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Abstract

Spending time in front of screens has become an
inescapable activity, which might be interrupted
by unrelated external causes. While automatic ap-
proaches to identify mind-wandering (MW) have
already been investigated, past research was done
with self-reports or physiological data. This work
explores automated detection utilizing solely facial
expressions from Mementos data, which comes in
the form of webcam recordings, where participants
react to music videos. The recordings are anno-
tated with labels indicating perceived MW. Video
responses are turned into time series by first ex-
tracting facial characteristics, which are encoded
with Facial Action Coding System (FACS). Tem-
poral information is represented with 170 tempo-
ral features. Classification is conducted with sup-
port vector machines (SVM) through a data-level
approach and an algorithm-level approach, first
by synthesizing data and second by adding class
weights to SVM. Both approaches are evaluated
with metric scores insensitive to imbalanced data.
On average, results show that detection performs
marginally better than by chance. However, the
evaluation metric values vary across multiple clas-
sification runs, thus the prospect of using the Me-
mentos dataset for automatic MW detection based
on only facial expressions is not promising.

1 Introduction

Paying attention to a performed action can be hard, as fre-
quently an individual’s mind drifts elsewhere and ceases con-
centrating on the present activity. Whether one is reading
articles, watching videos, or following lectures online, the
mind might refuse to concentrate on the present task for
unanticipated periods. This phenomenon is known as mind-
wandering (MW). There are numerous definitions of MW, but
for the purpose of this study, it can be assumed that “when
mind-wandering occurs, the executive components of atten-
tion tend to move away from the main activity” [1], not due
to external factors or the person interacting with the external
environment.

MW is seen within various daily activities. For the last
two years, most universities have been offering online educa-
tion due to the COVID-19 pandemic [2]. Instead of engaging
in classroom activities, students attended lectures online [3].
MW on a frequent basis may lead to poor performance in fun-
damental activities such as online learning [4]. However, it
may also occur when completing other activities (e.g., view-
ing movies, digital reading) [5]. As a consequence, the ca-
pacity to identify it in videos automatically might possibly
increase the main task performance [6].

Most computers and smartphones are equipped with cam-
eras, making video a good input for the detection system.
Firstly, this research examines perceived MW rather than self-
reported, as just video input helps make judgments in detec-
tion, reducing a need for extra data. Choosing only facial

expressions for MW detection is a reasonable option, due to
many successful applications of facial filters in social me-
dia [7]. Secondly, locating a publicly available dataset with
sensitive data is fairly tough. The project’s supervisors re-
cently completed a research, and as a consequence, Memen-
tos dataset [8] was generated and employed for this study. Fi-
nally, another publicly accessible dataset was examined [9],
however it contains data referenced from original sources,
perhaps rendering certain samples no longer available.

The goal of this study is to establish whether automatic de-
tection of mind-wandering using only facial expressions from
the Mementos dataset [8] can perform better than by chance.
The video recordings utilized for the study originate from the
Mementos dataset, which is the first multimodal corpus for
computational modeling of emotion and memory processing
in response to video material [8]. The data, acquired through
webcams, does not include labels for MW and requires prior
manual labeling. This leads to the following sub-questions,
which the study aims to address:

1. How does dataset choice affect MW detection?

2. How does manual labeling of perceived MW affect its
detection?

3. How well can perceived MW detection differentiate be-
tween MW and not-MW instances?

The research paper is divided into the following sections:
Existing MW detection approaches are discussed in section 2.
Section 3 describes the methodology and experiment setup.
Results are presented and analyzed in section 4, while dis-
cussion and limitations can be found in section 5. Responsi-
ble research is discussed in section 6 and section 7 contains
conclusions and possible extensions to this research.

2 Related Work

There is existing research on the detection of MW using fa-
cial features. The vast majority of works combine facial fea-
tures with other types of data, such as motion tracking [10].
However, there is more interest in detecting mind-wandering
through eye gaze [6] and physiology [11, 12]. Most studies
also utilize self-reports collected from participants, which re-
port MW rather than perceived MW [10-14]. The majority of
research is not directly relevant to this study. While there is
some interest in detecting it, most approaches consider more
than just visual data.

A common method of MW detection is by using physi-
ological measures. One approach was investigated, where
participants were not assessed subjectively with self-reports
or thought-probes only, to indicate MW periods they experi-
enced [11]. The interest lies in combining the methods with
the simultaneous control of respiration and fingertip pressure.
Participants are asked to control those variables, where both
are measured to check for synchronization that serves as an
objective index for MW detection. Another research was per-
formed in a more controlled environment with the help of
biosignals [12]. Participants were engaged in mindfulness-
based training, lasting five days. Various biosignals were
measured to effectively determine MW events with 85% ac-
curacy. As an outcome of the research, a mobile applica-



tion was created for automatic MW detection. Other groups
used electrophysiological signals and self-reports to build ML
models for predicting MW state detection [13], resulting in an
above-chance MW detection.

