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1. Summary

Consider a collection of n points in a p-dimensional Euclidean space. We are
interested in estimating a point around which the collection is located and how
the collection is scattered around this point. The sample mean and the sample
covariance are no doubt the most widely known estimators to do this. These esti-
mators are in some sense the most accurate ones, but they are also notorious for
their sensitivity to outliers, i.e. points whose position is ‘unusually’ far from the
majority of the collection. A single aberrant point has a tremendous influence on
the value of these estimators. Alternatively, one may use robust estimators for mul-
tivariate location and scatter. Such estimators will be less sensitive to outliers, but
on the other hand they will be less accurate than the sample mean and the sample
covariance in case no outliers are present.

Whether outliers are present is generally unknown and it is difficult, if not im-
possible, to determine this for collections in higher dimensions. When the collection
is just a set of real numbers, a simple plot will be enough to reveal possible outliers.
This may still be possible in two dimensions, and possibly even in three dimensions
using some sophisticated statistical software package. However, plots or graphs will
no longer be of help when p is larger than three. In these situations the need arises
for robust multivariate estimators of location and scatter that automatically pay
attention to possible outliers. Such methods are already well known in univariate
situations; the trimmed mean and the median are only a few examples.

Covariance matrices and the associated ellipsoids are often used for describ-
ing the overall shape of distributions of points in a p-dimensional Euclidean space.
Important examples occur in principal component and factor analysis, and in dis-
crimant analysis. Because of their high sensitivity to outliers, the sample mean
and the sample covariance are not particularly well suited for this purpose. This
drawback may be overcome using outlier resistant alternatives.

Another important application of robust estimators of location and scatter, es-
pecially in high dimensional situations, is to use them as a diagnostic tool to detect
possible outliers. When the outliers are detected, one may assign a smaller weight
to them, or even delete them and use classical methods on the remaining points.

In this thesis we will investigate the robustness and the asymptotic properties
of multivariate estimators of location and scatter. Robustness of the estimators



will be measured in two different ways. The global sensitivity of an estimator is
measured by means of its breakdown point, which is roughly the smallest fraction of
outliers in the collection that can take the estimator over all bounds. It describes the
global behaviour of an estimator under large pertubations. The local robustness is
measured by the influence function, which describes the alteration of the estimator
under infinitesimal pertubations at some point x. A robust estimator will typically
have a high breakdown point and a bounded influence function. To investigate
the asymptotic properties, the collection is assumed to be a sample generated by a
distribution P on RP, and the behaviour of the estimators is studied as the sample
size n tends to infinity. Of main interest will be the rate of convergence, the limiting
distribution and the asymptotic efficiency. As a special case we will consider the
usual location-scale model, where the distribution P is assumed to be elliptically
contoured with an unkown location and scale parameter.

We will mainly be interested in estimators that commute with affine transfor-
mations of the points. This means that the location estimator is translation and
scale equivariant, and that the covariance estimator is translation invariant and
scale equivariant. This seems a natural property for multivariate estimators, espe-
cially if one wants to estimate the location and scale parameters of an elliptically
contoured distribution. To construct univariate estimators of location and scale
with this property which can also resist large amounts of outliers is no problem.
The univariate sample median is an example of this. However, in the multivari-
ate setting the situation turns out to be completely different. Affine equivariant
multivariate M-estimators for location and scatter, probably the most well known
robust alternatives to the sample mean and the sample covariance, can only resist
at most a fraction 1/(p + 1) of outliers, which means that these estimators become
more sensitive when p increases. This result was rather disappointing, since these
estimators were shown to be optimally robust from different other points of view.
The poor breakdown properties of M-estimators, as well as of several other affine
equivariant estimators that were thought to be robust, has tempted people to think
that it was impossible to combine affine equivariance with a high breakdown point.
Nevertheless, the first affine equivariant estimators for multivariate location and
scatter with a high breakdown point were constructed in the early 1980’s.

The earliest affine equivariant estimators for location and scatter with a high
breakdown point exibit relatively poor asymptotic properties. The rate of conver-
gence is generally slower than the usual \/n rate, the limiting distribution may not
be normal, or the asymptotic efficiency is disappointingly low. The main purpose of
this thesis is to construct affine equivariant estimators of multivariate location and
scatter that combine good global and local robustness, i.e. a high breakdown point
and a bounded influence function, together with good asymptotic properties, i.e.
v/n rate of convergence towards a normal distribution with a reasonable efficiency
relative to the sample mean and the sample covariance.

The findings have been written down in four different papers. These papers
have been reproduced at the end of the thesis and are preceded by an introduction.
After introducing some notation and basic definitions in Chapter 2, we discuss
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the concepts of breakdown point and influence function in Chapter 3. Chapter 4
briefly mentions two other approaches to robustness. The first one is the minimax
variance approach. It corresponds with the class of M-estimators, a generalization
of maximum likelihood estimators. The second one is the minimax bias approach,
which has only recently been investigated. In Chapter 5 we discuss some of the
first affine equivariant estimators of multivariate location and scatter with a high
breakdown point. These chapters of the introduction are meant to put the four
papers in perspective. The remaining three chapters discuss three different new
proposals for estimating multivariate location and scatter. This is done to a much
larger extent than in the actual papers, since in that case space was limited because
of the constraints set by the journals where the papers were submitted to.

The first paper, together with Peter Rousseeuw, studies the breakdcwn point
of several estimators of multivariate location and scatter and illustrates the role
of various equivariance properties. Furthermore, a striking relation beiween the
breakdown point of univariate location estimators and a measure of large deviations
is extended to multivariate location estimators. Most of the contents of this paper
are briefly summarized in Chapter 3 and Section 7.2 of the introduction.

The second paper studies multivariate S-estimators, which are smoothed ver-
sions of Rousseeuw’s minimum volume ellipsoid estimator. They can be seen as
a first step towards combining good robustness with good asymptotic properties.
Chapter 6 summarizes the results concerning these estimators.

The third paper investigates an affinely scaled location M-estimator. This es-
timator is basically a location M-estimator based on the sample that arises after
scaling with an affine equivariant covariance estimator with a high breakdown point.
The resulting location estimator is affine equivariant, has a high breakdown point
and a bounded influence function, and converges at rate \/n to a normal distribution,
with good efficiency. This estimator is one example of combining high breakdown
estimators with multivariate M-estimators in a suitable way. This example and a
few others are briefly discussed in Chapter 7.

The last paper studies the class of multivariate T-estimators, which is a further
extension of the class of multivariate S-estimators. The resulting estimators of
location and scatter are affine equivariant, and combine a high breakdown point and
a bounded influence function with a v/n rate of convergence to a normal distribution
and good efficiency relative to the sample mean and sample covariance. Chapter 8
discusses this class of estimators.



2. Notation and Basic Definitions

2.1 Notation

We first fix the notation that will be used and give the definitions of a few basic
concepts that will be needed. Let RP denote the p-dimensional Euclidean space.
To distinguish vectors and matrices from ordinary real numbers in the case that
p is larger than 2 we use boldface lowercase letters, such as v = (v, - --vp)T or
= (p--- ,up)T to denote elements of R?, where T stands for transpose, and we
use boldface uppercase letters, such as A = (a;;)f ;_, or £ = (oy; )% j=1, to denote
P X p-matrices.

For real numbers y we have to make a distinction between ly], defined as the
largest integer less than or equal to y, and [y], defined as the smallest integer greater
than or equal to y. When y is not integer valued, then [y] = ly) + 1, however,
[y] = ly] = y when y € N. Both quantities will be needed to describe the different
breakdown points later on.

Denote by || -|| the Euclidean distance, which will either be between two vectors
in RP or between two matrices A and B. The determinant of a p x p-matrix A is
denoted by |A| and the eigenvalues of such A are denoted by Ap(A) < -2 <A (A).
We will mainly be concerned with p x p-matrices that are positive definite and
symmetric and we will denote by PDS(p) the class of all such matrices. Recall that
every element A of this class has a root R, i.e. a matrix R such that A = RRT.

An ellipsoid in R? with center m and covariance structure M is denoted by

(2.1) E(m,M,r) = {x €R?: (x —m)"M™}(x —m) < r?}

where r is a positive real number which together with M determines the magnitude
of the ellipsoid. When M = I, (2.1) reduces to the ball with center m and radius r.
Recall that the volume of an ellipsoid E(m, M, r) is a multiple a, of /[M], where
ap = (7r?)P/2JT(2 + 1), and that the p different axes of E(m,M, r) have lengths
2r\/A;(M) for j =1,2,...,p.

The Mahalanobis distance between a vector v and a vector m with respect to a
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matrix M in PDS(p) is defined as

(2.2) d(v,m,M) = /(v—-m)TM~-1(v —m).

It may be interpreted either as the smallest factor that is needed to inflate the
ellipsoid E(m,M, 1) such that it will cover v, or as the largest factor allowed to
deflate E(m, M, 1) such that it still covers v. When M = I, (2.2) is simply the
ordinairy Euclidean distance between v and m.

A collection of n points in R? will be typically denoted by x,, x5, ... ,x,, where
xi = (zi1 ---x,-p)T fori=1,2,...,n. Such a collection may contain multiple copies
of one point. We say that a collection with at least p+ 1 points is in general position
if no p + 1 points are contained in some lower dimensional hyperplane. In R? this
simply means that no three points may be situated on the same line. Obviously, if
a collection is in general position, all points must be different. When a collection
X1,X3,...,X, is assumed to be a random sample from some probability distribu-
tion on R?, we will write X, Xo,...,X,, instead, where X; = (X.-IA--Xg,,)T is a
random vector for 7 = 1,2,... ,n. Note that if the sample distribution is absolutely
continuous with respect to the Lebesgue measure, the sample X;, X2,... ,X, isin
general position with probability one.

Distributions on RP will be denoted either by P,@Q,..., or by means of their
corresponding distribution functions F,G,.... When the distributions have densi-
ties, we will denote these by f,g,.... The empirical distribution on RP, that puts
mass 1/n at each x; for i = 1,2,... ,n, will be denoted by P,. By éx is meant the
Dirac measure on R?, which has all its probability mass concentrated in the point
x. Expectation and variance with respect to a distribution P will denoted by Ep
and Vp respectively, or simply by E and V if it does not cause any confusion.

A location estimator based on a collection of n points is a vector valued function
of x1,X32,... ,%Xn, which is typically denoted by t, = t(xi,...,x,). Similarly, a
covartance estimator, or estimator of scatter, is a function of x;,x3,... ,x,, which
takes on values in PDS(p), and which is typically denoted by C,, = C(xy, ... ,Xn).
When p = 1, we will use a more standard notation and write o2 instead of ¢,.

We will only be interested in estimators that are permutation invariant, i.e.

t(x,(l), - ,x,,(,,)) = t(xl, ,x,,)

2.3)

( C(xx(l):--' axr(n)) = C(xly-" 1xn)

for every permutation 7(1),7(2),...,7(n) of 1,2,... ,n. It means that the estima-
tors will be independent of the numbering of the points x;,x2,...,x,. Hence, we
can also write the estimators as a function of a whole collection X = (x3,... ,%,),

which will be more convenient in some cases. We will then write t,(X) or C,(X).
Equivalently, we will sometimes write the estimators as a function of the empirical
distribution, i.e. t(Pn) or C(Py).



2.2 Equivariance

A location estimator t,, is called translation equivariant, if
(2.4) tx1+v,...,Xq + V) = t(x1,..., X))+ V

for every vector v in RP. This means that if we translate a collection X over a vector
v, the location estimate based on the translated collection is equal to the translated
location estimate based on X. Intuitively, this is how one expects a reasonable
location estimator to behave. Most of the location estimators that we will discuss
will satisfy (2.4).

We say that a location estimator t,, is affine equivariant, if

(2.5) t(Ax; +v,...,Ax, + V) = At(xy,... ,X,)+ V

for every nonsingular matrix A and every vector v in RP. This means that a location
estimator commutes with affine transformations in the same way as the expectation
operator does : E(AX +v) = AE(X) + v. Affine equivariance may seem a natural
condition for location estimators. However, several multivariate estimators fail to
satisfy this condition. Nevertheless, affine equivariance remains a desirable property,
and we will mainly be interested in multivariate location estimators that satisfy it.

One can weaken affine equivariance by requiring (2.5) only for orthogonal matri-
ces A and vectors v. Property (2.5) is then referred to as orthogonal equivariance.
Sometimes this is called rigid motion equivariance, because in this case the group of
transformations x +» Ax + v are the so-called rigid motions, such as translations,
rotations and reflexions.

We say that a covariance estimator C,, is affine equivariant if

C(AX; +vV,... ,Ax, + V) = AC(xy, ... ,x,)AT

for every nonsingular matrix A and every vector v in R?. It means that the covari-
ance estimator is invariant under translations, and that it commutes with multipli-
cations in the same way as the variance operator does : V(AX +v) = AV(X)AT.
The covariance estimators that we will discuss, will all satisfy this property.

When we study asymptotic properties of t(Xi,...,X,) and C(Xy,...,X,),
such as consistency or asymptotic efficiency, we will consider as a special case an
underlying distribution which is a member of a family of elliptically contoured dis-
tributions, or briefly elliptical distributions (see for instance Kelker 1970, Cambanis,
Huang and Simons 1981). By this we mean a family of distributions P, 5, where
p € R? and T € PDS(p), of which each member has a corresponding density

IBI7 £ (IB=" (x — w)ll)
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where BB = ¥ and f is a known function. A special member of the family is the
spherically symmetric distribution with density

SCl1l)-

This distribution generates the whole family, since each member of the family can
be obtained from the spherically symmetric distribution by means of the affine
transformation x — Bx + p. A typical example of an elliptical family is the
multivariate normal family, obtained with f(y) = (27)~ %exp(— 1y?).

When X,,Xs,...,X, are sampled from an elliptical distribution, and if the
estimators t, and C,, are affine equivariant, the investigation of the asymptotic
properties of t(X,,..., X,) and C(X;,...,X,) often reduces to studying the esti-
mators under the assumption that the elliptical distribution is spherical.

One of these properties is the asymptotic efficiency. In our situation we will
then be dealing with an estimator that converges at a rate \/n towards a normal
distribution. When the sample distribution is elliptical with parameters g and
3, the limiting variances of the location estimators under consideration will be
some multiple ¥, and the limiting variance of the covariance estimators under
constderation will be of the type

o 1(I+K;pp)(E @ ) + oavec(T) vee(S)T

where K, , is some fixed p? x p®-matrix and vec(X) is the p®-vector consisting of
the p columns of the matrix X. By the asymptotic efficiency of the location estima-
tor t,, we will generally mean asymptotic efficiency relative to the sample mean,
i.e. the value v for the sample mean divided by the value v for t,. Sometimes
the efficiency is measured relative to the maximum likelihood estimator for g. Of
course, at the normal distribution both ratios coincide. For covariance estimators
the limiting variances only differ in ¢y and 3. Tyler (1983) compared values of o,
for different covariance M-estimators with simulated values of a Monte Carlo study
of robust covariance estimators in Devlin, Gnanadesikan and Kettenring (1981),
and concluded that oy suffices as an index for the asymptotic variance of the corre-
lation estimator based upon the covariance M-estimator. In order to compare the
asymptotic efficiency of our covariance estimators with that of others, we define the
asymptotic efficiency of a covariance estimator C,, as the value o, for the sample
covariance divided by the value o of C,,.



3. Breakdown Point and
Influence Function

3.1 Breakdown Point

One way to investigate the robustness of an estimator is to study the global
behaviour of the estimator under large pertubations of a given situation. Hodges
(1967) proposed a simple finite sample measure of the degree to which an estimate
of location is able to tolerate outliers. He studied univariate location estimators
that are linear combinations of the order statistics 1., < 2.y < -+ < Zp.p, and
defined the left- and right tolerance of an estimate t,, that is based on a collection
Ty, T3...,Ty, as follows. The left- and right tolerance of ¢,, are defined as the
smallest integers a = a(t,) and 8 = fB(t,), such that z,4,., < t, < zp_p.n and
such that, whatever be the fixed values of z442:n, .-+ Znin,

Zot1m — —oo implies ¢, — —oo
and whatever be the fixed values of 1.,,... ,Zn-pg—1:n,
Tn_pg:n — 00 implies ¢, — oo.

In this context one can say that the estimate ¢, can tolerate a(t,) extreme values
on the left and can tolerate fB(t,) extreme values on the right. When a(t,) =
B(t,) = ¥(tn) the estimate t,, was said to have tolerance ¥(t,). Hodges mentions
the mean and the median among other examples. The poor robustness of the mean is
illustrated by having tolerance zero, whereas the median can tolerate &;—l-j extreme
values, which is the maximum number that is possible.

Hampel (1968, 1971) proposed a more general but also more complicated con-
cept, and was the first to use the name ‘breakdown point’ referring to the amount
of extreme values for which an estimator completely collapses, or breaks down. He
basically considered estimators as functionals t,, = t(P,) and studied the sensitiv-
ity of the functional ¢(-) under pertubations of some distribution P. In this setup,
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Hampel showed that the insensitivity of the estimator {,, to pertubations in a sam-
ple generated by P is more or less equivalent with the uniform continuity of the
functional {(-) (see Hampel 1971 for details). As a measure that tells us up to what
distance from the assumed distribution P (or typically, up to what fraction of gross
errors) the estimator still gives some indication about the distribution P, Hampel
proposed the breakdown point £*, defined as

e*({ta}, P) =sup {¢ < 1: 3 a compact set K = K(¢) such that
7(P,Q) <& => Q{tn € K} —» 1 as n — oo}

where 7(P, Q) denotes the Prohorov distance between the distributions P and Q.
Among different examples also Hampel (1971) mentions the mean and the median.
The sensitivity of the mean corresponds with breakdown point zero, the robustness
of the median with breakdown point %

Whereas Hampel’s definition of the breakdown point may be too complicated
to use, Hodges’ tolerance concept is simple but not widely applicable. Donoho and
Huber (1983) proposed a couple of finite-sample versions of the breakdown point.
It is one of their proposals that we will use in this thesis as a measure for the global
sensitivity of an estimator.

3.1.1 Multivariate Location
We first discuss the breakdown point of estimators of multivariate location.
DEFINITION 3.1: The finite sample (replacement) breakdown point of a location

estimator t,, at a collection X = (x3,...,Xy,) is defined as the smallest fraction
m/n of outliers that can take the estimator over all bounds :

. m
(3.1) € (tn,X)= min {— s sup ||tn(X) — ta(Ym)|| = oo}
1I<m<n | N Y
where the supremum in (3.1) is taken over all possible corrupted collections Y, =
(Y1, -+ »¥m»Xi 41, - -, Xi, ) that can be obtained from X by replacing any m points
Xi,,---,Xi,, of X by arbitrary values yi,... ,¥m-

This concept is simple and does not involve probability distributions. For a
detailed discussion about the merits of this concept we refer to Donoho and Huber
(1983). The breakdown point of the sample mean is 1/n, the smallest possible
value, illustrating the means sensitivity to outliers; the univariate sample median
can easily be shown to have breakdown point |2 /n.

The computation of these breakdown points is easy since both estimators are
nondecreasing in the observations. In the univariate case it is obvious that for
such estimators the bias ||t,(X)-— t,(Ym)|| is maximized by replacing the smallest
sample values by 400, and it is straightforward to figure out the number m for
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which this first becomes infinite. The computation of the breakdown point becomes
more difficult when the estimators are no longer monotone, such as redescending
M-estimators (see Section 4.1), or when more complicated multivariate estimators
are considered.

The best possible value of the breakdown point among all estimators is 1. In-
deed, consider an estimator which ignores x;,x2,...,X, and attains a constant
value. Of course, such an estimator does not make much sense. For instance, as
an estimator of location it is not translation equivariant. Among all translation
equivariant estimators of multivariate location the best possible breakdown point
at any collection X is |231|/n (see for instance Lopuhai and Rousseeuw 1989).
Intuitively this is clear, since if we replace half of the collection by translated copies
of the other half, a translation equivariant estimator is not able to decide which
half of the corrupted collection are the replacements and which half are the original
points. Since, orthogonal (affine) equivariance implies translation equivariance, the
upper bound |24} |/n also holds for the breakdown point of orthogonal (affine)
equivariant estimators of multivariate location.

In Lopuhaa and Rousseeuw (1989) an example is given of a translation equiv-
ariant multivariate location estimator (which is not orthogonal equivariant) with
breakdown point |2}1|/n, and an example of an orthogonal equivariant multi-
variate location estimator (which is not affine equivariant) with breakdown point
[ 2$1|/n. Hence, for translation and orthogonal equivariant estimators of multivari-
ate location the upper bound | 23] /n is sharp. Note that this bound is independent
of the dimension p. So far, I do not know of any affine equivariant multivariate lo-
cation estimator of which the breakdown point attains this value (except in the
case p = 1, in which case the univariate sample median is affine equivariant and
has breakdown point [!'-:z,ﬂj /n). In Chapter 5 we will give examples of affine equiv-
ariant multivariate location estimators which have breakdown point | 2=2+1|/n at
any collection X that is in general position. It seems that this is the best we can
do for the moment.

At first glance, the breakdown point appears to depend on the collection X.
However, as we have seen above the breakdown point of the sample mean and of
the univariate median are independent of X. This behaviour turns out to be a rule
rather than an exception. Most estimators have a breakdown point that does not
depend on X. Nevertheless, there exist location estimators with a breakdown point
that does depend on the actual structure of the collection. For instance, consider a
univariate location M-estimator, defined as the value t,, that minimizes

(3:2) zp(z; - 1)

where p : R — R. Huber (1984) showed that if p is symmetric, bounded and
nondecreasing towards both sides with p(y) — 0 as |y| — oo, the breakdown point
of the resulting M-estimator depends on X. This can best be understood if we
consider a function p(y) that is constant for |y| > c. If the width of such a function
p is small compared to the distances between the sample points, for instance if all
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the observations are at least 2¢ apart, one needs to replace only one observation
by +0c in order to make one solution break down (in this case there are multiple
solutions for minimizing (3.2)). On the other hand, if the width of the function
p is large compared to the distances between the sample points, for instance if all
sample points are the same, one needs to replace at least [-’1%'—” points in order to
make the estimator break down.

Note that Huber (1984) also showed that location M-estimators defined by min-
imizing (3.2) using a function p(y) that tends to oo at a sufficiently moderate rate
when |y| — oo, have a breakdown point |2£L]/n (in fact Huber considered the
¢-addition breakdown point (see Section 3.1.3), but his proof can easily be adjusted
for the e-replacement breakdown point). This property will be important for the
multivariate location estimator considered in Section 7.1.

