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Abstract
Estuaries have always been important for mankind and therefore it is essential to have a good under
standing of the flow and sediment dynamics there. The goal of this thesis is twofold. One objective is
to use an existing model to gain a more thorough understanding of the flow dynamics in an estuary.
The second objective is to extend the model such that it can also compute the suspended sediment
concentration in a crosssection.

The equations governing the flow dynamics are the shallowwater equations. The advectiondiffusion
equation governs the sediment dynamics. To compute the flow and suspended sediment concentration
in a crosssection, conditions are assumed to be uniform in the alongchannel direction.

To solve the equations a coordinate transformation is applied first. After the transformation, the
crosssection of the channel is represented in the computational domain by a rectangle. In the vertical
direction, an eigenfunction expansion is used with eigenfunctions derived from a special case of the
SturmLiouville eigenvalue problem. In the horizontal direction, derivatives are approximated with a
central finite difference scheme. In the frequency domain, variables are expressed as the sum of tidal
components. The Galerkin method is applied in both the vertical direction and the frequency domain
to optimise the weight functions for every location along the transect. The system obtained with the
Galerkin method is solved using NewtonRaphson iterations and an LUdecomposition. To find the
distribution of the erosion coefficient corresponding to a morphodynamic equilibrium, a time integration
method is used.

The effect of several parameters on the advective contribution to the crosschannel flow is system
atically investigated. The results show that the steepness of the bottom slope affects the magnitude
of the advective contribution to the residual lateral flow. For a steep bottom slope the contribution is
large and for a gradual bottom slope the contribution is small. The curvature of the channel strongly
affects the total crosschannel flow, depending on the magnitude of the radius of curvature, but hardly
affects the flow caused by advection. The lateral density gradient can largely affect the crosschannel
flow. Especially, the amplitude of the M2 tidal component of the density gradient affects the advective
contribution to the flow. Both the magnitude and characteristics of the advective contribution change
when the amplitude of the M2 tidal component of the density gradient is varied. The phase of the M2
tidal component of the density gradient hardly affects the crosschannel flow and advective contribution
of the flow.

Measurement data of a crosssection of the Ems is compared with a simulation of this situation. The
magnitude of the lateral flow is similar for the measurements and model results but there is a difference
in the direction of the flow in the upper part of the water column. This deviation could be caused by
the description of the free surface. In the measurements there is a timevarying thickness of the water
column whereas the rigid lid assumption is applied in the model. However, other differences between
the simulation and the actual situation could have contributed to a deviation between themeasurements
and model results as well.

The results for the sediment module show that the model works as expected for a prescribed erosion
coefficient and for computing the erosion coefficient in morphodynamic equilibrium for situations with
only diffusive transport. For simple situations the analytical solution is approximated and for more
complicated situations the results agree with the physical intuition. The main recommendation for
further research is to investigate how the model can be extended such that it is also possible to compute
the erosion coefficient in morphodynamic equilibrium for situations with both advective and diffusive
sediment transport.
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1
Introduction

This introduction is divided into four sections. In the first section some background information is given
concerning estuaries and the water motion and sediment dynamics in these systems. This is followed
by an overview of relevant previous research in Section 1.2. Next, the goal and research questions of
this thesis are presented in Section 1.3. The last section outlines the structure of this thesis.

1.1. Background
1.1.1. Estuaries
An estuary is a body of water with one or more rivers flowing into it and an open connection with a sea
or ocean [29]. Examples of estuaries in the Netherlands are the Western Scheldt (the mouth of the
Scheldt river) and the EmsDollard (the mouth of the Ems river). Due to the open connection with the
sea, the flow in an estuary is influenced by both tide and a river discharge. Because an estuary is a
transition region between a river with fresh water and an ocean with salt water, the concentration of
salt in the water strongly depends on location and time. Further from the ocean there is generally less
salt in the water than closer to the ocean. Moreover, at the same location the concentration salt will
typically vary during a tidal cycle. Figure 1.1 shows a schematic illustration of an estuary.

Figure 1.1: A schematic visualisation of an estuary. In this figure, the ocean is located on the left and the river on the right. The
water originated from the ocean and the river mix in the estuary. Reprinted from [21].

Estuaries have always been important to mankind for various reasons. Many ports are located in
estuaries and a large portion of the worlds fishery takes place in estuaries. Moreover, they are used
for trade, transportation, recreation and when moving in the landward direction, estuaries can be a
source of fresh water for irrigation and drinking water. Furthermore, estuaries are ecosystems with a
great diversity of life [14]. These benefits of estuaries make it valuable to thoroughly understand the
dynamics of flow, salinity, sediment and other constituents in estuaries. This thesis will focus on the
water motion and sediment dynamics in estuaries.

1



2 1. Introduction

1.1.2. Water motion
Estuaries are complex systems and the water motion in an estuary is affected by a large number of
processes. Due to the river inflow and the open connection with sea, the flow dynamics is affected by the
river discharge and the tidal prism (tidal volume of water entering and leaving the estuary during a tidal
cycle). The mixing of fresh and salt water also leads to a salinity distribution which affects the density
gradient in an estuary. The density gradient is also a forcing of the flow. Moreover, meteorological
effects such as the wind can affect the flow in estuaries. The rotation of the earth contributes to the
forcings of the flow due to the Coriolis effect. The topography affects the flow as well depending on
properties such as the curvature of the estuary, bathymetry, water depth and more [7]. Identifying and
investigating each of the contributions helps to understand the dynamics in estuaries more thoroughly
and to make more accurate models for the flow in estuaries.

The observed motion of water results from a complex interaction of numerous threedimensional
mechanisms. This implies a three dimensional model is necessary to fully describe the water motion.
However, these three dimensional models are difficult to analyse. To gain more fundamental knowl
edge, one can assume as a first step that the flow is homogeneous in one direction, resulting in a two
dimensional model. In this thesis it is assumed that the estuary is homogeneous in the longitudinal
direction, such that the focus is on the dynamics in a crosssection.

1.1.3. Sediment
Sediment is transported by the water, originating from both the river and the ocean. As a result of
erosion, sediment particles can be suspended in the water, there they are transported along with the
flow. Finally, due to gravity the sediment particles settle on the bed again. After deposition of sediment
particles, this cycle can start over again. This means the distribution of sediment is mainly determined
by the flow, the properties of the sediment grains and the availability of sediment at the bottom.

In many estuaries, there are locally large concentrations of sediment present. These elevated
sediment concentrations are caused by a combination of physical and chemical processes [20]. The
high amounts of sediment can cause siltation which is a problem for harbours and navigation channels
[7]. Sediment can also cause ecological problems because sediment particles are often carriers of
substances which can be polluting [7]. To prevent siltation and ecological problems, it is essential to
have models that can predict where these areas with high sediment concentrations will be located.

1.2. Literature
To simulate the flow and sediment dynamics in estuaries, one can resort by complex numerical mod
els such as ROMS [10], Delft3D [19] or TRIWAQ [26]. These are convenient for simulating realistic
situations but they are less suitable for identifying the contribution of specific processes due to their
complexity. Furthermore, these models are not developed to focus on crosssections. Therefore,
idealised models are developed, which are often analytical or use a combination of analytical and nu
merical techniques. These are especially suitable for investigating individual forcing mechanisms in
idealised geometries.

Wong [32] was one of the first to develop an analytical model to study individual contributions to
the flow in a crosssectional model. In this study Wong found that both density gradients and local
wind forcing can generate lateral variability in alongchannel flows. Friedrichs et al. [8] developed an
analytical model, that included the influence of density gradients, river discharge, sealevel variations
and wind on the alongchannel flow. Kasai et al. [15] focussed on the effect of the earths rotation on the
alongchannel flow. They concluded that Coriolis deflection can be an important factor in determining
the flow pattern. The work of Kasai et al. is further extended by ValleLevinson et al. [27] to include,
among others, arbitrary bathymetries.

Using perturbation methods, Huijts et al. [11] extended these models to include sediment dynamics.
They developed a model to investigate the effect of crosschannel density gradients and Coriolis forc
ing on both flow and sediment distribution. They concluded that the Ekman number determines which
of these two processes is dominant. In Huijts at al. [12] the model is extended and used to examine the
contribution of horizontal density gradients, tidal rectification processes, river discharge, wind, chan
nel curvature and Coriolis deflection on both alongchannel and crosschannel residual flows. Each of
these contributions could be quantified and densitygradients were again identified as the most impor
tant contribution. They also concluded that the tidal rectification processes are crucial to the transverse
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structure of the flows, because they lead to asymmetric distributions for relatively large tidal velocities
or relatively steep and narrow channels. By Schramkowski et al. [22] the model in [11] was extended
to investigate the effect of a partial slip bottom boundary condition on the crosschannel flow and sedi
ment distribution. They found that there is only one maximum in the sediment distribution for a noslip
condition, whereas there are two maxima when a partialslip condition is used. By Huijts et al. [13]
the model in [11] was extended to include tidal variations in the density gradient, resulting in double
circulations in the crosschannel flow profile.

In the analytical models discussed so far, the contribution of advection is assumed negligible.
However, Lerczak and Geyer [18] and Cheng and ValleLevinson [4] investigated the contribution of
crosschannel advection with numerical models and concluded that advection can play an important
role in the lateral circulation in weakly stratified estuaries [18] and in estuaries with a varying lateral
bottom slope [4].

This motivated Yang et al. [33] to extend the model of Huijts et al. [11] to include advective transports
in a perturbative approach, as well as more tidal components. With this extended model they explored
the effect of the joint action of the M2 and M4 tidal flow, residual flow and spatial settling lag on the
lateral entrapment of sediment. They found that the incorporation of M4 tidal flow and spatial settling
lag leads to an extra region of sediment trapping besides the region of sediment trapping caused by
advective transport.

Zitman and Schuttelaars [34] developed a crosssectional model for the water motion in which the
advective contributions are taken into account at leading order. This model allowed for a decomposition
of the various contributions of the water motion such as discharge, Coriolis forcing and curvature.
Zitman and Schuttelaars concluded that advective and diffusive contributions have a noticeable effect
on both the alongchannel and crosschannel flow. They found that the relative importance of the
alongchannel advective forcing and crosschannel diffusion depends on the local characteristics of the
lateral bottom profile. The model by Zitman and Schuttelaars [34] only considered the water motion. In
this thesis this model is extended to include the sediment dynamics in a crosssection.

1.3. Research goals
As mentioned in the literature overview in the previous section, this project is based on the model de
veloped by Zitman and Schuttelaars [34]. The goal of this project is twofold. The first objective is to
use the existing model to gain a more thorough understanding of the flow dynamics in an estuary. In
previous research often the contribution of advection is neglected, even though it can be an important
influence on the lateral flow. To gain more understanding of the flow caused by advective contributions,
simulations are performed with special attention for the effect of parameters on advective contributions.
The second objective is to extend the model such that it can also compute the suspended sediment
concentration in a crosssection. Because it is also required that the contributions of individual mech
anisms can be quantified, this will contribute to gaining a better understanding of sediment dynamics
in estuaries.

Six research questions are formulated to achieve these two goals. The first four concern the in
vestigation of the advective contribution to the flow. The last two research questions apply to the de
velopment of the model extension to incorporate the suspended sediment dynamics. These research
questions read:

1. What is the effect of the bottom slope on the advective contribution to the crosschannel residual
flow profile?

2. What is the effect of the channel curvature on the advective contribution to the crosschannel
residual flow profile?

3. What is the effect of the lateral density gradient on the advective contribution to the crosschannel
residual flow profile?

4. Can the model reproduce the crosschannel residual velocity profile in measurements of the Ems
in [24]?

5. Can the model be extended to incorporate the computation of the suspended sediment concen
tration for a prescribed erosion coefficient?
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6. Can the model be extended to include the computation of the erosion coefficient corresponding
to a morphodynamic equilibrium?

1.4. Outline
Following this introduction, Chapter 2 describes the equations and boundary conditions used to model
the water motion and sediment dynamics. This chapter first contains the equations for the flow and then
the equations for the suspended sediment concentration. Next, Chapter 3 discusses how the governing
equations are solved in the model. Subsequently, Chapter 4 presents the results for the model, this
section is subdivided in results for the flow and results for the suspended sediment concentration.
Last, Chapter 5 contains the conclusion of this thesis by answering the research questions presented
in Section 1.3. Some recommendations for further research are also given in this chapter. Afterwards
multiple appendices can be found, elaborating on several details in the report.



2
Model description

This chapter explains the mathematical background of the model. The model is based on the model
presented in [34]. In [34] only flow is computed and sediment is not taken into account. In this project
the model is extended with the option to compute a sediment distribution.

First, the geometry is explained in Section 2.1. Next, the equations describing the flow are discussed
in Section 2.2. Last, in Section 2.3, the equations describing the sediment distribution are discussed.

2.1. Geometry
As mentioned in Section 1.3, the objective of this thesis is to investigate the flow and sediment concen
tration in the crosssection of an estuary. To focus on the dynamics in a crosssection, it is assumed
the dynamics does not depend on the alongchannel coordinate. In Figure 2.1 the geometry of such
an estuary is visualised, this figure is reprinted from [34]. It consists of two side walls and a smoothly
varying bottom. The bottom profile can have any shape in the lateral direction but cannot contain ver
tical jumps. The channel can be either straight or curved, polar coordinates are a natural coordinate
system allowing for both channels. The crosschannel coordinate is denoted by 𝑟, the alongchannel
coordinate is denoted by 𝜃 and the vertical coordinate is denoted by 𝑧. The 𝜃 coordinate increases
in the seaward direction and when looking seaward the 𝑟 coordinate increases towards the right. The
vertical coordinate increases in the upward direction, with 𝑧 = 0 at the undisturbed water level and
𝑧 = −𝐻 at the bottom.

Figure 2.1: A sketch of the geometry of an estuary. Polar coordinates are used with 𝜃 pointing seaward and 𝑟 pointing to the right
when looking seaward. The bottom profile is arbitrary in the crosschannel direction and uniform in the alongchannel direction.
Reprinted from [34].

5



6 2. Model description

2.2. Dynamics of the flow
2.2.1. Governing equations
The flow is described by the shallow water equations. These are derived from the continuity equation
and the NavierStokes equations in Appendix A. Several assumptions are made to derive the shallow
water equations. First, the Boussinesq approximation is applied. This is the assumption that realistic
temperature and salinity variations only lead to small variations in the density and the effect of these
variations is only significant in the gravitational term [25]. Therefore, the density is assumed to be
constant in all terms except the gravitational term.

Next, it is assumed the vertical scales are much smaller than the horizontal scales, this is called the
shallow water assumption [30]. For example, the water depth must be much smaller than the width of
the estuary.

Furthermore, the the rigid lid approximation is used. The rigid lid approximation uses that surface
displacements are small compared to the water depth. As a consequence, variations in the surface
level are ignored but the pressure gradient due to these variations is not neglected [9].

The goal of this project is to compute the flow and sediment concentration in a crosssection, which
is assumed to be uniform in the alongchannel direction. Because alongchannel uniformity is assumed,
the derivatives of the flow velocities with respect to 𝜃 are equal to zero in the equations. After apply
ing alongchannel uniformity on the result of Appendix A, transforming this to polar coordinates and
assuming the atmospheric pressure to be constant, the governing equations read,

𝜕𝑢𝑟
𝜕𝑡 +𝑢𝑟

𝜕𝑢𝑟
𝜕𝑟 +𝑢𝑧

𝜕𝑢𝑟
𝜕𝑧 −𝛾𝑢𝜃 −

𝑢2𝜃
𝑟 = − 𝑔𝜌0

∫
0

𝑧

𝜕𝜌
𝜕𝑟 d𝑧

′−𝑔𝜕𝜁𝜕𝑟 +𝐴𝑣
𝜕
𝜕𝑧 (𝜙

𝜕𝑢𝑟
𝜕𝑧 )+𝐴ℎ

1
𝑟
𝜕
𝜕𝑟 (𝑟

𝜕𝑢𝑟
𝜕𝑟 ) , (2.1)

𝜕𝑢𝜃
𝜕𝑡 +𝑢𝑟

𝜕𝑢𝜃
𝜕𝑟 +𝑢𝑧

𝜕𝑢𝜃
𝜕𝑧 + 𝛾𝑢𝑟 +

𝑢𝜃𝑢𝑟
𝑟 = − 𝑔𝜌0

∫
0

𝑧

1
𝑟
𝜕𝜌
𝜕𝜃 d𝑧′ −𝑔1𝑟

𝜕𝜁
𝜕𝜃 +𝐴𝑣

𝜕
𝜕𝑧 (𝜙

𝜕𝑢𝜃
𝜕𝑧 )+𝐴ℎ

1
𝑟
𝜕
𝜕𝑟 (𝑟

𝜕𝑢𝜃
𝜕𝑟 ) ,
(2.2)

𝑢𝑟
𝑟 +

𝜕𝑢𝑟
𝜕𝑟 +

𝜕𝑢𝑧
𝜕𝑧 = 0. (2.3)

The flow velocities are denoted by 𝑢𝑟, 𝑢𝜃 and 𝑢𝑧 for the crosschannel, alongchannel and vertical
velocity, respectively. In the above expressions, 𝛾 is the Coriolis parameter, 𝑔 is the gravitational ac
celeration, 𝜌 is the fluid density, 𝜌0 is the reference density and 𝜁 is the surface level elevation. The
horizontal eddy viscosity is denoted by 𝐴ℎ. The vertical eddy viscosity is written as 𝐴𝑣𝜙 with 𝜙 a shape
function and 𝐴𝑣 a parameter indicating the strength of the vertical eddy viscosity. To obtain the param
eters for the eddy viscosity, various turbulence models can be used [3]. Generally, more complicated
turbulence models result in more sophisticated models but also make it harder to solve the system of
equations. Here, 𝐴ℎ and 𝐴𝑣 are taken time and space invariant. The normalised shape function is pa
rameterising the profile of the vertical eddy viscosity. This profile is time invariant and does not depend
on the horizontal coordinate. The vertical shape of 𝜙 is parabolic, this is a common assumption for tide
dominated estuaries [17]. The density gradient of the water is determined by the salinity 𝑆, which is a
diagnostic quantity in this model.

To obtain information about the tidal properties of the flow and sediment distribution, themodel equa
tions are solved in the frequency domain. Consequently, all timedependent variables are described
as a sum of tidal components. In this thesis M0, M2 and M4 contributions are included.

2.2.2. Boundary conditions
Naturally, boundary conditions are required so solve the system of equations. At the two side walls and
the bottom a noslip condition is applied, this means the velocity directed parallel to the boundary is
zero at these boundaries. Moreover, it is assumed the velocity normal to the boundary is zero since the
water cannot flow through the boundaries. As a consequence, all velocity components must be zero at
the side walls and the bottom. Since the rigid lid approximation is used, 𝑢𝑧 is also zero at the surface.

A wind shear stress acting on the water surface determines the vertical gradient of the horizontal
flow velocity at that surface, according to

𝐴𝑣
𝜕𝑢𝑟
𝜕𝑧 = 𝜏𝑤,𝑟

𝜌0
, 𝐴𝑣

𝜕𝑢𝜃
𝜕𝑧 = 𝜏𝑤,𝜃

𝜌0
. (2.4)
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In all cases studied in this thesis, the effect of wind is not included, requiring the surface velocity gra
dients to be zero as a boundary condition.

By integration of the continuity equation (2.3) over depth and using the boundary conditions, one
finds that,

∫
0

−𝐻
𝑢𝑟 d𝑧 = 0, (2.5)

at every point along the transect. In other words, the crosschannel water flux must be zero everywhere.
The derivation of this condition can be found in Appendix B. This condition is used to compute the
crosschannel surface slope.

Finally, there is a condition regarding the discharge,

∫
𝑊

0
∫
0

−𝐻
𝑢𝜃 d𝑧d𝑟 = 𝑞. (2.6)

Here 𝑞 is the total discharge, which is the sum of the river discharge, assumed constant in time, and
the tidal discharge, which is periodic in time and may consist of different tidal components.

In the model, either the discharge or the longitudinal surface slope must be prescribed. For a
prescribed discharge, a suitable surface slope is computed such that the flow matches the assigned
discharge following condition (2.6). On the other hand, when the surface slope is prescribed, the
corresponding discharge is computed using condition (2.6). The cases studied in this thesis all have a
prescribed discharge.

2.2.3. Decomposition of the flow field
To analyse and understand the dynamics of the flow field, it is useful to decompose the velocities in
contributions from individual mechanisms. To do this, the horizontal velocity components are written
as the sum of velocities caused by individual forcings,

𝑢𝑟 =∑
𝑖
𝑢𝑟,𝑖 , 𝑢𝜃 =∑

𝑖
𝑢𝜃,𝑖 , (2.7)

with 𝑖 indicating a specific forcing and 𝑢𝑟,𝑖 and 𝑢𝜃,𝑖 the velocities resulting from this forcing.
The mechanisms that are considered in this report are Coriolis deflection, advection, curvature,

density gradient, horizontal diffusion and discharge.
Each mechanism, except the discharge, results in two forcings, one for the crosschannel direction

and one for the alongchannel direction. In Table 2.1 the forcings and discharge corresponding to the
mechanisms are tabulated.

To find the contribution to the flow associated to a specific mechanism, first the flow field has to be
computed with the fully nonlinear model. Next, the forcings defined in Table 2.1 are computed using
the results obtained with the model. Finally, the contributions 𝑢𝑟,𝑖 and 𝑢𝜃,𝑖 are computed by solving the
following equations,

𝜕𝑢𝑟,𝑖
𝜕𝑡 + 𝑔 [𝜕𝜁𝜕𝑟 ]𝑖

− 𝐴𝑣
𝜕
𝜕𝑧 (𝜙

𝜕𝑢𝑟,𝑖
𝜕𝑧 ) = 𝐹𝑖 , (2.8)

𝜕𝑢𝜃,𝑖
𝜕𝑡 + 𝑔 [1𝑟

𝜕𝜁
𝜕𝜃 ]𝑖

− 𝐴𝑣
𝜕
𝜕𝑧 (𝜙

𝜕𝑢𝜃,𝑖
𝜕𝑧 ) = 𝐺𝑖 . (2.9)

∫
𝑊

0
∫
0

−𝐻
𝑢𝜃,𝑖 d𝑧d𝑟 = 𝑄𝑖 , (2.10)

∫
0

−ℎ
𝑢𝑟,𝑖 d𝑧 = 0. (2.11)

For the velocity corresponding to each forcing mechanism the same boundary equations are used as
in the model. This means at the bottom 𝑢𝑟,𝑖 and 𝑢𝜃,𝑖 must be zero and at the surface the derivative of
𝑢𝑟,𝑖 and 𝑢𝜃,𝑖 with respect to 𝑧 must be zero as well.

Similar to the velocities, the surface slopes are also written as the sum of surface slopes caused
by individual forcings. The alongchannel surface slope caused by an individual forcing is computed
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such that equation (2.10) holds for the velocity and discharge corresponding to the same forcing. The
crosschannel surface slope for an individual forcing is computed such that (2.11) holds for the velocity
caused by that forcing.

Table 2.1: The mechanisms that are distinguished to affect the flow field and their corresponding crosschannel and
alongchannel forcings and discharge.

Mechanism Crosschannel forcing (𝐹𝑖) Alongchannel forcing (𝐺𝑖) Discharge (𝑄𝑖)

Coriolis deflection −𝛾𝑢𝜃 𝛾𝑢𝑟 0

Advection 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟 + 𝑢𝑧

𝜕𝑢𝑟
𝜕𝑧 𝑢𝑟

𝜕𝑢𝜃
𝜕𝑟 + 𝑢𝑧

𝜕𝑢𝜃
𝜕𝑧 0

Curvature −𝑢
2
𝜃
𝑟

𝑢𝜃𝑢𝑟
𝑟 0

Density gradient 𝑔
𝜌0
∫0𝑧

𝜕𝜌
𝜕𝑟 d𝑧

′ 𝑔
𝜌0
∫0𝑧

1
𝑟
𝜕𝜌
𝜕𝜃 d𝑧

′ 0

Horizontal diffusion −𝐴ℎ
1
𝑟
𝜕
𝜕𝑟 (𝑟

𝜕𝑢𝑟
𝜕𝑟 ) −𝐴ℎ

1
𝑟
𝜕
𝜕𝑟 (𝑟

𝜕𝑢𝜃
𝜕𝑟 ) 0

Discharge 0 0 𝑞

2.3. Dynamics of suspended sediment
2.3.1. Governing equation
The suspended sediment dynamics is governed by an advectiondiffusion equation. Alongchannel
uniformity is assumed and no sinks or sources in the water column are included, similar to the sediment
mass balance equation in [11]. The governing equation for sediment in polar coordinates reads,

𝜕𝑐
𝜕𝑡 + 𝑢𝑟

𝜕𝑐
𝜕𝑟 + (𝑢𝑧 −𝑤𝑠)

𝜕𝑐
𝜕𝑧 = 𝐷𝑣

𝜕
𝜕𝑧 (𝜙

𝜕𝑐
𝜕𝑧) + 𝐷ℎ

1
𝑟
𝜕
𝜕𝑟 (𝑟

𝜕𝑐
𝜕𝑟) . (2.12)

In the equation above, 𝑐 is the suspended sediment concentration, 𝑤𝑠 is the settling velocity and 𝐷𝑣
and 𝐷ℎ are the vertical and horizontal eddy diffusivity coefficients, which are chosen to be equal to their
eddy viscosity counterparts.

2.3.2. Boundary conditions
The boundary conditions for sediment are different, compared to the conditions for the flow. The bound
ary conditions for this model are similar to the boundary conditions used in [11]. Since sediment cannot
move through the side walls, the flux must be zero at those boundaries. As a consequence, the hori
zontal advective and diffusive transports must balance at the sides:

𝑢𝑟𝑐 − 𝐷ℎ
𝜕𝑐
𝜕𝑟 = 0. (2.13)

Because 𝑢𝑟 is zero at the side walls, this simplifies to

𝜕𝑐
𝜕𝑟 = 0. (2.14)

No flux of sediment is allowed through the free surface, resulting in,

−𝑤𝑠𝑐 − 𝐷𝑣𝜙
𝜕𝑐
𝜕𝑧 = 0, (2.15)

showing that the settling flux and diffusive flux must balance.
At the bottom, the diffusive flux normal to the bed is related to the erosion of sediment from the bed:

𝐸 = −𝐷ℎ
𝜕𝑐
𝜕𝑟𝑛𝑟 − 𝐷𝑣𝜙

𝜕𝑐
𝜕𝑧𝑛𝑧 =

𝑤𝑠𝜌𝑠
𝜌0𝑔′𝐷𝑠

|𝜏𝑏|𝑎(𝑟). (2.16)
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Here, 𝜌𝑠 is the sediment density, 𝜌0 is the water density, 𝑔′ the reduced gravity which is defined as
𝑔′ = 𝑔(𝜌𝑠 − 𝜌0)/𝜌0, 𝐷𝑠 is the characteristic grain diameter and 𝑎(𝑟) is the erosion coefficient. The
outward pointing unit vector n = (𝑛𝑟 , 𝑛𝑧) reads,

𝑛𝑟 =
𝑑𝐻
𝑑𝑟 (1 + (

𝑑𝐻
𝑑𝑟 )

2
)
−1/2

, 𝑛𝑧 = (1 + (
𝑑𝐻
𝑑𝑟 )

2
)
−1/2

, (2.17)

and the bed shear stress is given by

|𝜏𝑏| = 𝜌0𝐴𝑣𝜙 |
𝜕𝑢
𝜕𝑧 | = 𝜌0𝐴𝑣𝜙

√(𝜕𝑢𝑟𝜕𝑧 )
2
+ (𝜕𝑢𝜃𝜕𝑧 )

2
, (2.18)

evaluated at 𝑧 = −𝐻.
When the bottom slope is small, 𝑑ℎ𝑑𝑟 ≪ 1, 𝑛𝑟 ≈ 0 and 𝑛𝑧 ≈ 1, simplifying the bottom boundary

condition to,
− 𝐷𝑣𝜙

𝜕𝑐
𝜕𝑧 =

𝑤𝑠𝜌𝑠
𝑔′𝐷𝑠𝜌0

|𝜏𝑏|𝑎(𝑟). (2.19)

One can prescribe an arbitrary function as the erosion coefficient and then use the model to compute
the corresponding suspended sediment concentration in the crosssection. However, it is also possible
to find the erosion coefficient corresponding to an equilibrium, this is discussed in the next section.

2.3.3. Morphodynamic equilibrium
Typically, the sediment availability changes on a time scale much larger than the tidal timescale but
much smaller than the time scale over which river discharge or tidal amplitude change. Therefore, it
can be assumed there is no mean evolution of the bed on the short timescale, this is called a mor
phodynamic equilibrium. For this equilibrium it is necessary that the averaged deposition and erosion
of sediment balance. This can be achieved by prescribing an erosion coefficient 𝑎(𝑟) such that the
divergence of the transport vanishes.

The erosion of sediment normal to the bed is given in equation (2.16). The deposition of sediment
normal to the bed is defined at 𝑧 = −𝐻 by

𝐷 = 𝑤𝑠𝑐 𝑛𝑧 . (2.20)

To have a morphodynamic equilibrium, the tidally averaged erosion and deposition should be equal, so

⟨𝐷⟩ − ⟨𝐸⟩ = 0. (2.21)

The angle brackets denote tidal averages.
This morphodynamic equilibrium condition can also be expressed as a balance between advective

and diffusive transport of sediment. This condition can be obtained by the same approach as taken in
[11]. First integrate equation (2.12) over depth, then apply Leibniz rule. Next, the boundary conditions
from Section 2.3.2 and the relation in equation (2.21) are used. The step by step derivation can be
found in Appendix C. The final result is

∫
0

−𝐻
⟨𝑢𝑟𝑐⟩ − 𝐷ℎ

𝜕⟨𝑐⟩
𝜕𝑟 d𝑧 = 0, (2.22)

for every 𝑟. This is equivalent to stating that the total tidally averaged lateral sediment transport must
be zero because this is defined as,

𝑇𝑡𝑜𝑡 = ∫
0

−𝐻
⟨𝑢𝑟𝑐⟩ − 𝐷ℎ

𝜕⟨𝑐⟩
𝜕𝑟 d𝑧. (2.23)

The total transport can be subdivided into the M0 advective transport, the M2 advective transport,
possibly transports for higher tidal components and the diffusive transport. The tidally averaged lateral
transports for M0, M2 and diffusion are defined as,

𝑇𝑀0 = ∫
0

−𝐻
𝑢𝑟,𝑀0𝑐𝑀0 d𝑧, (2.24)
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𝑇𝑀2 = ∫
0

−𝐻
⟨𝑢𝑟,𝑀2𝑐𝑀2⟩d𝑧, (2.25)

𝑇𝑑𝑖𝑓 = ∫
0

−𝐻
−𝐷ℎ

𝜕⟨𝑐⟩
𝜕𝑟 d𝑧. (2.26)

Summed these transports approximate again 𝑇𝑡𝑜𝑡 up to the M2 tidal component.
In a morphodynamic equilibrium, the erosion coefficient is constant because the tidally averaged

lateral transport is zero. If the divergence of the lateral sediment transport is positive at a location, the
erosion coefficient decreases there, whereas a negative divergence of the lateral sediment transport
results in a higher erosion coefficient at that point. This relationship can be expressed as

𝑑𝑎
𝑑𝑡 = −∇ ⋅ 𝑇𝑡𝑜𝑡 . (2.27)

In Section 3.7 is explained how the time evolution of the erosion coefficient is used to find the erosion
coefficient corresponding to a morphodynamic equilibrium. Note that 𝑑𝑎𝑑𝑡 does not represent the actual
derivative of 𝑎 with respect to the physical time 𝑡 since 𝑎 is not a timedependent variable. In this
expression 𝑡 indicates a kind of pseudo time which allows to use a time integration method to find 𝑎(𝑟)
in morphodynamic equilibrium.

