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Abstract

This thesis details the design of a self-oscillating MEMS resonator as a pressure sensor. A
bi-layer circular diaphragm with a single center perforation is used as a pressure sensitive
membrane which measures the absolute pressure of the surrounding medium. A novel aspect
of the proposed sensor is that the resonator is made to oscillate by an opto-electronic feedback
loop. The membrane is driven electrostatically and it’s motion is sensed optically. The
optical read-out system measures the velocity of the driven membrane which is subsequently
converted into electrical signals for actuation. The proposed opto-electronic MEMS oscillator
uses Laser Doppler Vibrometry for detection as well as signal conversion and amplification
which to our knowledge has not been reported so far.
Expressions for the resonant frequency and relative pressure sensitivity of the MEMS sensor
are based on driven harmonic oscillators and Bao’s analytical model for squeeze film damping.
A pressure sensitivity of 1 Hz/Pa was measured. The minimum detectable pressure i.e. the
resolution is estimated from Allan deviation measured for the oscillator at different pressures.
With a measurement time of 1 ms, a lowest resolution of 5 Pa is achieved at atmospheric
pressure (105 Pa, Q=50, fo=600 kHz). The performance in terms of linearity, accuracy/sta-
bility and resolution is limited by the noise injected from the optical system and is expected
to improve for an all-electrical MEMS oscillator.
To have a deeper insight, 32 kHz quartz crystals were configured in both oscillator types-
opto-electronic and all-electrical Pierce topology. Tuning fork based resonators behave similar
to MEMS resonators but exhibit higher Q and lower pressure sensitivity. An experimental
sensitivity of 50 µHz/Pa with a Q=12,500 (105 Pa). The noise behavior for both MEMS
and tuning fork based opto-electronic oscillators were similar. However, Tuning fork based
Pierce oscillator showed 100 times better noise performance in comparison to opto-electronic
topology. This translated into a 20 times better resolution. In terms of frequency stability,
Pierce oscillators were 1000 times better than opto-electronic oscillator.
The experimental data for the proposed self-oscillating MEMS pressure sensor are compara-
ble to the existing state-of-the-art-pressure sensor technologies (piezoresistive and capacitive
sensing) and the concept certainly has a competitive potential for resonant pressure sensors.
Power consumption is one important factor for which the experimental data is lacking and
further work is required to comment on sensor’s complete feasibility.
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Table 1: List of Symbols used.

Character Designation Unit
Q Quality factor -
m Mass of the resonator kg
k Spring Constant N/m
b Damping coefficient N.s/m
ζ Damping factor -
t Time s
x Displacement of resonator m
Xo Peak value of displacement (amplitude) x(t) m
X(ω) Fourier transform of x(t) -
f(t) Driving force function N
Fo Peak value of driving force N
F (ω) Fourier transform of f(t) -
ωo Resonant frequency rad/s
φ Phase rad

H(ω) Magnification factor -
ωi Input drive frequency rad/s
i imaginary number

√
−1 -

τd Diffusion time s
τA Measurement time s
R(τ) Auto-correlation function -
S(ω) Spectral density function Unit2/Hz
So Power spectral density of white noise V2/Hz
Bf Bandwidth rad/s
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Sυ Velocity spectral density (mm/s)2/Hz
µ Coefficient of viscosity Pa.s
A Area of the circular resonator m2

h thickness of the circular resonator m
go air gap within the resonator m
Kn constant where n refers to mode of vibration -
w uniform load per unit area N/m2

r radius of circular membrane m
rh radius of hole m
N Number of perforations in the membrane -
g gravitional acceleration m/s2
D material’s flexural rigidity N/m2

E Materials Young modulus Pa
ν Poisson ratio -
ρ Specific mass of resonator N/m3

R Universal gas constant Nm/mole.K
εo vacuum permittivity F/m
kB Boltzmann constant J/K
Kn Knudsen number -

Master of Science Thesis Lalit Kumar



xiv List of Tables

Character Designation Unit
T Temperature K
Mm Molecular weight of air kg
p Pressure Pa
V Voltage V
I Current A
q charge C
υ velocity m/s
Rm Motional resistance Ω
Lm Motional inductance H
Cm Motional capacitance F
Co Shunt capacitance F
η Electro-mechanical coupling coefficient -
P Power W
Ec Energy per cycle J
Z Electrical impedance Ω
G Transfer function -
~E Electric Field N/mC
λ Wavelength m
f Frequency Hz
I Intensity of wave W/m2

F Noise Figure -
U Noise Source -
Sp Relative pressure sensitivity Pa−1

α(t) Signal amplitude fluctuations -
ϕ(t) Phase fluctuations -
ωosc Oscillator frequency rad/s
∆ω Offset frequency Hz
Sφ Phase noise spectral density dBc/Hz
Sf Frequency noise spectral density dBc/Hz
σD Allan deviation -

Lalit Kumar Master of Science Thesis



Chapter 1

Introduction

1-1 Micro-Electromechanical System (MEMS) Sensor Technology

"They tell me about electric motors that are the size of the nail on your small finger. It
is a staggeringly small world that is below", said Richard Feynman while addressing the
American Physical Society in 1959 during his now famous talk entitled "there is plenty of
room at the bottom" [1]. He thought about control systems at small scale and gave a hope of
replacing bulky electromechanical sensor of the day by small rugged device in the same way
that transistors had replaced thermionic valves in 1947. This possibility was arguably first
considered in 1954 when C.S. Smith discovered the phenomena of piezoresistivity in silicon and
germanium. Smith’s paper [2] was probably the first publication responsible for the origin of
what we now know as Micro-Electromechanical System (MEMS) as it showed that silicon and
germanium could sense air or water pressure better than metals [3]. It was after this discovery
that series of papers from Bell Labs and Honeywell Research center described the first silicon
diaphragm pressure sensors in 1961 [4]. Soon, silicon sensor technology gained interest and a
number of companies commercializing this field grew up by the late 1960s. The first silicon
pressure sensor (Figure 1-1a) can be considered as crude by today’s standard but it was in the
early 1970s when proliferation of bulk-etched silicon wafers was done to make silicon sensors.
Subsequent progress in silicon processing during 1970s and development in micro-machining,
lead to sensors with non-planar geometries with superior performance. But today’s MEMS
sensors (Figure 1-1b) are much more miniature in size in the order of a millionth of a meter
(micrometer). They are also referred to as micro-machines, micro-systems, micro-mechanics
or Micro System Technology (MST).

The term MEMS is applied to all miniaturized devices which are mostly fabricated from sil-
icon using various conventional and recently discovered "state of the art" micro-engineering
fabrication techniques like etching, thin film deposition, masking and doping techniques re-
lated to IC manufacture. These devices are present in our everyday life. They have been
interfacing with the electronic circuit and systems with its wide range of applications in the
form of numerous transducers like inertia sensors (accelerometer, gyroscope), pressure sensors,
bioMEMS (DNA chips, micro-bio analysis system etc.), optical MEMS (optical fiber switch,
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Pressure
Gold Wire

Al track
p type diffused guages

n type Si diaphragm
support rings

(a)

Metal pad
Diaphragm

Silicon nanowire

Si3N4SiO2

(b)

Figure 1-1: Schematic section of an early silicon pressure sensor (a) with a non-micro-engineered
diaphragm mounted on the support rings and [4] a modern MEMS pressure sensor (b) with a
non-planar micro-engineered diaphragm [5].

micro-mirror array), RF MEMS (antenna filters, switches) and many others. The present
day situation of MEMS sensor technology is that it has a major influence on physical sensing
and to some extent on gas sensing and recently on chemical sensing. In physical sensing,
the impact on pressure sensing has been the most [7]. Today’s pressure sensors are much
more superior and exceedingly small and capable of detecting pressures by exploiting various
phenomena like capacitive, piezoresistivity etc. as discussed in the following section.

1-2 MEMS Pressure Sensor

Unlike all the physical variables like vibration, motion, rotation, inclination, strain, sound
etc., MEMS technology has been particularly successful in pressure sensing domain. Several
industries require sensors for pressure measurements and MEMS silicon sensors accommo-
dates a large range of pressure by changing the diaphragm dimensions combined with high
performance, high-volume batch fabrication and low unit costs. Pressure sensors are expected
to produce a total of $ 1.68 billion in 2013 [8], 75 % of which is the outcome of automotive
sectors ( $ 1.26 billion) while the rest comes from military and aerospace sectors, consumer
electronics and medical industries. Figure 1-2 shows an estimated market share of pressure
sensor and it’s future prospects.

Modern pressure sensor are fabricated by lithographic and non-lithographic techniques. These
techniques can be further categorized into bulk micro-machining, surface micro-machining
and Lithographie Galvanoformung Abformung (LIGA). The first two techniques are used for
producing 2D structures [9] . The various steps involved are shown in Figure 1-3. Bulk mi-
cromachining uses anisotropic etching to remove materials while in surface micro-machining,
thin films of structural and sacrificial layers are deposited and etched. The end product
of both the techniques is a freestanding structure known as a diaphragm. The suspended
structure is deflected in response to the surrounding/applied pressure. Depending on the
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Automative Industrial Consumer Medical High-end

Figure 1-2: MEMS pressure sensor market forecast by applications (2012-2018). Adapted from
i-micronews.com-April 2013.

structure, the magnitude of deflection is directly or indirectly proportional to the pressure. A
suitable transduction mechanism is required which converts the mechanical deformation into
electrical signals which can be used to extract pressure by data acquisition electronics. For
pressure sensors, different transduction mechanisms have been investigated namely piezoelec-
tric effect of thin films, piezoresistive effect in silicon, optical deflection of suspended films,
capacitive effect due to diaphragm deflection, stress effects in p-n junction and frequency shift
of resonating structures [10], [11] . Out of these, piezoresistive effect and capacitive effect are
most commonly used today. Other pressure sensors are based on resonant transduction which
requires a much more advanced sensing scheme and are suited for only certain application.

1-2-1 Piezoresistive sensor

The first pressure sensor demonstrated in 1969 was based on diffused resistors in thin sili-
con diaphragm and was based on the principle of piezoresistivity in silicon [13]. Since then,
piezoresistivity has become the most conventional method in the design of pressure sensors.
Piezoresistivity is the property of a material by which a change in the resistivity is observed
when the material is subjected to mechanical deformation. Silicon and other semiconducting
materials like germanium are piezoresistive in nature. In piezoresistive pressure sensors, semi-
conductor resistors are assembled on the membrane which experience strain when subjected
to stress due to applied external pressure. The change in the resistance is detected by electri-
cal read-out circuits to extract pressure data. The resistors are embedded usually at the edge
of the diaphragm where the stress induced strain is maximum and connected in a half-bridge
or a full-bridge configuration. Figure 1-4 shows a piezoresistive pressure sensor [12] in a full
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Bulk micro-machining

Deposition of silica layer on SI

Surface micro-machining

Deposition of sacrificial layer

Deposition of microstructural layer

membrane

<1111> face

Patterning of mask

Si Silica

Patterning with mask

Etching of sacrificial layer

Si polysicion sacrificial layer

and etching

Figure 1-3: Schematic of the process steps involved in bulk micro-machining and surface-micro-
machining fabrication of MEMS [6].
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Figure 1-4: (a) Overall view of a piezoresistive pressure sensor. The hollow cylindrical like
structure provides the necessary gap for air flow. (b) Scanning Electron Microscopy (SEM) image
of MEMS device. (c) Electrical equivalent -Wheatstone bridge network. The output voltage is
directly proportional to differential pressure acting on both sides of the membrane. Here f is
the proportionality factor. (d) Measured output voltage vs distance at different pressures for the
proposed micro-relected air pressure sensor. The output voltage is a function of the reflected air
pressure from the surface of cornea (of a human eye) seperated by the sensor’s membrane at a
distance d. For a small d, large amount of reflected air is sensed by the membrane. [12].
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bridge configuration. A differential pressure on the membrane results into deflection which
changes the resistance thereby shifting the balance point of the wheat-stone bridge.
Piezoresistive sensor is a mature technology and are fabricated by both surface machining and
bulk etching and widely used because of their high sensitivity, good linearity, reliability and
reduced influence of process fluctuations on the output characteristics [14]. However it does
offer some disadvantages. The pressure sensitivity is dependent on shape of the membrane [15]
and is limited by small fractional change in resistance of piezoresistors. Temperature depen-
dent resistance and thermal expansion of the membrane requires temperature compensation
blocks leading to decreased sensitivity and increased complexity [16].

1-2-2 Capacitive sensor

The capacitive pressure sensors are based on parallel-plate capacitor, the capacitance of which
is a function of applied pressure. The sensor consists of 2 electrodes, a fixed bottom electrode
and a top electrode attached to the diaphragm as shown in Figure 1-5. In response to external
applied pressure, the deflection of the membrane is detected as a variation in capacitance
between the 2 electrodes. The output is a change in the capacitance which can be converted
into electrical signals to extract pressure information. Different modes of actuation and
detection are discussed in [17]. Capacitance changes inversely with pressure and hence the
response is not linear as seen from Figure 1-5.
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Experimental
Numerical

Applied Pressure (mmHg)
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0.0

(a) (b)

Figure 1-5: (a) Principle of capacitive pressure sensor. The deflection of membrane reduces the
gap between the two plates thereby increasing the capacitance at higher pressures as shown in
(b) which shows a non-linear relation (adapted from [18]).

For the same geometry of resonator, capacitive pressure sensors offer much higher sensitivity
compared to piezoresistive sensors [19] as the capacitive change is much larger than resistive
changes. For the same geometry, change in the capacitance is 10-20 % whereas the resistive
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1-2 MEMS Pressure Sensor 7

changes are in the order of 2-5%. The sensor also eliminates resistive losses and hence con-
sumes less power. One of the key advantage over piezoresistive sensor is their potentially lower
temperature sensitivity. However the main drawback of capacitive detection is susceptibility
to parasitic effects due to small external capacitances. High output impedance, non-linearity
of transducer response and the need for signal conditioning and amplification are some of the
other drawbacks of capacitive detection.

1-2-3 Optical sensor

Optic fiber based sensors have been widely used to measure various physical and chemical
parameters. In optical sensor, pressure induced deflection of thin flexible diaphragm is mea-
sured by Fabry-Perot based [20] or Mach-Zehnder based interferometry methods [21]. The
deflection measurement from optical fiber sensor read-out varies linearly with pressure as
shown in Figure 1-6. Optical sensors offers high accuracy and immunity to Electro Magnetic
Interference (EMI) interferences (noise) but they do suffer from temperature sensitivity prob-
lems due to optical heating. Furthermore, large power is required. The experimental setup
also requires aligning of optical lenses and calibration in the presence of drift and external
vibrations.

Substrate

Optical signal

optical fibre

pressure mirrors forming
FP cavity

D
efl

ec
tio

n
(n
m
)

Increasing pressure
Decreasing pressure
Linear fit

Pressure (KPa)
(a) (b)

Figure 1-6: (a) Principle setup of optical pressure sensor. The deflection of membrane is sensed
by optical signals through fiber read-out scheme. (b) shows a linear relation between pressure
and deflection (adapted from [20]).

1-2-4 Resonant sensor

The mechanical frequency of a membrane can be changed by application of stress due to
external force or pressure. This principle is used in conventional MEMS devices and are
categorized as resonant sensors. Resonant pressure sensors are new class of devices which
have been reported in the last decades. They sense the pressure by monitoring the resonant
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frequency of a suspended beam or diaphragm which is a function of applied pressure. Fre-
quency read-out can be done entirely in digital domain by various zero-counting algorithms
and hardware and as such conversion from analog signals to digital data is not required as
compared to the previously discussed pressure sensors. Since the frequency can be extracted
with high degree of accuracy, resonant sensors offer higher sensitivity which otherwise is only
limited to the resolution of frequency measurement system. Another reason why frequency
measurement can offer higher sensitivity than resistance or capacitance measurement is be-
cause the oscillating structure is generally more prone to a change in it’s internal state than
in it’s external structure like deformation. In musical instruments, different musical notes are
due to frequency variations caused by a suitable external force. The same amount of force
hardly influences the length or thickness of the strings . The drawback of resonant pressure
sensors is that frequency fluctuations can arise due to condensation, dust and corrosion. The
energy loss can be measured by the quality factor of the response and as such it is desirable to
have a high quality factor leading to higher precision and long term stability. Hence a sealed
structure is required. Also for continuous monitoring of frequency, the suspended structure
needs to be driven continuously as shown in Figure 1-7 and therefore excitation and detection
of signals is more complex but mostly digital. Temperature and input DC bias dependance
on frequency is yet another disadvantage.

Excitation

Resonator Amplifier

Output

Pressure

f o

Detection
V V/I

Figure 1-7: Block diagram for frequency readout of MEMS resonator. Different types of excita-
tion and detection techniques can be used as mentioned in the next section.