Finally, we mention two properties of location estimators in relation to the
breakdown point. First a relation with the so called ezxact fit property, introduced
by Rousseeuw (1984). A location estimator t, is said to satisfy the exact fit property
for k points, if

t(s, o YL, YE) =
s’

n—k times

for all yy,... ,yk. Define the ezact fit point of a location estimator t,, as

8 (tn, ) = 12}32" {% :3Y; such that t,(Y:) # u.}

where Yy = (8, ... ,14,¥1,...,¥k) is any collection of n points with n — k points
equal to g and k arbitrary points y;,...,yx. Hence, §*(t,, ) is 1/n times the
smallest k for which t, does no longer satisfy the exact fit property. For any
translation equivariant location estimator t,, that is also scale equivariant, i.e.
t(Ax1,... ,Ax,) = At(x1,... ,X,) for any A > 0, it holds that

* *
§*(tn,m) > € (tn,(p,.j- ) 18)).
n times
This can easily be shown along the lines of Remark 1 in Rousseeuw and Leroy
(1987, p.123). This result becomes particularly useful if t,, is well behaved so that
€*(tn, X) is the same at all X. When t, is translation and scale equivariant with
a breakdown point m* /n that is independent of X, it follows that if a collection of
n points contains at least n — m* + 1 copies of one point g, the location estimate
based on this collection will be g.

Secondly, the relation with a measure of large deviations. Consider a location-
family of univariate distributions {P, : 4 € R}, that are symmetric around g, with
a density f(z — ). As a measure of the tailperformance of a univariate location
estimator ¢, = t(Xy,...,X,), Juretkova (1981) considered

—log Pu(Jtn — p| > a)
~log P,(|1X1 — p| > @)

B(a,t,) =
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For an efficient estimator, the inaccuracy P,(|t. — p| > a) is expected to tend to
0 as fast as possible as a — oo, i.e. the distribution of t(X3,...,X,) will have the
smallest possible tails. Jure¢kova showed that the tails of a univariate translation
equivariant estimator of location decrease at most n times faster than the tails of
the sample distribution P, and at least as fast as the tails of P, i.e.

1 < liminf B(a,t,) < limsup B(a,t,) < n.
a—00 a—o00

For exponentially tailed distributions, the sample mean X, performes optimally
with B(a, X,,) tending to n, while for algebraically tailed distributions the lack of ro-
bustness of X, is expressed by B(a, X,) tending to 1. Let X3, X5,...,Xp be a sam-
ple generated by a member of the family {P, : p € R}, and let t, = {(X;,...,X,,)
be a translation equivariant univariate location estimator which is monotone in
each argument X; for ¢ = 1,2,...,n. He, Juretkova, Koenker and Portnoy (1988)
first discovered the following striking relation between the finite sample replacement
breakdown point of such estimators ¢, and the measure B(a,t,). Suppose that at
any collection X the breakdown point ¢*(t,,X) = m*/n is independent of X. Then
(3.3) m® < liminf B(a,t,) < limsup B(a,t,) < n—m* + 1.
800 a—o00

Hence, it turns out that the finite sample replacement breakdown point is not just
an appealing and simple robustness concept, but it also has a stochastic interpre-
tation. Relation (3.3) indicates that location estimators with a high breakdown
point necessarily must sacrifice tailperformance. However, (3.3) also implies that
estimators with maximal breakdown point | 23] /n satisfy a minimax property in
the sense that they maximize least favorable tailperformance. The relation (3.3) is
extended to multivariate location estimators in Lopuhai and Rousseeuw (1989).

3.1.2 Covariance

A location estimator breaks down if contamination can drive the estimator to the
boundary of the (location) parameter space. Because scale estimators are inherently
nonnegative it makes sense to say that scale estimators break down if contamination
can drive it either to co or to 0. Huber (1981) refers to these possibilities as
‘explosion’ or ‘implosion’ of the scale estimator respectively. This brings us to the
following definition of the finite sample breakdown point for covariance estimators.

DEFINITION 3.2: The finite sample (replacement) breakdown point of a covariance
estimator C,, at a collection X is defined as the smallest fraction m/n of outliers
that can either take the largest eigenvalue A1(C,) over all bounds, or take the
smallest eigenvalue \,(C,,) arbitrarily close to zero :

m
—:s8

£*(Cp,X) = min {

1<m<n uf D(Ca(X), Cn(Ym)) = oo}

n vy,

where the supremum is taken over the same corrupted collections Y,, as in (3.2),
and where D(A,B) = max{|A;(A) — A{(B)[,|A,(A)~1 = A,(B)~!{}.
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The univariate sample variance can easily be seen to have the same breakdown
point 1/n as the sample mean, which illustrates its sensitivity to outliers. The
Median Absolute Deviation (MAD) is an outlier resistant univariate scale estimator.
It is defined as

Omap = 1??5‘1: II:' - 1‘21%dn Z‘jl
and has breakdown point |%|/n at collections z;,z2,...,Z, that are in general
position.

Among all affine equivariant covariance estimators the maximal breakdown point
at collections X in general position is | 2=2%1|/n (see Davies 1987). Note that this
bound depends on the dimension p. In Chapter 5 we will give some examples of
affine equivariant covariance estimators with a breakdown point that attains this
value at collections X that are in general position. Hence, this upper bound is sharp
for any p and n > p+ 1. If a collection is not in general position, the upper bound
will be smaller. Let k,, = k,(X) be the maximum number of sample points that are
contained in some hyperplane of dimension less than p — 1. Obviously, k, > p with
equality if the collection is in general position. By a straightforward adjustment of
Davies’ proof one may show that for general collections X the breakdown point of
any affine equivariant covariance estimator is at most [milj /n.

3.1.3 Alternative Definitions

The finite sample breakdown point as defined in Definition 3.1 is the so called
e-replacement version of Donoho and Huber (1983) for location estimators. They
also considered two other versions.

The first one is e-addition breakdown (in fact it was called e-contamination
breakdown, but that name seems a bit confusing). It is defined as the fraction
m/(n+m), where m is the minimum number of outliers yy, ... ,ym that one has to
add to a collection X = (x;,... ,Xy,) in order to make the maximum bias infinitely
large. This type of breakdown has been used by several authors (Donoho 1982,
Donoho and Huber 1983, Huber 1984, Tamura and Boos 1986, Tyler 1986), mostly
because it is sometimes easier to compute than the e-replacement breakdown point.
For instance in the case of location M-estimators with a bounded loss function
(see Section 3.1.1). However, the e-replacement version seems more realistic and
is generally applicable. Moreover, from an intuitive point of view, outliers are not
some extreme observations that are added to the sample, but they ‘hide’ themselves
by replacing some of the data points that should have been observed.

A second alternative to Definition 3.1 is the ¢-modification breakdown point.
Let m be an arbitrary distance function defined on the space of all empirical dis-
tributions. Let P, be the empirical distribution corresponding to a given sample
X, and let X' be any other sample with empirical distribution @, such that
7(Pn,@n’) < €. The breakdown.point is the smallest value of ¢ for which the maxi-
mum bias |[t(P,) — t(Qy)|| becomes infinitely large. The e-modification version has

13



never been very popular, although recently Davies (1989) used an affine equivariant
asymptotic version of this concept.

Another asymptotic breakdown concept that is sometimes considered is the
gross-error breakdown point, which corresponds with the so called gross-error model
(Section 4.1). Consider mixtures of a distribution P and the Dirac measure 6,

Pex=(1—¢)P +¢by

with 0 <€ < 1 and x € RP. Let t, be an estimator that can be written by means

of a functional t(-), that is t, = t(P,). The gross-error breakdown point of the
estimator t at P, is the smallest £ for which

sup [|£(P: ) — ¢(P)|

becomes infinite. This concept of breakdown was used for instance by Maronna

(1976) and Huber (1977) to describe the global robustness of multivariate M-
estimators.

3.2 Influence Function

The breakdown point measures the global behaviour of an estimator under large
pertubations of a particular given situation. It tells us that the estimator will stay
within finite bounds if a certain fraction of a given collection is replaced by outliers.
Although it may give a good first impression about the robustness of an estimator,
the breakdown point is a crude way to measure the sensitivity of an estimator. It
does not tell us how much an estimator can be altered under small pertubations.
It is necessary to have at least a positive breakdown point for a robust estimator.
However, one should not judge an estimator’s robustness merely on the basis of
its breakdown point. To further investigate the robustness of an estimator, the
breakdown point may be complemented by measures that describe the changes of
an estimator under small pertubations of a given situation. In this section we discuss
such a proposal.

Consider a location estimator t,,, which can be written by means of a functional
t(-) defined on the space of all probability distributions on R?, i.e. t, = t(P,).

DEFINITION 3.3: The influence function of an estimator t,, = t(P,) at a distribu-
tion P is defined as

(1= )P + eby) — t(P)
£

t
(3.4) IF(x;t,P) = liﬂ’)l
if this limit exists for all x € R?.
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The influence function, originally called the influence curve, is the Gateaux
derivative of the functional t(-) at a distribution P in the direction of the Dirac
measure 6x. The idea of differentiating statistical functionals (although for other
purposes) goes back to von Mises (1937, 1947) and Filippova (1962). Hampel (1968,
1974) introduced the derivative (3.4) to investigate the sensitivity of estimators, and
it became the cornerstone of the so called infinitesimal approach to robustness. An
extensive account of this approach, as well as many references to related work, are
given in Hampel, Ronchetti, Rousseeuw and Stahel (1986). We will have a very
brief glance at this approach in Section 4.1 when it is discussed in relation with the
minimax variance approach.

Whereas the continuity of the functional t(-) at P is more or less equivalent with
the global stability of the corresponding estimator t,, differentiability of the func-
tional corresponds with the actual change of the estimator under small pertubations
of P. The influence function describes approximately the changes of the estimator
under a small pertubation of the distribution P, i.e. reallocation of a small fraction
¢ of the probability mass of P to a point x. For instance, if for large n we replace
P by P,_; and put £ = 1/n, IF(x; t, P,) can be interpreted as measuring n times
the change of t,.; caused by adding an observation x to the sample.

The influence function of the sample mean at any distribution P with zero mean,
is given by

IF(x;t, P) =x

which illustrates the arbitrarily large influence of small pertubations at a point x
that is far from the majority of the observations. The influence function of the
univariate sample median at a distribution P that has a density f and for which

F(0) = 1, is given by

) _ sign(z)
IF(z;t, P) 2(0)
which says that every point z at the right (left) of the median of P has the same
effect. Several other examples of influence functions of location estimators are given
in Hampel (1974), Huber (1981) and Hampel et al. (1986).
A concept that is closely related to the influence function is the gross-error
sensttivily, defined as

(3.5) Y'(¢, P) = sup [[IF(x; ¢, P)|.

It measures the worst approximate influence which a small amount of contamination
can have on the value of an estimator. The gross-error sensitivity of the sample
mean is infinite, whereas the gross-error sensitivity of the univariate sample median
is 1/(2f(0)). Note that among all univariate location M-estimators the gross-error
sensitivity of the median is the smallest possible (see for instance Hampel et al.
1986, p.133).

Just as the breakdown point is only a measure of the global sensitivity that
needs to be complemented by measures of the local sensitivity, the influence func-
tion and its corresponding gross-error sensitivity, should not be considered alone.
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For instance multivariate location S-estimators have the same bounded influence
function as corresponding location M-estimators. However, the breakdown point of
the latter is at most 1/(p + 1) (see Section 4.1.1), whereas the S-estimator can be
constructed such that its breakdown point is | 2=E+1|/n (see Chapter 6). One can
think of even more extreme examples (see for instance Donoho and Huber 1983,
p.174) of a location estimator with a bounded influence function and breakdown
point zero, while other estimators with the same influence function have a strictly
positive breakdown point. By considering both ¢*(t,, X) and IF(x; t, P) together
one obtains a sensible approach, whereas optimization of one or the other alone is
unwise.

The influence function of estimators of scale is defined similar to (3.4). Let C,
be a covariance estimator that can be written by means of a functional C(), i.e.

C, = C(P,).

DEFINITION 3.4: The influence function of a covariance estimator C,, is defined as

C((1 —€)P + ebx) — C(P)
€

IF(x;C, P) = lim
30
if this limit exists for all x € RP.

The gross-error sensitivity of a covariance estimator is defined similar to (3.5).
The influence function of the sample covariance at any distribution P with zero
mean is

IF(x;C,P) = xxT .

Hence, for ||x|| — oo, the influence function grows not only linearly, as with the
sample mean, but even quadratically; obviously, the gross-error sensitivity of the
sample covariance is infinite. The influence function of the MAD (see Section 3.1.2)
at the univariate standard normal distribution ® is

IF(-’L';UMADa ‘I’) = Sign(lzl —ﬂ¢-l(%))

where 8 = 40-1(2)¢(@-1(2)). Note that the gross-error sensitivity of the MAD is
the smallest possible among all univariate M-estimators of scale (Rousseecuw 1981,
see also Hampel et al. 1986, p.142). Several other examples of influence functions
of scale estimators are given in Hampel et al. (1986) and Huber (1981).
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4. Other Approaches to
Robustness

4.1 Minimax Variance

4.1.1 Introduction

The foundations of modern robustness theory were laid by P. J. Huber in his
1964 paper. He introduced the class of M-estimators for univariate location. These
estimators, and several extensions of them, have become the most well known robust
alternatives to the maximum likelihood estimators, in particular to the least squares
estimator.

They arise as a generalization of maximum likelihood estimators as follows.
The well known maximum likelihood estimator for the parameter 8 of a density
fo(x) is defined as the value ,, which maximizes []!_, fo(x;), or equivalently which
minimizes

n
~ ) log fo(x:).
i=1
Huber (1964) proposed to generalize this to minimizing

(4.1) 2 p(xi,6)

where p is some real valued function. When the function p has a partial derivative
¥(x,0) = (8/008)p(x, 8), the estimator 8, will satisfy

(4.2) > %(xi,0.) = 0.
i=1
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An estimator that is defined either by minimizing (4.1), or as a solution of (4.2), is
called an M-estimator for the parameter 6 (‘M’ stands for generalized Maximum
likelihood).

Huber (1964) investigated robust estimation of a univariate location parameter,
and determined the location M-estimators that are optimal in a minimax variance
sense. For this purpose he considered the gross-error model, a kind of ‘neighbour-
hood’ of a fixed symmetric distribution. For simplicity, we confine ourself to the
normal gross-error model

(4.3) Pe = {(1-€)® +¢H : H is any symmetric distribution}

where 0 < & < 1 s fixed. As a special case of (4.2), Huber considered the class of
univariate location M-estimators defined as a solution of

(4.4) ﬁ:m; —t)=0

where the function ¢ was taken from some class ¥, and showed that for all such func-
tions the corresponding location M-estimator ¢, is asymptotically normal. When

we assume that ¢, — 0 and that Epy(X,) = 0 for P € P,, this result can be made
plausible as follows, using Taylor’s formula :

0= ¥(Xi—tn)
i=1

= Z¢(X,~) - Zz//(X,-)t,. + remainder term.

i=1 i=1

Hence, proving asymptotic normality boils down to showing that the remainder
term is op(1/4/n). In that case

1 n
= ﬁEi:l ¢(X,-)
Vit = TS X)

where V (¥, P) = Epl/)z(Xl)/(Epl/)'(Xl))2, using the law of large numbers and
the central limit theorem. Later, Huber (1967) provided sufficient conditions for
consistency and asymptotic normality for general M-estimators defined either by
minimizing (4.1) or as a solution of (4.2).

To find the most robust estimator, Huber proposed to minimize the maximal
possible asymptotic variance V (¢, P) that one can have at a distribution P of P;,
i.e.

+op(1) = N(0,V (¥, P))

sup V (v, P)
PeP.

among all M-estimators that are defined as a solution of (4.4) with the function v
taken from the class W. In case of the normal gross-error model (4.3) this minimax
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variance problem yields the well known Huber estimator. It is defined as the solution
of (4.4) using Huber’s ¥-function

-k ,fory<—k
(4.5) Yuly;k) =4 y ,for |y <k
k ,fory>k

The value of k corresponds to the amount € of gross-error contamination by means
of the equation
2¢(ic) 1

28(k) — 14+ =~ = 7.

Hampel (1968) also considered the class of location M-estimators defined as
solutions of (4.4), and showed that the influence function of these location M-
estimators are proportional to the function 1 that defines the M-estimator, i.e.

IF(z;t, P) = 1/)(:1;)

where 3 is a positive constant that depends on 1/:. Hampel proposed to find the
M-estimator that minimizes the asymptotic variance V' (3, P) subject to a bound
on the gross-error sensitivity : 4*(f, P) < k. Huber’s estimator also turned out to
be optimal in this sense (see for instance Hampel et al. 1986, p.117). Moreover, one
may show that this estimator has breakdown point |2¥L]/n (an adjusted version
of Theorem 4.1 in Huber 1984).

As both minimizing supp_V(%, P) and minimizing V (%, P) under the constraint
v* (¥, P) < k yield the same estimator, it is not surprising that both methodologies
are related in some way. For a clear explanation of the relation between both
approaches we refer to Hampel et al. (1986, Section 2.7).

Note that Huber’s estimator corresponds with a function % in (4.4) that is
monotone, so that the estimator is uniquely defined. When the function ¥ in (4.4)
is no longer monotone, (4.4) may have multiple solutions. To distinguish functions
1 that are zero for |y| greater than some cutoff point ¢, from functions 3 that tend to
zero for |y| — oo but never become zero, we call the first type strongly redescending
and the second type weakly redescending. Note that the influence function that
corresponds with redescending M-estimators is also redescending, which illustrates
the small, or even zero influence of outliers. Section 2.6 in Hampel et al. (1986) gives
an overview of the infinitesimal approach for strongly redescending M-estimators.

4.1.2 Multivariate M-estimators

Huber’s minimax variance approach was extended by Collins (1982) to M-
estimators for multivariate location. These estimators are defined as solutions of

Sl =ty

perlll Rl
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Note that this reduces to (4.4) when p = 1 and v is skew-symmetric. Collins studied
these estimators under the assumption that the sample distribution is spherically
symmetric around some parameter vector p, an assumption that is often not re-
alistic. When the scale parameter is not assumed to be fixed, then it seems more
natural to use affine equivariant estimators of location. Location M-estimators as
defined above, do not satisfy this property.

Maronna (1976) introduced affine equivariant multivariate M-estimators for lo-
cation and scatter. He considered simultaneous estimation of location and scatter,
and defined the M-estimators of location and scatter as the vector t,, and the matrix
C,, that are a solution of the simultaneous equations

Eul (d(x.-, t, C))(x,' -t)=0
(4.6) =1

n

Z {uQ(d2(x,», t,C))(x; — t)(x; — t)T ~ C} =0

i=1

where u; : R — R and up : R — R. As a special case one obtains the maximum
likelihood estimators for the parameters 4 and ¥ of an elliptical distribution :
n(y) = uay?) = £' )/ (v5(¥))-

Later, Huber (1981) generalized (4.6) and defined multivariate M-estimators of
location and scatter as the vector t, and matrix C, that are a solution of

> vi(d(xi, t,C))(x; — t) = 0
(4.7) =1

n

Z {02 (d(x,-, t, C))(x,- - t)(x,- - t)T - v;;(d(x,‘, t, C))C} =0

i=1

where v; : R - R, v2 : R — R and v3 : R — R. Huber (1981) gives the general
expression for the influence function of these M-estimators. His results on the
existence and uniqueness of solutions of (4.7) do not carry much further than those
of Maronna (1976). For instance, if one wants the solution of (4.7) to be unique,
Huber (1981) requires v3(y) = 1, which yields equations (4.6) in return. Kent
and Tyler (1989) also studied equations (4.6) in the case that u;(y) = u2(y?) and
provided sufficient conditions for existence that are essentially the best possible.

The concept of affine equivariance as defined in Section 2.2 becomes a bit vague
when t, and C, are not uniquely defined. However, these estimators will always
be affine equivariant in the following sense. Let x1,Xs, ... ,x, be a collection and
let V be set of solutions of (4.7). Let W be the set of solutions of equations
(4.7) with Ax; + v,Ax> +v,... ,AX, + v instead of x;,X2,... ,X,. Then W =
{(At+v,ACAT): (t,C) e V}.

Multivariate M-estimators are probably the most well known affine equivariant
robust alternatives to the multivariate sample mean and sample covariance. This
is not surprising, since for a long time they seemed to outperform other affine

20



equivariant robust alternatives. By chosing suitable functions vy, v2 and v3 in (4.7)
one may obtain affine equivariant M-estimators that converge at rate i/n, which
are asymptotically normal with a reasonable efficiency, and which have a bounded
influence function.

However, both Maronna (1976) and Huber (1977, 1981) also mention the poor
breakdown behaviour of multivariate M-estimators. They both consider the gross-
error breakdown point (see Section 3.1.3). It turns out that equations (4.7) will
always have at least one solution with a gross-error breakdown point that is

e < l
p
Under certain monotonicity conditions on the functions in (4.7), the solution of these
equations will be unique (see for instance Huber 1981, Kent and Tyler 1989) and
must therefore have a breakdown point less than 1/p. This means that multivariate
M-estimators, despite the other nice properties they possess, will be extremely
sensitive to outliers in higher dimensions. Tyler (1986) also studied the finite sample
(addition) breakdown point of these M-estimators and showed that it is at most
1/(p+ 1). The breakdown is due to the covariance M-estimator, which is not able
to resist so called co-planar contamination, i.e. outliers concentrated in a lower
dimensional hyperplane.

4.2 Minimax Bias

The main approach to global robustness in recent years has been centered around
the construction of estimators with a high breakdown point. The breakdown point
approach is highly attractive for a number of reasons, not the least of which is
the transparency of the concept. On the other hand it exhibits such a strong
and crude ‘distribution freeness’, that this makes it quite unsuitable for optimizing
global robustness. Nonethless one might wish to have a global optimality theory of
robustness which emphasizes bias control also for fractions of contamination that
are smaller than the breakdown point. In this context, Huber (1964) showed that
the sample median minimizes the maximum asymptotic bias among all translation
equivariant estimators of location, the maximum being over e-contaminated neigh-
bourhoods like (4.3). This approach to global robustness, i.e. the construction of
minimax bias robust estimators has been essentially neglected until quite recently.

Consider an estimator t,, that can be written as t(P,). The bias curve of t,, at
P is a function of the amount ¢ of contamination. It is defined as

(48) B(e;t, P) = sup [|t((1 - )P +¢Q) — t(P)|
QEQ

where the supremum is taken over some class Q consisting of distributions Q on
RP. Similar to the minimax variance approach, consider some 0 < £ < 1 to be fixed,
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and let 7 be some class of estimators. The minimax bias location estimator in 7,
would be the estimator t, = t(P,) that minimizes B(¢;t, P,) among all t € 7.

Recently, different authors have begun to study the robustness problem using
this minimax bias approach. Martin and Zamar (1988) and Martin, Yohai and
Zamar (1989) found minimax bias estimators for different classes of regression es-
timators. One drawback of these minimax bias estimators is their relatively poor
asymptotic behaviour, e.g. a slow rate of convergence or a low efficiency at the
assumed model distribution.