A more relevant study with facial features was performed
[10]. However, self-report techniques were utilized to help in
measuring MW. Face videos were recorded to extract differ-
ent granularity levels, among which facial action units (AUs)
were used. SVM models achieved 25.4% and 20.9% above-
chance scores. Moreover, another facial feature-based study
with self-reports was performed [14]. It utilized computer
vision to extract facial features and body movements from
videos. By using supervised machine learning, it achieved
detection that is 31% over a chance model.

Additionally, most approaches, if not all, use self-reports
as the ground truth for detecting mind-wandering, whereby
the person in the test indicates when they catch themselves
mind-wandering [15]. Furthermore, as useful and beneficial
as using additional data alongside webcam videos for mind-
wandering detection might be [11-13], it comes with limita-
tions. Physiological data has to be obtained in an appropriate
environment and with proper sensors, which on a larger scale
would be cost-intensive [16]. Therefore, if using only visual
data helps in MW detection, then such detection has the po-
tential to be more accessible and inexpensive.

3 Methodology

In this study, the automatic detection of mind-wandering is
first addressed with data labeling and preprocessing. This
step helps in establishing the ground truth and discarding fu-
tile video responses. Once it is prepared, facial expression
features as well as temporal (time series) features are ex-
tracted. Prepared feature vectors then help train two machine
learning models that aim to distinguish between MW and not-
MW instances.

3.1 Mementos Dataset Labeling

The Mementos dataset consists of 1995 curated webcam
recordings from 297 distinct individuals reacting to different
chunks of music videos [8]. Each recording is 1 minute (%
10 seconds) long. The dataset has been curated, meaning the
video resolution has been adjusted to 640 by 480 pixels, video
responses outside of 50-70 second range have been removed,
etc. [8]).

The goal of data annotation is to catch instances in video
responses that indicate perceived mind-wandering. First, a
subset of 549 video (out of 1995) recordings is selected for
annotation, of which 495 are eligible for labeling. Due to
time constraints, labeling all videos was not an option. Par-
ticipants’ primary task was to watch videos shown to them.
The eligibility is determined by checking if a video response
sabotages the ability to detect MW. This includes a participant
walking out of webcam view range, or not watching the video
they were assigned to watch, essentially reacting to external
tasks.

Each video response contains time intervals labeled as ei-
ther MW or not-MW. The Mementos dataset was not orig-
inally labeled for MW, but participants’ self-reports exist

showing when it happens. For the purpose of this study, self-
reported data is ignored, as those are not a part of facial ex-
pressions. Together with all project members, a rule book
(Table 1) is established to aid with labeling. Each rule de-
scribes what visual or audible indicators to look out for while
annotating the webcam recordings. Given a video response
contains at least one indicator described in the rule book, that
video’s interval is annotated. Figure 1 (partially blurred to
prevent leaking sensitive data) shows an instance of perceived
MW, as indicated by a “smile”, which is indicated in Table 1.
This suggests that each video might contain more than one
interval of MW.
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Figure 1: The VGG Annotator is used to annotate video record-
ings to find potential instances of perceived MW. The orange bar
in the lower part of the figure indicates the start and end of MW in
the video, while unmarked regions are not-MW. The selected region
starts around the 48th second and ends after the 53rd second in the
video.

VGG Image Annotator (VIA) ! is an open source man-
ual annotation software that was used to add annotations in
this study. Figure 1 displays how annotation is done. To
stay consistent with annotations, the group of five split into
teams of two and three to annotate subsets of videos. This
was performed to eliminate the influence of personal bias and
to keep annotating uniform across all video samples. In cases
of conflicts in decision-making, all five members participated
in this process. A more robust approach was considered -
Fleiss’ kappa®. It measures agreements between raters to
check whether there is agreement and whether decisions are
objective. However, due to a limited time dedicated to dataset

"https://www.robots.ox.ac.uk/vgg/software/via/
Zhttps://statistics.laerd.com/spss-tutorials/fleiss-kappa-in-spss-
statistics.php



Sign Description

Smile Good memories - very expressive and sud-
den/genuine smile (reaction or response to
the music video); subtle smile (a form of
reminiscing/remembering a memory).

Looking Looking up should not be momentary and

up/Rolling | unrelated to primary task (not a distrac-

eyes tion); eyes move from up to the side (re-
membering/recollecting)

Squinting | Tendency to remember something/having
eyes some thoughts.

Person Person speaking/making a sound, unre-

sounds lated to the song lyrics, but also not caused
by an external stimuli.

