

Delft University of Technology

Wind turbine control
Open-source software for control education, standardization and compilation
Mulders, S. P.; Zaaijer, M. B.; Bos, R.; Van Wingerden, J. W.

DOI
10.1088/1742-6596/1452/1/012010
Publication date
2020
Document Version
Final published version
Published in
Journal of Physics: Conference Series

Citation (APA)
Mulders, S. P., Zaaijer, M. B., Bos, R., & Van Wingerden, J. W. (2020). Wind turbine control: Open-source
software for control education, standardization and compilation. Journal of Physics: Conference Series,
1452(1), Article 012010. https://doi.org/10.1088/1742-6596/1452/1/012010

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1088/1742-6596/1452/1/012010
https://doi.org/10.1088/1742-6596/1452/1/012010

Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Wind turbine control: open-source software for control education,
standardization and compilation
To cite this article: S P Mulders et al 2020 J. Phys.: Conf. Ser. 1452 012010

View the article online for updates and enhancements.

This content was downloaded from IP address 154.59.124.113 on 30/03/2020 at 08:28

https://doi.org/10.1088/1742-6596/1452/1/012010
http://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstZd3tIX5Kz849XeGTyRDRoxnvLVZ_NX_EgnvAiVszDqwM5V932jnWePOXcZ1LfwIE7PhoV5UI9q7-96LgYAEaSZG4t37Wnoi_pu-mM3GP9OhxOpceukD5qY-OdxbxNtbt2RBKq1U7rS_IPAjKQzdWtFJKPxBqAPB3Uw7oDXJsk8oItK4UDnCF6OlMkrfBTeWwCBV7Wt9rk76dLnDLR9ywRvsA5GL8q77dG1XF7-E4blBxnfHOv&sig=Cg0ArKJSzKPgaIN7Ynai&adurl=http://iopscience.org/books

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

NAWEA WindTech 2019

Journal of Physics: Conference Series 1452 (2020) 012010

IOP Publishing

doi:10.1088/1742-6596/1452/1/012010

1

Wind turbine control: open-source software for

control education, standardization and compilation

S P Mulders1, M B Zaaijer2, R Bos3 and J W van Wingerden1

1 Delft Center for Systems and Control, Faculty of Mechanical Engineering, Delft University
of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
2 Aerodynamics, Wind Energy, Flight Performance & Propulsion, Faculty of Aerospace
Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands
3 Eneco, Marten Meesweg 5, 3068 AV Rotterdam, The Netherlands

E-mail: S.P.Mulders@tudelft.nl, M.B.Zaayer@tudelft.nl, J.W.vanWingerden@tudelft.nl

Abstract. Standardized, easy to use, and preferably open-source research software is an
important aspect in supporting and solidifying the wind turbine community. To this end, three
contributions in the form of open-source software projects are presented in this paper. First,
a community-driven wind turbine baseline controller, the Delft Research Controller (DRC), is
presented. The DRC is applicable to high-fidelity simulation software that uses the DISCON
controller interface. The controller distinguishes itself by the variety of available control and
estimation implementations, its ease of use, and the universal applicability to wind turbine
models. Secondly, in the wake of the DRC, the SimulinkDRC graphical controller design and
compilation environment has been developed. Users having access to Simulink can benefit from
the convenient way of controller development the tool provides. Finally, the FASTTool has
been developed for educational purposes, by focusing on the graphical aspect of wind turbine
(controller) design. The tool simplifies interaction with the advanced FAST simulation software,
by comprehensive visualizations and analysis tools. This paper demonstrates and describes the
functionality of all three software projects.

1. Introduction
Wind turbine control is a non-trivial task, and generally requires expert control knowledge
and software skills for design, tuning and implementation. For this reason, wind energy research
groups from the Delft University of Technology (TU Delft) develop and actively maintain various
open-source, free, and publicly available wind turbine control oriented software projects. The
following three open-source projects are outlined in this paper:

Delft Research Controller (DRC). The DRC is an open-source and community-driven wind
turbine baseline controller. The development of the controller is driven by the notion
of wind energy research groups from various disciplines often using self-developed baseline
implementations and tunings, complicating the evaluation and comparison of new control
algorithms. To solve this problem, the DRC provides an open, modular and fully adaptable
baseline wind turbine controller to the scientific community. New control implementations are
easily added to the existing baseline controller, and in this way, convenient assessments of the
proposed algorithms is possible. Because of the open character and modular set-up, scientists

NAWEA WindTech 2019

Journal of Physics: Conference Series 1452 (2020) 012010

IOP Publishing

doi:10.1088/1742-6596/1452/1/012010

2

are able to collaborate and contribute in making continuous improvements to the code. The
DRC is being developed in Fortran and uses the Bladed-style DISCON controller interface.
The compiled controller is configured by a single control settings parameter file, and can work
with any wind turbine model and simulation software using the DISCON interface. Baseline
parameter files are supplied for the NREL 5-MW and DTU 10-MW reference wind turbines.

SimulinkDRC. In the wake of the DRC, a graphical controller design and compilation
environment has been developed in Simulink, and is called SimulinkDRC. For engineers having
access to Simulink, this tool provides an easy and convenient way of controller development.