1-3 Resonant Pressure Sensor : Past work from literature

Mechanical resonant frequency is inherently dependent on it’s internal device parameters like
stiffness, mass or shape. As such, the resonant frequency can be altered by either changing it’s
stiffness by application of force or pressure or by changing the mass. Added mass effect have
been used to monitor thickness of thin films while shape effects have been extensively used as
pressure sensors [22]. A second way for resonant device to act as pressure sensor is damping
effect due to surrounding medium (fluid or gas) [23]. The quality factor which is the measure
of damping can be used to describe the resonance behavior of the device. Compression forces
from surrounding molecules are responsible for the shift in resonant frequency. This is known
as squeeze-film damping and will be studied in details in Chapter 2 . Since the sensing element
is usually a resonator subjected to change in shape or stiffness, many pressure sensors can be
categorized based upon the resonator itself (Figure 1-9). Each resonator can also resonate in
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(a) (b)

(c)

(d)

Figure 1-8: (a) SEM image of a single clamped beam resonator [24]. (b) Double ended tuning
fork [25] with drive and sense metal pads. (c) Pressure sensor with a circular diaphrgam [5]. (d)
A triple ended tuning fork for resonant pressure sensor [26] with two possible modes of resonance
(M1 and M2).
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10 Introduction

different modes resulting in different deflection shape and resonant frequency. The beam for
example has many degrees of freedom and can deflect in vertical (Flexural mode), horizontal
(longitudinal mode) or both (torsional mode) directions. Complicated structures like double
ended tuning fork (DETF), triple ended tuning fork (TETF) can vibrate in various other
modes. Exciting the resonator into the desired mode and detecting the resonant frequency is
an entirely a different way to characterize the wide range of pressure sensors available today.
Five different ways of excitation and detection [27] are known today in the MEMS community,
combinations of which have been used to fabricate various resonant sensors and are discussed
below.

• Electrostatic excitation : This technique requires two electrodes out of which one
of them acts as a vibrating element. An A.C. signal between the electrodes sets up
electrostatic force against the damping caused by air setting the device into motion
[28], [29], [22].

• Piezoelectric excitation : Since silicon is not a piezoelectric material, a layer of
piezoelectric material like ZnO is deposited onto the device. On application of voltage
signal, the stress induced by piezoelectricity sets the vibrations [30], [31].

• Electrothermal excitation :Also known as resistive heating [32], [33], [24] , this
technique uses the heat pulse to excite the device. Integrated diffused resistors are used
to create local material expansion resulting into material deflection.

• Optical excitation : Light beam typically from a laser source is focused on the res-
onator to generate thermal stress for excitation. The light can also be concentrated in
a mirrored cavity to increase thermal stress [34].

• Electromagnetic excitation : Use of inductors or electromagnets for excitation of
resonators fall under this category which uses the interaction between electrical current
and magnetic field [35], [26], [36].

• Capacitive detection : Similar to electrostatic excitation, the two electrodes also
constitutes a capacitor with changing gap distance. The change in capacitance (in the
form of charge storage) is used to read out the deflections [28], [26] , [36].

• Piezoelectric detection : In this case, the deposited layer of piezoelectric material
is used to read out the electrical signals from the charge generated by deflection of
resonator due to the stress induced [30], [31].

• Piezoresistive detection : Since silicon is piezoresistive material, it is capable of
changing its resistivity when subjected to stress which can be measured, a principle
discussed in piezoresistive pressure sensors [32], [24], [29].

• Electromagnetic detection : The reverse operation of magnetic excitation where the
vibration in a magnetic field generates an induced voltage which is then read-out to
detect deflections [35].

• Optical detection : An optical arrangement can also be used to study the deflection
of the membrane by measuring the reflected beam from the resonator. This can either
be done by interferometric techniques (analysis of interference pattern) or amplitude
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1-4 Self-oscillating pressure sensor 11

modulation (analysis of reflected beam’s amplitude) [34], [37] . The experimental setup
is however complex and need careful aligning of optics.

Table 1-1 summarizes "few" of the various pressure sensors till date and would give the reader
an idea of all possible categories of sensor technology.

Table 1-1: Overview of past resonant pressure sensors-1990-2014

Year Resonator Excitation Detection Sensitivity Ref.

2013 Diaphragm Electrostatic Capacitive 227 Hz/KPa [28]
2012 Bridge Electrothermal Piezoresistive 1.8%/bar [32]
2010 Beam Electromagnetic Electromagnetic 112Hz/kPa [35]
2010 Diaphragm Piezoelectric piezoelectric 3.3Hz/kPa [30]
2009 Beam Electromagnetic Capacitive 155Hz/kPa [26]
2005 Diaphragm Electrothermal Optical 3kHz/kPa [33]
2005 Beam Electrothermal Piezoresistive 27.4Hz/kPa [24]
2003 Diaphragm Electromagnetic capacitive 9.6kHz/kPa [36]
2001 Beam Electrostatic Optical 3.2%/bar [37]
2000 DETF Electrostatic Piezoresistive 2.08 Hz/mbar [29]
1997 TETF Piezoelectric piezoelectric 0.2 Hz/mbar [31]
1992 Bridge Optical Optical 86%/bar [34]
1990 Diaphragm Electrostatic Optical 19%/bar [22]

1-4 Self-oscillating pressure sensor

In conventional presure sensors, most popular read-out circuits like switch capacitor circuits
[38], transimpedance amplifiers [39] or ac bridges [40] translate the capacitive or resistive
changes into analog signals. In addition to this, analog to digital converters maybe required
for signal processing. The first drawback of these integrated systems is that the sensitivity of
the sensor is influenced by the non-idealities of the read-out circuits such as thermal noise,
1/f noise or switch noise. Analog-to-Digital converter (ADC) also require large area which
lead to increased power consumption and cost. One solution to the above problems is to use
Capacitance-to-Frequency Converter (CFC) [41] which uses a Capacitance-to-Voltage Con-
verter (CVC) followed by Voltage-to-Frequency Converter (VFC). Alternatively, the pressure
sensor can be engaged with a Complementary Metal Oxide Semiconductor (CMOS) ring os-
cillator [42], the frequency output of which is effected by the capacitive or resistive changes as
shown in Figure 1-9(a). The resolution of such a system is limited by the phase noise which
can be improved at higher operational frequency but switching speed of transistors also places
a limit on the frequency. As such it would be difficult to operate at higher frequencies with
lower phase noise and superior performance.

Another approach for frequency readout without the need of additonal frequency converters
or reference oscillators is to use the MEMS resonator in a feedback loop so as to a form
a self-oscillating pressure sensor as shown in Figure 1-9(b). This is similar to designing a
MEMS oscillator but for pressure sensing. This concept using MEMS oscillators have been
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Figure 1-9: (a) Using a conventional pressure sensor in sync with an electrical oscillator with
frequency output. (b) Block diagram for frequency readout of MEMS self-oscillating pressure
sensor (adapted from [20]). G and φ are the gain and phase of the loop. This would be discussed
in details in Chapter 3.

widely used for frequency references and timing applications [43] for digital circuits but there
are also literature that justifies their use for mass sensing [44], temperature monitoring [45],
gas sensing [46] and as such they also hold potential as pressure sensors. The concept will be
discussed in more details in chapter 3.

1-5 Goal of Thesis

The research objective for this thesis is driven by the need to develop self-oscillating resonant
pressure sensors for high performance over existing sensing technologies. Given the plethora
of work done so far in resonant sensors, piezoresistive and capacitive pressure sensors are still
the two most widely used technology proven to offer high sensitivity with good accuracy, tem-
perature compensation and linearity. However, an adequate amount of signal conditioning
followed by analog to digital conversion is required. Furthermore, integration of electrodes
and piezoresistive films adds to the fabrication complexity. Since frequency read-out can be
done with a higher resolution than conventional digital output signals (e.g. zero counting
algorithms), resonant sensors are capable of giving high sensitivity and linearity. The output
does not require signal conversion or additional frequency conversion blocks. The resonators
however require continuous excitation and detection for frequency monitoring. The goal of
this thesis is to characterize silicon MEMS devices as self oscillating resonant pressure sensors
and to achieve higher sensitivity and resolution over the current existing sensors in the same
or different category. The key parameters during the project work would be pressure resolu-
tion, sensitivity, noise, accuracy, time of measurement and power consumption. The aim is
to develop a prototype as a proof of concept for future commercial applicability.

Since a frequency output signal is desired, we aim to design a MEMS oscillator whose output
frequency is sensitive to applied/surrounding pressure and hence the experiments are carried
out in a controlled pressure enviroment. Compared to conventional sensors, this also elim-
inates the requirement for hermetic sealing of the resonator. Based on different excitation
and detection principles, we propose an opto-electronic MEMS oscillator using electrostatic
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actuation and optical detection by Laser Doppler Vibrometry (LDV) which to our knowledge
has not been reported in literature so far. Both optical feedback and sustaining amplifica-
tion is provided by Laser Doppler Vibrometer which significantly reduces the complexity in
the design of an oscillator. In addition to this, the non-contact optical readout eliminates
problems with the parasitic capacitances. Design of an all-electrical MEMS oscillator can
be considered as another thesis topic itself and due to time limitations, it is not covered in
this report. To justify an all-electrical working prototype as an oscillating pressure sensor,
quartz tuning fork will be used to implement both opto-electronic and an electronic oscillator
topology and subsequently be compared on different key parameters mentioned earlier. The
samples used in this thesis are pre-fabricated and a major part of the work is based on charac-
terization, measurements and building of related electronic circuitry to develop the proposed
sensor technology.

1-6 Outline of Thesis

• For the readers who have skipped the introduction part and have jumped to this section,
the first chapter gave a quick overview about the current state of MEMS sensor tech-
nology and its potential in various applications. Of all the sensors, a general overview
of four different kinds of pressure sensors (piezoresistive, capacitive, optical and reso-
nant) were discussed briefly. Resonant pressure sensors have been discussed in further
detail by summarizing the current existing technologies and past work done in this do-
main leading to a strong motivation for developing smart and efficient pressure sensing
technology which gives us our goal for this thesis project - An opto-electronic MEMS
oscillator for resonant pressure sensing.

• Chapter two will cover the fundamental concepts of MEMS resonators and its motion
in response to excitation signals namely sinusoidal signal and white noise. Subsequent
sections will consider the theory and explain the principle behind damping based pres-
sure sensing. Of all the types of resonator structures mentioned in chapter one, circular
membranes have been studied in more detail because of their relevance to the work
performed in this report.

• Chapter three gives a brief introduction to MEMS oscillators and shows the practical
implementation of the proposed opto-electronic MEMS oscillator with optical feedback
through Laser Doppler Vibromtery (LDV). The detailed analysis on sensitivity, noise,
accuracy and comparision to theoretical concepts mentioned in chapter two are also
presented.

• Chapter four describes the practical implementation of tuning fork based opto-electronic
oscillator and electronic oscillator. The two topologies are characterized under same
pressure enviroment and their performance results are compared in order to obtain
insight in the effect of the feedback mechanism on the sensor performance.

• Chapter five concludes the report with discussion on experimental results and the fea-
sibility of the proposed technology for future commerical application. Possible recom-
mendations for further improvement are also presented.
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Chapter 2

Fundamentals : MEMS Resonator

Amechanical resonator is the key feature of all MEMS devices. Apart from having microscopic
dimensions, they also achieve a much higher quality factors (Q) which allows them to be used
for precise experiments. The motion of mechanical resonators is used for various sensing
applications like force in the order of zeptonewtons [47], yoctogram mass detection [48],
sub-attometer position sensitivity [49]. Recently these miniature sensors are pushing the
limits of measurable quantities further down to their fundamental limits (quantum zero-point
fluctuations [50] where they are restricted by the quantum fluctuations. This chapter will
discuss the motion of a resonator under the influence of external force and how it can be
used as a pressure sensor. Analysis of circular membrane as a mechanical resonator is also
presented.

2-1 Motion of a resonator

We begin by studying the motion of a resonator in a linear regime (dynamics of non-linear
resonator are considered out of scope for this chapter). In general, the resonator can exhibit a
three dimensional motion each with it’s own mode. For simplicity, we reduce the motion to a
one dimensional displacement function. In time domain, motion of the resonator is governed
by Newton’s equation given by Eq. (2-1). The second order differential equation is also known
as Langevin equation.

m
d2x(t)
dt2

+ b
dx(t)
dt

+ kx(t) = f(t) (2-1)

where
m is mass of the system
b is damping coefficient
k is spring constant

x(t) is time dependent displacement function
f(t) is time dependent drive force
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16 Fundamentals : MEMS Resonator

The presence of a damping term suggests that the motion of resonator would cease to exist
with time unless otherwise there is a driving force to balance the loss of energy thereby
sustaining the motion . As such, the system can be compared to a driven harmonic oscillator
similar to a spring-mass system as shown in Figure 2-1. Drive force f(t) is assumed to be
harmonic and could represent any type of force due to acoustic, pressure, thermal excitation
etc.

k

b

m f(t)

x(t)

Figure 2-1: Spring-mass damper system describing the motion of a mechanical resonator.

In alternate form, Eq. (2-1) can be written as

d2x(t)
dt2

+ 2ζωo
dx(t)
dt

+ ω2
ox(t) = Foe

iωt

m
(2-2)

where
ωo =

√
k/m = natural frequency of undamped oscillation

ζ = damping factor
Fo = peak value of drive force

We can expect the solution for the above equation to be in the form of x(t) = Xoe
λt. Sub-

stiution of x(t) in Eq. (2-2) gives us

λ2Xoe
λt + 2ζωoλXoe

λt + ω2
oXoe

λt = Foe
iωt/m

[λ2 + 2ζωoλ+ ω2
o ]Xoe

λt = Foe
iωt/m

Since the number inside the bracket is independent of time, we can conclude that for both
sides of the equation to be equal at all times, we must have eλt = eiωt or λ = iω. This means
that the motion of a resonator is a complex function with the same frequency as the drive
force. The complete solution for the displacement function is now given by Eq. (2-3).

x(t) = Foe
iωt

m(ω2
o − ω2 + i2ζωoω) (2-3)

Since x(t) is a complex function of time and frequency, amplitude and phase of the displace-
ment function can be written as

Xo(ω) = Fo

m
√

(ω2
o − ω2)2 + (2ζωoω)2 (2-4)

φ = tan−1
( 2ζωoω
ω2
o − ω2

)
(2-5)
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2-2 Frequency response

The effect of frequency on the steady state displacement can be studied directly from Eq. (2-4)
and Eq. (2-5). By appling Fourier transform, the steady state displacement can be represented
as

X(ω) = H(ω)F (ω) (2-6)

where
H(ω) = 1

m
√

(ω2
o − ω2)2 + (2ζωoω)2 (2-7)

H(ω) is called as magnification factor which relates the magnitude of the force to magnitude
of displacement. Eq. (2-7) can be sketched for various values of damping factors. We observe
that at a frequency ω = ωo, the denominator attains its minimum value and as such a large
response is observed at ωo. This is known as resonance. As seen from Figure 2-2, smaller the
damping factor, higher is the amplitude response. Irrespective of damping conditions , it is
seen that the response is in phase with the excitation at low frequencies i.e. ω << ωo and
lags by 180 degrees at higher frequencies (ω >> ωo) . The phase change is most dramatic
near ωo (Figure 2-2) at which the phase angle equals 90.

Figure 2-2: Amplitude and phase response as a function of frequency for different values of ζ.

The peak amplitude can also be characterized by the quality factor, a terminology adapted
from electrical engineering which is defined as

Q = 1
2ζ =

√
km

b
(2-8)
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18 Fundamentals : MEMS Resonator

Lower damping corresponds to a larger peak and hence a higher quality factor. For high Q
systems (Q > 10), the response is approximately symmetrical for small variations in ω around
ωo. The amplitude falls to 1/

√
2 of its peak value at ωo(1± ζ). These frequencies are known

as half power or 3-dB frequency points and the frequency band between these two points is
known as the bandwidth of the system. The quality factor in terms of bandwidth can be
represented as

Q = ωo
∆ω (2-9)

The forced displacement response can be found out for any excitation force by using Eq. (2-6).
The response could be due to a deterministic signal or a random signal. Using the inverse
Fourier transform, displacement function x(t) can be determined.

2-2-1 Response due to deterministic signal

Most of the systems in practical cases are excited by a sinusoidal signal. As such we study
the displacement response to an excitation force equal to Fosin(ωit) where ωi is the input
drive frequency. Using Eq. (2-6), the inverse Fourier transform can be used to determine x(t)
according to the following relation

x(t) = 1
2π

∞∫
−∞

X(ω)eiωtdω (2-10)

x(t) = 1
2π

∞∫
−∞

H(ω)F (ω)eiωtdω (2-11)

For a force Fosin(ωit) , the Fourier transform analysis gives us

F (ω) = Fo
2i [δ(ω − ωi) + δ(ω + ωi)] (2-12)

Combining Eq. (2-11) and Eq. (2-12), the displacement response is equal to

x(t) = Fosinωit

m
√

(ω2
o − ω2)2 + (2ζωoω)2 (2-13)

The above equation can more easily be verified if we assume that the excitation force is equal
to Re(Foeiωit). In that case the displacement is simply Re(Xoe

iωit) and is equal to Eq. (2-13)
i.e. the displacement function is also sinusoidal in nature.

2-2-2 Response due to random signal

Unlike deterministic signals, the response to a mechanical system due to a random process
cannot be defined explicitly as a function of time. The response function must be determined
based on stochastic nature of random process or it’s statistical properties. For many practical
systems, observations are made over a period of time and under the influence of random effects,
observed values are subjected to change with each instance of time. Random variables show
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2-2 Frequency response 19

a normal distribution and hence random processes are usually Gaussian in nature. Any
linear system subjected to a Gaussian force leads to a Gaussian response. In this section,
we study the displacement response under white noise excitation. The white noise is defined
as a stationary process since statistical properties found by averaging over a time-period are
constant. White noise is defined for a constant power spectral density irrespective of it’s
signal bandwidth. Hence in order to study x(t), we consider the driving force in the form of
Power Spectral Density (PSD) which has units of power/Hz.
Let us consider a sample fn(t) and fn(t+ τ) from a random white noise signal separated by
a time interval τ . The two samples can be related by auto-correlation function defined by

R(τ) = lim
T→∞

T∫
0

fn(t)fn(t+ τ)dt (2-14)

We can see that for τ = 0, the auto-correlation function is reduced to mean square value of
the process f(t)

R(0) = fn(t)2 (2-15)

Frequency domain analysis of fn(t) therefore is best represented by Fourier transform of
auto-correlation function and is also known as power spectral density function S(ω).