The morphodynamic equilibrium condition results in a specific spatial distribution of the erosion
coefficient, which is determined up to a multiplication constant. This additional constant follows from
prescribing the total amount of sediment, available for erosion, in the crosssection:

1
𝐵 ∫

𝐵

0
𝑎(𝑟)d𝑟 = 𝑎∗ , (2.28)

with 𝑎∗ the reference value.



3
Solution Methods

In the previous chapter the model equations were presented. This chapter explains how these equa
tions are solved in the model. To solve the equations, a further developed version of the method in [34]
is used.

In the model the equations for the flow and concentration are solved consecutively, assuming that
spatial variations in the suspended sediment concentration have a negligible effect on the flow pattern.
First, the flow is computed, afterwards the obtained flow velocities are used to find a solution for the
concentration equation. If the discharge is prescribed, the computation of the flow consists of two
nested loops. In the inner loop, the shallow water equations are solved simultaneously based on an
estimate for the alongchannel surface slope. In the outer loop, the estimated alongchannel surface
slope is adjusted to obtain the prescribed discharge.

To find the concentration for a morphodynamic equilibrium, an iterative process is also required. In
this iteration process the value of the erosion coefficient is varied to obtain the one erosion coefficient
corresponding to a morphodynamic equilibrium. The iterative processes are schematically visualised
in Figure 3.1.

The first sections of this chapter cover solving the model equations. In the last two sections the
iterative procedures to obtain the correct discharge and erosion coefficient are discussed.

Figure 3.1: Schematic views of the iterative processes to obtain the flow (upper flow diagram) and concentration (lower flow
diagram).

11
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3.1. Computational grid
The number of grid points affects the accuracy of the results but also the computational time and
storage space that are required. In the radial direction 𝐿 grid points are used. In this report the default
value of 𝐿 is 301 but when for example computing the flow for a steep bottom profile, it is necessary
to increase 𝐿. In the vertical direction, an eigenfunction expansion is used. The eigenfunctions are
obtained numerically on a grid with 10001 points. In both the radial and vertical direction the grid points
are uniformly distributed, so the distance between two neighbouring grid points is constant over the
whole domain.

To solve the model equations (2.1), (2.2), (2.3), (2.5) and (2.12) several steps are taken. First, the
cylindrical coordinate system (𝑟, 𝜃, 𝑧) used in the physical domain is mapped onto a system (𝜉, 𝜃, 𝜎),
in which the coordinates 𝜉 and 𝜎 are defined such that the concerned crosssection of the channel
is represented by a rectangle in the computational domain. The details of this transformation can be
found in Appendix D, the transformed model equations are also given in this appendix.

3.2. Vertical series expansion
In the vertical direction, an eigenfunction expansion is used to express the variables 𝑢𝑟, 𝑢𝜃 and 𝑐. This
means a variable is expressed as the sum of eigenfunctions multiplied by weight functions. For 𝑢𝑟, 𝑢𝜃
and 𝑐, this results in,

𝑢𝑟(𝜉, 𝜎, 𝑡) =
𝑀+𝑁

∑
𝑚=1

𝑈𝑚(𝜉, 𝑡)𝑓𝑚(𝜉, 𝜎), (3.1)

𝑢𝜃(𝜉, 𝜎, 𝑡) =
𝑀+𝑁

∑
𝑚=1

𝑉𝑚(𝜉, 𝑡)𝑓𝑚(𝜉, 𝜎), (3.2)

𝑐(𝜉, 𝜎, 𝑡) =
𝑀+𝑁

∑
𝑚=1

𝐶𝑚(𝜉, 𝑡)𝑑𝑚(𝜉, 𝜎), (3.3)

with 𝑓𝑚 the eigenfunctions for the flow, 𝑑𝑚 the eigenfunctions for the concentration and 𝑈𝑚, 𝑉𝑚 and
𝐶𝑚 the weight functions. In Section 3.4 is explained how the weight functions are optimised using the
Galerkin method. In this thesis, the eigenfunction expansion is based on the method used in [5]. In this
method a special case of the SturmLiouville eigenvalue problem is used to derive the eigenfunctions,

𝜕
𝜕𝜎 (𝜙(𝜉, 𝜎)

𝜕𝑓𝑚
𝜕𝜎 ) + 𝜆𝑚𝑓𝑚𝑤(𝜉, 𝜎) = 0, (3.4)

with
𝑓𝑚(𝜉, 0) =

𝜕𝑓𝑚
𝜕𝜎 (𝜉, 1) = 0. (3.5)

The 𝜆𝑚 are eigenvalues and 𝑤(𝜉, 𝜎) is a weight function. The choice for the weight function affects
the computational effort necessary to obtain the eigenvalues. A specific 𝑤(𝜉, 𝜎) that is suitable for this
model was advised by T.J. Zitman. The eigenfunctions of the SturmLiouville eigenvalue problem are
orthogonal [2]. Because this case of the SturmLiouville eigenvalue problem is used, the vertical mixing
term in the model equations is simplified a lot.

A number of 𝑀 eigenfunction is determined. For 𝑀 infinitely large, the exact solution to the equa
tions would be obtained. To make it possible to compute the flow, a finite value for𝑀 is chosen. At both
the bottom and surface boundary the flow cannot be represented when using these eigenfunctions. At
the surface the boundary condition for the eigenfunctions is homogeneous, as a result these eigen
functions cannot deal with an nonzero wind shear stress. At the bottom the eigenfunctions are zero
and consequently cannot represent the vertical mixing term unless there is a zero pressure gradient,
which is unlikely. This effect is called the Gibbs phenomenon. To deal with these inconsistencies, two
differently defined eigenfunctions are introduced. The number 𝑁 indicates the number of differently
defined eigenfunctions added to the series expansion. In this model 𝑁 equals two.

For 𝑑𝑚, the eigenfunctions for the concentration, a similar method is applied to obtain the eigen
functions. More details about the derivation of the eigenfunctions can be found in Appendix E, the
model equations including the expansions are also given there.
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It is computationally expensive to compute the eigenfunctions. However, for the same bottom profile
and eddy viscosity distribution 𝜙, the eigenfunctions are equivalent regardless the other parameters.
Therefore, the eigenfunctions only have to be computed for the first simulation and can be reused
afterwards for multiple simulations with different parameters.

3.3. Frequency series expansion
The model equations are solved in the frequency domain. Consequently, all timedependent variables
are expressed as a sum of tidal components. The weight functions 𝑈𝑚, 𝑉𝑚 and 𝐶𝑚 are depending on
both time and lateral location and are therefore expressed as a sum of 𝐾 tidal components,

𝑈𝑚(𝜉, 𝑡) = 𝑈(𝑜)𝑚 (𝜉) +
𝐾

∑
𝑘=1

𝑈(𝑐)𝑚,𝑘(𝜉) cos(𝑘𝜔𝑡) + 𝑈
(𝑠)
𝑚,𝑘(𝜉) sin(𝑘𝜔𝑡), (3.6)

𝑉𝑚(𝜉, 𝑡) = 𝑉(𝑜)𝑚 (𝜉) +
𝐾

∑
𝑘=1

𝑉(𝑐)𝑚,𝑘(𝜉) cos(𝑘𝜔𝑡) + 𝑉
(𝑠)
𝑚,𝑘(𝜉) sin(𝑘𝜔𝑡), (3.7)

𝐶𝑚(𝜉, 𝑡) = 𝐶(𝑜)𝑚 (𝜉) +
𝐾

∑
𝑘=1

𝐶(𝑐)𝑚,𝑘(𝜉) cos(𝑘𝜔𝑡) + 𝐶
(𝑠)
𝑚,𝑘(𝜉) sin(𝑘𝜔𝑡). (3.8)

with 𝐾 the number of tidal components. If 𝐾 = 1 only a semi diurnal M2component would be included,
when 𝐾 = 2 the 𝑀4component is also included and so on. In this report 𝐾 = 2. For 𝐾 infinitely large
the exact solution is obtained. To limit the number of weight functions that have to be solved, 𝐾 is
chosen equal to two. Therefore, the timedependent variables in this report are a sum of M0, M2 and
M4 contributions.

Similar to the weight functions for the flow and concentration, all other timedependent variables are
also expanded as sum of tidal components:

𝜕𝜁
𝜕𝑟 = 𝐸

(𝑜) +
𝐾

∑
𝑘=1

𝐸(𝑐)𝑘 cos(𝑘𝜔𝑡) + 𝐸(𝑠)𝑘 sin(𝑘𝜔𝑡), 1
𝑟
𝜕𝜁
𝜕𝜃 = 𝐻

(𝑜) +
𝐾

∑
𝑘=1

𝐻(𝑐)𝑘 cos(𝑘𝜔𝑡) + 𝐻(𝑠)𝑘 sin(𝑘𝜔𝑡),

𝜕𝜌
𝜕𝑟 = 𝑃

(𝑜) +
𝐾

∑
𝑘=1

𝑃(𝑐)𝑘 cos(𝑘𝜔𝑡) + 𝑃(𝑠)𝑘 sin(𝑘𝜔𝑡), 1
𝑟
𝜕𝜌
𝜕𝜃 = 𝑌

(𝑜) +
𝐾

∑
𝑘=1

𝑌(𝑐)𝑘 cos(𝑘𝜔𝑡) + 𝑌(𝑠)𝑘 sin(𝑘𝜔𝑡),

𝐴𝑣 = 𝐴(𝑜) +
𝐾

∑
𝑘=1

𝐴(𝑐)𝑘 cos(𝑘𝜔𝑡) + 𝐴(𝑠)𝑘 sin(𝑘𝜔𝑡), 𝐷𝑣 = 𝐷(𝑜) +
𝐾

∑
𝑘=1

𝐷(𝑐)𝑘 cos(𝑘𝜔𝑡) + 𝐷(𝑠)𝑘 sin(𝑘𝜔𝑡),

𝑞 = 𝑄(𝑜) +
𝐾

∑
𝑘=1

𝑄(𝑐)𝑘 cos(𝑘𝜔𝑡) + 𝑄(𝑠)𝑘 sin(𝑘𝜔𝑡), 𝜒 = 𝑋(𝑜) +
𝐾

∑
𝑘=1

𝑋(𝑐)𝑘 cos(𝑘𝜔𝑡) + 𝑋(𝑠)𝑘 sin(𝑘𝜔𝑡).

The variable 𝜒 was not introduced yet but is used for the bottom boundary condition of the equation
governing the suspended sediment concentration. The variable is defined as the bed shear stress
divided by the reference density,

𝜒(𝑟, 𝑡) = 𝐴𝑣𝜙(−𝐻)√(
𝜕𝑢𝑟
𝜕𝑧 )

2
+ (𝜕𝑢𝜃𝜕𝑧 )

2
= |𝜏𝑏|
𝜌0
. (3.9)

The crosschannel surface slope 𝜕𝜁
𝜕𝑟 is computed simultaneously with the horizontal velocities. To

compute the crosschannel surface slope, condition (2.5) is included in the model equations. The
alongchannel surface slope 1

𝑟
𝜕𝜁
𝜕𝜃 is computed in the outer loop of the model, this is further explained

in Section 3.6
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After substituting the series expansions in both the vertical and frequency domain, the unknown
physical variables are expressed as,

𝑢𝑟(𝜉, 𝜎, 𝑡) =
𝑀+𝑁

∑
𝑚=1

(𝑈(𝑜)𝑚 (𝜉) +
𝐾

∑
𝑘=1

𝑈(𝑐)𝑚,𝑘(𝜉) cos(𝑘𝜔𝑡) + 𝑈
(𝑠)
𝑚,𝑘(𝜉) sin(𝑘𝜔𝑡))𝑓𝑚(𝜉, 𝜎), (3.10)

𝑢𝜃(𝜉, 𝜎, 𝑡) =
𝑀+𝑁

∑
𝑚=1

(𝑉(𝑜)𝑚 (𝜉) +
𝐾

∑
𝑘=1

𝑉(𝑐)𝑚,𝑘(𝜉) cos(𝑘𝜔𝑡) + 𝑉
(𝑠)
𝑚,𝑘(𝜉) sin(𝑘𝜔𝑡))𝑓𝑚(𝜉, 𝜎). (3.11)

𝜕𝜁
𝜕𝑟 = 𝐸

(𝑜) +
𝐾

∑
𝑘=1

𝐸(𝑐)𝑘 cos(𝑘𝜔𝑡) + 𝐸(𝑠)𝑘 sin(𝑘𝜔𝑡), (3.12)

𝑐(𝜉, 𝜎, 𝑡) =
𝑀+𝑁

∑
𝑚=1

(𝐶(𝑜)𝑚 (𝜉) +
𝐾

∑
𝑘=1

𝐶(𝑐)𝑚,𝑘(𝜉) cos(𝑘𝜔𝑡) + 𝐶
(𝑠)
𝑚,𝑘(𝜉) sin(𝑘𝜔𝑡))𝑑𝑚(𝜉, 𝜎). (3.13)

Consequently, there is a large number of unknown weight functions that have to be computed to solve
𝑢𝑟, 𝑢𝜃,

𝜕𝜁
𝜕𝑟 and 𝑐. The weight functions are 𝑈(𝑜)𝑚 , 𝑈(𝑐)𝑚,𝑘, 𝑈

(𝑠)
𝑚,𝑘, 𝑉

(𝑜)
𝑚 , 𝑉(𝑐)𝑚,𝑘, 𝑉

(𝑠)
𝑚,𝑘, 𝐸(𝑜), 𝐸

(𝑐)
𝑘 , 𝐸(𝑠)𝑘 , 𝐶(𝑜)𝑚 , 𝐶(𝑐)𝑚,𝑘

and 𝐶(𝑠)𝑚,𝑘, for 𝑚 = 1…(𝑀 + 𝑁) and 𝑘 = 1…𝐾. The weight functions, but also the eigenfunctions, are
discretized in the horizontal direction. The derivatives in the horizontal direction are expressed with
a central finite difference scheme. As a consequence of this discretization, the value for the weight
functions must be computed for every location 𝜉𝑖. This is done by using the Galerkin method, which is
explained in the next section.

3.4. Galerkin method
The Galerkin method is used to find the value of the unknown weight functions at every location along
the transect. By applying the Galerkin technique on the model equations, a system with the same
number of equations as unknown variables is obtained, which is solved to find the unknown variables.
The Galerkin method involves multiplying the model equations with a set of basis functions and inte
grating over the corresponding domain. The basis functions must be linearly independent. For a more
extended explanation of the Galerkin method, see [28].

It was already mentioned that the eigenfunctions of the SturmLiouville eigenvalue problem are
orthogonal. Since none of the eigenfunctions is constant zero, they are also linearly independent and
can be used as basis functions for the Galerkin method. The functions 1, cos(𝑘𝜔𝑡) and sin(𝑘𝜔𝑡) are
also linearly independent and can also be used as basis functions.

The momentum and concentration equations are first multiplied with the eigenfunctions 𝑓𝑝 or 𝑑𝑝 for
𝑝 = 1…𝑀 and then integrated over the vertical domain [0,1]. Next, all equations are multiplied with
test functions 1, cos(𝑘𝜔𝑡) and sin(𝑘𝜔𝑡) and integrated over time from −𝜋/𝜔 to 𝜋/𝜔. This results, at
every location along the transect, in a total of (2𝐾 + 1) ⋅ (2 ⋅ (𝑀 + 𝑁) + 1) equations for the flow and
(2𝐾 + 1) ⋅ (𝑀 + 𝑁) equations for the concentration. This is equal to the number of unknown weight
functions. The equations can be found in Appendix F. For clarity the resulting equations are subdivided
into equations for test function 1, cos(𝑘𝜔𝑡) and sin(𝑘𝜔𝑡).

3.5. Root finding method
After applying the Galerkin technique, a nonlinear system of equations is obtained for the flow,

Lx+m(x) = 0. (3.14)

here L is a matrix for the linear part of the system of equations, m is a function for the nonlinear part
of the system. The vector x contains the values of the weight functions for every location 𝜉𝑖. To find
the correct vector x, the NewtonRaphson method is used. For a more extensive description of this
method, see [31].

The NewtonRaphson method is an iterative method in which consecutive estimates of the root are
obtained from a first order Taylor approximation of the system at the previous estimate. For the first
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order Taylor approximation, the Jacobi matrix has to be computed. The Jacobi matrix consists of the
derivatives of each of the equations in system (3.14) to every unknown variable. The system that is
solved in a NewtonRaphson iteration reads,

Jf(x𝑖)Δ𝑖 = −ff(x𝑖). (3.15)

Here x𝑖 indicates the ith guess for the vector x, Jf(x𝑖) is the Jacobi matrix of system (3.14) for the
vector x𝑖, ff(x𝑖) is a vector containing the the nonlinear equations evaluated for the vector xi. The ith
correction vector denoted by Δ𝑖, is defined as, Δ𝑖 = x𝑖+1−x𝑖. The correction vector is used to compute
the next vector x𝑖+1 by x𝑖+1 = xi + Δ𝑖. When the elements of the correction vector become smaller
than a chosen accuracy, the iterations stop and the approximate solution is found.

In every iteration, the system in equation (3.15) is solved using an LUdecomposition. This means
the Jacobi matrix is decomposed in a lower (L) and upper (U) triangular matrix, Jf = LU. By first solving
L(UΔ) = −f for UΔ and then solving Δ from this, the solution for equation (3.15) is obtained.

Note that the Jacobi matrix is very sparse because for every location 𝜉𝑖, the model equations only
contain variables for locations 𝜉𝑖−1, 𝜉𝑖 and 𝜉𝑖+1. As a result, the Jacobi matrix is a blocktridiagonal
matrix. More information about the structure of the Jacobi matrix Jf and the vector with unknown
variables x can be found in Appendix G.

For the concentration, a linear system of equations is obtained after applying the Galerkin method.
This is an important difference in comparison with the system of equations for the flow. Due to this
linearity, the concentration equations are easier to solve. The system that needs to be solved reads,

Jcc = fc, (3.16)

with Jc the Jacobi matrix for the concentration equations. This matrix does not depend on the unknown
weight functions for the concentration. The vector c is the vector of unknown variables which consists
of 𝐶(𝑜)𝑚 , 𝐶(𝑐)𝑚,𝑘 and 𝐶(𝑠)𝑚,𝑘 and fc is the vector for the right hand side of the system of equations. The
elements of fc should be equal to zero except for the elements that are corresponding to the bottom
boundary condition. Those elements are equal to the right hand side of the equations for the bottom
boundary in Appendix F, equations (F.24), (F.27) and (F.30). This system is again solved using an
LUdecomposition. Similar to the Jacobi matrix for the flow, this Jacobi matrix is also very sparse. The
structure of this matrix Jc and this vector of unknowns c is also discussed in Appendix G.

3.6. Discharge
As mentioned at the start of this chapter, this section covers the methodology to find the alongchannel
surface slope corresponding to the prescribed discharge. Again NewtonRaphson iterations are used.
This process starts with an initial guess for the surface slope. The model equations are solved with this
guess and the flow and corresponding discharge are obtained. Next the deviation from the prescribed
discharge is computed. As long as the deviation is too large, an adjustment for the surface slope is
determined. The process is terminated when the deviation is within the tolerance bounds.

To find a suitable adjustment for the surface slope, the flow and discharge are not only computed
for a guess for the surface slope 𝐻 but also for a slightly different surface slope 𝐻 + Δ𝐻. Now the
derivative of the discharge 𝑄 with respect to the surface slope can be computed numerically. For the
M0 components this can be expressed as,

𝜕𝑄(𝑜)
𝜕𝐻(𝑜) =

𝑄(𝑜) (𝐻(𝑜) + Δ𝐻) − 𝑄(𝑜) (𝐻(𝑜))
Δ𝐻 . (3.17)

This is done similarly for the other tidal components. These derivatives can be used to construct a
Jacobi Matrix J. Now a vector h with adjustments for each of the tidal components of the surface slope
can be computed as,

h = J\Δq, (3.18)

with Δq the difference between the prescribed discharge and the discharge computed with the current
guess for the surface slope. After the adjustment is added to the latest guess for the surface slope,
a new flow and discharge can be computed. This process is repeated until the required accuracy is
obtained.
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3.7. Erosion coefficient in morphodynamic equilibrium
In a morphodynamic equilibrium, equation (2.22) should hold. During this project, several approaches
were tried to find a suitable method to obtain an erosion coefficient 𝑎(𝑟) for which the morphodynamic
equilibrium condition holds. Of them, using a time integrator was the only method that resulted in a
correct output for 𝑎(𝑟). This method is described in this section, the other methods are briefly discussed
in Appendix H.

The time integration method starts with an initial estimate for the erosion coefficient, 𝑎1. The con
centration 𝑐 is computed as described in the previous sections with this erosion coefficient. Next, the
time evolution of the erosion coefficient 𝑑𝑎1𝑑𝑡 is computed, which is used to find the next guess, 𝑎2. With
this new guess, the concentration and time evolution of the erosion coefficient are computed, etcetera.
This process is continued until the desired convergence for 𝑎(𝑟) is obtained. The subsequent 𝑎𝑖+1 is
determined with 𝑎𝑖 and 𝑑𝑎𝑖

𝑑𝑡 as follows,

𝑎𝑖+1 = 𝑎𝑖 + Δ𝑡
𝑑𝑎𝑖
𝑑𝑡 . (3.19)

The convergence of this process is affected by the choice of Δ𝑡.
As mentioned in Section 2.3.3, the time evolution of the erosion coefficient does not depict the

derivative of 𝑎(𝑟) with respect to the physical time but to a pseudo time. This allows to find the ero
sion coefficient in morphodynamic equilibrium with a time integration method even though the erosion
coefficient is not a time dependent variable.

The time evolution of the erosion coefficient, 𝑑𝑎𝑑𝑡 , depends on the divergence of the tidally averaged
lateral transport (see equation (2.27)). The total tidally averaged depth integrated lateral transport is
given in equation (2.23). Because alongchannel uniformity is assumed, the divergence only consists
of the derivative with respect to 𝑟. This means the time evolution of the erosion coefficient can be
expressed as,

𝑑𝑎
𝑑𝑡 = −

1
𝑟
𝜕
𝜕𝑟 (𝑟𝑇𝑡𝑜𝑡) = −

𝜕𝑇𝑡𝑜𝑡
𝜕𝑟 − 𝑇𝑡𝑜𝑡𝑟 . (3.20)

For the derivative with respect to 𝑟, a finite differencemethod is used. The transport 𝑇𝑡𝑜𝑡 is approximated
as the sum of 𝑇𝑀0 , 𝑇𝑀2 and 𝑇𝑑𝑖𝑓, defined in equations (2.24)(2.26). The integrals that need to be
evaluated to compute the transport are approximated with the composite trapezoidal rule.

The morphodynamic equilibrium condition holds if there is no total tidally averaged lateral transport.
In that case the time evolution of the erosion coefficient is zero over the whole transect and thus the
expression for 𝑎 does not change anymore once the morphodynamic equilibrium is reached. To check
if the iteration process for 𝑎 is converging, the relative difference between the new and the previous 𝑎
is computed, this is called 𝛿𝑖,

𝛿𝑖 =
‖𝑎𝑖+1 − 𝑎𝑖‖2
‖𝑎𝑖+1‖2

. (3.21)

When 𝛿𝑖 is below a chosen value, the process is converged sufficiently and the iteration process is
terminated.



4
Results

In this chapter the results of several simulations obtained with the model described in Chapter 2 and
3 are shown and discussed. In Section 4.1, results for the flow only are shown, with the aim to obtain
a more thorough understanding of the behaviour of the advective contribution to the lateral flow in
estuaries, providing an answer to the first four research questions posed in Section 1.3. The results
of the simulations including sediment are discussed in Section 4.2 providing an answer to research
questions five and six.

4.1. Results for the flow
In this section the flow for a tide dominated estuary is investigated. The default parameters are char
acteristic for a tide dominated estuary and are discussed in Section 4.1.1. In this section the flow
characteristics for this reference situation are discussed as well. In subsequent sections, one or more
of the parameters are varied, such that the sensitivity of these parameters can be systematically identi
fied by comparing the resulting flow with the flow in the reference situation. The last part of this section
contains an idealised simulation of a crosssection in the Ems, for which the results are compared with
measured data.

4.1.1. Reference situation
The reference parameter values are based on the values used in [11] for a tide dominated estuary.
The bottom profile is Gaussian with a width of 3.75 kilometres, and a depth between 5 and 15 metres.
To approximate a straight channel, the radius of curvature is taken very large (108 m) and curvature
terms are not included in the model equations. Moreover, it is assumed the estuary is located in the
Northern Hemisphere, so the Coriolis parameter is positive. The prescribed discharge consists of an
M0 and M2 component and the density gradients are assumed to be zero in the reference situation. In
Table 4.1 the values for the parameters in the reference situation are tabulated. The results obtained
with these parameter values are shown in Figure 4.1 for the crosschannel flow and in Figure 4.2 for
the alongchannel flow.

In Figure 4.1a the residual crosschannel velocity is shown with a positive value indicating that the
water is directed towards the right and a negative velocity means the flow is directed to the left. In
the upper part of the channel the flow is directed towards the right, whereas in the lower part the flow
is directed towards the left. This results in a clockwise circulation of water. This circulation can be
explained by the Coriolis deflection. The Coriolis effect is caused by the rotation of the earth. It causes
moving objects on earth to be deflected to the right in the Northern hemisphere and to the left in the
Southern hemisphere. Since the water in the upper half of the estuary is moving faster, the water
is deflected more to the right near the surface than near the bottom. Because the depth integrated
crosschannel velocity must be zero at every point along the transect (see equation (2.5)), this results
in a velocity directed to the right at the top of the estuary and a velocity to the left at the bottom of the
estuary.

In Figure 4.1b the amplitude of the M2 velocity is shown, whereas the corresponding phase is shown
in Figure 4.1c. The phase indicates the phase difference with respect to the tidal discharge, which is
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Table 4.1: The parameters values used for the reference situation.

Parameter Symbol Value Unit
River discharge 𝑄(0) 3000 m3/s
Amplitude of tidal discharge (M2) 𝑄(𝑐) 30000 m3/s
Phase of tidal discharge (M2) 𝜑𝑄 0 rad
Horizontal diffusion coefficient 𝐴ℎ 1 m2/s
Vertical diffusion coefficient 𝐴𝑣 0.006 m2/s
Channel width 𝑊 3750 m
Maximal water depth 𝐻𝑚𝑎𝑥 15 m
Minimal water depth 𝐻𝑚𝑖𝑛 5 m
Radius of curvature 𝑅 108 m
Gravitational acceleration 𝑔 9.81 N/kg
Coriolis parameter 𝑓 10−4 s−1
Reference water density 𝜌0 1000 kg/m3

Base tidal frequency 𝜔 2𝜋/44714 s−1

defined to have phase 0. This figure shows that the upper half of the crosssection has a different
direction than the lower half of the estuary with the highest amplitudes in the middle of the channel.
This can also be explained by the Coriolis deflection of the M2 component of the alongchannel flow.
During low tide, when the M2 alongchannel velocity is downstream, the M2 crosschannel velocity has
a clockwise circulation. During high tide, when the M2 alongchannel velocity is directed upstream, the
M2 crosschannel velocity is reversed and has a counterclockwise circulation.

(a)

(b)

(c)

Figure 4.1: The crosschannel velocity profiles in m/s for the reference situation. Figure (a) shows the crosschannel M0 velocity,
in Figure (b) and (c) the amplitude and phase for the crosschannel M2 velocity are displayed.
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In Figure 4.2a the residual alongchannel velocity is shown. For the alongchannel results a positive
M0 velocity indicates flow towards the sea and a negative velocity means the water is flowing upstream.
In Figure 4.2a a a clear maximum is visible in the upper middle of the estuary and the amplitude is
decreasing towards the sides. This can be explained by the noslip boundary conditions on the bottom
and side walls which force the flow to be zero there. The amplitude for the M2 velocity, depicted in
Figure 4.2b, is also highest in the upper middle and decreasing towards the sides. From Figure 4.2c it
follows that the alongchannel M2 velocity has a phase close to zero over the whole crosssection.

(a)

(b)

(c)

Figure 4.2: The alongchannel velocity profiles in m/s for the reference situation. Figure (a) depicts the alongchannel M0 velocity,
in Figure (c) and (d) the amplitude and phase for the crosschannel M2 velocity are shown.

The profiles in Figures 4.1 and 4.2 are not symmetric. To link this to the various mechanisms, Fig
ure 4.3 shows the decomposition of the crosschannel M0 flow into flows caused by individual forcings
(see Section 2.2.3), only nonzero contributions are shown. The decomposition confirms that the M0
crosschannel velocity (Figure 4.1a), is mainly determined by the flow caused by Coriolis deflection (Fig
ure 4.3a), which has an asymmetric pattern with larger velocities right to the middle axis. The advective
contribution (Figure 4.3b), is a factor 20 smaller than the contribution caused by Coriolis deflection and
shows a rather complex spatial pattern. The pattern can be characterised as four circulation cells of
different sizes. The maximal magnitude of the contribution caused by horizontal diffusion (Figure 4.3c)
lies between the magnitude of Coriolis deflection and advection. However, this contribution is small in
a large part of the crosssection, only near the surface and bottom boundary are areas with a nonzero
velocity visible.

It is not easy to understand the profile for the contribution of advection shown in Figure 4.3b. The
forcing for advection consists of the sum of two multiplications of a velocity with the derivative of a
velocity. Due to the multiplication of two time dependent variables, not only the M0 components but
also the M2 components of the flow affect the advection profile because a tidally averaged product of
M2M2 signals is not zero.

In the upcoming sections, the sensitivity to different parameter values on the full flow and the flow
caused by advection are discussed in detail. Because the research questions of this thesis concern
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the residual flow, in the upcoming sections only the M0 results of the experiments are shown.

(a)

(b)

(c)

Figure 4.3: The decomposition of total residual crosschannel flow in m/s for the reference situation. The nonzero contributions
are resulting from Coriolis deflection (a), advection (b) and horizontal diffusion (c).

4.1.2. Varying channel width
The bathymetry strongly affects the crosssectional flow profiles. Regarding the influence of bathymetry
on the alongchannel velocity profiles, [34] concluded that the magnitude of the alongchannel advec
tive forcing scales with the local bottom slope and water depth. A flatter bottom results in a smaller
contribution of advection whereas for steeper bottom profiles advection has a large contribution to the
total flow. To investigate the influence of bathymetry on the crosschannel advective contribution to the
crosschannel flow, experiments are done with different channel widths and therefore different lateral
bottom slopes.

The choice of profiles is inspired by [23], who made a division in narrow, medium and wide channels,
by introducing dimensionless number 𝛼 defined as the ration between themaximum depth and the width
of the estuary. When 𝛼 is less than 0.002 the estuary is classified as wide/shallow. When 𝛼 is more
than 0.015 the estuary is classified as narrow/deep. In between these two values for 𝛼, the estuary is
defined as medium. The value for 𝛼 is 0.004 in the reference situation, which means this is a medium
channel. To compare this with a small and wide channel, experiments are done for a channel width of
375 and 37500 metres. This leads to 0.04 and 0.0004 as values for 𝛼. The same values for 𝛼 are used
in [23] to compare the flows in a small, medium and narrow estuary.