FASTTool. The FASTTool has been developed for educational purposes in wind turbine de-
sign. FASTTool is a graphical user interface (GUI) for NREL’s aeroelastic simulation code
FAST. The tool is centered around a three-dimensional animated wind turbine plot, which dy-
namically adapts to the defined design inputs. FASTTool provides users with convenient and
insightful tools to tune controllers and assess the performance of the design.

All software is released under the MIT license – a free software license – at the following
location:

https://github.com/TUDelft-DataDrivenControl

The organization of this paper is as follows. Section 2 describes the philosophy, functionality and
the working principles of the DRC baseline wind turbine controller. In Section 3, SimulinkDRC
is presented, opening possibilities for graphical controller design in Simulink. Finally, Section 4
presents FASTTool: An educational and graphical interface for NREL’s high-fidelity wind
turbine simulation software FAST.

2. DRC: an open-source and community-driven baseline controller
The existence of reference models and baseline load cases is a crucial aspect in the scientific
community, as it allows for convenient and fair evaluation of proposed innovations. In the wind
turbine community, the National Renewable Energy Laboratory (NREL) 5-MW baseline wind
turbine is a fictive, but fully defined reference wind turbine (RWT) model [1], and is actively
used in the scientific field. To accommodate the next step in enlarging the size and rated power
of offshore wind turbines, the Technical University of Denmark (DTU) provides a 10-MW RWT
model [2].

Besides reference models, wind turbine simulation software is also largely standardized. The
industry standard, commercial and certified high-fidelity wind turbine simulation package is
Bladed by DNV GL [3]. On the other hand, an open-source aeroelastic package for simulating
horizontal-axis wind turbines is (Open)FAST, which is actively developed and maintained by
NREL.

In contrast to the previously mentioned reference models and simulation software, no clear
choice of a baseline wind turbine controller currently exists that is easy to use, modular and
extendable. Wind energy research groups from various disciplines generally use self-developed
baseline control implementations and tunings, of which the source code is rarely available. This
negatively impacts the ability to compare results from different research projects or groups. It
has to be noted that NREL provides an open-source controller for its NREL 5-MW reference
wind turbine [1]. However, this controller is limited in functionality and inconvenient to extend
or interchange between distinct wind turbine models as functionality, turbine parameters and
controller tunings are hard-coded in a single source file. DTU also provides an internally
developed controller for their DTU 10-MW RWT [4] of which the source code is available,
but the development is not driven by a broad community.

NAWEA WindTech 2019

Journal of Physics: Conference Series 1452 (2020) 012010

IOP Publishing

doi:10.1088/1742-6596/1452/1/012010

3

To this end, the Data Driven Control wind energy research group from Delft University of
Technology started the initiative to develop an open-source and community-driven wind turbine
baseline controller. A design specification was that the controller should be generally applicable
to all turbine models defined in simulation software that uses the Bladed-style DISCON controller
interface [5], such as OpenFAST, Bladed or HAWC2. Also, a convenient way of configuring the
controller should be present, without editing the source code and thus the need for recompilation.
With these goals in mind, the foundations of a baseline wind turbine controller have recently
been laid out, and is dubbed the Delft Research Controller (DRC) [6]. For consistency with
OpenFAST, the DRC is being developed in the Fortran programming language (free-form) [7].
The modular and open character allows scientists to collaborate and contribute in making
continuous improvements to the code. The DRC is provided with a toolbox consisting of
regularly used (control) functions and filters to allow for rapid development and implementation
of new contributions.

The main contribution of this section is to provide a comprehensive description of the working
principles and functionality of the DRC, and is organized as follows. In Section 2.1, an overview
of the DRC is given, after which in Section 2.2 the built-in filter and function modules are
described. A wind speed estimator, described in Section 2.3, is included to provide below-rated,
closed-loop, tip-speed ratio tracking capabilities. The components in the before mentioned
modules are used to make up the baseline torque, (individual) pitch and yaw controllers,
described in Section 2.4. Section 2.5 describes fatigue load reduction control strategies, and
Section 2.6 outlines the incorporated yaw control implementations.

2.1. Overview and description of the DRC
This section gives a general overview and description of the DRC controller architecture and
philosophy. The overall DRC working principle is presented in Figure 1. The DRC is set up such
that only a single parameter file DISCON.IN for each wind turbine model is required to define
the complete control system. This feature removes the need for repetitive recompilation of the
controller under a change in control settings. Baseline controller parameter configuration files

ReadAvrSwap()

VariableSpeedControl()

SetParameters()

OptionalControl()

PitchControl()

Delft Research Controller (DRC)

Derived data types

ControlPar

LocalVar

ObjectInst

Wind turbine
model

a
v
r
S
W
A
P
(
*
)

OpenFAST, Bladed,
HAWC2, ...

Functions and
Subroutines

C
o
n
s
t
a
n
t
s
.
f
9
0

F
u
n
c
t
i
o
n
s
.
f
9
0

F
i
l
t
e
r
s
.
f
9
0

DISCON.IN

StateMachine()

<Simulation
Name>.dbg

Figure 1: A schematic of the DRC architecture for wind turbine control. The controller
exchanges data using the so-called the DISCON external controller interface via the avrSWAP-
array. The DRC is completely parameterized by a single configuration file, and writes debug
information to a log file when desired.

NAWEA WindTech 2019

Journal of Physics: Conference Series 1452 (2020) 012010

IOP Publishing

doi:10.1088/1742-6596/1452/1/012010

4

are supplied for the NREL 5-MW and DTU 10-MW reference wind turbines, and the source
code is publicly available under terms of the MIT License [8].