S(ω) = 1
2π

∞∫
−∞

R(τ)eiωτdτ (2-16)

We can now evaluate the mean square value from it’s power spectral density function by
taking inverse Fourier transform of Eq. (2-16)

R(0) = f(t)2 =
∞∫
−∞

S(ω)dω (2-17)

Hence the mean square value of a random signal can be obtained by integrating its power
spectral density over the entire frequency range. The spectral density of band-limited white
noise is noted to be constant over the entire bandwidth for which the auto-correlation function
mathematically can be written as [51]

R(τ) = BfSo
sin(πBfτ)
πBfτ

cos(ωcτ) (2-18)

where
Bf=bandwidth

So=spectral density over the entire Bf
ωc=center frequency

From Eq. (2-18), the mean squared value is equal to

f(t)2 = R(0) = BfSo (2-19)

Returning to Eq. (2-6), we find the displacement in it’s spectral density form. Using Eq. (2-15)
and Eq. (2-16), the displacement spectral density can be written as

Sx(ω) = E[X(ω)X∗(ω)] (2-20)
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20 Fundamentals : MEMS Resonator

where X∗(ω) denotes the complex conjugate function and E denotes the average value.

Sx(ω) = H(ω)H∗(ω)E[F (ω)F ∗(ω)] (2-21)

Sx(ω) = |H(ω)|2So (2-22)

Sx(ω) = So
m[(ω2

o − ω2)2 + (2ζωoω)2] (2-23)

The above equation can be sketched as shown in Figure 2-3.

Area = A

Frequency (log)

S x
(ω

)

Figure 2-3: Displacement spectral density in response to band-limited white noise

Mean square displacement can be obtained by integrating Sx(ω) over the entire frequency
range. In other words, area under the curve gives the mean square response as [51]

A = x(t)2 = πfo(1 + 4ζ2)So
4ζ (2-24)

Therefore the rms displacement response is

xrms =
√
x(t)2 (2-25)

When a mechanical system is subjected to both white noise and sinusoidal signal, the re-
spective power spectral density add up to determine the net displacement response. Further
insight into displacement response for various excitations can be found in [51].

2-3 Q-Factor

The quality factor has been introduced in the previous section in terms of resonator’s me-
chanical parameters. Since the quality factor is the measure of damping in the system, it
is an indicative to the energy loss associated with the motion of the resonator. In a MEMS
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2-3 Q-Factor 21

resonator, excitation energy from the source is converted into mechanical energy. Within the
resonator, energy is transformed from kinetic energy (motion) to potential energy (spring).
This conversion leads to some energy loss. The quality factor of the system relates the energy
lost mathematically as

Q = 2πenergy stored in the resonator
energy dissipated per cycle

(2-26)

The high quality factor corresponds to lower energy losses which is advantageous. Low energy
loss means that the system needs less energy to sustain oscillation which reduces power
consumption and thermal stress. A high Q means that the resonator has excellent material
properties and long term stability. In general, three major different loss mechanism exists
which leads to lowering of quality factor.

• Air/Gas damping: The energy loss in the resonator which operate in air or gas cham-
ber is related to the surrounding pressure. Depending on the magnitude of surrounding
pressure, different loss mechanism are observed as tabulated in Table 3-1[52].

Table 2-1: Pressure dependance on Q-factor

Region pressure Loss mechanism Excitation Q

Intrinsic low Negligible damping high
Q attains its maximum value at vacuum

Molecular Intermediate Damping due to independent collisions of medium
gas molecules with the resonator

Viscous atmospheric Air acts as fluid low
Damping due to viscous drag

• Support losses: Energy can be lost at the mounting points due to the motion of
resonator because of moments and shear force acting at these points. These losses can
be minimized by balanced resonator structures which cancel out the forces or by the
use of mechanical filters like spring-mass systems [53].

• Intrinsic damping: Resonator also dissipates energy due to intrinsic material losses
like internal friction, magnetic fields, atom restructuring (grain boundaries) etc. These
losses are usually small but can become significant in a very high Q system.

For each loss mechanism, a Q-factor can be determined. The overall Q factor is given by the
expression

1
Q

= 1
Qair

+ 1
Qsupport

+ 1
Qintrinsic

+ ...... (2-27)

Air damping is the dominant loss mechanism. Resonators moving under viscous region (at-
mospheric pressure) experience high viscous drag. This phenomena where the air is pushed
through a narrow channel like the volume between 2 closely spaced plates, is known as squeeze
film damping which not only lowers the Q but also shifts the resonant frequency as discussed
in next section.
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22 Fundamentals : MEMS Resonator

2-4 Squeeze film damping

The traditional approach for resonant sensing is to increase the system’s Q. This is achieved
by reducing the damping effects of air by placing the system in vacuum or in a tightly sealed
air cavity. Quality factor as high as 150,000 have been reported in early sensors [54] and
many similar sensors are still fabricated now and then. For low Q systems (<100), resonant
sensors are based on an entirely different approach which takes into account the effect of
air/gas damping also known as squeeze film damping [55]. Andrew et al. reported the effect
on the resonant frequency of micro-structures due to surrounding air pressure. The gas
confined between two closely spaced plates results in compressive forces due to the motion
of electrodes. At higher frequency of oscillations, the gas is unable to escape the cavity and
hence this adds to the stiffness of the structure thereby increasing it’s resonant frequency.
This is illustrated in Figure 2-4. In this section, we consider air/gas as a fluid and predict it’s
effects on properties of the resonator.
Many different theoretical approaches have been taken into consideration to study squeeze

membrane membrane

Downward movement Upward movement

Substrate Substrate

Air
Flow

Figure 2-4: A schematic diagram of squeeze film air flow for downward and upward normal
motion of the membrane.

film damping. One of the important model to consider is the fluid dynamics model based
on compressible gas-film Reynolds equation by Blech [56]. When the air spacing within the
resonator is reduced due to downward deflection of structure, net volume for the gas molecules
decreases resulting in an increase in the density of particles. This can be seen as an increased
number of collisions between the resonator and the gas molecules. In an alternate picture, the
pressure distribution has two components. An in-phase component where the fluid film acts
as a spring and merely acts as an extra contribution to the spring constant of the resonator
and an out-of phase component but in phase with the squeeze velocity thereby acting as a
damper. As such, we can now introduce the effective spring constant and damping coefficient
as follows

keff = k + ksqueeze (2-28)

beff = b+ bsqueeze (2-29)

The net displacment response of the resonator can now be modified as

m
d2x(t)
dt2

+ (b+ bsqueeze)
dx(t)
dt

+ (k + ksqueeze)x(t) = f(t) (2-30)

where
ω

′2
o =

(
k + ksqueeze

m

)
= ω2

o + ksqueeze
m

(2-31)
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2-4 Squeeze film damping 23

The above equation clearly suggests that the resonance frequency is related to squeeze film
damping due to the term ksqueeze. For determining the squeeze parameters, extensive research
has been done to predict different loss mechanisms in the presence of air damping. It has been
observed that the interaction between gas molecules and the membrane is different at different
value of pressure [57] and as such different regimes of operation exsits. The parameter that
defines the operating regime is known as Knudsen number Kn [58] which is defined as the
ratio of the mean free path of the air molecule to the characteristic length of the air flow
(air gap). Based on the value of Kn, different regimes have been identified and explored with
their unique theoretical model as shown in Table 2-2.

Table 2-2: Different regimes of gas molecule behaviour

Regime Theoretical Approach Kn

Continuum regime Navier stokes Equation Kn < 10−3

with no slip boundry conditions
Slip regime Navier stokes Equation 10−3 < Kn < 10−1

with slip boundry conditions
Transistion regime Molecular approach 10−1 < Kn < 10
Molecular regime Molecular approach Kn > 10

At atmospheric pressure, the mean free path of gas molecules is around 68 nm. For a air gap
of 1 µm, the device behaves in the continuum regime with viscous damping as a dominant
loss mechanism. The squeeze film damping based on Navier-stokes equation [59] given by
Eq. (2-32) can be used to extract squeeze parameters bsqueeze and ksqueeze.

12µ∂(pg)
∂t

= ∇.[(1 + 6Kn)g3p∇p] (2-32)

where
p=pressure

µ=coefficient of viscosity
g=thickness of the air gap

Many equations have been formulated to compute the damping coefficient in the past. In our
case, we use circular diaphragms as resonators for which [59]

bsqueeze = 3
2πg3µA

2 (2-33)

where A=area of the circular membrane. Since air/viscous damping is the dominant source
of loss in this regime, most MEMS resonators are perforated with single or multiple holes to
allow the flow of air through the membrane which reduces the effective damping. A simple
modification to Eq. (2-33) including the effect of perforations was given by Skvor [60]

bwithholesqueeze = 12µπNr4

g3

(
1
4 ln

r2

r2
h

+ 1
2
r2
h

r2 −
1
8
r4
h

r4 −
3
8

)
(2-34)

where
r=radius of the membrane
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24 Fundamentals : MEMS Resonator

N=number of holes
rh=radius of the perforation

Skvor’s model ignores the damping due to the air flow through the perforations and hence
it underestimates the damping parameter. For N=1 and and large enough rg, the damping
resistance due to the hole can be ignored . In such a case, Eq. (2-33) or Eq. (2-34) can be
both used for a good estimation of bsqueeze. If the gap dimensions are comparable to the mean
free path of the molecules, then the slip flow model between the gas and the solid walls needs
to be taken into consideration. Veijola has proposed the substitution of effective viscosity
coefficient instead of µ given by [61].

µeff = µ

1 + 9.638K1.159
n

(2-35)

A more accurate model for circular membrane with a single hole have been covered by various
authors, a detailed discussion of which can be found in [62] and is considered out of the scope
of this report. Bao’s analytical model [63] also predicts the squeeze parameters based on
diffusion time τd for molecular diffusion which is required to equalize the pressure inside and
outside the air gap.

bsqueeze = pAτd
g

( 1
1 + (ωτd)2

)
(2-36)

ksqueeze = pA

g

(
(ωτd)2

1 + (ωτd)2

)
(2-37)

For high frequency oscillations ω >> 1/τd, the diffusion cannot respond quickly and we ex-
pect the squeeze film to only influence the spring constant. For low frequencies ω << 1/τd,
we however observe extra damping. A detailed analytical model for above analysis can be
found in [64]. Since ksqueeze is directly proportional to the pressure, we expect an increase
in resonant frequency with increasing pressure according to Eq. (2-31). A typical frequency
response due to squeeze film damping is shown in Figure 2-5.

2-5 Electrical model for mechanical resonator

Sensors of any kind discussed so far can be treated as electromechanical transducers which
convert mechanical (or acoustical) energy into electrical energy and vice-versa. For exam-
ple, in case of electrothermal excitation discussed earlier; the electrical input power across
the diffused resistors is converted into heat (thermal energy) which finally transforms into
mechanical displacements. The generated deflections are next converted into an electrical
output signal to transduce several physical variables like force, pressure, mass etc. Based on
the structural properties of resonator and boundary conditions, the behavior of mechanical
resonators can be described by Eq. (2-1). However, a much deeper, easier and quick insight
can be obtained into the dynamics of sensors by an electrical equivalent model in which both
electrical and mechanical parameters of sensors are represented by lumped-element electric
circuit. The approach is based on the analogy between electrical and mechanical domain in
Table 3-2 . The electrical equivalent can be easily solved by Kirchoff’s Voltage Law (KVL),
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P2
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P4

ωo

Increasing pressure

Peak amplitude

Figure 2-5: Frequency response of a resonator due to squeeze film damping. The resonance
frequency increases with increasing pressure but with increased damping as shown (Adapted from
[64]).

Kirchoff’s Current Law (KCL) etc. which intrinsically solves variables like mass, stiffness or
damping for many different domains. We begin by considering the electromechanical coupling

Table 2-3: Relation between electrical and mechanical domain

General Electrical Mechanical

Effort Voltage-V Force-F
Flow Current-I Velocity-v

Displacement Charge-q Deflection-x
Energy loss Resistance-R Damping-b

Energy Storage Capacitor-C Spring Constant-k
Inductor-L Mass-m

coefficient η between the efforts in the two domains. The coupling coefficient is a numerical
measure of the conversion efficiency between electrical and mechanical energy. For the efforts
F and V, we may write

F (t) = ηV (t) (2-38)

From the conservation of energy, we have

Pmech = Pelec (2-39)

F (t).v(t) = V (t).I(t) (2-40)

F (t)
(
dx(t)
dt

)
= V (t)2

Z
(2-41)
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26 Fundamentals : MEMS Resonator

where Z is the electrical impedance of the mechanical resonator. Using V (t) = Voe
iωt, Eq. (2-

3) in Eq. (2-38), we obtain

iωF 2
o e

2iωt

m(ω2
o − ω2 + i2ζωoω) = V 2

o e
2iωt

Z
(2-42)

or
Z = m(ω2

o − ω2 + i2ζωoω)
iωη2 (2-43)

Z = 1
η2 (2ζωom+ iωm+ mω2

o

iω
) (2-44)

The above electrical impedance is similar to a series RLC circuit for which the input impedance
is defined as

Z = R+ jωL+ 1
jωC

(2-45)

Comparing the above two equations, we can finally determine the electrical model of a me-
chanical resonator in terms of R, L and C where

Rm = 2ζωom
η2 = b

η2 =
√
km

η2Q
(2-46)

Lm = m

η2 (2-47)

Cm = η2

k
(2-48)

The subscript m stands for motional component of resonator. From Table 2-3 we can see that
spring constant correlates to capacitance and mass to inductance. The complete electrical
equivalent of the mechanical system is shown in Figure 2-6 where Co is the shunt capacitor
formed by the two electrodes separated by an air gap. From the analysis above, we can now
formulate Q and ωo as

ωo = 1√
LmCm

(2-49)

Q = ωLm
Rm

(2-50)

2-6 Analytical theory of circular resonators

Circular membranes have been used in a number of experiments with various resonance mode
(Figure 2-7) and shapes (ring or disk) as MEMS sensors. Circular plates are capable of
both in-plane and out-of-plane vibrations. The membrane deflects in response to external
force/pressure and resonates at it’s mechanical frequency. Assuming that a solid circular plate
clamped all around it’s edge has a uniform thickness, the mechanical resonant frequency can
be obtained from analytical plate theory [65] which takes into consideration the boundary
conditions and Bessel functions corresponding to the in-plane and out-of plane forces. The
natural frequencies for different modes is given by [66]

ωo = Kn

√
D

ρhr4 (2-51)
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f(t)

f(t)
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V(t)

bottom electrode

upper electrode

Rm Lm Cm

V(t)
Co

Rm Lm Cm

Co
Figure 2-6: Electrical Equivalent of a mechanical resonator. The air gap between the two
electrodes represents a capacitor with a parallel plate geometry.

where
Kn is constant where n refers to mode of vibration

h is membrane thickness
r is radius of the membrane
ρ is density of material

D is material’s flexural rigidity given by

D = Eh3

12(1− ν2) (2-52)

where
E is Materials Young modulus

ν is Poisson ratio

Figure 2-7: Different possible modes of normal (out-of-plane) vibration modes for a solid circular
plate (adapted from [67]).
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and therefore Eq. (2-51) reduces to

ωo = Knh

r2

√
E

12ρ(1− ν2) (2-53)

It should be mentioned here that the the above mentioned frequency is the natural resonance
frequency in case of absense of damping. However, for modeling squeeze film damping, we
use the damped resonance frequency given by

ωd = ωo

√
1−

( 1
2Q

)2
(2-54)

Similar theories can be applied to circular membranes with bimetallic layers with same or
different values of Poisson’s ratio (ν1, ν2) and rigidity (E1, E2). For a case where these pa-
rameters differ by significant amount, we use equivalent values of De and νe given by [68]

De = E1h
3
1

12(1− ν2
1)
Ka (2-55)

νe = ν1
Kb

Ka
(2-56)

where
Ka = 1 + E2h

3
2(1− ν2

1)
E1h3

1(1− ν2
2)

+ 3(1− ν2
1)(1 + h2/h1)2(1 + E1h1/E2h2)

(1 + E1h1/E2h2)2 − (ν1 + ν2E1h1/E2h2)2 (2-57)

Kb = 1 + ν2E2h
3
2(1− ν2

1)
ν1E1h3

1(1− ν2
2)

+ 3(1− ν2
1)(1 + h2/h1)2(1 + ν1E1h1/ν2E2h2)

(1 + E1h1/E2h2)2 − (ν1 + ν2E1h1/E2h2)2 (2-58)

When the membrane is deflected by a uniform external pressure pext, it also experiences an
additional electrostatic force during electrostatic actuation. The total pressure is thereby
given by

po = pext + F (t)
πr2 (2-59)

and the plate’s deflection at a radial distance rx from the center can be written as [66]

x(rx) = por
4

64De

(
1− r2

x

r2

)2

(2-60)

The equation of the plate’s deflection for a uniform pressure is assumed to hold for all stable
deflections. This assumption can be used to determine the equivalent mechanical parameters
and predicts its plate displacement as a function of applied voltage which will be discussed
in more details in Chapter 3. In [69], a similar analyis has been done to extract mechanical
parameters i.e. m, k, and Q for circular membranes.
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Chapter 3

MEMS oscillator as resonant pressure
sensor

Every resonant sensor requires continuous excitation of MEMS resonator for regular monitor-
ing of resonant frequency as a function of measurand (pressure, mass or force). The resonator
can be brought into vibration and mode or frequency can be readout by various excitation
and detection techniques as discussed in chapter 1. The detection block typically consist
of an interface circuit which converts the measurand dependent variables like capacitive or
resistive changes into analog signals via current/charge sensing circuits which are then fed to
impedance or dynamic signal analyzer for data acquisition. Such sensors can be configured
in either open-loop [70] or closed-loop [71] (using a phase lock loop-PLL [32]) configuration
as shown in Figure 3-1. Conventional resonant sensors use hermetic sealing to achieve high
Q factors.

