outputs were recorded using LabVIEW software from National Instru-
ments, and the recorded signals were then processed in MATLAB R2019a.

For the composite materials, we chose uni-directional glass fibres, with a configuration
and mechanical properties similar to that of section 8.3. The optical fibres, containing the
FBG sensors were embedded between the composite layers, one in the delamination plane
and one in the middle plane (between the 0 degree and the 90 degree layers). The initial
delamination was induced at the side of the composite panel, between the 8th and the 9th
layer, by putting a 5 cm wide sheet of Kapton tape between them. The layup was then cured
at room temperature in a vacuum bag for 24 hours. The composite panel was then cut into
specimens of size 20×5 cm.

After adhering handles on the specimens, they were subjected to a mode-I quasi-static
tensile test with a 10 kN material tensile test machine from Zwick. A side-view of the
specimen halfway through the test is shown in Fig. 8.5a, and a top view of the specimen
is shown in Fig. 8.5b. A microscopic image of the delaminated area, and its non-uniform
propagation across the width of the specimen is shown in Fig. 8.6.

(a) (b)

Figure 8.5: (a): The side-view of the specimen at a time instance during the mode-I tensile test. (b): The top view
of the same specimen at the same time instance, and the position of the FBG sensor between the laminates.

In the introduction section, we argued that the delamination front progressing through
the delamination plane was expected to be non-uniform across the width of the specimen.
This means that for the FBG sensor that is embedded at the centre of the specimen (see
Fig. 8.6), the retrieved tip of the delamination will be different than what can be seen from
the side-view. This non-uniformity is also evident in Fig. 8.6, where the delamination defect
has progressed more in the sides than the central parts. In the next subsection, it will be seen
that this non-uniformity will result in a discrepancy between the delamination tip location
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Figure 8.6: Microscopic image of the delamination area across the specimen width. The opaque area has already
delaminated, and the translucent part is still bonded.

retrieved from the FBG sensor, and that of the camera images from the side of the specimen.

EXPERIMENTAL RESULTS

Similar to the computer simulation experiments, we will monitor the delamination of the
composite structure with FBG sensors along three different layers. The first sensor was
embedded during the production of the composite in the delamination plane, the second
sensor was embedded at the intersection of the 0 degree layers and the 90 degree layers of
the composite (called the middle layer), and the third sensor was surface mounted on top of
the specimens before the tests (called the top layer). Fig. 8.7a shows the reflection spectra
of an FBG sensor in the delamination plane, as the delamination defect is progressing along
its length. Fig. 8.7b depicts the amplitude of the Fourier transform of the side-lobes of the
reflection spectra shown in Fig. 8.7a.
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Figure 8.7: (a): The reflection spectra for a real FBG sensor at different time instances during a mode-I tensile
test. (b): Fourier transform of the side-lobes of the FBG reflection spectra, and the shift of the highest frequency
component towards lower frequencies as the delamination defect is progressing along the sensor length.
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Fig. 8.8a shows the shift of the maximum harmonic frequency of the side-lobes of FBG
reflection spectra, from the top layer of the composite. Finally, the progression of the de-
lamination defect in different layers of the composite, along with the retrieved delamination
length from camera images are depicted in Fig. 8.8b.
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Figure 8.8: (a): Fourier transform of the side-lobes of the FBG reflection spectra, surface mounted on the top
layer of the specimen. (b): The progression of the delamination defect along the FBG length, as retrieved from
the camera images, as well as FBG sensors at different layers of the composite. The linear regression fit to each
line (except for the middle path) is also shown on this figure.

From Fig. 8.8b it is evident that there is a clear difference between the delamination
length observed from the side of the specimen (retrieved from camera images), and that of
the centre of the specimen retrieved from the FBG sensor. This difference reaches around
1.5 mm at some points, however, the trend of the delamination looks almost identical. The
same holds for the retrieved delamination length from the top layer of the composite, ex-
cept for the expected difference in the delamination tip estimation (around 1.5 mm in this
example), as a result of out of plane measurement of the defect (discussed in Section 8.3).
In fact, as seen from the linear regression results shown in Fig. 8.8b, the difference between
the slope of the regression line from camera images, and those of the FBG sensors in the
delamination path and on the top path, are less than 4%.