The DRC consists of multiple modules containing commonly used functions and subroutines,
and uses derived data types to store parameters and variables in a centralized manner. Function
calls are executed in a fixed sequence during each control iteration. The DRC reads the
control in- and output avrSWAP-array [5] and performs value assertions. Next, before calling
any controller, the state-machine determines the state of the turbine, and this information is
used by the controllers to perform corresponding control actions. To enable the Variable-Speed
Variable-Pitch (VSVP) control strategy, torque and pitch control subroutines are implemented.
Optional controllers are executed after the two before-mentioned controllers.

2.2. Filters and functions modules
An overview of the included filters and functions are described in this section. The DRC comes
with a collection of frequently used filters. The filters included are discretized using the bilinear
transformation, also known as Tustin’s method [9]. The filters are not bound to a predefined
sampling time, as this variable is taken as an input from the simulation. All functions return
a single real filtered output signal, with a default unity steady-state gain. The following filters
are included:

• First/second-order low-pass filter. Pass signals with frequencies lower than the cross-over
frequency, but attenuate signal components above this frequency.

• First-order high-pass filter. Passes signals with frequencies higher than the cut-in frequency,
but attenuates signal components below this frequency.

• Notch filter. Passes most of the frequencies but attenuates in a very specific interval.
• Inverted-notch filter with decreasing slopes. Amplifies a very specific frequency region, and

provides extra attenuation of frequencies outside this domain.

The DRC controller is supplied with the following frequently used functions:

• Value/signal saturation. Saturates a given input signal to a upper and lower value.
• Signal rate limiter. A signal rate limiter with respect to time.
• Proportional-Integral (PI) controller. An object-based PI-controller with anti-integrator

wind-up and signal saturation capabilities.
• 1D-interpolation. A one-dimensional interpolation function taking a one-dimensional table.

The x-data should be monotonically increasing.

2.3. Wind speed estimation
The wind speed measurement from the anemometer is influenced by induction, as it is often
located downwind of the rotor at the back of the nacelle. Therefore, the measurements are
often considered unreliable for use in control implementations [10], and only serve indication
purposes. Moreover, the sensor only measures the wind speed at the center of the rotor
swept area, while the wind speed varies spatially over the rotor surface [11]. Although not
perfect, to keep the rotor operating at maximum power coefficient tracking, torque control
is often implemented as the optimal-mode gain, multiplied by the rotor or generator speed
squared [12]. However, this control scheme assumes perfect model representation and knowledge
about the rotor aerodynamic behavior. In real world scenarios, the model and actual rotor show
increasing inconsistencies over time, as a result of wear, tear, fouling, icing and manufacturing
imperfections [13]. For this reason, often a wind speed estimator is employed to provide closed-
loop tip-speed ratio tracking capabilities, eliminating the need for perfect a priori knowledge of
aerodynamic characteristics.

Different types of rotor effective wind speed estimators have been proposed [14], like the
power balance estimator [15], and the (extended) Kalman filter [10, 16]. More advanced

NAWEA WindTech 2019

Journal of Physics: Conference Series 1452 (2020) 012010

IOP Publishing

doi:10.1088/1742-6596/1452/1/012010

5

Figure 2: Torque control strategies implemented in the DRC. All variables regarding torque
control are indicated by their respective names present in the control parameter file.

implementations are proposed for estimation of horizontal and vertical, misalignments and
shears [17, 18].

Another rotor effective wind speed estimation technique, is the immersion and invariance
(I&I) estimator [19], inspired by the eponymous identification method described in [20]. The
technique assumes the rotor speed and applied generator torque being available as measured
signals. The technique shows satisfactory estimation results, is conveniently implemented, and
is therefore included in the DRC.

2.4. State-machines, and baseline pitch and torque control
This section presents the concept of state-machines, and the pitch and torque control
implementations included in the DRC. The purpose of the global state-machine is to determine
the operational state of the wind turbine, and is included as a subroutine in the function
module. Inside this function, separate state-machines are included for pitch and torque control.
The operational state is determined by comparing measured turbine quantities and control
signals to settings defined in the controller configuration file. Figure 2 gives an overview
of the different wind turbine operating regions, indicating internal controller variables and
configuration parameters.

The pitch and torque controllers use a common filtered generator speed measurement, to
calculate the error from the reference set point. At the end and beginning of regions 1 and 2.5,
two PI torque controllers are implemented to regulate the rotor speed towards the optimal below-
rated torque path, and to above-rated operating conditions. As shown in Figure 2, the maximum
torque controller saturation can be set independently to facilitate less frequent switches between
torque and pitch control. The cut-in speed for below-rated torque control (Region 2) can be
defined, as well as the optimal mode-gain for tracking the maximum rotor power coefficient
Cp,max. The baseline pitch controller is implemented as a gain-scheduled PI-controller, and the

NAWEA WindTech 2019

Journal of Physics: Conference Series 1452 (2020) 012010

IOP Publishing

doi:10.1088/1742-6596/1452/1/012010

6

Coleman
Transform()

Coleman
Transform
Inverse()

PI-controller
axTOut

axYOut

rootMOOP(1)