For very small pressure fluctuations, detected output signals are too small in magnitude
and therefore require additional amplification to achieve high Signal-to-Noise Ratio (SNR).
For piezoresitive or capacitive pressure sensors, the outputs are analog in nature and hence
sensitive to noise. With a view to have digitally encoded output signals, several pressure
sensors with frequency output have been proposed [72], [73], [74]. It is easier and convenient to
conduct frequency measurements with digital circuits. In [72], piezoresistive pressure sensors
have been integrated with ring oscillators, the output frequency of which is controlled by
pressure. The change in the resistivity of silicon causes a change in the injection current in
the transistors and hence modulating the frequency output of the ring oscillator. A similar
principle has been used in capacitive pressure sensors [75]. These resonant sensors use an
external electrical oscillator whose frequency accuracy limits the sensor’s sensitivity. High
accuracy can be obtained from low noise injection, high quality factors and low temperature
drift. In terms of these parameters, emerging class of MEMS based mechanical oscillators
provides superior electrical performance over electrical oscillators [76]. In [77], stability of
electrical oscillators have been improved by locking them with mechanical oscillators. Due to
these reasons, MEMS oscillators have been replacing electrical and highly sensitivity quartz
oscillator for frequency references and timing applications [43] as well as for resonant sensing
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ExcitationDetectionC/V

Amplifier Low pass filter

Data Acquisition

Hermetic sealing

Signal Analyzer

Frequency read-out

Lock-in amplifier

Figure 3-1: Open loop and closed loop (dash line) characterization of resonant sensors.

applications with frequency output signal. One of the main advantages of MEMS devices
is their capability to be integrated with current CMOS technology. As such, potential of
MEMS oscillators have been explored for measuring displacement [78], mass in attogram range
[44], magnetic field [79], acceleration [80] and even molecular interactions. Same principle
of self-exciting MEMS oscillators have been used for pressure sensing [81] which combines
the features of conventional resonant sensors along with excellent mechanical and electrical
performance of MEMS devices.

3-1 MEMS oscillator

For a theoretical case of a lossless system (Q =∞), the resonator would oscillate indefinitely
once excited. However, for a finite Q system, the oscillations would cease to exist after
certain amount of time due to inherent energy losses. In general, sustained oscillations can be
obtained by using a MEMS resonator in a closed loop as shown in Figure 3-2 . The resonator
can be considered as a frequency dependent non-linear block with a transfer function G(ω,A).
For a system to oscillate at a frequency ωosc, the two following conditions need to be true.

G(ω, A)

Figure 3-2: A general model for an oscillator.
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3-1 MEMS oscillator 31

ReG(ωosc, Aosc) = 1 (3-1)

ImG(ωosc, Aosc) = 0 (3-2)

Eq. (3-2) implies that the total phase of the closed system should be a multiple of 3600.
These conditions are known as barkhausen criteria [82] and are only true under two satisfying
conditions [83]. (

d(argG)
dω

)
ωosc,Aosc

< 0 (3-3)

( |G|
dω

)
ωosc,Aosc

< 0 (3-4)

Eq. (3-3) is known as phase stability which states that if the phase loop increases, then
frequency must decrease. No periodic oscillation can take place if this condition is not satisfied.
Eq. (3-4) is known as amplitude stability i.e. the amplitude decreases whenever loop gain
increases. As such some non-linearity is required in the circuit for fixing the signal amplitude.
For sustained oscillations, the energy loss is compensated by an additional sustaining amplifier
which contributes to the total loop gain of the system. Figure 3-3 shows a block diagram of
a MEMS oscillator.

ElectromechanicalElectromechanical
Transduction Transduction

A, φA

sustaining amplifier gain-phase control

Rm Lm Cm

Co

Figure 3-3: Closed loop system of MEMS oscillator. Total loop gain is dependent on all individual
blocks.

Depending upon the application or resonator structure, some transduction mechanisms for ex-
citation and detection are preferred over others. For example, electrostatic excitation requires
two parallel electrodes (the resonator being the upper electrode). In case of large static deflec-
tions due to DC bias, the force distribution is disturbed and can be solved by redesigning the
resonator. In fact geometric shaping of resonators for every transduction mechanism is possi-
ble [84] to control the desired mode of excitation. Piezoelectric and piezoresistive transduction
requires integration of additional layers/components to the resonator and leads to increased
complexity during fabrication. Mechanism involving thermal stress lead to temperature drift
in the system thereby reducing the accuracy. In such cases, contact-less interrogation like
optical or electromagnetic principles seems a better option. While EM transduction requires
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32 MEMS oscillator as resonant pressure sensor

close proximity to large magnetic coils, optical systems need large experimental setup and
intricate alignment of optics in presence of thermal drift and vibrations. Electrostatic ac-
tuation by far is the most common approach and offers the simplest excitation mechanism
for MEMS oscillator. This chapter leads to a design of a MEMS oscillator with electrostatic
excitation and optical detection by using highly sensitive laser doppler vibrometry (discussed
later) which to our knowledge has not been reported so far. The advantages offered by optical
feedback will be discussed in the subsequent sections.

3-2 Electrostatic excitation

Consider a resonator geometry as shown in Figure 3-4 excited by a voltage source V =
Vdc + Vac. We assume the plates are supported elastically, so they don’t collapse. The charge
q induced across the plates generates an electric field ~E between the electrodes resulting in an
electrostatic force. Since the bottom electrode is fixed, the upper electrode (the resonator) is
set into vibration with a displacement x.

A

F
x

go
Vac

VdcFixed electrode

Co(x)

Figure 3-4: Electrostatic excitation of a parallel plate resonator.

Statistically, the driving force should be compensate by the restoring force kx due to the
spring for any value of x.Using the well known equations, the generated force is equal to

F = q ~E = Co(x)V
(

V

go ± x

)
(3-5)

Co(x) = εoA

go ± x
(3-6)

where A is the area of electrode, εo is permiivity of air, go is static air gap between 2 electrodes.
The plus and the minus sign denotes the upward and downward deflection of the membrane
thereby modulating the gap capacitance. For any small variations in the input voltage around
it’s DC value, the corresponding change in force is given by

dF = 2εoAV
(go ± x)2dV (3-7)
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3-3 Electrical Measurement : Open-loop characterization 33

which leads to a displacement dx. Alternatively, electrostatic force can be summed up as

F = d ~E

dx
(3-8)

The energy stored in the capacitor as a function of displacement can be written as

E = 1
2Co(x)V 2 = 1

2

(
εoA

go ± x

)
V 2 (3-9)

For an input voltage V = Vdc + Vacsin(ωit), Eq. (3-9) reduces to

F =
(
εoAVdc

(go ± x)2

)
Vac (3-10)

The term V 2
dc is a steady term and does not contribute to the driving force. Neglecting the

small contribution due to V 2
ac leads to Eq. (3-10). This equation is similar to Eq. (2-38) which

gives a mathematical expression for coupling coefficient η.

η = εoAVdc
(go ± x)2 ≈

εoAVdc
go2 (3-11)

The coupling factor η from Eq. (3-11) indicates the conversion efficiency between input signal
Vac to mechanical force F. To increase this factor, we must either increase the area of electrode
i.e. increase the size of the resonator or decrease the air gap go. The same effect can also be
obtained by increasing Vdc. However, increasing the DC bias voltage also tunes the resonant
frequency . This can be seen if we consider the quadratic dependence of x on driving force
due to the denominator (go − x)2 in Eq. (3-10). Taylor expansion results in higher order
terms suggesting that it is a non-linear spring known as amplitude stiffened duffing spring .
Depending on the sign, this additional spring constant kelec can either increase or decrease
the resonant frequency; also known as hardening or softening effect respectively [85]. For
parallel plate geometries, "soft" spring effect is seen due to cubic dependence on displacement
[86]. Complete analysis of induced non-linearity results in [87]

∇f
fo
≈ −V

2
dcεoA

2kg3
o

(3-12)

Since frequency shift has a square dependence on DC bias, highly stable DC source are
required. From Eq. (2-46)-Eq. (2-48), we also notice the square dependence of Vdc on the
electrical lumped parameters.

3-3 Electrical Measurement : Open-loop characterization

For our experiments we use a MEMS diaphragm with a center perforation to keep the pressure
equal on both sides of the oscillating membrane. The cross-sectional view of the resonator is
shown in Figure 3-5 and Table 3-1 lists the device specification.
We perform an open loop characterization of the MEMS resonator using a HP 4194A
impedance/phase analyzer. The resonator is excited by a 200 mV AC signal (pk-pk)
with a variable DC bias. The input impedance is measured over a suitable frequency range.
The resonator was hermetically sealed and connected to a vacuum pump (Petiffer-D35614
A) to regulate internal pressure inside the cavity. The device was characterized for different
values of pressure and DC bias.
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Substrate

Bottom
Electrode

go

Membrane

Si3N4 SiGe
hole

(a)

(b)
(c)

Bond wire
contact padHole

Figure 3-5: (a) Cross sectional view of the MEMS resonator. (b) and (c) are the microscopic
images of the actual sample used.

Table 3-1: Electrical and mechanical parameters of resonator and experimental setup

Resonator Bi-layer Circular diaphragm
Type open (single center perforation)

Layer 1 SiGe
Layer 2 Si3N4

Film thickness h1 4µm
Film thickness h2 2µm

radius d 170µm
Density -SiGe(ρ1) 3827kg/m3

Density-Si3N4(ρ2) 3100kg/m3

Youngs modulus E1 392 GPa
Youngs modulus E2 310 GPa
Poisson’s ratio ν1 0.275
Poisson’s ratio ν2 0.27
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3-3-1 Parameter extraction

For electrical parameter analysis, we consider a modified model of MEMS resonator known as
Butter-worth Van Dyke (BVD) model [88] which is more accurate for extraction of parameters
and design analysis. It takes into account the parasitic effects due to external connections,
routing of electrodes and support losses. The modified model is a five element model with an
additional shunt resistance as shown in Figure 3-6.

Figure 3-6: Butter-worth Van Dyke model for MEMS resonator.

For the above model, we can write

Z(ω) =
(
Rm + jωLm −

j

ωCm

)
||
(
Ro −

j

ωCo

)
(3-13)

Y (ω) = 1
Z(ω) = G+ jB (3-14)

The signal analyzer measures the real and imaginary part of input admittance (Figure 3-7).
The electrical parameters are then extracted by curve fitting.
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)
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)

Frequency (kHz)

P=764 Torr

Co=3.6 pF
Cm=1.2 fF
Lm=47 H
Rm=3.6 MΩ
VDC=10V

Figure 3-7: Input admittance measurement obtained from HP4194 analyzer. The superimposed-
yellow graph is obtained from curve-fitting algorithm corresponding to Eq. (3-14)
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36 MEMS oscillator as resonant pressure sensor

To study the analytical behavior of the model, extracted parameters are plotted against DC
bias at various pressures. The result is summarized in Figure 3-8 which shows the expected
response according to Eq. (2-46)-Eq. (2-48). The slope of the graphs can be used to extract
the mechanical parameters by using the following equations:
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Figure 3-8: Variation of motional parameters vs square of the DC bias.

Q =
(√

kmg4
o

ε2oA
2

)(
∂(1/V 2

dc)
∂Rm

)
(3-15)

k =
(
ε2oA

2

g4
o

)(
∂V 2

dc

∂Cm

)
(3-16)

m =
(

g4
o

ε2oA
2

)(
∂Lm

∂(1/V 2
dc)

)
(3-17)

From analytical theories [89], the effective mass of resonators is constant irrespective of it’s
resonance mode, Q or surrounding pressure. The squeeze film damping only contributes to
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3-3 Electrical Measurement : Open-loop characterization 37

the damping factor and spring constant. Solving Eq. (3-17) at different pressures by using
values from Table 3-1 and Figure 3-8, we obtain

mexpt=3.676e-09 kg
The theoretical mass of the circular diaphragm obtained from Table 3-1 is equal to

mtheo = α.[ρ1VSiGe + ρ2VSi3N4 ] (3-18)

where α is the multiplication factor obtained from COSMOL simulation for circular mem-
branes. It corrects for the displacement due to amplitude variations over the membrane area
for the fundamental resonance mode. For our case, we obtain α =1.8.

mtheo = α.[πr2(ρ1h1 + ρ2h2] (3-19)

mtheo=3.69e-09 kg

The experimental results for effective mass are similar to the expected theoretical value. Since
we expect mass as well as slope in Figure 3-8c to be constant at all conditions of pressure, we
see a deviation in the response at low voltages. At low excitation amplitudes, the inaccuracies
in the effective mass could be due to asymmetrical properties of the membrane arising to
contact probes and discontinuities on the edges (Figure 3-5). Due to the uncertainty in
air-gap and electrode area in Eq. (3-15) - Eq. (3-17), extraction of mechanical parameters
from electrical measurements may lead to inaccuracies . To study the effect of squeeze-film
damping on quality factor and spring constant, we alternatively use the following equations

Q = ωoLm
Rm

(3-20)

k = mω2
o (3-21)

b = mωo
Q

(3-22)

3-3-2 Modeling squeeze film damping

For five different values of pressure in Figure 3-9 and Figure 3-10, we clearly see the shift in
resonance frequency with a slope of 95.25 kHz/bar accompanied by decreasing Q with in-
creasing pressures. At resonance, the membrane deflection is maximum and more mechanical
energy is dissipated i.e work done against the ambient gas pressure. Since this dissipation
must be compensated, a peak in the conductance response is seen.

From Eq. (2-37), we can estimate the theoretical upper limit for frequency shift for ωτ >> 1
which is given by

dkeff
dp

= 2mdωo
dp

ωo (3-23)

dksqueeze
dp

= 2mωo
dωo
dp

(3-24)
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38 MEMS oscillator as resonant pressure sensor

Figure 3-9: Dependence of Quality factor (Eq. (3-20)) and resonance frequency for different
values of pressure. The measured frequency shift is equal to 95.25 kHz/bar.
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Figure 3-10: Conductance response of the MEMS resonator for different pressures.
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dωo
dp

= 1
2mωo

A

go
(3-25)

For a measured value m and ω0 (at atmospheric pressure), we estimate a frequency shift of
50 kHz/bar which is less than 2 times larger than the observed shift of 95.25 kHz/bar. We
can conclude that our device is operating in the regime where ωτ >> 1. Theoretical change
in the spring constant can be calculated as(

dkeff
dp

)
theo

= A

go
= 0.09 (3-26)

which can be compared to the experimental data equal to(
dkeff
dp

)
expt

= 2mdωo
dp

ωo ≈ 0.1 (3-27)

Since the analytical model is valid in our case, the damping coefficient from Eq. (2-36) now
reduces to

bsqueeze = pA

goω2τd
(3-28)

By knowing the quality factor and resonance frequency, we can now calculate the damping
coefficient by using Eq. (3-22) and estimate the diffusion time at different pressures (Table 3-2)
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Figure 3-11: Damping coefficient estimated from Bao’s model at various pressures.

From the above result we see that squeeze film damping introduces a fractional change of
0.001 % in damping coefficient and 0.0034 % in spring constant. Skvor’s model has not
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Table 3-2: Squeeze film model -extracted parameter

Pressure b(Kg/s) keff (N/m) τd(µs)

146 Torr 5.94e-05 4.87e+04 2.23
255 Torr 8.58e-05 5.05e+04 2.61
345 Torr 1.17e-04 5.28e+04 2.46
591 Torr 2.11e-04 5.81e+04 2.12
661 Torr 3.17e-04 6.24e+04 1.48

been used here as it underestimates the damping parameters. The model is applicable for
low frequencies or large air gap. At an operational frequency of 600 kHz and low diffusion
time of gas molecules, the effective area of the membrane seen by the gas molecules is much
lower than one used in Skvor’s model. From the extracted sensitivity of k and b, we obtain
a diffusion time of 2.18 µs with an error of 0.38 µs which returns ωτd ≈ 9. Although the
product does not exactly fall under the assumed regime (ωτd >> 1/τd), the model quite fairly
estimates the sensitivity dksqueeze/dp with 11.11 % error in comparison to it’s theoretical
counterpart.

3-4 Optical Detection

Non-electrical nature of signals is what distinguishes optical detection from various other
detection techniques for vibration analysis. Fiber optic sensor technology has emerged as a
new replacement for existing sensor technology [90] by providing a non-contact, perturbation
free means of vibration monitoring by using compact instrumentation in electrical machinery
with electrical isolation. This reduces fabrication complexity for MEMS resonators which
otherwise requires integration of additional materials for electrical read-out. The negative
influence of electromagnetic interference (EMI) with electrical signals which is a real problem,
can be eliminated by optical measurements [91]. Vibration sensing can take place inside the
optical fiber (intrinsic sensors) or outside (extrinsic sensors) but depending upon the working
principle, they can be categorized into [92] :

• Intensity modulation detection : The light intensity from the source is modulated
(change in transmitted power) by the vibrating resonator. The modulated signal is
guided to a photo diode and converted into electrical signals for processing. They
have been used in micro-bend sensors for strain/stress sensing [93] and non-contact
displacement sensing [94]. Intensity based sensors are low cost and easy to implement
but significant amount of error can arise due to the change in transmitted power at the
reflective surfaces.