Another point worth mentioning is the poor correlation of the delamination length re-
trieved from the FBG in the middle path, compared to the other paths. Our hypothesis is
that this unreliability is the result of embedding the sensor between the 0 degree and the
90 degree layers of the composite, which results in significant unwanted transverse loads
on the sensor, which in turn results in non-axial components in the strain field and bire-
fringence effects on the reflection spectrum. This birefringence is not represented in our
approximation of the reflection spectrum given in Eq. (8.1), and results in harmonic fre-
quencies that might interfere with the outcome of our algorithm. Another factor that affects
the results from the middle path, is the possible formation of barely visible cracks in the
90 degree layer of the composite, which are transverse to the length of the sensor. As
discussed in Chapter 7, the formation of these micro-cracks along the length of the FBG re-
sults in several new harmonic frequencies in the Fourier transform of the side-lobes, whose
frequencies will be scattered in the whole range of ω = 0 rad to ω = 2M rad depending
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on the location of the cracks along the FBG length. These new unwanted harmonics will
also interfere with the results of our delamination tip estimation algorithm and can lead to
unreliable measurements.

Furthermore, in the experiments of this study, it was assumed that the position of the
FBG sensor along the FBG length is known with a sub-millimetre accuracy. This knowl-
edge is important, as the precision of the delamination tip estimation algorithm directly
depends on how accurate the FBG position is known. The position of the current commer-
cial FBG sensors are marked by the manufacturing company on the optical fibre. However,
the actual position of the sensor within these markings can deviate by more than 1 mm,
which directly affects the precision of our delamination tip estimation algorithm. To solve
this problem, the methods proposed in Chapters 5 and 6 can be used to determine the ac-
curate length and position of the FBG sensor along the optical fibre with a micro-metre
accuracy. That being said, in some applications such as studying the fatigue behaviour of
composites, where the growth rate of the delamination is desired [23], such precise infor-
mation about the sensor position is not needed, and the regression offset value in retrieving
the precise crack tip does not affect the results either.

8.5. CONCLUSIONS
In this chapter, we presented the proof of concept for using FBG sensors as accurate de-
lamination detection and delamination tip monitoring sensors in unidirectional laminated
composite materials. We showed that the delamination defect along the FBG length will
result in harmonic frequencies in the Fourier transform of its reflection spectrum, whose
frequencies depend on the tip of the delamination. We also showed that as the delamina-
tion tip progresses along the length of an embedded FBG sensor, the frequency of these
high amplitude harmonics will be shifted towards lower frequencies. The shift of the har-
monic frequency was shown to linearly depend on the shift of the delamination tip as the
defect was progressing along the sensor. Monitoring this frequency component, we could
estimate the delamination tip with sub-millimetre accuracy, and provide useful information
about the internal layers of the composite. We argued that the location of the delamination
tip observed from the side of the specimen can greatly differ from its central parts, and us-
ing camera images alone might not be sufficient for providing full field information about
the delamination plane. In particular, in the experiments of this chapter, for a 5 mm wide
specimen, there was a difference of around 1.5 mm between the delamination tip retrieved
from the side of the specimen and the delamination tip from the embedded FBG sensor in
the centre of the specimen.

It can be concluded from this study that using multiple sensors in the delamination plane
can provide us with a high resolution and quasi-distributed measurement of the delamina-
tion tip progression in composites, and the low computational complexity of our algorithm
means that the signal processing can be performed in real-time.
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9
CONCLUSION AND FUTURE

WORK

As stupid and vicious as men are, this is a lovely day.