Maronna and Yohai (1989) investigated the bias curve for two classes of covari-
ance estimators, which included covariance M-estimators and the minimum volume
ellipsoid (MVE) covariance estimator (Rousseeuw 1983). As a special case they
considered Tyler’s (1987) distribution free M-estimator. As an M-estimator, it has
a gross-error breakdown point.of at most 1/p, whereas the MVE covariance estima-
tor has a high breakdown point (see Section 5.1). Nevertheless, it turns out that
Tyler’s estimator has a smaller maximum bias than the MVE covariance estimator,
that is up to € = 1/p of course. The maximum bias of the MVE estimator will still
be finite for 1/p < € < 1/2, whereas the maximum bias of the M-estimator then
becomes infinite. This comparison indicates that further study of the bias curve
is needed, and that the breakdown point does not always suffice to give complete
information about the global sensitivity of an estimator.
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5. Combining a high Breakdown
Point with Affine Equivariance

Multivariate M-estimators are defined as solutions of (4.7). These equations
will always have at least one solution that has a finite sample (addition) breakdown
point of at most 1/(p+ 1). Donoho (1982) has listed several other affine equivariant
‘robust’ multivariate location estimators and has shown that the finite sample (ad-
dition) breakdown points of these procedures are also bounded by the ‘mysterious’
number 1/(p + 1). This might tempt us to think that with an affine equivariant
estimator one can do no better than a breakdown point of 1/(p + 1). At least do
these examples indicate that combining a high breakdown point with affine equiv-
_ ariance is not trivial, and this problem in higher dimensions seems to be essentially
different from the univariate case. In the next sections we will discuss some of the
first proposals of affine equivariant multivariate estimators with a breakdown point
that attains the maximal possible value for covariance estimators.

5.1 Stahel-Donoho Estimator

Independent of each other, Stahel (1981) and Donoho (1982) constructed the
first affine equivariant estimator of multivariate location and covariance with a high
breakdown point. Their idea was to measure the ‘outlyingness’ of a point x; relative
to the center of a collection, and then to compute a weighted sample mean and
sample covariance, where the points with a relatively large degree of outlyingness
are downweighted.

They proposed to find the projection in which x; appears to be most outlying,
and to measure the degree of outlyingness of x; by
. JuTx; — med(uTX)|

5.1 i = su
( ) ! ||u||£1 MAD(UTX)
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where med(u?”X) and MAD(uTX) are the median and median absolute deviation
of the univariate sample u”x;,, ... ,u”x,. Next, assign weights to each x; according
to its degree of outlyingness r; :

w; = w(r;)

where w : [0,00) — [0, 00) is assumed to be strictly positive, decreasing with w(r) —
0 as r — oo, and such that w(r)r is bounded. The estimators of multivariate
location and covariance are then defined as

1 WiXg
= .

Dicy Wi

o T
Cy (X) — 21':1 w? (Xi —gg?(_le?;xi - tw(X)) '

Donoho (1982) showed that these estimators are affine equivariant and have a
finite sample breakdown point

(5.2)

(53) Et(tw,X) = 5‘*(Cw’x) = L%’;I e 4

at every collection X in general position. (In fact, Donoho computed the ¢-addition
breakdown point, but his proof can be adjusted easily for the e-replacement break-
down point). Note that (5.3) is smaller than the maximal possible breakdown point
for affine covariance estimators. The asymptotic properties of the Stahel-Donoho
estimator, such as the rate of convergence, consistency or the limiting distribution,
have not yet been investigated.

5.2 Minimum Volume Ellipsoid Estimator

Another proposal that combines affine equivariance with a high breakdown point
is the minimum volume ellipsoid (MVE) estimator. It was originally introduced by
Rousseeuw (1983), who defined

(5.4) tn(X) = the center of the smallest ellipsoid that covers
' at least h points of X = (xy,...,Xp).

In principle, h may be any integer between p + 1 and n, but it is typically taken
around 5. The corresponding MVE covariance estimator is defined as the covariance
structure of the same ellipsoid.

The MVE estimator is affine equivariant, and Rousseeuw (1983) showed that
with h = || + 1, it has breakdown point
Ly 1
(5.5) € (th, X) = LJ%'__
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at any collection X in general position. The breakdown point in (5.5) is smaller
than the maximal possible breakdown point for covariance estimators. However, the
MVE estimator can be adjusted by taking h = [®42%1| 5o that it has breakdown
point Lﬂzgﬁj /n at any collection in general position (see Lopuhai and Rousseeuw
1989).

In the univariate case the estimators correspond with the midpoint and length of
the shortest interval that covers at least | %]+ 1 points. Rousseeuw (1983) sketched
by means of heuristic arguments from Andrews et al. (1972) that in this case the
MVE location estimator is /n consistent and converges weakly towards a limit-
ing distribution that is nonnormal. Later this was made rigorous, for instance by
Shorack and Wellner (1986) and by Kim and Pollard (1989). Somewhat surpris-
ingly, Griibel (1988a) proved that the univariate MVE estimator of scale converges
weakly to a normal distribution at rate \/n.

For the cases p > 2, Davies (1987) showed that at an elliptical distribution P, x,
the MVE estimators t,, and C,, are consistent for u and X respectively. Recently,
Davies (1989) has also obtained the limiting distribution. Both the location as well
as the covariance MVE estimator converge weakly to a limiting distribution that
is nonnormal at rate </n. This may seem to be in conflict with Griibel’s result for
the univariate MVE estimator of scale. However, although the MVE covariance
estimator converges at rate /n, the trace of the covariance estimator turns out to
be asymptotically normal at rate \/n.

5.3 Minimum Covariance Determinant Estimator

To improve the poor rate of convergence of the MVE estimator, Rousseeuw
(1983) also considered the minimum covariance determinant (MCD) estimator.
The MCD location estimator is defined as

t5(X) = the mean of the h points of X = (x1,... ,%;,) for which

the determinant of the sample covariance is minimal.

The corresponding MCD covariance estimator is proportional to the sample covari-
ance of those h points. Typically, h was taken h = | 3] + 1, which leads to the same
breakdown point (| 3] —p+1)/n as that of the MVE location estimator at any collec-
tion X in general position. Similar to the MVE estimator, one obtains a breakdown
point [témj/n at any collection in general position, by taking h = [-u%"—lj

In the univariate case the MCD estimator reduces to the sample mean and sam-
ple variance of the h points with the smallest sample variance. Rousseeuw (1983)
showed that in this case the location estimator converges weakly to a normal distri-
bution at rate v/n. The asymptotic efficiency however, for instance at the standard
normal, is disappointingly low. Recently, Butler and Juhn (1988) investigated the
multivariate version of the MCD estimator and showed that it is asymptotically
normal at rate \/n.
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6. Multivariate S-estimators of
L ocation and Scatter

6.1 Introduction

Multivariate M-estimators for location and scatter are affine equivariant robust
estimators that possess most of the basic desirable features, such as a \/n rate of
convergence, a limiting normal distribution, good efficiency and a bounded influ-
ence function. Unfortunately, the breakdown point of these estimators is at most
1/(p+1), which illustrates their sensitivity for outliers in high dimensional samples.
Stahel (1981), Donoho (1982) and Rousseeuw (1983) introduced affine equivariant
multivariate estimators for location and scatter that have a high breakdown point
for every p (when n is sufficiently large compared to p), but which on the other hand
exhibit relatively poor asymptotic properties. It then becomes of interest whether
there exist affine equivariant estimators, that are able to combine a high breakdown
point and a bounded influence function together with a /n rate of convergence
towards a normal distribution and good efficiency. In this thesis three proposals are
investigated, two of which will meet this objective. These estimators arise in two
different ways.

First, one could try to combine multivariate M-estimators with a high break-
down estimator in a suitable way, such that the resulting procedure inherits the
asymptotic properties from the M-estimator and the high breakdown point from
the other estimator. In Chapter 7 we will discuss a few methods that are based on
M-estimators. '

Another way to improve the asymptotic behaviour of a high breakdown estima-
tor such as the ones in Chapter 5, is to smoothen the estimator directly, in such
a way that it has the same breakdown behaviour as the nonsmoothed version and
such that it has better asymptotic properties. In this chapter we will discuss mul-
tivariate S-estimators, which form a class of estimators that are a first step in this
direction.
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Rousseeuw and Yohai (1984) originally introduced S-estimators in a regression
context. How these estimators arise, may be best understood in the special case of
estimating univariate location and scale.

Consider the least squares estimator for a univariate location parameter. It is

defined by

n
- . 2
(6.1) ItIélélg(:C, 1)~
On the other hand, consider the univariate MVE estimator, defined by
min _o?

(6.2) teR,0>0
subject to #{i:t—o<z; <t+o}=|2]+1.

The key observation is that in both (6.1) and (6.2) one minimizes an M-estimator of
scale ¢2(t) as a function of ¢. Indeed, to obtain (6.1), first define the ‘least squares’
M-estimator of scale o (t) as the solution of the equation

(6.3) -,l;gpw(”‘;’) =1

with p . (y) = y?, and then minimize o?_(t) = 1 3 (z; — t)? as a function of ¢.

To obtain (6.2), first rewrite the constraint in (6.2) as

e (51) - 2t

n

with pye(y) = 1 — {1 < y < 1}, which is the indicator of the set (—co,—1)U
(1,00). Then define the ‘minimum volume ellipsoid’ M-estimator of scale o,,,.(2)
as the solution of (6.4), where t is considered fixed. Minimizing o2 _(t) over t € R
corresponds with (6.2). Hence, both minimization problems are a special case of

min o2
teER,0>0

. 1 & r; —1 _
(6.5) subject to ;Zp( . )-.b

i=1

where b is some positive constant. That is, compute an M-estimator a,(t) of scale
(hence, the name S-estimators) by solving constraint (6.5), and then minimize oy, (t)
over ¢.

The idea is now, to define estimators of univariate location and scale with a
smooth function p, which is so to speak ‘in between’ p,,,(y) and p ¢ (y), and which
is such that the resulting estimators have the same breakdown point as the MVE
estimator and have asymptotic properties that are similar to that of the least squares
estimator. Rousseeuw and Yohai (1984), aiming for both asymptotic normality and
a high breakdown point, proposed to restrict attention to the class of functions p
that satisfy
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(R1) p(0) = 0, p is symmetric and p is twice continuously differentiable.
(R2) There exists a finite constant ¢ > 0 such that p is strictly increasing on
[0,¢] and constant on [¢, 00).

The letter p, as well as the letter 1 for its derivative, was chosen on purpose to
emphasize the relation with M-estimators of univariate location and scale that are
defined as a solution of (4.7) with u1(y) = ¥(y)/y and u2(y?) = p(y)/(by?). One
typically should think of a function p that is quadratic in the middle such as p,
and which smoothly changes into a constant function such as p,,,.. A well known
example of a function that satisfies these conditions is the biweight p-function

v _ v

6
LY

2 tga o forl<e

[

2
(6.6) pe(yic) =4
C
5 , for Jyl > ¢

Its derivative is Tukey’s biweight function
= (M) ol <
Ye(yi) =4 Y \' ™ (E) forfyl < e
0 , for |y| > ¢
This y-function was originally proposed by Tukey in the context of (redescending)
M -estimators for univariate location.

6.2 Multivariate S-estimators

Multivariate S-estimators are defined in a similar way as described in the pre-
vious section, as a smoothed version of the multivariate MVE estimator. Recall
that the volume of an ellipsoid is an increasing function of the determinant of the
corresponding scatter matrix.

DEFINITION 6.1: Multivariate S-estimators for location and scatter are defined as
the vector t, and the positive definite symmetric matrix C,, that minimize the
determinant |C| of the matrix C, subject to

6.7) LY pld(x,6,0) =

where p : R — [0, 00) is nondecreasing and b is a constant such that 0 < b < sup p.
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In other words, S-estimators are the center and scatter matrix of the smallest el-
lipsoid that satisfies constraint (6.7). The MVE estimator is obtained with p.(¥),
as defined in the previous section, and with 4 =1 — [L'-ﬂzdij /n. The sample mean
and sample covariance are obtained with p . (y) = y? and b = p (see for instance
Griibel 1988b for p > 2). When the S-estimators are uniquely defined, they are ob-
viously affine equivariant; if they are not uniquely defined they will always be affine
equivariant in a similar way as nonuniquely defined multivariate M-estimators (see
Section 4.1.1).

Davies (1987) first investigated some properties of multivariate S-estimators.
His definition was slightly different, but is essentially equivalent to Definition 6.1.
Instead of a nondecreasing function p : R — [0,00), he considered a nonincreasing
function & : [0,00) — [0, 1], and defined S-estimators by minimizing |C| subject to

(6.8) % En:;c((x; -t)TC 1 (x;—t)) > 1-¢

where ¢ is a constant between 0 and 1. Note that if & is continuous, the solutions
of this minimization problem satisfy (6.8) with equality. Hence, this definition is
equivalent with Definition 6.1 for functions p that are continuous and bounded, i.e.
a = sup p < o0, by taking
s =1-22
a

and € = b/a.

To obtain both a high breakdown point and asymptotic normality, the function
p in Definition 6.1 is assumed to satisfy conditions (R1) and (R2). We prefer the
function p in Definition 6.1 instead of x because of a few minor reasons. For one
thing, Definition 6.1 is a straightforward generalization of regression S-estimators as
defined in Rousseeuw and Yohai (1984). Moreover, the letter p is chosen on purpose
to emphasize the relation with multivariate M-estimators, defined by minimizing

(6.9) > p(d(xi,m, X))
i=1

where ¥ is the underlying covariance. Finally, with the function p it is easier to
see that the sample mean and sample covariance may arise as limiting cases of S-
estimators defined by a function p that satisfies (R1) and (R2). For instance, if
we use the biweight p-function of (6.7) and let ¢ — oo, we obtain p, ., whereas the
corresponding function £ tends to 1.

Since S-estimators are a smoothed version of the MVE estimator it is no surprise
that its breakdown behaviour is similar. Davies (1987) extended the breakdown
result for the MVE estimator to S-estimators that are zero in a neighbourhood
of the origin. This result is complemented in Lopuhad and Rousseeuw (1989) to
encompass well known p-functions such as the biweight function of (6.6). The good
breakdown properties basically follow from constraint (6.7), which guarantees a
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sufficient number of points, namely n — |nr] (where r = b/a = b/ sup p), inside
the ‘S-ellipsoid’ and safeguards the covariance S-estimator against implosion, and
from the fact that one minimizes a loss function |C| that is an increasing function of
the magnitude of C, which safeguards the covariance S-estimator against explosion.
That the location S-estimator must also stay within bounds is then an immediate
consequence. It turns out that the breakdown point depends on the constant b in
(6.7), i.e.

(6.10) £*(tn, X) = £*(Cp,X) = L’;‘ﬂ

at any collection X in general position. For b = “-Ea, the S-estimators will have a
breakdown point that attains the maximal possible value for covariance estimators.

Davies (1987) also proved existence and consistency for a class of S-estimators
that was large enough to contain the MVE estimator, and sketched a proof for
asymptotic normality under the asumption of & having a third derivative. These
results are extended in Lopuhaa (1989) to S-functionals corresponding to the es-
timators defined in Definition 6.1, i.e. t(P) and C(P) defined by minimizing |C|
subject to

(6.11) / p(d(x, t,C)) dP(x) = b

where the function p must satisfy (R1) and (R2). S-estimators defined with such
a function p converge weakly to a normal distribution at rate \/n, have a bounded
influence function and have a high breakdown point for suitable choices of p.

Another interesting feature of these estimators is that (in addition to having a
high breakdown point), their asymptotic behaviour is similar to that of multivariate
M-estimators. In Lopuhai (1989) it is shown that S-estimators are a solution of
the simultaneous equations

n

D u(d(xi,t,C))(x; —t) =0
(6.12) =1

n

E {pu(d(x.-,t, C))(x; —t)(x; — t)T - v(d(x,-,t,C))C} =0

i=1

where u(y) = ¥(y)/y, v(y) = ¥(¥)y — p(y) + b, ¥ is the derivative of p and b is the
constant in (6.7). An important consequence of this is, that it shows that at least
for some type of M-estimator score equations (4.7), there exist a solution which
has a high breakdown point. In this context, S-estimators may be interpreted as a
method to find a high breakdown solution of equations (6.12).

One should emphasize here, that S-estimators are only a solution of equations
(6.12) among other solutions. Because equations (6.12) are a special case of M-
estimator type of score equations (4.7), they will have at least one solution that
has a breakdown point of at most 1/(p+1). The S-estimators are just one specific
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solution of (6.12) that has a high breakdown point. To find it, one should therefore
not try to solve (6.12) by means of some kind of fixed point or Newton-Raphson
iteration process. By solving the minimization problem of Definition 6.1, a high
breakdown solution of (6.12) is guaranteed. Nevertheless, S-estimators do satisfy
(6.12) and hence, the asymptotic properties and the type of influence function
of S-estimators are similar to those of multivariate M-estimators. In particular,
if the underlying distribution is elliptical with parameters g and X, the limiting
distribution and the influence function of the location S-estimator are the same as
those of the location M-estimator m,,, defined by minimizing (6.9) using the same
function p as in (6.7).

So far, it seems that S-estimators meet the objective formulated at the beginning
of this chapter. However, it turns out that it is not possible to combine a high
breakdown point with a good efficiency. To compare the asymptotic efficiency of S-
estimators with that of the sample mean and sample covariance, one could consider
an elliptical underlying distribution P, x. In this case a natural choice for b is

(6.13) b= [ pde, 10, D) dPusx) = JECY e

This will still be a function of the tuning constant ¢ of the function p, but for
any value of ¢ this choice for b guarantees consistency of t, and C,, for g and =
respectively. It also means that the breakdown point in (6.10) will only depend
on c¢. The asymptotic variances of the S-estimators will also be a function of .
In Lopuhaa (1989), S-estimators are investigated that are defined by the biweight
function p,(y;¢). For ¢ — oo, the asymptotic efficiency relative to the sample mean
and the sample variance tends to 1. Intuitively this is clear, since p ¢ is the limiting
case of p, (y; c) for ¢ — oco. Unfortunately, a high breakdown point corresponds with
small values of c. Hence, one still has to make a tradeoff between breakdown point
and efficiency : a high breakdown point is counterbalanced by a low efficiency and
vice versa. In Chapter 8 we will discuss a generalization of multivariate S-estimators
that will enable us to avoid this tradeoff.

31



7. Using M-estimators to improve
high Breakdown Estimators

An alternative method to improve the poor asymptotic properties of high break-
down estimators, is to use multivariate M-estimators in combination with a high
breakdown estimator, in such a way that the resulting estimator retains the high
breakdown point and improves the asymptotic properties. In this chapter we will
discuss a few proposals.

7.1 Affinely scaled Location M-estimators

Consider univariate location M-estimators defined by minimizing (4.1) with

p(x,m) = p(x — m), where p is symmetric. A straightforward generalization to
M-estimators of multivariate location would be to minimize

(1) 3" p(llx; - mll)

i=1

over m in RP. However, defined as such, the estimator would not be affine equiv-
ariant. To obtain affine equivariance together with a high breakdown point, a sort
of scaled location M-estimator will be proposed in this section, where we use an
affine equivariant covariance estimator with a high breakdown point to perform the
scaling. This method is investigated in Lopuhaa (1988).

7.1.1 Weakly Redescending

Consider a random sample X;, X», ... , X, from an elliptical distribution with a
location parameter p. Minimizing (7.1) would be sensible if the sample distribution
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is spherically symmetric around p. When the sample distribution has some known
covariance structure ¥ = BBT, one could still make a sensible use of (7.1) to
estimate p. Indeed, if we scale the observations according to X; +— B~!Xj,
the scaled observations are a sample from a distribution that is again spherically
symmetric around p. Hence, it would still make sense to estimate g from the scaled
sample by minimizing

n
Z p(d(X.',m, Z))
i=1
over m in RP. Often, 3 will be unknown, so that this procedure can not be per-
formed in practice. However, instead of the true unknown X, we could use an affine
equivariant estimator of it. This leads to the following proposal.

First use an affine equivariant covariance estimator C, = A,AT with a high
breakdown point to scale the observations

-1 -1
X1,...,Xn — A 'X1,... , AT X,

Then compute an M-estimator of location by minimizing (7.1) based on the scaled

observations A;!xy,...,A;'x,. Finally, rescale the resulting M-estimator m, =
m(A;lx;, ..., A lx,), le.
t, = t(x1,... ,Xn) = Apmy,.

Another way to formulate this, is to define the scaled location M-estimator directly,
as the vector t, that minimizes

(7.2) E p(d(xi, t,Cy))

over t in RP.

When minimization of (7.2) yields a unique solution t,, this solution will be
affine equivariant. If t, is not uniquely defined, then the estimator is still affine
equivariant in a similar sense as the nonuniquely defined multivariate M- and S-
estimators.

When p is a symmetric function that increases to co at a moderate rate towards
both sides, then the scaled location M-estimator will inherit the breakdown point
of the covariance estimator C,,. The main reason for this is that for such functions
p, the unscaled location M-estimator defined by minimizing (7.1), has a breakdown
point | 231|/n at any collection X (Huber 1984). Therefore, if we replace a suffi-
ciently small fraction of a collection X, such that the covariance estimator C,, does
not break down, the estimator m, will stay within finite bounds, and hence the
scaled location M-estimator t,, will stay within finite bounds.

When the covariance functional C(-), that corresponds with the estimator Cy,,
is continuous at a distribution P, the functional t(-) corresponding with t, will
also be continuous at P. Under further conditions on P, the influence function of
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tn exists. These conditions are weak enough to include elliptical distributions. In
the special case of a spherically symmetric distribution P, the influence function
of the scaled location M-estimator is the same as that of the unscaled location
M-estimator defined by minimizing (7.1) using the same function p :

(1.3) IF(x;t, P) = '/’ﬂ(“:l':)x

where 3 is a positive constant that depends on the function p and v is the derivative
of p.

This behaviour is also typical for the asymptotic properties of t,. When the
covariance estimator is consistent, the scaled location M-estimator will converge
at rate \/n. Under further conditions on the distribution P, which include all
elliptical distributions with a finite second moment, the scaled location M-estimator
is asymptotically normal. In the special case of a spherically symmetric distribution,
the limiting variance of the scaled location M-estimator is the same as that of the
corresponding unscaled location M-estimator. One should emphasize here, that
these results hold regardless of the rate of convergence of the covariance estimator
C,.

This enables us to combine a high breakdown point, inherited from the initial
covariance estimator, with a bounded influence function, a \/n rate of convergence
towards a normal distribution and good efficiency, given by the M-estimator. The
conditions on the function p are weak enough to include the function

-%k‘2+ky ,fory>k
(7.4) Pu(ys k) = 3y° L forfyl <k
—3k*—ky ,fory< —k

corresponding with Huber’s location M-estimator (Section 4.1). When we use
Pu(y; k) in (7.1), the asymptotic efficiency of the unscaled location M-estimator
relative to the maximum likelihood estimator is known to be reasonable over a
broad class of distributions (Maronna 1976), and its influence function in (7.3) is
bounded. Hence, a typical example for the scaled location M-estimator would be
to use the MVE covariance estimator in combination with the function p, (y; k)
of (7.4). The resulting affinely scaled location M-estimator has breakdown point
[ﬂ:gd'—lj /n, has a bounded influence function and converges weakly to a normal
distribution at rate \/n, where the efficiency relative to the maximum likelihood
estimator is good over a broad class of distributions.