To see the effect of advection more clearly, the model is run in two different ways for each channel
width. Once the model is run without including the contribution of advection in the model equations and
once the model is run with advection included in the model equations. In both simulations the contribu
tions caused by discharge, Coriolis deflection and horizontal diffusion are included in the computations.
Afterwards the contribution of advection is computed for both results. The method where advection is
not incorporated in the model equations but still computed afterwards, is similar to the method used in
[12]. Including the contribution of advection in the model equations and computing the magnitude of
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this contribution afterwards is similar to the approach in [34].
In Figure 4.4 the profiles for the crosschannel M0 velocity are shown when advection is not included

in the model equations. The crosschannel velocity profiles resulting from excluding advection from the
model equations are symmetric. This is remarkable because Coriolis deflection, which is included in
these computations, generally breaks the symmetry of the crosschannel flow. An explanation for the
symmetry of the flow profiles in this simulation is that the alongchannel flow is symmetric for a symmet
ric bottom profile when only the contributions of discharge and diffusion are included. Consequently,
when Coriolis deflection is included this also leads to a symmetric contribution because the deflection
of a symmetric flow is symmetric. As a result, both the alongchannel and crosschannel flows are
symmetric.

The width of the channel does not affect the characteristics of the flow in these simulations, each of
the profiles shows one clockwise circulation cell. The magnitude differs for the varying channel widths
because the same discharge is used for each of the channels. As a result the velocity is high in the
narrow channel and lowers as the channel gets wider.

(a)

(b)

(c)

Figure 4.4: The results for the crosschannel flow in m/s when advection is not included in the model equations for a wide (a),
medium (b) and narrow (c) estuary.

Figure 4.5 shows the crosschannel velocity when advection is included in themodel equations. The
flow for a wide channel (Figure 4.5a) is similar to the flow in a wide channel computed without including
advection (Figure 4.4a). The velocity profile is symmetric and has one clockwise circulation cell, the
magnitude of the flow is also similar for both results. In the medium channel (Figure 4.5b), the velocity
is slightly asymmetric, the velocity is higher on the right of the middle axis. The flow profile can still be
characterised as one clockwise circulation cell but differs from the profile computed without advection
(Figure 4.4b) which was symmetric. The flow in the narrow channel (Figure 4.5c) is clearly different
than the profile in the previous simulation (Figure 4.4c). The profile now consists of two circulation cells
instead of one. There is a large clockwise circulation cell and a small counterclockwise circulation cell
on the left of the channel.

When comparing Figure 4.4 and Figure 4.5, there is hardly any difference visible between the ve
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locity profiles for the wide channel (Figures 4.4a and 4.5a). For the narrow channel (Figures 4.4c and
4.5c), the profiles have not much in common anymore. This means the advective contribution hardly
affects the flow in the wide channel whereas it has a large effect on the flow in the narrow channel.

(a)

(b)

(c)

Figure 4.5: The results for the crosschannel flow in m/s when advection is included in the model equations for a wide (a), medium
(b) and narrow (c) estuary.

Figure 4.6 shows the computed advective contribution to the flow when advection was not included
in the model equations. Figure 4.7 shows the advective contribution to the flow when advection was
included in the model equations. Based on the previous results, the profiles for the wide channel
should be almost equivalent for both methods and the profiles for the narrow channel should show a
lot of difference.

Exactly the expected behaviour can be observed in the figures. For the wide channel (Figures 4.6a
and 4.7a) a strong resemblance is visible between the two results. For the narrow channel (Figures
4.6c and 4.7c), the difference between the two patterns is very large. Both figures for the narrow
estuary show two circulation cells but the direction of the circulations is exactly opposite. Moreover, the
magnitude of the velocity is a factor ten larger in Figure 4.6c than in Figure 4.7c. As a consequence,
the magnitude for the advective contribution in Figure 4.6c is also larger than the magnitude of the
total crosschannel flow. For the medium channel (Figures 4.6b and 4.7b) the difference between the
two profiles is smaller than for the narrow channel. The magnitude of the contributions is similar but in
Figure 4.6b two small circulation cells are present near the bottom whereas these are absent in Figure
4.7c.
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(a)

(b)

(c)

Figure 4.6: The results for the computed contribution of advection to the crosschannel flow in m/s when advection is not included
in the model equations for a wide (a), medium (b) and narrow (c) estuary.
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(a)

(b)

(c)

Figure 4.7: The results for the contribution of advection to the crosschannel flow in m/s when advection is included in the model
equations for a wide (a), medium (b) and narrow (c) estuary.

The advection profiles for the wide and narrow channel, Figures 4.7a and 4.7c look much alike,
even though the significance for the flow profile is very different. Both consist of two circulations with
the water flowing downward in the middle and upward on the sides. To see if these contributions are
build up in the same way, the advection profile is decomposed into two flow profiles related to different
components of the forcing. The crosschannel advection is caused by two forcing terms, −𝑢𝑟 𝜕𝑢𝑟𝜕𝑟 and
−𝑢𝑧

𝜕𝑢𝑟
𝜕𝑧 . Figure 4.8 shows the decomposition into the flow caused by each of these forcings for a wide

channel, the forcings itself are also visualised in this figure. Figure 4.9 shows these results for a narrow
channel.

When comparing Figures 4.8 and 4.9, one can see that the pattern of the forcings is similar for the
wide and narrow channel. For both cases, the profiles for the forcing −𝑢𝑟

𝜕𝑢𝑟
𝜕𝑟 (Figures 4.9b and 4.8b)

consist of four circulation cells and the profiles for the forcing −𝑢𝑧
𝜕𝑢𝑟
𝜕𝑧 (Figures 4.9d and 4.8d) consist of

two circulation cells. However, the patterns are not exactly equivalent because the distribution of the
areas with a similar directions varies for the different channels. For the wide channel the two bottom
areas are very thin. For the narrow channel these areas are also thinner compared to others but much
thicker than those for the wide channel. The magnitudes of the different components is also distributed
differently.

As a consequence of the different forcings, the corresponding flows are also different. For the wide
channel four circulation cells are clearly visible for the flow (Figures 4.8a and 4.8c), for the narrow
channel the flow profile consists of two cells (Figures 4.9a and 4.9c). Remarkably, in both channels the
total contribution of advection results in two circulation cells (Figures 4.7a and 4.7c). It appears that the
patterns containing four circulation cells merge and partly cancel such that a profile with two circulation
cells is obtained.



4.1. Results for the flow 25

(a)

(b)

(c)

(d)

Figure 4.8: The results for a wide channel when advection is included in the model equations. The crosschannel advective flow
is decomposed into a flow caused by −𝑢𝑟

𝜕𝑢𝑟
𝜕𝑟 (a) and a flow caused by −𝑢𝑧

𝜕𝑢𝑟
𝜕𝑧 (c). The forces causing these flows are shown

underneath the corresponding flow ((b) and (d)). The unit of the flow is m/s, the unit for the forces is m/s2.
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(a)

(b)

(c)

(d)

Figure 4.9: The results for a narrow channel when advection is included in the model equations. The crosschannel advective
flow is decomposed into a flow caused by −𝑢𝑟

𝜕𝑢𝑟
𝜕𝑟 (a) and a flow caused by −𝑢𝑧

𝜕𝑢𝑟
𝜕𝑧 (c). The forces causing these flows are

shown underneath the corresponding flow ((b) and (d)). The unit of the flow is m/s, the unit for the forces is m/s2.

The difference between the contribution of advection for the crosschannel flow in a wide, medium
and narrow channel showed that advection can often not be assumed negligible. The channel width,
and thus also the bottom slope, is a parameter affecting the magnitude of the advective forcing. This
is consistent with the findings in [34] for alongchannel flow. More research with for example more
complicated bottom profiles should be conducted to investigate if other aspects of the bathymetry are
also affecting the significance of advection for the total flow dynamics.

Based on these results it is recommended to only neglect advection when dealing with a gradual
bottom profile. Moreover, when the contribution of advection is not included in the model equations,
it is advisable to compute the contribution of advection afterwards to check if this simplification was
indeed allowed. If the advective contribution computed afterwards is small compared to the other
contributions, it was valid to neglect advection. However, if the contribution of advection computed
afterwards is not small compared to the other contributions, the results might be inaccurate. In that
case it is recommended to include advection in the computations.
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4.1.3. Varying channel curvature
In the reference situation presented in Section 4.1.1, a straight channel is simulated. To investigate
the influence of curvature on the flow profile the radius of curvature is decreased, leading to a more
acutely curved estuary. Simulations are performed for various radii of curvature. Apart from the radius
of curvature 𝑅, all other parameters are equivalent to the reference situation (see Table 4.1). The radii
of curvature that are chosen here are, 100 km, 10 km, 1 km and 10 km. When the radius of curvature
is positive, the inner bend is on the left when looking in the direction of the sea. To find the inner bend
on the right when looking seaward, the the radius of curvature should be chosen negative.

The results for the different radii can be found in figures 4.10  4.13. In each figure the total
crosschannel flow is depicted in panel (a) at the top and the profiles associated with the flows caused
by different contributions are shown in panels (b)(e) below. The panels show the the flow caused by
Coriolis deflection, advection, horizontal diffusion and curvature.

For a radius of 100 km the crosschannel flow profile (Figure 4.10a) mainly results from the Coriolis
deflection (Figure 4.10b). Comparing the flow pattern to the reference situation (Figure 4.1a), not much
difference is visible, only the area where the velocity is nonzero, is spread out slightly more to the left
of the channel. This can be explained by the contribution of curvature. The flow caused by curvature
(Figure 4.10e) consists of one clockwise circulation cell similar to the Coriolis deflection but the area
with a nonzero velocity is spread out more evenly compared to the flow caused by Coriolis deflection
which is mostly located right to the middle axis. The contributions caused by advection and horizontal
diffusion (Figures 4.10c and 4.10d) are similar to the reference situation. The flow caused by advection
is approximately a factor 10 smaller than the other contributions and the nonzero flow caused by
horizontal diffusion is only located near the bottom and surface boundary. Therefore, advection and
horizontal diffusion do not have a large effect on the crosschannel flow.

When considering a radius of 10 km (Figure 4.11), the contribution due to the curvature is the largest
contribution to the crosschannel flow. Compared to the simulations for a radius of 100 km, the contri
bution caused by curvature is increased by approximately a factor 10 whereas the contribution caused
by Coriolis deflection has almost the same magnitude. Consequently, the flow profile is mainly deter
mined by the curvature (Figure 4.11e) but Coriolis deflection (Figure 4.11b) also significantly affects the
flow profile (Figure 4.11a). Note that for the Coriolis deflection another circulation cell has appeared
left to the middle axis. The magnitude of the velocity there is much smaller, so this does not affect the
total flow significantly. Since the contributions for Coriolis deflection and curvature both mainly result
in a clockwise circulation, the two processes amplify each other. As a consequence the characteristics
of the flow profiles for 𝑅 = 100 km (Figure 4.10a) and 𝑅 = 10 km (Figure 4.11a) are very similar. How
ever, the magnitude of the velocity has increased approximately a factor three for the smaller radius
of curvature, this is due to the increased magnitude of the contribution caused by curvature. Similarly,
the profiles for advection and horizontal diffusion for a radius of 10 km (Figures 4.11c and 4.11d) also
have the same characteristics as these contributions had for a radius of curvature of 100 km but their
magnitude is increased approximately a factor three.

As expected, the contribution of curvature for a radius of 1 km is larger than for the previous radii
of curvature. The contribution caused by curvature (Figure 4.12e), is approximately a factor five larger
than for the radius of 10 km. As a consequence the total flow (Figure 4.12a) is mainly determined by
curvature. For the radii of 10 km and 100 km the profiles for the contribution of curvature are almost
symmetric but for the radius of 1 km the circulation is clearly located more on the left side of the estuary.
This also affects the other contributions which all have an altered profile. The contribution caused by
Coriolis deflection (Figure 4.12b) now clearly consists of two circulation cells with a counterclockwise
circulation on the left and a clockwise circulation on the right side of the channel. The magnitude of the
velocity is approximately halved for this contribution whereas the other contributions have all increased
in magnitude. Themagnitude of the advective contribution (Figure 4.12c) is increased by approximately
factor ten and the profile is also changed. For a radius of 100 and 10 km the profile consisted of four
circulation cells, for a radius of 1 km there are again four circulation cells but the rotation of the cells on
the left is reversed. The contribution caused by horizontal diffusion (Figure 4.12d) is now higher on the
left side of the channel, previously the contribution on the left and right side were of equal magnitude.
The maximum velocity is increased by approximately a factor six.

For the radius of 10 km the circulation cell in the contribution caused by curvature (Figure 4.13e)
is reversed, now the curvature causes a counterclockwise circulation with approximately the same
magnitude as the contribution of curvature for the radius of 10 km. Since the Coriolis deflection (Figure
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4.13b) is characterised as one clockwise circulation cell, the contributions of curvature and Coriolis
deflection now counteract each other. The magnitude of the contribution caused by the Coriolis deflec
tion is much smaller than the contribution caused by curvature, therefore the total flow (Figure 4.13a)
is characterised by a counter clockwise circulation. Due to the opposite circulation of the flow, the
horizontal diffusion (see Figure 4.13d) is also opposite compared to the contribution for a positive ra
dius of curvature. The contribution caused by advection (Figure 4.13c) consists of five circulation cells,
one small cell near the bottom and four large cells which have the same direction and approximately
the same distribution as the advective contribution for a radius 100 and 10 km. The the advective
contribution is also of the same order of magnitude as the contribution for a radius of 10 km.

These experiments show that curvature strongly affects the total crosschannel flow. If the channel
is bending to the left, when looking seaward, the Coriolis deflection and curvature both contribute to a
clockwise circulation, consistent with the results in [12] and [34]. If the channel is bending to the right,
the curvature yields a counterclockwise circulation and hence the Coriolis deflection and curvature
counteract. It depends on the radius of curvature which process is dominant.

The contribution of advection is only slightly affected by the channel curvature in these simulations.
The magnitude increased as the radius of curvature decreased but this did not result in a significant
contribution of advection to the flow. In case of a very small radius of curvature some circulation cells
reversed in the contribution caused by advection.
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(a)
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(c)

(d)

(e)

Figure 4.10: Results for the crosschannel flow in m/s for a radius of curvature of 100 km showing the total residual flow (a) and
the decomposition of the flow into the contributions for Coriolis deflection (b), advection (c), horizontal diffusion (d) and curvature
(e).
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Figure 4.11: Results for the crosschannel flow in m/s for a radius of curvature of 10 km showing the total residual flow (a) and
the decomposition of the flow into the contributions for Coriolis deflection (b), advection (c), horizontal diffusion (d) and curvature
(e).
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Figure 4.12: Results for the crosschannel flow in m/s for a radius of curvature of 1 km showing the total residual flow (a) and
the decomposition of the flow into the contributions for Coriolis deflection (b), advection (c), horizontal diffusion (d) and curvature
(e).
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Figure 4.13: Results for the crosschannel flow in m/s for a radius of curvature of 10 km showing the total residual flow (a) and
the decomposition of the flow into the contributions for Coriolis deflection (b), advection (c), horizontal diffusion (d) and curvature
(e).
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4.1.4. Varying crosschannel density gradient
In the reference situation, density gradients are neglected. It is well known that density gradients can
result in intricate flow patterns consisting of one or multiple circulations depending on the distribution
of the density gradient [12], [15]. To systematically study the effect of a crosschannel density gradient
on the crosschannel advective contribution of the flow, simulations with various density gradients are
performed. Keeping all other parameters as in the reference situation (see Table 4.1).

The crosschannel density gradient consists of different tidal components. For this experiment only
the M0 and M2 components of the density gradient are considered by choosing one amplitude for the
M0 contribution and varying the amplitude of the M2 contribution and the phase of the M2 contribution.
In each of the following simulations the density gradient is spatially uniform. For the first experiments,
the M0 component of the lateral density gradient is chosen to be −10−4 kg/m4, the phase of the M2
component is set to 𝜋 and theM2 amplitude is varied between 10−2, 10−3 and 10−4 kg/m4. In the second
set of experiments, theM0 component is again−10−4 kg/m4, the amplitude of theM2 component equals
10−2 kg/m4, and the phase is given by−1/2𝜋, 0 or 1/2𝜋. The results of the first three simulations, where
the amplitude of the M2 component is varied, are shown in Figures 4.144.16. The results for the other
three experiments, with a varying M2 phase, are shown in Appendix I.

When comparing the flow shown in Figure 4.14a with the reference situation (Figure 4.1a) it is im
mediately clear that due to the presence of a lateral density gradient the circulation of the crosschannel
flow changed from a clockwise to a counterclockwise rotation. The contribution caused by the density
gradient (Figure 4.14e) also shows a counterclockwise circulation and it has the highest magnitude of
all contributions. This is as expected because for a negative density gradient the water on the left of
the estuary has a higher density than on the right of the channel. Heavy water flows underneath lighter
water and thus there is a counterclockwise circulation.

The contribution caused by the Coriolis deflection was the dominant contribution for the reference
situation. In this simulation the contribution caused by Coriolis deflection (Figure 4.14b) still contains
one clockwise circulation cell with a similar magnitude as the reference situation but its magnitude is
smaller than the contribution caused by the density gradient. The advective contribution (Figure 4.14c)
can be characterised as five circulation cells with a magnitude slightly smaller than the magnitude of
the advective contribution in the reference situation. Due to the reversed direction of the flow, the
contribution caused by diffusion (Figure 4.14d) is also reversed compared to the reference situation
but the magnitude is similar. The contribution of diffusion on the left side of the channel is slightly larger
than on the right side.

For the M2 amplitude equal to 10−3, the flow is still counterclockwise (Figure 4.15a) due to the
contribution of the density gradient (Figure 4.15e) which has not changed. The tidally averaged flow
caused by the density gradient has not changed compared to the previous simulation because only the
amplitude of the M2 component of the density gradient has changed. However, the other contributions
have changed in characteristics and magnitude due to the higher M2 amplitude of the density gradient.
The contribution caused by to Coriolis deflection (Figure 4.15b) is now largest on the left of the estuary
whereas this was largest on the right in the reference situation (Figure 4.3a). The magnitude of this
contribution has slightly increased compared to the previous simulation. The advective contribution
(Figure 4.15c) can now be characterised as four circulation cells and the magnitude of this contribution
has almost doubled compared to the result for the M2 amplitude equal to 10−4. The contribution caused
by horizontal diffusion (Figure 4.15d) has a similar magnitude as for the previous simulation but is now
slightly larger on the right of the channel.

The flow for the highest M2 density gradient (Figure 4.16a) consists of four circulation cells because
the advective contribution (Figure 4.16c) is now dominant. The characteristics for the advective con
tribution are similar as for the previous simulation but the magnitude has increased by more than a
factor 20, whereas the magnitude for the contribution caused by the density gradient (Figure 4.16e)
has not changed. The contribution caused by Coriolis deflection (Figure 4.16b) now consists of two
circulation cells and has a similar magnitude as the result for the M2 amplitude equal to 10−3. The con
tribution caused by horizontal diffusion (Figure 4.16d) has largely changed compared to the previous
simulation. The magnitude of the contribution is increased almost a factor 10 and the profile can now
be characterised as six circulation cells next to each other.

Changing the phase of the M2 density gradient does not seem to affect the flow profile a lot. Figure
4.16 and the figures in Appendix I all have a similar total flow consisting of 4 circulations. Only the
contribution caused by Coriolis deflection is affected by the phase difference. When comparing the



34 4. Results

contribution of Coriolis deflection for phase 0 and 𝜋 (Figures 4.16b and I.2b), both have two circulation
cells but their direction is reversed. For phase−0.5𝜋 (Figure I.1b) there is only one clockwise circulation
cell and for phase 0.5𝜋 (Figure I.3b) the contribution caused by Coriolis deflection is similar to the
contribution for phase 𝜋 (Figure 4.16b) but the left circulation is larger in size. The magnitude for phase
−0.5𝜋 and 0.5𝜋 is also approximately halved compared to the contributions for phase 0 and 𝜋.

From these experiments it can be concluded that the density gradient can have a large effect on the
residual flow profile, depending on the magnitude. Not only the M0 component of the density gradient
affects the advective contribution and the residual flow, also the amplitude of the M2 component of
the density gradient can affect flow caused by advection and the residual flow. The phase of the M2
component seems to have little effect on the advective contribution to the flow and the total residual
flow but only affects the contribution caused by the Coriolis deflection.
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Figure 4.14: The results for the crosschannel flow in m/s for an M0 density gradient of 10−4 and an M2 density gradient with
amplitude 10−4 and phase 𝜋. The panels show the total residual flow (a) and the decomposition of the flow into the contributions
for Coriolis deflection (b), advection (c), horizontal diffusion (d) and the density gradient (e).
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Figure 4.15: The results for the crosschannel flow in m/s for an M0 density gradient of 10−4 and an M2 density gradient with
amplitude 10−3 and phase 𝜋. The panels show the total residual flow (a) and the decomposition of the flow into the contributions
for Coriolis deflection (b), advection (c), horizontal diffusion (d) and the density gradient (e).
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Figure 4.16: The results for the crosschannel flow in m/s for an M0 density gradient of 10−4 and an M2 density gradient with
amplitude 10−2 and phase 𝜋. The panels show the total residual flow (a) and the decomposition of the flow into the contributions
for Coriolis deflection (b), advection (c), horizontal diffusion (d) and the density gradient (e).
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4.1.5. Simulation Ems
In the previous sections the flow is simulated for a theoretical estuary and some of the parameter
values were varied to systematically investigate the effects of those parameters. In this section the
measurements for the residual crosschannel velocity in [24] are compared to model results. The
measurements were performed in the Ems estuary approximately at the mouth of the Knockster Tief
on August 28 in 2018. By simulating the situation at that moment and location, the results of the model
can be compared with the measurements in [24]

It is important to choose the correct parameter values to obtain model results similar to themeasured
results. Most of these values are found in [24]. The amplitude for the tidal discharge is computed from
the measurements in [6]. The parameters used for these simulations are given in Table 4.2.

Table 4.2: The parameters values used for the simulation of the Ems.

Parameter Symbol Value Unit
River discharge 𝑄(0) 22 m3/s
Amplitude of tidal discharge (M2) 𝑄(𝑐) 18000 m3/s
Phase of tidal discharge (M2) 𝜑𝑄 0 rad
Channel width 𝑊 3000 m
Maximal water depth 𝐻𝑚𝑎𝑥 11 m
Minimal water depth 𝐻𝑚𝑖𝑛 1 m
Radius of curvature 𝑅 −6000 m

The bottom profile of the actual estuary is quite complicated and only a smoothed bathymetry based
on the observations is used in the simulations. A remarkable characteristic of the bathymetry is that the
deepest point of the estuary is not situated in the middle of the estuary but on the left side when looking
seaward. As a consequence, the bottom is very steep at the left side of the channel and more flat
on the other side. To simulate this characteristic of the bathymetry, the deepest point of the Gaussian
bottom profile is moved to 0.5km. To check if this affects the results, the simulations are also performed
for a symmetric Gaussian bottom profile.

The simulations are performed without a density gradient, as the observed density gradient was
close to zero most of the time and not identified as a large cause for the lateral circulations [24]. Wind
is not included in the model, since the measurements were performed at a day with low wind speeds
this should not affect the results a lot. The same eddy viscosity coefficients and shape function 𝜙 are
used as in the reference situation.

The results for the simulations for the symmetric and asymmetric bottom profile, are shown in Fig
ures 4.18 and 4.19, respectively. Note that the outer bend is on the left and the inner bend on the right
corresponding to the negative radius of curvature. From these figures it follows that the crosschannel
flow is mainly determined by the contribution caused by curvature. This was also identified as the main
cause of lateral circulations in [24].

The profiles for the curvature (Figures 4.18e and 4.19e) do not vary much between the two different
bottom profiles, in both simulations the curvature causes a counterclockwise rotation. For the sym
metric bottom profile (Figure 4.18e), the circulation cell is located in the middle of the channel and for
the asymmetric bottom profile (Figure 4.19e), the circulation is located more to the left. Because the
contribution caused by curvature is dominant, the total flow (Figures 4.18a and 4.19a) is also similar
for the two bathymetries and consists of one counterclockwise rotation.

When comparing the contributions caused by other mechanisms, it is visible that the bottom profile
strongly influences those. The contribution caused by Coriolis deflection for the symmetric bottom
(Figure 4.18b) can be characterised as three circulation cells. There is one clockwise circulation cell
which is large in size and magnitude in the middle of the channel, a smaller counterclockwise cell
on the left and a very small cell on the right. The contribution caused by Coriolis deflection for the
asymmetric bottom profile (Figure 4.19b) is similar except that between the cell in the centre and on
the left two extra circulation cells have arisen.

The contribution due to advection for the symmetric bottom profile (Figure 4.18c) consists of five
circulation cells and takes its maximum values in the centre of the estuary. For the asymmetric bottom
profile (Figure 4.19c), still five circulation cells are present but they are shifted towards the left of the
channel. The magnitude of the advective contribution to the crosschannel velocity is approximately
doubled for the asymmetric bottom profile compared to the symmetric bottom profile. This confirms
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the theory that a steeper bottom slope results in a higher magnitude for the crosschannel advective
contribution.

The contribution caused by horizontal diffusion is symmetric for the symmetric bottom profile (Figure
4.18d). For the asymmetric bottom profile (Figure 4.19d) the contribution on the left is larger than on
the right of the channel.

In [24] there were three measurement locations along the transect where the crosschannel velocity
was measured. These locations would lie between 0.4 and 0.6 km in the simulated estuary. At the
measurement locations an upslope velocity was measured near the bottom and a downslope velocity
was measured higher in the water column. Only one of the measurement locations could measure until
the water surface, the others did not provide measurement data for the upper part of the water column.
At the location where the the whole water column was measured, the direction of the velocity was
downslope again near the surface. The magnitude of the crosschannel velocity was mostly between
0.03 and 0.03 m/s. The results for the measurements are depicted in Figure 4.17, which is reprinted
from [24]. The right panel indicated as B shows the crosschannel velocity and is used to compare the
model results with.

Figure 4.17: The results of the three measurement locations along the transect. It shows the alongchannel residual velocity
(panel A) and the crosschannel residual velocity (panel B). Reprinted from [24].

The measurements thus suggest there is a velocity to the right at the bottom of the water column,
to the left in the middle of the water column and to the right again at the top, assuming the data from
the single measurement location also holds for the other locations. When looking at Figure 4.19a, the
magnitude of the velocity corresponds to the measurements. Moreover, a velocity to the right is visible
at the bottom and higher in the water column a velocity to the left is observed. However, close to the
surface, the velocity is still directed towards the right and a velocity to the left is not present near the
surface in the simulations.

A possible explanation for the difference between the measurements and the simulations is the
different description of the free surface. In the measurement data the velocities were computed using
the method of [16]. This takes into account the variations in thickness of the water column over time.
The column is thus divided into a number of sigma layers whose thickness increases or decreases
depending on the surface variations. In the model the rigid lid approximation is used, which means the
surface level is assumed constant and the layers do not have a varying thickness. The results in [16]
show that a time dependent water depth can lead to differences in the velocity when averaged over
time.

Of course there many more differences between the simulation and the actual situation such as
the bottom profile, density gradient and wind. These differences could also cause a deviation between
the measurements and the simulations. To be certain that the difference between the measured and
computed velocities is caused by the rigid lid assumption, more research is required.
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Figure 4.18: The results for the crosschannel flow in m/s for the simulation of the Ems with a bottom profile with its deepest
point in the middle, at 1.5 km. The panels show the total residual flow (a) and the decomposition of the flow into the contributions
for Coriolis deflection (b), advection (c), horizontal diffusion (d) and curvature (e).
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Figure 4.19: The results for the crosschannel flow in m/s for the simulation of the Ems with a bottom profile with its deepest point
towards the left, at 0.5 km. The panels show the total residual flow (a) and the decomposition of the flow into the contributions
for Coriolis deflection (b), advection (c), horizontal diffusion (d) and curvature (e).
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4.2. Results for the suspended sediment
The main goal of this thesis is to implement a sediment extension to the model. In Chapter 2 and 3
the equations used to model the sediment dynamics and the solution methods were discussed. In this
section the results obtained with the implemented sediment module are discussed. First, the results are
given using a prescribed erosion coefficient. Next, the results are discussed with the erosion coefficient
obtained in morphodynamic equilibrium.

For the computation of sediment it is required to assign values to some sediment specific param
eters. For the simulations in this section, the values in Table 4.3 are used, unless stated otherwise.
For the situations that are simulated, most parameters for the flow are chosen equal to those in the
reference situation (see Table 4.1). Regardless the bottom profile, all channels have a width of 3.75
km and are assumed to be straight. The magnitude of the diffusivity and viscosity constants is equal to
the those in the reference situation, but the shape function 𝜙 is now chosen to be constant over depth.

Parameter Symbol Value Unit
Horizontal diffusivity coefficient 𝐷ℎ 1 m2/s
Vertical diffusivity coefficient 𝐷𝑣 0.006 m2/s
Sediment fall velocity 𝑤𝑠 3 × 10−4 m/s
Density of sediment 𝜌𝑠 2650 kg/m3

Grain diameter 𝐷𝑠 2 × 10−5 m
Reference value for 𝑎(𝑟) 𝑎∗ 4 × 10−6 

Table 4.3: The values for the parameters for sediment.

In this chapter only the results for the tidally averaged suspended sediment concentration are pro
vided because these are the most intuitive to understand. However, the model also produces the M2
and M4 tidal components of the suspended sediment concentration.

4.2.1. Prescribed erosion coefficient
To check if the model behaves as expected, first a situation with a known solution is simulated. The
most simple situation to simulate is that of a crosssection with a flat bottom profile and no crosschannel
flow. This requires the flow to be computed without the effect of Coriolis deflection, curvature, advection
and a density gradient. Hence only diffusion and discharge affect the flow. As a consequence, the flow
in the crosschannel direction is zero and in the alongchannel direction the flow profile of Figure 4.20 is
obtained. This result is used in the model to compute the suspended sediment distribution. In this case
there is no advection of sediment and diffusion is assumed negligible, then the concentration equation
(2.12), can be solved analytically and the solution reads,

𝑐 = 𝑓(𝑟)
𝑤𝑠

exp(−𝑤𝑠𝐷𝑣
(𝑧 + 𝐻)), (4.1)

for every 𝑟, with
𝑓(𝑟) = 𝑤𝑠𝜌𝑠

𝜌0𝑔′𝐷𝑠
|𝜏𝑏|𝑎(𝑟). (4.2)

Figure 4.20: The result for the alongchannel flow in m/s for a rectangular bottom profile when only discharge is included.
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The flow profile creates a bed shear stress which is constant in the middle of the channel and
quickly goes to zero near the boundaries. With a constant erosion coefficient equal to 𝑎∗, the function
describing the bottom boundary condition, 𝑓(𝑟) in equation (4.1), will have the same shape as |𝜏𝑏|.
In Figure 4.21 the value of 𝑓(𝑟) is plotted against the channel width. Since the computed suspended
sediment concentration approximates the analytical solution, this shape should also be visible in the
suspended sediment distribution.

Figure 4.22, shows the M0 component of the suspended sediment concentration. One can recog
nise the dependency of 𝑓 on 𝑟 in the sediment profile. Moreover, at different points along the transect
the value for 𝑐 over the depth was compared with the analytical solution and these were approximately
equivalent.

Figure 4.21: The function 𝑓(𝑟) plotted against the channel width for the rectangular bottom profile and constant erosion coeffi
cient.