Frown Potential indication of bad/sad memories;

a subtle frown (potential form of reminisc-
ing/remembering a memory) but not very
expressive and sudden (could be a reaction,
or a response to the video).

Table 1: A rule book defined for annotating the dataset. Signs indi-
cate perceived MW periods.

annotation, this approach was abandoned and group labeling
persuaded instead.

3.2 Facial Expressions Feature Extraction

For MW detection, facial expressions are a term that could
have various interpretations. This study defines them by the
Facial Action Coding System (FACS) [17]. The expressions
in this investigation serve as features, and their definition for
this context is crucial. FACS was designed to target a mul-
titude of media in detecting any muscle movements corre-
sponding to facial expressions, which can be described with
action units (AUs). These action units directly correspond to
different singular movements of facial muscles. FACS hence
helps in encoding facial expressions with descriptive preci-
sion [18]. The system has been used in many works that study
facial expressions, where the AUs were used as features for
classification [19, 20].

Video to Frames (with Extracted AUs)

Frame 1 |time: 0.000 s |AUOI | ... | AU17 | not-MW
Frame 2 |time: 0.033 s |AUOI | ... | AU17 | not-MW
Frame 3| time: 0.067 s |AUOI | ... | AU17 | not-MW
Frame 4| time: 0.100 s |AUO1 | ... | AU17 | not-MW

=

[ Frame 1813 | time: 60.4s | AUOL | ... |AUL7 | not-MW |

time

Figure 2: A video response split into frames through OpenFace
2.0. Each frame contains: frame number, frame timestamp, fea-
tures (AUO1-AU17) extracted, label (MW or not-MW). Note: This
figure serves as a toy example. It follows the data format used in this
research.

To extract AUs from webcam recordings, the OpenFace 2.0
[21] tool is used. It poses to be a common and reliable tool

Code Muscle Description
AUO1 | INNER BROW RAISER
AUO2 | OUTER BROW RAISER
AU04 | BROW LOWERER
AUO5 | UPPER LID RAISER
AUO06 | CHEEK RAISER
AUO7 | LID TIGHTENER
AU09 | NOSE WRINKLER
AU10 | UPPER LIP RAISER
AU12 | LIP CORNER PULLER
AU14 | DIMPLER
AU15 | LIP CORNER DEPRESSOR
AU17 | CHIN RAISER
AU20 | LIP STRETCHED
AU23 | LIP TIGHTENER
AU25 | LIPS PART
AU26 | JAW DROP
AU45 | BLINK

Table 2: List of AUs detected with OpenFace 2.0 in Mementos
dataset.

used in other works for facial feature extraction [8, 22, 23].
The tool detects 17 different action units, as listed in Table
2, and each has a description of the muscle it is associated
with. The tool calculates these based on the intensity scale
ranging from 1 (neutral state, muscle is not activated) to 5
(highly moved muscle). As Mementos dataset videos have
30 frames per second, OpenFace 2.0 generates extracts AUs
for each frame (Figure 2). Therefore, the number of samples
can range between 1500 and 2100, for a 50-second video and
a 70-second video, respectively.

The extracted action units carry information that needs to
be carefully handled. There are multiple approaches that can
be used to process the features. Intuitively, one can associate
facial expressions with emotions (e.g. sadness, happiness,
anger, fear, disgust, and surprise) [24] which are rather triv-
ial to recognize with the human eye. However, it has been
found that human emotions are not necessarily universal for
humans [24], and for classification purposes, a more robust
approach should be considered. Another possibility is to as-
sociate the 17 features with the rules defined for perceived
mind-wandering. An issue with this approach is the loss of
potentially useful information for the classification step. As-
signing action units to the rules defined poses a subjective
task. For instance, based on the units in Table 2, smile can
correspond to a multitude of AU combinations. Hence, uti-
lizing all action units extracted from the webcam recordings
would prevent a loss of information and inherently help in
classification.

3.3 Time Series Feature Extraction

Time series analysis helps to take temporal variations (or sim-
ply changes over time) in facial expressions into account in
automatic detection. A time series is “a sequence of data
points that occur in successive order over some period of



time” 3. It helps recognize patterns and trends in time in the
form of features that can be extracted.

Classifying a singular frame offers no temporal informa-
tion, therefore requiring a preprocessing step for time series
feature extraction. Accounting for time series is tricky in this
particular dataset, as the labeled MW instances are of vari-
able lengths. Annotations of mind-wandering instances in the
Mementos dataset vary between approx. 1 second (30 sam-
ples) and 10.4 seconds (312 samples) in length. Therefore,
creating time series of equal lengths is not possible. Before
clustering frames into consecutive segments, it is important
to not create segments that contain frames with two distinct
labels (i.e., the beginning of a MW instance is not clustered
with previous frames that indicate not-MW). To ensure that
such segmenting does not occur, video frames are first clus-
tered into consecutive blocks of uniform label type. In Figure
3 such a concept is depicted, where (a) Video Response 1
does not have any MW instances, hence only 1 block of con-
secutive not-MW frames exists. On the other hand, (b) Video
Response 2 contains one MW instance captured by frames
1324-1582. The video is hence split into 3 blocks, where
blocks 1 and 3 contain consecutive not-MW frames each, and
block 2 contains consecutive MW frames.