• Interferometric detection : The dark and bright fringes formed due to interference
between transmitted and reflected beams from the sample are used to measure the
vibrations. Various interferometric systems like Fabry Perot (FP) interferometer or
Michelson interferometer have been used for sensing application [95]. In [96], a highly
accurate system using double FB cavity is used. They provide high precision during
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3-5 Laser Doppler Vibrometry (LDV) 41

real-time measurements and are classified as one of the most sensitive structures. The
main disadvantage is the error due to optical system alignment.

• Fiber Bragg Grating (FBG) detection : FBGs are devices which consists of
longitudinal periodic variations in refractive index of the core of an optical fiber. A
series of FBGs placed in an optical path results in a series of interferences when light
travels through them. Depending upon the value of refractive index which the beam
sees, some wavelengths experience a transmission blockage and are reflected (Fresnel
reflection [97]). As such FBGs acts as wavelength selective reflectors and the reflected
beam represents a peak (Bragg peak) in the frequency domain. When a vibration is
applied to a FBG, the reflection spectrum curve shifts in the direction according to the
motion of the resonator and is processed for sensing applications . This technique offers
dense wavelength multiplexing complexity for accurate vibration sensing [98], [99] .

Of all the types discussed above, interferometric detection offers the highest resolution and
are hence suited for characterization of nano-mechanical vibrations. Of all the available
interferometric based detection system , Laser Doppler Vibrometry (LDV) will be used for
our goal and is discussed in the subsequent section.

3-5 Laser Doppler Vibrometry (LDV)

Laser doppler vibrometry is a velocity transducer i.e. it measures the velocity of the moving
resonator on the principle of measuring the doppler frequency shift. When a laser beam of
wavelength λ is targeted on a moving sample with a velocity v, the source sees a frequency
modulated reflected signal due to the doppler effect. The shift in the frequency is dependent
on the velocity of the moving sample according to the following relation

fd = 2v
λ
cosθ (3-29)

where v.cosθ is the velocity component along the laser beam. To be able to estimate the
surface velocity of the sample, the doppler frequency shift needs to be measured at a given
wavelength. For MEMS resonator, surface velocities can be as low as 1 mm/s . For a He-Ne
laser source with a corresponding wavelength of 632.8 mm, a frequency shift of 3.16 kHz is
observed per 1 mm/s which compared to the laser frequency (4.7×1014 Hz) is very small. To
measure such small shifts we use interferometers. Figure 3-12 shows a block diagram of LDV
system.

The source beam f from the laser is split in two by a beam splitter. One part of the beam
is directed towards the sample and the other is directed towards a bragg cell. The reflected
doppler shifted beam f + fd from the sample is interferred with a bragg cell shifted frequency
f ± fb. The path difference r1 and r2 between the two input beams to the interferometer
leads to dark and bright pattern pattern. The intensity of the total signal is given by

Itot = I1 + I2 + 2
√
I1I2cos[2π(r1 − r2)/λ] (3-30)

The moving sample generates a time dependent path difference r1(t)−r2 which modulates the
frequency shift. Each fringe represents a sample displacement equivalent to λ/2 i.e 316 nm
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Figure 3-12: Optical setup of Laser Doppler Vibrometry.

(for He-Ne laser). The purpose of the bragg cell is to determine the direction of velocity. It
works as an opto-acoustic modulator which shifts the input frequency by fb = 40 MHz. If the
sample moves towards the laser source, detector receives a frequency lower than fb otherwise
a frequency higher than fb. As such LDV can be used to measure both the magnitude and
the direction of the sample velocity. LDV can be used to measure displacement amplitudes
x of any sample from the measured velocity by using

v = 2πf.x (3-31)

The measured velocity or displacement are then converted into analog signals for data pro-
cessing and acquisition. Apart from offering a high resolution, LDV also allows 3-D surface
measurements by scanning the laser beam across the surface of the sample. We have used
POLYTEC instruments to study the various resonance modes due to Brownian motion of an
Atomic Force Microscopy (AFM) cantilever as shown in Figure 3-13.

Fundamental Mode second order

third order

Figure 3-13: Measuring brownian motion of an AFM cantilever using polytec LDV system.
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3-6 Optical measurement : Open Loop characterization

Polytec MSA-400 scanning LDV was used to optically detect vibrations of the resonator
and to study its surface topography. The sample was placed directly under the laser source
(λ = 633 nm) and was actuated by applying a voltage signal using Agilent 33250A. The
measured velocity was converted into electrical signal by using a suitable velocity decoder
(VD-20) supported by polytec OFV 5000 vibrometer. The conversion of velocity to voltage
was done with a sensitivity of Sv = 20mm/s/V . Maximum output signal is obtained with
the laser spot positioned in the center of the membrane where deflection amplitude attains
its maximum value. Experimental setup and frequency response of the sample is shown in
Figure 3-14.

To measure the air gap between the two electrodes, we actuate the sample with high DC
voltage up to 120V . In the absence of an ac signal, the membrane doesn’t resonate but in-
stead undergoes static deflection due to force generated by DC source. With higher DC bias,
the deflection amplitude increases to a point when the top electrode collapses with the bot-
tom electrode. The surface measurement under collapse condition using polytec topography
analyzeris shown in Figure 3-15. We measure an air gap of go=960 nm which is close to
fabricated specification (1000 nm) of the sample.

3-7 MEMS oscillator using optical feedback

From Figure 3-3, we can finally construct an optical feedback based oscillator. Electrostatic
excitation converts electrical signal into mechanical motion while Polytec MSA analyzer de-
tects the vibration by optical interference thereby converting the mechanical motion into
frequency modulated optical signal. Rather than using a conventional sustaining amplifier
to close the loop, we instead use the optical signal via vibrometer that outputs a velocity
decoded voltage signal. Figure 3-16 shows the complete experimental setup of the proposed
opto-electronic MEMS oscillator. The sample is confined inside a vacuum chamber, the in-
ternal pressure is controlled by an external knob. The phase and gain loop conditions are
controlled by the phase shifter and an Automatic Gain Control (AGC) circuitry respectively.
The Bias-Tee superimposes a DC signal onto the generated AC signal which is used to actuate
the MEMS resonator. The frequency of the output signal is measured by a high precision
frequency counter.

Returning to the electrical model of MEMS resonator, the system would only oscillate if the
following condition [43] holds

Rm ≤
1

2ωoCo
(3-32)

i.e. for Figure 3-6, the system will not oscillate if :

• Rm is too large. ;

• ωo is too high.;

• Co is too large.
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Figure 3-14: (a) Experimental setup for sample characterization using LDV. (b) 3D grid-view
of the membrane at resonance. (c) The measured frequency response for 3 different pressures at
10 Vdc and 200 mVac. The peak signal at resonance is decreased due to increased damping at
higher pressures.
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Figure 3-15: Membrane capacitive gap analysis using polytec topography analyzer. The mea-
surement was carried out in short coherent mode followed by linear regression.

With conventional MEMS oscillator that use electrical signals for vibration detection, the
shunt capacitor (along with external parasitic capacitance) posses a big problem for achieving
stable oscillation. The effect of Co and other parasitic capacitance is completely eliminated
when LDV as a velocity transducer is used. Yet, the basic oscillation conditions needs to be
fulfilled i.e. Eq. (3-3) and Eq. (3-4) needs to be satisfied . For this purpose, the Gain/Phase
control block in Figure 3-3 consists of a phase shifter which adjusts the closed loop phase
until the oscillation conditions are met. To have a closed-loop stability, it is important to
limit the amplitude of the signal. This is done by an automatic gain control circuit and is
discussed in the following section.

Table 3-3: Components used in Figure 3-16.

Laser Scanner Polytec MSA 500
Vibrometer Polytec OFV 5000

velocity Decoder 20 mm/s/V
Spectrum Analyzer HP 89410A VSA
Frequency counter Fluke 6681

DC Source Agilent 33250A
Bias Tee Picosecond 5530A

Pressure Readout GRANVILLE-275 Mini Convectron
Pump Pfeiffer
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Figure 3-16: Experimental setup of the proposed MEMS oscillator using optical feedback by
laser Doppler vibrometer. Refer to Table 3-3 for the list of components used.
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3-7-1 Phase -Shifter

The basic principle of a phase shifter is to have a complex input impedance in the path of
an input signal. Simple R-C ladder circuits can be used to add delay (phase) but this leads
to attenuation due to resistive paths. We use an active 1st order all pass filter as shown in
Figure 3-17 as a phase shifter. When R1 = R2 = R3 , the filter provides a unity gain for all
frequencies but adds a delay to the output response. The transfer function for a 1st order all
pass filter is given by

Vout
Vin

=
s− 1

R3C1

s+ 1
R3C1

(3-33)

which gives a frequency dependent phase shift of

φ = −2tan−1
(
R3C1
ω

)
(3-34)

Figure 3-17: First order all pass filter used as a phase shifter.

The phase shift goes from -180 degrees at 0 Hz to 0 degrees at high frequency. By using the
variable resistor or a capacitor, a suitable phase shift can be added to the signal. In our case
we use a tunable capacitor (10 pF-150 pF) and obtain a the phase delay from -105 degrees
to 2 degrees as shown in Figure 3-18. Additional phase shift of 75 to 180 degrees can be
obtained by inverting the input signal thereby introducing a shift of 180 degrees.

3-7-2 Automatic Gain Control (AGC)

The second part of the control block, automatic gain control (AGC) circuit is used to stabilize
the oscillation amplitude to an optimum level. A basic principle of an AGC is shown in the
block diagram (Figure 3-19). The signal’s absolute value is extracted by a peak detector and
filtered by an RC low pass filter giving an output signal average value. The subtractor block
then compares it with a reference (or optimum level) signal . The integrator together with a
variable gain amplifier regulates the signal amplitude to minimize the error. Of course various
other topologies can be made for AGC circuits [100] but the basic principle remains the same.

AGC designed for our oscillator consists of an op-amp U2 configured as a variable gain
amplifier. Diode D1 acts as peak detector passing a negative DC ripple which is rectified by
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Figure 3-18: Phase shifter response as measured with an oscilloscope by varying C1 from 10 pF
to 150pF.
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Figure 3-19: Block diagram of an AGC circuit along with it’s actual implementation.

the low pass filter (R7-C2) . The DC signal is applied to the gate of Q1, a N-channel J-FET
used as a gain controlling element and offers excellent control due to its wide range of drain-
source resistance which is controlled by the gate voltage. The gain of U2 for a non-inverting
configuration can be written as

Vout
Vin

= 1 + R5
RQ +R4

(3-35)

Depending upon the negative swing at the output, RQ is modified by the DC bias of Q1
and thus controlling the gain until the voltage is stabilized. An optimized signal level can be
obtained by tuning the variable resistor R5.

3-8 Resonant pressure sensing

The system would start oscillating only when the loop gain is unity and a closed loop phase
shift is 0. For a given phase and gain, the oscillator can resonate at any frequency in the
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3-8 Resonant pressure sensing 49

vicinity of ωo. To have the resonator oscillate exactly at its mechanical resonance frequency, we
tune the phase shift and gain to a point where the system begins to oscillate at a minimum
value of input DC bias. A higher input DC bias shifts the oscillating frequency in either
direction so as to satisfy the oscillation conditions. The internal pressure of the chamber
was pumped down to low pressures and a minimum DC bias was found for each oscillator
response. The frequency output at this minimum input signal was measured by a spectrum
analyzer at various pressures and plotted. The results are summarized in Figure 3-20 and
Figure 3-21.
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Figure 3-20: Measured DC bias vs phase shift for various pressure. The phase shift was obtained
by tuning the capacitor from 10-150 pF.

Pressure dependence of 97.16 kHz/bar from Figure 3-21 is experimentally obtained i.e. for
a frequency shift of 1 Hz (0.97 Hz), the pressure changes by 1 Pascal. From practical point
of view, detection of 1 Hz frequency shift is not easily achievable. The smallest change in
pressure, δpmin that the oscillator can detect is limited by minimum resolution of frequency
measurement system according to

δpmin = 1
Sp

(
δω

ω

)
min

(3-36)

where Sp , the relative pressure sensitivity is given by

Sp = 1
ω

(
dω

dp

)
(3-37)

To achieve a high resolution, the frequency response should be free from instability which
may arise due to various noise sources within or outside the loop.
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Figure 3-21: Measured frequency output vs pressure. As expected, the system’s resonant fre-
quency shows a linear dependence on the pressure with a slope of 97.16 kHz/bar.

3-9 Oscillator frequency response : Phase noise

The frequency spectrum on an oscillator should ideally contain only a single frequency but in
reality the presence of short term frequency fluctuation leads to broadening of the frequency
spectrum. The frequency instability can be due to non-deterministic noise sources such as
flicker noise and white noise and can cause fluctuations in the phase (ϕ(t)) and amplitude
(α(t))of the oscillator signal as shown in Figure 3-22.

Compared to an ideal response given by Vosinωt, a noisy oscillator response can be represented
by

V (t) = Vo(1 + α(t))sin[ωt+ ϕ(t)] (3-38)

The cleanness of the output spectrum is the defining factor for the overall accuracy of the
system which determines the maximum bit rate and minimum power consumption. While the
amplitude fluctuations can be reduced by AGC , the phase noise still remains unaffected and
gets accumulated with time and hence characterizes the cleanness of oscillation. It negatively
influences the bandwidth especially in communication systems with narrow channel spacing.
Considerable amount of theoretical and experimental work has been done on phase noise for
conventional oscillators based on LC tank circuits [101], [102], CMOS oscillators [103], and
noisy signal sources [104]. For MEMS oscillators, electrostatic transduction [105], amplifier
non-linearities due to AGC [106], input noise at resonator bias ports [107] and mechanical
noise from the resonator [108] itself leads to further noise. An analytical model of phase
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Figure 3-22: Oscillator output at a pressure of 117 Torr measured using (a) oscilloscope and
(b) spectrum analyzer. Compared to an ideal single peak, the response is much wider due to
external/internal noise sources.

noise for MEMS oscillator can be derived by using the RLC model of resonator as shown in
Figure 3-23.

Rm Lm Cm

u2
noise

u = Rmi

i

Figure 3-23: Idealized oscillator with a MEMS resonator and a trans resistance amplifier convert-
ing current into a voltage source. All the possible noise signals are summed up into one voltage
source.

The transresistance amplifier (u = Rmi) provides the feedback for closed loop oscillations.
At resonance, the loop gain is unity, the amplifier cancels the resistive losses and Lm and Cm
cancels each other at ωo. At a small offset frequency ωo + ∆ω, we can write

i = uac
Z
≈ uac
R+ j2∆ωL (3-39)

Including the voltage sources from the amplifier and noise signals, we have

u

Rm
≈ u+ unoise
R+ j2∆ωL (3-40)
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52 MEMS oscillator as resonant pressure sensor

Solving Eq. (3-40) for u gives an expression for output noise as

|unoise−out|2 = |unoise|2
[(

ωo
2∆ωQ

)2
+ 1

]
(3-41)

Normalizing the output noise signal to signal uac gives an expression for single band phase
noise.

Sφ(ω) = |unoise−out|
2

|uac|2

[(
ωo

2∆ωQ

)2
+ 1

]
(3-42)

Expression for the noise signal can be simplified if we consider the thermal noise and the noise
due to amplifier which results in the well known Leeson’s phase noise model [109] given by

Sφ(ω) = FkT

2Pin

[(
ωo

2∆ωQ

)2
+ 1

]
(3-43)

where F is the noise figure of the amplifier, k is Boltzmann constant, T is the absolute
temperature and Pin denotes the input power that is available at the node where the noise is
inserted. The factor of 2 arises from the fact that only one-half of the total noise corresponds
to phase noise while other half goes to amplitude noise. Leesons’model predicts a 1/f2 roll-off
i.e. -20 dB/dec fall with increasing offset frequency. However, in practice MEMS oscillator
also exhibit a strong 1/f3 roll-off due to the presence of 1/f flicker noise at lower frequencies
which is considered in the modified leeson’s equation given by Eq. (3-44). Figure 3-24 shows
a phase noise response of the opto-electronic MEMS oscillator at 2 different pressures where
only 1/f2 noise is observed.

Sφ(ω) = FkT

2Pin

[(
ωo

2∆ωQ

)2
+ 1

] [
1 +

∆ω1/f3

∆ω

]
(3-44)

The first term in Eq. (3-45) corresponds to the thermal-mechanical noise of the resonating
membrane and the second term is due to the noise injected by the measurement system i.e.
the noise from the oscillator electronics plus the noise injected from the LDV. From Figure 3-
24, we can conclude that at low offset frequency, noise decreases with a 1/f2 slope. At an
offset frequency equal to 10 kHz, the total phase noise is limited by the thermal noise (f0
slope) due to the measurement electronics and is equal to

Scircuit+LDVφ (ω) = −80dBc = 1× 10−8rad2/Hz (3-45)

It is clear that the reduced phase noise can be obtained at higher input power i.e. driving
the resonator at higher bias voltage . The same effect can also be achieved at higher Q and
have been experimentally reported [110].

3-10 Accuracy and noise of MEMS oscillator

Any external noise/interactions which gets translated into variations in amplitude or phase
results in the fluctuations in the oscillation frequency and hence limits the performance of sen-
sor devices. The oscillator considers a MEMS resonator as an energy tank storing vibrational
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-

---20 dB/dec

Figure 3-24: Phase noise response of the oscillator. A slope of -20dB/dec indicates the presence
of 1/f2 noise at low offset frequencies.

energy at ωo. The total energy fluctuates slightly around it’s mean value Eo due to random
energy fluctuation i.e. noise U(t) whose spectral content is centered around ωo. Keeping a
high level of signal-to-noise ratio, the error in frequency δf can be made low, thereby increas-
ing the accuracy of the sensor. There are at least four sources of noise which can lead to
phase/frequency fluctuations namely

• Thermal-mechanical noise of resonator.;

• Noise from the detector due to displacement variations of the membrane.;

• Noise from the actuator providing driving force.;

• Feedback induced noise (amplification, filtering etc).