Figure 4.22: The result for the M0 component of the suspended sediment concentration in kg/m3 for the rectangular bottom
profile and constant erosion coefficient.

To test a slightly more complicated situation, in the next experiments 𝑎(𝑟) is defined to linearly
increase from 0.5𝑎∗ to 1.5𝑎∗, with 𝑎∗ the reference value for the erosion coefficient. With the same
flow, this results in a different dependency of 𝑓 on the radial coordinate, see Figure 4.23. The function
𝑓(𝑟) is now linearly increasing in most part of the channel. As a consequence, the concentration also
increases over the width of the channel. In Figure 4.24 the M0 component of the suspended sediment
concentration is depicted. Indeed the concentration is low on the left side of the channel and gets
higher when looking more to the right side of the channel.
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Figure 4.23: The function 𝑓(𝑟) plotted against the channel width for the rectangular bottom profile and linearly increasing erosion
coefficient.

Figure 4.24: The result for the M0 component of the suspended sediment concentration in kg/m3 for the rectangular bottom
profile and linearly increasing erosion coefficient.

To further test the sediment module, other bottom profiles are used. A different bottom profile causes
a different alongchannel flow and therefore a different shape of 𝑓(𝑟). For a varying bottom profile, the
analytical solution given in equation (4.1), is not a good approximation anymore because 𝐻 is now also
a function of 𝑟.

The model is tested for both a linearly shaped bottom profile and a Gaussian profile. The same
linearly increasing erosion coefficient is used as in the previous experiment. Since the bottom boundary
condition strongly affects the suspended sediment distribution, the function 𝑓(𝑟) dictates the suspended
sediment concentration to a large extend. The shape of 𝑓(𝑟) is depicted in Figure 4.25 for the linear
bottom profile and in Figure 4.27 for the Gaussian bottom profile. The M0 component of the suspended
sediment concentration is shown in Figure 4.26 for the linear bottom profile and in Figure 4.28 for the
Gaussian bottom profile.

For the linearly increasing bottom profile, the function 𝑓(𝑟) (Figure 4.25) has a similar shape as
for the flat bottom profile (Figure 4.23) but with a steeper slope. This is visible in the profile for 𝑐
(Figure 4.26) as well because the maximum magnitude of the suspended sediment concentration is
almost doubled compared with the simulation for the flat bottom (Figure 4.24). For the Gaussian bottom
profile, 𝑓(𝑟) is not constantly sloping anymore in most of the crosssection (Figure 4.27) but has a
more complex dependency on the radial coordinate. This behaviour is also visible in the profile for the
concentration (Figure 4.28).
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Figure 4.25: The function 𝑓(𝑟) plotted against the channel width for the linearly decreasing bottom profile and the linearly
increasing erosion coefficient.

Figure 4.26: The result for the M0 component of the suspended sediment concentration in kg/m3 for the linearly decreasing
bottom profile and linearly increasing erosion coefficient.
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Figure 4.27: The function 𝑓(𝑟) plotted against the channel width for the Gaussian decreasing bottom profile and the linearly
increasing erosion coefficient.

Figure 4.28: The result for the M0 component of the suspended sediment concentration in kg/m3 for the Gaussian bottom profile
and linearly increasing erosion coefficient.
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Last, the sediment module was tried for a Gaussian bottom profile including a crosschannel flow.
In the previous simulations the suspended sediment concentration was only affected by diffusive trans
port, now advective transport also contributes to the distribution of sediment. The flow for this simulation
is determined by Coriolis deflection, diffusion and discharge, the other mechanisms are not included in
the computation of the flow. As a result the crosschannel flow has a clockwise circulation. The expec
tation is that the crosschannel flow affects the distribution of sediment. The different flow profile also
affects the bed shear stress and this results in a different shape for 𝑓(𝑟). A constant erosion coefficient
is used, to clearly see the effect of the crosschannel flow on the suspended sediment concentration.

Figure 4.29 shows the function 𝑓(𝑟) plotted against the channel width for this situation and Fig
ure 4.30 shows the corresponding suspended sediment distribution. Even though the function 𝑓(𝑟) is
symmetric, the suspended sediment concentration is not symmetrically distributed. On the left of the
channel the concentration is higher than on the right of the channel. This difference is caused by the
crosschannel flow which moved the water close to the bed with a high suspended sediment concentra
tion to the left and the water near the surface, which has a a lower suspended sediment concentration,
towards the right of the channel.

Figure 4.29: The result for the M0 component of the suspended sediment concentration in kg/m3 for the rectangular bottom
profile, constant erosion coefficient and a flow affected by Coriolis deflection.

Figure 4.30: The function 𝑓(𝑟) plotted against the channel width for the Gaussian decreasing bottom profile, the constant erosion
coefficient and a flow affected by Coriolis deflection.
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4.2.2. Computed erosion coefficient
In morphodynamic equilibrium the spatial distribution of the erosion coefficient cannot be chosen freely
but a specific distribution is required (see Section 3.7). In this section these distributions in morpho
dynamic equilibrium are shown for situations with diffusive transport only. Again the model was first
applied to a simple situation with a known solution. For a crosssection with a flat bottom and only
an alongchannel flow (i.e. no crosschannel flow), the lateral sediment transport only has a diffusive
contribution. The analytical solution for 𝑐 (see equation (4.1)), can then be used to obtain

𝑇𝑡𝑜𝑡 = −
𝐷ℎ
𝑤𝑠
𝜕𝑓(𝑟)
𝜕𝑟 ∫

0

−𝐻
exp(−𝑤𝑠𝐷𝑣

(𝑧 + 𝐻))d𝑧 = 𝜕𝑓(𝑟)
𝜕𝑟 [𝐷ℎ𝑤2𝑠

(exp(−𝑤𝑠𝐷𝑣
𝐻) − 1)] . (4.3)

The total transport must be zero in morphodynamic equilibrium. Since the term in the square brackets
is not equal to zero, it can be concluded that the derivative of 𝑓(𝑟) with respect to 𝑟 must be zero.
Consequently the expression for 𝑓(𝑟) must be constant and 𝑎(𝑟) can be solved up to a multiplication
constant 𝐶1, as

𝑎(𝑟) = 𝐶1
𝜌0𝑔′𝐷𝑠
𝑤𝑠𝜌𝑠|𝜏𝑏|

. (4.4)

The value of 𝐶1 depends on the reference value for the erosion coefficient 𝑎∗.
To run the model, an initial solution for 𝑎(𝑟) must be assigned. Here a constant value equal to the

reference value 𝑎∗ is chosen as initial guess. The other parameters are again equal to the values in
Table 4.3. In Figure 4.32, the erosion coefficient obtained after 500 iterations with time step Δ𝑡 = 10 s is
plotted. In the same figure the analytical solution is also indicated. To investigate the convergence of the
computation, 𝛿𝑖 is plotted on a semilog scale in Figure 4.33. The suspended sediment concentration
corresponding to the computed value for 𝑎(𝑟) is shown in Figure 4.31.

In Figure 4.32, the markers for the analytical solution of the erosion coefficient are located on the
curve for the computed solution. This shows the model is able to accurately approximate the erosion
coefficient in morphodynamic equilibrium.

Because the transport is only determined by diffusion, the depth integrated derivative of 𝑐 with
respect to 𝑟 must be zero. As a consequence the derivative of 𝑐 with respect to 𝑟 must be constant. At
the boundaries this derivative must be zero, therefore the derivative of 𝑐 with respect to 𝑟 must be zero
over the whole transect. This is visible in Figure 4.31: in the lateral direction the concentration at any
height is constant.

Figure 4.31: The result for the M0 component of the suspended sediment concentration in kg/m3 in morphodynamic equilibrium
for a rectangular bottom profile.
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Figure 4.32: The erosion coefficient in morphodynamic equilibrium for a rectangular bottom profile plotted against the channel
width.

Figure 4.33: The convergence of the computation of the erosion coefficient for a rectangular bottom profile, showing 𝛿𝑖 plotted
against the number of iterations.

Next, the erosion coefficients in morphodynamic equilibrium for slightly more complicated bottom
profiles are computed. The linearly decreasing bottom profile and the Gaussian bottom profile, de
scribed in Section 4.2.1, are used again. For these bathymetries a different erosion coefficient is ex
pected but the corresponding concentration should still be constant in the horizontal direction.

Again 500 iterations are performed with a step size Δ𝑡 = 10 s and a constant erosion coefficient as
initial guess. Figures 4.34  4.39 show the M0 component of the suspended sediment concentration,
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the computed erosion coefficient and the convergence for the two bathymetries.
For the linearly decreasing bottom, the erosion coefficient in Figure 4.35 differs slightly from the

coefficient for the flat bottom in Figure 4.32. For the flat bottom profile 𝑎(𝑟) is symmetric and straight in
the middle of the channel, for the linear bottom profile 𝑎(𝑟) is not symmetric. On the left of the channel
𝑎(𝑟) is higher than on the right but the maximum value at the boundary is lower than the maximum
value at the right boundary. Figure 4.34 shows that this erosion coefficient indeed results in a constant
concentration over a line of constant depth.

Figure 4.38 shows the erosion coefficient in morphodynamic equilibrium when considering a Gaus
sian bottom profile. The erosion coefficient is symmetric with a local maximum in the middle of the
estuary and minima approximately 750 metres from both of the side walls. Figure 4.37 shows the cor
responding suspended sediment concentration, again the concentration is constant in the horizontal
direction.

Figures 4.36 and 4.39 show the convergence for the linear and Gaussian bottom profile, respec
tively. It is remarkable that for these bottom profiles the convergence is slightly faster than the conver
gence for the rectangular bottom profile. A possible explanation for this is that the diffusive transport is
larger for a more varying bottom profile and this leads to faster convergence.

Figure 4.34: The result for the M0 component of the suspended sediment concentration in kg/m3 in morphodynamic equilibrium
for a linearly decreasing bottom profile.

Figure 4.35: The erosion coefficient in morphodynamic equilibrium for a linearly decreasing bottom profile plotted against the
channel width.
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Figure 4.36: The convergence of the computation of the erosion coefficient for a linearly decreasing bottom profile, showing 𝛿𝑖
plotted against the number of iterations.

Figure 4.37: The result for the M0 component of the suspended sediment concentration in kg/m3 in morphodynamic equilibrium
for a Gaussian bottom profile.
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Figure 4.38: The erosion coefficient in morphodynamic equilibrium for a Gaussian bottom profile plotted against the channel
width.

Figure 4.39: The convergence of the computation of the erosion coefficient for a Gaussian bottom profile, showing 𝛿𝑖 plotted
against the number of iterations.



5
Conclusions and recommendations

This chapter consists of two parts. In Section 5.1 the conclusions of this project are summarised by
systematically answering the research questions posed in Section 1.3. In Section 5.2 some suggestions
for further research are provided.

5.1. Conclusions
The first research question concerns the effect of the bottom slope on the advective contribution to
the residual crosschannel flow. The results in Section 4.1.2 show that the channel width, and thus
the bottom slope, strongly affects the magnitude of the advective forcing. For a steep bottom slope, in
this case the slope corresponding to a narrow channel with a Gaussian bottom profile, the contribution
caused by advection is large. For a gradual bottom profile, in this case corresponding to a wide channel
with a Gaussian bottom profile, advection can be assumed negligible. The characteristic flow patterns
resulting from the advective contribution are not significantly affected by the bottom slope. This is also
observed in the results in Section 4.1.5 where a specific crosssection of the Ems is simulated. In the
crosssection with an asymmetric bottom profile, the contribution caused by advection is large above
the steep part of the bottom and small above the area where the bottom changes are gradual. The
number of circulation cells did not change between simulations with the symmetric and asymmetric
bottom profile.

To answer the second research question, the effect of curvature on the advective contribution to
the flow is studied. The results for these simulations are presented in Section 4.1.3. The results show
that curvature strongly affects the total crosschannel flow, depending on the magnitude of the radius of
curvature. A smaller radius of curvature results in a stronger contribution caused by curvature. When
looking seaward, a positive radius of curvature results in a clockwise circulation and a negative radius of
curvature leads to a counterclockwise circulation. The contribution of advection is only slightly affected
by the channel curvature in these simulations with the magnitude increasing as the radius of curvature
decreased. However, the contribution due to advection did not become the dominant process because
the contribution resulting from curvature increased as well, such that the latter contribution dominated
the former one. For a very small radius of 1 km, some circulation cells in the contribution caused by
advection are reversed compared to the results for larger radii of curvature.

Section 4.1.4 contains the results to answer the third question regarding the effect of a lateral density
gradient on the crosschannel flow caused by advection. The results show that the density gradient can
have a large effect on the residual flow profile, depending on the magnitude of this gradient. Especially
the amplitude of the M2 tidal component of the density gradient affects the flow caused by advection.
For an increasing amplitude of the M2 component of the density gradient the contribution caused by
advection increased in magnitude and the characteristics of the profile changed. For a large enough
amplitude the advective contribution becomes the dominant process and determines the lateral tidally
averaged flow. Once the advective contribution has a significant effect on the lateral flow, this also
affects the other contributions to the flow. The phase of the M2 component has little effect on the
residual flow and the advective contribution to the flow in the experiments performed. The phase
seems to mainly affect the contribution caused by the Coriolis deflection.
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The fourth question that was raised concerned the ability of the model to reproduce measurement
data of a crosssection of the Ems. In Section 4.1.5 the results for the simulation of a crosssection of
the Ems are presented. The crosschannel flow computed by the model had the same magnitude as
the measured flow. Moreover, the direction of the flow near the bottom and in the middle of the water
column are similar. However, the direction in the upper part of the water column is to the right in the
measurements but to the left in the simulations. A possible explanation for the difference between the
measurements and simulation is the different description of the free surface. In the measurements the
timevarying thickness of the water column is taken into account whereas the model uses the rigid lid
assumption, this could lead to a discrepancy between the measurements and model results. There
are also other differences between the simulation and the actual situation, such as bathymetric details,
presence of density gradients and effect of the wind. Potentially, these differences contribute as well
to the deviation between the measurements and model results.

The last two research questions cover the developed sediment module. The functioning for a pre
scribed density gradient is investigated in Section 4.2.1. Based on these results the sediment module
seems to works as expected for a prescribed erosion coefficient. For the simplest situation the analyt
ical solution is approximated. For more complicated situations, such as a varying bottom profile and a
nonzero crosschannel velocity, the results agree with physical intuition.

The ability of the sediment module to compute the erosion coefficient in morphodynamic equilibrium
for only diffusive sediment transport is investigated in Section 4.2.2. Those results show that the model
seems to work properly. The analytical solution is approximated for the simplest situation and for more
complicated bathymetries the results also match the expectations.

5.2. Recommendations
The effect of several parameters on the crosschannel residual flow and advective contribution to the
flow is investigated. Recommended further research on this topic would be to study the effect of other
parameters and to include other processes in the model. Interesting extensions could be for example
to include wind shear stress or to investigate the effect of a timedependent vertical viscosity coefficient.

The results for the simulation of a crosssection in the Ems showed that the model is not able to
exactly reproduce measurements. It is recommended to investigate what the cause of the difference
between measurement data and model results is. Moreover, it would be interesting to examine if
measurements in other estuaries can be reproduced by the model.

It is concluded that the module for sediment works as expected for a prescribed erosion coefficient
and for computing the erosion coefficient in morphodynamic equilibrium for diffusive transport only. A
comment on this conclusion is that only a limited number of simulations is executed for the sediment
module during this project. To support the conclusions more strongly, it is recommended to perform
more experiments with the sediment module to see if it also works for different situations that were
not simulated yet. The model is for example not yet tested with spatially varying vertical viscosity and
diffusivity coefficients or for more complicated bottom profiles.

The current model can compute the erosion coefficient in morphodynamic equilibrium for situations
with diffusive sediment transport only. The next step would be to develop a model that is also able to
handle situations with both advective and diffusive transport of sediment. Experiments were performed
with the current model for situations including advective transport of sediment, so including a flow with
a nonzero crosschannel velocity. Unfortunately, the model did not converge for the cases that were
tested up to now. Further research is necessary to find out why the model did not converge for these
situations and how the model can be altered to obtain a solution for situations with advective transport.
A model which also works for advective sediment transport could be obtained by extending the current
model and thus by using the time integration method. However, it is also possible to further investigate
the other methods that were tested for the sediment model, described in Appendix H. Possibly, once
the methods described in Section H.1 and H.3 work, they can also handle advective transport.

Another reason to develop the methods described in Appendix H is because the current sediment
module is computationally expensive. The computation time depends on the desired convergence and
thus the number of iterations but is much larger than the time required for a more direct solution method
with the same accuracy. The methods in Appendix H are expected to be faster than the current method,
therefore it is recommended to investigate these methods further to find out if those can be changed
such that they compute the correct erosion coefficient. Those improvements could lead to a faster
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model without reducing the accuracy.
Once the model is able to compute the erosion coefficient in morphodynamic equilibrium for a sit

uation with both advective and diffusive transport of suspended sediment, it would be interesting to
investigate if the model can reproduce measurement data of suspended sediment concentrations in
actual estuaries. This way it can be verified if the model only works for theoretical situations due to
simplifications or if the model can be used to simulate the sediment distribution of actual estuaries. With
the current sediment module, this verification is not possible because the model cannot compute the
erosion coefficient in morphodynamic equilibrium when there is advective transport of sediment. In real
life it is unlikely to have an estuary without a crosschannel flow and thus without advective transport.





A
Derivation of the shallow water

equations
In this appendix the shallow water equations are derived from the NavierStokes equations and the
continuity equation. The content of this chapter is largely following the approach taken in Chapter 2 of
[30].

A.1. Continuity and NavierStokes equations
The continuity equation describes the conservation of mass and is expressed as

𝜕𝜌
𝜕𝑡 +

𝜕𝜌𝑢
𝜕𝑥 + 𝜕𝜌𝑣𝜕𝑦 + 𝜕𝜌𝑤𝜕𝑧 = 0. (A.1)

When a fluid is incompressible, this means the density does not change due to variations in the pressure
[1]. This is not equivalent to having a constant density, the density can still vary due to changes in salinity
or temperature. Assuming water to be an incompressible fluid, the density can be assumed to depend
only on the temperature 𝑇 and salinity 𝑆,

𝑑𝜌
𝑑𝑡 =

𝜕𝜌
𝜕𝑇
𝑑𝑇
𝑑𝑡 +

𝜕𝜌
𝜕𝑆
𝑑𝑆
𝑑𝑡 . (A.2)

Heat and salinity each have their own balances, more information about the equations for heat and
salinity can be found in sections 4.3 and 4.4 in [9]. Typically, the diffusion can be assumed negligible
compared to advection, as explained in [1]. When disregarding diffusion and assuming there are no
sources or sinks, the rate of change of the density can be expressed as

𝑑𝜌
𝑑𝑡 =

𝜕𝜌
𝜕𝑡 + 𝑢

𝜕𝜌
𝜕𝑥 + 𝑣

𝜕𝜌
𝜕𝑦 + 𝑤

𝜕𝜌
𝜕𝑧 =

𝜕𝜌
𝜕𝑇
𝑑𝑇
𝑑𝑡 +

𝜕𝜌
𝜕𝑆
𝑑𝑆
𝑑𝑡 = 0. (A.3)

Using this equation, the conservation of mass, equation (A.1), can be expressed as

𝜕𝑢
𝜕𝑥 +

𝜕𝑣
𝜕𝑦 +

𝜕𝑤
𝜕𝑧 = 0. (A.4)

The NavierStokes equations describe the conservation of momentum. The conservation of mo
mentum in Cartesian coordinates can be stated as,

𝜕𝜌𝑢
𝜕𝑡 + 𝜕𝜌𝑢

2

𝜕𝑥 + 𝜕𝜌𝑢𝑣𝜕𝑦 + 𝜕𝜌𝑢𝑤𝜕𝑧 − 𝜌𝛾𝑣 + 𝜕𝑝𝜕𝑥 −
𝜕𝜏𝑥𝑥
𝜕𝑥 −

𝜕𝜏𝑥𝑦
𝜕𝑦 − 𝜕𝜏𝑥𝑧𝜕𝑧 = 0, (A.5)

𝜕𝜌𝑣
𝜕𝑡 + 𝜕𝜌𝑢𝑣𝜕𝑥 + 𝜕𝜌𝑣

2

𝜕𝑦 + 𝜕𝜌𝑣𝑤𝜕𝑧 + 𝜌𝛾𝑢 + 𝜕𝑝𝜕𝑦 −
𝜕𝜏𝑥𝑦
𝜕𝑥 −

𝜕𝜏𝑦𝑦
𝜕𝑦 −

𝜕𝜏𝑦𝑧
𝜕𝑧 = 0, (A.6)
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𝜕𝜌𝑤
𝜕𝑡 + 𝜕𝜌𝑢𝑤𝜕𝑥 + 𝜕𝜌𝑣𝑤𝜕𝑦 + 𝜕𝜌𝑤

2

𝜕𝑧 + 𝜕𝑝𝜕𝑧 + 𝜌𝑔 −
𝜕𝜏𝑥𝑧
𝜕𝑥 −

𝜕𝜏𝑦𝑧
𝜕𝑦 − 𝜕𝜏𝑧𝑧𝜕𝑧 = 0. (A.7)

Here 𝑢, 𝑣 and 𝑤 are the velocities in the 𝑥, 𝑦 and 𝑧 direction, 𝑧 is positive upward, 𝑡 is the time, 𝑝 is
the pressure, 𝜌 is the density, 𝑔 is the gravitation constant and 𝛾 the Coriolis parameter. The viscous
stresses are defined by 𝜏𝑖𝑗 and are defined as

𝜏𝑖𝑗
𝜌 = 𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗
𝜕𝑥𝑖

. (A.8)

The NavierStokes equations can be simplified by observing that realistic temperature and salinity
variations lead only to small variations in the density. These small variations have little effect on most
terms in the NavierStokes equations, their effect is only of importance in the gravitational term. There
fore, the density is assumed to be constant in all terms except the gravitational term, this is called the
Boussinesq approximation. In [25] the conditions for this approximation are examined. As a conse
quence of the Boussinesq approximation, equations (A.5)(A.7) read,

𝜕𝑢
𝜕𝑡 +

𝜕𝑢2
𝜕𝑥 + 𝜕𝑢𝑣𝜕𝑦 + 𝜌𝑢𝑤𝜕𝑧 − 𝛾𝑣 + 1

𝜌0
𝜕𝑝
𝜕𝑥 −

1
𝜌0
(𝜕𝜏𝑥𝑥𝜕𝑥 +

𝜕𝜏𝑥𝑦
𝜕𝑦 + 𝜕𝜏𝑥𝑧𝜕𝑧 ) = 0, (A.9)

𝜕𝑣
𝜕𝑡 +

𝜕𝑢𝑣
𝜕𝑥 + 𝜕𝑣

2

𝜕𝑦 + 𝜕𝑣𝑤𝜕𝑧 + 𝛾𝑢 + 1
𝜌0
𝜕𝑝
𝜕𝑦 −

1
𝜌0
(
𝜕𝜏𝑥𝑦
𝜕𝑥 +

𝜕𝜏𝑦𝑦
𝜕𝑦 +

𝜕𝜏𝑦𝑧
𝜕𝑧 ) = 0, (A.10)

𝜕𝑤
𝜕𝑡 +

𝜕𝑢𝑤
𝜕𝑥 + 𝜌𝑣𝑤𝜕𝑦 + 𝜕𝑤

2

𝜕𝑧 + 1
𝜌0
𝜕𝑝
𝜕𝑧 +

𝜌𝑔
𝜌0
− 1
𝜌0
(𝜕𝜏𝑥𝑧𝜕𝑥 +

𝜕𝜏𝑦𝑧
𝜕𝑦 + 𝜕𝜏𝑧𝑧𝜕𝑧 ) = 0. (A.11)

A.2. Reynolds averaging
Flow in an estuary is turbulent, this means it consists of stochastic motions. Usually, one is having
interest in large scale flow and not the turbulent fluctuations. To isolate the large scale features, each
variable can be decomposed into a turbulence averaged contribution (indicated by an overbar) and a
fluctuating part (indicated by an inverted comma), here illustrated for the velocity component 𝑢,

𝑢 = 𝑢 + 𝑢′. (A.12)

It is important to realise the average of the fluctuating part is 0 and therefore the mean of a product is
not the product of the means,

𝑢𝑣 = 𝑢 𝑣 + 𝑢𝑣′ + 𝑣𝑢′ + 𝑢′𝑣′ = 𝑢 𝑣 + 𝑢′𝑣′. (A.13)

Substituting the decomposition in the NavierStokes equations results in,

𝜕𝑢 + 𝑢′
𝜕𝑡 + 𝜕(𝑢 + 𝑢

′)2
𝜕𝑥 + 𝜕(𝑢 + 𝑢

′)(𝑣 + 𝑣′)
𝜕𝑦 + 𝜕(𝑢 + 𝑢

′)(𝑤 + 𝑤′)
𝜕𝑧 − 𝛾 (𝑣 + 𝑣′)

+ 1𝜌0
𝜕𝑝 + 𝑝′
𝜕𝑥 − 1

𝜌0
(𝜕𝜏𝑥𝑥 + 𝜏

′
𝑥𝑥

𝜕𝑥 +
𝜕𝜏𝑥𝑦 + 𝜏′𝑥𝑦

𝜕𝑦 + 𝜕𝜏𝑥𝑧 + 𝜏
′
𝑥𝑧

𝜕𝑧 ) = 0,
(A.14)

𝜕𝑣 + 𝑣′
𝜕𝑡 + 𝜕(𝑢 + 𝑢

′)(𝑣 + 𝑣′)
𝜕𝑥 + 𝜕(𝑣 + 𝑣

′)2
𝜕𝑦 + 𝜕(𝑣 + 𝑣

′)(𝑤 + 𝑤′)
𝜕𝑧 + 𝛾 (𝑢 + 𝑢′)

+ 1𝜌0
𝜕𝑝 + 𝑝′
𝜕𝑦 − 1

𝜌0
(
𝜕𝜏𝑥𝑦 + 𝜏′𝑥𝑦

𝜕𝑥 +
𝜕𝜏𝑦𝑦 + 𝜏′𝑦𝑦

𝜕𝑦 +
𝜕𝜏𝑦𝑧 + 𝜏′𝑦𝑧

𝜕𝑧 ) = 0,
(A.15)

𝜕𝑤 + 𝑤′
𝜕𝑡 + 𝜕(𝑢 + 𝑢

′)(𝑤 + 𝑤′)
𝜕𝑥 + 𝜕(𝑣 + 𝑣

′)(𝑤 + 𝑤′)
𝜕𝑦 + 𝜕(𝑤 + 𝑤

′)2
𝜕𝑧 + 𝜌𝑔𝜌0

+ 1𝜌0
𝜕𝑝 + 𝑝′
𝜕𝑧 − 1

𝜌0
(𝜕𝜏𝑥𝑧 + 𝜏

′
𝑥𝑧

𝜕𝑥 +
𝜕𝜏𝑦𝑧 + 𝜏′𝑦𝑧

𝜕𝑦 + 𝜕𝜏𝑧𝑧 + 𝜏
′
𝑧𝑧

𝜕𝑧 ) = 0,
(A.16)

and, similarly for the continuity equation,

𝜕𝑢 + 𝑢′
𝜕𝑥 + 𝜕𝑣 + 𝑣

′

𝜕𝑦 + 𝜕𝑤 + 𝑤
′

𝜕𝑧 = 0. (A.17)
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Next, these equations are averaged over the turbulent time scale. Using that the average of the fluc
tuating part is 0 and the result of equation (A.13), one finds

𝜕𝑢
𝜕𝑡 +

𝜕𝑢𝑢
𝜕𝑥 +

𝜕𝑢′𝑢′
𝜕𝑥 + 𝜕𝑢𝑣𝜕𝑦 +

𝜕𝑢′𝑣′
𝜕𝑦 + 𝜕𝑢𝑤𝜕𝑧 + 𝜕𝑢

′𝑤′
𝜕𝑧 −𝛾𝑣+ 1

𝜌0
𝜕𝑝
𝜕𝑥 −

1
𝜌0
(𝜕𝜏𝑥𝑥𝜕𝑥 +

𝜕𝜏𝑥𝑦
𝜕𝑦 + 𝜕𝜏𝑥𝑧𝜕𝑧 ) = 0, (A.18)

𝜕𝑣
𝜕𝑡 +

𝜕𝑢𝑣
𝜕𝑥 +

𝜕𝑢′𝑣′
𝜕𝑥 + 𝜕𝑣𝑣𝜕𝑦 +

𝜕𝑣′𝑣′
𝜕𝑦 + 𝜕𝑣𝑤𝜕𝑧 +

𝜕𝑣′𝑤′
𝜕𝑧 +𝛾𝑢+ 1

𝜌0
𝜕𝑝
𝜕𝑦 −

1
𝜌0
(
𝜕𝜏𝑥𝑦
𝜕𝑥 +

𝜕𝜏𝑦𝑦
𝜕𝑦 +

𝜕𝜏𝑦𝑧
𝜕𝑧 ) = 0, (A.19)

𝜕𝑤
𝜕𝑡 +

𝜕𝑢𝑤
𝜕𝑥 + 𝜕𝑢

′𝑤′
𝜕𝑥 + 𝜕𝑣𝑤𝜕𝑦 + 𝜕𝑣

′𝑤′
𝜕𝑦 + 𝜕𝑤𝑤𝜕𝑧 + 𝜕𝑤

′𝑤′
𝜕𝑧 + 𝜌𝑔𝜌0

+ 1
𝜌0
𝜕𝑝
𝜕𝑧 −

1
𝜌0
(𝜕𝜏𝑥𝑧𝜕𝑥 +

𝜕𝜏𝑦𝑧
𝜕𝑦 + 𝜕𝜏𝑧𝑧𝜕𝑧 ) = 0,

(A.20)
𝜕𝑢
𝜕𝑥 +

𝜕𝑣
𝜕𝑦 +

𝜕𝑤
𝜕𝑧 = 0. (A.21)

These equations have the same form as the NavierStokes equations except that there are some
extra terms of the form 𝜕𝑢′𝑖𝑢′𝑗/𝜕𝑥𝑘. When multiplied with the density, these terms are called Reynold
stresses and represent the exchange of momentum between fluid elements in a turbulent motion. Com
bining them with the viscous stresses, results in

Τ𝑖𝑗 = 𝜌0 [𝜈 (
𝑢𝑖
𝜕𝑥𝑗

+
𝑢𝑗
𝜕𝑥𝑖

) − 𝑢′𝑖𝑢′𝑗] . (A.22)

From now on the overbar will be discarded. However, it is important to realise the variables still repre
sent the turbulence averaged quantities. At this moment the following equations have been obtained

𝜕𝑢
𝜕𝑡 +

𝜕𝑢2
𝜕𝑥 + 𝜕𝑢𝑣𝜕𝑦 + 𝜕𝑢𝑤𝜕𝑧 − 𝛾𝑣 + 1

𝜌0
𝜕𝑝
𝜕𝑥 −

1
𝜌0
(𝜕Τ𝑥𝑥𝜕𝑥 +

𝜕Τ𝑥𝑦
𝜕𝑦 + 𝜕Τ𝑥𝑧𝜕𝑧 ) = 0, (A.23)

𝜕𝑣
𝜕𝑡 +

𝜕𝑢𝑣
𝜕𝑥 + 𝜕𝑣

2

𝜕𝑦 + 𝜕𝑣𝑤𝜕𝑧 + 𝛾𝑢 + 1
𝜌0
𝜕𝑝
𝜕𝑦 −

1
𝜌0
(
𝜕Τ𝑥𝑦
𝜕𝑥 +

𝜕Τ𝑦𝑦
𝜕𝑦 +

𝜕Τ𝑦𝑧
𝜕𝑧 ) = 0, (A.24)

𝜕𝑤
𝜕𝑡 +

𝜕𝑢𝑤
𝜕𝑥 + 𝜕𝑣𝑤𝜕𝑦 + 𝜕𝑤

2

𝜕𝑧 + 𝜌𝑔𝜌0
+ 1
𝜌0
𝜕𝑝
𝜕𝑧 −

1
𝜌0
(𝜕Τ𝑥𝑧𝜕𝑥 +

𝜕Τ𝑦𝑧
𝜕𝑦 + 𝜕Τ𝑧𝑧𝜕𝑧 ) = 0, (A.25)

𝜕𝑢
𝜕𝑥 +

𝜕𝑣
𝜕𝑦 +

𝜕𝑤
𝜕𝑧 = 0. (A.26)

A.3. Shallow water assumption
Now the shallow water assumption is used. This means the vertical scales are assumed to be much
smaller than the horizontal scales. For example the water depth must be much smaller than the char
acteristic width of the river or estuary, but also the amplitude of waves must be much smaller than their
wavelength.