Kurt Vonnegut, Cat’s Cradle

In this chapter a summary of the contributions in this thesis will be presented. Further,
possible directions for future research and open problems in the field of structural health
monitoring with FBG sensors, and possible approaches to solve these problems, will be
discussed later in this chapter.

9.1. CONCLUSIONS
Measuring deformation and acquiring information about the damage state in the internal
layers of composite materials is a challenging task. Conventional structural health moni-
toring techniques either do not provide high enough spatial resolution and are not suitable
for accurate crack detection or accurate damage growth monitoring [1], or are not capa-
ble of inspecting the internal composite layers [2]. One the other hand, fibre Bragg grat-
ing (FBG) sensors are capable of being integrated within the layers of composites without
severely altering their properties, and they offer several advantages such as high sensitiv-
ity to strain, capability of multiplexing, and their negligible sensitivity to electromagnetic
interferences [3]. Considering these properties, this thesis was dedicated to develop new
applications for FBG sensors for structural health monitoring of composite materials, and
to improve the accuracy of the existing strain estimation and damage detection techniques
in them. The contributions of this thesis are summarised in the following subsections where
the research questions posed in the introduction chapter are answered as well. The diagram
of Fig. 9.1 summarises the contributions of this thesis.
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FBG sensors in SHM

Point strain
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Impact localisation and detection

Accurate determination
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Figure 9.1: A summary of the contributions of this thesis. The added block of accurate FBG position determina-
tion enhances the precision of the other applications, both in point strain measurement and in damage characteri-
sation.

9.1.1. AVERAGE STRAIN ESTIMATION
The first application investigated in this thesis was accurate point strain (or temperature)
measurement using commercial FBG sensors. It was shown that the traditional peak track-
ing based strain estimation methods do not work well under non-uniform strain fields and
can result in errors of several hundred micro-strains. Using a mathematical model presented
in Chapter 3, two methods were proposed (Chapters 3 and 4) to calculate the average strain
under such non-uniform axial strain fields without any prior knowledge about the scenario.
Further, the performance of these methods was investigated under different types of FBG
sensors and interrogation systems. Such accurate average strain estimation method is most
interesting for long FBG sensors of more than one centimetre length, where it is more com-
mon to experience non-uniform strain fields along the sensor length. These algorithms were
tested and validated using computer simulations and experimental measurements from FBG
sensors mounted on aerospace structures undergoing different smoothly and sharply vary-
ing axial strain distributions. Therefore, the explicit answer to the first research question
posed in Chapter 1 as

Q1: With only the magnitude of the FBG reflection spectra, is it possible to provide a
meaningful measure of non-uniform strain fields?

is:

A1: If non-apodized FBG sensors are used, using the methods presented in Chapters 3
and 4, the average of any arbitrary axial non-uniform strain field along the sensor
length can be accurately determined. In particular, the centre of mass of the FBG
reflection spectrum was shown to analytically correspond to the average of the non-
uniform axial strain field applied over the non-apodized FBG sensor length. In the
case of using a partially apodized FBG sensor, or having a sensor that is affected
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by non-axial strain components, the side-lobes cross-correlation maximisation algo-
rithm of Chapter 3 can be used to compensate for the possible strain estimation errors
resulted from the centroid method.

9.1.2. IMPROVING THE SPATIAL RESOLUTION OF FBG SENSORS
In Chapters 5 and 6, it was mentioned that for commercial FBG sensors their exact position
in the optical fibre is not always provided with a high precision. This uncertainty on the
exact length and the position of the sensor can be more than a millimetre and it directly
affects the precision of damage detection algorithms as presented in this thesis. Chap-
ters 5 and 6 were dedicated to resolving this problem, in which we proposed algorithms
to determine the exact length of the FBG sensor as well as its precise position along the
optical fibre. Incorporating this knowledge into the structural health monitoring scheme of
an experimental setup with FBG sensors leads to an accurate and precise evaluation of the
damage progression and formation in composite materials. Such insight can help making
better and more meaningful comparisons between engineering models and experimental
measurements. With that, the answer to the second research question of Chapter 1 posed as