IPC_aziOffset

PitComIPC(1)

rootMOOP(2)

rootMOOP(3)

axTIn

axYIn

PitComIPC(3)

PitComIPC(2)IPC_KI
IPC_IntSat

IPC_ControlMode = 1
Y_ControlMode = 0 or 1

Figure 3: Individual pitch control for blade fatigue load reductions. The out-of-plane blade root
moments are transformed in a tilt- and yaw-axis by a 1P Coleman transformation. After PI-
control, the resulting pitch angles are transformed back by an inverse Coleman transformation
to obtain IPC pitch signals to mitigate 1P fatigue loadings.

gain information is defined in the parameter file as a function of pitch angles.
For power regulation during above-rated operation, the torque controller can be configured to

either deliver a constant torque signal, or actively change the torque signal to obtain a constant
power output. For constant power tracking, the torque signal varies subject to the measured
generator speed and the electrical power set point.

2.5. Fatigue load control
Fatigue load reduction capabilities are available in the DRC, in the form of individual pitch
control (IPC) for periodic blade load reductions, and active tower fore-aft damping. The two
implementations are respectively described in this section.

Individual Pitch Control. IPC reduces out-of-plane blade oscillations causing fatigue, by adding
contributions to the individual pitch control signals. A schematic IPC implementation overview
is presented in Figure 3. The measured blade root out-of-plane moments, together with the
rotor azimuth angle, are taken as input to the forward Coleman (or multiblade coordinate
(MBC)) transformation [21], resulting in non-rotating rotor tilt- and yaw-moments. The IPC
implementation in the DRC allows for attenuation of the 1P blade load harmonic, or the
combined 1P+2P periodic loads. A phase offset can be added to the azimuth angle in the
reverse transformation, which turns out to be crucial for practical IPC implementations [22].

Tower fore-aft damping. Tower fore-aft oscillations are naturally lightly damped by
aerodynamic damping [23]. To further enhance damping of fore-aft oscillations, an active control
strategy can be implemented. Active fore-aft damping uses an integrated nacelle acceleration
signal, which is added to the collective pitch signal [12]. The acceleration signal is possibly
additionally filtered by a notch filter to prevent unwanted actuation at, e.g., the blade passing
frequency.

2.6. Yaw control
To maximize energy extraction from the wind, the rotor axis of a wind turbine needs to be
aligned with the dominating wind direction. Because the wind flow direction changes over time,
a yaw system is required to keep the orientation of a wind turbine aligned with the wind direction

NAWEA WindTech 2019

Journal of Physics: Conference Series 1452 (2020) 012010

IOP Publishing

doi:10.1088/1742-6596/1452/1/012010

7

Y_omegaLPFast

Y_omegaLPSlow
Y_MErrSet

Y_M

∫sign(u)u2 dt

Y_MErr

Y_ErrLPFFast

Y_ErrLPFSlow

Y_AccErr

|Y_AccErr|>
Y_ErrThresh

Yaw to
Y_ErrLPFSlow

No

Yes

+

Reset filters
and integrator

Figure 4: Yaw rate control uses the error between the misalignment set point and the measured
misalignment with the dominating wind direction to intermittently perform yaw manoeuvres.

to capture as much energy as possible [24, 11]. Yawing the wind turbine nacelle and rotor on the
support structure can be achieved in different ways, for example, by active yaw and free yaw-
by-IPC implementations. Both implementations are included in the DRC, and are respectively
described in this section.

Yaw-rate control. The yaw-rate control implementation does not provide continuous alignment,
but intermittently aligns the turbine nacelle when a predefined threshold is exceeded. The
implementation adapted from [25] and schematically depicted in Figure 4, and is slightly adjusted
to allow for yaw-angle offsets. The yaw-rate controller uses measurements from a wind vane
located downwind, i.e., seen from upwind the vane is positioned behind the rotor and tower.
The wind vane measures the nacelle yaw-misalignment with respect to the dominating wind
direction, but does not give information on the absolute nacelle orientation. Yaw motors with a
fixed yaw-rate are used for yaw movements.

Yaw-by-IPC. Besides of the common fatigue load reduction implementation, IPC can also
be configured to act in a yaw-by-IPC set-up. Figure 5 shows a schematic overview of the

Coleman
Transform
Inverse()

IPC_aziOffset

PitComIPC(1)axTIn = 0

axYIn
PitComIPC(3)

PitComIPC(2)

PI-controller

Y_IPC_KP
Y_IPC_KI
Y_IPC_IntSat

2

Y_MErrSet

2

IPC_ControlMode = 0
Y_ControlMode = 2

+
Y_IPC_omegaLP

Y_M

Y_IPC_zetaLP

Figure 5: An IPC yaw control implementation for a wind turbine where the nacelle is mounted
on the tower, in a free-damped fashion. The non-rotating tilt pitch angle is nullified, and the yaw
angle is actively controlled by the error between the set point and measured yaw misalignment.

NAWEA WindTech 2019

Journal of Physics: Conference Series 1452 (2020) 012010

IOP Publishing

doi:10.1088/1742-6596/1452/1/012010

8

Figure 6: SimulinkDRC allows to graphically design a wind turbine controller in Simulink.
Compilation result in a dynamic library with the DISCON controller interface, which is
compatible with a wide variety of wind turbine simulation software.

implementation. With yaw-by-IPC, a 1P contribution is added to the pitch signals resulting
in a yaw moment over the entire rotor to actively regulate or track a yaw misalignment set
point. Normally, this type of control is present in downwind wind turbines, where the nacelle is
mounted in a free-damped fashion on the tower support structure [26, 27]. In the DRC, either
the fatigue load reduction or the yaw-by-IPC controller is active. Simultaneous operation is
possible by separating frequency activity, however, such an implementation requires in-depth
knowledge and careful tuning [26].