For 𝑥 and 𝑦, the typical length scale is 𝐿, for 𝑧 the typical length scale is 𝐻 and due to the shallow
water approximation 𝐿 ≫ 𝐻. Moreover, for the horizontal velocities, the typical scale is 𝑈 and for the
vertical velocity the scale is 𝑊. Considering the continuity equation (A.4), the derivatives with respect
to 𝑥 and 𝑦 scale as 𝑈/𝐿 whereas the derivative with respect to 𝑧 as𝑊/𝐻. The two 𝑈/𝐿 terms will usually
not cancel each other, which means the last term must also be of the order 𝑈/𝐿. As a consequence, the
vertical velocity 𝑤 must be of the order 𝑈𝐻/𝐿 and thus the vertical velocity is smaller than the horizontal
velocity by the same factor as the ratio of the length scales.

Now consider the vertical momentum equation (A.25). All terms in this equation can be estimated
except the pressure gradient, the advective terms can be scaled as 𝑈2𝐻/𝐿2, the stress terms are of
a scale 𝑈/𝐿2 or 𝑈/𝐻2. This means all terms are small compared to the gravitational acceleration and
thus only the pressure gradient can balance the gravitational acceleration. Equation (A.25) can then
be simplified to the hydrostatic pressure distribution,

𝜕𝑝
𝜕𝑧 = −𝜌𝑔. (A.27)
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Note that 𝜌 is here the actual density that depends on the salinity and temperature. To find 𝑝, equation
(A.27) is integrated from the free surface. The zcoordinate is defined as pointing upward, with 𝑧 = 0
at the average free surface and 𝑧 = −𝐻 at the bottom. The deviation from the free surface is indicated
by 𝜁. Integrating from the free surface then gives,

𝑝 = 𝑔∫
𝜁

𝑧
𝜌d𝑧 + 𝑝𝑎 , (A.28)

with 𝑝𝑎 the atmospheric pressure. The derivative of the pressure with respect to 𝑥 is,

𝜕𝑝
𝜕𝑥 = 𝑔

𝜕
𝜕𝑥 ∫

𝜁

𝑧
𝜌d𝑧 + 𝜕𝑝𝑎𝜕𝑥 = 𝑔𝜌𝜕𝜁𝜕𝑥 + 𝑔∫

𝜁

𝑧

𝜕𝜌
𝜕𝑥 d𝑧 +

𝜕𝑝𝑎
𝜕𝑥 , (A.29)

in the second equality Leibniz rule is used. The derivative with respect to 𝑦 is similar.
Often the rigid lid approximation is used, this means variations in the surface level are assumed to

be small. Therefore, surface displacements are ignored but the pressure gradient due to the variations
is not neglected. For the derivative of the pressure, this results in,

𝜕𝑝
𝜕𝑥 = 𝑔𝜌

𝜕𝜁
𝜕𝑥 + 𝑔∫

0

𝑧

𝜕𝜌
𝜕𝑥 d𝑧 +

𝜕𝑝𝑎
𝜕𝑥 . (A.30)

A.4. Parametrization of the turbulent terms
Last, the terms containing the stresses 𝜏𝑖𝑗 have to be rewritten since these expressions still contain
turbulent fluctuations. Parametrizations of these turbulent terms result in

1
𝜌0
(𝜕Τ𝑥𝑥𝜕𝑥 +

𝜕Τ𝑥𝑦
𝜕𝑦 + 𝜕Τ𝑥𝑧𝜕𝑧 ) =

𝜕
𝜕𝑥 (𝐴ℎ

𝜕𝑢
𝜕𝑥 ) +

𝜕
𝜕𝑦 (𝐴ℎ

𝜕𝑢
𝜕𝑦) +

𝜕
𝜕𝑧 (𝐴𝑣

𝜕𝑢
𝜕𝑧 ) , (A.31)

for the 𝑢momentum equation. Here 𝐴ℎ is the horizontal eddy viscosity coefficient and 𝐴𝑣 the vertical
eddy viscosity coefficient. A similar expression is found for the 𝑣momentum equation. There are sev
eral turbulence models available to derive 𝐴ℎ and 𝐴𝑣. In [3] more information about different turbulence
models can be found. Generally, more complicated turbulence models result in more sophisticated ex
pressions for the turbulence but also make it harder to solve the equations.

A.5. Shallow water equations
Collecting all terms, the three dimensional shallow water equations are obtained

𝜕𝑢
𝜕𝑡 +

𝜕𝑢2
𝜕𝑥 + 𝜕𝑢𝑣𝜕𝑦 + 𝜕𝑢𝑤𝜕𝑧 − 𝛾𝑣 + 𝑔𝜕𝜁𝜕𝑥 +

𝑔
𝜌0
∫
0

𝑧

𝜕𝜌
𝜕𝑥 d𝑧 +

1
𝜌0
𝜕𝑝𝑎
𝜕𝑥

− 𝜕
𝜕𝑥 (𝐴ℎ

𝜕𝑢
𝜕𝑥 ) −

𝜕
𝜕𝑦 (𝐴ℎ

𝜕𝑢
𝜕𝑦) −

𝜕
𝜕𝑧 (𝐴𝑣

𝜕𝑢
𝜕𝑧 ) = 0,

(A.32)

𝜕𝑣
𝜕𝑡 +

𝜕𝑢𝑣
𝜕𝑥 + 𝜕𝑣

2

𝜕𝑦 + 𝜕𝑣𝑤𝜕𝑧 + 𝛾𝑢 + 𝑔𝜕𝜁𝜕𝑦 +
𝑔
𝜌0
∫
0

𝑧

𝜕𝜌
𝜕𝑦 d𝑧 + 1

𝜌0
𝜕𝑝𝑎
𝜕𝑦

− 𝜕
𝜕𝑥 (𝐴ℎ

𝜕𝑢
𝜕𝑥 ) −

𝜕
𝜕𝑦 (𝐴ℎ

𝜕𝑢
𝜕𝑦) −

𝜕
𝜕𝑧 (𝐴𝑣

𝜕𝑢
𝜕𝑧 ) = 0,

(A.33)

𝜕𝑢
𝜕𝑥 +

𝜕𝑣
𝜕𝑦 +

𝜕𝑤
𝜕𝑧 = 0. (A.34)

It is important to realise multiple assumptions have been made in the derivation of these equations
and not every assumption holds at all times. For example close to the boundaries, the relevant hor
izontal length scale is no longer 𝐿 but the distance to the boundary. This means the shallow water
assumption will not hold close to the boundaries and these equations are not valid there.



B
Derivation of a condition for the lateral

water flux
In Section 2.2.2, equation (2.5) is introduced. This is the condition that requires the crosschannel
transport of water to be zero at every point along the transect. In this appendix the derivation of this
condition is discussed.

First, the continuity equation (2.3) is integrated over depth,

∫
0

−𝐻
(𝑢𝑟𝑟 +

𝜕𝑢𝑟
𝜕𝑟 +

𝜕𝑢𝑧
𝜕𝑧 )d𝑧 = 0. (B.1)

Using Leibniz integral rule, this integral is equal to

1
𝑟 ∫

0

−ℎ
𝑢𝑟 d𝑧 +

𝜕
𝜕𝑟 ∫

0

ℎ
𝑢𝑟 d𝑧 − 𝑢𝑟(−ℎ)

𝜕ℎ
𝜕𝑟 + 𝑢𝑧(0) − 𝑢𝑧(−ℎ) = 0. (B.2)

According to the boundary conditions, 𝑢𝑧(0), 𝑢𝑧(−ℎ) and 𝑢𝑟(−ℎ) must be 0, this gives

1
𝑟 ∫

0

−ℎ
𝑢𝑟 d𝑧 +

𝜕
𝜕𝑟 ∫

0

ℎ
𝑢𝑟 d𝑧 = 0, (B.3)

and thus

∫
0

−ℎ
𝑢𝑟 d𝑧 =

𝐼
𝑟 , (B.4)

with 𝐼 a constant. Because this should also hold at the side walls, where 𝑢𝑟 equals zero, 𝐼 must be
zero and equation (2.5) is obtained.
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C
Derivation of the morphodynamic

equilibrium condition
In this appendix the step by step derivation of the morphodynamic equilibrium condition is given. The
derivation is largely following the same approach as used in [11].

First the sediment mass balance equation (2.12) is rearranged into,

𝜕𝑐
𝜕𝑡 +

1
𝑟
𝜕𝑟𝑢𝑟𝑐
𝜕𝑟 + 𝜕

(𝑢𝑧 −𝑤𝑠) 𝑐
𝜕𝑧 − 𝐷𝑣

𝜕
𝜕𝑧 (𝜙

𝜕𝑐
𝜕𝑧) − 𝐷ℎ

1
𝑟
𝜕
𝜕𝑟 (𝑟

𝜕𝑐
𝜕𝑟) = 0. (C.1)

Next, this equation is averaged over a tidal period,

1
𝑟
𝜕⟨𝑟𝑢𝑟𝑐⟩
𝜕𝑟 + 𝜕⟨

(𝑢𝑧 −𝑤𝑠) 𝑐⟩
𝜕𝑧 − 𝐷𝑣

𝜕
𝜕𝑧 (𝜙

𝜕⟨𝑐⟩
𝜕𝑧 ) − 𝐷ℎ

1
𝑟
𝜕
𝜕𝑟 (𝑟

𝜕⟨𝑐⟩
𝜕𝑟 ) = 0. (C.2)

Subsequently, the equation is integrated over depth,

∫
0

−𝐻

1
𝑟
𝜕⟨𝑟𝑢𝑟𝑐⟩
𝜕𝑟 + 𝜕⟨

(𝑢𝑧 −𝑤𝑠) 𝑐⟩
𝜕𝑧 − 𝐷𝑣

𝜕
𝜕𝑧 (𝜙

𝜕⟨𝑐⟩
𝜕𝑧 ) − 𝐷ℎ

1
𝑟
𝜕
𝜕𝑟 (𝑟

𝜕⟨𝑐⟩
𝜕𝑟 )d𝑧 = 0. (C.3)

Grouping the derivatives with respect to 𝑟 and 𝑧 and using Leibniz integral rule gives,

1
𝑟
𝜕
𝜕𝑟 ∫

0

−𝐻
⟨𝑟𝑢𝑟𝑐⟩ − 𝐷ℎ𝑟

𝜕⟨𝑐⟩
𝜕𝑟 d𝑧 − 𝜕𝐻𝜕𝑟 (⟨𝑢𝑟𝑐⟩ − 𝐷ℎ

𝜕⟨𝑐⟩
𝜕𝑟 ) |𝑧=−𝐻

+ (⟨(𝑢𝑧 −𝑤𝑠) 𝑐⟩ − 𝐷𝑣𝜙
𝜕⟨𝑐⟩
𝜕𝑧 ) |𝑧=0

− (⟨(𝑢𝑧 −𝑤𝑠) 𝑐⟩ − 𝐷𝑣𝜙
𝜕⟨𝑐⟩
𝜕𝑧 ) |𝑧=−𝐻

= 0.
(C.4)

At the surface, equation (2.15) must hold and 𝑢𝑧 must be zero. At the bottom, 𝑢𝑟 and 𝑢𝑧 must be zero.
This results in,

1
𝑟
𝜕
𝜕𝑟 ∫

0

−𝐻
⟨𝑟𝑢𝑟𝑐⟩ − 𝐷ℎ𝑟

𝜕⟨𝑐⟩
𝜕𝑟 d𝑧 + (⟨𝑤𝑠𝑐⟩ + 𝐷ℎ

𝜕⟨𝑐⟩
𝜕𝑟

𝜕𝐻
𝜕𝑟 + 𝐷𝑣𝜙

𝜕⟨𝑐⟩
𝜕𝑧 ) |𝑧=−𝐻

= 0. (C.5)

Now the balance between erosion and deposition at the bed, equation (2.21), is used. Substituting the
definitions for erosion and deposition, equations (2.16) and (2.20), and using 𝑛𝑟 ≈

𝑑𝐻
𝑑𝑟 and 𝑛𝑧 ≈ 1,

results at 𝑧 = −𝐻 in,

⟨𝐷⟩ − ⟨𝐸⟩ = 0 ⟺

𝑤𝑠⟨𝑐⟩𝑛𝑧 + 𝐷ℎ
𝜕⟨𝑐⟩
𝜕𝑟 𝑛𝑟 + 𝐷𝑣

𝜕⟨𝑐⟩
𝜕𝑧 𝑛𝑧 = 0 ⟺

𝑤𝑠⟨𝑐⟩ + 𝐷ℎ
𝜕⟨𝑐⟩
𝜕𝑟

𝑑𝐻
𝑑𝑟 + 𝐷𝑣

𝜕⟨𝑐⟩
𝜕𝑧 = 0.

(C.6)

63



64 C. Derivation of the morphodynamic equilibrium condition

This means equation (C.5) reduces to,

1
𝑟
𝜕
𝜕𝑟 ∫

0

−𝐻
⟨𝑟𝑢𝑟𝑐⟩ − 𝐷ℎ𝑟

𝜕⟨𝑐⟩
𝜕𝑟 d𝑧 = 0. (C.7)

Because 𝑟 ≠ 0, it follows that
𝑟∫

0

−𝐻
⟨𝑢𝑟𝑐⟩ − 𝐷ℎ

𝜕⟨𝑐⟩
𝜕𝑟 d𝑧 = 𝐼, (C.8)

with 𝐼 a constant. Due to the boundary condition (2.13), the integral must be zero at the side walls.
Consequently, the constant 𝐼must be equal to zero. This finally leads to themorphodynamic equilibrium
condition,

∫
0

−𝐻
⟨𝑢𝑟𝑐⟩ − 𝐷𝑣

𝜕⟨𝑐⟩
𝜕𝑟 d𝑧 = 0, (C.9)

for every 𝑟. When this condition holds, there is a morphodynamic equilibrium.



D
Coordinate transformation

In the first section of Chapter 3 is mentioned that a coordinate transformation is applied to solve the
flow and concentration equations. The details of the transformation are given in this appendix.

Equations (2.1), (2.2), (2.3) and (2.12) are defined in the (𝑟, 𝜃, 𝑧) coordinate system in the physical
domain. The cylindrical coordinate system (𝑟, 𝜃, 𝑧) is mapped onto a system (𝜉, 𝜃, 𝜎), in which the
coordinates 𝜉 and 𝜎 are defined such that the concerned crosssection of the channel is represented
by a rectangle in the computational domain. An example of a physical domain and the corresponding
computational domain is visualised in Figure D.1.

The coordinate 𝜎 is defined as,
𝜎 = 𝑧

ℎ + 1, (D.1)

such that 𝜎 is 0 at the bottom and 1 at the surface. Moreover,
𝜕𝜉
𝜕𝑟 = 1 and

𝜕𝜉
𝜕𝑧 = 0. (D.2)

When a line is parallel to the 𝜉axis in the computational domain, this relates in the physical domain to
a curve with constant relative height above the bottom.

Figure D.1: On the left is an example of a physical domain in the (𝑟, 𝑧) coordinate system. On the right is the corresponding
computational domain which has a (𝜉, 𝜎) coordinate system.

The transformation results in the expressions,

𝜕𝜎
𝜕𝑧 =

1
ℎ , (D.3)

𝜕2𝜎
𝜕𝑧2 = 0, (D.4)
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66 D. Coordinate transformation

𝜕𝜎
𝜕𝑟 = −

𝑧
ℎ2
𝑑ℎ
𝑑𝑟 = (1 − 𝜎)

1
ℎ
𝑑ℎ
𝑑𝑟 , (D.5)

𝜕2𝜎
𝜕𝑟2 = −

𝑧
ℎ2
𝑑2ℎ
𝑑𝑟2 + 2

𝑧
ℎ3 (

𝑑ℎ
𝑑𝑟 )

2
= (1 − 𝜎)(1ℎ

𝑑2ℎ
𝑑𝑟2 − 2(

1
ℎ
𝑑ℎ
𝑑𝑟 )

2
) . (D.6)

Which can be used for the following operations

𝜕⋅
𝜕𝑟 =

𝜕⋅
𝜕𝜉 +

𝜕𝜎
𝜕𝑟

𝜕⋅
𝜕𝜎 , (D.7)

𝜕2⋅
𝜕𝑟2 =

𝜕2⋅
𝜕𝜉2 + (

𝜕𝜎
𝜕𝑟 )

2 𝜕2⋅
𝜕𝜎2 + 2

𝜕𝜎
𝜕𝑟

𝜕2⋅
𝜕𝜎𝜕𝜉 +

𝜕2𝜉
𝜕𝑟2

𝜕⋅
𝜕𝜉 +

𝜕2𝜎
𝜕𝑟2

𝜕⋅
𝜕𝜎 ,

(D.8)

𝜕⋅
𝜕𝑧 =

𝜕𝜎
𝜕𝑧

𝜕⋅
𝜕𝜎 , (D.9)

𝜕2⋅
𝜕𝑧2 = (

𝜕𝜎
𝜕𝑧 )

2 𝜕2⋅
𝜕𝜎2 . (D.10)

Using the above expressions, equations (2.1), (2.2), (2.5) and (2.12) are transformed to

𝜕𝑢𝑟
𝜕𝑡 + 𝑢𝑟 (

𝜕𝑢𝑟
𝜕𝜉 +

𝜕𝜎
𝜕𝑟
𝜕𝑢𝑟
𝜕𝜎 ) + 𝑢𝑧

1
ℎ
𝜕𝑢𝑟
𝜕𝜎 − 𝛾𝑢𝜃 −

𝑢2𝜃
𝑟 = − 𝑔𝜌0

∫
1

𝜎

𝜕𝜌
𝜕𝑟 d𝜎

′ − 𝑔𝜕𝜁𝜕𝑟

+ 𝐴𝑣
1
ℎ2

𝜕
𝜕𝜎 (𝜙

𝜕𝑢𝑟
𝜕𝜎 ) + 𝐴ℎ

1
𝑟 (

𝜕
𝜕𝜉 (𝑟 (

𝜕𝑢𝑟
𝜕𝜉 +

𝜕𝜎
𝜕𝑟
𝜕𝑢𝑟
𝜕𝜎 )) +

𝜕𝜎
𝜕𝑟

𝜕
𝜕𝜎 (𝑟 (

𝜕𝑢𝑟
𝜕𝜉 +

𝜕𝜎
𝜕𝑟
𝜕𝑢𝑟
𝜕𝜎 ))) ,

(D.11)

𝜕𝑢𝜃
𝜕𝑡 + 𝑢𝑟 (

𝜕𝑢𝜃
𝜕𝜉 + 𝜕𝜎𝜕𝑟

𝜕𝑢𝜃
𝜕𝜎 ) + 𝑢𝑧

1
ℎ
𝜕𝑢𝜃
𝜕𝜎 + 𝛾𝑢𝑟 +

𝑢𝜃𝑢𝑟
𝑟 = − 𝑔𝜌0

∫
1

𝜎

1
𝑟
𝜕𝜌
𝜕𝜃 d𝜎′ − 𝑔1𝑟

𝜕𝜁
𝜕𝜃+

𝐴𝑣
1
ℎ2

𝜕
𝜕𝜎 (𝜙

𝜕𝑢𝜃
𝜕𝜎 ) + 𝐴ℎ

1
𝑟 (

𝜕
𝜕𝜉 (𝑟 (

𝜕𝑢𝜃
𝜕𝜉 + 𝜕𝜎𝜕𝑟

𝜕𝑢𝜃
𝜕𝜎 )) +

𝜕𝜎
𝜕𝑟

𝜕
𝜕𝜎 (𝑟 (

𝜕𝑢𝜃
𝜕𝜉 + 𝜕𝜎𝜕𝑟

𝜕𝑢𝜃
𝜕𝜎 ))) ,

(D.12)

∫
1

0
𝑢𝑟 d𝜎 = 0, (D.13)

𝜕𝑐
𝜕𝑡 +

𝑢𝑟𝑐
𝑟 + 𝑢𝑟 (

𝜕𝑐
𝜕𝜉 +

𝜕𝜎
𝜕𝑟
𝜕𝑐
𝜕𝜎) + (𝑢𝑧 −𝑤𝑠)

1
ℎ
𝜕𝑐
𝜕𝜎 = −𝐷𝑣

1
ℎ2

𝜕
𝜕𝜎 (𝜙

𝜕𝑐
𝜕𝜎)

− 𝐷ℎ
1
𝑟 (

𝜕
𝜕𝜉 (𝑟 (

𝜕𝑐
𝜕𝜉 +

𝜕𝜎
𝜕𝑟
𝜕𝑐
𝜕𝜎)) +

𝜕𝜎
𝜕𝑟

𝜕
𝜕𝜎 (𝑟 (

𝜕𝑐
𝜕𝜉 +

𝜕𝜎
𝜕𝑟
𝜕𝑐
𝜕𝜎))) .

(D.14)



E
Eigenfunction expansion in the vertical

domain
This appendix explains the series expansion in the vertical direction used to compute 𝑢𝑟, 𝑢𝜃 and 𝑐. The
technique applied in this model is based on [5], where a special case of the SturmLiouville eigenvalue
problem is used to simplify the vertical mixing term in the momentum balance. First, the eigenfunctions
for the horizontal velocities are discussed in Section E.1. Next, the eigenfunctions for the concentration
are discussed in Section E.2.

E.1. Eigenfunction expansion for horizontal velocities
With a series expansion in the vertical direction, the horizontal velocities can be expressed as,

𝑢𝑟(𝜉, 𝜎, 𝑡) =
𝑀+𝑁

∑
𝑚=1

𝑈𝑚(𝜉, 𝑡)𝑓𝑚(𝜉, 𝜎), (E.1)

𝑢𝜃(𝜉, 𝜎, 𝑡) =
𝑀+𝑁

∑
𝑚=1

𝑉𝑚(𝜉, 𝑡)𝑓𝑚(𝜉, 𝜎). (E.2)

The value for 𝑀 can be chosen depending on the desired number eigenfunctions 𝑓𝑚. More eigenfunc
tions results in a higher accuracy but also leads to more computational time and required storage space.
The eigenfunctions represent a problemwith homogeneous boundary conditions at the surface and bot
tom boundary. To solve a situation with a nonzero wind shear stress, which is an inhomogeneous
boundary condition, a different defined eigenfunction 𝑓𝑀+1 is introduced. At the bottom boundary, the
vertical mixing term cannot be represented with the eigenfunctions for 𝑚 = 1…(𝑀+1). Therefore, the
eigenfunction 𝑓𝑀+2 is introduced. Later in this section, these additional eigenfunctions are explained
more thoroughly. The number of differently defined eigenfunctions is indicated by 𝑁, in this case 𝑁
equals two.

The eigenfunctions, 𝑓𝑚(𝜉, 𝜎) are, for 𝑚 = 1…𝑀, derived from the SturmLiouville eigenvalue prob
lem,

𝜕
𝜕𝜎 (𝜙(𝜉, 𝜎)

𝜕𝑓𝑚
𝜕𝜎 ) + 𝜆𝑚𝑓𝑚𝑤(𝜉, 𝜎) = 0 (E.3)

with

𝑓𝑚(𝜉, 0) =
𝜕𝑓𝑚
𝜕𝜎 (𝜉, 1) = 0. (E.4)

The 𝜆𝑚 are eigenvalues and𝑤(𝜉, 𝜎) is a weight function. The weight function𝑤 can be chosen arbitrary
but must be continuous and on [0, 1]. The boundary conditions for the SturmLiouville eigenvalue
problem correspond to a noslip condition at the bottom and a zero wind shear stress at the surface.
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68 E. Eigenfunction expansion in the vertical domain

Because this SturmLiouville eigenvalue problem is used, filling in the vertical diffusion term of the
momentum balance leads to,

𝐴𝑣
ℎ2

𝜕
𝜕𝜎 (𝜙

𝜕𝑢𝑟
𝜕𝜎 ) =

𝐴𝑣
ℎ2

𝜕
𝜕𝜎 (𝜙

𝑀+𝑁

∑
𝑚=1

𝑈𝑚
𝜕𝑓𝑚
𝜕𝜎 ) =

𝐴𝑣
ℎ2

𝑀+𝑁

∑
𝑚=1

𝑈𝑚
𝜕
𝜕𝜎 (𝜙

𝜕𝑓𝑚
𝜕𝜎 ) = −

𝐴𝑣
ℎ2

𝑀+𝑁

∑
𝑚=1

𝑈𝑚𝜆𝑚𝑓𝑚𝑤. (E.5)

This result is much simpler than the original mixing term. For 𝑢𝜃 a similar result is obtained.
The solution of the SturmLiouville eigenvalue problem depends on the shape function of the eddy

viscosity 𝜙. Often the eigenvalues cannot be computed analytically but the computational effort can be
decreased by a good choice for 𝑤(𝜉, 𝜎). T.J. Zitman figured out a definition for 𝑤(𝜉, 𝜎) that is especially
suitable for this model. He advised to define the weight function as,

𝑤(𝜉, 𝜎) =
𝑐𝜂(𝜉)2
𝜙(𝜉, 𝜎) , 𝑐𝜂(𝜉) = (∫

1

0

1
𝜙(𝜉, 𝜎′) d𝜎

′)
−1

. (E.6)

To show why this is a suitable choice for the weight function, a coordinate transformation is applied from
(𝜉, 𝜎) to (𝜓, 𝜂). This coordinate system is defined such that 𝜂 is 0 at the bottom and 1 at the surface
and

𝜕𝜓
𝜕𝜎 = 0,

𝜕𝜓
𝜕𝜉 =

𝜕𝜓
𝜕𝑟 = 1. (E.7)

After applying this transformation, equation (E.3) reads,

𝜕
𝜕𝜂 (𝜙

𝜕𝜂
𝜕𝜎
𝜕𝑓𝑚
𝜕𝜂 )

𝜕𝜂
𝜕𝜎 + 𝜆𝑚𝑓𝑚𝑤 = 0. (E.8)

The transformation is defined such that,
𝜙𝜕𝜂𝜕𝜎 = 𝑐𝜂 , (E.9)

with

𝑐𝜂 = (∫
1

0

1
𝜙(𝜎) d𝜎)

−1

, (E.10)

which leads to,

𝜂 = ∫
𝜎

0

1
𝜙(𝜎′) d𝜎

′. (E.11)

Using this and the choice for 𝑤, leads to

𝜕
𝜕𝜂 (

𝜕𝑓𝑚
𝜕𝜂 ) + 𝜆𝑚𝑓𝑚 = 0, (E.12)

which results in
𝑓𝑚(𝜉, 𝜎) ∝ sin (𝜂√𝜆𝑚) . (E.13)

with
𝜆𝑚 = (𝑚 −

1
2)𝜋.

This means the eigenfunctions must be proportional to a sine in the (𝜉, 𝜎) domain as well,

𝑓𝑚(𝜉, 𝜎) ∝ sin(𝑐𝜂√𝜆𝑚∫
𝜎

0

1
𝜙(𝜉, 𝜎′) d𝜎

′) . (E.14)

Clearly, the choice for 𝑤 simplified the computation of the eigenvalues. Therefore, this choice for the
weight function is used in the model.

At both the bottom and surface boundary, the flow cannot be represented by the eigenfunctions
derived for 𝑚 = 1…𝑀. To deal with this, two more eigenfunctions are introduced, which are differently
defined. At the surface, the boundary condition (2.4) cannot be met for a nonzero wind shear stress
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since the derivative of 𝑓𝑚 with respect to 𝜎 equals zero at the surface. To solve this, 𝑓𝑀+1 is introduced
which is derived from,

𝜕
𝜕𝜎 (𝜙(𝜉, 𝜎)

𝜕𝑓𝑀+1
𝜕𝜎 ) + 𝜆𝑀+1𝑓𝑀+1𝑤(𝜉, 𝜎) = 0 (E.15)

with
𝑓𝑀+1(𝜉, 0) = 𝑓𝑀+1(𝜉, 1) = 0. (E.16)

This leads to,

𝑓𝑀+1(𝜉, 𝜎) ∝ sin(𝜋𝜂) = sin(𝑐𝜂𝜋∫
𝜎

0

1
𝜙(𝜉, 𝜎′) d𝜎

′) . (E.17)

As a consequence, the weights corresponding to 𝑓𝑀+1 are determined by the wind shear stress,

𝐴𝑧𝑈𝑀+1 = −
ℎ
𝜋𝑐𝜂

𝜏𝑤,𝑟
𝜌0
, 𝐴𝑧𝑉𝑀+1 = −

ℎ
𝜋𝑐𝜂

𝜏𝑤,𝜃
𝜌0

. (E.18)

At the bottom, there is a different inconsistency. Since the eigenfunctions are zero at the bottom,
the vertical mixing, equation (E.5), cannot be represented there. Because the velocities are zero at the
bottom, the momentum equation could then only hold for a zero pressure gradient, which is unlikely.
This issue only occurs at exactly 𝜎 = 0 and not slightly above.

This effect is called the Gibbs phenomena and to avoid this problem another eigenfunction, 𝑓𝑀+2,
is added. This eigenfunction follows from,

𝜕
𝜕𝜎 (𝜙(𝜉, 𝜎)

𝜕𝑓𝑀+2
𝜕𝜎 ) = −𝑤, (E.19)

with

𝑓𝑀+2(𝜉, 0) =
𝜕𝑓𝑀+2
𝜕𝜎 (𝜉, 1) = 0. (E.20)

This results in,

𝑓𝑀+2(𝜉, 𝜎) ∝
𝜂(2 − 𝜂)

2 =
𝑐𝜂
2 ∫

𝜎

0

1
𝜙(𝜉, 𝜎′) d𝜎

′ (2 − 𝑐𝜂∫
𝜎

0

1
𝜙(𝜉, 𝜎′) d𝜎

′) . (E.21)

By evaluating the momentum equations for 𝜎 = 0, the expressions for 𝑈𝑀+2 and 𝑉𝑀+2 can be obtained,

𝑈𝑀+2 = −
ℎ2
𝐴𝑣
(𝑔ℎ𝜌0

∫
0

1

𝜕𝜌
𝜕𝑟 d𝜎 + 𝑔

𝜕𝜁
𝜕𝑟 − 𝐴ℎ

1
𝑟
𝜕
𝜕𝑟 (𝑟

𝜕𝑢𝑟
𝜕𝑟 ))

1
𝑤(𝜉, 0) , (E.22)

𝑉𝑀+2 = −
ℎ2
𝐴𝑣
(𝑔ℎ𝜌0

∫
0

1

1
𝑟
𝜕𝜌
𝜕𝜃 d𝜎 + 𝑔1𝑟

𝜕𝜁
𝜕𝜃 − 𝐴ℎ

1
𝑟
𝜕
𝜕𝑟 (𝑟

𝜕𝑢𝜃
𝜕𝑟 ))

1
𝑤(𝜉, 0) . (E.23)

Using the continuity equation (2.3), 𝑢𝑧 can be eliminated from the momentum equations because it
can be expressed as,

𝑢𝑧 = −∫
𝑧

−ℎ

𝑢𝑟
𝑟 +

𝜕𝑢𝑟
𝜕𝑟 d𝑧. (E.24)

Applying the coordinate transformation to (𝜉, 𝜃, 𝜎) and substituting the series expansion in the expres
sion for 𝑢𝑧 results in,

𝑢𝑧 = −ℎ∫
𝜎

0

𝑢𝑟
𝑟 +

𝜕𝑢𝑟
𝜕𝜉 +

𝜕𝜎′
𝜕𝑟

𝜕𝑢𝑟
𝜕𝜎′ d𝜎

′ =

− ℎ
𝑀+𝑁

∑
𝑚=1

(𝑈𝑚∫
𝜎

0

𝑓𝑚
𝑟 + 𝜕𝑓𝑚𝜕𝜉 + 𝜕𝜎

′

𝜕𝑟
𝜕𝑓𝑚
𝜕𝜎′ d𝜎

′ + 𝜕𝑈𝑚𝜕𝜉 ∫
𝜎

0
𝑓𝑚 d𝜎′) .