Q2: Can we extract knowledge on the precise position of the FBG sensor?

is:

A2: Following a simple procedure presented in Chapters 5 and 6, and by analysing the
reflection spectrum of a FBG sensor, it is possible to accurately determine its exact
position along the optical fibre. The accurate length of the FBG sensor (independent
of its type or the strain field it is subjected to) can be determined by simply retrieving
the maximum oscillation frequency of the FBG reflection spectrum side-lobes, as this
frequency was shown to be linearly dependent on the sensor length. To determine the
exact position of the sensor a hardware setup was proposed in which two random
points along the sensor length were thermally excited. Analysing the FBG reflection
spectrum and retrieving the frequency of the added harmonics to its side-lobes, the
exact starting and ending point of the sensor was calculated.

While it is certainly more convenient to carry out the procedures of Chapters 5 and 6
in the production site and to deliver the sensor with accurate markings to the user, the low
complexity of the presented setups and the simple algorithms that follow the measurements
can be implemented by the end user as well. In applications that such precise knowledge of
the sensor location is necessary, such as in damage growth monitoring in composites, the
presented methods in these chapters provide an alternative solution to acquire that informa-
tion.

9.1.3. DAMAGE IDENTIFICATION AND CHARACTERISATION
Fibre optic sensors can provide information about damages in the internal layers of lam-
inated composite materials. In Chapter 2, several studies focusing on damage detection
and characterisation in composites were discussed and it was mentioned that the state-of-
the-art fibre-optic based methods are either time-consuming and difficult to multiplex or
have a poor spatial resolution. In this thesis, using the mathematical model presented in
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Chapter 3 and incorporating the precise location of the sensor retrieved using the methods
of Chapters 5 and 6, detection and identification of two major damage types in laminated
composites were investigated, namely, matrix cracks and delamination. In Chapter 7 a
method was proposed to identify the formation of these internal micro-cracks along the
length of the FBG sensor. Chapter 8 was focused on accurate determination of the crack
tip in mode-I delamination tests with sub-millimetre accuracy, and the performance of both
these algorithms was tested and validated using computer simulations and experimental
measurements from FBG sensors embedded between composite layers. Consequently, the
final two research questions posed in Chapter 1 can be answered as follows.

Q3.1: Having access to only the magnitude of the FBG reflection spectra, is it possible to
quantifiably characterise matrix cracks in composites?

Q3.2: Is it possible to monitor the delamination growth direction and extent in composites,
accurately and dynamically?

A3.1: With the presented approximated transfer matrix model, and the algorithm proposed
in Chapter 7, it is possible to reliably characterise transverse matrix cracks along
the FBG length. In order to do so, the reflection spectra from embedded FBG sen-
sors between composite materials that were affected by transverse cracks along their
length were recorded. It was shown that the sharp strain shifts resulting from cracks
along the FBG length result in the addition of new harmonic frequencies to the re-
flection spectra side-lobes. The frequency of these added harmonics linearly depends
on the locations of the crack along the sensor length. Therefore, by analysing the
FBG reflection spectrum, the formation of such cracks along the sensor length can be
characterised.

A3.2: With the proposed method of Chapter 8 it is possible to monitor the delamination
growth in mode-I tensile and fatigue tests with micrometer accuracy. The delam-
ination crack tip will create a sharp strain shift along the embedded FBG length.
This leads to a powerful harmonic frequency in the side-lobes of the sensor’s reflec-
tion spectrum whose frequency linearly depends on the location of the crack tip. By
tracking this frequency, the crack tip position and its growth rate can be monitored
accurately. The low computational complexity of this method makes it suitable for
dynamic measurements and the study of delamination propagation in composites un-
der fatigue.