(a) Video Response 1

| Frame 1 | not-MW ‘

|:> ‘ Block 1 (Frames 1-1813) | not-MW

[ Frame 1813 | notMW |

(b) Video Response 2

‘ Frame 1 | not-MW ‘

Frame 1323 | not-MW
Frame 1324 | MW

Block | (Frames 1-1323) | not-MW
|:> Block 2 (Frames 1324-1582)| MW
Block 3 (Frames 1583-1764) | not-MW

Frame 1582 | MW
Frame 1583 | not-MW

[ Frame 1764 notMW |

Figure 3: Frames to Blocks - (a) Video Response 1 consists of a
sequence of 1813 Frames labeled as not-MW. That sequence is rep-
resented as Block 1 (b) Video Response 2 consists of 3 sequences
of frames: Frames 1-1323 labeled as not-MW, Frames 1325-1582
as MW and Frames 1583-1764 as not-MW. Each sequence is repre-
sented as a block. Note: This figure serves as a toy example. Some
information in the figure is omitted.

Each block holds a different number of frames. To retrieve
temporal information from the video responses, blocks first
need to be divided into shorter segments. To form them, each
block, irrespective of its length (in frames), is divided by 156
frames. In Figure 4a, Block 1 (1813 frames) is divided into
12 segments (11 segments, each 156 frames and 1 segment
with 97 frames). The segment length is established by taking
the maximum MW instance in the dataset, and halving it. The
chosen method ensures that each instance of MW is split into
at most 2. This implies that there can also be segments with
fewer than 156 frames (e.g. the 12th segment in Figure 4a).
There might be better ways to create segments, but the main

*https://www.investopedia.com/terms/t/timeseries.asp

goal is to ensure segments contain consecutive frames with
the same label and their lengths do not differ by more than
5.2 seconds (as opposed to 10.4 seconds if all MW instances
were taken as a whole).

(a) Video Response 1

‘ Segment 1 | not-MW

| Block 1|not-MW |

=

‘ Segment 12 | not-MW

Segment 1| not-MW
(b) Video Response 2 ‘ e

Segment 9 | not-MW

Block 1|not-MW
Block 2| MW

Segment 10 | MW

=)

Block 3 | not-MW S| biba

Segment 12 | not-MW

Segment 13 | not-MW

Figure 4: Blocks to Segments - (a) Video Response 1 contains only
1 sequence of frames with a uniform label of 0; 1 block is created
holding that sequence. (b) Because Video Response 2 contains one
MW instance (frames 1324-1582), three blocks are created for each
consecutive sequence. Note: This figure serves as a toy example.
Some information in the figure is omitted.

Time series feature extraction is done with zsfresh, a Python
package allowing time series feature extraction which utilizes
over 60 time series characterization methods and computes
over 700 time series features [25]. It captures temporal in-
formation. Tsfresh is powerful in feature extraction for time
series. For each time interval, it can extract up to 76 fea-
tures that capture time series. The package offers three main
feature extraction settings*: minimal, efficient, and compre-
hensive. The settings indicate what set of temporal features
is computed for, in this study, action units.

Segment Sample representing a
[Frame 1| AUOI [AUO2| ... |AU45 | segment
| Frame 2| AUOI [AU02| ... |AU45 |
R =) s cmmgle | AL g stz | (| AU s
[Frame 143 AUOL [AUO2 | ... | AU45 |

[Frame 144 AUOL |AUO2| ... | AUAS |

e.g. AUOL > {AU0! _sum_values, AUOI_median, AUOI_mean, AUOI_length, AUOI _ standard_deviation,
AUOI_variance, AUOI_ root_mean_square, AUOI_ maximum, AUOI_ absolute_maximum,
AUOI  minimum}

Figure 5: Temporal features extraction using zsfresh with minimal
settings applied. A segment consisting of frames serves as an input
for feature extraction. The output is a temporal sample with a new
set of temporal features. Note: This figure serves as a toy example.
Some information in the figure is omitted.