(E.25)
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After applying the coordinate transformation explained in Appendix D, inserting the series expan
sions, substituting equation (E.25) for 𝑢𝑧 and rearranging some of the terms, equations (2.1), (2.2) and
(2.5) become,

𝑀+𝑁

∑
𝑚=1

𝜕𝑈𝑚
𝜕𝑡 𝑓𝑚 +

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

𝑈𝑚𝑓𝑚 (
𝜕𝑈𝑛
𝜕𝜉 𝑓𝑛 + 𝑈𝑛

𝜕𝑓𝑛
𝜕𝜉 +

𝜕𝜎
𝜕𝑟 𝑈𝑛

𝜕𝑓𝑛
𝜕𝜎 )

−
𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

𝑈𝑚
𝜕𝑓𝑚
𝜕𝜎 (𝑈𝑛∫

𝜎

0

𝑓𝑛
𝑟 +

𝜕𝑓𝑛
𝜕𝜉 +

𝜕𝜎′
𝜕𝑟

𝜕𝑓𝑛
𝜕𝜎′ d𝜎 +

𝜕𝑈𝑛
𝜕𝜉 ∫

𝜎

0
𝑓𝑛 d𝜎′) − 𝛾

𝑀+𝑁

∑
𝑚=1

𝑉𝑛𝑓𝑛

− 1𝑟

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

𝑉𝑚𝑓𝑚𝑉𝑛𝑓𝑛 +
𝑔
𝜌0
∫
𝜎

0

𝜕𝜌
𝜕𝑟 d𝜎

′ + 𝑔𝜕𝜁𝜕𝑟 − 𝐴𝑣
1
ℎ2

𝑀+𝑁

∑
𝑚=1

𝑈𝑚
𝜕
𝜕𝜎𝜙

𝜕𝑓𝑚
𝜕𝜎 − 𝐴ℎ𝐿(𝑈𝑚 , 𝑓𝑚) = 0,

(E.26)

𝑀+𝑁

∑
𝑚=1

𝜕𝑉𝑚
𝜕𝑡 𝑓𝑚 +

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

𝑈𝑚𝑓𝑚 (
𝜕𝑉𝑛
𝜕𝜉 𝑓𝑛 + 𝑉𝑛

𝜕𝑓𝑛
𝜕𝜉 +

𝜕𝜎
𝜕𝑟 𝑉𝑛

𝜕𝑓𝑛
𝜕𝜎 )

−
𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

𝑉𝑚
𝜕𝑓𝑚
𝜕𝜎 (𝑈𝑛∫

𝜎

0

𝑓𝑛
𝑟 +

𝜕𝑓𝑛
𝜕𝜉 +

𝜕𝜎′
𝜕𝑟

𝜕𝑓𝑛
𝜕𝜎′ d𝜎 +

𝜕𝑈𝑛
𝜕𝜉 ∫

𝜎

0
𝑓𝑛 d𝜎′) + 𝛾

𝑀+𝑁

∑
𝑚=1

𝑈𝑛𝑓𝑛

− 1𝑟

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

𝑈𝑚𝑓𝑚𝑉𝑛𝑓𝑛 +
𝑔
𝜌0
∫
𝜎

0

1
𝑟
𝜕𝜌
𝜕𝜃 d𝜎′ + 𝑔1𝑟

𝜕𝜁
𝜕𝜃 − 𝐴𝑣

1
ℎ2

𝑀+𝑁

∑
𝑚=1

𝑉𝑚
𝜕
𝜕𝜎𝜙

𝜕𝑓𝑚
𝜕𝜎 − 𝐴ℎ𝐿(𝑉𝑚 , 𝑓𝑚) = 0,

(E.27)

∫
1

0

𝑀+𝑁

∑
𝑚=1

𝑈𝑚𝑓𝑚 d𝜎 = 0. (E.28)

The operator 𝐿(∗, ⋆) is used to slightly simplify the equations. 𝐿(∗, ⋆) is defined as,

𝐿(∗, ⋆) = 1
𝑟

𝑀+𝑁

∑
𝑚=1

( 𝜕𝜕𝜉 (𝑟 (
𝜕∗
𝜕𝜉 ⋆ + ∗ (

𝜕⋆
𝜕𝜉 +

𝜕𝜎
𝜕𝑟
𝜕⋆
𝜕𝜎))) +

𝜕𝜎
𝜕𝑟

𝜕
𝜕𝜎 (𝑟 (

𝜕∗
𝜕𝜉 ⋆ + ∗ (

𝜕⋆
𝜕𝜉 +

𝜕𝜎
𝜕𝑟
𝜕⋆
𝜕𝜎)))) (E.29)

Themodel equations are combinedwith the boundary conditions to describe the flow in the crosssection.
The boundary conditions are, at the surface,

𝐴𝑧𝑈𝑀+1 +
ℎ
𝜋𝑐𝜂

𝜏𝑤,𝑟
𝜌0

= 0, (E.30)

𝐴𝑧𝑉𝑀+1 +
ℎ
𝜋𝑐𝜂

𝜏𝑤,𝜃
𝜌0

= 0, (E.31)

and at the bottom,

𝐴𝑣
ℎ2𝑈𝑀+2 +

𝑔ℎ
𝜌0𝑤(𝜉, 0)

∫
1

0

𝜕𝜌
𝜕𝑟 d𝜎 +

𝑔
𝑤(𝜉, 0)

𝜕𝜁
𝜕𝑟 −

𝐴ℎ
𝑤(𝜉, 0)𝐿(𝑈𝑚 , 𝑓𝑚) = 0, (E.32)

𝐴𝑣
ℎ2 𝑉𝑀+2 +

𝑔ℎ
𝜌0𝑤(𝜉, 0)

∫
1

0

1
𝑟
𝜕𝜌
𝜕𝜃 d𝜎 + 𝑔

𝑤(𝜉, 0)
1
𝑟
𝜕𝜁
𝜕𝜃 −

𝐴ℎ
𝑤(𝜉, 0)𝐿(𝑈𝑚 , 𝑓𝑚) = 0. (E.33)

In addition, at the side walls, the velocities must be equal to 0.
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E.2. Eigenfunction expansion for sediment concentration
For the sediment concentration, a similar eigenfunction expansion is used as for the flow. The concen
tration is written as

𝑐(𝜉, 𝜎, 𝑡) =
𝑀+𝑁

∑
𝑚=1

𝐶𝑚(𝜉, 𝑡)𝑑𝑚(𝜉, 𝜎), (E.34)

The eigenfunctions 𝑑𝑚 are different than the eigenfunctions for the flow since different boundary con
ditions are used for the SturmLiouville eigenvalue problem. For 𝑚 = 1…𝑀, the eigenfunctions 𝑑𝑚 are
derived from the following SturmLiouville eigenvalue problem,

𝜕
𝜕𝜎 (𝜙(𝜉, 𝜎)

𝜕𝑑𝑚
𝜕𝜎 + 𝜇𝑚𝑑𝑚𝑤(𝜉, 𝜎)) = 0, (E.35)

with the boundary conditions,
𝜕𝑑𝑚
𝜕𝜎 |𝜎=0

= 𝜕𝑑𝑚
𝜕𝜎 |𝜎=1

= 0. (E.36)

The same coordinate transformation to (𝜓, 𝜂) and definition for 𝑤 are used as in the previous section.
This leads to,

𝑑𝑚 ∝ cos(𝜂(𝜉, 𝜎)√𝜇𝑚) = cos(𝑐𝜂√𝜇𝑚∫
𝜎

0

1
𝜙(𝜉, 𝜎′) d𝜎

′) , (E.37)

with
√𝜇𝑚 = (𝑚 − 1)𝜋. (E.38)

Comparable with the flow, this eigenfunction expansion also leads to inconsistencies at both the surface
and bottom boundary because the boundary conditions for the concentration are not homogeneous.
To solve this, again two eigenfunctions are added. These are chosen to be the same eigenfunctions
as used for the flow, so 𝑑𝑀+1 = 𝑓𝑀+1 and 𝑑𝑀+2 = 𝑓𝑀+2.

Filling in the eigenfunction expansion for the surface boundary condition (2.15), results in,

𝑀+𝑁

∑
𝑚=1

𝐶𝑚 (𝑤𝑠𝑑𝑚(𝜉, 1) + 𝐷𝑣𝜙(𝜉, 1)
1
ℎ
𝜕𝑑𝑚(𝜉, 1)

𝜕𝑧 ) = 0. (E.39)

Since

𝑑𝑚(𝜉, 1) = {
−(−1)𝑚 , for 𝑚 = 1…𝑀
0, for 𝑚 = 𝑀 + 1
1
2 for 𝑚 = 𝑀 + 2

; 𝜙(𝜉, 1)𝜕𝑑𝑚(𝜉, 1)𝜕𝜎 = {
0, for 𝑚 = 1…𝑀
−𝜋𝑐𝜂 , for 𝑚 = 𝑀 + 1
0 for 𝑚 = 𝑀 + 2

, (E.40)

this boundary condition is equivalent to

𝑤𝑠
𝑀

∑
𝑚=1

(−1)𝑚𝐶𝑚 −
𝜋𝑐𝜂
ℎ 𝐷𝑣𝐶𝑀+1 +

1
2𝑤𝑠𝐶𝑀+2 = 0. (E.41)

For the bottom boundary condition (2.19), substituting 𝑐 by the eigenfunction expansion gives,

− 𝐷𝑣𝜙(𝜉, 0)
1
ℎ

𝑀+𝑁

∑
𝑚=𝑀+1

𝐶𝑚
𝜕𝑑𝑚
𝜕𝜎 = 𝑤𝑠𝜌𝑠

𝑔′𝐷𝑠
𝑎(𝑟)𝜒. (E.42)

It is only necessary to sum over (𝑀 + 1) till (𝑀 + 𝑁) because for 𝑚 = 1…𝑀, the derivative of 𝑑𝑚 with
respect to 𝜎 is equal to zero at 𝜎 = 0. For 𝑚 = (𝑀 + 1) and 𝑚 = (𝑀 + 2) the following holds,

𝜕𝑑𝑚(𝜉, 0)
𝜕𝜎 =

𝑐𝜂
𝜙(𝜉, 0)(1 − 𝛿𝑚,𝑀+1(1 − 𝜋)). (E.43)
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Therefore, the boundary condition can be rewritten as,

−
𝑐𝜂
ℎ 𝐷𝑣

𝑀+𝑁

∑
𝑚=𝑀+1

𝐶𝑚(1 − 𝛿𝑚,𝑀+1(1 − 𝜋)) =
𝑤𝑠𝜌𝑠
𝑔′𝐷𝑠

𝑎(𝑟)𝜒. (E.44)

After applying the coordinate transformation outlined in Appendix D and filling in the series expan
sion, the equation for the sediment concentration (2.12), becomes,

𝑀+𝑁

∑
𝑚=1

𝜕𝐶𝑚
𝜕𝑡 𝑑𝑚 +

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

𝑈𝑚𝑓𝑚𝐶𝑛𝑑𝑛
𝑟 +

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

𝑈𝑚𝑓𝑚 (
𝜕𝐶𝑛
𝜕𝜉 𝑑𝑛 + 𝐶𝑛 (

𝜕𝑑𝑛
𝜕𝜉 + 𝜕𝜎𝜕𝑟

𝜕𝑑𝑛
𝜕𝜎 ))+

𝑢𝑧
1
ℎ

𝑀+𝑁

∑
𝑚=1

𝐶𝑚
𝜕𝑑𝑚
𝜕𝜎 − 𝑤𝑠

1
ℎ

𝑀+𝑁

∑
𝑚=1

𝐶𝑚
𝜕𝑑𝑚
𝜕𝜎 − 𝐷𝑣

1
ℎ2

𝑀+𝑁

∑
𝑚=1

𝐶𝑚
𝜕
𝜕𝜎 (𝜙

𝜕𝑑𝑚
𝜕𝜎 ) − 𝐷ℎ𝐿(𝐶𝑚 , 𝑑𝑚) = 0,

(E.45)

with 𝐿(∗, ⋆) as defined in equation (E.29). This is combined with the equations for boundary conditions to
describe the distribution of sediment. For the surface and bottom boundary conditions, equations (E.41)
and (E.44) are used. For the side walls, equation (2.14) must be transformed to the (𝜉, 𝜎) coordinate
system and the series expansions should be substituted. Since the concentration is described with the
same 𝑑𝑚 at 𝜉1 as at 𝜉2 and at 𝜉𝐿 as at 𝜉𝐿−1, it must hold that the derivative of 𝑑𝑚 with respect to 𝑟
equals zero at the side walls. This results in,

𝜕𝑐
𝜕𝑟 =

𝑀+𝑁

∑
𝑚=1

(𝜕𝐶𝑚𝜕𝜉 𝑑𝑚 + 𝐶𝑚
𝜕𝑑𝑚
𝜕𝜎

𝜕𝜎
𝜕𝑟 ) = 0, (E.46)

at the side walls.



F
Model Equations

In Chapter 2 the model equations were introduced and in Chapter 3 is explained how they can be
solved. In this appendix the model equations resulting after applying the coordinate transformation,
eigenfunction expansions and Galerkin method. To make this slightly more structured and compact,
some coefficients are used in the notation and implementation of these equations. In the first section
the model equations for the flow are given, the second section contains the equations for the sediment
concentration and in the third section the equations for the side walls are described. The last section
contains the definitions of the coefficients Φ, Ψ and 𝑇 which are used in the model equations.

F.1. Model equations for flow
Momentum Equation, crosschannel, test function 1

− 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{2𝑈(0)𝑚 (𝜉𝑖−1) 𝑈(0)𝑛 (𝜉𝑖) +
𝐾

∑
𝑘=1

(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖−1) 𝑈
(𝑐)
𝑛,𝑘 (𝜉𝑖) + 𝑈

(𝑠)
𝑚,𝑘 (𝜉𝑖−1) 𝑈

(𝑠)
𝑛,𝑘 (𝜉𝑖)) }Φ

(𝑎𝑟𝑥)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{2𝑈(0)𝑚 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖) +
𝐾

∑
𝑘=1

(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈
(𝑐)
𝑛,𝑘 (𝜉𝑖) + 𝑈

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑘 (𝜉𝑖)) }Φ

(𝑎𝑟)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{2𝑈(0)𝑚 (𝜉𝑖+1) 𝑈(0)𝑛 (𝜉𝑖) +
𝐾

∑
𝑘=1

(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖+1) 𝑈
(𝑐)
𝑛,𝑘 (𝜉𝑖) + 𝑈

(𝑠)
𝑚,𝑘 (𝜉𝑖+1) 𝑈

(𝑠)
𝑛,𝑘 (𝜉𝑖)) }Φ

(𝑎𝑟𝑥)
𝑚,𝑛,𝑝

− 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{2𝑈(0)𝑚 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖−1) +
𝐾

∑
𝑘=1

(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈
(𝑐)
𝑛,𝑘 (𝜉𝑖−1) + 𝑈

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑘 (𝜉𝑖−1)) }Φ

(𝑎𝑧𝑥)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{2𝑈(0)𝑚 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖) +
𝐾

∑
𝑘=1

(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈
(𝑐)
𝑛,𝑘 (𝜉𝑖) + 𝑈

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑘 (𝜉𝑖)) }Φ

(𝑎𝑧)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{2𝑈(0)𝑚 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖+1) +
𝐾

∑
𝑘=1

(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈
(𝑐)
𝑛,𝑘 (𝜉𝑖+1) + 𝑈

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑘 (𝜉𝑖+1)) }Φ

(𝑎𝑧𝑥)
𝑚,𝑛,𝑝

73
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− 𝛾2𝜋𝜔

𝑀+𝑁

∑
𝑚=1

𝑉(0)𝑚 (𝜉𝑖)Φ(𝑖𝑐𝑑)𝑚,𝑝

− 𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{2𝑉(0)𝑚 (𝜉𝑖) 𝑉(0)𝑛 (𝜉𝑖) +
𝐾

∑
𝑘=1

(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑉
(𝑐)
𝑛,𝑘 (𝜉𝑖) + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑉

(𝑠)
𝑛,𝑘 (𝜉𝑖)) }Φ

(𝑐𝑢𝑟)
𝑚,𝑛,𝑝

+ 𝑔2𝜋𝜔 𝑃
(0)Φ(𝑑𝑟)𝑚,𝑝 + 𝑔

2𝜋
𝜔 𝐸

(0) (𝜉𝑖)Φ(𝑠𝑟)𝑝

− 𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

{2𝑈(0)𝑚 (𝜉𝑖) 𝐴(0) +
𝐾

∑
𝑘=1

(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖) 𝐴
(𝑐)
𝑘 + 𝑈(𝑠)𝑚,𝑘 (𝜉𝑖) 𝐴

(𝑠)
𝑘 ) }Φ

(𝑚𝑖𝑥)
𝑚,𝑝

− 𝐴ℎ
2𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

{𝑈(0)𝑚 (𝜉𝑖−1) (−
1
2Δ𝜉Φ

(𝑑𝑖𝑓𝑥)
𝑚,𝑝 + 1

Δ𝜉2Φ
(𝑖𝑐𝑑)
𝑚,𝑝 ) + 𝑈(0)𝑚 (𝜉𝑖) (Φ(𝑑𝑖𝑓)𝑚,𝑝 − 2

Δ𝜉2Φ
(𝑖𝑐𝑑)
𝑚,𝑝 )

+ 𝑈(0)𝑚 (𝜉𝑖+1) (
1
2Δ𝜉Φ

(𝑑𝑖𝑓𝑥)
𝑚,𝑝 + 1

Δ𝜉2Φ
(𝑖𝑐𝑑)
𝑚,𝑝 ) }

= 0 for 𝑝 = 1…𝑀

(F.1)

Wind, crosschannel, test function 1

2𝜋
𝜔 𝑈

(0)
𝑀+1(𝜉𝑖)𝐴(0) +

𝜋
𝜔

𝐾

∑
𝑘=1

(𝑈(𝑐)𝑀+1(𝜉𝑖)𝐴(𝑐)𝑘 + 𝑈(𝑠)𝑀+1(𝜉𝑖)𝐴(𝑠)𝑘 ) +
2𝜋
𝜔
ℎ
𝜋𝑐
𝜏𝑤,𝑟
𝜌0

= 0 (F.2)

Gibbs Effect, crosschannel, test function 1

1
ℎ2 (

2𝜋
𝜔 𝑈

(0)
𝑀+2 (𝜉𝑖) 𝐴(0) +

𝜋
𝜔

𝐾

∑
𝑘=1

(𝑈(𝑐)𝑀+2,𝑘 (𝜉𝑖) 𝐴
(𝑐)
𝑘 + 𝑈(𝑠)𝑀+2,𝑘 (𝜉𝑖) 𝐴

(𝑠)
𝑘 )) +

2𝜋
𝜔

𝑔
𝑤(0)𝐸

(0) (𝜉𝑖)

+ 2𝜋𝜔
𝑔ℎ
𝑤(0)𝑃

(0) − 2𝜋𝜔
𝐴ℎ
𝑤(0)

𝑀+𝑁

∑
𝑚=1

(𝑈(0)𝑚 (𝜉𝑖)Φ(𝑔𝑟𝑥)𝑚 + 1
2Δ𝜉 (−𝑈

(0)
𝑚 (𝜉𝑖−1) + 𝑈(0)𝑚 (𝜉𝑖+1))Φ(𝑔𝑟)𝑚 ) = 0

(F.3)

Momentum Equation, alongchannel, test function 1

− 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{2𝑉(0)𝑚 (𝜉𝑖−1) 𝑈(0)𝑛 (𝜉𝑖) +
𝐾

∑
𝑘=1

(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖−1) 𝑈
(𝑐)
𝑛,𝑘 (𝜉𝑖) + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖−1) 𝑈

(𝑠)
𝑛,𝑘 (𝜉𝑖)) }Φ

(𝑎𝑟𝑥)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{2𝑉(0)𝑚 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖) +
𝐾

∑
𝑘=1

(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈
(𝑐)
𝑛,𝑘 (𝜉𝑖) + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑘 (𝜉𝑖)) }Φ

(𝑎𝑟)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{2𝑉(0)𝑚 (𝜉𝑖+1) 𝑈(0)𝑛 (𝜉𝑖) +
𝐾

∑
𝑘=1

(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖+1) 𝑈
(𝑐)
𝑛,𝑘 (𝜉𝑖) + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖+1) 𝑈

(𝑠)
𝑛,𝑘 (𝜉𝑖)) }Φ

(𝑎𝑟𝑥)
𝑚,𝑛,𝑝

− 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{2𝑉(0)𝑚 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖−1) +
𝐾

∑
𝑘=1

(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈
(𝑐)
𝑛,𝑘 (𝜉𝑖−1) + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑘 (𝜉𝑖−1)) }Φ

(𝑎𝑧𝑥)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{2𝑉(0)𝑚 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖) +
𝐾

∑
𝑘=1

(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈
(𝑐)
𝑛,𝑘 (𝜉𝑖) + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑘 (𝜉𝑖)) }Φ

(𝑎𝑧)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{2𝑉(0)𝑚 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖+1) +
𝐾

∑
𝑘=1

(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈
(𝑐)
𝑛,𝑘 (𝜉𝑖+1) + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑘 (𝜉𝑖+1)) }Φ

(𝑎𝑧𝑥)
𝑚,𝑛,𝑝
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+ 𝛾2𝜋𝜔

𝑀+𝑁

∑
𝑚=1

𝑈(0)𝑚 (𝜉𝑖)Φ(𝑖𝑐𝑑)𝑚,𝑝

− 𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{2𝑉(0)𝑚 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖) +
𝐾

∑
𝑘=1

(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈
(𝑐)
𝑛,𝑘 (𝜉𝑖) + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑘 (𝜉𝑖)) }Φ

(𝑐𝑢𝑟)
𝑚,𝑛,𝑝

+ 𝑔2𝜋𝜔 𝑌
(0)Φ(𝑑𝑡)𝑝 + 𝑔2𝜋𝜔 𝐻

(0) (𝜉𝑖)Φ(𝑠𝑡)𝑝

− 𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

{2𝑉(0)𝑚 (𝜉𝑖) 𝐴(0) +
𝐾

∑
𝑘=1

(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝐴
(𝑐)
𝑘 + 𝑉(𝑠)𝑚,𝑘 (𝜉𝑖) 𝐴

(𝑠)
𝑘 ) }Φ

(𝑚𝑖𝑥)
𝑚,𝑝

− 𝐴ℎ
2𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

{𝑉(0)𝑚 (𝜉𝑖−1) (−
1
2Δ𝜉Φ

(𝑑𝑖𝑓𝑥)
𝑚,𝑝 + 1

Δ𝜉2Φ
(𝑖𝑐𝑑)
𝑚,𝑝 ) + 𝑉(0)𝑚 (𝜉𝑖) (Φ(𝑑𝑖𝑓)𝑚,𝑝 − 2

Δ𝜉2Φ
(𝑖𝑐𝑑)
𝑚,𝑝 )

+ 𝑉(0)𝑚 (𝜉𝑖+1) (
1
2Δ𝜉Φ

(𝑑𝑖𝑓𝑥)
𝑚,𝑝 + 1

Δ𝜉2Φ
(𝑖𝑐𝑑)
𝑚,𝑝 ) }

= 0 for 𝑝 = 1…𝑀

(F.4)

Wind, alongchannel, test function 1

2𝜋
𝜔 𝑉

(0)
𝑀+1(𝜉𝑖)𝐴(0) +

𝜋
𝜔

𝐾

∑
𝑘=1

(𝑉(𝑐)𝑀+1𝐴(𝑐)𝑘 (𝜉𝑖) + 𝑉
(𝑠)
𝑀+1(𝜉𝑖)𝐴(𝑠)𝑘 ) +

2𝜋
𝜔
ℎ
𝜋𝑐
𝜏𝑤,𝜃
𝜌0

= 0 (F.5)

Gibbs Effect, alongchannel, test function 1

1
ℎ2 (

2𝜋
𝜔 𝑉

(0)
𝑀+2 (𝜉𝑖) 𝐴(0) +

𝜋
𝜔

𝐾

∑
𝑘=1

(𝑉(𝑐)𝑀+2,𝑘 (𝜉𝑖) 𝐴
(𝑐)
𝑘 + 𝑉(𝑠)𝑀+2,𝑘 (𝜉𝑖) 𝐴

(𝑠)
𝑘 )) +

2𝜋
𝜔

𝑔
𝑤(0)

𝑟0
𝑟 𝐻

(0)

+ 2𝜋𝜔
𝑔ℎ
𝑤(0)

𝑟0
𝑟 𝑌

(0) − 2𝜋𝜔
𝐴ℎ
𝑤(0)

𝑀+𝑁

∑
𝑚=1

(𝑉(0)𝑚 (𝜉𝑖)Φ(gr𝑥)𝑚 + 1
2Δ𝜉 (−𝑉

(0)
𝑚 (𝜉𝑖−1) + 𝑉(0)𝑚 (𝜉𝑖+1))Φ(gr)𝑚 ) = 0

(F.6)

Rigid lid effect, test function 1

2𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

𝑈(0)𝑚 (𝜉𝑖)Φ(𝑞)𝑚 (F.7)

Momentum Equation, crosschannel, test function cos(𝑞𝜔𝑡)

𝑀+𝑁

∑
𝑚=1

𝑞𝜋𝑈(𝑠)𝑚,𝑞Φ(𝑖𝑐𝑑)𝑚,𝑞

− 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑈(0)𝑚 (𝜉𝑖−1) 𝑈(𝑐)𝑛,𝑞 (𝜉𝑖) + 𝑈(𝑐)𝑚,𝑞 (𝜉𝑖−1) 𝑈(0)𝑛 (𝜉𝑖))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖−1) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑈

(𝑠)
𝑚,𝑘 (𝜉𝑖−1) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑟𝑥)
𝑚,𝑛,𝑝
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+ 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑈(0)𝑚 (𝜉𝑖) 𝑈(𝑐)𝑛,𝑞 (𝜉𝑖) + 𝑈(𝑐)𝑚,𝑞 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑈

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑟)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑈(0)𝑚 (𝜉𝑖+1) 𝑈(𝑐)𝑛,𝑞 (𝜉𝑖) + 𝑈(𝑐)𝑚,𝑞 (𝜉𝑖+1) 𝑈(0)𝑛 (𝜉𝑖))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖+1) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑈

(𝑠)
𝑚,𝑘 (𝜉𝑖+1) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑟𝑥)
𝑚,𝑛,𝑝

− 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑈(0)𝑚 (𝜉𝑖) 𝑈(𝑐)𝑛,𝑞 (𝜉𝑖−1) + 𝑈(𝑐)𝑚,𝑞 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖−1))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖−1) 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑈

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖−1) 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑧𝑥)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑈(0)𝑚 (𝜉𝑖) 𝑈(𝑐)𝑛,𝑞 (𝜉𝑖) + 𝑈(𝑐)𝑚,𝑞 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑈

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑧)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑈(0)𝑚 (𝜉𝑖) 𝑈(𝑐)𝑛,𝑞 (𝜉𝑖+1) + 𝑈(𝑐)𝑚,𝑞 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖+1))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖+1) 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑈

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖+1) 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑧𝑥)
𝑚,𝑛,𝑝

− 𝛾2𝜋𝜔

𝑀+𝑁

∑
𝑚=1

𝑉(𝑐)𝑚 (𝜉𝑖)Φ(𝑖𝑐𝑑)𝑚,𝑝

− 𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑉(0)𝑚 (𝜉𝑖) 𝑉(𝑐)𝑛,𝑞 (𝜉𝑖) + 𝑉(0)𝑚 (𝜉𝑖) 𝑉(𝑐)𝑛,𝑞 (𝜉𝑖))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑉

(𝑐)
𝑛,𝑘 (𝜉𝑖) 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑉

(𝑠)
𝑛,𝑘 (𝜉𝑖) 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ) }Φ

(𝑐𝑢𝑟)
𝑚,𝑛,𝑝

+ 𝑔2𝜋𝜔 𝑃
(𝑐)Φ(𝑑𝑟)𝑚,𝑝 + 𝑔

2𝜋
𝜔 𝐸

(𝑐) (𝜉𝑖)Φ(𝑠𝑟)𝑝

− 𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

{ (𝑈(0)𝑚 (𝜉𝑖) 𝐴(𝑐)𝑞 + 𝑈(𝑐)𝑚,𝑞 (𝜉𝑖) 𝐴(0)) +
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖) 𝐴

(𝑐)
𝑗 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑈

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝐴

(𝑠)
𝑗 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ) }Φ

(𝑚𝑖𝑥)
𝑚,𝑝

− 𝐴ℎ
2𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

{𝑈(𝑐)𝑚 (𝜉𝑖−1) (−
1
2Δ𝜉Φ

(𝑑𝑖𝑓𝑥)
𝑚,𝑝 + 1

Δ𝜉2Φ
(𝑖𝑐𝑑)
𝑚,𝑝 ) + 𝑈(𝑐)𝑚 (𝜉𝑖) (Φ(𝑑𝑖𝑓)𝑚,𝑝 − 2

Δ𝜉2Φ
(𝑖𝑐𝑑)
𝑚,𝑝 )

+ 𝑈(𝑐)𝑚 (𝜉𝑖+1) (
1
2Δ𝜉Φ

(𝑑𝑖𝑓𝑥)
𝑚,𝑝 + 1

Δ𝜉2Φ
(𝑖𝑐𝑑)
𝑚,𝑝 ) }

= 0 for 𝑝 = 1…𝑀
(F.8)
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Wind, crosschannel, test function cos(𝑞𝜔𝑡)

𝜋
𝜔 (𝑈

(0)
𝑀+1(𝜉𝑖)𝐴(𝑐)𝑞 + 𝑈(𝑐)𝑀+1,𝑞(𝜉𝑖)𝐴(0)))+

𝜋
𝜔

𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑈(𝑐)𝑀+1,𝑘(𝜉𝑖)𝐴

(𝑐)
𝑗 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑈

(𝑠)
𝑀+1,𝑘(𝜉𝑖)𝐴

(𝑠)
𝑗 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ) = 0 (F.9)

Gibbs Effect, crosschannel, test function cos(𝑞𝜔𝑡)