3. SimulinkDRC: graphical controller design and compilation
The SimulinkDRC package provides a more convenient and graphical controller design
environment in MATLAB Simulink [28]. All built-in Simulink objects and functions can be used,
and compilation results into dynamic library files: .dll for Windows, and .so for Linux. The
compiled controller uses the same DISCON controller interface as the DRC. The implementation
includes custom code to compile a 32-bit dynamic library using a 64-bit version of MATLAB
Simulink, which is helpful for use with older 32-bit versions of Bladed and FAST.

The tool has proven to be insightful in the development phase of new control algorithms.
At the time of writing, a lightweight controller for the NREL 5-MW reference turbine is
included. However, as not every engineer or scientist has access to Simulink, implementation
of (novel) control algorithms is prioritized in the open-source DRC written in Fortran. The
next development goal is to bring the controller functionality of SimulinkDRC on par with the
Fortran-based DRC, sharing the functionality and support for external controller parameter
files.

4. FASTTool: an educational GUI for FAST
The FASTTool was developed in the wake of another educational project at Delft University
of Technology (TU Delft), where the idea was to teach an online course through gamification.
Students would play a game in which they can design and test their own wind turbine through
various levels, each with a new challenge to overcome (e.g., wind shear, setting the right cut-
out wind speed, etc.). There are plenty of examples of such games with a good educational
value. For instance, playing SimCity teaches the essentials of urban planning, Poly Bridge
teaches about statics and truss structures, and Kerbal Space Program teaches about rocketry
and orbital mechanics. In fact, Kerbal Space Program was so successful in this that NASA
began to actively contribute to the game as a means of public outreach and getting young
people excited for spaceflight. The strength of these games, in terms of teaching a subject, lies

NAWEA WindTech 2019

Journal of Physics: Conference Series 1452 (2020) 012010

IOP Publishing

doi:10.1088/1742-6596/1452/1/012010

9

in the fact that playing them does not feel as a chore and that there is good educational value in
trying and failing a level. Although FASTTool was not developed with gamification in mind, the
relatively simple user interface and many graphical elements were designed to lower the learning
curve of the software and make it more enjoyable to use. This enables students to spend most
of their time on substantive aspects of wind turbine design, while limiting distractions from the,
often complex, capabilities of commercially available simulation and analysis software.

The strength of many wind turbine aeroelastic tools lies in the analysis and not in the user-
friendliness per se, which hampers the usability in educational courses. This aspect results in
students often losing themselves in the vast array of options. In FASTTool, this problem was
solved by centering the graphical user interface (GUI) around an animated three-dimensional
plot of the wind turbine. Changes to the geometry are immediately visible on screen, which
provides students with an immediate sanity check, but also gives the feeling of creating something
new. The performance of the turbine can be checked by a quick power curve calculation (e.g.,
to see the impact of rotor diameter), as well as through a full time series analysis by FAST, for
which the input files are generated by the tool.

Summarizing, FASTTool is a wind turbine design, assessment and simulation tool. It is
used in a master-level course on wind turbine design, in which students construct a turbine and
assess its performance, dynamics and limit states. The design starts with a choice for system-
level parameters and then focuses on the rotor, drivetrain, tower and controller design. As the
name of the software already suggests, the simulation back-end is based on NREL’s FAST v8.16
(Fatigue, Aerodynamics, Structures, and Turbulence), which is a high-fidelity open-source wind
turbine simulation software package [29]. The software is to date still under active development,
and updated regularly based on new insights and feedback from students. The tool is publicly
available at no cost as an open-source repository [30]. This section gives a high-level overview of
the FASTTool, and is organized as follows: Section 4.1 outlines the capabilities of the graphical
user interface, and Section 4.2 demonstrates the back-end simulation and control environment.

Figure 7: The main window of FASTTool. The wind turbine plotted in the center of the screen
is animated and adapts to the current turbine design. The turbine’s visual appearance can be
changed by the options on the left-hand side of the screen. The design – in terms of blade, tower,
nacelle, drivetrain, and controller – is altered by the blue-colored options on the right. Analysis
and simulation functionality – steady-state operating curves, modal analysis, linearization and
simulation – is included under the yellow-colored buttons.

NAWEA WindTech 2019

Journal of Physics: Conference Series 1452 (2020) 012010

IOP Publishing

doi:10.1088/1742-6596/1452/1/012010

10

4.1. MATLAB-based graphical user interface
The costs for industry standard wind turbine simulation software are often prohibitive for
use in educational courses, considering the amount of students involved. For this reason,
FASTTool is developed in MATLAB/Simulink [28], in conjunction with the publicly available
FAST simulation code. The choice of software is convenient for an academic environment, since
no license fees are demanded for the use of FAST, while often students have access to and
experience with MATLAB/Simulink. Although MATLAB and Simulink require a license, the
employed environment provides flexibility and insight for both the end-user and developer. The
MATLAB scripts and the Simulink model of the tool can be edited by more expert users to add
or change functionality and to enable other inputs and outputs.