Since p must be increasing towards both sides, the influence function in (7.3)
will be nonzero except for x = 0. When [[x]| tends to co, IF(x;t, P) will stay
bounded; it may redescend to zero, although it will never be equal to zero. Similar
to the function ¢ that determines IF(x; t, P), we call such influence functions weakly
redescending, to distinguish them from influence functions that actually are 0 for
llx|l > ¢, which are called strongly redescending (see Section 4.1). Some people
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prefer estimators with a strongly redescending influence function, because of the
fact that beyond a certain boundary outliers will no longer have any effect on such
an estimator.

In our situation a strongly redescending influence function would correspond
with a function p(y) in (7.2) that is constant for |y| > ¢. However, it is in general
not possible to use a bounded function p in (7.2) and at the same time retain the
high breakdown point of the initial covariance estimator. The reason for this is
that the breakdown point at a collection X, of location M-estimators defined by
minimizing (7.1) using a bounded function p, will depend on the actual structure of
the collection X (see Section 3.1). Nevertheless, when we use a specific covariance
S-estimator, it is possible to construct an affinely scaled location M-estimator with
an influence function that vanishes for ||x|| > ¢. We discuss this proposal in the
next subsection.

7.1.2 Strongly Redescending

Let p; : R — [0,00) and p; : R — [0,00) both satisfy (R1) and (R2) as defined
in Chapter 6, and let pa(-) be related to py(-) as follows :

(7.5) p1(y) 2 p2(y)

and

p1(c1) = sup py = sup p2 = p2(c2).
Let t; , = t1(x1,...,%5,) and Cyn = Cy(X1,... ,X,) be the S-estimators defined
with the function p;(-) and constant b; in (6.7). Define the scaled location M-
estimator as a vector t3 , that minimizes

(7.6) Epz (d(xi,t,C1,n))

i=1

over t in R?. In Lopuhaa (1988) a more general definition is given, which can be
seen as the multivariate version of Yohai’s (1987) regression MM-estimators. The
definition given above is a special case, which suffices for our purposes.

Because the function p, is not convex, the scaled location M-estimator t;,, will
in general not be uniquely defined. However, it will always be affine equivariant in
the same sense as nonuniquely defined M- and S-estimators.

For the breakdown behaviour of t3 ,, recall that unscaled location M-estimators
defined by minimizing (7.1) with a bounded function p have a breakdown point that
depends on the structure of a collection X (Section 3.1.1). The closer the points of
the collection are, compared to the width 2¢ of a function p that satisfies (R1) and
(R2), the larger the breakdown point will be. In our situation, the fact that one
minimizes (7.6) implies that

n n
Zl’z (d(xi,t2,n,C1,n)) < sz (d(xi, t1,n,C1,n))-
i=1 1=1
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Together with condition (7.5) and (6.7) this means that

1 n
- > " p2(d(xi,t2,0,C1,0)) < by
i=1

which, similar to multivariate S-estimators, will guarantee a sufficient number of
points, namely n — |nr;| (whete ry = b;/a; = by/supp;), inside the ellipsoid
E(t2;n,C1n,c2). This means that at least n — |nr;| points will be more or less
close enough together compared to the width p;. In fact, when the amount of
contamination is sufficiently small so that the S-estimators do not break down, this
property will also force at least one point x; in the ellipsoid E(t3n,Ci g,c2) that
is not replaced. Hence, the estimator t; , must stay within finite bounds. Along
these lines one may show rigorously that every t,, that minimizes (7.6), inherits
the breakdown point of the initial S-estimator.

The results on the type of influence function and asymptotic normality are de-
rived in a similar fashion as for the scaled location M-estimator that is discussed
in the previous section. Again the type of influence function and the limiting dis-
tribution are the same as those of the unscaled location M-estimator defined by
minimizing (7.1) with the bounded function p,. In particular, the influence func-
tion at a spherically symmetric distribution will be of type (7.3), with ¥ = ,, and
is therefore strongly redescending.

A typical example would be to use an S-estimator defined with the biweight func-
tion py(y) = ps(y;c1) of (6.6), where c; is chosen small such that the S-estimator
has a high breakdown point (see Chapter 6), together with another biweight func-
tion p2(y) = py(y;c2) in (7.6), where c2 > ¢;. In case of a spherically symmetric
underlying distribution, the limiting distribution is the same as that of the corre-
sponding unscaled location M-estimator, and as that of the location S-estimator
defined with the function p. We recall from Chapter 6 that for large values ¢
this gives good efficiency relative to the sample mean. Since the breakdown point
does not depend on the function p2, we would obtain an affinely scaled location
M-estimator with a high breakdown point and a strongly redescending influence
function, and which converges weakly to a normal distribution at rate /n, with a
good efficiency relative to the sample mean.

7.2 One-step Reweighted Estimators

Instead of using robust estimators to estimate location and scatter directly, one
could also use them as a diagnostic tool to detect outliers in the data. Once these
points have been detected, one could downweight them or remove them completely,
and then use a more efficient procedure on the remaining points, such as the classical
sample mean and sample covariance.

To ‘clean’ the data, it has been proposed to identify outlying points x; by means
of the Mahalanobis distance with respect to the classical sample mean x and the
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sample covariance Cgc

(7.7) V(s — R)C (x; — %)

Observations with relatively large distances would then be identified as outliers.
However, the poor robustness of the sample mean and sample covariance will make
this procedure useless if more than one outlier is present. Even worse, when multiple
outliers are present, it is possible that the wrong points are flagged.

The Stahel-Donoho estimator can be seen as a robustification of such a proce-
dure. Instead of using the Mahalanobis distance (7.7), outlying points are identified
as points with a relatively large degree of outlyingness r;. If one would then take an
indicator function of an interval [0, c] for the function w(-), then the Stahel-Donoho
estimator would be the sample mean and sample covariance of all points with an
outlyingness of at most c. However, note that for such functions w(-) the breakdown
point in (5.3) is not valid.

In Lopuhaa and Rousseeuw (1989) a similar weighting procedure is investigated,
that is based on the Mahalanobis distances with respect to an initial high breakdown
estimator. Let to, = to(X1,...,Xs) and Copn = Co(x1,...,X,) be estimators of
location and scatter, where we would typically take estimators with a high break-
down point. Consider the Mahalanobis distances with respect to these estimators

d(xi,t0,n, Co,n) = \/(Xi — t0,n)Cyn(Xi — to,n)-

The idea is, that high breakdown estimators will reflect the structure of the majority
of the observations, such that if there are outliers present, they can identified by
means of their relatively large d(xi,to,n, Con). Let w : [0,00) — [0,00) be some
weight function, and define a weighted sample mean and sample covariance

Z?:l w(d(xiv to,n, CO,"))xi
Z?:l w(d(xi , t0,ny CO,n))
E?:l w(d(x,—, to,n, Co1n)) (x,' - tlyn(X)) (x,- - tl,"(X))T
Z?:l w(d(x,-, to,n, Co,n)) ’

tl,n(x) =
(7.8)

Cll,.(X) =

To keep the weighted estimators within finite bounds after contamination of some
of the x;,X3,... ,X,, we need some boundedness condition on the function w. To
safeguard the weighted covariance estimator against implosion, we have to ensure
that w(d(xi,to,n,Co,n)) > 0 for a sufficient number of points. Hence, we will
assume that the function w satisfies

(W1) w(y) and w(y)y? are bounded and w(y) is nonincreasing.
(W2) There exists a co such that w(y) > 0 for y € [0, co].
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In addition, the constant ¢y must satisfy the following relation with the initial
estimators to,, and Cy . Consider the (robust) ellipsoid

(79) E(to,m Co,mco)

consisting of all points x with Mahalanobis distance d(x,ton,Co,n) less than cp.
The constant ¢, must be such that (7.9) contains at least L"—t?ij points. Given
the estimators to, and Cp,, one could take for ¢o any number that is greater
than the ["—'tz"—ﬂj largest Mahalanobis distance d(x;, to,n, Con). However, typical
choices for to, and Cp, would be the MVE estimator or an S-estimator with
r = (n — p)/(2n) (see Chapter 6). In that case, ¢y does not have to be defined
by means of the sample values and could be any number that is greater than the
tuning constant c either of p,,,; or of a function p that satisfies (R1) and (R2).
Indeed, by definition this constant ¢ will always be such that the minimum volume
ellipsoid, or the ‘S-ellipsoid’ contains at least [ﬂg—ﬂj points.

A typical choice for w(-) is the indicator function of the interval [0,c;], where
€1 2> co, in which case t;, and C;, are simply the sample mean and sample
covariance of all points inside the ellipsoid

E(ton,Con,c1)

which is of the same shape as the ellipsoid in (7.9). Here ¢; could be some quantile
such that the ‘true’ ellipsoid E(u, X, ¢;) has high probability, and beyond which
every point is identified as outlier.

Since the Mahalanobis distance with respect to affine equivariant estimators is
invariant under affine transformations, it is immediately clear that affine equivari-
ance of to, and Coy, carries over to t; , and Cy,. In Lopuhai and Rousseeuw
(1989) it is shown that under the conditions above, the weighted estimators also
inherit the breakdown point of the initial estimators at any collection X in general
position.

The asymptotic properties for these estimators are still under investigation. It
seems that if the initial estimators are consistent, the weighted estimators are also
consistent. However, weighting as defined in (7.8) does not seem to improve the
rate of convergence. If one starts with estimators that have a rate of convergence
which is slower than \/n, such as the MVE estimator, the rate of convergence will
stay the same. If, in addition, the initial estimators have a limiting distribution,
the limiting distribution of the weighted estimators will be essentially the same.
When one starts with a \/n consistent estimator, such as a smooth S-estimator,
the weighted estimators will converge weakly to a normal distribution at rate \/n.
It is likely that the asymptotic efficiency relative to the sample mean and sample
covariance will be improved considerably.

The weighted estimators as defined above are closely related to multivariate M-
estimators that are a solution of equations (4.6). Solutions of this equation may be
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found by means of a fixed point algorithm. Note that equations (4.6) can also be
written as

2izy w1 (d(xi, t, C))x;
>oizy w(d(xi, t,C))
> oiey U2 (P(xi, £, C)) (xi — t)(x; — t)T
Yict "2(d2(xiwt1 C)) .
The weighted estimators are almost the same as the estimators that one obtains

by performing one iteration of this fixed point algorithm starting with initial high
breakdown estimators tg ,, and Cg n, i.e. define

t =

(7.10)
C=

Yoiey u1(d(Xi, to.n, Con))x;
i1 1 (d(xs, to,n, Co,n))
Yoies u2(d?(xi, to,n, Co,n)) (Xi — to,n)(Xi = to,n)T
3 iy u2(d?(xi, to,n, Co,n)) '

tl,n =

Cl,n =

When we take u;(y) = u2(y?) = w(y), the estimators defined in (7.10) are almost
the same as the weighted estimators defined in (7.8). Hence, we can interpret
the weighted estimator as a sort of one-step M-estimator, based on a fixed point
algorithm, with redescending ¥, (y) = w(y)y and ¥2(y?) = w(y)y.

David Tyler (personal communication) independently proposed (7.10) as a ver-
" sion of a one-step M-estimator. In the next section we will discuss the version
that one usually has in mind if the term ‘one-step M-estimator’ is used. Tyler
also provided a proof for the finite sample (addition) breakdown point of the one-
step M-estimator as defined in (7.10) with monotone functions ¥;(y) = u1(y)y and
¥2(y) = ua(y)y. However, this does not include functions w which are strongly
redescending. The asymptotic behaviour of these one-step M-estimators is not yet
investigated. However, the obvious conjecture is that the limiting behaviour will be
the same as that of the weighted estimators defined in (7.8).

7.3 One-step Newton-Raphson M-estimators

Building on precursor ideas of Fisher, Neyman and others (Le Cam 1956), Bickel
(1975) investigated an estimator that is defined as a one-step Newton-Raphson
iteration of the M-estimator equation (4.2) (seen as a function of ) starting from
some initial estimator 6 ,,. Bickel studied these estimators in the linear model, and
showed that the limiting behaviour of the one-step M-estimator is the same as that
of the actual M-estimator, defined as a solution of (4.2).

For estimation of univariate location, the idea is the following. Let to,, be some
initial estimator of location and assume that {5, — 0. Let ¢ be a sufficiently
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smooth function and be such that E¢(X;) = 0. Define the one-step M -estimator of
univariate location by performing one Newton-Raphson iteration of (4.4) starting
in to,n, 1.e.
n
iy V(X -t
tin=ton+ o Y(Xi — Lon)

E?:l V(X - to.n)'

Then the estimator ¢, ,, will have the same limiting behaviour as the actual fully
iterated location M-estimator, which is a solution of (4.4) with the same function
1. This can be made plausible as follows :

Z?:l 'p(Xt _ tO,n)

Z?:l ¢,(X‘ - to,")
Yot W(Xi) = Y-, ¥'(Xi) to,n + remainder

tl,n = tO,n +

= t(),n + E:):l ’lj}’(X, _ tO,")
15 .
(7.11) =1o,n + -i'l—%ll——g;((—)}% —to,n + remainder
1y ]
(7.12) = % + remainder
1

The terms with ¢g, in (7.11) cancel, and it remains to show that the remainder
term in (7.12) is op(1/4/n). Bickel (1975) proved this for a one-step M-estimator
in the linear model, assuming that the initial estimator o, converges at rate /n.
However, Rousseeuw and Leroy (1987, p.130) mention that according to personal
communication with Bickel, this still holds when the rate of convergence of tg ., is
better than ¥/n.

What makes this procedure particularly interesting for our purposes is, that if
the one-step Newton-Raphson iteration retains the breakdown point of the initial
estimator, it can be used as a method to improve the asymptotic properties of a
high breakdown estimator. In the multivariate case we consider equations (4.7).
Let us write these equations briefly as

(7.13) i'l’(x;,O) =0
i=1

where the parameter 8 is the pair (t, C), and where for every 8, ¥(-,0) is a mapping
from R? to R? x PDS(p). Let 6y, = (ton, Con) be affine equivariant estimators
of location and scatter. Of course, we typically think of estimators with a high
breakdown point.

Similar to the univariate location case, the one-step M -estimator for location
and scaller is the pair 8, , = (t1,n,Cy n), defined as a one-step Newton-Raphson
iteration of (7.13), i.e.

(7.19) 0="Y ¥(x;,00) +Don(61,n—B0n)

i=1
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where Do ,, is the derivative

(7.15) Do = aa_a [iw(x"a)]m,,;

i=1

If (7.15) is nonsingular, then

(716) Bl,n = 00,11 - D(;,:; ( Z ‘I'(xii ao."‘)) .

t=1

The idea remains the same as in the univariate location case, except that the
expression in (7.16) becomes much more complicated. It seems especially difficult
to study the finite sample breakdown behaviour of these estimators; in particular
to find sufficient conditions under which Dy, remains nonsingular if a part of the
sample is contaminated. There are some variations on the definition given above,
which make things a little easier.

For instance, one could consider a location one-step M and a covariance one-step
M separately. For the one-step location M-estimator consider the first equation of
(4.7) as a function of t and define t; , by

n

(7.17) 0= vi(d(x:,ton, Co,n))(Xi — to,n) + Mo,n(t1,n — to,n)

i=1

where M ,, is the matrix

t=to,n

My, = Z% [’Z:l: v1 (d(xi,t,Con)) (X — t)]

v} (d(x;, ton, Co ,,)) 1
- _ E : M 0 oY (xs — t - T
(7'18) — d(x;, to,n, Co,n) O,n(xi 0.")(xt tO,n)

- Z v1(d(x;, to,n, Co,n))1.

i=1

If My ,, is nonsingular, then

n
tin=ton+ Zvl(d(xi, to,n, Con)) ME,},(X; —to,n)

i=1

The finite sample breakdown behaviour of this one-step M-estimator of multivariate
location basically depends on implosion or explosion of the matrix Mg ,, in (7.18)
under contamination. This matrix is easier to study then the derivative Dy, of
(7.15). Boundedness conditions on the functions v, and vj will keep the largest
eigenvalue within bounds. To bound the smallest eigenvalue uniformly from below
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is more difficult, especially if the function ¥1(y) = vi1(y)y is redescending. When
the largest and the smallest eigenvalue can be bounded away from infinity and zero
respectively, the one-step M-estimator as defined in (7.17) can easily be seen to
inherit the breakdown point of the initial estimators to, and Co , if ¥(y) = v1(y)y
is bounded. For the covariance one-step M-estimator one could perform a Newton-
Raphson iteration of the second equation of (4.7) seen as a function of C. However,
this will still yield complicated expressions.

Another alternative is to multiply (7.14) with -'1'- and to replace the derivative
%Do,,. by its limiting value

d
(7.19) Do =EZ5 ‘I’(lee)]o

=8o

where 8y is the limiting value of 8 ,. Recently, Davies (1989) has investigated this
one-step M-estimator for multivariate location and scatter. Especially at elliptical
distributions the expression for (7.19) becomes easy. The one-step M procedure for
location and scatter can be separated, and for location one has

n
(7.20) tin =ton+a™t Y v1(d(xi, to,n, Con))(X; — ton)

i=1

where a; is some positive constant that depends on vy and the underlying distri-
bution P. A disadvantage is that this definition of the estimator, depends on the
underlying distribution. On the other hand, it is easier to investigate the finite
sample breakdown properties of (7.20).
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8. Multivariate ~estimators for
Location and Scatter

8.1 Introduction

In the previous chapter we have discussed an affinely scaled M-estimator of mul-
tivariate location, which combines a high breakdown point and a bounded influence
function with \/n asymptotic normality and good efficiency. It still remains of in-
terest to construct an affine equivariant estimator of scatter that combines these
properties. It is useless to extend the method of Section 7.1 to covariance esti-
mators, i.e. estimate the location parameter affinely, center the observations and
then compute a covariance M-estimator based on the centered observations. Sim-
ply because coyariance M-estimators, even with a fixed location parameter, have a
breakdown point that is at most 1/(p+ 1) (Tyler 1986).

Multivariate S-estimators retain the good breakdown properties of the MVE
estimator, they have a bounded influence function, and they converge to a nor-
mal distribution at rate v/n. Unfortunately, there still remains a trade-off between
breakdown point and asymptotic efficiency. However, Yohai and Zamar (1988)
investigated an extension of regression S-estimators, which retains the good break-
down properties and improves the asymptotic efficiency. In the special case of
estimating univariate location and scale their proposal amounts to the following.

Recall the definition of univariate S-estimators of location and scale that are
defined by means of a function py, i.e. first compute an M-estimate o,(t) of scale

by solving
1 = i — t
= =b
n ;01 ( pu ) 1

where t is considered fixed, and then define the location S-estimator ¢,, as the value
that minimizes o2(t). Finally, take o,(t,) as the S-estimator of scale. To make the
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M-estimator of scale more efficient, Yohai and Zamar (1988) consider an adaptive
multiple of it, which they called a 7-estimator of scale. It is defined as

(8.1) R2(0) = o2(t) 2 (25)

where bz is a normalizing constant and p; is a function that satisfies (R1) and
(R2) and will generally differ from p;. Instead of minimizing o2(t) over t, Yohai
and Zamar propose to minimize 72(t) over t. The minimizing t,, is taken as the
T-estimator of location and 72(%,,) is defined as the 7-estimator of scale.

That such a procedure may lead to estimators with good efficiency relative to
the sample mean and sample variance can be seen as follows. Let pa(y) be a function
that satisfies (R1)-(R2) and which tends to a function that is some multiple « of y?,
as the constant c; tends to infinity. An example is the biweight function pg(y;c2)
of (6.6). Then the limiting case of univariate T-estimators would be to minimize

r2(0) = 02() Z(‘”'(“t)) S -

i=1

over £, which yields the sample mean as location T-estimator and the sample variance
as the T-estimator of scale, when b, is chosen suitably.

8.2 Multivariate estimators

In Lopuhaa (1990), the multivariate version of regression r-estimators are inves-
tigated. They are defined as follows.

DEFINITION 8.1: Multivariate r-estimators of location and scatter are defined as
the vector t,, and the matrix

l n
(8.2) V,=C, e ; p2(d(xi, t,, Cp))

where t, and C,, are the vector and the positive definite symmetric matrix that
minimize

n 14
(8.3) |C|{ Zm(d(x.-,t,c))}

subject to
1 n
(8.4) - ‘; p1(d(x;, t,C)) = by.
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When this minimization problem has a unique solution, then the r-estimators
are affine equivariant; if the solution is not unique, the estimators are always affine
equivariant in the same sense as nonuniquely defined S-estimators.

Note that constraint (8.4) is the same as constraint (6.7) of the minimization
problem that defines multivariate S-estimators with the function p;. In fact, mul-
tivariate S-estimators can be obtained as a special case of T-estimators. Indeed, if
p1 = p2 and by = b,, then t,, and V,, would just be the ordinairy S-estimators as
defined in Chapter 6. Instead of minimizing the determinant of C over all pairs t
and C that satisfy (8.4), we now minimize the determinant of an adaptive multiple
of such C, i.e. the determinant of the covariance r-estimator V,, of (8.2). The
sample mean and sample covariance can be obtained as a special case, namely with
p1(y) = p2(y) = y? and b; = by = p, as well as the MVE estimators with p; = p,
an indicator function and by = b, roughly 1 (see also Chapter 6).

Similar to S-estimators, it is assumed that p; and p both satisfy conditions
(R1) and (R2) of Chapter 6, in order to get the good breakdown properties from
the MVE estimator and a limiting behaviour that is similar to the sample mean
and sample covariance. In addition, the following condition is imposed only on the
function ps.

(A) 2p2(y) — v2(y)y > 0, for y > 0.

It will guarantee that the loss function in (8.3) is a strictly increasing function of
the magnitude of C. Similar to S-estimators, this property together with constraint
(8.4) basically ensures the good breakdown properties of t, and C,, and hence, of
the T-estimators. Constraint (8.4) guarantees a sufficient number of points, namely
n — |nry] (where r; = by /ay = by /sup p1), inside the ellipsoid E(t,, C,,¢;), which
safeguards C,, against implosion. The fact that one minimizes a loss function in
(8.3) that is an increasing function of the magnitude of C, will safeguard C,, against
explosion. That t,, must stay within bounds is then an immediate consequence. It
turns out that the breakdown point only depends on the constant b, in (8.3), i.e.

(8.5) " (tn,X) =" (Cpn,X) = Mﬂﬂ

%52a;, the r-estimators will have

at any collection X in general position. For b; =
a breakdown point | 2=2t%]/n.