After investigating the settings, the minimal set of fea-
tures is chosen. The set consists of 10 temporal features:
sum_values, median, mean, length, standard_deviation, vari-
ance, root_mean_square, maximum, absolute_maximum, min-
imum. There are a number of reasons for its choice. First
is feature space dimensionality. By providing 17 AUs, after

*https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html



temporal feature extraction, the final feature space sizes are
170, 13311, and 13413, for minimal, efficient, and compre-
hensive settings, respectively. Such large dimensionality gen-
erally increases classifier complexity, requiring reduction of
the space before classification so as not to overfit the training
set. Second, 10 features do not capture nearly as much infor-
mation as 74 or 76, but 100 times larger feature spaces require
more time to understand them, which is a large limitation for
the duration of this study. Third, both efficient and compre-
hensive extraction methods generate NaN (Not a Number)
values, which requires the removal of features to which those
NaNs belong. This implication leads to poorly motivated fea-
ture space reduction in avoidance of NaNs. Lastly, large fea-
ture spaces make classification evaluation more ambiguous,
potentially making drawn conclusions on classification more
unjustifiable.

Figure 5 displays how temporal features are extracted from
the prepared segments. Each segment is converted into a sin-
gle sample. Each sample has a new set of 170 temporal fea-
tures. All new samples are ready to be used for training a
model and further classification on unseen data to evaluate
the detection of mind-wandering.

3.4 Evaluation Metrics

After temporal feature extraction, there are 6011 temporal
data samples, with 5945 and 66 labeled as not-MW and MW,
respectively. This results in an approx. 90:1 ratio of not-MW
to MW classes. This split is highly imbalanced and hence
needs additional preparation. It is important to choose appro-
priate metrics when evaluating the performance of classifiers,
as not all represent evaluation correctly when classifying im-
balanced data.

MW not-MW
' TP FP
predicted MW (true positive) | (false positive)
' FN TN
predicted not-MW (false negative) | (true negative)
counts MW, nMWe

Table 3: Confusion matrix for two-class classification of MW and
not-MW classes.

In two-class classification, a common metric for error esti-
mation is accuracy. It measures the number of correctly clas-
sified samples. Given a confusion matrix (Table 3) (used for
evaluation purposes), accuracy can be defined as

TP+ TN 0
accuracy = ————————
Y= MW, ¥ MW,
where the numerator accounts for correctly classified samples
(MW and not-MW out of all samples) out of the total sample
count. The complement of accuracy is error, which measures
the number of incorrectly classified samples.

error =1 — accuracy 2)

However, both metrics lead to a dilemma since the not-
MW class is significantly bigger (approx. 98.9%) compared

to the MW class (approx. 1.1%). Here, the majority class
impacts the score by a considerable number of properly cat-
egorized FP samples. Given that only a small fraction of the
data identified MW, this metric fails to represent the reality
that practically none of the samples from the minority class
(MW) are recognized. In the confusion matrix, the left col-
umn represents the positive class, while the right column rep-
resents the negative class. According to [26], any metric that
takes both values from the columns would be oblivious to the
data imbalance. This explains the weak minority class repre-
sentation, as (1) uses TP and FP, which do not belong to one
column.

Other evaluation metrics are used to account for highly im-
balanced data problems. As opposed to (1) and (2), recall
evaluates the classification of true positives rate (describing
how well the MW class was predicted) as well as false neg-
atives rate (describing how well the not-MW class was pre-
dicted). The former one is referred to as sensitivity (3) and
the latter as specificity (4).

TP
sensitivity = recall = TPIEN 3)
TN
speci ficity = FPLTN 4

Similar to recall is precision (5), which summarizes the
fraction of samples assigned to a MW class that actually be-
long to that MW class. Both metrics can be combined into an
F-score, which represents a balance between (3) and (5).

precision = TP/(TP + FP) )

Finally, the ROC Curve is a popular metric used for mea-
suring how models are capable of distinguishing between
classes. Nevertheless, this metric can be too optimistic when
the minority class is small. To account for this, the Precision-
Recall Curve is considered due to its focus on the minor-
ity class. However, comparing different models with the PR
Curve is difficult, and hence the PR AUC (Area Under Curve)
is used to have a numerical score. Therefore, all metrics that
account for data imbalance are used for evaluation.

3.5 Empirical Investigation

Preparing a model for highly imbalanced time series data
from the Mementos dataset is a difficult task, which requires
numerous decisions to be made. Dealing with test/train split,
choosing whether to over/under-sample the data, and what
classifiers to choose are some of them. Because there are
many possible ways to go about creating a model for this in-
vestigation, the following steps are implemented: Firstly, it is
important to carefully prepare training and testing sets to en-
sure segments from the same participant do not occur in both
training and testing sets. Secondly, choosing classifiers is also
difficult because, given many choices, the study duration does
not permit for thorough investigation. Lastly, data imbalances
can be addressed with sampling techniques, which aim to re-
store the class proportions.