Figure 7 presents the main window of the FASTTool, which gives access to the following
functionality:

(i) A three-dimensional animated wind turbine visualization, adapting to the current design
defined by parameters in the graphical user interfaces for blade, tower, nacelle, drivetrain
and controller design.

(ii) Determination of steady-state performance, calculation of turbine natural frequencies, and
visualization in a Campbell diagram.

(iii) Linearization of the non-linear turbine dynamics at the controller-defined operational path.
(iv) High-fidelity simulation of various load cases, by a wide variety of wind profiles.

Each item in the above-given enumeration is discussed in the remaining paragraphs of this
section.

(a) Blade design (b) Nacelle design

(c) Nacelle design (d) Controller design

Figure 8: Different design modules of the FASTTool. The GUI provides a convenient way of
changing the blade geometry, nacelle sizing, and drivetrain parameters. An extensive interface
is available for controller design by loop-shaping techniques using standard filters.

NAWEA WindTech 2019

Journal of Physics: Conference Series 1452 (2020) 012010

IOP Publishing

doi:10.1088/1742-6596/1452/1/012010

11

1. Structural, drivetrain and controller design. The various graphical interfaces for structural,
drivetrain and controller design are presented in Figure 8. Because FASTTool is built for
educational purposes, the software is supplied with the NREL 5-MW reference wind turbine [1]
as a MATLAB-style .mat-file, and student designs are based on scalings of this turbine. The
blade design window in Figure 8a provides functionality to radially specify the blade geometry
and structural properties by defining the chord, twist and airfoil for each node, as well as the
mass density, flap- and edgewise stiffness. A similar interface is provided for tower design.
The user can also edit airfoil properties or add new airfoils. Figures 8b and 8c respectively
present the nacelle and drivetrain design options: Parameters size the nacelle, and define the
drivetrain by efficiencies, the gearbox ratio, and the generator inertia. To easily check for
mistakes in geometric data inputs, the blade, tower and turbine-nacelle configuration are assessed
with graphical visualizations. Finally, the controller design component is shown in Figure 8d.
The controller design section allows to visually tune the pitch controller by loop shaping the
system’s frequency responses. Loop-shaping is performed by tuning standard PI, low-pass and

(a) Modal analysis of turbine structural components (b) Rotor performance

E
le

ct
ri

ca
l

p
o

w
er

 [
M

W
]

(c) Operational power curve

Tip speed ratio [-]

P
o

w
er

 c
o

ef
fi

ci
en

t
[-

]

(d) Steady-state rotor power coefficients

Figure 9: Modal analysis tools for calculating the tower and blade, first and second natural
frequencies, and visualizing the results in a Campbell diagram. The diagram helps to identify
problematic interactions with the variable turbine rotational frequency in the below-rated region.
Furthermore, the operational path and steady-state rotor performance mappings are calculated
based on the blade design, rotor configuration, and control strategy.

NAWEA WindTech 2019

Journal of Physics: Conference Series 1452 (2020) 012010

IOP Publishing

doi:10.1088/1742-6596/1452/1/012010

12

notch control modules. A comparison can be made between a fixed-gain, and a gain-scheduled
controller, to advocate the performance advantages of a variable-gain control implementation.
Several other control parameters, such as for the feed forward partial load torque control and
for the braking action, can also be changed by the user.

2. Steady-state rotor performance and modal analysis. As a result of the structural geometry
and mass properties, Figure 9a shows that a modal analysis can be performed on the tower fore-
aft and side-side modes, along with the blade flap- and edgewise modes. The natural frequencies
are determined with BModes, which is also developed by NREL as part of the FAST suite of
tools [31]. To analyze whether these structural modes interfere with the varying rotational nP
harmonics, a Campbell diagram is plotted on the right hand side of the window. Figure 9b shows
the configuration window for steady-state performance calculations. Steady-state mappings can
be calculated at a predefined range of pitch angles, based on the blade and rotor configuration,
and with use of included blade-element momentum (BEM) code. The overall turbine operational
behavior as a function of wind speed is shown in Figure 9c, whereas Figure 9d shows the result of
a the rotor power coefficient calculation as a function of pitch angle and tip-speed ratio (TSR).
The figures are generally used to find the maximum power coefficient, rated wind speed and
best pitch angle setting for partial load operation.

3. Linearization. A wide arsenal of powerful mathematical and frequency domain techniques is
available for linear controller design. For this reason, high-fidelity non-linear models are generally
linearized at operating points of interest. At the time of writing, FAST includes linearization
functionality, however, unlike previous versions, it lacks the capability of finding operational
trim conditions. The latter mentioned aspect is included in FASTTool. After finding the trim
points for a predefined range of wind speeds, the input values are provided to an open-loop
fixed-time FAST simulation that linearizes the model. The linear model is stored in a .mat-file,
which is needed to support the controller design.

4. Wind load cases and simulation. When the wind turbine design is completed, FASTTool
provides the opportunity to run certification simulations, as shown in Figure 10a. This means
that as in Figure 10b, first a desired wind field is selected and dimensioned. The user can choose
various wind conditions, such as steady wind, stepped wind speed changes, a normal or extreme

(a) Certification simulation (b) Wind profile design

Figure 10: Certification and wind field design windows. The certification section allows to define
the total simulation time and mean wind speed of the high-fidelity FAST run. The wind field
design window offers among others the selection of steady, stepped, or turbulent wind profiles.
Turbulent wind files are generated using NREL’s TurbSim [32].