Also T-estimators relate to multivariate M-estimators, but in a much more com-
plicated. way than S-estimators. To describe this, first consider a solution t,, and
C,, of minimizing (8.3) subject to (8.4). It can be shown that t,, and C,, are so-
lutions to M-estimator type of score equations (4.7), except that the functions vy,
vz and v3 itself depend on the observations. One may show that t,, and C,, are a

solution to the equations

zn:u,. (d(x.-, t,C); t,C)(x,- —t)=0
8.6) !

n

E {pun (d(xi, t,C); t,C)(x:i — t)(x; — t)T - v,.(d(x,',t,C);t,C)C} =0

i=1
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where the functions u,(y; t,C) = ¥a(y;t,C)/y and v,(y; t, C) depend on the data:

(8.7) ¥n(y; t, C) = An(t, C)¥1(y) + Ba(t, C)¥a(y)
vn(y; ¢, C) = ¥a(y; t, C)y — 2b2(p1(y) — b1)

where the weights A,, and B, are defined as

An(t, C) = % i {2p2(d(x;, t, C)) —~ s (d(x.-,t, C)) d(x,-, t, C)}
(8.8) =1

Ba(t,C) = % 3" 1 (d(xi, ¢, ©)) d(xi, £, C)
i=1

Hence, t,, and C,; are solutions to equations of type (6.12), except that the function
¥(y) = u(y)y is now an adaptively weighted average ¥,(y; t,C) of the functions ¥,
and ¢2.

Although t, and C, are solutions of the complicated equations (8.6), their
asymptotic behaviour is equivalent to that of regular multivariate M-estimators
as defined with (4.7). One may first show that t, and C, are consistent, which
then implies that the weights A, (t,, C,) and B,(t,, C,) in (8.8) tend to positive
numbers A and B with probability one. This means that the function ¢, (y; t,, C,)
converges pointwise to the function

(8.9) ¥(y) = A¢1(y) + Ba(v).

The limiting behaviour of t,, and C,, can then be shown to be equivalent to that of
multivariate M-estimators defined as solutions of equations (8.6) with the function
¥a(y; t, C) replaced by the function ¥(y). The asymptotic behaviour of the actual
T-estimators t,, and V,, can be obtained from that of t,, and C,,.

In Lopuhai (1990) a more general setup is used in terms of 7-functionals, in
order to derive the influence function. Under weak assumptions on the sample
distribution P, r-estimators are shown to converge weakly to a normal distribution
at rate y/n, and to have an influence function that is bounded.

What remains, is whether we can combine a high breakdown point with good
efficiency. To answer this, an elliptical underlying distribution is considered. In
this case one should take b; and b, as in (6.13) to guarantee consistency of t, and
V,, for the parameters u and ¥. Note that in this case b; and b, still depend on
the constants ¢; and ¢, of the functions p; and p, respectively. In particular, the
breakdown point in (8.5) will depend on ¢;. However, as with S-estimators, ¢; can
be chosen such that the r-estimators have breakdown point | 2=E+1|/n.

At an elliptical distribution, it also turns out that 7-estimators are asymptoti-
cally equivalent to multivariate S-estimators defined with a weighted p-function

(8.10) Aly) = Apr(y) + Bpa(y)-
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If the constant c¢; of the function p; remains fixed, for instance it could be chosen
such that the r-estimator has a high breakdown point, and if the constant ¢ of
the function p, tends to infinity, the weight A,(t,C) as well as its limiting value
A tend to zero when p» is chosen suitably. For instance, if we take for p2(y) the
biweight function pg (y; ¢2), then 2p2(y) — ¥2(y)y tends to zero as c; — co. In such
a case, the function j becomes more and more similar to the function y?. Since with
p(y) = y?, the corresponding S-estimator coincides with the sample mean and the
sample covariance, this indicates that for c; large one has good efficiency for the
r-estimators relative to the sample mean and the sample covariance. Because the
breakdown point does not depend on the constant c;, we are able to combine a high
breakdown point and good efficiency with suitable choices for ¢; and c; respectively.

A typical example would be to take for p;(y) the biweight function pg(y;c1),
with ¢; chosen such that the breakdown point is L"—’%*—IJ /n, and to take for pa(y)
another biweight function pg (y; c2), with c2 chosen such that the estimators have
good efficiency relative to the sample mean and sample covariance. The resulting es-
timators are affine equivariant, and combine a high breakdown point and a bounded
influence function with a \/n rate of convergence towards a normal distribution and
good efficiency for both the location as well as the covariance estimator.
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BREAKDOWN POINTS OF AFFINE EQUIVARIANT
ESTIMATORS OF MULTIVARIATE LOCATION
AND COVARIANCE MATRICES

HENDRIK P. LOPUHAA AND PETER J. ROUSSEEUW

Technische Universiteil Delft and Vrije Universiteit Brussel

Finite-sample replacement breakdown points are derived for different types of estima-
tors of multivariate location and covariance matrices. The role of various equivariance
properties is illustrated. The breakdown point is related to a measure of performance
based on large deviations probabilities. Finally, we show that one-step reweighting
retains the breakdown point.

1. Introduction. Several notions of robustness have been considered for estima-
tors of a multivariate location parameter u € RP. One of these concepts is the
breakdown point, a global measure of robustness suggested by Hodges (1967) and
Hampel (1968). A simple and appealing finite-sample version of this concept was
given by Donoho and Huber (1983). Roughly, this finite-sample replacement break-
down point measures the minimum fraction of outliers that will spoil the estimate
completely. Estimators with zero breakdown point can therefore not be robust. Re-
cently, He, Jureckova, Koenker and Portnoy (1988) established a relation between
the replacement breakdown point and a measure of performance based on large
deviations. Their result shows that the breakdown point is not just an attractive
robustness concept, but that it also has a stochastic motivation.

A natural condition for multivariate estimators is equivariance under affine trans-
formations. To combine affine equivariance with a high breakdown point is not
trivial. Donoho (1982) discusses several affine equivariant multivariate methods,
showing that their breakdown point goes down to zero as the dimension p increases.
Stahel (1981) and Donoho (1982) independently introduced an affine estimator of
multivariate location and covariance with a high breakdown point in any dimension.
Another estimator with this combination of properties was the minimum volume
ellipsoid estimator (Rousseeuw 1983).

But what is the best possible value of the breakdown point ? For covariance
estimators the maximal breakdown point was derived by Davies (1987). In our paper
we are mainly concerned with upper bounds for pure location estimators satisfying
various equivariance properties. Section 2 discusses these types of equivariance and
gives an upper bound on the breakdown point. In order to investigate to what
extent this bound is sharp, Sections 2 and 3 study several examples including the
Li-estimator, Oja’s (1983) generalized median, and smooth S-estimators in the
sense of Rousseeuw and Yohai (1984).

Research of the first author was financially supported by NWO under grant 10-62-10.
1980 Mathematics subject classifications : 62F35, 62H12
Keywords : Breakdown point, Affine equivariance, Tailperformance, Weighted estimators.
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Section 4 extends the result of He et al. (1988) to multivariate location estima-
tors. Estimators with maximal breakdown point satisfy a minimax property in the
sense that they maximize least favorable tail performance at algebraically tailed
distributions.

To combine a high breakdown point with good asymptotic efficiency, it has of-
ten been suggested to start with a high breakdown estimator and then to take a
one-step improvement which retains the breakdown point and obtains a better effi-
ciency. Section 5 shows that the breakdown point is retained if one does a one-step
reweighting by computing the usual weighted mean and covariance matrix, where
the weights are based on the Mahalanobis distances with respect to the initial esti-
mators.

2. Maximal breakdown point of equivariant estimators. Let (xi,...,x,) =
X be a collection of n points in R? and denote by t,(X) € R? a location estimator
based on X. We say that t, is translation equivariant if t,(X + v) = t.(X) + v
for all v € R?, where X + v = (x; + v,... ,X, + v). When t, is equivariant not
only under shifts of X but also under affine transformations, then t,, is called affine
equivariant, 1.e.

(2.1) th(AX +v) = At,(X)+v

for all nonsingular p x p-matrices A and v € R?, where AX + v = (Ax; +
V,...,AXp + V). Although this condition is quite natural, it turns out that some
well-known estimators of multivariate location fail to satisfy it. The condition can
be relaxed by requiring (2.1) only for orthogonal matrices, and it is then referred to
as orthogonal equivariance or rigid motion equivariance. At the end of this section
we shall consider a translation equivariant estimator which is not orthogonal equiv-
ariant, and also an orthogonal equivariant estimator which is not affine equivariant.
A covariance estimator C,(X) € PDS(p), the class of all positive definite symmetric
P X p-matrices, is said to be affine equivariant if C,(AX +v) = AC,(X)AT for all
v € R? and nonsingular A, where AT denotes the transpose of A.

We measure the robustness of t, and C,, by means of the finite-sample replace-
ment breakdown point (Donoho and Huber 1983). The breakdown point of a loca-
tion estimator t, at a collection X is defined as the smallest fraction m/n of outliers
that can take the estimator over all bounds :

(2.2) € (tn, X) = min {ﬂ ‘s

1<m<n U'f) ”tn(x) - tn(Ym)” = oo}

n vy,

where the supremum is taken over all possible corrupted collections Y, that are
obtained from X by replacing m points of X by arbitrary values. Although &*(t,, X)
appears to depend on X, for most t,, this will not be the case. However, location
estimators t, with €*(t,, X) depending on X do exist (see for instance Huber 1984).
The breakdown point of a covariance estimator C,, at a collection X is defined as
the smallest fraction m/n of outliers that can either take the largest eigenvalue
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A1(Cn) over all bounds, or take the smallest eigenvalue A,(C,,) arbitrarily close to
Z€ero

£*(Cn,X) = 12’32" {g : sup D(Cn(X),Cn(Ym)) = oo}
where the supremum is taken over the same corrupted collections Y,, as in (2.2),
and where D(A, B) = max{|A1(A) — A;(B)],|A,(A)~1 = Ap(B)~1|}, with A1 (A) >
+++ > Ap(A) being the ordered eigenvalues of the matrix A.

Donoho and Huber (1983) also considered other finite-sample versions, such as
addition breakdown. We personally prefer replacing observations to adding ob-
servations because replacement contamination is simple, realistic, and generally
applicable. Indeed, from an intuitive point of view, outliers are not some faulty
observations that are added at the end of the sample, but they treacherously hide
themselves by replacing some of the data points that should have been observed.
Moreover, as we will see in Section 4, the replacement breakdown point also has a
stochastic interpretation.

First we show that the breakdown point of any affine equivariant estimator is
itself invariant under affine transformations.

LEmMA 2.1. Let X be a collection of n points in RP, and let t,(X) € R and
C(X) € PDS(p) be location and covariance estimators based on X.

(i) When t,, is translation equivariant, then for any v € RP it holds that
e*(tn, X+ v) = *(t,, X).

(ii) When t,, is affine (orthogonal) equivariant, then for any v € R and for any
nonsingular (orthogonal) p x p-matrix A it holds that e*(t,,AX + v) =
e*(tn, X).

(iii) When C,, is affine equivariant, then for any v € RP and for any nonsingular
p X p-matrix A it holds that ¢*(C,,AX + v) = ¢*(C,, X).

PROOF: Let A be a nonsingular p X p-matrix and v € R?. Denote by Y,, a
corrupted collection that differs from X in at most m points, so that AY,, + v
differs from AX + v in at most m points. When t,, is affine equivariant we have
that |[t,(AX+v) —ta(AYm +V)|| = ||A[ta(X) — t2(Ym)]ll- In that case, together
with the fact that for symmetric p x p-matrices M one has

T T
. .y My y My
2.3 Ap(M) = inf and A (M) =su
ey =g (M) = sup L5
we obtain
_ 2
AP(ATA) < |lt"(Ax'+v) tﬂ(AYm +V)” < Al(ATA)

[164(X) — € (Yom)}I?

This means that supy  [|ta(X) — t,(Yy,)||, taken over all possible Yy, is finite or
infinite at the same time as supy_ ||t,(AX +Vv)—tn(Zn)||, taken over all corrupted
collections Zy, that differ from AX + v in at most m points. This proves (ii) for the
case that t, is affine equivariant. Clearly, if A is orthogonal the argument above
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can be repeated for orthogonal equivariant t,, and if we take A = I the argument
can be repeated for translation equivariant t,. This leaves us with proving (iii).

In that case, (2.3) and affine equivariance of C,, imply that for any collection S
of n points

(24) A1(Cn(S))Ap(AAT) < A1 (Cn(AS +v)) < A1(Ca(S))M(AAT).
Apply (2.4) to S =X and S = Y,,,. If we write

o = [M(AAT) = 4, (AAT)] A (Ca(X))
and if we suppress the notation C,, for a moment, we find that

AM(AX +v) = A (AYm + V) < A (AAT) A(X) = A(Ym)] + @
M(AX +v) = A(AY 4+ v) > M (AAT) [ A(X) = Ai(Y )] — o

Inequalities that relate A,(AX + v) — A (AY,, + v) to Ap(X)—Ap(Yym) can be
obtained in a similar way. As in the first part of the proof it then follows that
supy, D(Cn(X),Cn(Ym)) and supz D(Cn(AX + v),Cpn(Z,,)), taken over all
corrupted collections Z,, that differ from AX 4+ v in at most m points, are finite or
infinite at the same time, which proves (iii). O

It is natural to ask for the maximal breakdown point of an estimator satisfying
one of the equivariance properties mentioned above. The next theorem gives the
upper bound for translation equivariant location estimators.

THEOREM 2.1. Let X = (X1,...,X,) be a collection of n points in RP. When t,
is translation equivariant, then ¢*(t,,X) < |2tL]/n, where |y| denotes the largest
integer less than or equal to y.

PROOF: Because t, is translation equivariant, according to Lemma 2.1 we may
assume that t,(X) = 0. Suppose that ¢*(t,,X) > | 24! |/n. This means that there
would exist a constant k such that

(2.5) lea(Y)I| < k < oo

for all corrupted collections Y obtained by replacing ["—Zj,’—lj points of X. Denote
by ¢ =n— L"—'ztlj the number of points of X that are not replaced. Since 2¢ < n,

for any v € R? we can always construct a collection Yy containing x;,. .. ,Xgq,X1 +
V,...,X, + v, and also a corresponding collection Z, = Y, ~ v containing x; —
V,...,Xq—V,X),...,X,. Both collections contain at least ¢ points of X so according

to (2.5) we must have ||t,(Yy)|| < k as well as ||t (Yy) — V|| = ||tn(Zv)|| < k, using
that t,, is translation equivariant. Clearly, for large v € RP these two inequalities
cannot both be true. O
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As the class of affine (orthogonal) equivariant estimators is contained in the
class of translation equivariant estimators, the upper bound |2¥!|/n obviously
also holds for this smaller class. It then becomes of interest whether there exist
estimators with these equivariance properties that attain this upper bound. The
following two examples show that the upper bound | ®+1|/n is sharp for translation
and orthogonal equivariant estimators.

COORDINATEWISE MEDIAN: A simple way to obtain a multivariate translation
equivariant location estimator with a high breakdown point is to take a univari-
ate translation equivariant location estimator with a high breakdown point and
construct its multivariate analogue coordinatewise. Define t, = (#,1 ---t,,p)T co-
ordinatewise by ¢,;(X) = median{z;; : 1 < i < n} for j = 1,...,p, where
X; = (%j1--xip)T for i = 1,...,n. Clearly, the breakdown point |2¥]/n of
the univariate median is retained. Note that t,, is translation equivariant but not
orthogonal equivariant.

There are several other ways of generalizing the one-dimensional median to
higher dimensions. One of the oldest generalized medians is the following example
of an orthogonal equivariant estimator.

L1-ESTIMATOR: Define the Li-estimator as the vector t,, that minimizes

n
> llxi —¢]l-
i=1

Because the Euclidean norm is invariant under orthogonal transformations it follows
that the L;-estimator is orthogonal equivariant. However, it is not affine equivari-
ant. The breakdown point is independent of the dimension p and X, and is equal
to that of the univariate median.

THEOREM 2.2. Let X = (x1,...,Xn) be a collection of n points in R?. Then the
Ly-estimator has breakdown point ¢*(t,, X) = | 2! /n.

PRroOOF: Since t, is translation equivariant, according to Lemma 2.1 we may assume
t,(X) = 0. Put M = max;<i<n ||x:||, and let B(0,2M) be the sphere with center 0
and radius 2M. Denote by Y = (y1,... ,¥n) a corrupted collection obtained by
replacing at most m = | 251 | points of X and let t,(Y,») minimize 37, |ly: — t||.

We show that supy, [|ta(Ywm)||, taken over all possible Y,,, is finite. Denote
by d = inf, e p(o,2pm) [|ta(Ym) — V|| the distance between t,(Y,,) and B(0,2M), so
that ||t,(Ym)|| < d+ 2M. Then for each of the | 23] replaced y;’s, it holds that

(2.6) ly; = ta(¥m)ll 2 11yl = lIta(¥m)Il > lly;ll - (d + 2M).

Suppose that t,(Y,) is outside B(0,2M) and that the distance between t,(Y,)
and B(0,2M) islarge: d > 2M |25} ]. Since X C B(0, M), for each of the n—| 251 |
original x;’s in Y,, we would then have that

(2.7) lxk — tn(Ym)ll > M +d > ||xil| + d.
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From (2.6) and (2.7) it would follow that
D llyi = ta(Ym)ll > Yo llyill + (0 — [25E])d = (25)(d + 2M)
i=1 i=1

n n
> llyill +d—2M 252 > S |lysll.
i=1 i=1

This is a contradiction with the fact that ¢,(Y,,) minimizes 3} |ly: — t||. There-
fore d < 2M| 231 and hence, supy, [|t.(Yn)ll < d+2M < M| 2. We
conclude that €*(t,,X) > [”—'.‘,LL ]/n. The other inequality is obtained directly from
Theorem 2.1. a

3. Affine equivariance and breakdown point. Is the upper bound (28] /n
also sharp for affine equivariant estimators ? Davies (1987) showed that for co-
variance estimators this is no longer the case. When the collection X is in general
position, i.e. no p+ 1 points are contained in some hyperplane of dimension smaller
than p, and if n > p + 1, the breakdown point of any affine equivariant covariance
estimator C,, is at most | 2=2+L|/n_ Although the result is stated for pairs (tn, Cyp),
it is only shown that the covariance part might break down if one replaces ["—'.‘;mj
points or more, regardless of what happens with the location part. This means
that the upper bound ["—"53'—1-] /n does not have to apply to affine equivariant lo-
calion estimators, especially not to those that are defined without a corresponding
covariance part. Such an estimator is Oja’s (1983) affine equivariant multivariate
median.

O1A’s ESTIMATOR: Consider the volumes A(t,x;,,...,x;,) of all simplices formed
by t € R? and all possible subcollections x;,,... ,x;, from X. Oja’s multivariate
median is the vector t,, in R? that minimizes

E At x;,,. .. ,x;,).

{xiy s ,x.-,}CX

This location estimator is affine equivariant and is defined without any covariance
part. In the simple case of four points in R? (so that n > p + 1 is satisfied) it is
not difficult to see that when one point is replaced, Oja’s solution will always stay
within the convex hull of the remaining three original points. Hence, even if X is
in general position, [-"—‘g-'f—lj /n is not generally valid as an upper bound for the
breakdown point of affine equivariant location estimators.

The example of Oja’s estimator seems to suggest that affine equivariant location
estimators may have a breakdown point greater than ["—'.‘Fﬂj /n. This may be due
to the fact that location estimators only break down if we can make them infinitely
large by replacing points of X, whereas covariance estimators also break down if we
can make them infinitely ‘small’. Therefore we may have to replace more points in
order to let a location estimator break down.
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In any case, the upper bound [_"—'zf—l—J /n of Theorem 2.1 still holds, and we want
to know how close we can get to this bound. The first example of an affine equiv-
ariant multivariate estimator with a high breakdown point was the Stahel-Donoho
estimator. Donoho (1982) showed that it is affine equivariant and computed the
addition breakdown point. By a slight adjustment of his proof one can show that if
the collection X is in general position, the replacement breakdown point is equal to
(L2£2] — p)/n, which is smaller than the upper bound |2=2+1|/n for affine equiv-
ariant covariance estimators. We give two examples of estimators with a breakdown
point that is equal to this upper bound.

Rousseeuw (1983) introduced the minimum volume ellipsoid (MVE) estimator,
and showed it to be affine equivariant with breakdown point (|2] —p+1)/n. Also
this breakdown point is smaller than the covariance upper bound l_"—'g—"'—lj /n. We
will adjust the MVE estimator such that it does attain this upper bound.

MINIMUM VOLUME ELLIPSOID ESTIMATOR: Let X = (xi,...,x,) haven > p+1
points. Find t, € R? and C,, € PDS(p) that minimize the determinant of C subject
to

(3.1) #{i Sk —t)TC N (x — t) < c2} > [pdly

Hence, t,, and C,, determine the center and the covariance structure of the minimum
volume ellipsoid covering at least L"—t,‘;ﬂij points. When every subcollection of
L"—t‘z;—*—l | points of X contains at least p+ 1 points in general position, there exists
at least one solution (t,, C,) in R? x PDS(p). Even if some |2¥2+L| points lie on
a lower dimensional hyperplane H, then one can still define t,, € R? as the center
of the minimum volume ellipsoid inside H covering at least L"—témj points.

The number c is a fixed chosen constant and has no influence on the value of
t,, which is taken as the MVE estimator of location. However, the choice of ¢
determines the magnitude of C,, which can be taken as the MVE estimator of
covariance. The value of ¢ can be chosen in agreement with an assumed underlying
distribution in order to obtain a consistent covariance estimator. For instance, if
one assumes Xj,...,X, to be a sample from an elliptical distribution P, y with
density |B|~f(||B~!(x~ u)||), where BBT = X, then a natural choice for ¢ would
be the value for which P, s{(X — u)TE=-1(X - p) < ?} = [ F(IIxID{lIx]| < ¢} dx
is equal to 3. In case one assumes Xj,...,X, to be a normal sample, c* will be

X3 50(p). An algorithm to compute t,, and C,, is described in Rousseeuw and Leroy
(1987, p.259).

Before we derive the breakdown point of the MVE estimators, we first prove the
following property for ellipsoids

(3.2) E(t,C)={x:(x-t)TC ' (x—-t)< 1}
where t € R? and C € PDS(p).
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LEMMA 3.1. Consider v,,...,vp4+1 € RP that span a nonempty simplex. Let
E(t,C) be an ellipsoid as in (3.2), which contains v,,...,Vp41. Then for every
V' > 0 there exists a constant M > 0, which only depends on v,...,vp41, such
that if ||t]| > M it follows that the volume of E(t,C) is larger than V.

PRoOF: Denote by 0 < A\, < ... < A; < 0o the eigenvalues of C. The volume of
E(t,C) is equal to ap\/A; ... A, Where ap = 7?/2/T'(2 + 1), and the axes of E(t, C)
have lengths \//\_jfor i=1...,p.

Because E(t, C) contains the nonempty simplex spanned by vy, ..., Vp41, there
exists a constant § > 0, which only depends on v,,...,vp 1, such that all axes are
longer than B, ie. forallj=1,... ,p

(3.3) A > B

Without loss of generality we may assume that 0 € E(t,C). According to (2.3),
for every v € E(t,C) we have that ||v —t]|? < (v - ¢t)TC~}(v —t)A\; < A;. In
particular this holds for v = 0, so that ||t]|> < A;. This means that if we take
M = V/(a,P~1), then from (3.3) it follows that the volume of E(t, C) is equal to

ap /A1 Ay > apfPl S V. O

THEOREM 3.1. Let X be a collection of n > p+ 1 points in R? in general position,
and let t, and C,, be the MVE estimators of location and covariance. If p = 1,
then €*(t,,X) = | 22L|/n and €*(Cn,X) = |2]/n. When p > 2, then €*(t,,,X) =
£"(Cn,X) = =5 ] /n.