It should be noted that the area of sensitivity in such static damage detection applications
is limited to the length of the sensor, and if the non-uniform strain field resulted from the
damage does not reach the length of the FBG sensor it will not be detected. On the other
hand, the length of these FBG sensors are limited to a few centimetres and embedding
hundreds of these sensors within the composite material is not practical. This makes the
application of these sensors for large scale damage identification in composites impractical
and irrelevant. However, the unrivalled high spatial resolution and accuracy of the damage
identification and detection algorithms proposed in this thesis and their low computational
complexity makes them suitable for studying the dynamic behaviour of composite materials
under different tensile and fatigue loads and mixed-mode damages.
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9.2. FUTURE WORKS
This thesis presented new possibilities and applications in using FBG sensors in the field
of structural health monitoring of engineering structures, and in particular, aerospace com-
posite materials. In the course of this project several algorithms were developed for more
accurate estimation of the damage state or strain values in aerospace materials and all these
methods passed the proof of concept phase. However, the reliability and the sensitivity of
these methods need to be studied under broader experimental conditions.

The first topic that can certainly be investigated in more detail is including non-axial
strain components in the FBG model and devising damage detection algorithms that are
more robust against transverse loads. Based on the discussions in Chapter 7, it is expected
that a sensor that is not yet affected by transverse cracks along its length, will only have
powerful harmonic frequencies at ω= 0 and ω=±2M in the Fourier transform of the side-
lobes of its reflection spectrum, where M is the number of segments in the FBG model [4].
Therefore, having additional peaks in the Fourier domain before the formation of cracks
could be misinterpreted as damage and can lead to false alarms in the outcome of these
algorithms. Overall, the damage characterisation algorithms presented in Chapter 7 and 8
are to some extent robust against the typical residual transverse loads over the FBG length,
but more intense loads could result in false alarms in their outputs. As an example, in
an experiment with embedded FBG sensors in pre-impregnated composites, the composite
specimens underwent the curing process in an autoclave at 7 bar pressure which created
residual transverse loads on the FBG sensor. However, this process did not affect the out-
comes of the crack detection algorithm presented in Chapter 7. This is shown in Fig. 9.2c,
where the Fourier transform of the side-lobes of the reflection spectrum of Fig. 9.2a is
shown. It can be seen that the residual transverse load has a small effect on the existing
peaks in the Fourier domain. However, in the case of applying a uniform transverse load
of 5 N on the FBG sensor (presented in Fig. 9.2b), the additional harmonics in the Fourier
domain were powerful which is not desirable(see Fig. 9.2d).

Another example of possible directions for future research would be analysing the sen-
sitivity of the presented crack detection method in Chapter 7 to different strain shift values
in the strain distribution along the FBG length. In other words, determining the minimum
amount of strain shift that can robustly be detected by our crack detection algorithm. Quan-
tifying the sensitivity of our crack detection algorithm will have a direct effect on the sen-
sitivity area of the FBG sensor itself. For instance, finite element modelling results suggest
that when the crack location is not in direct contact with the sensor and the FBG is surface
mounted or embedded on a different layer than the crack layer, the strain field experienced
by the FBG will be smoother than that of the crack location. Whether a surface mounted
FBG can still detect such anomalies in the structure, especially in thick composite materi-
als, is a question that needs to be investigated. Along the same lines, the sensitivity of a
surface mounted FBG sensor (around 2 millimetres away from the delamination plane) to
delamination tip propagation in mode-I tensile tests was investigated in Chapter 8 and the
results were promising.

Furthermore, there can be new designs for the grating distribution, or the apodisation
pattern of the FBG sensor that can enhance its sensitivity to the formation of cracks. In
Chapters 4 and 7, it was already mentioned that apodized FBG sensors did not perform as
well as non-apodized FBG sensors. In particular, in Chapter 4 it was shown that apodized
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Figure 9.2: (a) Reflection spectrum of an FBG sensor embedded between carbon fibres and cured at 7 bars of
pressure. (b) A bare FBG sensor under a uniform transverse load of 5 N along its length. (c) Fourier transform
of the side-lobes of the reflection spectrum of Fig. 9.2a. (d) Fourier transform of the side-lobes of the reflection
spectrum of Fig. 9.2b.