Electrostatic driving offers excellent phase control [111] and hence noise from the actuator
is usually dominated by thermal and sensor induced noise. Compared to conventional non-
feedback resonant sensing, feedback loops shows a shift from it’s native fo (without feedback)
to fosc = fo + δfloop [112], [113]. The slope of the phase-frequency transfer function around
the native f0 is the highest one thereby giving the highest frequency stability due to phase
variations. The loop makes the system to oscillate out of f0 thereby lowering the frequency
stability which give rise to feedback induced noise. The feedback induces noise can be low-
ered/eliminated by running the system at the minimum DC bias signal as previously discussed
in Figure 3-20.
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54 MEMS oscillator as resonant pressure sensor

3-10-1 Thermal-mechanical noise

Thermal mechanical noise is due to the agitation of surrounding molecules which induces
the so called random thermal motion or Brownian motion. Returning to Eq. (2-3), we can
consider an extra contribution of the Brownian motion to the total membrane’s displacement
as δxb(t).

x(t) = X(ωosc)ei(ωosct−φ) + δxb(t) (3-46)

X(ωosc) = ηVac

m
√

(ω2
o − ω2

osc)2 + (2ζωoωosc)2 (3-47)

The term δxb(t) occurs due to the presence of noise force fn(t) which has a white spectral den-
sity Sfn(ω) and a Gaussian distribution with a zero mean. Fluctuation-dissipation theorem
[114] applies to mechanical resonator with a finite Q and therefore by using the well-known
Nyquist criteria [115], noise force spectral density can be written as

STf (ω) = 2
π

(
kBTmωo

Q

)
(3-48)

where the subscripts T denotes thermal noise. Similar to Eq. (2-23), the noise displacement
spectral density due to noise driven amplitude xb(t) is given by

STx (ωosc) = Sfn
m2(ω2

o − ω2
osc)2 + (2ζωoωosc)2 (3-49)

STx (ωosc) = 2kBT
πmQ

(
ωo

(ω2
o − ω2

osc)2 + (2ζωoωosc)2

)
(3-50)

Eq. (3-50) represents frequency distributed displacement noise and only half the total power
is associated with phase modulation; the other half is associated with amplitude modulation.
In applications where frequency output is measured by counting zero-crossing, error due to
amplitude modulation can simply be ignored. We can now calculated the phase noise due to
thermal-mechanical motions from Eq. (3-50). Phase noise mathematically can be expressed
as ratio between amplitude noise and mean amplitude and is given by Eq. (3-51).

STφ (ωosc) = 1
2
Sxnt(ωosc)
|X(ωosc)|2

(3-51)

For an offset frequency ∆ω = ω − ωosc such that ωosc/Q << ∆ω << ωosc, the off-resonance
phase noise reduces to

STφ (ω) ≈ kBT

4πmQωosc∆ω2|X(ωosc)|2
(3-52)

We define the mean amplitude of oscillation by stored energy at ωo as Ec = 1/2.mω2
o |X(ωosc)|2.

The energy dissipated per cycle due to the finite Q needs to be provided externally to main-
tain the oscillation. This input power is equal to Pin = Ecωo/Q. Eq. (3-52) can now be
reduced to

STφ (ω) ≈ kBT

8πPinQ2

(
ωosc
∆ω

)2
(3-53)

Eq. (3-53) is identical to expression given in [116] and defines the ultimate sensitivity for a
resonant sensor. However the contribution of other noise sources is significantly much larger
than thermal noise limits; thereby degrading the sensitivity.
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3-10-2 Displacement detector noise

The deflection of the membrane cannot be measured by infinite precision but is subjected to
the noise induced by the measurement setup. In addition to this, electrical noise injected by
the amplifiers that converts the optical signals into voltage also decreases the sensitivity. In
the closed loop optical system, the membrane starts to oscillate when

φ(f) + φcircuit(f) = 2nπ (3-54)

where φ(f) is given by Eq. (2-5) and φcircuit(f) is the additional phase added by the optical
system and the electronics. Since the oscillating frequency is dependent on the total closed
loop phase, any phase fluctuations in φcircuit(f) can lead to shift in the frequency as shown
in Figure 3-25. The shift is related to the slope of the graph which makes the situation worse
in case of low Q systems (or at high pressure).

Phase
Fluctuation

Frequency shift

frequency

Ph
as
e

Figure 3-25: Schematic of evolution of frequency shifts due to phase fluctuations.

To estimate the phase variations, output voltage from the vibrometer can be written as

Vout(t) = 1
Svp

d[X(ωosc)ei(ωosct−φ) + δxb(t)]
dt

+ δV (3-55)

where Svp is the vibrometer’s sensitivity (mm/s/V) and δV is the noise induced due to detec-
tion system. Given the constant velocity noise spectral density of sensor S(v) [(ms−1)2/Hz],
the output noise voltage can be written as

δV =
√
S(v).Bf (3-56)

The above noise is equally divided into amplitude and phase noise. The detector induced
phase noise can be written as

〈SDφ 〉2 = δφnd = δV

〈Vout〉
(3-57)

Since the variable velocity is uncorrelated, the induced phase noise spectral density SDφ can
be considered as white phase noise.
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56 MEMS oscillator as resonant pressure sensor

3-10-3 Total Noise

From Eq. (3-57) and Eq. (3-53), the total phase fluctuation can be written as

Sφ(ω) = STφ (ω) + SDφ (3-58)

Sφ(ω) = kBT

8πPinQ2

(
ωosc
∆ω

)2
+ SDφ (3-59)

δφ =
√
Sφ(ω)Bf (3-60)

From Figure 3-25 we observe that for an self oscillating loop at ωosc, the phase phase of the
resonator is φ = −π/2 and the frequency noise due to δφ is determined by the frequency
derivative of the curve at φ = −π/2 given by

(
δφ

δω

)
ωosc

= − 2Q
ωosc

(3-61)

For offset frequency ∆ω << ωosc/2Q, the frequency noise due to SDφ1 can be equated to

SDω1(ω) =
∣∣∣∣δωδφ

∣∣∣∣2 .SDφ (3-62)

while for ∆ω >> ωosc/2Q, the frequency noise is related to SDφ by the simple relation (fre-
quency is the time derivative of phase)

SDω2(ω) = (∆ω)2.SDφ (3-63)

The above relation is also valid for noise due to STφ . The total frequency noise spectral density
can now be written as

Sω(ω) = kBTω
2
osc

8πPinQ2 +
(
ωosc
2Q

)2
SDφ + (∆ω)2SDφ (3-64)

The above equation has not considered the thermal noise of the amplifier which
acts as the fourth source for frequency fluctuations. The evolution of displacement
noise into oscillator frequency noise is represented in Figure 3-26. In absence of detector noise,
the noise due to thermal motion in the range ±ωosc/2Q is shown in (a) which gets translated
with a slope of 1/∆ω according to Eq. (3-52) as shown in (b). The noise is converted into
constant oscillator frequency noise when multipled by the bandwidth ∆ω which is depicted in
(c). The dash line shows the thermal noise due to measurement system. Contribution of the
detector noise can be seen seperately in (d) and (e). (d) corresponds to constant oscillator
noise in the range ∆ω < ωosc/2Q in accordance with Eq. (3-62) while (e) represents the white
phase noise for ∆ω > ωosc/2Q according to Eq. (3-63) . The total noise (f) can be seen as
the summation of three noise sources i.e. (d)+(e).
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Figure 3-26: Schematic of evolution of frequency shifts due to phase fluctuations. (a)-(c)
represents the thermal noise in the absence of detector noise. (d) represents the detector noise
near the oscillation frequency according to Eq. (3-62) and (e) shows the upconoversion of detector
noise according to Eq. (3-63). The total noise is shown in (f).

3-10-4 Allan Variance

A more useful quantity is Allan variance [117] which is used commonly to characterize the
stability of oscillators in the presence of noise . It is defined as the average of sample variances
between two adjacent fractional frequencies measured over a time interval of τA. Mathemat-
ically , the Allan variance σ2

A(τA) can be written as

σ2
A(τA) =

〈
(f̄n − ¯fn−1)2

2

〉
(3-65)

where f̄n is the nth fractional frequency sample measured with a time span of τA and is given
by

f̄n = 1
τA

∫ t+τA

t

δf(t)dt
fo

(3-66)

In practical situations, only a finite number of samples (M) are available for measuring the
frequency sample fn and Eq. (3-65) reduces to

σ2
A(τA) = 1

2(M − 1)f2
o

M∑
n=2

(fn − fn−1)2 (3-67)

The time-domain Allan variance is related to Sφ(ω) in frequency domain by [118].

σ2
A(τA) = 2

( 2
ωoscτA

)2 ∫ ∞
0

Sφ(ω)sin4(∆ωτA/2)dω (3-68)
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This useful expression can be used to calculate Allan variance due to various phase noise
spectral densities. For 1/f2 noise, using Eq. (3-68) and Eq. (3-53), we obtain

σ2
A(τA)1/f2 = 2

( 2
ωoscτA

)2 ∫ ∞
0

kBT

8πPinQ2 (ωosc∆ω )2sin4(∆ωτA/2)dω (3-69)

σ2
A(τA)1/f2 = kBT

πPinQ2τ2
A

∫ ∞
0

sin4(∆ωτA/2)dω
∆ω2 (3-70)

σ2
A(τA)1/f2 = kBT

πPinQ2τ2
A

πτA
8 (3-71)

σ2
A(τA)1/f2 = kBT

8PinQ2τA
(3-72)

Allan variance for the second term in Eq. (3-64) gives us

σ2
A(τA)f0 = 2

( 2
ωoscτA

)2 ∫ ∞
0

SDφ
4Q2 (ωosc∆ω )2sin4(∆ωτA/2)dω (3-73)

σ2
A(τA)f0 = 2

(
SDφ
Q2τ2

A

)∫ ∞
0

sin4(∆ωτA/2)dω
∆ω2 (3-74)

σ2
A(τA)f0 =

(
SDφ
Q2τA

)
π

4 (3-75)

Similarly, the output Allan variance for 3rd term corresponding to f0 white phase noise can
be computed as

σ2
A(τA)f0 = 2

( 2
ωoscτA

)2 ∫ ∞
0

SDφ sin
4(∆ωτA/2)dω (3-76)

The above integral does not converge. For a given bandwidth Bf , Eq. (3-76) reduces to

σ2
A(τA)f0 = 2

( 2
ωoscτA

)2 ∫ Bf

0
SDφ .sin

4(∆ωτA/2)dω (3-77)

σ2
A(τA)f0 = 2

( 2
ωoscτA

)2
SDφ

(6τABf − 8sin(BfτA) + sin(2BfτA)
16τA

)
(3-78)

For a bandwidth of 1 MHz and a minimum time of 20 µs we can assume that BfτA >> 1
following which the Allan variance is equal to

σ2
A(τA)f0 = 2

( 2
ωoscτA

)2 3.BfSDφ
8 (3-79)

Combining Eq. (3-79), Eq. (3-75) and Eq. (3-85), the frequency error given by Allan deviation
can be written as

σA(τA) =

√√√√ kBT

8PinQ2τA
+

πSDφ
4Q2τA

+
3SDφ Bf
ω2
oscτ

2
A

(3-80)
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Figure 3-27: Allan deviation at 3 pressures measured vs measurement time. The effect of
frequency drift can be seen at higher values of τA as shown in (b).

Figure 3-27a shows the measured Allan Deviation using Fluke PM6681 RF counter. At lower
measurement time we see σA decreasing with τ according to Eq. (3-79) but at higher values
of measurement time, we see that error gets accumulated and is proportional to τm where
m > 0. This is due to the unintended progressive frequency drift [119] due to various effects
like aging, change in temperature, voltage regulation or Doppler shift due to the motion of the
sample. For m = 1, the shift is known as linear drift, for m = 2, it becomes quadratic drift
and for higher values of m, it is known as random-walk. Figure 3-27b shows the progressive
drift in the measured frequency with time.

Of particular area of interest is the region with low τ where m < 0. To find the exact
value of m, we fit the curve with the equation σ = nτm for various pressures as shown in
Figure 3-28.The extracted parameters n and m for different values of pressure are tabulated
in Table 3-4. Since m ≈ −1, it can easily be assumed that σA(τA) ∝ 1/τA i.e. the 3rd
term in Eq. (3-80) is much higher than the 1st and 2nd term. We can thus conclude that
the dominating source of error is from the displacement sensor. Neglecting the error due to
thermal noise, the Allan deviation can be approximated to

σA(τA) ≈ 1
τA

√
3SφndBf
ω2
osc

(3-81)

where

n ≈
√

3SφndBf
ω2
osc

(3-82)

The phase fluctuations are seen to be independent of the ambient pressure. During our
experiment, a different minimum DC bias point and gain was set to have the system into
oscillation which gave us different signal amplitudes at every pressures. According to Eq. (3-
57), we expect different phase error with different signal amplitudes. To characterize the
phase noise of the LDV system, we perform an open loop excitation of the MEMS resonator
and measure the phase between the excitation signal and the output of the AGC block to
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Figure 3-28: Allan deviation for low τ . Table 3-4 shows the linear fit parameters obtained

Table 3-4: Extracted parameter from power fit for Figure 3-28

Pressure n m fosc Bf Sφnd δφ
Figure 3-28 Figure 3-28 Figure 3-21 Eq. (3-82) Eq. (3-60)

10.7 Torr 2.51353E-9 1.13868 559427.549699 Hz 1 MHz 1.0489e-13 0.040

76.2 Torr 3.20602E-8 0.86095 566893.414708 Hz 1 MHz 1.752e-11 0.60

208 Torr 1.48446E-8 0.92798 582396.775956 Hz 1 MHz 3.965e-12 0.280

322 Torr 4.95737E-8 0.88896 594668.11927 Hz 1 MHz 4.610e-11 0.970

426 Torr 8.18512E-9 1.00238 612529.970579 Hz 1 MHz 1.333e-12 0.160

525 Torr 1.14234E-8 0.95773 625313.026396 Hz 1 MHz 2.706e-12 0.230

616 Torr 8.25232E-9 0.99674 635074.813835 Hz 1 MHz 1.457e-12 0.170

767 Torr 4.33487E-9 1.01489 656122.918377 Hz 1 MHz 4.291e-13 0.090
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experimentally estimate the phase fluctuations due to the LDV. Figure 3-29 shows the noisy
output signal from the LDV when excitated with a frequency of 655 kHz measured from
the oscilloscope output. A phase fluctuation of 0.7560 was obtained which corresponds to
a spectral density of 2.772e-11 rad2/Hz which corresponds to the extracted values from
Table 3-4. The selected velocity decoder used in our measurementVD-09-20 mm/(s.V). For
a peak amplitude of 1.5 V, the output noise voltage due to detector is approximately 0.0131
V over a bandwidth of 1 MHz or noise velocity of 266 µm/s, which gives us an experimental
estimation of the noise spectral density equal to 0.28 µs−1/

√
Hz. For the reported velocity

noise density (reference to user manual for OFV 5000) of Sv = 0.02-0.25 µs−1/
√
Hz, theis is

close to the upper limit for the reported value and justifies the measurement results.
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Figure 3-29: (a) Comparison with the input and noisy output signal for a open loop charac-
terization of LDV+AGC. (b) Frequency spectrum of the output signal broaden around the peak
frequency.

3-10-5 Frequency Error and Resolution

From Eq. (3-46) and Eq. (3-47), we can write the minimum detectable pressure change equal
to

δpmin = δω
dp

dω
(3-83)

where
δω = σA.ωosc (3-84)

With an extracted slope of S=97.16 kHz/bar from Figure 3-21 and allan deviation measured
in Figure 3-28, the resolution as a function of measurement time is shown in Figure 3-30.

The resolution in pressure measurement is limited by the noise injected from the LDV. In the
absence of LDV induced noise, the displacement sensitivity can be calculated from Eq. (3-85)

σ2
A(τA)1/f2 = kBT

8PinQ2τA
(3-85)
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Figure 3-30: Resolution of the opto-electronic system with different measurement time.

where Pin can be written as
Pin = 1

2mω
2
o |Xosc|2

ωosc
Q

(3-86)

or (Eq. (3-31))
Pin = 1

2mυ
2ωosc
Q

(3-87)

The resolution of the oscillator due to thermal noise of the resonator is hence limited to

δpTmin = σA.ωosc
dp

dω
(3-88)

δpTmin =
√

kBTfo
8πmυ2QτA

dp

dω
(3-89)

For two different pressures, Table 3-5 list all the required parameters to obtain the thermal
noise limited resolution. In the absence of LDV induced noise, for a detected peak velocity
from the LDV equal to 0.1 m/s, the thermal noise limited pressure resolution as depicted in
Figure 3-31 shows a difference of 3 orders of magnitude.