PROOF: We extend the proof of Proposition 3.1 in Rousseeuw (1983). Without loss
of generality we may assume that ¢ = 1 in (3.1). When p = 1, t,, is the midpoint
of the shortest interval covering at least | 2] 4 1 points, and C,, is proportional to
the length of this interval. Even if this interval would have length zero, t,, is always
defined. It is not difficult to see that one needs to replace at least [n:}lj points to
make ||t,|| infinitely large. By placing | 2| points in one of the remaining n — | 251 )
points, C,, can be made zero.

For p > 2, we first show that ¢*(t,, X) and £*(Cp, X) are at least | 2=E+l|/n.
Replace at most m = [2=£*l| — 1 points of X. Because every subcollection
of |2t2tL| points of the corrupted collection Y,, contains at least |2detl) —
(L"_—gtlj —1) = p+ 1 points x; of the original collection X in general position,
there exists at least one solution (t,(Y), Cn(Yy)) in R? x PDS(p). Denote by
Epn = E(t,(Ym),Cn(Ym)) the minimum volume ellipsoid of type (3.2) covering
at least | 232%l| points of Y.

Let V denote the volume of the smallest sphere with center 0 containing all
points of X. The corrupted collection Yy, still contains at least n— (| 2=2+L| — 1) >
| 24241 | points of X. The smallest sphere with center O containing these [ﬂ{;—'ﬂj
points of X must then have a volume less than V. At the same time this sphere is
also an ellipsoid containing at least ]_ﬁ%*—lj points of Y,,. Therefore E,,, being the
smallest ellipsoid of this kind, must also have a volume less than V. On the other
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hand the ellipsoid Ey, covers some subcollection of | 24241 | points of Y,,. As we
have seen above, such a subcollection must contain p 4+ 1 points x; of the original
collection X in general position. Since these p+ 1 x!s span a nonempty simplex, it
follows from Lemma 3.1 that there exists a constant M > 0, which only depends
on X, such that [{t,(Y,,)|| > M would force the volume of E,, to be greater than
V. As we have just seen that this cannot be the case we conclude that

(3.4) lltn(Ym)ll < M.

These considerations about F,, also show that the covariance estimator does not
break down either. Similar to (3.3), the fact that E,, contains p + 1 original x; in
general position implies that there exists a constant 3, which only depends on X,
such that

(3.5) 2 (Cn(Ym)) > 82> 0

for j = 1,...,p. Since the volume of E,,, which is proportional to the product of
the eigenvalues, is always less than V, there must also exist a constant 0 < o < 00,
which only depends on X, such that A, (C,(Ym)) < a. Together with (3.4) and
(3.5) this proves that both £*(t,, X) and £*(Cn, X) are at least |2=2+1|/n.

For the affine equivariant covariance estimator C,, the value L"—_g—tl—J /n is also
an upper bound, therefore £*(Cp,X) = |2=2t1|/n. For *(tn,X) the other in-
equality is obtained as follows. Take any p points of X and consider the (p — 1)-
dimensional hyperplane H they determine. Replace m = ["—'%LIJ other points of X
by points on H. Then H contains L"—'*;—ﬂj +p= [ﬁéﬂ—lj points of the corrupted
collection Y,,. The minimum volume ellipsoid covering these Lﬂ_'tg:tlj points has
a zero volume. Because X is in general position we can construct Y,, such that
no other lower dimensional hyperplane contains [ﬂg—"ij points of Y,,, therefore
t,(Ymm) must lie on H. By sending the contaminated points on H to infinity, one
of the axes of E,, becomes infinitely large, and so that the center t,(Y,,) of E,,
becomes infinitely large. This proves *(t,,X) < I_"—_gil_]/n ]

The MVE location estimator suffers from the same poor rate of convergence
as the least median of squares (LMS) regression estimator (Rousseeuw 1984). In
order to obtain y/n-consistency, Rousseeuw and Yohai (1984) considered smoothed
versions of the LMS estimator. These S-estimators generalize easily to multivariate
location and covariance, in which case they become smoothed versions of the MVE
estimator.

S-ESTIMATORS: Let X = (xj,...,x,) have n > p + 1 points. Find t,, € R? and
C,. € PDS(p) that minimize the determinant of C subject to

1¢ -
(3.6) ;;p ({6 = )TC1(x - ))/] <0,
Note that one obtains the MVE estimators when nb = n — |24#8+L| and p(-) =
1 —1;_.(-). Rousseeuw and Yohai (1984), aiming at both asymptotic normality

and a high breakdown point, assumed the following conditions on p :
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(R1) p is symmetric, twice continuously differentiable, and p(0) = 0.

(R2) There exists a constant ¢ > 0 such that p is strictly increasing on [0, ¢] and
constant on [c,00).

A typical example of such a p-function is the biweight function p_(y;¢), which is

defined as ) P
4
y_Y¥ .Y
2 22 + 6ct’ vl <e
Pe(y:9) =1
E ’|y| 2 c

Let r = b/ sup p and denote by [y] the smallest integer greater than or equal to
y. When every subcollection of [n — nr| points of X contains at least p + 1 points
in general position, there exists at least one solution (t,, C,) in R? x PDS(p). The
constant 0 < b < sup p can be choosen in agreement with an assumed underlying dis-
tribution. If one assumes X1, ..., X, to be a sample from an elliptical distribution
P, s a natural choice for b is Ep[{(X1—p)T =71 X1 — )} = [ p(lIxID) F(IIx|]) dx.
The choice of the (tuning) constant ¢ then determines the value of b.

The properties of S-estimators have been investigated by Davies (1987) and
Lopuhai (1989). S-estimators defined by p-functions satisfying (R1)-(R2) have ex-
actly the same asymptotic behaviour as multivariate M-estimators defined with
the same p-function (Lopuhad 1989). However, in contrast with M-estimators, S-
estimators have a high breakdown point in any dimension p. In order to encompass
S-estimators defined by smooth p such as p,(y;c), we complement the breakdown
result of Davies (1987), who considers functions p that are equal to 0 in a neigh-
bourhood of the origin.

THEOREM 3.2. Let X be a collection of n > p+ 1 points in RP in general position.
Write r = b/supp. If r < (n — p)/(2n) then S-estimators defined by a function p
that satisfies (R1)-(R2) have breakdown point €*(t,,X) = €*(Cp, X) = [nr]/n.

ProoF: The proof is similar to that of Theorem 3.1. As we can always rescale the
function p we may assume that ¢ = 1 and that sup p = 1, so that b in (3.6) equals r.
We first show that £*(t,, X) and €*(Cn,X) are at least [nr|/n. Replace at most
m = [nr] —1 points of X. Because r < (n—p)/(2n), every subcollection of [n — nr]
points of the corrupted collection Y, contains at least [n — nr] —([nr]—1) > p+1
points x; of the original collection X in general position. So there exists at least one
solution (tn(Ym), Cn(Ym)) in RP xPDS(p). Denote by Em = E(tn(Ym), Cn(Ym))
the smallest ellipsoid of type (3.2) that satisfies (3.6).
Since nr — [nr] + 1 is always strictly positive and p is continuous, we can find -

a smallest sphere with center 0 and radius, say R, such that Y ._, p(lIx;]|/R) =
nr — [nr] + 1. Denote by V the volume of this sphere. The collection Y, contains
n —m points of X, say x1,... ,Xn—m. The smallest sphere with center 0 and radius
M such that for these points 3 ;_" p(||x;||/M) = nr — [nr] + 1 must then have a
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volume less than V. At the same time this sphere is an ellipsoid for which

S alyll/M) < S pllbxell/M) + for] = 1 = .
Yi€Ym i=1

Therefore E,,, being the smallest ellipsoid of this kind, must also have a volume
less than V. On the other hand, it follows from constraint (3.6) that E,, must
cover some subcollection of [n — nr]| points of Y,,. As we have seen above, such
a subcollection must contain p + 1 points x; of the original collection X in general
position. At this point, we invoke Lemma 3.1 and use exactly the same argument
as is in the first part of the proof of Theorem 3.1 to conclude that £*(t,, X) and
£*(Chn,X) are at least [nr]/n.

The other inequalities are obtained as follows. Replace m = [nr] points of X.
Without loss of generality denote the corrupted collection by Y., = (y1,..-,¥n),
with y; = x; for j = [nr] +1,... ,n. Let E(t,C) be any ellipsoid of type (3.2)
that satisfies

(3.7) e [{i - T C (i - 7] < nr
i=1

and suppose that all replaced points yi,...,¥[n,] are outside E(t,C). Then
S, pl{(yi — t)TC (yi — t)}'/2] would be equal to

n

(38) Y o [t6g - 0TCT g - Y] + farl.

j=[nr]+1

When nr € N, it follows from r < (n — p)/(2n) that n — [nr] > p+nr>p+1. In
that case the summation in (3.8) runs over at least p+ 1 points in general position.
Since p is strictly increasing it then follows that this sum must be strictly positive.
When nr ¢ N, then [nr] > nr. Either way, we would find that (3.8) is strictly
greater than nr. This is a contradiction with the fact that E(t,C) satisfies (3.7),
so we conclude that at least one replacement, say y;, must be inside E(t,C).

Similarly, suppose that all n — [nr] original points X[,s)41,--. ,Xn are outside
E(t,C). In that case we would find that

(39) > o [{i - 6T i - )] 2 n = [ar].
i=1

However, from r < (n—p)/(2n) it follows that [n — nr] —[nr] > p. Because always
n — [n—nr] > nr — 1, we would find that the right hand side of (3.9) is strictly
greater than nr. As E(t,C) satisfies (3.7) this cannot be the case, so apart from
y1 the ellipsoid E(t,C) must also contain at least one original x;.

By sending y; to infinity we can make one of the axes of E(t, C) infinitely large.
This means that for every t and C that satisfy (3.7), we can make both ||t|| and the
largest eigenvalue A;(C) infinitely large. Since t,(Y,,) and C,(Y,,) must satisfy
(3.7) both estimates break down. m]
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REMARK 3.2: The breakdown point in Theorem 3.2 attains its largest value when

r = (n — p)/(2n). In that case the S-estimators have breakdown point [232]/n =
|2=E£ | /n.

4. Breakdown and large deviations. The replacement breakdown point as
defined in Section 2 is not only a simple and appealing robustness concept. Recently,
He et al. (1988) showed that it also has a stochastic interpretation. We extend their
result to multivariate location estimators.

In this section we consider x;, ... ,x, as asample X;,... , X, froma spherically
symmetric distribution P, with a density of the form f(||x — u|[), f(y) > 0. We say
that P, is algebraically tailed, if for some m > 0

4.1) —log P, (I X1 — pl} > @) ~ mloga , as a — oo.

Examples are the multivariate Cauchy distribution and the multivariate Student
distribution. We say that P, is ezponentially tailed, if for some b > 0 and r > 0

—log P, (]| X1 — pl| > @) ~ba" , as a — co.

The multivariate normal is an example of such a distribution.
Jureckova (1981) considered

—log P, (lltn — ul| > o)
t,) = £
Blatn) = B (1% =l > o)

as a measure of tailperformance for t, = t,(Xy,...,X,), and showed that in the
case p = 1, under certain conditions on t,,, it holds that

1 < liminf B(a, t,) < limsup B(a, t,) < n.
a—=00 a—00

For exponentially tailed distributions, the sample mean X, performes optimally
with B(a,)?,,)_tending to n, while for algebraically tailed distributions the lack of
robustness of X, is illustrated by B(a, X,) tending to 1. In the multivariate setting
one has something similar : when X,,..., X, have a standard normal distribution,
then X, has the same distribution as n“%Xl, so that B(a,)_(,,) tends to n, and
when X;,..., X, have a multivariate Cauchy distribution, then X, and X, are
equally distributed, so that B(a, X,) = 1.

Let t, be an estimator of multivariate location. We say that t, is scale equiv-
ariant, when t,(Ax1,...,Ax,) = Atn(xy,...,x,) for all A > 0. This type of
equivariance is satisfied by most location estimators.

LEMMA 4.1. Let t, be translation and scale equivariant with a breakdown point
€*(tn, X) = m*/n that does not depend on X and suppose that for all v € R?

(4.2) ta(v,...,v)=wv.
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Then, for every collection X with at least n — m* + 1 points equal to some v € R?,
it holds that t,(X) = v.

PROOF: Since t,, is translation equivariant we may assume that v = 0. With-
out loss of generality we may assume that Xy« = --- = x, = 0. Suppose that
ta(X1, .- yXm*-1,0,...,0) # 0. Then for every A > 0 we have that

a1, .. s A1, 0, - ,0) — £a(0, ..., O)]]
= ||t,.()\x1, ver 3 AXype-1,0,... ,0)”
= Atn(X1, . Xme-1,0, ..., 0)|

using (4.2) and scale equivariance of t,. When A tends to infinity, the right hand
side tends to infinity, which means that t,, breaks down at the collection (0,...,0)
by replacing m* — 1 points. This is in contradiction to the definition of m*. a

He et al. (1988) related B(a,t,) to the finite-sample replacement breakdown

point £*(t,, X) = m*/n of univariate location estimators t, that are monotone in
each observation. A function g : R? — RP is called monotone when g(x) > g(y) for
X >y, where x > y means ¢; > y; for j=1,...,p.
THEOREM 4.1. Let X = (X4,...,Xn) be a sample from a spherically symmetric
distribution P, with density f(||x — p||) > 0. Let t,(X1,...,X,) be a translation
and scale equivariant estimator that satisfies (4.2) and which has a breakdown point
¢*(tn, X) = m*/n that is independent of X. Assume that t, is monotone in each
observation. If P, is algebraically tailed, then it holds that

m* < liminf B(a, t,) < limsup B(a,t,) <n-m* + 1.
a—00 a—00

PRroOOF: Since t, is translation equivariant we can restrict ourselves to the case
p = 0, and write P for P,. Monotonicity of t, and Lemma 4.1 yield the following

property

43) z;j > ¢, for n —m* + 1 points x; => tp;(x1,...,Xp) 2 ¢

' zij < ¢, for n —m" + 1 points x; => tpj(x1,...,Xn) L €
forall j = 1,...,pand ¢ € R. Indeed, assume without loss of generality that z;; > ¢
fori = 1,...,n — m* + 1. Define the vector v = (v1---v,)T as follows : v; = ¢
and vy = min{z1x,... , 2k} for k # j. Thenx; > vfori=1,... ,n—m* + 1.
Monotonicity together with Lemma 4.1 implies t,(xi,...,X,) > v and hence,
tnj(%1,...,%Xn) 2> c. The other inequality is obtained similarly.

Because X; = (X11 -+ X1p)T is spherically symmetric distributed, it holds that

P()|X1|| > a) < 2pP(X11 > a//p).

Hence,
. . n-m*+1
any  pOxl>ar e <@ e(C () (X > olvR).
i=1
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According to property (4.3), the event on the right hand side of (4.4) implies that
ta1(X1, ..., Xn) > a/,/p and hence, |[t,|| > a/,/p. It follows that

(4.5) P(|IX1ll > ayp)* ™™ *! < (2p)* "™ ' P(||ta]] > a).
Taking logarithms yields

. —log P(|| X1l > ay/P) . (n —m* + 1)log(2p)
@0 Blata) <O = Do P> a) = log PIXHT > )
so that with (4.1) we obtain limsup,_,, B(a,t,) < n—m* + 1.

The lower bound on liminf,_, . B(a,t,) is obtained similarly. We have that
|[tnl| > a implies that |t,;| > a/,/p for some 1 < j < p. According to property (4.3),
tnj > a/\/p implies that X;; > a/,/p at least m* times and hence, || X;|| > a/,/p at
least m* times. Similarly, tn; < —a/,/p also implies that || X;|| > a/,/p at least m*
times. Therefore,

el > <2 3 (1)ra-nt <o 3 (7)

k=m=* k=m*
where r = P(||X1|| > a/\/p). Taking logarithms yields an inequality similar to
(4.6), in which we let a tend to co and obtain liminf,_. ., B(a, t,) > m*. O

The inequality limsup,_, ., B(a,t,) < n—m* +1 indicates that estimators with
a high breakdown point necessarily must sacrifice tailperformance. However, both
inequalities in Theorem 4.1 imply that estimators with maximal breakdown point
satisfy a minimax property in the sense that they maximize least favorable tail
performance at algebraically tailed distributions.

5. Breakdown Point of one-step reweighted estimators. A high breakdown
point is often counterbalanced by a low asymptotic efficiency. A possible way to
avoid this is to use robust estimators as a diagnostic tool to select the ‘good’ obser-
vations from a (corrupted) collection (see for instance Rousseeuw and van Zomeren
1990). Once the ‘good’ observations have been identified, classical methods could
be applied to obtain final estimators of location and covariance. If the breakdown
point of the initial robust estimators is retained, we may be able to combine a high
breakdown point with high efficiency. In this section we will show that for the usual
weighted sample mean and sample covariance the breakdown point of the initial
estimators is retained. Asymptotic properties of these estimators are still under
investigation.

Assume throughout this section that the collection X = (x,...,X,) is in gen-
eral position. Let to,(X) € R? and C;,(X) € PDS(p) denote initial (robust)
estimators of location and covariance based on X. For i = 1,... ,n compute Ma-

halanobis distances

T
do(x;) = \/(Xi — t0,n(X))" Co,n(X)~1(x; — to,n(X)).
Identify observations with relatively small do(x;) as ‘good’ observations, and iden-
tify observations with relatively large do(x;) as outliers. Next compute the weighted

sample mean and sample covariance, by assigning smaller weights to outlying ob-
servations. Let w : [0,00) — [0,00) be a function satisfying :
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(W1) w(y) and w(y)y? is bounded and w(y) is nonincreasing.
(W2) There exists a constant co > 0 such that w(y) > 0 for y € [0, co).

Define weighted estimators by

i1 w(do(xi))x:
2ie1 w(do(x:))
oy w(do(xo)) (%i = 1,0(X)) (xi = t1,0(X))"
>oie1 w(do(x:))
Additionally, to prevent the weighted covariance estimator from implosion, we need

some relation between the constant co and the initial estimators tg, and Cypn.
Consider the (robust) ellipsoid

tl,n(X) =

Cl’n(X) =

E(ton, Con,c0) = {X : (x — ton) T Cya(x — to,n) < 3}

Then co, to» and Cq , must be such that

(5.1) #{i 1X; € E(to,n,co,,,,co)} > |ndetl)

Given any tgn, and Cgp ,, one could take for ¢o any number that is greater than
or equal to the Lﬂgﬂj largest Mahalanobis distance dg(x;). However, typical
choices for tg, and Cp, would be the MVE estimator or an S-estimator with
b/ sup p = (n — p)/(2n). In that case, ¢y does not have to be defined by the sample
values, but could be any number that is greater than the tuning constant ¢ of the
function p in (3.6). Indeed, by definition the constant ¢ will then always be such that
the minimum volume ellipsoid or the ‘S-ellipsoid’ contains at least ["—tgﬂj points.
A typical choice for w(-) would be the function 1po .,)(-), in which case t1,, and C;
are simply the sample mean and sample covariance of the ‘good’ observations.

It is not difficult to see that the affine equivariance of to, and Cy, carries
over to t; 5, and C;,. We will show that also the breakdown point of the initial
estimators is retained. We need the following property of eigenvalues.

LEMMA 5.1. For symmetric p x p-matrices A and B it holds that A\,(A + B) <
Xi(A) + M (B), and A(A + B) > A(A) + Ap(B).

Proor: Apply (2.3) and use standard properties of infima and suprema. O

THEOREM 5.1. Let X be a collection in general position with n > p+ 1 points in
RP. Let w(-) satisfy (W1)-(W2) and let to ,(X) € R? and Con(X) € PDS(p) be
affine equivariant estimators of location and covariance that relate to ¢y as described
above. Then

(5.2) 6*(t1,n,X) > min {6*(t0,n,X),€*(Co,n,X)}
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and
(5.3) £*(Cy,n,X) > min {e*(to,n, X),€* (Com, X)}.

PROOF: Replace at most m = n min{e*(to,n,X),*(Co,n,X)} — 1 points of X and
denote by Y, = (y1,...,Y¥n) the new corrupted collection. Write t5,n and Cg ,
for t0,n(Ym) and Con(Ym), ti, and C},, similarly, and write

3% = /(7 — 6,07 (C3 )2 (i — £5,0)-

Because m < ne*(to,n, X) ~ 1 and m < ne*(Cy p, X) — 1 it follows that there exist
constants ko, k; and k2, which only depend on X, such that

(5.4) [to,nll < ko <00 and 0<k; < Ap(Co,n) £ M(Ch ) < k2 < 0.

As Cq,n is an affine equivariant covariance estimator it holds that m < [R=ptl|_g,
It then follows from (5.1) that the corrupted ellipsoid E(t} C3,n: €o) still covers

o,n»

[%J — m > p+ 1 original points of X. Without loss of generality assume that
these points are x;,... ,Xp41. Because w(-) is nonincreasing

n p+1
(5.5) Y w(di(y:)) = D w(di(x;)) 2 (p+ w(co) > 0

i=1 ji=1 :

which means that the denominators of ti » and C7, will always be uniformly
bounded away from zero.
We first show that |[t] .|| remains bounded. According to (2.3),

n

> wldi(r)yi] < 3wl = 65,0+ 3 w6l
(56) i=1 i=1 i=1

< D w(da(y))di(y )M (Ch ) + 3 w(dp(ya))l1€s ol
=1

i=1
Because of (W1) and (5.4) it follows from (5.6) that there exists a constant A,
which only depends on X, such that
(5.7) 3.l1 < Ao < o

which proves (5.2).
Next we show that Ap(Cj ) is uniformly bounded away from zero. Consider
the numerator of C7 ,, and write this as the sum A 4 B of the matrices

p+1

A= Zw(dﬁ(xi))(xi —t1 )% -t )T
i=1

B= 3 w(di(y)) - t].): —t],)7
i=p+2

68



where X1,... ,Xp41 have positive weight, as they are inside E(t§ ,,, C§ ., co). Since
both A and B are symmetric nonnegative matrices it follows from Lemma 5.1 that
Ap(A+B) > Ap(A). Also (2.3) implies that for oy, ... ,ax > v >0and Ay, ..., A;
symmetric nonnegative it holds that Apj(a1 A1+ -+ arAr) > YA (AL +- -+ Ag).
Because w(dy(xi)) > w(co) for every i = 1,...,p+ 1, it follows that A,(A) >

w(co)Ap (M), where M = Zp“ (2cs — £ ) (xi = ,,,)T. Write M = M, + M3, where

p+1
M; = Z(x; - i)(x.- - J_()T

M; = (p+1)(& - t],)(X— t],)"

with X = (p+ 1)~ Y22 x;. Both M; and M are symmetric and nonnegative, so
that Lemma 5.1 yields Ap(M) > A,(M;). The matrix M; is proportional to the
sample covariance matrix of Xy, ... ,Xp41 and as X is in general position, M; must
have a smallest eigenvalue A,(M;) > 0. We find that the smallest eigenvalue of the
numerator of Cj , is greater than w(co)Ap(M1) > 0. It follows that there exists a
constant A, > 0, whlch only depends on X, such that A,(C7,) > A;.