Data needs to be split into training and testing sets to train
a classifier but prevent it from overfitting. There are many
ways to perform data split, and the most common is k-fold
cross-validation. It is a technique that splits a dataset into k-1
train sets, where 1 is reserved as a test set. When the data
is highly imbalanced, this is not ideal because most train sets
will only have the majority class samples, creating bias to-
wards the not-MW label. A stratified version of the technique
accounts for the imbalance. Stratified k-fold cross-validation
ensures that each fold contains samples from both classes,
making all folds more representative of both classes. In the
Mementos dataset, there are only 1.1% MW samples, making
stratified k-fold cross validation problematic. There are 78
participants, and each has between 1 and 7 response videos.
Each response video is a set of prepared temporal segments.
Not all responses and not all participants have at least 1 in-
stance of mind-wandering. Samples belonging to one partic-
ipant are quite similar, hence they need to be put in the same
folds. There is a set of 33 participants, where each participant
has at least 1 instance of MW, and a set of 45 that do not have
any. From each set of random data, 70% of the data is used
as training and 30% as testing. This ensures that each set has
an equal number of class samples in both sets.

The training set is still imbalanced, but it can be modi-
fied without affecting the test data. Although there exist met-
rics that help evaluate models trained on imbalanced datasets,
there also exist techniques that aim at reducing the imbalance
in the training dataset. The first technique is random under-
sampling of the majority class, where samples from the nega-
tive class (not-MW) are removed to match the size of the mi-
nority class. This method removes most of the available data,
not leaving enough samples for training. The second method
is random oversampling of the minority class, where the mi-
nority class samples are replicated with replacement, increas-
ing the size to match the majority class. This method cre-
ates identical duplicates, leading the training process to cause
an overfit, increasing the computation time and decreasing
classifier performance. An adapted oversampling method is
used, SMOTE. It is a synthetic minority oversampling tech-
nique that creates new minority class samples based on the
existing ones but does not duplicate them. At first, it selects
an instance from the minority class at random and finds its k-
nearest neighbors. The instance is connected to those k neigh-
bors to form a segment and new synthetic samples are created
in the feature space [27]. Although this method is not ideal,
as it creates synthetic samples that are not real and hence not
100% representative of the minority class, it results in less
overfitting and generally performs better than other sampling
techniques [28].

To perform classification, the Python scikit-learn’ library
is used, which is a well-known and widely used tool for ma-
chine learning implementation. The data is prepared to be
trained on a binary (two-class) classifier. A support vec-
tor machine (SVM) is selected, as it has an option to assign
weights to classes and give more importance to the minority
class [27]. This is especially useful when training on imbal-
anced data. Additionally, a SVM without class-weighting is

>https:/scikit-learn.org/stable/

used on SMOTE-sampled data. A baseline classifier®, which
classifies the majority class, is used as a baseline for com-
paring the results. Two approaches are used to evaluate MW
detection.

* Data-level approach: The training set proportions are
adjusted by SMOTE, where the minority class is upsam-
pled to match the majority. An SVM is trained on this
adjusted training dataset.

* Algorithm-level approach: A class-weighted SVM is
used, where the training set proportions are used to as-
sign weights. This ensures the minority class is not at a
disadvantage when training the SVM.

Classification was run 10 and 100 times. However, both
models are used 100 times to generate results, giving a more
realistic outcome. To ensure their performance, SVMs are
hyperparameter-tuned with the 3 important parameters using
GridSearch’:

1. ’C’: [0.1, 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
500, 1000]

2. ’gamma’: [’scale’]

3. ’kernel’: [’rbf’]
Some parameter options are eliminated due to long training
times. The 'rbf’ kernel is selected, as it works well on small
datasets. Sigmoid is preferred for neural networks, polyno-
mial is less accurate than other kernels, and linear works well
on high-dimensional data. A regularization parameter, C, in-
dicates the margin between classes (the greater the value, the
tighter the separation). Gamma is set to ’scale’, as exten-
sive search takes much more time. Lastly, for class-weighted
SVM, weight on the minority class is put on according to the
ratio of training samples to account for the difference.

4 Results

Evaluation is undertaken in line with the approach stated in
section 3. Analysis 1 contrasts the performance of a class-
weighted SVM (on an imbalanced dataset) versus an SVM
(on synthetically balanced data) by checking how they com-
pare to a baseline classifier. Analysis 2 offers a closer look
into confusion matrices to understand the findings gained in
Analysis 1.

4.1 Analysis 1: Classification Against the Baseliner

Analysis 1 is conducted with a classification performed on an
oversampled training set and imbalanced training. All runs
have a 70/30 train/test split, where proportions of MW and
not-MW samples are preserved. Training and testing sets
share no samples from the same participant.