FBG sensors do not perform well for average strain estimation under non-uniform strain
fields and can lead to considerable estimation errors. Moreover, considering FBG sensors
of the same reflectivity levels, apodized FBG sensors are less sensitive to transverse cracks
along their length. In Fig. 9.3 a comparison is made between the the reflection spectra
of two FBG sensors (of the same reflectivity levels), one apodized and one non-apodized,
affected by a transverse crack along their length (at similar positions). The lower sensitivity
of the apodized FBG sensor is clear.

Another issue that can be inspected is optimising the window function applied on the
FBG reflection spectrum in order to retrieve its side-lobes. In several of the chapters of this
thesis, the first step of the presented algorithms was to retrieve the FBG reflection spectrum
side-lobes. In these algorithms, a Hann window [5] of a fixed length of a few nano-metres
was usually chosen. However, in some applications such as the delamination tip localisation
method presented in Chapter 8, the choice of the size and the region of the side-lobes could
result in biases (however small) in the output of the algorithm. An optimised design of this
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Figure 9.3: (a) Reflection spectra of an apodized and a non-apodized FBG sensor affected by a transverse crack
along their length at similar positions. (b) The Fourier transform of the side-lobes of the reflection spectra of
Fig. 9.3a.

window function regarding its length, shape, and region of retrieval, can help overcoming
these problems, and result in more reliable measurements.

The final issue that needs to be investigated is the embedding of the optical fibres in
aerospace or civil engineering structures. Although this topic is beyond the scope of this
thesis, it is a limiting factor for many fibre optic based structural health monitoring applica-
tions. In particular, embedded fibre optics between composite layers requires a manual but
accurate lay up of the optical fibre in alignment with the reinforcement fibres of the com-
posite, and the final product is delicate and fragile especially in the ingress and egress points
of the optical fibre. A new design for the interface of the optical fibres and the host material,
or a redesign of the optical sensing element material is needed to make these approaches
more appealing for other researchers and engineers in the field of aerospace engineering or
structural integrity.

9.3. CLOSING REMARKS
As final remarks, it should be mentioned that the methods developed in this thesis are not
limited to aerospace engineering applications and can be well extended to any kind of en-
gineering structure. In particular, the applications developed in this thesis regarding crack
detection and damage progression can be easily modified and adapted to engineering struc-
tures such as carbon fibre and glass fibre laminated composites, concrete, and asphalt. This
is an important extension of this work as owing to the durability of fibre optic sensors under
harsh environmental conditions, and their remote sensing capabilities, they are becoming
more and more attractive for civil engineering applications, and also more accessible [6–8].
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A.1. PROOF OF LEMMA 1
1. By definition, we have

ᾱ= 1

M

M∑
i=1

αi = 2πneff∆z
1

M

M∑
i=1

1

λBi

= 2πneff∆z
1

M

M∑
i=1

1

λ̄B +∆i
.

Taylor series expansion of the terms in the summation yields

1

λ̄B +∆i
= 1

λ̄B

(
1+ ∆i

λ̄B

) = 1

λ̄B

(
1− ∆i

λ̄B
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((
∆i

λ̄B

)2))
,

so that

ᾱ= 2πneff∆z

λ̄B
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(
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λ̄3
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,

since
1

M

M∑
i=1

∆i = 1

M

M∑
i=1

(λBi − λ̄B ) = 0.