Finally, for any v € RP it holds that A (vvT) = ||v||2 Together with Lemma
5.1 and (5.5), this implies that

M(Ch) € (0 + Dw(eo)) ™ S w(ds(yo)lly: — 5 1%
i=1

We can bound ||y; — t} ,||* from above by

lly: — ¢5.all” + 11650 = ¢1al1% + 2llys — €501l - 15,0 — 3,1

Then use (2.3) as in (5.6) and recall that w(y) and w(y)y? are bounded. It follows
together with (5.4) and (5.7) that there exists a constant Az, which only depends
on X, such that A;(Cj ,) < A2 < co. This completes the proof. O

There are other suggestions to combine high asymptotic efficiency with a high
breakdown point. Results of Beran (1977) show that if you estimate the center
of symmetry of a univariate distribution by Minimum Hellinger Distance you get
high efficiency combined with breakdown point 1/2 asymptotically. However, MHD
estimation may not be practical in high dimensions because it depends on density
estimation. Other Minimum Distance estimators are discussed by Donoho and Liu
(1988). Yohai (1987) combined high breakdown point with high efficiency for regres-
sion estimators. This approach is extended in Lopuhad (1988) to affine multivariate
location estimators. Unfortunately, a similar approach for covariance estimators,
i.e. first estimate the location parameter affinely with high breakdown point and
then compute an M-estimate of covariance based on the recentered observations,
would fail because covariance M-estimators have a low breakdown point (Tyler
1986).
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ON THE RELATION BETWEEN S-ESTIMATORS AND
M-ESTIMATORS OF MULTIVARIATE LOCATION
AND COVARIANCE

HENDRIK P. LOPUHAA
Delft University of Technology

We discuss the relation between S-estimators and M-estimators of multivariate lo-
cation and covariance. As in the case of the estimation of a multiple regression
parameter, S-estimators are shown to satisfy first-order conditions of M-estimators.
We show that the influence function IF(x;S, P) of S-functionals exists and is the
same as that of corresponding M-functionals. Also, we show that S-estimators have
a limiting normal distribution which is similar to the limiting normal distribution
of M-estimators. Finally, we compare asymptotic variances and breakdown point of
both types of estimators.

1. Introduction and preliminaries. Recently Rousseeuw and Yohai (1984)
introduced S-estimators in the framework of multiple regression. These estimators
were shown to have the same asymptotic properties as corresponding regression
M-estimators, and also to have good robustness properties, as their breakdown
point (which can be interpreted as the percentage of outliers in the sample that an
estimator can handle) was shown to be 50% .

Davies (1987) investigated some properties of S-estimators of multivariate loca-
tion and covariance. Using a slightly different definition from the one suggested
in Rousseeuw and Yohai (1984) he treated existence, consistency, asymptotic nor-
mality and breakdown point. However, the close correspondence with multivariate
M-estimators, as was found in the case of estimating a regression parameter, re-
mained hidden.

In this paper multivariate S-estimators are related to multivariate M-estimators.
First the definition of multivariate M- and S-estimators is discussed and it is shown
that S-estimators of multivariate location and covariance satisfy the first-order con-
ditions of multivariate M-estimators.

This will have the consequence that the asymptotic normality results and the
expression for the influence function of multivariate S-estimators are the same as
those of .corresponding multivariate M-estimators.

Finally, we will compare asymptotic variances in relation with the breakdown
point for both types of estimators. It turns out that S-estimators can achieve the
variances attained by M-estimators, but they have the additional advantage that
in high dimensions (at the same level of asymptotic variance) the breakdown point
is considerably higher than that of the M-estimators. All proofs have been saved
for an Appendix at the end of the paper.

This research is financially supported by NWO under Grant 10-62-10.
1980 Mathematics subject classifications : 62F35, 62H12.
Key words: S-estimators, M-estimators, Influence Function, Asymptotic normality, Efficiency.
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We will denote p-vectors by t = (1 ---1,)7 and p x p-matrices by M = (m;;).
For any p x p-matrix M, we write Dy for the diagonal matrix consisting of the
diagonal of M, and eigenvalues are denoted by A\,(M) < ... < A\;(M). The class of
positive definite symmetric matrices is written as PDS(p) and by © = R? x PDS(p)

we denote the set of pairs 8 = (t,C), which can be seen as an open subset of
Rr+ir(p+1)

By x;,X5,... we will mean vectors in R? and we will write X;, X>,... instead if
an underlying distribution is assumed.
The Euclidean norm is denoted by ||-||, and because of the frequent appear-

ance of quadratic forms (x — t)TC~'(x — t) we will sometimes abbreviate them
by d*(x,t,C). Denote by E(t,C,c) an ellipsoid {x : (x — t)TC™}(x - t) < ¢?}.
Partial derivatives 9g(x,8)/06 will sometimes be abbreviated by ge(x, 8).

We will focus on the estimation of the parameter @ = (u, ) which characterizes
an elliptical distribution P, y with a density of the form

(1.1) B~ £ (B~ (x - w)ll)

where BBT = %, f : [0,00) — [0,00) is a fixed function and (g, £) € ©. Expecta-
tions with respect to these distributions are denoted by E, r. Note that it is often

easier to write Eo rh(]|X||) instead of E, sh(]|B~}(X — p)||) for any real-valued
function h.

2. M-estimators and S-estimators.

2.1 M-estimators. M-estimators were originally constructed by Huber (1964)
for the estimation of a one-dimensional location parameter. Later Huber (1967)
considered a very general framework in which consistency and asymptotic normality
were proved under relatively weak conditions.

Maronna (1976) was the first to define M-estimators for multivariate location and
covariance. Huber (1981) extended Maronna’s definition by defining M-estimators
based upon xi,...,x, € RP as solutions of the simultaneous equations

1 n
- D vi(di)(xi —t)=0
(2.1) =
% Z {vg(d.-)(x; - t)(x; - t)T - v;;(d.')C} =0
i=1

where d; = d(x;,t,C) and vy, v, and v3 are real-valued functions on [0, 00).
EXAMPLE 2.1 HUBER’s PROPOSAL 2: Take vs(y) = 1 and v;(y) = ¥i(y)/y, for
i = 1,2, where ¥1(y) = ¥, (y; k) and ¥2(y) = ¥,,(y%; k?). The function ¥, (y; k) =
max{—k, min{y, k}} is known as Huber’s psi function.

Both existence and uniqueness of solutions of (2.1) was only shown for v3 equal

to 1 (Maronna 1976, Huber 1981). For this case Maronna (1976) shows consistency
and asymptotic normality by means of Huber’s 1967 results.
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Maronna (1976) and Huber (1981) consider the breakdown point €* and the
influence function IF to measure the robustness of these estimators. They both
indicate that for solutions of (2.1) the breakdown point is at most 1/(p + 1). A
detailed treatment on the (finite-sample) breakdown behaviour of this type of M-
estimators is given in Tyler (1986). One should note that these results assume
monotonicity of vy, and vz to be constant. So from the viewpoint of breakdown,
M -estimators become more sensitive to outliers in higher dimensions. From the
viewpoint of the influence function (which describes the effect of one outlier on the
estimator), M-estimators are robust, as their influence function remains bounded
when vy, v, and v3 in (2.1) are chosen suitably (see Huber 1981).

2.2 S-estimators. Rousseeuw and Yohai (1984) introduced S-estimators in a re-
gression context and defined them as the solution to the problem of minimizing o
subject to

1 - Yi — OTx,- -

among all (8,0) € R? x (0,00), where 0 < b < sup p. The special case p(y) = y?
in (2.2) obviously leads to the least squares estimators. In order to obtain more
robust estimators and preserve asymptotic normality the function p was assumed
to satisfy

(R1) p is symmetric, has a continuous derivative 3, and p(0) = 0.
(R2) There exists a finite constant ¢ > 0 such that p is strictly increasing on
[0,c] and constant on [¢,00). (Put a = sup p.)

A direct generalization to S-estimators of multivariate location and covariance is
obtained simply by adjustment of (2.2).

DEFINITION 2.1: Let x1,X3,... ,Xn, € R? and let p : R — [0,00) satisfy (R1)-
(R2). Then the S-estimator of multivariate location and covariance is defined as
the solution 8,, = (t,,C;) to the problem of minimizing |C| subject to

(23) %Zp [{G - 07C (i - 0)}7] =8

among all (t,C) € ©. Denote this minimization problem by (P,).

The constant 0 < b < a can be chosen in agreement with an assumed under-
lying distribution. For instance, when x;,x2,... ,X, are assumed to be a sample
X1, Xs,..., X, with an underlying elliptical distribution (1.1), then the constant
b is generally chosen to be Eq rp(]|X||). In that case the constant ¢ can be cho-
sen such that 0 < b/a = r < %22, which leads to a (finite-sample) breakdown
point ¢, = [nr]/n (see Lopuhai and Rousseeuw, 1989). For r = %2 one obtains
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the maximal breakdown point I_"—'émj /n, or asymptotically 0.50. However, the
constant ¢ at the same time determines the asymptotic variance and, as we will
see in Section 6, it is not possible to achieve small asymptotic variance and 50%
breakdown point simultaneously.

It might be worthwhile to mention that S-estimators of location and covariance
can also be seen as robustifications of the least squares method. When b = p, then
using p(y) = y? in (2.3) yields the sample mean and the sample covariance as unique
solutions of (P,) (see for instance Gribel 1988).

ExAMPLE 2.2 TUKEY’S BIWEIGHT: An example of a rho-function for (2.3) is

v ®
¢2  6ct

+ , for |y <e¢

o

v

2
Pely;c) = 2 :
F » for Iyl Z c

Its derivative, which is a redescending (psi-) function, is known as Tukey’s biweight
. 2
function %, (y;¢) = y(1 — (£)?) "L—c,(v)-

Davies (1987) defines S-estimators similarly only instead of p he uses a non-
increasing function  : Ry — [0,1] in (2.3). It is related to p as x(y) = 1 — p(y?)/a.
If ‘continuous differentiability of p’ is weakened to ‘p being left-continuous on (0, 00)
and continuous at 0, if ‘strictly increasing’ on [0, ¢} is weakened to ‘nondecreasing’
and if ‘=" is replaced by ‘<’ in (2.3), then the two definitions are equivalent. Under
these weaker conditions Davies proves existence and consistency of S-estimators,
and he obtains asymptotic normality assuming that the function « has a third
continuous derivative.

We will extend existence and consistency of S-estimators to existence and con-
tinuity of S-functionals and obtain the influence function, and we will extend the
asymptotic normality result by considering S-estimators as a special type of M-
estimators and use Huber’s (1967) results.

2.3 Relationship belween M- and S-estimators. A drawback of using x instead
of p is that the conjectured correspondence with M-estimators remains hidden. In
this subsection we will show that a solution to the minimization problem (P,) also
satisfies the first-order M-estimator conditions (2.1).

Let 8,, = (t,,Cp) be a solution of (P,). Then, if by A, we denote the corre-
sponding Lagrange multiplier, the pair (8,, ;) is a zero of all partial derivatives
L, /dt, 8L, /8C and JL,, /BX, where L,, is the Lagrangean

La(8,)) =log(|C|) — A {% Zp [{(x; —t)TC(x; - t)}l/z] - b} :
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This means that besides constraint (2.3), (0, An) satisfies the equations

%i:u(d;)C‘l(x.- - t) =0
(24) N
2c-1 — Dg-r + 2_11 Zu(d,-) (2V.' - DV'.) =0

i=1

where u(y) = ¥(y)/y,d; = d(x;;t,C) and V; = C7 (x; — t)(x; — t)TC-T (for
derivatives with respect to symmetric matrices, see Graybill 1983). But the second
(matrix) equation can be written as

(25) I+ % zn:u(d,-)A'l(x,- - t)(x,- - t)TA-T =0

i=1

where AAT = C. When we take the trace we get p + % Yo, ¥(di)d; = 0. Obvi-
ously we can solve A, from this equation, yielding

A = — 2p
" (;1.' Z?:l '/"(di,n)di,")

where d; , = d(x;,tn,Cpn). If we substitute this into (2.5), together with (2.4) and
(2.3) we find that any solution 8, of (P,) satisfies the following equations

=Y u(d)(x— ) =0
(2.6) . =1
= > {pu(d,-)(x,- —t)(x; — t)T — v(d;)C} =0
i=1

where v(y) = ¥(y)y—p(y)+b. The term —p(y)+b is added to ¥(y)y because merely
substituting A, into (2.5) would give us a system of linear dependent equations for
any pair (t,C) € O.

Hence, any solution of (P,) turns out to be also a solution of equations (2.6)
which obviously are of M-estimator type (2.1). To match the notation used in
Huber (1967) write (2.6) as

(2.7) %Z'I’(x,',e) =0
i=1

where 8 = (t,C) € © and ¥ = (¥,, ¥,) is the function

¥1(x,6) = u(d)(x - t)

(2:8) ¥y(x, 8) = pu(d)(x — t)(x — t)T — v(d)C

75



with d = d(x,t,C). We conclude that S-estimators satisfy first-order conditions
(2.1) of M-estimators as defined in Huber (1981), or rather equations (2.7) of the
type considered in Huber (1967).

However, recall that S-estimators are originally defined by the minimization
problem (Pp), which is not equivalent to (2.7), and that in any dimension they
can still be constructed with high breakdown point. The cause of these differences
might lie in the functions va(-) and vs(-) of (2.1) and the functions u(:) and v(-)
of (2.6). For instance, Huber (1981) chooses v > 0 and v3 > 0 to be monotone,
and the latter even equal to a constant for proving both existence and uniqueness
of solutions of (2.1). The functions u(y) = ¥(y)/y and v(y) = ¥(y)y — p(y) + b will
never satisfy either condition.

One could call any solution of (2.7) an M-estimator. However, M-estimators are
generally associated with low breakdown point and with implicit equations (2.1),
with vz decreasing and vs being constant. As this is not the case for S-estimators
we tend to consider these estimators to be of a different type.

Although the S-estimator is probably not the only solution of (2.7), it is a
solution with high breakdown point. To find it, one must therefore solve (P,) and
not just equation (2.7). Nevertheless S-estimators do satisfy (2.7) which has the
consequence that their asymptotic behaviour and their influence function are the
same as for M-estimators.

3. S-functionals and influence function. For the derivation of the influence
function we have to extend Definition 2.1 to a functional formulation. Denote by
F the class of all distributions on RP. The functional analogue of the S-estimator
of multivariate location and covariance is defined as follows.

DEFINITION 3.1: Let p : R — [0,00) be a function satisfying (R1)-(R2). Then the

S-functional S : ¥ — © is defined as the solution S(P) = (t(P), C(P)) to the
problem of minimizing |C| subject to

- 1/2
(3.1) /p[{(y—t)TC 'y - )}'*] aP(y) =4
among all (t,C) € ©, where 0 < b < a. Denote this problem by (Pp).
Existence of solutions of (Pp) is ensured if there is not too much mass con-
centrated at arbitrarily thin strips H(a,l,6) = {y : | < aTy < 1 + 6}, where

llal| = 1,6 >0 and I € R. Let 0 < ¢ < 1 and consider the following property for
the distribution P on R?

(Ce) The value 6, = inf{é : P(H(a,1,6)) > ¢,||all = 1,6 > 0,1 € R} is strictly
positive.

THEOREM 3.1. Let P satisfy property (C,) for some 0 < € < 1—r, where r = b/a.
Then (Pp) has at least one solution.
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Let Pr,k > 0, be a sequence of probability distributions on R? that converges
weakly to P as k — 00. The following theorem shows when S-functionals are
continuous.

THEOREM 3.2. Let C be the class of all measurable convex subsets of R? and
suppose that every E € C is a P-continuity set, i.e. P(OE) = 0. Suppose that P
satisfies (C,) for some 0 < € < 1 —r, and assume that the solution S(P) of (Pp) is
unique. Then for k sufficiently large (Pp,) has at least one solution S(Py), and for
any sequence of solutions S(P¢), k > 0, it holds that limg_.o, S(Pi) = S(P).

REMARK 3.1: In the proof of Theorem 3.1 strict monotonicity of p on [0, ¢] is not
needed and continuity of p is not essential. This means that Theorem 3.1 can easily
be shown to hold also for S-functionals that correspond to the larger class of S-
estimators considered by Davies (1987) (see Section 2.2). With a stronger condition
on P, which will ensure [ p(||y]l/(1 + n))dP(y) to be strictly decreasing at 5 = 0,
also Theorem 3.2 can be shown to hold for these S-functionals.

REMARK 3.2: A part of the proof of Theorem 3.2 consists of showing that solutions
S(P:) eventually stay inside a fixed compact set. For the special case

Pux= (1= h)P + héy

(see Definition 3.2) one can show that if 0 < r < 1 and if P only satisfies (C,) for
e = (1—2r)(1 —r)"!, then for any 0 < a < 1 there exists a compact set K(a)
independent of x such that for all A € [0, ar] the problem (Pp, ) has at least one
solution and all solutions are contained in K(«).

Condition 0 < r < 1 is similar to the condition 0 < r < %~2 which ensures a
(finite-sample) breakdown point €}, = [nr]/n (see Section 2.2). The latter means
that the S-estimator stays in some fixed compact subset of © when the amount of
contamination is less than €},. This is in agreement with the statement above that
when the amount of contamination at x € RP is less than r, the S-functional stays
within a compact subset of ©.

The robustness of the S-estimator can be measured by means of the influence
function (see Hampel 1974). It is defined in terms of the S-functional in the following
manner.

DEFINITION 3.2: Let S(-) be a vector-valued mapping from a subset of F into ©
and let P lie in the domain of S(-). If éx denotes the atomic probability distribution
concentrated in x € RP, then the influence function of S(-) at P is defined pointwise
by

S((1— h)P + héx) — S(P)
h

(3.2) IF(x;S,P) = 1’.1{101
if this limit exists for every x € RP.
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If we replace P by the empirical distribution P,_; and h by %, we realize
that the IF measures a weighted alteration of the value of the estimator when one
additional observation is added to a large sample of size n — 1. The importance of
the influence function lies in its heuristic interpretation : it describes the effect of
an infinitesimal contamination at a point x on the estimator. A bounded influence
function is therefore considered to be a good robustness property.

To derive the IF at a distribution P we need to be sure that S(.) is uniquely
defined at (1 — h)P + héx, for all x € R? at least for small h, and secondly that
the limit (3.2) exists for all x € R?. Theorem 3.2 ensures that for all x € R? and h
sufficiently small the problem (Pp, ), with P, x = (1 — h)P + héy, has at least one
solution and that all solutions are continuous.

We conclude that for h sufficiently small there exist solutions 6, x = (tp x, Ch x)
of (Pp,,,) and that they all converge to the same limit (t(P), C(P)) as h tends to
0. Therefore there exists an open neighbourhood N of S(P) which contains all
solutions 8, for h sufficiently small.

Remember that (2.7) is obtained from differentiation of the Lagrangean corre-
sponding with problem (P,). Similarly one could now differentiate the Lagrangean
corresponding with the problem (Pp). If we restrict to the neighbourhood N, we
may interchange the order of differentiation and integration, and similar to (2.7) we
obtain the equation

(3.3) / ¥(y,8)dP(y) = 0

where ¥(y, 6) is defined in (2.8).

Solutions (tp x, Ch x) of (Pp, ,) must be a solution (not necessarily the only one)
of (3.3), at least for h sufficiently small. Note that if we only consider a functional
M : F — ©, defined as the solution of (3.3), we may have some problems to
ensure the uniqueness, and therefore for obtaining the influence function IF(x; S, P)
we explicitly consider the solution S(P) of (3.3). The implicit function theorem,
applied to this equation will ensure the uniqueness of S(-) at P, x for h sufficiently
small, and also the existence of IF(x; S, P).

THEOREM 3.3. Let p : R — [0,00) satisfy (R1)-(R2). Assume that p has a second
derivative i’ and suppose that

(R3) ¥'(y) and u(y) = ¥(y)/y are bounded and continuous.
Suppose that the conditions of Theorem 3.2 hold. Let ® be defined as in (2.8) and
let Ap(6) = Ep®(X,0). Suppose that Ap(-) has a nonsingular derivative A at
S(P) = (t(P),C(P)). Then the influence function IF(x; S, P) exists and satisfies
(3.4) IF(x;S,P) = —A~ 1% (x,S(P)).

Huber (1981) showed that equation (3.3) has a unique solution when certain
monotonicity conditions on the functions u(-) and v(-) are satisfied. One of these
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conditions is that the function v(-) is constant. In our case v(-) is certainly not a
constant function and so equation (3.3) may have many solutions. However, it is
possible that there is a unique ‘S-solution’ among all solutions of (3.3). For this
solution we have derived the IF and naturally the expression is of the same type
as for multivariate M-estimators. Note that the properties of the function p imply
that the influence function IF(x; S, P) is bounded.

4. Asymptotic normality of S-estimators. Let Xi, X2,... be a sequence of
independent random vectors X; = (Xiy ~--X,-,,)T with a distribution P on RP.
Suppose that for n > p+ 1 the sample X,,..., X, is in general posilion, i.e. no
p + 1 points lie in some (p — 1)-dimensional subspace, almost surely.

When P in Definition 3.1 is equal to the empirical distribution P,, we get the
definition of the S-estimator. Note that P, satisfies (C,) for € = (p + 1)/n almost
surely, so as a special case of Theorem 3.1 we have that for n(1-7r) > p+1
the problem (P,) has at least one solution almost surely. When P satisfies the
conditions of Theorem 3.2 one has consistency : 8, — (t(P), C(P)) almost surely.

As we have seen in Subsection 2.3 solutions 8, of (P,) satisfy first-order con-
ditions (2.7) of M-estimators. An immediate consequence is that the asymptotic
behaviour of S-estimators is similar to that of M-estimators.

THEOREM 4.1. Let p : R — [0,00) satisfy (R1)-(R3) and suppose that the condi-
tions of Theorem 3.2 hold. Let ¥ be defined as in (2.8) and let Ap(-) be defined
as in Theorem 3.3. Suppose that the solution S(P) of (Pp) is unique and that
Ap(+) has a nonsingular derivative A at 8, = S(P). Let 8, be a solution of (P).
Then \/n(6,, —8) has a limiting normal distribution with zero mean and covariance
matrix A"'MA~T, where M stands for the covariance matrix of ¥(X1,6y).