Firstly, the baseline classifier achieves 0 precision and re-
call, as it only classifies the majority class, leaving the other
unclassified, making it difficult to compare with other clas-
sifiers. On average, both techniques outperform the base-
line classifier, where PR-AUC achieved by class-weighted is

®https://scikit-learn.org/stable/modules/generated/
sklearn.dummy.DummyClassifier.html

"https://scikit-learn.org/stable/modules/generated/
sklearn.model_selection.GridSearchCV.html



Baseline Classifier

Metric Average Median Min Max SD
Precision 0.0 0.0 0.0 0.0 0.0
Recall 0.0 0.0 0.0 0.0 0.0
F1-Score 0.0 0.0 0.0 0.0 0.0
PR-AUC 0.505 0.505 0.503 0.508 0.001

Table 4: Metric scores for baseline classifier metric scores (based on
100 classifications).

SVM Classifier (class-weighted)

Metric Average Median Min Max SD
Precision 0.516 0.535 0.132 0.75  0.147
Recall 0.646 0.667 0.111 09 0.15
F1-Score 0.55 0.571 0.19 0.762 0.127
PR-AUC 0.583 0.588 0.266 0.778 0.102

Table 5: Metric scores for class-weighted SVM classifier using im-
balanced dataset (based on 100 runs).

0.583, SVM with SMOTE is 0.587, and the baseline is 0.505.
However, the variance between the minimum and maximum
scores indicates a huge influence the minority class has on the
classification. This could be prevented by having more sam-
ples in the test set with a MW label. However, the dataset did
not contain enough samples to account for this.

SVM Classifier (SMOTE technique)

Metric Average Median Min Max SD
Precision 0.546 0.561 0.146 1.0 0.16
Recall 0.624 0.638 0.053 0.9 0.169
F1-Score 0.556 0.587 0.1 0.821 0.135
PR-AUC 0.587 0.6 0.202 0.822 0.114

Table 6: Metric scores for SVM classifier using dataset with SMOTE
technique applied (based on 100 runs).

Secondly, there is a large variance present in the metric
scores across the classifications. Precision values shown in
Table 5 range between 0.132 and 0.75. A low precision value
indicates that only a small fraction of MW samples were as-
signed to their class correctly. This leads to an observation
that at the ratio of 90:1 with roughly 20 samples in a test set,
even | incorrectly classified sample accounts for 5% of the
positive class. Recall also varies a lot, with values between
0.111 and 0.9, implying the huge influence the minority class
has due to misclassifications. The F1-score follows the same
pattern as it is derived from both precision and recall.

Finally, the results of both classification methods summa-
rized in Table 6 and 5 are comparable. There is a slight
increased performance from SVM on a balanced training
set, however, only varying by +0.06 and +0.04 for aver-
age F1-Score and PR-AUC, respectively. Standard devia-
tion suggests that the worse performing method achieved a
marginally less sparse set of scores across 100 runs. Median
values also indicate that the majority of classifications per-

formed above average, yet still leaving outliers, by looking at
minimum and maximum scores.

4.2 Analysis 2: Confusion Matrix

Confusion Matrix for Baseliner
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Figure 6: Confusion matrix Baseline Classifier with F1-Score=0.0
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Figure 7: Confusion matrix for a SVM with SMOTE techqniue with
F1-Score = 0.53

Confusion matrices assist in further evaluation and com-
prehension of the MW and not-MW samples’ categorization.
To understand the classification findings better, Figures 6, 8
and 7 display confusion matrices for one classification using
the three classifiers from Analysis 1. This particular classifi-
cation is a perfect example of showing how a single wrongly
predicted positive sample affects the evaluation metrics. The
evaluation test set has 1898 not-MW and 22 MW samples.

The baseliner correctly classified all samples as not-MW,
resulting in a 0.0 F1-Score (Figure 6). SVM with SMOTE
classified 12 MW samples correctly, giving a 54.5% success
rate and achieving a 0.53 F1-Score (Figure 7). However,
class-weighted SVM classified 1 MW sample more and that
bumped its success rate to 59.0% and 0.57 F1-Score. This
clearly explains how the class ratio affects classification. On
the other hand, the majority class is successfully classified
with a 99.4% success rate for both classifiers.

5 Discussion and Limitations

The results demonstrate that predicting perceived MW using
the Mementos dataset is rather inconclusive. A few possible
limitations are addressed that have an effect on the evaluation
scores and perceived MW prediction.
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Figure 8: Confusion matrix for a class-weighted SVM with F1-
Score = 0.57

The significant emphasis in the work is centered around
class distribution for classification. Performing classification
on a substantially skewed dataset is tricky in and of itself.
With such a tiny number of samples, the identification of MW
samples becomes a more connected challenge to the credit
card fraud detection problem, where classification algorithms
are relatively useless [29], especially in severely unbalanced
datasets. This leads to a huge number of false positives, mak-
ing mind-wandering detection imprecise. SVMs are thought
to be less susceptible to class imbalance problems than other
classifiers [30], but they can be ineffective in establishing the
class boundary when the class distribution is skewed [31].
In addition, a dataset can also contain noisy data. In imbal-
anced datasets, this could imply difficulties in distinguishing
between a rare case of a MW sample and a noisy not-MW
sample [32].