𝜋
𝜔
1
ℎ2 ((𝑈

(0)
𝑀+2 (𝜉𝑖) 𝐴(𝑐)𝑞 + 𝑈(𝑐)𝑀+2,𝑞 (𝜉𝑖) 𝐴(0)) +

𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑈(𝑐)𝑀+2,𝑘 (𝜉𝑖) 𝐴

(𝑐)
𝑗 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑈

(𝑠)
𝑀+2,𝑘 (𝜉𝑖) 𝐴

(𝑠)
𝑗 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ))

+ 𝜋
𝜔

𝑔
𝑤(0)𝐸

(𝑐)
𝑞 (𝜉𝑖) +

𝜋
𝜔
𝑔ℎ
𝑤(0)𝑃

(𝑐)
𝑞

− 𝜋
𝜔
𝐴ℎ
𝑤(0)

𝑀+𝑁

∑
𝑚=1

(𝑈(𝑐)𝑚,𝑞 (𝜉𝑖)Φ(𝑔𝑟𝑥)𝑚 + 1
2Δ𝜉 (−𝑈

(𝑐)
𝑚,𝑞 (𝜉𝑖−1) + 𝑈(𝑐)𝑚,𝑞 (𝜉𝑖+1))Φ(𝑔𝑟)𝑚 ) = 0

(F.10)

Momentum Equation, alongchannel, test function cos(𝑞𝜔𝑡)

𝑀+𝑁

∑
𝑚=1

𝑞𝜋𝑉(𝑠)𝑚,𝑞Φ(𝑖𝑐𝑑)𝑚,𝑞

− 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑉(0)𝑚 (𝜉𝑖−1) 𝑈(𝑐)𝑛,𝑞 (𝜉𝑖) + 𝑉(𝑐)𝑚,𝑞 (𝜉𝑖−1) 𝑈(0)𝑛 (𝜉𝑖))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖−1) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖−1) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑟𝑥)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑉(0)𝑚 (𝜉𝑖) 𝑈(𝑐)𝑛,𝑞 (𝜉𝑖) + 𝑉(𝑐)𝑚,𝑞 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑟)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑉(0)𝑚 (𝜉𝑖+1) 𝑈(𝑐)𝑛,𝑞 (𝜉𝑖) + 𝑉(𝑐)𝑚,𝑞 (𝜉𝑖+1) 𝑈(0)𝑛 (𝜉𝑖))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖+1) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖+1) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑟𝑥)
𝑚,𝑛,𝑝

− 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑉(0)𝑚 (𝜉𝑖) 𝑈(𝑐)𝑛,𝑞 (𝜉𝑖−1) + 𝑉(𝑐)𝑚,𝑞 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖−1))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖−1) 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖−1) 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑧𝑥)
𝑚,𝑛,𝑝
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+ 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑉(0)𝑚 (𝜉𝑖) 𝑈(𝑐)𝑛,𝑞 (𝜉𝑖) + 𝑉(𝑐)𝑚,𝑞 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑧)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑉(0)𝑚 (𝜉𝑖) 𝑈(𝑐)𝑛,𝑞 (𝜉𝑖+1) + 𝑉(𝑐)𝑚,𝑞 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖+1))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖+1) 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖+1) 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑧𝑥)
𝑚,𝑛,𝑝

− 𝛾2𝜋𝜔

𝑀+𝑁

∑
𝑚=1

𝑈(𝑐)𝑚 (𝜉𝑖)Φ(𝑖𝑐𝑑)𝑚,𝑝

− 𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑉(0)𝑚 (𝜉𝑖) 𝑈(𝑐)𝑛,𝑞 (𝜉𝑖) + 𝑉(𝑐)𝑚 (𝜉𝑖) 𝑈(0)𝑛,𝑞 (𝜉𝑖))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑐)
𝑛,𝑘 (𝜉𝑖) 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑘 (𝜉𝑖) 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ) }Φ

(𝑐𝑢𝑟)
𝑚,𝑛,𝑝

+ 𝑔2𝜋𝜔 𝑌
(𝑐)Φ(𝑑𝑡)𝑚,𝑝 + 𝑔

2𝜋
𝜔 𝐻

(𝑐) (𝜉𝑖)Φ(𝑠𝑡)𝑝

− 𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

{ (𝑉(0)𝑚 (𝜉𝑖) 𝐴(𝑐)𝑞 + 𝑉(𝑐)𝑚,𝑞 (𝜉𝑖) 𝐴(0)) +
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝐴

(𝑐)
𝑗 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝐴

(𝑠)
𝑗 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ) }Φ

(𝑚𝑖𝑥)
𝑚,𝑝

− 𝐴ℎ
2𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

{𝑉(𝑐)𝑚 (𝜉𝑖−1) (−
1
2Δ𝜉Φ

(𝑑𝑖𝑓𝑥)
𝑚,𝑝 + 1

Δ𝜉2Φ
(𝑖𝑐𝑑)
𝑚,𝑝 ) + 𝑉(𝑐)𝑚 (𝜉𝑖) (Φ(𝑑𝑖𝑓)𝑚,𝑝 − 2

Δ𝜉2Φ
(𝑖𝑐𝑑)
𝑚,𝑝 )

+ 𝑉(𝑐)𝑚 (𝜉𝑖+1) (
1
2Δ𝜉Φ

(𝑑𝑖𝑓𝑥)
𝑚,𝑝 + 1

Δ𝜉2Φ
(𝑖𝑐𝑑)
𝑚,𝑝 ) }

= 0 for 𝑝 = 1…𝑀
(F.11)

Wind, alongchannel, test function cos(𝑞𝜔𝑡)
𝜋
𝜔 (𝑉

(0)
𝑀+1(𝜉𝑖)𝐴(𝑐)𝑞 + 𝑉(𝑐)𝑀+1,𝑞(𝜉𝑖)𝐴(0))) +

𝜋
𝜔

𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑀+1,𝑘(𝜉𝑖)𝐴

(𝑐)
𝑗 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑀+1,𝑘(𝜉𝑖)𝐴

(𝑠)
𝑗 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ) = 0 (F.12)

Gibbs Effect, alongchannel, test function cos(𝑞𝜔𝑡)
𝜋
𝜔
1
ℎ2 ((𝑉

(0)
𝑀+2 (𝜉𝑖) 𝐴(𝑐)𝑞 + 𝑉(𝑐)𝑀+2,𝑞 (𝜉𝑖) 𝐴(0)) +

𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑀+2,𝑘 (𝜉𝑖) 𝐴

(𝑐)
𝑗 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑀+2,𝑘 (𝜉𝑖) 𝐴

(𝑠)
𝑗 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ))

+ 𝜋
𝜔

𝑔
𝑤(0)

𝑟0
𝑟 𝐻

(𝑐)
𝑞 + 𝜋

𝜔
𝑔ℎ
𝑤(0)

𝑟0
𝑟 𝑌

(𝑐)
𝑞

− 𝜋
𝜔
𝐴ℎ
𝑤(0)

𝑀+𝑁

∑
𝑚=1

(𝑉(𝑐)𝑚,𝑞 (𝜉𝑖)Φ(𝑔𝑟𝑥)𝑚 + 1
2Δ𝜉 (−𝑉

(𝑐)
𝑚,𝑞 (𝜉𝑖−1) + 𝑉(𝑐)𝑚,𝑞 (𝜉𝑖+1))Φ(𝑔𝑟)𝑚 ) = 0

(F.13)
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Rigid lid effect, test function cos(𝑞𝜔𝑡)

𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

𝑈(𝑐)𝑚,𝑞(𝜉𝑖)Φ(𝑞)𝑚 (F.14)

Momentum Equation, crosschannel, test function sin(𝑞𝜔𝑡)

𝑀+𝑁

∑
𝑚=1

𝑞𝜋𝑈(𝑐)𝑚,𝑞Φ(𝑖𝑐𝑑)𝑚,𝑞

− 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑈(0)𝑚 (𝜉𝑖−1) 𝑈(𝑠)𝑛,𝑞 (𝜉𝑖) + 𝑈(𝑠)𝑚,𝑞 (𝜉𝑖−1) 𝑈(0)𝑛 (𝜉𝑖))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖−1) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + 𝑈

(𝑠)
𝑚,𝑘 (𝜉𝑖−1) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑟𝑥)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑈(0)𝑚 (𝜉𝑖) 𝑈(𝑠)𝑛,𝑞 (𝜉𝑖) + 𝑈(𝑠)𝑚,𝑞 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + 𝑈

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑟)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑈(0)𝑚 (𝜉𝑖+1) 𝑈(𝑠)𝑛,𝑞 (𝜉𝑖) + 𝑈(𝑠)𝑚,𝑞 (𝜉𝑖+1) 𝑈(0)𝑛 (𝜉𝑖))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖+1) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + 𝑈

(𝑠)
𝑚,𝑘 (𝜉𝑖+1) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑟𝑥)
𝑚,𝑛,𝑝

− 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑈(0)𝑚 (𝜉𝑖) 𝑈(𝑠)𝑛,𝑞 (𝜉𝑖−1) + 𝑈(𝑠)𝑚,𝑞 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖−1))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖−1) 𝑇

(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + 𝑈

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖−1) 𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑧𝑥)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑈(0)𝑚 (𝜉𝑖) 𝑈(𝑠)𝑛,𝑞 (𝜉𝑖) + 𝑈(𝑠)𝑚,𝑞 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + 𝑈

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑧)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑈(0)𝑚 (𝜉𝑖) 𝑈(𝑠)𝑛,𝑞 (𝜉𝑖+1) + 𝑈(𝑠)𝑚,𝑞 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖+1))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖+1) 𝑇

(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + 𝑈

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖+1) 𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑧𝑥)
𝑚,𝑛,𝑝

− 𝛾2𝜋𝜔

𝑀+𝑁

∑
𝑚=1

𝑉(𝑐)𝑚 (𝜉𝑖)Φ(𝑖𝑐𝑑)𝑚,𝑝
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− 𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑉(0)𝑚 (𝜉𝑖) 𝑉(𝑠)𝑛,𝑞 (𝜉𝑖) + 𝑉(0)𝑚 (𝜉𝑖) 𝑉(𝑠)𝑛,𝑞 (𝜉𝑖))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑉

(𝑠)
𝑛,𝑘 (𝜉𝑖) 𝑇

(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑉

(𝑐)
𝑛,𝑘 (𝜉𝑖) 𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 ) }Φ

(𝑐𝑢𝑟)
𝑚,𝑛,𝑝

+ 𝑔2𝜋𝜔 𝑃
(𝑠)Φ(𝑑𝑟)𝑚,𝑝 + 𝑔

2𝜋
𝜔 𝐸

(𝑠) (𝜉𝑖)Φ(𝑠𝑟)𝑝

− 𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

{ (𝑈(0)𝑚 (𝜉𝑖) 𝐴(𝑠)𝑞 + 𝑈(𝑠)𝑚,𝑞 (𝜉𝑖) 𝐴(0)) +
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑈(𝑐)𝑚,𝑘 (𝜉𝑖) 𝐴

(𝑠)
𝑗 𝑇

(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + 𝑈

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝐴

(𝑐)
𝑗 𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 ) }Φ

(𝑚𝑖𝑥)
𝑚,𝑝

− 𝐴ℎ
2𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

{𝑈(𝑠)𝑚 (𝜉𝑖−1) (−
1
2Δ𝜉Φ

(𝑑𝑖𝑓𝑥)
𝑚,𝑝 + 1

Δ𝜉2Φ
(𝑖𝑐𝑑)
𝑚,𝑝 ) + 𝑈(𝑠)𝑚 (𝜉𝑖) (Φ(𝑑𝑖𝑓)𝑚,𝑝 − 2

Δ𝜉2Φ
(𝑖𝑐𝑑)
𝑚,𝑝 )

+ 𝑈(𝑠)𝑚 (𝜉𝑖+1) (
1
2Δ𝜉Φ

(𝑑𝑖𝑓𝑥)
𝑚,𝑝 + 1

Δ𝜉2Φ
(𝑖𝑐𝑑)
𝑚,𝑝 ) }

= 0 for 𝑝 = 1…𝑀
(F.15)

Wind, crosschannel, test function sin(𝑞𝜔𝑡)

𝜋
𝜔 (𝑈

(0)
𝑀+1(𝜉𝑖)𝐴(𝑠)𝑞 + 𝑈(𝑠)𝑀+1,𝑞(𝜉𝑖)𝐴(0))) +

𝜋
𝜔

𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑈(𝑐)𝑀+1,𝑘(𝜉𝑖)𝐴

(𝑠)
𝑗 𝑇

(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + 𝑈

(𝑠)
𝑀+1,𝑘(𝜉𝑖)𝐴

(𝑐)
𝑗 𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 ) = 0

(F.16)

Gibbs Effect, crosschannel, test function sin(𝑞𝜔𝑡)

𝜋
𝜔
1
ℎ2 ((𝑈

(0)
𝑀+2 (𝜉𝑖) 𝐴(𝑠)𝑞 + 𝑈(𝑠)𝑀+2,𝑞 (𝜉𝑖) 𝐴(0)) +

𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑈(𝑐)𝑀+2,𝑘 (𝜉𝑖) 𝐴

(𝑠)
𝑗 𝑇

(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + 𝑈

(𝑠)
𝑀+2,𝑘 (𝜉𝑖) 𝐴

(𝑐)
𝑗 𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 ))

+ 𝜋
𝜔

𝑔
𝑤(0)𝐸

(𝑠)
𝑞 (𝜉𝑖) +

𝜋
𝜔
𝑔ℎ
𝑤(0)𝑃

(𝑠)
𝑞 (𝜉𝑖)

− 𝜋
𝜔
𝐴ℎ
𝑤(0)

𝑀+𝑁

∑
𝑚=1

(𝑈(𝑠)𝑚,𝑞 (𝜉𝑖)Φ(𝑔𝑟𝑥)𝑚 + 1
2Δ𝜉 (−𝑈

(𝑠)
𝑚,𝑞 (𝜉𝑖−1) + 𝑈(𝑠)𝑚,𝑞 (𝜉𝑖+1))Φ(𝑔𝑟)𝑚 ) = 0

(F.17)

Momentum Equation, alongchannel, test function sin(𝑞𝜔𝑡)

𝑀+𝑁

∑
𝑚=1

𝑞𝜋𝑉(𝑐)𝑚,𝑞Φ(𝑖𝑐𝑑)𝑚,𝑞

− 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑉(0)𝑚 (𝜉𝑖−1) 𝑈(𝑠)𝑛,𝑞 (𝜉𝑖) + 𝑉(𝑠)𝑚,𝑞 (𝜉𝑖−1) 𝑈(0)𝑛 (𝜉𝑖))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖−1) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖−1) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑟𝑥)
𝑚,𝑛,𝑝
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+ 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑉(0)𝑚 (𝜉𝑖) 𝑈(𝑠)𝑛,𝑞 (𝜉𝑖) + 𝑉(𝑠)𝑚,𝑞 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑟)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑉(0)𝑚 (𝜉𝑖+1) 𝑈(𝑠)𝑛,𝑞 (𝜉𝑖) + 𝑉(𝑠)𝑚,𝑞 (𝜉𝑖+1) 𝑈(0)𝑛 (𝜉𝑖))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖+1) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖+1) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑟𝑥)
𝑚,𝑛,𝑝

− 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑉(0)𝑚 (𝜉𝑖) 𝑈(𝑠)𝑛,𝑞 (𝜉𝑖−1) + 𝑉(𝑠)𝑚,𝑞 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖−1))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖−1) 𝑇

(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖−1) 𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑧𝑥)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑉(0)𝑚 (𝜉𝑖) 𝑈(𝑠)𝑛,𝑞 (𝜉𝑖) + 𝑉(𝑠)𝑚,𝑞 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖) 𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑧)
𝑚,𝑛,𝑝

+ 𝜋
𝜔

1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑉(0)𝑚 (𝜉𝑖) 𝑈(𝑠)𝑛,𝑞 (𝜉𝑖+1) + 𝑉(𝑠)𝑚,𝑞 (𝜉𝑖) 𝑈(0)𝑛 (𝜉𝑖+1))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑗 (𝜉𝑖+1) 𝑇

(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑐)
𝑛,𝑗 (𝜉𝑖+1) 𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 ) }Φ

(𝑎𝑧𝑥)
𝑚,𝑛,𝑝

− 𝛾2𝜋𝜔

𝑀+𝑁

∑
𝑚=1

𝑈(𝑠)𝑚 (𝜉𝑖)Φ(𝑖𝑐𝑑)𝑚,𝑝

− 𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

𝑀+𝑁

∑
𝑛=1

{ (𝑉(0)𝑚 (𝜉𝑖) 𝑈(𝑠)𝑛,𝑞 (𝜉𝑖) + 𝑉(𝑠)𝑚 (𝜉𝑖) 𝑈(0)𝑛,𝑞 (𝜉𝑖))

+
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑠)
𝑛,𝑘 (𝜉𝑖) 𝑇

(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝑈

(𝑐)
𝑛,𝑘 (𝜉𝑖) 𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 ) }Φ

(𝑐𝑢𝑟)
𝑚,𝑛,𝑝

+ 𝑔2𝜋𝜔 𝑌
(𝑠)Φ(𝑑𝑡)𝑚,𝑝 + 𝑔

2𝜋
𝜔 𝐻

(𝑠) (𝜉𝑖)Φ(𝑠𝑡)𝑝

− 𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

{ (𝑉(0)𝑚 (𝜉𝑖) 𝐴(𝑠)𝑞 + 𝑉(𝑠)𝑚,𝑞 (𝜉𝑖) 𝐴(0)) +
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑚,𝑘 (𝜉𝑖) 𝐴

(𝑠)
𝑗 𝑇

(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑚,𝑘 (𝜉𝑖) 𝐴

(𝑐)
𝑗 𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 ) }Φ

(𝑚𝑖𝑥)
𝑚,𝑝

− 𝐴ℎ
2𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

{𝑉(𝑠)𝑚 (𝜉𝑖−1) (−
1
2Δ𝜉Φ

(𝑑𝑖𝑓𝑥)
𝑚,𝑝 + 1

Δ𝜉2Φ
(𝑖𝑐𝑑)
𝑚,𝑝 ) + 𝑉(𝑠)𝑚 (𝜉𝑖) (Φ(𝑑𝑖𝑓)𝑚,𝑝 − 2

Δ𝜉2Φ
(𝑖𝑐𝑑)
𝑚,𝑝 )

+ 𝑉(𝑠)𝑚 (𝜉𝑖+1) (
1
2Δ𝜉Φ

(𝑑𝑖𝑓𝑥)
𝑚,𝑝 + 1

Δ𝜉2Φ
(𝑖𝑐𝑑)
𝑚,𝑝 ) }

= 0 for 𝑝 = 1…𝑀
(F.18)
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Wind, alongchannel, test function sin(𝑞𝜔𝑡)

𝜋
𝜔 (𝑉

(0)
𝑀+1(𝜉𝑖)𝐴(𝑠)𝑞 + 𝑉(𝑠)𝑀+1,𝑞(𝜉𝑖)𝐴(0))) +

𝜋
𝜔

𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑀+1,𝑘(𝜉𝑖)𝐴

(𝑠)
𝑗 𝑇

(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑀+1,𝑘(𝜉𝑖)𝐴

(𝑐)
𝑗 𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 ) = 0 (F.19)

Gibbs Effect, alongchannel, test function sin(𝑞𝜔𝑡)

𝜋
𝜔
1
ℎ2 ((𝑉

(0)
𝑀+2 (𝜉𝑖) 𝐴(𝑠)𝑞 + 𝑉(𝑠)𝑀+2,𝑞 (𝜉𝑖) 𝐴(0)) +

𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑉(𝑐)𝑀+2,𝑘 (𝜉𝑖) 𝐴

(𝑠)
𝑗 𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝑉

(𝑠)
𝑀+2,𝑘 (𝜉𝑖) 𝐴

(𝑐)
𝑗 𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 ))

+ 𝜋
𝜔

𝑔
𝑤(0)

𝑟0
𝑟 𝐻

(𝑠)
𝑞 + 𝜋

𝜔
𝑔ℎ
𝑤(0)

𝑟0
𝑟 𝑌

(𝑠)
𝑞

− 𝜋
𝜔
𝐴ℎ
𝑤(0)

𝑀+𝑁

∑
𝑚=1

(𝑉(𝑠)𝑚,𝑞 (𝜉𝑖)Φ(𝑔𝑟𝑥)𝑚 + 1
2Δ𝜉 (−𝑉

(𝑠)
𝑚,𝑞 (𝜉𝑖−1) + 𝑉(𝑠)𝑚,𝑞 (𝜉𝑖+1))Φ(𝑔𝑟)𝑚 ) = 0

(F.20)

Rigid lid effect, test function sin(𝑞𝜔𝑡)

𝜋
𝜔

𝑀+𝑁

∑
𝑚=1

𝑈(𝑠)𝑚,𝑞(𝜉𝑖)Φ(𝑞)𝑚 (F.21)

F.2. Model equations for sediment
Concentration Equation, test function 1

1
Δ𝜉

𝑀+𝑁

∑
𝑚=1

(𝐶(0)𝑚 (𝜉𝑖+1) − 𝐶(0)𝑚 (𝜉𝑖−1)) Γ(0)𝑚,𝑝

+ 1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝐾

∑
𝑘=1

((𝐶(𝑐)𝑚 (𝜉𝑖+1) − 𝐶(𝑐)𝑚 (𝜉𝑖−1)) Γ(𝑐)𝑚,𝑘,𝑝 + (𝐶
(𝑠)
𝑚 (𝜉𝑖+1) − 𝐶(𝑠)𝑚 (𝜉𝑖−1)) Γ(𝑠)𝑚,𝑘,𝑝)

+ 2
𝑀+𝑁

∑
𝑚=1

𝐶(0)𝑚 (𝜉𝑖) Λ(0)𝑚,𝑝 +
𝑀+𝑁

∑
𝑚=1

𝐾

∑
𝑘=1

(𝐶(𝑐)𝑚,𝑘 (𝜉𝑖) Λ
(𝑐)
𝑚,𝑘,𝑝 + 𝐶

(𝑠)
𝑚,𝑘 (𝜉𝑖) Λ

(𝑠)
𝑚,𝑘,𝑝)

+ 2
Δ𝜉2𝐷ℎ

𝑀+𝑁

∑
𝑚=1

(2𝐶(0)𝑚 (𝜉𝑖) − 𝐶(0)𝑚 (𝜉𝑖+1) − 𝐶(0)𝑚 (𝜉𝑖−1))Ψ(id)𝑚,𝑝

= 0

(F.22)

Surface Boundary Condition, test function 1

2𝑤𝑠
𝑀

∑
𝑚=1

(−1)𝑚𝐶(0)𝑚 −𝑤𝑠𝐶(0)𝑀+2 −
𝜋𝑐𝑛
ℎ (2𝐷(0)𝐶(0)𝑀+1 +

𝐾

∑
𝑘=1

(𝐶(𝑐)𝑀+1,𝑘𝐷
(𝑐)
𝑘 + 𝐶(𝑠)𝑀+1,𝑘𝐷

(𝑠)
𝑘 )) = 0 (F.23)

Bottom Boundary Condition, test function 1

− 𝑐𝑛ℎ

𝑀+𝑁

∑
𝑚=𝑀+1

(2𝐶(0)𝑚 𝐷(0) +
𝐾

∑
𝑘=1

𝐶(𝑐)𝑚,𝑘𝐷
(𝑐)
𝑘 + 𝐶(𝑠)𝑚,𝑘𝐷

(𝑠)
𝑘 )(1 − 𝛿𝑚,𝑀+1(1 − 𝜋)) = 2𝛼𝑠𝑎(𝑟)𝑋(0) (F.24)
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Concentration Equation, test function cos(𝑞𝜔𝑡)

1
Δ𝜉

𝑀+𝑁

∑
𝑚=1

((𝐶(0)𝑚 (𝜉𝑖+1) − 𝐶(0)𝑚 (𝜉𝑖−1)) Γ(𝑐)𝑚,𝑞,𝑝 + (𝐶(𝑐)𝑚 (𝜉𝑖+1) − 𝐶(𝑐)𝑚 (𝜉𝑖−1)) Γ(0)𝑚,𝑝)

+ 1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝐾

∑
𝑘=1

((𝐶(𝑐)𝑚 (𝜉𝑖+1) − 𝐶(𝑐)𝑚 (𝜉𝑖−1)) Γ(𝑐)𝑚,𝑗,𝑝𝑇
(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + (𝐶

(𝑠)
𝑚 (𝜉𝑖+1) − 𝐶(𝑠)𝑚 (𝜉𝑖−1)) Γ(𝑠)𝑚,𝑗,𝑝𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 )

+ 2
𝑀+𝑁

∑
𝑚=1

(𝐶(0)𝑚 (𝜉𝑖) Λ(𝑐)𝑚,𝑞,𝑝 + 𝐶(𝑐)𝑚,𝑞 (𝜉𝑖) Λ(0)𝑚,𝑝) +
𝑀+𝑁

∑
𝑚=1

𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝐶(𝑐)𝑚,𝑘 (𝜉𝑖) Λ

(𝑐)
𝑚,𝑗,𝑝𝑇

(𝑐𝑐𝑐)
𝑘,𝑗,𝑞 + 𝐶

(𝑠)
𝑚,𝑘 (𝜉𝑖) Λ

(𝑠)
𝑚,𝑗,𝑝𝑇

(𝑠𝑠𝑐)
𝑘,𝑗,𝑞 )

+ 𝛿𝑘,𝑞
1
Δ𝜉2𝐷ℎ

𝑀+𝑁

∑
𝑚=1

(2𝐶(𝑐)𝑚 (𝜉𝑖) − 𝐶(𝑐)𝑚 (𝜉𝑖+1) − 𝐶(𝑐)𝑚 (𝜉𝑖−1))Ψ(id)𝑚,𝑝

= 0
(F.25)

Surface Boundary Condition, test function cos(𝑞𝜔𝑡)

𝑤𝑠
𝑀

∑
𝑚=1

(−1)𝑚𝐶(𝑐)𝑚,𝑞 −
1
2𝑤𝑠𝐶

(𝑐)
𝑀+2,𝑞

− 𝜋𝑐𝑛ℎ (𝐶(0)𝑀+1𝐷(𝑐)𝑞 + 𝐶(𝑐)𝑀+1,𝑞𝐷(0) +
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑇(𝑐𝑐𝑐)𝑘,𝑗,𝑞 𝐶

(𝑐)
𝑀+1,𝑘𝐷

(𝑐)
𝑗 + 𝑇(𝑠𝑠𝑐)𝑘𝑗,𝑞 𝐶

(𝑠)
𝑀+1,𝑘𝐷

(𝑠)
𝑗 )) = 0

(F.26)

Bottom Boundary Condition, test function cos(𝑞𝜔𝑡)

−
𝑐𝜂
ℎ

𝑀+𝑁

∑
𝑚=𝑀+1

(𝐶(0)𝑚 𝐷(𝑐)𝑞 + 𝐶(𝑐)𝑚,𝑞𝐷(0) +
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑇(𝑐𝑐𝑐)𝑘,𝑗,𝑞 𝐶

(𝑐)
𝑚,𝑘𝐷

(𝑐)
𝑘 + 𝑇(𝑠𝑠𝑐)𝑘,𝑗,𝑞 𝐶

(𝑠)
𝑚,𝑘𝐷

(𝑠)
𝑘 )) (1 − 𝛿𝑚,𝑀+1(1 − 𝜋))

= 𝛼𝑠𝑎(𝑟)𝑋(𝑐)𝑞
(F.27)

Concentration Equation, test function sin(𝑞𝜔𝑡)

1
Δ𝜉

𝑀+𝑁

∑
𝑚=1

((𝐶(0)𝑚 (𝜉𝑖+1) − 𝐶(0)𝑚 (𝜉𝑖−1)) Γ(𝑠)𝑚,𝑞,𝑝 + (𝐶(𝑠)𝑚 (𝜉𝑖+1) − 𝐶(𝑠)𝑚 (𝜉𝑖−1)) Γ(0)𝑚,𝑝)

+ 1
2Δ𝜉

𝑀+𝑁

∑
𝑚=1

𝐾

∑
𝑘=1

((𝐶(𝑐)𝑚 (𝜉𝑖+1) − 𝐶(𝑐)𝑚 (𝜉𝑖−1)) Γ(𝑠)𝑚,𝑗,𝑝𝑇
(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + (𝐶

(𝑠)
𝑚 (𝜉𝑖+1) − 𝐶(𝑠)𝑚 (𝜉𝑖−1)) Γ(𝑐)𝑚,𝑗,𝑝𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 )

+ 2
𝑀+𝑁

∑
𝑚=1

(𝐶(0)𝑚 (𝜉𝑖) Λ(𝑐)𝑚,𝑞,𝑝 + 𝐶(𝑐)𝑚,𝑞 (𝜉𝑖) Λ(0)𝑚,𝑝) +
𝑀+𝑁

∑
𝑚=1

𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝐶(𝑐)𝑚,𝑘 (𝜉𝑖) Λ

(𝑠)
𝑚,𝑗,𝑝𝑇

(𝑐𝑠𝑠)
𝑘,𝑗,𝑞 + 𝐶

(𝑠)
𝑚,𝑘 (𝜉𝑖) Λ

(𝑐)
𝑚,𝑗,𝑝𝑇

(𝑠𝑐𝑠)
𝑘,𝑗,𝑞 )

+ 𝛿𝑘,𝑞
1
Δ𝜉2𝐷ℎ

𝑀+𝑁

∑
𝑚=1

(2𝐶(𝑐)𝑚 (𝜉𝑖) − 𝐶(𝑐)𝑚 (𝜉𝑖+1) − 𝐶(𝑐)𝑚 (𝜉𝑖−1))Ψ(id)𝑚,𝑝

= 0
(F.28)
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Surface Boundary Condition, test function sin(𝑞𝜔𝑡)

𝑤𝑠
𝑀

∑
𝑚=1

(−1)𝑚𝐶(𝑠)𝑚,𝑞 −
1
2𝑤𝑠𝐶

(𝑠)
𝑀+2,𝑞

− 𝜋𝑐𝑛ℎ (𝐶(0)𝑀+1𝐷(𝑠)𝑞 + 𝐶(𝑠)𝑀+1,𝑞𝐷(0) +
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑇(𝑐𝑠𝑠)𝑘,𝑗,𝑞 𝐶

(𝑐)
𝑀+1,𝑘𝐷

(𝑠)
𝑗 + 𝑇(𝑠𝑐𝑠)𝑘,𝑗,𝑞 𝐶

(𝑠)
𝑀+1,𝑘𝐷

(𝑐)
𝑗 )) = 0

(F.29)

Bottom Boundary Condition, test function sin(𝑞𝜔𝑡)

−
𝑐𝜂
ℎ

𝑀+𝑁

∑
𝑚=𝑀+1

(𝐶(0)𝑚 𝐷(𝑠)𝑞 + 𝐶(𝑠)𝑚,𝑞𝐷(0) +
𝐾

∑
𝑘=1

𝐾

∑
𝑗=1
(𝑇(𝑐𝑠𝑠)𝑘𝑗,𝑞 𝐶

(𝑐)
𝑚,𝑘𝐷

(𝑠)
𝑘 + 𝑇(𝑠𝑐𝑐)𝑘,𝑗,𝑞 𝐶

(𝑠)
𝑚,𝑘𝐷

(𝑐)
𝑘 )) (1 − 𝛿𝑚,𝑀+1(1 − 𝜋))

= 𝛼𝑠𝑎(𝑟)𝑋(𝑠)𝑞
(F.30)

F.3. Model equations at the side walls
The equations in the previous section are valid for the locations 𝜉2𝜉𝐿−1. At the side walls, locations 𝜉1
and 𝜉𝐿, different model equations must hold to meet the boundary conditions.