2. Let k ∈ {1, M }. We have

ξi −ξi+1

ξk
= (α−αi )−1 − (α−αi+1)−1

(α−αk )−1 ,

for i = 1, . . . , M −1. Since

(α−αi )−1 = λλi

λi −λ
,

we conclude that

ξi −ξi+1

ξk
= (λk −λ)λ

λk (λi −λ)(λi+1 −λ)
(λi+1 −λi ).
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Let ∆max = maxi |∆i | and let |λ− λ̄B | = ∆λ > λth so that ∆λ−∆max < |λi −λ| <
∆λ+∆max for i = 1, . . . , M . With this, we have∣∣∣∣ξi −ξi+1

ξk

∣∣∣∣≤ ∆λ+∆max

(∆λ−∆max)2

λ̄B +∆λ
λ̄B −∆max

|λi+1 −λi |,

so that |ξi −ξi+1|¿ |ξk | if

|λi+1 −λi |¿ (∆λ−∆max)2

∆λ+∆max

λ̄B −∆max

λ̄B +∆λ <∆λ.

Since λth is the infimum of∆λ, the condition |λi+1−λi |¿λth is a sufficient condition
for |ξi −ξi+1|¿ |ξk |. This completes the proof.
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A.2. PROOF OF LEMMA 2
Rewriting (4.12) leads to

I =
∫ +∞

−∞
(x −θ1 +θ1 −θc )sin(x −θ1)sin(x −θ2)cos(nx −θ3)

(x −θ1)(x −θ2)
dx, x 6= θ1,θ2. (A.1)

In the above equation, for x = θ1 and x = θ2 we have sin(x −θ1)/(x −θ1) = 1 and sin(x −
θ2)/(x −θ2) = 1, respectively. Multiplying the first term in the nominator with the rest of
the terms leads to

I =
∫ +∞

−∞
sin(x −θ1)sin(x −θ2)cos(nx −θ3)

(x −θ2)

+ (θ1 −θc )sin(x −θ1)sin(x −θ2)cos(nx −θ3)

(x −θ1)(x −θ2)
dx. (A.2)

Considering the fact that

1

(x −θ1)(x −θ2)
= 1

θ1 −θ2
(

1

x −θ1
− 1

x −θ2
), (A.3)

I can be further simplified to

I = I2 + θ1 −θc

θ1 −θ2
I1 − θ1 −θc

θ1 −θ2
I2 , (A.4)

where

Ik =
∫ +∞

−∞
1

x −θk

{
cos(θ1 −θ2)cos(nx −θ3)

− 1

2

(
cos((n −2)x +θ1 +θ2 −θ3)+cos((n +2)x −θ1 −θ2 −θ3)

)}
dx,k = {1,2}. (A.5)

In the above equation, the Ik ’s are obtained by using the product to sum trigonometric
identities. Now we can apply the integration over the Ik terms, where the integration is
applied over each individual term in Ik . Here, we only present the integration procedure for
the first term of Ik , as the rest of the integration procedure is performed in the exactly the
same manner.∫ +∞

−∞
1

x −θk

(
cos(θ1 −θ2)cos(nx −θ3)

)
dx

= n(cos(θ1 −θ2))
∫ +∞
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cos(nx −nθk +nθk −θ3)

n(x −θk )
dx
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−
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sin(nx −nθk )(sin(nθk −θ3))

n(x −θk )
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}
=πcos(θ1 −θ2)sin(θ3 −nθk ). (A.6)

The last result is due to the fact that
∫ ∞
−∞

cos(nx)
nx dx = 0 and

∫ ∞
−∞

sin(nx)
nx dx = π

n . Following
the same procedure, and considering the boundaries of the integrals, the Ik terms can be
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calculated as

I1 = π

2
(sin(θ3 +θ2 − (n +1)θ1)−2cos(θ2 −θ1)sin(θ3 −nθ1)

+ sin(θ3 −θ2 − (n −1)θ1)) = 0,

I2 = π

2
(sin(θ3 − (n +1)θ2 +θ1)−2cos(θ2 −θ1)sin(θ3 −nθ2)

+ sin(θ3 − (n −1)θ2 −θ1)) = 0. (A.7)

The above results are achieved by using product to sum trigonometric identities (on the
second term of I1 and I2), and therefore, I = 0.
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