The second inference arises from accounting for the dataset
structure. The samples utilized in categorization originated
from diverse participants, which required specific separation
to avoid direct model overfitting from exposing data to the
test set. Despite carefully separating data across training and
testing sets, classification findings reveal that some did sub-
stantially better than others. It is quite plausible that applying
other feature extraction methods would have resulted in dif-
ferent conclusions, which may be an intriguing addition to
this research.

Another possible barrier arises from the annotation of per-
ceived MW in the dataset. Videos were labeled using symp-
toms of reported mind-wandering according to Table 1. Af-
ter a comprehensive analysis, there is no uniform evidence in
other studies to substantiate the absolute veracity of the per-
ceived MW indicators provided in this study. Perceived MW
is not studied as extensively as MW detected with objective
methods.

6 Responsible Research

The investigation of MW detection has been conducted in a
responsible manner, with accordance to Netherlands Code of
Conduct for Research Integrity (2018) [33]. The Memen-
tos dataset contains highly sensitive data, namely webcam
recordings of participants. To avoid exposing their sensitive
information such as faces, figures used in this research are
blurred. Additionally, the preprocessing of raw Mementos
was handled offline. The annotation tool VGG allows lo-

cal video labeling, without exposing data online. Honesty
is addressed with explicit descriptions in methodology sec-
tion which clearly outline used methods and approaches. All
data preprocessing is explicitly described, where all steps are
clearly described to avoid data fabrication. No misconduct
nor datatrimming was practiced as all preprocessed data was
utilized and no data was left out (from the data prepared for
classification). Moreover, the results achieved suggest that
scrupulousness and transparency are preserved, as results are
rather inconclusive for using Mementos dataset for MW de-
tection. According to [8] authors, the data itself was ethically
collected and approved by the Human Research Ethics Com-
mittee of Delft University of Technology. The author of the
paper takes full responsibility of presented content. The re-
search is independent, as it does not use any tools that are
commercially distributed or sponsor the author. Finally, the
work is reproducible, as the methodology explicitly describes
used tools and techniques, however the dataset cannot be ac-
cessed without Mementos authors’ permission [8].

7 Conclusion and Future Work

The study aimed at resolving three sub-questions that arose:
(1) including the choice of the dataset used to identify MW;
(2) the influence of manually labeling the dataset; and (3) how
well can perceived MW detection discriminate between MW
and not-MW cases; as well as the main question, whether
MW detection performs better than by chance.

Among the many limitations in the experiment, most in-
dicate that the Mementos dataset is unsuitable for the detec-
tion. Firstly, the data balancing techniques addressed have no
positive effect on the class imbalance. This leads to a ques-
tion: what other approach can successfully balance a dataset?
A possible direction is to use one-class classification, which
turned out successful on exceptionally imbalanced data using
SVM with highly dimensional feature space [34]. Other su-
pervised work in one-class classification with autoencoders
(deep learning) has also been successful [35]. However, deep
learning requires a larger amount of data, which is not the
case with the Mementos dataset. The Eev [9] dataset would
be more suitable due to its larger size.

However, this leads to another implication of manually la-
beling data. First, labeling is substantially time-consuming,
as it is equivalent to the total duration of considered videos.
Although more footage could potentially result in a larger
number of MW instances, this is practically impossible in
this study due to time constraints. This implies that the num-
ber of MW instances collected is far too rare as opposed to
the negative instances. Moreover, the inconclusive results in-
dicated the impact that an imbalanced dataset can have on
classification. Nevertheless, other methods of temporal fea-
ture retrieval could be considered. Utilizing a different set of
temporal features for facial expression in combination with
one-class classification could be considered, as it works well
in high-dimensional spaces [34].

Nevertheless, among the reasons mentioned, perceived
MW detection in this research is quite unsuccessful in dif-
ferentiating the two labels. Another reason could be the ex-
tracted features. As only one set of temporal features was



used, there is no comparison if other features could improve
the classification. Other approaches propose tools to cope
with time series data [36] by finding useful patterns in fea-
tures.

Finally, the two classifications performed marginally bet-
ter than the baseline implementation, but unfortunately, due
to the data limitations, it is not possible to claim that MW
detection is successful until evaluating the system on another
dataset that contains more samples. Due to time constraints,
the mentioned approaches could not be further explored in
this research. However, they could lead to the construction of
a more robust perceptual MW detection system that uses only
facial expression.
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