Although the allan deviation is a function of ωosc according to Eq. (3-80) or the approximated
Eq. (3-67), we observe no dependence on pressure. It should be mentioned that Eq. (3-80)
ignores the thermal noise due to the oscillator electronics and amplifier which is indepen-
dent on pressure which could be comparable to the noise due to optical detection system. A
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3-10 Accuracy and noise of MEMS oscillator 63

Table 3-5: Parameters used in Eq. (3-89)

11 Torr 770 Torr

fosc 559 kHz 656 kHz Figure 3-21
Q 3650 50 Figure 3-9
m 3.67e-09 kg 3.67e-09 kg Eq. (3-19)
υ 0.1 m/s 0.1 m/s Measured with LDV
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Figure 3-31: Comparison of measured resolution with resolution limited by the thermal-
mechanical noise.
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64 MEMS oscillator as resonant pressure sensor

minimum resolution of 5 Pa can be obtained from the proposed opto-electronic MEMS
oscillator whereas the fundamental limit is estimated to be as low as 0.003 Pa. This cor-
responds to a frequency shift of 5 Hz around the resonance. However, Figure 3-27b shows
that frequency error due to drift noise is almost 500 Hz which makes the system not suitable
for pressure sensing. The drift is assumed to be due to the instability and the time delay
in the optical measurement system and external environmental interferences. In terms of
resolution, accuracy and stability, the optical system limits the performance of MEMS device
as a pressure sensor. From application point of view, optical systems are generally not used
and instead electrical oscillators using MEMS device can be used as pressure sensor. The
next chapter evaluates the performance of electrical oscillators and opto-electronic oscillators
to have a better understanding and comparison.
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Chapter 4

Quartz resonators : Electrical vs
opto-electronic oscillators

In the previous chapter we discussed that the resolution of the MEMS opto-electronic oscil-
lator pressure sensor was limited by the detector noise from the Laser Vibrometry. Other
noise sources such as oscillator feedback noise from the gain control circuitry and thermal
noise were far less dominating and did not effect the sensor’s sensitivity. For commercial
applications however, an electronic MEMS oscillator is more suitable for its small size, lower
power consumption and simplicity when compared to the bulky opto-electronic system. The
long-term frequency drift and instability further makes the system incapable of resonant sens-
ing. Electrical MEMS oscillators are seen to exhibit 1/f3 noise near carrier roll-off due to the
up-conversion of 1/f flicker noise [43] along with white noise which limits the performance of
the sensors. Based on transduction principle, piezoelectric and capacitive MEMS oscillators
are most commonly used. In terms of noise performance, capacitive MEMS oscillators gives
lower phase noise than piezoelectric oscillators at a fixed frequency. This is due to the fact
that capacitive resonators exhibit high Q, whereas piezoelectric resonators show a lower Q
due to losses associated with the integrated piezoelectric layers. For a frequency of 1 MHz
(closest to our frequency of 660 kHz from the past literature), capacitive resonators shows a
noise floor of -88 dBc/Hz at an offest frequency of 500 Hz [120] while piezoelectric resonators
exhibit a phase noise of -100 dBc/Hz at 1 kHz offset [121]. This is five orders of magnitude
lower than our measurement results (-55-60 dBc @ 1 kHz, see Figure 3-24). In practice,
today’s best MEMS oscillator have a much better noise performance of -135 to -140 dbc/Hz
[122], [123].
The opto-electronic oscillator eliminates the effect of shunt capacitor Co (Figure 3-6) as it
directly measures the velocity of the resonating membrane. For electrical oscillators however,
the conditions Eq. (3-1) and Eq. (3-2) imposes a restriction given by Eq. (3-32) i.e.

Rm ≤
1

2ωoCo
(4-1)

The system will not oscillate if Rm is large or Co is large. Since Rm is a function of DC
bias (Figure 3-8), the system can be made to oscillate by tuning Vdc. Figure 4-1 shows the
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66 Quartz resonators : Electrical vs opto-electronic oscillators

estimated DC bias required as a function of pressure. It was foreseen that it would therefore
be difficult to create an electrical oscillator with the MEMS device. A high DC voltage up to
45 V is required at 764 Torr which might lead to device breakdown.
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Figure 4-1: Estimated DC bias required as a function of pressure for the MEMS resonator to
oscillate Eq. (4-1).

To compare the performance of electrical and opto-electronic MEMS oscillators, we therefore
use the most widely used quartz crystal (found commonly in wrist watches) with an operating
frequency of 32.768 kHz and has the same electrical equivalent as that of a MEMS resonator.

4-1 Quartz Tuning fork resonators

A Quartz resonator is essentially a capacitor where SiO2 acts as a dielectric that exhibits
piezoelectric properties. A part of the electrical energy stored within the capacitor is converted
into mechanical energy. The energy conversion equations for MEMS resonators can also be
applied to quartz resonators resulting in an identical equivalent electrical model as shown
in Figure 2-6. This feature makes them quite attractive because they simply need to be
connected to an electronic signal source to get the resonator into excitation mode. Different
shapes and size of quartz resonator leads to different modes of oscillation. A quartz resonator
split into two parallel bars and supported at it’s foot is known as tuning fork (Figure 4-2).
The tiny 32.768 kHz tuning fork has become a standard for most electronic watches and has
found many applications [124] due to their small size, low cost and low power consumption.

Unlike conventional harmonic oscillators discussed in chapter two, the dynamics of a tuning
fork can be understood by considering it as a coupled oscillator as shown in Figure 4-3. The
two identical prongs with spring constant k are coupled with a spring constant kc leading to
two different modes of oscillation - in-phase and out-of-phase mode. Solving the equation of
harmonic oscillators for individual prongs leads to respective eigenmode frequencies given by
[125]
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4-1 Quartz Tuning fork resonators 67

Figure 4-2: A typical 32 kHz quartz tuning fork. Metal electrodes deposited on each prong
generates electric field when excited with a voltage source. This effect results in flexural motions
of the prong in the plane of tuning fork.

k

kc

k

m

m

in-phase

out-of-phase

a) b)

Figure 4-3: (a) Spring-mass model for a tuning fork as a coupled oscillator resonating in two
possible modes as shown in (b).
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68 Quartz resonators : Electrical vs opto-electronic oscillators

f in−phaseo = 1
2π

√
k

m
(4-2)

fout−of−phaseo = 1
2π

√
k + 2kc
m

(4-3)

Considering the two prongs to be identical, the effective spring constant is given by

keff = 2(k + 2kc) (4-4)

The coupling spring constant kc effectively affects the difference in the two eigen frequencies.
Stiffness of a typical spring constant is around 1800 N/m which provides an efficient means of
confining the acoustic energy in the prongs and so tuning forks are able to achieve very high Qs
(typical values ≈ 105). This combined with stable small oscillation amplitudes [126] enables
the detection of small frequency shifts around fo, resulting in highly sensitive measurements.

4-2 Dynamics of tuning fork

Various media in contact with the vibrating tuning fork creates mechanical perturbations
which can lead to changes in resonance characteristics like frequency or motional resistance.
In order to use tuning forks as sensors, it is necessary to co-relate its electrical response to
the external loading parameters. The effect of air loading has been studied quite extensively
[127], [128] earlier. The Q change is similar to MEMS resonator and is inversely proportional
to pressure. However, becasue of the absence of an air gap, the mechanism for the shift
in resonant frequency is not squeeze film damping as discussed in chapter 2. It is very
well established that the shift in the frequency response is due to the interaction between the
vibrating resonator and the ambient gas molecules. The drag force generated by the molecules
is given by [129]

F = A
dx

dt
+B

d2x

dt2
(4-5)

where A and B are the coefficient based on ’string-of-bead’ model of quartz resonator [130].
The parameter B is significant because the second term of Eq. (4-5) has an acceleration term
which means that the mass of the resonator increases from m to m+B i.e. there is an apparent
increase in effective mass of the vibrating object which shifts the resonance frequency to

ω =

√
k

m+B
(4-6)

and B is given by

B = 3πR2
√

2ηρair
ω

+ 2
3πR

3ρair (4-7)

where
R = radius of the sphere from the bead model theory

η = coefficient of viscosity
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4-2 Dynamics of tuning fork 69

ρair = gas density
Using series expansion and ignoring the higher order terms, Eq. (4-6) can be written as

ω ≈ k

m

(
1− B

2m

)
(4-8)

ω ≈ ωo
(

1− B

2m

)
(4-9)

where ωo is the frequency when pressure approaches 0. Th angular frequency shift for a quartz
tuning fork now is given by

∆ω
ωo
≈ − B

2m (4-10)

i.e. with increasing pressure, the resonance frequency of the tuning fork decreases and Q
decreases. Figure 4-4 shows the frequency response of tuning fork at different pressures.
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Figure 4-4: Measured frequency response of tuning fork at different pressures by an impedance
analyzer. The ac peak excitation signal value was set to 100 mV. The resonant frequency shifts
towards lower frequency with increasing pressure while the dependence of Q shows a similar
behavior as that for MEMS resonator.

Since the change in the resonant frequency is very small (1 Hz), it is reasonable to assume
that ω in Eq. (4-7) is equal to ωo. In case of 32.8 kHz crystal, for pressures more than 10
torr, the frequency vs pressure is a linear response and it can be concluded that the second
term is larger than the first term. Eq. (4-10) now reduces to

∆ω
ωo
≈ − 1

2m

(2
3πR

3ρair

)
(4-11)

∆ω
ωo
≈ −1

4

(
ρair

ρcrystal

)
(4-12)
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70 Quartz resonators : Electrical vs opto-electronic oscillators

where we have used the relation m = 4/3.πR3.ρcrystal. Clearly, the shift is directly dependent
on the surrounding gas density which in terms of pressure can be written as

ρair = p

RdryairT
(4-13)

where p and R are pressure and specific gas density. Using the above equation, the theoretical
sensitivity is given by

df

dp
= −1

4
ωo

RdryairTρcrystal
(4-14)

For R=287.058 J/(Kg.K), T=300 K and ρcrystal =2660 Kg/m3, we obtain a slope of 3.6
Hz/bar which is close to experimental result of 5.85 Hz/bar as shown in Figure 4-5.
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Figure 4-5: Resonant frequency vs pressure shows a negative slope of -5.85 Hz/bar. The Q
however changes from 32000 to 12000 and is much more sensitive to pressure suggesting that
viscous damping is the major loss mechanism.

Electrically, the effect of air loading can also be understood in terms of its RLC parameters
where R, L and C represents acoustic losses, mass and spring constant respectively. The air
molecule interactions can be electrically modeled as an additional RLC element in series [131]
as shown in Figure 4-6.

To prove the above model, we extract the electrical parameters by curve fitting the conduc-
tance and phase response at different pressures. From Figure 4-7, we observe that Rm and
Lm have increased while Cm has decreased at higher pressure. Of all the parameters, Rm
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4-3 Tuning fork oscillator as pressure sensor 71

Air load

Figure 4-6: Equivalent circuit diagram of an air loaded tuning fork.

shows significant change with changing pressure which indicates higher losses and lower Q.
The increase in Lm relates to the apparent increase in the effective mass of the resonator. The
decrease in Cm can be explained by the fact that motional CA due to air acts in series with
unloaded Cm, thereby decreasing the net value. The high value of parasitic shunt capacitor
also includes external wiring capacitors connected to the tuning fork.
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Figure 4-7: The real (conductance) and imaginary (susceptance) part of admittance measured
with an impedance analyzer. The yellow line is obtained from the curve fit algorithm to extract
RLC parameters.

4-3 Tuning fork oscillator as pressure sensor

4-3-1 Opto-electronic configuration

Similar to section 3-7, we drive the tuning fork into oscillation using optical feedback through
LDV as shown in Figure 4-8. Due to a very stable oscillation amplitude and high value of
Q, the automatic gain control as well as the phase shifter were not used. The laser beam
was directed at one end of the tuning fork to detect the peak velocity response which was
converted into electrical signals by the vibrometer with a gain of 50 mm/s/V. To suppress
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72 Quartz resonators : Electrical vs opto-electronic oscillators

the higher harmonics, the internal 20 kHz low pass filter was used. A sinusoidal oscillating
signal with an output frequency of 32 kHz was measured with the RF counter.
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Figure 4-8: (a) Experimental setup for the opto-electronic tuning fork oscillator.(b) The output
frequency spectrum with a frequency of 32.764 kHz at a pressure of 660 Torr .(b) the corresponding
ac signal with 2.98 V pk-pk as measured by the oscilloscope .

4-3-2 Electrical Pierce oscillator

The tuning fork can be made to oscillate if it is connected in a positive feedback loop with a
closed loop gain of more than 1. With no other frequency sensitive component in the loop, the
circuit oscillates at tuning fork’s resonant frequency. From circuit theory, the output frequency
is dependent on Lm and Cm which is known as series resonant frequency ωs = 1√

LmCm
. The

shunt capacitor Co also gives a parallel resonance frequency [132] which is not as precise as
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4-3 Tuning fork oscillator as pressure sensor 73

the other series RLC parameters. Crystals operate either at or near ωs and parallel resonance
simply implies that the crystal has a high load impedance across it’s terminal. The parallel
capacitor Co merely acts as an external load to the circuit. The most common oscillator
configuration is by far the Pierce oscillator but there are many other topologies as well [133].
The Pierce oscillator is a series resonant circuit shown in Figure 4-9. The circuit can work in
a frequency range from 1 kHz to 200 MHz. The crystal’s (X1) source and load impedance are
mostly capacitive rather than resistive which gives a high internal Q and amplitude stability,
not to mention a high output signal at a low power level. Large shunt capacitors to the
ground also minimize noise spikes. It does however have one disadvantage. It needs a high
amplifier gain to account for the losses in the circuitry surrounding the crystal.

The Circuit starts to oscillate when the total phase shift around the loop is 3600 and gain ≥
1. The npn transistor is connected in a common-emitter configuration which provides a 1800

phase shift, C3 and C2 along with the crystal and external resistors acts as an integration
network and provides a 900 phase lag each. At series resonance, the crystal’s impedance is
purely resistive, which combines with load capacitors and thereby provides the required phase
shift. The high gain of CE amplifier ensures that the total loop gain is more than 1 in order
to satisfy the oscillation criteria. The gain can be controlled by the collector and emitter
resistance R1 and R4. R2 and R3 acts as a voltage divider for setting the bias voltage. For
detailed analysis of Pierce oscillators, the readers are encouraged to refer to [134].
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Figure 4-9: (a) Schematic of a common emitter Pierce crystal oscillator (b) Output sinusoidal
waveform as measured at 660 Torr. With a DC bias of 3.94 V, a pk-pk signal of 860 mV was
measured.

We place both the Pierce and opto-electronic crystal oscillator inside the vacuum chamber
for simultaneous readout of output frequency at different pressures. The measured results are
shown in Figure 4-10. In reality, the phase shift from the CE amplifier is less than 1800 due
to intrinsic junction capacitance. Same holds for the optical system where the phase shifts
can be due to the delay in the LDV optical signal path. As such, we observe a difference in
the frequency output of both the oscillators.
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Figure 4-10: (a) Experimental setup for characterization of quartz oscillators. (b) Resonant
frequency vs pressure for Pierce and opto-electronic oscillator. We observe a pressure sensitivity
of 4.5 Hz/bar for Pierce oscillator and 6 Hz/bar for opto-electronic system.
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4-4 Frequency stability and performance

Similar to the MEMS resonator, the tuning fork oscillations are also subjected to noise which
defines the resolution of the sensor. Except for the displacement detector noise, all other
sources of noise, namely thermal white noise, oscillator feedback induced noise and frequency
drift noise are common to both types of oscillators. The phase noise spectral density due to
thermal motions has already been discussed in chapter three and is equal to

STφ (ω) ≈ kBT

8πPinQ2

(
ωosc
∆ω

)2
(4-15)

where
Pin = v2

in

Rm
= v2

out

G2Rm
(4-16)

where G is the gain of the common emitter amplifier in case of Pierce oscillator or the velocity
decoded gain from the LDV vibrometer. To characterize all other sources of noise, we measure
the Allan Deviation as shown in Figure 4-11.

Similar to the Allan deviation measured for the MEMS oscillator, the noise has no dependance
on pressure. The frequency noise for opto-electronic oscillator is found to be proportional to
τ−1
A (curve fitting parameter yields a power of m= 0.98) suggesting that the dominant noise
source is white phase noise due to the optical system and the thermal noise of the oscillator
electronics. Using the similar approach mentioned in chapter 3, we estimate a spectral noise
density SDφ = 9.58× 10−9 . For the Pierce oscillator, we observe regions proportional to τ−1

A

( τA < 0.01s), τ0
A (at higher measurement time) and an intermediate τ−0.5

A slope suggesting
the presence of White phase noise (or flicker phase noise), white frequency noise and flicker
frequency noise respectively (Figure 4-12(a)) . Regressive curve fitting can lead to the spectral
noise densities according to the cutler equation [118]. For higher measurement times i.e.
τA > 0.1s, it can be seen from Figure 4-12 that Pierce oscillator shows a dependence of
τ0
A indicating the presence of flicker frequency noise while for opto-electronic system shows
random walk effect due to noise sources (τmA where m >0). The response is similar to MEMS
opto-electronic oscillator.