NAWEA WindTech 2019

Journal of Physics: Conference Series 1452 (2020) 012010

IOP Publishing

doi:10.1088/1742-6596/1452/1/012010

13

gen eff

f(u)
extract HSS speed

yaw and yaw rate

Yaw Controller

To deg

[TGen]

[Pitch]

[TGen] [Pitch]

OutData

PitchIn

T_g

Wind

Rotor Speed

Power

Pitch

Torque

Tower_FA_acc

Tower_SS_acc

Data Extraction and Plotting

Generator_Speed

Measured_Torque

Fore_Aft_Tower_Accel

Sidewards_Tower_Accel

Generator_Torque

Collective_Pitch_Angle

Controller

To rad/s1

f(u)
extract gen torque

to N/m

f(u)
extract FA accel

f(u)
extract SS accel1

Gen. Torque (Nm) and Power (W)

Yaw Position (rad) and Rate (rad/s)

Blade Pitch Angles (rad)

High-Speed Shaft Braking Fraction (-)

OutData

FAST Nonlinear Wind Turbine

[TGen]

W_HSS

Pitch (deg)

Pitch [deg]

Wind

Rotor Speed (rpm)

Torque [Nm]

Generator Power (kW)

Blades Pitch (deg)

Generator Torque (Nm)

Tower FA acc

Tower SS acc

Figure 11: Simulink implementation of the FAST wind turbine simulation code (green block)
and the controller (cyan block). Data extraction and manipulation (magenta block) for plotting
purposes is handled on the right-hand side, and allows for convenient evaluation of simulation
results, resulting from the turbine design and controller tuning.

turbulence model, an extreme operating gust. The more complex wind fields are generated by
NREL’s TurbSim [32]. Wind profiles can be set for assessment of the behaviour of the design
and the controller, or to run a load case according to the IEC 61400-1 standard [33]. Various
turbine conditions can be chosen, such as power production, grid loss, normal or emergency
shutdown and idling, supporting IEC load case assessment. Then, when the output filename is
defined, a certification simulation is initiated. For this, FASTTool takes the user-defined turbine
design parameters and generates the corresponding FAST input files, after which it starts a high-
fidelity non-linear FAST simulation, implemented using an S-Function in Simulink. To avoid an
overload of information, a small (but relevant) selection of the vast amount of signal outputs is
made available to the user; an experienced user can extend the list of outputs. The next section
outlines the FAST Simulink simulation and controller environment.

4.2. Simulink-based controller and simulation environment
FAST has the ability to either run as a compiled standalone application on Windows and Linux,
or have the FAST dynamic library being called by a Simulink S-Function. As shown in Figure 11,
the latter mentioned implementation is employed by FASTTool, as it provides a convenient and
insightful development environment. During a simulation run, the built-in controller of FAST is
disabled and the controller is provided by Simulink blocks, configured with information from the
different interfaces. The Simulink implementation offers course participants, who want to gain
a deeper understanding of wind turbine simulation and control, an accessible way of doing so.
Experienced user can even change the controller and can for instance add active yaw control.

5. Conclusions
Three software projects are discussed in this paper. First a community-driven wind turbine
baseline controller is presented, applicable to high-fidelity simulation software that uses the
DISCON controller interface. The controller aims in being the reference controller for evaluation
of new control algorithms. The controller architecture is such that it can be used for any
wind turbine model. A single parameter file configures the controller, which abandons the
need for recompilation under a change in controller settings. Because of the modular set-up,
the existing baseline control implementations are easily replaced, which enables for convenient

NAWEA WindTech 2019

Journal of Physics: Conference Series 1452 (2020) 012010

IOP Publishing

doi:10.1088/1742-6596/1452/1/012010

14

comparison, reproducibility, and evaluation of new algorithms. Second, a Simulink tool for
convenient graphical design and compilation of a turbine controller is demonstrated. Finally,
FASTTool is showcased, which is a graphical user interface for NREL’s aeroelastic simulation
code FAST for educational purposes in wind turbine and controller design. FASTTool provides
people new to the field with insights in the design process, by visualizing changes in a three-
dimensional turbine visualization, adapting to the current design. The software has options for
quick sanity checks, and can generate FAST input files to run high-fidelity simulations based on
the turbine design.

With the aim of supporting, standardizing and solidifying the wind turbine (research)
community, all software is open-source and publicly available at an online repository. The
repositories are regularly updated, and users are invited to provide feedback and contribute to
the projects.

References
[1] J. Jonkman et al. Definition of a 5-MW reference wind turbine for offshore system

development. Tech. rep. Golden, Colorado: National Renewable Energy Laboratory
(NREL), 2009.

[2] C. Bak et al. “Design and performance of a 10 MW wind turbine”. In: Wind Energy
(2013).

[3] DNV-GL. Bladed. https://www.dnvgl.com/energy/generation/software/bladed/
index.html. [Online; accessed 14-November-2017]. 2017.

[4] M. H. Hansen and L. C. Henriksen. “Basic DTU wind energy controller”. In: DTU Wind
Energy (2013).