For the flow, it was imposed that 𝑢𝑟 and 𝑢𝜃 must be 0 at the side walls. Therefore all variables 𝑈𝑚
and 𝑉𝑚 must be 0 at the first and last point along the transect. Furthermore, 𝐸 is assumed to be 0 at
these boundaries.

For the concentration, the derivative of 𝑐 to 𝑟 must be 0 at the side walls. Expressing 𝐶𝑚 as a sum
of tidal components and applying the Galerkin method to equation (E.46) leads to the equations that
hold at the side walls. For 𝜉1 this results in the following equations for test function 1, cos(𝑘𝜔𝑡) and
sin(𝑘𝜔𝑡),

𝑀+𝑁

∑
𝑚=1

𝐶(0)𝑚 (𝜉1) (−
1
Δ𝜉Ψ

(𝑖𝑑)
𝑚,𝑝 +Ψ(𝑏𝑛𝑑)𝑚,𝑝 ) + 1

Δ𝜉𝐶
(0)
𝑚 (𝜉2)Ψ(𝑖𝑑)𝑚,𝑝 = 0, (F.31)

𝑀+𝑁

∑
𝑚=1

𝐶(𝑐)𝑚,𝑞 (𝜉1) (−
1
Δ𝜉Ψ

(𝑖𝑑)
𝑚,𝑝 +Ψ(𝑏𝑛𝑑)𝑚,𝑝 ) + 1

Δ𝜉𝐶
(𝑐)
𝑚,𝑞 (𝜉2)Ψ(𝑖𝑑)𝑚,𝑝 = 0, (F.32)

𝑀+𝑁

∑
𝑚=1

𝐶(𝑠)𝑚,𝑞 (𝜉1) (−
1
Δ𝜉Ψ

(𝑖𝑑)
𝑚,𝑝 +Ψ(𝑏𝑛𝑑)𝑚,𝑝 ) + 1

Δ𝜉𝐶
(𝑠)
𝑚,𝑞 (𝜉2)Ψ(𝑖𝑑)𝑚,𝑝 = 0, (F.33)

for 𝑝 = 1…𝑀. Moreover, for 𝑚 = 𝑀 + 1 and 𝑚 = 𝑀 + 2,

𝐶(0)𝑚 (𝜉1) − 𝐶(0)𝑚 (𝜉2) = 0, (F.34)

𝐶(𝑐)𝑚,𝑞 (𝜉1) − 𝐶(𝑐)𝑚,𝑞 (𝜉2) = 0, (F.35)

𝐶(𝑠)𝑚,𝑞 (𝜉1) − 𝐶(𝑠)𝑚,𝑞 (𝜉2) = 0, (F.36)

must hold.
Similarly, at 𝜉𝐿, the model equations are for test function 1, cos(𝑘𝜔𝑡) and sin(𝑘𝜔𝑡),

𝑀+𝑁

∑
𝑚=1

𝐶(0)𝑚 (𝜉𝐿) (
1
Δ𝜉Ψ

(𝑖𝑑)
𝑚,𝑝 +Ψ(𝑏𝑛𝑑)𝑚,𝑝 ) − 1

Δ𝜉𝐶
(0)
𝑚 (𝜉𝐿−1)Ψ(𝑖𝑑)𝑚,𝑝 = 0, (F.37)

𝑀+𝑁

∑
𝑚=1

𝐶(𝑐)𝑚,𝑞 (𝜉𝐿) (
1
Δ𝜉Ψ

(𝑖𝑑)
𝑚,𝑝 +Ψ(𝑏𝑛𝑑)𝑚,𝑝 ) − 1

Δ𝜉𝐶
(𝑐)
𝑚,𝑞 (𝜉𝐿−1)Ψ(𝑖𝑑)𝑚,𝑝 = 0, (F.38)
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𝑀+𝑁

∑
𝑚=1

𝐶(𝑠)𝑚,𝑞 (𝜉𝐿) (
1
Δ𝜉Ψ

(𝑖𝑑)
𝑚,𝑝 +Ψ(𝑏𝑛𝑑)𝑚,𝑝 ) − 1

Δ𝜉𝐶
(𝑠)
𝑚,𝑞 (𝜉𝐿−1)Ψ(𝑖𝑑)𝑚,𝑝 = 0, (F.39)

for 𝑝 = 1…𝑀 and for 𝑚 = 𝑀 + 1 and 𝑚 = 𝑀 + 2,

𝐶(0)𝑚 (𝜉𝐿) − 𝐶(0)𝑚 (𝜉𝐿−1) = 0, (F.40)

𝐶(𝑐)𝑚,𝑞 (𝜉𝐿) − 𝐶(𝑐)𝑚,𝑞 (𝜉𝐿−1) = 0, (F.41)

𝐶(𝑠)𝑚,𝑞 (𝜉𝐿) − 𝐶(𝑠)𝑚,𝑞 (𝜉𝐿−1) = 0. (F.42)

F.4. Coefficients
Coefficients Φ

Φ(𝑖𝑐𝑑)𝑚,𝑝 = ∫
1

0
𝑓𝑚𝑓𝑝 d𝜎 (F.43)

Φ(𝑎𝑟)𝑚,𝑛,𝑝 = ∫
1

0
(𝜕𝑓𝑚𝜕𝜉 + 𝜕𝑓𝑚𝜕𝜎

𝜕𝜎
𝜕𝑟 ) 𝑓𝑛𝑓𝑝 d𝜎 (F.44)

Φ(𝑎𝑟𝑥)𝑚,𝑛,𝑝 = ∫
1

0
𝑓𝑚𝑓𝑛𝑓𝑝 d𝜎 (F.45)

Φ(𝑎𝑧)𝑚,𝑛,𝑝 = −∫
1

0

𝜕𝑓𝑚
𝜕𝜎 ∫

1

𝜎
(𝜕𝑓𝑛𝜕𝜉 +

𝜕𝑓𝑛
𝜕𝜎′

𝜕𝜎′
𝜕𝑟 +

𝑓𝑛
𝑟 )d𝜎

′𝑓𝑝 d𝜎 (F.46)

Φ(𝑎𝑧𝑥)𝑚,𝑛,𝑝 = −∫
1

0

𝜕𝑓𝑚
𝜕𝜎 ∫

1

𝜎
𝑓𝑛 d𝜎′𝑓𝑝 d𝜎 (F.47)

Φ(𝑐𝑢𝑟)𝑚,𝑛,𝑝 =
1
𝑟 ∫

1

0
𝑓𝑚𝑓𝑛𝑓𝑝 d𝜎 (F.48)

Φ(𝑑𝑟)𝑝 = ℎ∫
1

0
(1 − 𝜎)𝑓𝑝 d𝜎 (F.49)

Φ(𝑑𝑡)𝑝 = ℎ𝑟0𝑟 ∫
1

0
(1 − 𝜎)𝑓𝑝 d𝜎 (F.50)

Φ(𝑠𝑟)𝑝 = ∫
1

0
𝑓𝑝 d𝜎 (F.51)

Φ(𝑠𝑡)𝑝 = 𝑟0
𝑟 ∫

1

0
𝑓𝑝 d𝜎 (F.52)

Φ(𝑞)𝑚 = ∫
1

0
𝑓𝑚 d𝜎 (F.53)

Φ(𝑚𝑖𝑥)𝑚,𝑝 = 1
ℎ2 ∫

1

0

𝜕
𝜕𝜎 (𝜙

𝜕𝑓𝑚
𝜕𝜎 )𝑓𝑝 d𝜎 =

⎧
⎪

⎨
⎪
⎩

−(𝑝 − 1
2)
2 𝜋2
ℎ2 ∫

1
0 𝑓2𝑝 𝑤 d𝜎 ; 𝑚 = 𝑝

−𝜋
2

ℎ2 ∫
1
0 𝑓𝑀+1𝑤𝑓𝑝 d𝜎 ; 𝑚 = 𝑀 + 1

− 1
ℎ2 ∫

1
0 𝑤𝑓𝑝 d𝜎 ; 𝑚 = 𝑀 + 2
0 ; otherwise

(F.54)

Φ(𝑑𝑖𝑓)𝑚,𝑝 = ∫
1

0
(1𝑟

𝜕𝑓𝑚
𝜕𝜉 + 𝜕

2𝑓𝑚
𝜕𝜉2 + 2𝜕𝜎𝜕𝑟

𝜕
𝜕𝜎 (

𝜕𝑓𝑚
𝜕𝜉 ) + (

𝜕𝜎
𝜕𝑟 )

2 𝜕2𝑓𝑚
𝜕𝜎2 + (

𝜕2𝜎
𝜕𝑟2 +

1
𝑟
𝜕𝜎
𝜕𝑟 )

𝜕𝑓𝑚
𝜕𝜎 )𝑓𝑝 d𝜎 (F.55)

Φ(𝑑𝑖𝑓𝑥)𝑚,𝑝 = ∫
1

0
(𝑓𝑚𝑟 + 2𝜕𝑓𝑚𝜕𝜉 + 2𝜕𝜎𝜕𝑟

𝜕𝑓𝑚
𝜕𝜎 )𝑓𝑝 d𝜎 (F.56)
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Φ(𝑔𝑟𝑥)𝑚 = (2𝜕𝜎𝜕𝑟
𝜕
𝜕𝜎 (

𝜕𝑓𝑚
𝜕𝜉 ) + (

𝜕𝜎
𝜕𝑟 )

2 𝜕2𝑓𝑚
𝜕𝜎2 + (

𝜕2𝜎
𝜕𝑟2 +

1
𝑟
𝜕𝜎
𝜕𝑟 )

𝜕𝑓𝑚
𝜕𝜎 ) |𝜎=0

(F.57)

Φ(𝑔𝑟)𝑚 = 2𝜕𝜎𝜕𝑟
𝜕𝑓𝑚
𝜕𝜎 |𝜎=0

(F.58)

Coefficients Ψ
Ψ(𝑖𝑑)𝑚,𝑝 = ∫

1

0
𝑑𝑚𝑑𝑝 d𝜎 (F.59)

Ψ(𝑎𝑧)𝑚,𝑛,𝑝 = −∫
1

0

𝜕𝑑𝑚
𝜕𝜎 ∫

1

𝜎
(𝜕𝑓𝑛𝜕𝜉 +

𝜕𝑓𝑛
𝜕𝜎′

𝜕𝜎′
𝜕𝑟 +

𝑓𝑛
𝑟 )d𝜎

′𝑑𝑝 d𝜎 (F.60)

Ψ(𝑎𝑟)𝑚,𝑛,𝑝 = ∫
1

0
(𝜕𝑑𝑚𝜕𝜉 + 𝜕𝑑𝑚𝜕𝜎

𝜕𝜎
𝜕𝑟 +

𝑑𝑚
𝑟 ) 𝑓𝑛𝑑𝑝 d𝜎 (F.61)

Ψ(𝑎𝑧𝑥)𝑚,𝑛,𝑝 = −∫
1

0

𝜕𝑑𝑚
𝜕𝜎 ∫

1

𝜎
𝑓𝑛 d𝜎′𝑑𝑝 d𝜎 (F.62)

Ψ(𝑎𝑟𝑥)𝑚,𝑛,𝑝 = ∫
1

0
𝑑𝑚𝑓𝑛𝑑𝑝 d𝜎 (F.63)

Ψ(𝑤𝑠)𝑚,𝑝 = 1
ℎ ∫

1

0

𝜕𝑑𝑚
𝜕𝜎 𝑑𝑝 d𝜎 (F.64)

Ψ(𝑚𝑖𝑥)𝑚,𝑝 = 1
ℎ2 ∫

1

0

𝜕
𝜕𝜎 (𝜙

𝜕𝑑𝑚
𝜕𝜎 )𝑑𝑝 d𝜎 =

⎧
⎪⎪

⎨
⎪⎪
⎩

0 ; 𝑚 = 𝑝 = 1
− 1
ℎ2

1
2(𝑝 − 1)

2𝜋2𝑐2𝜂 ; 𝑚 = 𝑝 ∧ 𝑝 = 2…𝑀
𝜋2
ℎ2

𝜋𝑐2𝜂
𝑝(2−𝑝)((−1)

𝑝 − 1) ; 𝑚 = 𝑀 + 1 ∧ 𝑝 = 1…𝑀
− 1
ℎ2 𝑐

2
𝜂 ; 𝑚 = 𝑀 + 2 ∧ 𝑝 = 1

0 ; 𝑚 = 𝑀 + 2 ∧ 𝑝 = 2…𝑀
(F.65)

Ψ(𝑑𝑖𝑓)𝑚,𝑝 = ∫
1

0
(1𝑟

𝜕𝑑𝑚
𝜕𝜉 + 𝜕

2𝑑𝑚
𝜕𝜉2 + 2𝜕𝜎𝜕𝑟

𝜕
𝜕𝜎 (

𝜕𝑑𝑚
𝜕𝜉 ) + (

𝜕𝜎
𝜕𝑟 )

2 𝜕2𝑑𝑚
𝜕𝜎2 + (𝜕

2𝜎
𝜕𝑟2 +

1
𝑟
𝜕𝜎
𝜕𝑟 )

𝜕𝑑𝑚
𝜕𝜎 )𝑑𝑝 d𝜎 (F.66)

Ψ(𝑑𝑖𝑓𝑥)𝑚,𝑝 = ∫
1

0
(𝑑𝑚𝑟 + 2𝜕𝑑𝑚𝜕𝜉 + 2𝜕𝜎𝜕𝑟

𝜕𝑑𝑚
𝜕𝜎 )𝑑𝑝 d𝜎 (F.67)

Ψ(𝑏𝑛𝑑)𝑚,𝑝 = ∫
1

0

𝜕𝑑𝑚
𝜕𝜎

𝜕𝜎
𝜕𝑟 𝑑𝑝 d𝜎 (F.68)

Coefficients 𝑇
𝑇(𝑐𝑐𝑐)𝑘,𝑗,𝑞 = 𝜔

𝜋 ∫
𝜋/𝜔

−𝜋/𝜔
cos 𝑘𝜔𝑡 cos 𝑗𝜔𝑡 cos 𝑞𝜔𝑡 d𝑡 (F.69)

𝑇(𝑐𝑐𝑠)𝑘,𝑗,𝑞 = 𝜔
𝜋 ∫

𝜋/𝜔

−𝜋/𝜔
cos 𝑘𝜔𝑡 cos 𝑗𝜔𝑡 sin 𝑞𝜔𝑡 d𝑡 (F.70)

𝑇(𝑐𝑠𝑐)𝑘,𝑗,𝑞 = 𝜔
𝜋 ∫

𝜋/𝜔

−𝜋/𝜔
cos 𝑘𝜔𝑡 sin 𝑗𝜔𝑡 cos 𝑞𝜔𝑡 d𝑡 (F.71)

𝑇(𝑐𝑠𝑠)𝑘,𝑗,𝑞 =
𝜔
𝜋 ∫

𝜋/𝜔

−𝜋/𝜔
cos 𝑘𝜔𝑡 sin 𝑗𝜔𝑡 sin 𝑞𝜔𝑡 d𝑡 (F.72)
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𝑇(𝑠𝑐𝑐)𝑘,𝑗,𝑞 = 𝜔
𝜋 ∫

𝜋/𝜔

−𝜋/𝜔
sin 𝑘𝜔𝑡 cos 𝑗𝜔𝑡 cos 𝑞𝜔𝑡 d𝑡 (F.73)

𝑇(𝑠𝑐𝑠)𝑘,𝑗,𝑞 =
𝜔
𝜋 ∫

𝜋/𝜔

−𝜋/𝜔
sin 𝑘𝜔𝑡 cos 𝑗𝜔𝑡 sin 𝑞𝜔𝑡 d𝑡 (F.74)

𝑇(𝑠𝑠𝑐)𝑘,𝑗,𝑞 =
𝜔
𝜋 ∫

𝜋/𝜔

−𝜋/𝜔
sin 𝑘𝜔𝑡 sin 𝑗𝜔𝑡 cos 𝑞𝜔𝑡 d𝑡 (F.75)

𝑇(𝑠𝑠𝑠)𝑘,𝑗,𝑞 =
𝜔
𝜋 ∫

𝜋/𝜔

−𝜋/𝜔
sin 𝑘𝜔𝑡 sin 𝑗𝜔𝑡 sin 𝑞𝜔𝑡 d𝑡 (F.76)

indices ccc ccs csc css scc scs ssc sss
𝑘, 𝑗, 𝑞 = 0 2 0 0 0 0 0 0 0
𝑘 = 0 and (𝑗 = ±𝑞; 𝑗, 𝑞 ≠ 0) 1 0 0 ±1 0 0 0 0
𝑗 = 0 and (𝑘 = ±𝑞; 𝑘, 𝑞 ≠ 0) 1 0 0 0 0 ±1 0 0
𝑞 = 0 and (𝑗 = ±𝑘; 𝑘, 𝑗 ≠ 0) 1 0 0 0 0 0 ±1 0
𝑘, 𝑗, 𝑞 ≠ 0 and 𝑘 + 𝑗 + 𝑞 = 0 1/2 0 0 −1/2 0 −1/2 −1/2 0
𝑘, 𝑗, 𝑞 ≠ 0 and 𝑘 + 𝑗 − 𝑞 = 0 1/2 0 0 1/2 0 1/2 −1/2 0
𝑘, 𝑗, 𝑞 ≠ 0 and 𝑘 − 𝑗 + 𝑞 = 0 1/2 0 0 1/2 0 −1/2 1/2 0
𝑘, 𝑗, 𝑞 ≠ 0 and 𝑘 − 𝑗 − 𝑞 = 0 1/2 0 0 −1/2 0 1/2 1/2 0

Table F.1: A table with the values of each coeffficient 𝑇 for varying 𝑘, 𝑗 and 𝑞.





G
Structure of Jacobi matrix

In Chapter 3 is explained that the Jacobi matrix of the model equations is required to solve the system of
equations. Since there is a large number of model equations and unknown variables for each location
along the transect, it is necessary to have a clear ordering in this matrix. This appendix explains how
the Jacobi matrix is set up.

The ordering of the Jacobi matrix starts by the order of the model equations. The model equations
are primary ordered by location, so first 𝜉1, then 𝜉2 and so on until 𝜉𝐿. Next, the equations are ordered
by test function, so first the equations for test function 1, then cos(𝜔𝑡), next sin(𝜔𝑡), after that cos(2𝜔𝑡)
and last sin(2𝜔𝑡). If 𝐾 were larger than two, this would continue in the same way for higher values of
𝐾. Finally, for one location and test function, the equations for the flow are arranged as

• Momentum equation, crosschannel for 𝑚 = 1…𝑀

• Wind equation, crosschannel

• Gibbs effect equation, crosschannel

• Momentum equation, alongchannel, for 𝑚 = 1…𝑀

• Wind equation, alongchannel

• Gibbs effect equation, alongchannel

• Rigid lid equation

and for the concentration as

• Concentration equation, for 𝑚 = 1…𝑀

• Surface boundary equation

• Bottom boundary equation

For the vector of unknowns a similar ordering is used. So at first the unknowns for 𝜉1, then 𝜉2 and
so on till 𝜉𝐿. Next, the unknowns are ordered by the tidal component, first the variables for M0, then the
M2 cosine variables followed by the M2 sine variables, next the M4 cosine variables and finally the M4
sine variables. If more tidal components were included, these would follow afterwards in the same way.
Within the same location and tidal component, the vector of unknowns for the flow first contains the
crosschannel variable 𝑈𝑚 for 𝑚 = 1…𝑀 +𝑁, then the alongchannel variables 𝑉𝑚 for 𝑚 = 1…𝑀 +𝑁
and last the variable 𝐸. For the concentration, after ordering by location and tidal component, the
variables 𝐶𝑚 are simply ordered by ascending 𝑚 from 1 till 𝑀 +𝑁.

As a result of this ordering, the Jacobi matrix has a clear structure. It contains 𝐿 × 𝐿 blocks with
((2𝐾+1)(2(𝑀+𝑁)+1))×((2𝐾+1)(2(𝑀+𝑁)+1)) elements for the flow or ((2𝐾+1)(𝑀+𝑁))×((2𝐾+1)(𝑀+𝑁))
elements for the concentration. The block (𝑖, 𝑗) contains the derivatives of the model equations for 𝜉𝑖
with respect to the variables for location 𝜉𝑗. As can be seen in Appendix F, the model equations only
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contain variables for 𝜉𝑖−1, 𝜉𝑖 and 𝜉𝑖+1. This is due to the use of the finite difference approximation in the
radial direction. Consequently, for every 𝑖, only the blocks (𝑖, 𝑖−1), (𝑖, 𝑖) and (𝑖, 𝑖+1) contain nonzero
elements. As a result, the Jacobi matrix can be characterised as a blocktridiagonal matrix.

Within one block another clear structure is visible. Each block contains (2𝐾+1)×(2𝐾+1) subblocks
with each (2(𝑀+𝑁)+1) × (2(𝑀+𝑁)+1) elements for the flow or (𝑀+𝑁) × (𝑀+𝑁) elements for the
concentration. Each subblock contains the derivatives of the model equations for one of the test
functions with respect to the variables for one of the tidal components.

In Section F.3 of Appendix F is explained that different model equations are used at the side walls to
meet the boundary conditions there. The Jacobi matrix is also different for these locations. Instead of
three, only two blocks are used there. The blocks that would contain derivatives for variables outside
the domain, so (1, 0) and (𝐿, 𝐿 + 1), do not exist.

For the flow, all variables must be equal to zero at the boundaries. As a result, the blocks (1, 1) and
(𝐿, 𝐿) are identity matrices and the blocks (1, 2) and (𝐿, 𝐿 − 1) contain only zeros. For the concentra
tion, the model equations contain variables for the location at the boundary and the location next to it.
Therefore, the blocks (1, 1), (1, 2), (𝐿, 𝐿 − 1) and (𝐿, 𝐿) all contain nonzero elements.



H
Other methods to compute the erosion

coefficient
In chapters 2 and 3 it is explained how the erosion coefficient corresponding to the morphodynamic
equilibrium is computed using a time integration method. During this project, some other methods to
compute the erosion coefficient were tried. This appendix briefly discusses the methods that were tried
and the problems encountered with these methods.

H.1. Differential equation methods
The first approach is inspired by the method used in [11]. Since a perturbation method is used there,
it is easier to find the erosion coefficient, because in that case it is not necessary to use an iterative
process. In the approach described in this section, iterations are required to find a solution for the
erosion coefficient.

The suspended sediment concentration for the erosion coefficient 𝑎(𝑟), can be expressed as

𝑐 = 𝑎(𝑟)�̂� + �̃�, (H.1)

with �̂� the suspended sediment concentration for 𝑎(𝑟) = 1. Substituting this into the morphodynamic
equilibrium condition, equation (2.22), results in a differential equation for 𝑎(𝑟),

𝐼1(𝑟)
𝑑𝑎(𝑟)
𝑑𝑟 + 𝐼2(𝑟)𝑎(𝑟) + 𝐼3(𝑟) = 0, (H.2)

with

𝐼1(𝑟) = ∫
0

−𝐻
−𝐷𝑣⟨�̂�⟩d𝑧, (H.3)

𝐼2(𝑟) = ∫
0

−𝐻
⟨𝑢𝑟 �̂�⟩ − 𝐷𝑣

𝜕⟨�̂�⟩
𝜕𝑟 d𝑧 (H.4)

𝐼3(𝑟) = ∫
0

−𝐻
⟨𝑢𝑟 �̃�⟩ − 𝐷𝑣

𝜕⟨�̃�⟩
𝜕𝑟 d𝑧. (H.5)

By solving this differential equation, a distribution for the erosion coefficient 𝑎(𝑟) is found.
The iteration process to find 𝑎(𝑟) corresponding to the morphodynamic equilibrium starts with com

puting �̂� and choosing an initial estimate for 𝑎(𝑟). The initial estimate is used to compute the concen
tration 𝑐. Next, �̃� is computed as �̃� = 𝑐 − 𝑎(𝑟)�̂�. This is used to solve the differential equation (H.2) to
find a new expression for 𝑎(𝑟). Now a new 𝑐 and �̃� are computed, and so on. In this process �̃� should
become smaller and once �̃� is below a chosen tolerance value, the solution is obtained.

To find the erosion coefficient corresponding to the the differential equation (H.2), the analytical
solution of this equation is used. The analytical solution of the differential equation (H.2) is,

𝑎(𝑟) = exp(−∫ 𝐼2𝐼1
d𝑟) [−∫ exp(∫(𝐼2𝐼1

d𝑟) 𝐼3𝐼1
)d𝑟 + 𝐶1] , (H.6)
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with 𝐶1 an integration constant. This constant depends on the condition in equation (2.28). The
antiderivatives in this solution and integrals defining 𝐼1, 𝐼2 and 𝐼3 are solved numerically. This is done
using the composite trapezoidal rule.

A slightly different approach is to discard the �̃� and to compute �̂� by dividing the concentration
obtained for an erosion coefficient by this erosion coefficient. The process starts with an initial estimate
for 𝑎(𝑟) and computing the corresponding concentration. This is used to compute �̂� and then the
differential equation is solved to find a new value for 𝑎(𝑟), etcetera.

In this method 𝐼3 equals zero. This results in the analytical solution

𝑎(𝑟) = 𝐶1 exp(−∫
𝐼2
𝐼1

d𝑟). (H.7)

The antiderivative in the solution and integrals for 𝐼1 and 𝐼2 are again solved numerically by using the
composite trapezoidal rule.

It is possible to circumvent the numerical approximation of antiderivatives by transforming the dif
ferential equation to a matrix equation. To obtain a matrix equation 𝐼1, 𝐼2 and 𝑎(𝑟) are discretized. The
discretization is similar as the discretization for the model equations in the horizontal direction. This
means there are 𝐿 uniformly distributed grid points used. The derivative of 𝑎(𝑟) with respect to 𝑟 is
expressed by a central finite difference approximation. This results in the system,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 … 0
1
2Δ𝑟 𝐼1(𝑟2) 𝐼2(𝑟2)

1
2Δ𝑟 𝐼1(𝑟2) 0 … 0

0 1
2Δ𝑟 𝐼1(𝑟3) 𝐼2(𝑟3)

1
2Δ𝑟 𝐼1(𝑟3) … 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋮

0 … 0 1
2Δ𝑟 𝐼1(𝑟𝐿1) 𝐼2(𝑟𝐿1)

1
2Δ𝑟 𝐼1(𝑟𝐿1)

1 … 1 1 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (H.8)

The first row states that 𝑎(𝑟) must be equal in the first and second grid point. The last row is used to
let the solution for 𝑎(𝑟) meet the condition (2.28). Different boundary conditions can be imposed by
changing these lines. A benefit of this method is that there are no antiderivatives with respect to 𝑟
which have to be evaluated numerically. The integrals that define 𝐼1 and 𝐼2 are again computed using
the composite trapezoidal rule.

Unfortunately, with the three approaches described above, the correct distribution for the erosion
coefficient was not obtained. Even when the analytical solution is used as an initial estimate for 𝑎(𝑟),
a correction for 𝑎(𝑟) is computed. Consequently, the model then iterates away from this solution. This
shows that the analytical solution will never be obtained using this approach. An explanation for this
behaviour could be that the method is not accurate enough. To investigate this further more accurate
numerical approximations could be used and the number of grid points could be increased.

In the middle of the estuary the solution was generally good but closer to the boundaries there was
a deviation from the equilibrium and the transport was unequal to zero. In [11] the boundary layer is
not solved which could explain why these kind of problems were not encountered there.

H.2. Simple method
As long as only diffusive transport is taken into account, it is also possible to use that

∫
0

−𝐻

𝜕⟨𝑐⟩
𝜕𝑟 d𝑧 = 0, (H.9)

must hold in a morphodynamic equilibrium. Using Leibniz integral rule, this is equivalent to,

𝜕
𝜕𝑟 ∫

0

−𝐻
⟨𝑐⟩d𝑧 − ⟨𝑐(−𝐻)⟩𝜕𝐻𝜕𝑟 = 0. (H.10)
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As a result,

∫
0

−𝐻
⟨𝑐⟩d𝑧 − ∫⟨𝑐(−𝐻)⟩𝜕𝐻𝜕𝑟 d𝑟, (H.11)

must be constant in a morphodynamic equilibrium. Consequently, the new value for the erosion coef
ficient is found iteratively by dividing the old value for 𝑎(𝑟) by the expression in (H.11) and then scaling
this.

Choosing the analytical solution as initial estimate for 𝑎(𝑟) resulted in an equilibrium when using
this method. However, when starting with a different initial estimate for 𝑎(𝑟) the process converges
very slow. It might be possible to increase the convergence. However, since this method only works
for diffusive transport it is not the most suitable choice for further development.

H.3. Spline method
In this entirely different approach, splines are used. For 𝑖 = 1, 2, … 𝐿 the concentration is computed for
𝑎(𝑟𝑖) = 1 and 𝑎(𝑟𝑗) = 0 with 𝑖 ≠ 𝑗. Next, a linear combination of the computed concentrations is found
for which the total concentration results in the tide averaged lateral transport being equal to 0. This
linear combination is the distribution of 𝑎(𝑟) for a morphodynamic equilibrium, after scaling this results
in the correct erosion coefficient.

The solution obtained with this method indeed resulted in a tidally averaged lateral transport equal
to zero. However, the corresponding distribution of 𝑎(𝑟) is quickly oscillating and also contained neg
ative values for a number of grid points. Since the total transport was zero, this is mathematically a
correct solution for the problem but not a physically feasible one because the erosion coefficient cannot
take negative values. Moreover, the occurrence of large differences in the erosion coefficient between
neighbouring points is also unlikely. A more smooth solution for the erosion coefficient is expected.

If this method would be altered in such a way that only physically feasible solutions can be obtained,
it would be a relatively quick solution. The concentration has to be computed 𝐿 times at the start of the
method but after this the erosion coefficient is obtained directly.





I
Results for density gradient with varying

phase
This section contains the results for some of the experiments discussed in Section 4.1.4. It concerns
the decomposition of the flow corresponding to the simulations for the varying phase of the M2 tidal
component of the density gradient. In these simulations the M0 amplitude of the density gradient is
equal to 10−4 kg/m4 and the M2 amplitude of the density gradient is equal to 10−2 kg/m4. Figure I.1
shows the results for the M2 phase equal to 0.5𝜋, Figure I.2 shows the results for the M2 phase equal
to 0 and Figure I.3 shows the results for the M2 phase equal to 0.5𝜋.
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(a)

(b)

(c)

(d)

(e)

Figure I.1: The results for the crosschannel flow in m/s for an M0 density gradient of 10−4 and an M2 density gradient with
amplitude 10−2 and phase −0.5𝜋. The panels show the total residual flow (a) and the decomposition of the flow into the
contributions for Coriolis deflection (b), advection (c), horizontal diffusion (d) and the density gradient (e).
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(a)

(b)

(c)

(d)

(e)

Figure I.2: The results for the crosschannel flow in m/s for an M0 density gradient of 10−4 and an M2 density gradient with
amplitude 10−2 and phase 0. The panels show the total residual flow (a) and the decomposition of the flow into the contributions
for Coriolis deflection (b), advection (c), horizontal diffusion (d) and the density gradient (e).
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(a)

(b)

(c)

(d)

(e)

Figure I.3: The results for the crosschannel flow in m/s for an M0 density gradient of 10−4 and an M2 density gradient with am
plitude 10−2 and phase 0.5𝜋. The panels show the total residual flow (a) and the decomposition of the flow into the contributions
for Coriolis deflection (b), advection (c), horizontal diffusion (d) and the density gradient (e).
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