With all the possible frequency dependent and white noise, the frequency error in Pierce os-
cillator is observed to be 2 orders of magnitude smaller than opto-electronic oscillator. This
difference is also translated into minimum pressure resolution achievable. For a low external
pressure of 11 torr, the minimum Allan deviation (δf/fo) measured at τA= 60 ms is equal to(

δf
fo

)
opto−electronic

= 1.65× 10−5(
δf
fo

)
pierce

= 6.55× 10−7

which using Eq. (3-83) gives us a pressure resolution of

δpopto−electronic = 9KPa (4-17)

δppierce = 456Pa (4-18)

The resolution of electrical oscillator is 20 times better than opto-electronic oscillator as
shown in Figure 4-13. In absence of LDV noise, white phase noise, flicker noise and white
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Figure 4-11: Allan deviation verses measurement time for different values of pressure. In terms
of frequency stability, Pierce oscillator is almost 100 times better than opto-electronic oscillator.
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Figure 4-12: Allan deviation at low and high pressures for (b) Pierce oscillator (c) opto electronic
oscillator measured vs measurement time. (a) represents the allan deviation due to various types
of noise sources. Note that for a slope of τ−1, allan deviation is unable to distinguish between
white phase and flicker phase noise. The effect of frequency drift can be seen at higher values of
τA.

frequency noise, Eq. (4-15) sets the fundamental limit for sensitivity of the tuning fork as a
pressure sensor. The frequency error due to the resulting noise induced jitter can be estimated
as [135]

δfthermal = fo

√
kBTBf
PinQ2 (4-19)

where
Pin = V 2

out

G2Rm
(4-20)

Here G is the open loop gain for each oscillator. The above equation is similar to Eq. (3-85)
with Bf = 1/τA. For an output ac signal of 840 mV at 11 torr (Q=35000), an amplifier gain
of 80, Rm of 70KΩ and a bandwidth of 250 kHz, the fundamental limit at room temperature
(300 K) leads to a pressure resolution of 27 Pa for Pierce and 21 Pa for opto-electronic mode.
The frequency error however due to other possible noise sources far exceeds this fundamental
limit. For transistor based Pierce topology, shot noise sources associated with collector and
base current, flicker noise (1/f) and noise sources due to emitter degeneration resistors (R4)
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leads to increase in the output phase noise [136]. For opto-electronic configuration, we can
conclude that the displacement detector noise (white phase noise from the laser vibrometer)
is the dominant source of noise.
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Figure 4-13: Calculated pressure resolution vs measurement time for Pierce and opto-electronic
oscillator at two different pressure using Figure 4-12.

The feasibility of oscillators as resonant sensors is dependent on the frequency stability. In case
of continuous monitoring of frequency, long term frequency drift arising due to temperature
fluctuations (thermal drift) or external perturbations such as random walk (fn noise sources)
especially in the optical setup can lead to incorrect data acquisition during read-out. As done
previously, we continuously monitor the output frequency for 2 hours. Figure 4-14 shows the
long term frequency stability for both the oscillators.

In terms of frequency stability, we record a stability of ± 0.3 ppm for Pierce oscillator and
± 300 ppm for opto-electronic oscillator. Based on frequency stability and frequency noise,
tuning fork based Pierce oscillator is 1000 times stable and offers a pressure resolution
which is 20 times better than opto-electronic oscillator. Although tuning fork are not very
sensitive to pressure (5 Hz/bar), MEMS resonators with a sensitivity of 97 kHz/bar can
be used as pressure sensing elements. Opto-electronic oscillators suffer from high frequency
noise and instability, but based upon the comparison result for tuning fork, MEMS based
electrical oscillator (Pierce or other topologies) are expected to perform better than MEMS
opto-electronic oscillator.
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Figure 4-14: Frequency output for (a) Pierce oscillator (b) opto electronic oscillator measured
with a time interval of 1 ms. The corresponding frequency fluctuations are 10 mHz and 10 Hz .
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Chapter 5

Evaluation and perspective

The research described in the previous chapters is driven by the need to develop high per-
formance MEMS pressure sensors. The pressure sensor market is currently dominated by
piezoresistive and capacitive sensing technology. For these two technologies, the need for
integrated materials and additional layers adds to the fabrication complexity while signal
conditioning and signal conversion reduces the simplicity of read-out electronics. Resonant
sensing is fairly a new technique and the concept has been used for sensing mass, acceleration,
temperature, displacement and even molecular interactions with ’state of the art’ resolutions
and superior performances. As such, MEMS resonant sensors also hold potential for pressure
sensing which has not been explored for commercial applications so far. The fabrication pro-
cess for resonant sensing is comparatively lower and the output signal in the frequency domain
simplifies the read-out electronics but continuous monitoring of resonant frequency requires
continuous excitation and detection of MEMS device. As such, a self oscillating MEMS res-
onator for pressure sensing has been proposed as a proof of concept to attain better resolution,
stability and higher performance compared to existing sensor technologies.

5-1 MEMS opto-electronic oscillator

Compared to conventional MEMS oscillator with different possible excitation and detection
principles, an oscillator concept using electrostatic actuation and optical detection is pre-
sented. The closed loop for sustained oscillation is created by optical feedback using Laser
Doppler Vibrometry (LDV). The LDV measures the velocity of the electrostatically actu-
ated membrane which is subsequently converted into electrical signal by a suitable velocity
decoder. The optical system here is used both for optical detection and as a sustaining am-
plifier. Based on the vast literature on MEMS oscillator, this approach has not been explored
and presented so far. Opto-electronic topology is preferred because,

• Requirement for extra amplification is eliminated. The losses at lower Q or higher
pressure can be compensated by regulating the DC bias source.
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• No on-chip integration of diffused resistors, piezoelectric layers or charge storage is
required for actuation and detection techniques.

• The optical read-out is a non contact detection technique which eliminates the effect due
to parasitics and shunt capacitor Co, which otherwise imposes restrictions to a stable
feedback loop and oscillation criteria.

• The principle can be extended for rapid characterization of on-wafer MEMS devices for
oscillation frequencies in research environments. The system can be used for comparison
of MEMS sensor design and to estimate sensor’s amplitude during operation.

• With a frequency output, the optical system can be used for resonant pressure sensing
which has been explored extensively in this work.

For a MEMS resonator to be sensitive to external pressure, a circular membrane with a
center perforation is used. This makes the pressure on both sides of the membrane equal
thereby enabling absolute pressure measurements. The squeeze film damping mechanism is
responsible for a pressure dependent frequency shift. With MEMS resonator as a frequency
sensitive element in a closed feedback loop, we obtain a pressure sensitivity of 97.16 kHz/bar
similar to open loop measurement. Gain and phase control circuit were implemented to reduce
the oscillator noise. We obtain a minimum resolution of 5 Pa with a measurement time of
1 ms at atmospheric pressure. The white phase noise from the velocity decoder limits the
highest resolution possible. The system is able to detect a frequency shift of ≈ 5 Hz which
requires a frequency stability of ± 8.33 ppm at an output frequency equal to 600 kHz.
The measured frequency stability in our case is estimated to be around ±900 ppm which
corresponds to a frequency shift of 500 Hz. The reasons behind the frequency instability of
the opto-electronic system is still unknown. The output is observed to be quite sensitive to
external interferences due to the open laboratory setup. The signal delay between the optical
receiver and the vibrometer is reported to be 8.9 µs or 100 kHz which is comparable to the
output frequency and can cause significant errors in phase and frequency. A small amount
of phase lag is also added which is reported to be -3.20 /kHz which corresponds to 0.0030

over a bandwidth of 1 MHz. Hence, even though the self oscillating MEMS resonator is
quite sensitive to external pressure, the resolution and accuracy/stability is limited by the
LDV which makes an opto-electronic oscillator not suitable for resonant sensing applications.
For commercial applicability, optical signals are usually not preferred due to size, cost and
complexity involved. It would be fair to conclude that pressure sensing using an all-electrical
MEMS oscillator can overcome the drawbacks of opto-electronic oscillators.

5-2 Electrical vs opto-electronic oscillators

To compare the performance of opto-electronic oscillator with electrical oscillator, a tuning
fork crystal operating at 32.768 kHz was configured in both oscillator topologies. AGC and
phase shifter were removed from the opto-electronic configuration due to stable signal ampli-
tudes and high Q (≈104) associated with tuning forks. For electrical configuration, widely
used pierce topology was used because of it’s simplicity and superior noise performance. Sim-
ilar to MEMS opto-electronic topology, the Allan deviation showed detector noise from the
LDV to be the dominant noise source while pierce oscillator showed various noise sources
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corresponding to white PM, white FM, flicker PM and flicker FM. Since LDV is the domi-
nant detector noise, Allan deviation for both tuning fork and MEMS based opto-electronic
oscillator were observed to be of the same order of magnitude. Table 5-1 and Figure 5-1
compares the performance of both the oscillator topologies.

Table 5-1: Comparison between tuning fork based self-oscillating pressure sensors.

Topology Noise (δf/f) Accuracy Resolution Sensitivity

Opto-electronic 10−5 ± 300 ppm 9000 Pa 6 Hz/bar
Electrical (Pierce) 10−7 ± 0.3 ppm 450 Pa 4.5 Hz/bar
Improvement factor 100 1000 20 -
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Figure 5-1: Comparison of resolutions obtained for 3 oscillators at atmospheric pressure

It is evident that electrical oscillators are far more superior than opto-electronic oscillators in
terms of resolution as well as stability. MEMS Pierce oscillator or other similar all-electrical
topology is expected to perform better and their commercial applicability is possible.

5-3 Competitive benchmark

In today’s scenario, a vast majority of pressure sensors are based on piezoresistive effect.
The principle has been used for over 50 years and now it is often preferred over other ap-
proaches due to it’s technological maturity. However, compatibility to standard IC process
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and feasibility in process development cannot be the only reason to consider. Excellent lin-
earity, reliable signal conditioning and data acquisition, resolution, accuracy and precision are
equally important. Certain parameters are also responsible for their success in a particular
field of application i.e. For example, optical sensors are bulky, complex and consume high
power but they are ideal for remote sensing applications in power lines, fuel tanks or for
oil exploration. Over the last ten years, capacitive pressure sensors have shared space with
piezoresistive sensors in the market for tire pressure monitoring, implantable medical devices,
barometric sensors etc. They offer low power consumption, higher temperature insensitivity,
high linearity and higher sensitivity. Looking back to Figure 5-1, MEMS devices are much
more sensitive to pressure than quartz crystal. The Resolution is five orders of magnitude
better than quartz sensors. However, quartz resonators have 100 times higher Q which means
high stability and low power consumption. A fairly new technology has combined the advan-
tages of both Quartz and MEMS by applying precision micro-processing on a quartz material
and is known as QMEMS. Such ultra miniature quartz crystals controlled by semiconductor
process shown in Figure 5-2 have been used as sensors for highly accurate and stable mea-
surements. Currently QMEMS bases quartz sensing devices are used for timing applications,
temperature sensors, gyroscope and pressure sensors.

Figure 5-2: Highly sensitive gyro sensors using a hammerhead and H-groove structure produced
with photo-lithography by Epson (Adapted from www. epsondevices.com).

The feasibility of MEMS oscillator as commercial pressure sensors can be studied from Table 5-
2 which compares the performance of state-of-the-art pressure sensors. Using the improvement
factor from Table 5-1, a hypothetical resolution of electrical MEMS oscillator equal to 0.2
Pa can be estimated with an accuracy of ± 1 ppm. The latter i.e. accuracy is however
overestimated. For conventional piezoelectric or capacitive transduced MEMS oscillator, a
typical accuracy is usually ± 20-50 ppm. The resolution (or the sensitivity) on the other hand
can vary depending on the operating frequency. Oscillators operating at higher frequency
usually exhibit low phase noise and can lead to better resolutions. However, high frequency
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Table 5-2: Comparison between different self-oscillating pressure sensors

Topology Noise (δf/f) Accuracy Resolution Measurement time

MEMS opto-electronic 10−5 ± 900 ppm 5 Pa 1 ms
MEMS Electrical
(hypothetical) 10−7 ± 1 ppm 0.2 Pa -

Company Technology Accuracy Resolution Measurement time
Bosch Sensortec Piezoresistive ± 10 Pa 2 Pa 13 ms

(BMP280) 1 Pa 25 ms
Murata Capacitive 2 ± 10 Pa Pa 83 ms

(Mass production in Q4) 0.5 Pa 1000 ms
Epson Toyocom QMEMS ± 30 Pa 0.3 Pa 800 ms
(XP-6000CA) 1.2 Pa 200 ms

2.5 Pa 100 ms

resonators tend to have a lower Q which can partly cancel the effect leading to phase noise
reduction [43]. Oscillation frequency as high as 2 GHz for piezoelectric transduced oscillator
[137] and 145 MHz for capacitive transduced oscillators [138] have been reported. Another
factor to consider for resolution is the measurement time (or speed). A trade-off between these
two parameters is evident from Table 5-2. A trade-off between speed and power consumption
is yet another factor which must be taken into account. MEMS oscillators used for timing
applications or as a sensor are sealed in a hermetic cavity to obtain high Q and low power.
As such, the power consumption would be higher than the reported values when operated
as a pressure sensor (especially at atmospheric pressure). It would be difficult to compare
power consumption for various technologies due to lack of experimental data but in terms
of resolution, accuracy, measurement time and sensitivity, self oscillating MEMS resonator
certainly have a competitive potential for resonant pressure sensing.

5-4 Recommendations and future outlook

5-4-1 Reducing noise due to optical feedback

Of all the detection techniques discussed in Chapter 1 and 3 for sensing mechanical motion,
optical interferometry gives the highest resolution. A displacement sensitivity of 1 fm/

√
Hz

[139] has been reported which can be compared to zero-point fluctuations at quantum level.
However, the usefulness of optical system is greatly limited when operated in a feedback loop.
The signal conversion and path delay (in time domain) in an oscillating loop can transform
into phase and frequency fluctuations which can severely degrade the noise and resolution.
This is one of the main drawbacks of the proposed opto-electronic oscillator. However, the
signal delay can be used advantageously to create a high stability and high spectral purity
opto-electronic oscillator as shown in [140]. The time delay introduced by a long optical fiber
in an oscillating loop is used to modulate the frequency output. This approaches leads to a
quadratic decrease in the phase noise with increasing delay lines. Optical fiber is also virtually
free from any frequency dependent loss. Injection locking [141] is yet another approach which
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injects a delayed version of the output signal back to the oscillator and force the oscillator
to lock to its "past." This prevents the oscillator from changing its frequency and phase and
hence improves the phase noise. One trade-off here is that since the delay line influences
the output frequency, the relative pressure sensitivity can be degraded and partly cancel the
effect of reduced phase noise.

5-4-2 Canceling shunt capacitor Co

The large shunt capacitor not only makes it difficult to implement an oscillator, it also put
restrictions on the output tuning range. The series contact resistance forms a low pass filter
with Co which limits the performance at high frequencies. Therefore capacitive cancellation
techniques become necessary. The most common way to cancel capacitive effects is to use
it’s dual counterpart i.e. an inductor. Active inductors are usually preferred because of size,
compatibility and high Q but they add extra noise to the circuit. A better approach is to
implement a negative capacitor in parallel to Co by using a negative impedance converter as
shown in [142]. Complete cancellation with low power is however a challenging task.

5-4-3 Temperature sensitivity

All MEMS material have a non-zero temperature coefficient which leads to long term fre-
quency fluctuations (Typically > 25ppm/0C). Providing an accurate temperature insensitive
output is one of the key parameter. In most cases, temperature compensation is obtained
by sensing the temperature variations by PTAT (proportional-to-absolute temperature) ref-
erences [143] and subsequently adjusting the output frequency. Alternatively, phase lock loop
(PLL) method [144] is capable of providing a temperature drift less than 0.1ppm/0C. Ma-
terial based temperature compensation is also possible. In [145], addition of SiO2 helps to
reduce the drift but lowers the Q. Quartz resonators are less prone to temperature drifts but
temperature compensation circuitry is an essential part of a MEMS oscillator. Comparison
of temperature drift compensation techniques for MEMS resonators can be found in [43].

5-4-4 All-electrical MEMS oscillator

A good MEMS oscillator needs to be stable both in short term (low phase noise) and long
term (temperature drift, aging etc.). The frequency sensitive element - resonator should
have a low motional impedance, high Q and good power handling to suppress the effect of
noise sources. Based on various oscillator topologies, piezoelectric and capacitive transduced
oscillators have shown the ability to perform as good as quartz based oscillators. Capacitive
resonators can offer high Q approaching the values obtained for Quartz resonators at low
pressures. Piezoelectric resonators however exhibit lower Q due to material losses associated
with the integrated piezoelectric layers and contact electrodes. An important factor for both
resonators is the coupling coefficient η. The capacitive coupling coefficient ηcap results from
the varying capacitance between two electrodes where as piezoelectric coupling coefficient
ηpiezo is the result of strain induced variations. However, ηpiezo is typically much larger
than ηcap which translates into lower motional impedance Rm. As such, in spite of lower Q,
piezoelectric resonators exhibit low motional impedance. To obtain higher η and low Rm,
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several parameters like bias voltage, area of the resonator, air gap etc. can be optimized.
The overall coupling factor can also be increased through a combination of capacitive and
piezoelectric transduction [146]. Furthermore, maximum frequency possible for piezoelectric
oscillators ( ≈1 GHz) is much higher than capacitive oscillators (≈ 100 MHz). This is because
at higher frequencies, Rm of a piezoelectric resonator decreases and is capable to keep up with
Co whereas for capacitive resonators, Rm is relatively insensitive to frequency scaling (depends
on gap width).
Clearly, several factors need to be considered for selecting the right oscillator topology. A
review literature on the past and existing MEMS electrical oscillators in [43] can serve as a
starting point for development of MEMS oscillating pressure sensors.
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Glossary

List of Acronyms

MEMS Micro-Electromechanical System
MST Micro System Technology
LIGA Lithographie Galvanoformung Abformung
DETF double ended tuning fork
TETF triple ended tuning fork
SEM Scanning Electron Microscopy
ADC Analog-to-Digital converter
CFC Capacitance-to-Frequency Converter
CVC Capacitance-to-Voltage Converter
VFC Voltage-to-Frequency Converter
CMOS Complementary Metal Oxide Semiconductor
EMI Electro Magnetic Interference
AFM Atomic Force Microscopy
PSD Power Spectral Density
KCL Kirchoff’s Current Law
KVL Kirchoff’s Voltage Law
FP Fabry Perot
FBG Fiber Bragg Grating
LDV Laser Doppler Vibrometry
AGC Automatic Gain Control
SNR Signal-to-Noise Ratio
BVD Butter-worth Van Dyke
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