[5] Garrad Hassan & Partners Ltd. Bladed User Manual. Version 4.2. 2011.

[6] S. P. Mulders and J. W. van Wingerden. “Delft Research Controller: an open-source and
community-driven wind turbine baseline controller”. In: Journal of Physics: Conference
Series. Vol. 1037. 3. IOP Publishing. 2018.

[7] T. M. Lahey and T. Ellis. Fortran 90 programming. Addison-Wesley Longman Publishing
Co., Inc., 1994.

[8] S. P. Mulders and J. W. van Wingerden. Delft Research Controller (DRC). https://
github.com/TUDelft-DataDrivenControl/DRC_Fortran. 2019.

[9] A. V. Oppenheim. Discrete-time signal processing. Pearson Education India, 1999.

[10] K. Z. Østergaard, P. Brath, and J. Stoustrup. “Estimation of effective wind speed”. In:
Journal of Physics: Conference Series. Vol. 75. Bristol, United Kingdom: IOP Publishing,
2007.

[11] F. D. Bianchi, H. De Battista, and R. J. Mantz. Wind turbine control systems: principles,
modelling and gain scheduling design. Springer Science & Business Media, 2006.

[12] E. A. Bossanyi. “The design of closed loop controllers for wind turbines”. In: Wind Energy
3.3 (2000), pp. 149–163.

[13] E. Hau. Wind turbines: fundamentals, technologies, application, economics. Berlin,
Germany: Springer Science & Business Media, 2013.

[14] M. N. Soltani et al. “Estimation of rotor effective wind speed: A comparison”. In: IEEE
Transactions on Control Systems Technology 21.4 (2013), pp. 1155 –1167.

[15] E. van der Hooft and T. van Engelen. “Estimated wind speed feed forward control for
wind turbine operation optimisation”. In: European Wind Energy Conference (EWEC).
ECN-RX–04-126. ECN. London, United Kingdom, Nov. 2004.

NAWEA WindTech 2019

Journal of Physics: Conference Series 1452 (2020) 012010

IOP Publishing

doi:10.1088/1742-6596/1452/1/012010

15

[16] T. Knudsen, T. Bak, and M. Soltani. “Prediction models for wind speed at turbine
locations in a wind farm”. In: Wind Energy 14.7 (2011). doi: 10.1002/we.491.

[17] K. Selvam et al. “Feedback-feedforward individual pitch control for wind turbine load
reduction”. In: International Journal of Robust and Nonlinear Control: IFAC-Affiliated
Journal 19.1 (2009), pp. 72–91.

[18] M. Bertelè et al. “Wind inflow observation from load harmonics”. In: Wind Energy Science
2.2 (2017), pp. 615–640. doi: 10.5194/wes-2-615-2017.

[19] R. Ortega, F. Mancilla David, and F. Jaramillo. “A globally convergent wind speed
estimator for wind turbine systems”. In: International Journal of Adaptive Control and
Signal Processing 27.5 (2013). doi: 10.1002/acs.2319.

[20] X Liu et al. “Identification of nonlinearly parameterized nonlinear models: application
to mass balance systems”. In: Proceedings of the 48h IEEE Conference on Decision and
Control (CDC). Conference on Decision and Control (CDC). 2009, pp. 4682–4685. doi:
10.1109/CDC.2009.5399817.

[21] G. Bir. “Multi-blade coordinate transformation and its application to wind turbine
analysis”. In: 46th AIAA aerospace sciences meeting and exhibit (2008).

[22] S. P. Mulders et al. “Analysis and optimal individual pitch control decoupling by inclusion
of an azimuth offset in the multiblade coordinate transformation”. In: Wind Energy 22.3
(2019), pp. 341–359. doi: 10.1002/we.2289.

[23] T. Burton et al. Wind energy handbook. Chichester, United Kingdom: John Wiley & Sons,
2001.

[24] J. F. Manwell, J. G. McGowan, and A. L. Rogers. Wind energy explained: theory, design
and application. John Wiley & Sons, 2010.

[25] K. Kragh and P. Fleming. “Rotor Speed Dependent Yaw Control of Wind Turbines Based
on Empirical Data”. In: AIAA Aerospace Sciences Meeting AIAA 2012.1018 (2012).

[26] E van Solingen et al. “Control design for a two-bladed downwind teeterless damped free-
yaw wind turbine”. In: Mechatronics 36 (2016), pp. 77–96.

[27] V. Schorbach and P. Dalhoff. “Two bladed wind turbines: antiquated or supposed to be
resurrected”. In: Proceedings of the EWEA Conference. 2012.

[28] MathWorks. MATLAB / Simulink. https://www.mathworks.com. 2019.

[29] NWTC Information Portal. FAST v8.16. https : / / nwtc . nrel . gov / FAST8. [Online;
accessed 27-August-2019]. 2019.

[30] R. Bos et al. FASTTool. https://github.com/TUDelft-DataDrivenControl/FASTTool.
2019.

[31] NWTC Information Portal. BModes. https://nwtc.nrel.gov/BModes. Sept. 2014.

[32] NWTC Information Portal. TurbSim. https://nwtc.nrel.gov/TurbSim. June 2016.

[33] IEC. IEC 61400-1 third edition 2005-08: Wind turbines - Part 1: Design requirements.
Tech. rep. International Electrotechnical Commission (IEC), 2005.