REMARK 4.1: One might try to prove asymptotic normality of S-estimators directly
from Definition 2.1 and avoid (2.7). A first derivative 9 of p in (R1), needed to
arrive at (2.7) is then no longer required. At least continuity of p seems necessary.
This is indicated by the results of Kim and Pollard (1989) on Rousseeuw’s (1983)
minimum volume ellipsoid estimator, which can be seen as an S-estimator with a
discontinuous p-function.

5. Elliptical distributions. Consider the case that P = P, 5 is elliptical and
therefore take b = Eo rp(||X||) in (2.3) and (3.1). For this choice of P does Huber
(1981) obtain the expression for the IF of M-functionals and does Maronna (1976)
give a detailed description for the asymptotic covariance matrix of location M-
estimators. We compare these results with Theorems 3.3 and 4.1 applied to P, x.

It is not difficult to show that P, s satisfies property (C.) for any 0 < ¢ < 1, s0
that according to Theorem 3.1 at least one solution of (Pp, ) exists. Davies (1987)
showed that it is even unique and Fisher consistent

(5.1) S(Py,z) = (1, ).

The following corollary gives a detailed description of the limiting normal distri-
bution of \/n(8, — 6o). In particular, the asymptotic covariance of the location
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S-estimator t, as defined in Definition 2.1 is exactly the same as the asymptotic
covariance found for the location M-estimator considered by Maronna (1976) if one
chooses v (y) = ¢(y)/y in (2.1).

To describe the asymptotic covariance matrix of /n(C, — ¥) in condensed
form, we represent p x p-matrices M by vec(M) = (my, ---my, sy - ompy )T
The operator vec(-) just stacks the columns of M on top of each other. Magnus
and Neudecker (1979) investigated algebraic properties of this operator in relation
with the commutation matrix K,, .. Here we will only use the special case Kpp,
which is a p? x p?-block matrix with the (i, j)-block being equal to Aj;. The latter
is a p x p-matrix which is 1 at entry (j,7) and 0 everywhere else. F inally M® N
denotes the Kronecker product of the matrices M and N which is a p? x p2-block
matrix with p x p-blocks, the (3, j)-block equal to m;; N.

CoroLLARY 5.1. Let p : R — [0,00) satisfy (R1)-(R3) and let P be a elliptical
distribution with parameter 6y = (pt, X). Suppose that

Eo r¢/(|lX]) > 0.

Eo,r [¢'(IXIDNXI + (» + Dp(IX WX} > 0.

When 6, = (tn,Cy) is a solution of (Py,), then \/n(8, — 6,) has a limiting normal
distribution with zero mean and t, and C,, are asymptotically independent. The

covariance matrix of the limiting distribution of \/n(t, — u) is given by (/D)
where

(5.2)

a= %Eo,mz(nxn)
(5.3)

p=Eur|(1-3) utixi) + v

The covariance matrix of the limiting distribution of \/n(C,, — ) is given by

(5.9) 1(I+ K, ,)(E ® E) + ogvec(T) vee(T)T.
where
o1 = p(p + 2)Eo 1 (IIXIDIIX |12 .
{Eotw XIDIXIE + -+ DuixDIxIn}
(5.5)
vy =~ 201 4 Eas(aIXID -0

leomaxiia)

For the influence function, it is sufficient to give the expression of IF(x; S, Py, ;)
because affine equivariance of S(-) yields the general expressions

IF(x;t, P, 5) = BIF (B~ (x — p); t, P s)

5.6
(5.6) IF(x;C, Py x) = BIF(B~!(x — u); C, Po,1)B”.
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We will describe IF(x; S, Py 1) such that it can be compared with the expressions
found for M-functionals in Huber (1981).

COROLLARY 5.2. Let p : R — [0,00) satisfy (R1)-(R3) and suppose that conditions
(5.2) hold. Let P be spherically symmetric. Then the influence function IF(x; S, P)
of the S-functional defined in Definition 3.2 exists and it holds that

(5.7) IF(x;t, P) = ¢(|IXII) T

where B is defined in (5.3), and IF(x; C, P) satisfies

1 xT 1
(5.8) IF(x C P) - ;trace [IF(x C, P 1)] I= p¢(||x||)|l x|| (||xﬂ2 ;I)

and
(5.9) %trace [IF(x;C, P)] = %(p(”x") —b)

where v is defined in (A.11) and w = Eqo r9(]| X ||| X}

6. Asymptotic variance in relation to breakdown point. We compute
asymptotic variances of the S-estimator defined by the biweight function p,(-;¢)
of Example 2.2. The variances are computed for different values of p (=1,2 and 10)
and for each p the constant c is given five different values that correspond with the
values for » =0.1, 0.2, 0.3, 0.4 and 0.5, by means of the relation

6. Eero(lXlie) _

where the expectation is with respect to the standard normal distribution. The
values of r are the limiting values of the finite sample breakdown point ¢}, = [nr]/n.
Denote the corresponding S-estimator by S(r,p).

We compare these results with the asymptotic variances of the M-estimator
defined by Huber’s Proposal 2 of Example 2.1. The different choices of k correspond
with ‘winsorizing proportions’ w = Pg{||X|| > k} (=0.3, 0.2, 0.1 and 0). Denote
the corresponding M-estimator by H(w, p). Note that in all cases sup 2 = k? > p,
which is needed for the existence of H(w,p). By H(0,p) we mean the limiting case
of H(w, p) as k — oo. Note that H(0, p) is also the limiting case of S(r, p) as ¢ — o0,
namely the sample mean and the sample covariance.

Maronna (1976) already computed asymptotic variances for the H(w, p)-location
estimator at the multivariate student and the multivariate normal distribution,
and Tyler (1983) computed an index for the asymptotic variance of the H(w, p)-
covariance estimator also at these distributions as well as at a symmetric contami-
nated normal distribution with thicker tails.

81



Table 1
Asymptotic variances of S(r,p) and H(w,p)
attained at NOR and SCN

NOR SCN NOR SCN NOR SCN
p=1 p=2 p=10

S(0.5) A |3.485 4.007 1.725 1.952 1.072 1.191
n |3.711 4.301 2.656 3.020 1.093 1.215

S(0.4) X |2.165 2.499 1.356 1.542 1.036 1.152
n {2949 3.554 1.736 1.991 1.045 1.163

S(0.3) A |1.512 1.757 1.157 1.327 1.016 1.133
n | 2.467 3.174 1.298 1.516 1.020 1.140

S$(0.2) X |1.181 1.392 1.055 1.232 1.006 1.139
n | 2176 3.173 1.096 1.334 1.007 1.174

S(0.1) X ]1.035 1.271 1.011 1.252 1.001 1.250
n |2.035 3.919 1.018 1.430 1.001 1.527

H(0.3) XA |1.100 1.327 1.048 1.260 1.009 1.185
n |3.974 4.231 1.256 1.302 1.047 1.066

H(0.2) XA [1.060 1.302 1.029 1.257 1.005 1.190
n |3.186 3.536 1.171 1.246 1.030 1.060

H(0.1) X |1.026 1.299 1.012 1.272 1.002 1.203
n |2.561 3.119 1.087 1.230 1.014 1.070

HO) X [1.000 1.800 1.000 1.800 1.000 1.800
n |2.000 7.333 1.000 2.778 1.000 2.778

We consider the multivariate normal (NOR) distribution N(g, X) and the sym-
metric contaminated normal (SCN) distribution 0.9 N(g, £) + 0.1 N(u,9X). Table
1 lists the asymptotic variances. It partly overlaps similar tables in Maronna (1976)
and Tyler (1983).

In all cases the location estimator has an asymptotic covariance which is a certain
multiple A of . The expression for A for S(r,p) is obtained from (5.3), and the
expression for A for H(w, p) is given in Maronna (1976). The values of ) are listed
in Table 1.

In all cases the covariance estimator has an asymptotic covariance that is of
type (5.4) (Tyler 1982). To measure the asymptotic variance of the covariance
estimators we distinguish the cases p =1 and p > 2. If p = 1 then (1.1) reduces
to (1/0)f((z — pu)/o) and we give the value § = 20, + o, which represents the
asymptotic variance of \/n(s2 — 0?), where s2 denotes the estimator for the scale
parameter o2 of the underlying distribution.
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For p > 2 we give the value n = o1. Tyler (1983) compared values of o for
different covariance M -estimators with simulated values of a Monte Carlo study of
robust covariance estimators in Devlin et al. (1981). It turned out that o; suffices
as an index for the asymptotic variance of the correlation estimator based upon the
robust covariance estimator. The expression for ¢ for S(r, p) is given in (5.4), and
the expression for oy for H(w,p) is given in Tyler (1982).

From Table 1 we see that the asymptotic variances of S(r,p) for r not too
large are of similar magnitude as the asymptotic variances of H(w, p), except at the
SCN distribution where the H(w, p)-covariance estimator has a better performance.
In general the asymptotic variance of S(r,p) decreases simultaneously with the
breakdown point r. However, in contrast with M-estimators, for every dimension p
it is possible to construct an S-estimator with a high breakdown point.

It is interesting to compare the breakdown points of S(r,p) and H(w, p) at the
same level of asymptotic variance. Table 2 gives such a comparison.

Table 2
Comparison of breakdown points of S(r,p) and H(w,p)

at the same level of asymptotic variance attained at NOR and SCN

NOR NOR SCN
H(w,p) & A r(A) or  r(o1) A r(A)

H(0.1,2) 0.217 1.012 0.104 1.087 0.192 1.272  0.256
H(0.223,2) 0.333 1.033 0.162 1.190 0.256 1.257 0.239
H(0.3,2) 0.169 1.048 0.189 1.256 0.285 1.260 0.243

H(0.1,10) 0.063 1.002 0.124 1.014 0.263 1.203 0.500
H(0.2,10) 0.074 1.005 0.186 1.030 0.349 1.190 0.497
H(0.3,10) 0.085 1.009 0.238 1.047 0.406 1.185 0.487
H(0.358,10) 0.091 1.011 0.258 1.057 0.432 1.183 0.483

According to Tyler (1986), when k? > p then the limiting value of the breakdown
point of H(w, p) equals §* = min{1/k?, 1—p/k?}, which is maximal when k* = p+1.
The values w = 0.223 and 0.358 in Table 2 correspond with the values k¥ = p + 1.

Given the asymptotic variance A of the H(w, p)-location estimator at the NOR
distribution, the constant c of p,(-;¢) is determined such that the S(r,p)-location
estimator achieves the same level of A\. With this value of ¢ the breakdown point
r(A) is computed by means of (6.1). Next this procedure is repeated given the
value o of the H(w, p)-covariance estimator at the NOR distribution, and finally
the procedure is repeated given the value A of the H(w, p)-location estimator at the
SCN distribution.

We conclude that the S-estimator is able to achieve the asymptotic variances
attained by the M-estimator, but in addition it has a breakdown point that becomes
considerably higher when the dimension p increases.
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Appendix. The proofs of existence and consistency of S-estimators in Davies
(1987) extend fairly easily to existence and continuity of S-functionals. The fol-
lowing lemma is fundamental.

LEMMA 3.1. Let (t,C)€0,0<my<o00,0<c<ooand0<e<l.
(i) If P satisfies (C.) and P(E(t,C,c)) > ¢, then A\,(C) > k, > 0, where k;
only depends on ¢, P and c.
(i) Assume X,(C) > k1 > 0. If [ p(||yll/mo)dP(y) < b, then any solution (t, C)
of (Pp) must have A;(C) < ky < 0o, where k; only depends on k; and my.
(iii) Let P satisfy (C.) and suppose that P(E(t,C,c)) >¢€. If AM(C) < k3 < o0,
then (t,C) is contained in a compact set K C ©, which only depends on
€, F,c and k.

PRrOOF: Because E(t,C,c) is contained in some strip H(a,l, 2¢/Ap(C)) it follows
from (C.) that A,(C) > (8. /c)? /4 > 0, which proves (i).
The function p is continuous and nondecreasing on [0,00), so any solution of

(Pp) is also a solution to the same minimization problem with constraint (3.1)
replaced by

(A1) [olie-v7c -0} api) <b.

As the pair (0, m3I) satisfies (A.1) we conclude that any possible solution of (Pp)
must have |C| < mg?. Because A,(C) > k; > 0 we find that M(C) < mZP /! <
oo which proves (ii).

Since every probability measure on R” is tight, there exists a compact set B,
such that P(B.) > 1 —¢. Then ||t — y|| < ¢k, for some y € B,. Other-
wise E(t,C,c) would be contained in Bf which would be in contradiction with
P(E(t,C,c)) > ¢. Hence, ||t|| is bounded and together with (i) the lemma follows.

O

PROOF OF THEOREM 3.1: Let (t,C) € O satisfy constraint (3.1). Then we find

1 _ 1/2
(A2) P(E(t,C,c)) > 1- ;/p [(o-tTc iy -0} Py =1-r3e.
Lemma 3.1(i) implies that A,(C) > k; > 0. Because limy_oo Je(llyll/m)dP(y) =
0, there exists an mo > 0 such that [ p(||y||/mo)dP(y) < b. Lemma 3.1(ii) yields
that A;(C) < k2 < co. Finally Lemma 3.1(iii) implies that for solving (Pp) one

may restrict to a compact subset K C ©. As |C| is a continuous function of (t,C)
it must attain a minimum on K. O

LEMMA 3.2. Let Py, k > 0, be a sequence of distributions on RP that converges
weakly to P as k — oo. Let 8,k > 0, be a sequence in © such that 8; — 8. as
k — oco. If g(y,0) = p[{(y — t)TC~(y — t)}/?], then

(A3) dim [ o(v,0)4P(y) = [ 903,60 aPy).
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PROOF: Put g;(y) = 9(y,8x) and gr(y) = 9(y,0L). Then for every sequence {y}
with yx — y we have that

Jim gi(ye) = 9(y)-

Next apply Theorem 5.5 of Billingsley (1968). Let I' : [0,00) — [0,00) be the
function I'(y) = y1jo,q)(¥) + @1(a,c0)(¥), Which is a bounded uniformly continuous
function. Then as a consequence of P; = P we have that

Jim [Tlo)aP) = [T)dre)
which proves (A.3). O
PROOF OF THEOREM 3.2: According to Rao (1962, Theorem 4.2) we have that

(A.4) sup |Px(E) - P(E)| — 0 , a8 k — oo.
EeC

Because strips H(a,1,6) € C, (A.4) implies that for k sufficiently large every strip
with Pi(H(ex,1,8)) > 1 — r must also satisfy P(H(a,l,6)) > ¢. This means that
inf{6 : Py(H(a,l,6)) > 1~r} > inf{6 : P(H(a,1,6)) > €} > 0, so that for
k sufficiently large P, satisfies (C;-,) and according to Theorem 3.1 at least one
solution exists.

Denote S(Py) = 0y = (tx,Cg). Because convex sets are transformed affinely
into convex sets and because S(-) is affine equivariant, we may assume that S(P) =
(0,I). Similar to (A.2) we find P (E(ty, Ck,c)) > 1 —r, such that from (A.4) it
follows that for k sufficiently large P(E(ty, Ck,¢)) > €. Lemma 3.1(i) implies that
Ap(Ci) > k1 > 0 for k sufficiently large.

According to Lemma 3.2 for any 5 > —1, it holds that [ p(||y]l/(1+9))dP:(y) —
Jp(llyll/(1 + n))dP(y), as k — oco. As the limit is strictly decreasing at n = 0 we
see that for any 1 > 0,

[o (L) ar < [ otivinare) =

for k sufficiently large. Then similar to the proof of Lemma 3.1(ii) we find that
|Ck] < (1 + n)?" eventually. Because > 0 may be taken arbitrarily small, we
conclude that

(A.5) limsup |Ci| <1

k00

and we find that A;(Ci) < 47/k%~! eventually. With Lemma 3.1(iii) we see that
there exists a compact set K such that for k sufficiently large the sequence {6} C
K.
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Consider a convergent subsequence {6;;} with 6, — 61 = (tL,CL). With
Lemma 3.2 we find that

[ pldts b, cldP) = Jim [ o4y, 60, €] dPe,(3) =,

Hence, 8, turns out to satisfy constraint (3.1) of (Pp), of which (0,T) a is solution.
This means that |Cy| > 1. Next, (A.5) yields |CL| = 1. But then uniqueness of
(0,1) implies 8, = (0,I). As {6;} eventually stays in a compact set we must have
himg_, 000 = (O,I)‘ a

LEMMA 3.3. Let p : R — [0, 00) satisfy (R1)-(R3) and consider the function ¥(x, )
of (2.8). Then
(i) ¥ is bounded and continuous on RP x ©.
(ii) 8% /36 is continuous on RP x © and is bounded by a constant which depends
only upon ||C|| and [|C~}||.

ProoF: Continuity of ¥ is obvious and boundness of the functions u(y)y, u(y)y?
and v(y) proves (i).
For (ii) compute the derivative % /06 :

6;1 - (u'gd) C—l(x —t)(x— t)T + u(d)I)
é‘;,cl:’j = ‘u;(; )(2; - ;) (2V - Dy)
6‘2:;,1'1' = _pu'l(id)(zi —t;)(z; — tj)C_l(x ~t)
+ pu(d) &= tgt(”f — )
+ v ‘(id)cijc-l(x _ t)
%CE;- = —p%:)' (2V - Dv)‘j (x - t)(x - t)T
+ 2% 2V - DV).',' C
oC
- v(d)aT.-,-

where d = d(x,t,C) and V = C™}(x — t)(x — t)TC-T.
Because of ||x — t||*/d* < ||C|| and (R3) the second statement (ii) follows. [J

To proof Theorem 3.3 we will apply the implicit function theorem (see for in-
stance Theorem 10.2.1 in Dieudonné 1969) to the function

(A6) W(h,6;x)= / @ (y,0)dPy x(y) = (1 - h) / ¥(y, 6) dP(y) + h¥(x, §)
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where W = (¥, ¥,) is defined in (2.8). Solutions 8} x of (Pp, ,) eventually are
contained in an open neighbourhood N of S(P), and they satisfy equation (3.3) or
equivalently the pairs (h,8) x) are a zero of the function W(-;x). We apply the
implicit function theorem to the function W(:;x) considered on the open neigh-
bourhood A = R x N of (ho,60) = (0,S(P)). According to this theorem, when
W(:;x) is continuously differentiable on A and W /88 is nonsingular at (hg, 8y),
there exists a neighbourhood U of hg on which there exists a unique function 6(-;x)
such that (h,O(h;x)) € A and W(h,O(h;x);x) = 0 for any h € U. Moreover,
6(; x) is continuously differentiable in U, with

(A7) 003 =~ [ 50,66 Z¥ (0,003

PROOF OF THEOREM 3.3: Let 8y = (t(P), C(P)) be the unique solution of (Pp) so
that W(0, 8o;x) = 0. According to Lemma 3.3(i) the function ®(y, 8) is bounded
and continuous, so we conclude that also [ ®(y, 8)dP(y) is bounded and contin-
uous. Hence, W /0h is continuous on A. Lemma 3.3(ii) implies that 9% /98 is
bounded and continuous on R? x N, so that

oW ov ow
Fa (1 0:%) = (1=h) [ Z5,6)aP() +h5e (x,0)
is also a continuous function on A. Finally, we have that

(A.8) %—vg(o,oo) - / -(f_ow(y,eo) dP(y) = A

which is nonsingular. We may apply the implicit function theorem.

Let h be nonnegative and sufficiently small such that (Pp, ) has at least one
solution. Suppose that 8} 1 and 6} x » would be two solutions of (Pp,..). Then
according to Theorem 3.2 both (h, 84 x 1) and (h, 8} x,2) are contained in the neigh-
borhood U x N for h sufficiently small. Hence, by uniqueness of the function 6(-;x)
we conclude that 8, x 1 = 0 x 2 = 8(h;x). For nonnegative h sufficiently small the
functional S(-) is thus uniquely defined as

S(Phx) = S((1= h)P + héy) = 8(h; x).

Since (-;x) is also continuously differentiable at 0, IF(x; S, P) exists and the ex-
pression can be obtained from (A.7). As [ ®(y,6,) dP(y) = W(0,8,) = 0, we find
that at (0,6) the derivative 9W /9h is equal to ¥(x,8p) and the theoremn follows.

0O

PROOF OF THEOREM 4.1: Put U(x;6,6) = sup),_g<s [[¥(x,7) — ¥(x,0)||. Ac-
cording to Huber’s (1967) Theorem 3 and its corollary it is sufficient to prove the
following conditions :
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(1) Ap(6o) = 0.
(2) There exist strictly positive constants b, ¢ and dp such that

(i) EpU(X,;86,6) < b6 , for |8 = 80|| + 6 < do.
(i) EpU2(X1;0,8) < 6, for [|0 — 6o|| + 6 < do.
(3) Ep||®(X,,80)|? is finite.

According to Theorem 3.1 a solution S(P) of (Pp) exists and it must therefore
satisfy equation (3.3). In other words 8, = (t(P), C(P)) is a zero of Ap(6) which
proves (1). Lemma 3.3(i) yields condition (3).

Let K be any compact subset of © which contains 8. We will show that for all
6 € K° and ¢ sufficiently small, there exists a constant b > 0 such that

(A.9) U(x;8,6) < bé.

This obviously yields condition (2). Let 8 = (t,C) € K. So both ||C|| and ||C~}||
are bounded away from 0 and oo.

Let & be sufficiently small such that the ball Bs(8) C K. Then the mean value
theorem together with Lemma 3.3(ii) yield that there exists some constant & > 0
such that for 7 € B;(0) we have ||®(x,r) — ¥(x,0)|] < b]|6 — || < bS. This proves
(A.9) and the theorem follows. O

Before proving Corollaries 5.1 and 5.2 we state three minor lemma’s. The first
one states a property of elliptical distributions.

LEMMA 5.1. Let X have an elliptical distribution P with parameter (0,I). Then
U = X/||X|| is independent of || X||, has mean zero and covariance matrix %I.
Furthermore, Eo’IUUTU =0 and

Eo,rvec(UUT )vec(UUT) = o1(1 + K, p) + davec(I)vec(T)T

where oy = 02 = (p(p + 2))—1.

ProoF oF LEMMA 5.1: To show independence of U and || X} it is sufficient to show
that ||X|| and (U1,...,Up—1)T are independent. This can be proven immediately

by performing the coordinate transformation Y; = U;, for i = 1,2,... ,p— 1 and
Yy = || X||, and computing the simultaneous density of (Y1,Y>,... ,YP)T. The other
results can be obtained by using spherical coordinates in a suitable manner. O

LEMMA 5.2. Let Z be a random p x p-matrix which has zero mean and covariance
matrix E vec(Z)vec(Z) = o1(I+K, ;) +0oavec(I) vee(I)”. Suppose that BBT = X,
then BZBT has zero mean and covariance matrix

1 (I+ K, ) (B ® T) + ozvec(E) vec(T)T.
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PROOF: We use two identities from Magnus and Neudecker (1979). First
vec(ABC) = (CT ® A)vec(B)

which implies vec(BZBT) = (B ® B)vec(Z) and vec(E) = (B @ B)vec(I). The
second identity K »(A ® B) = (B® A)K,, , yields

(B®B)K, ,(B®B)" =K,,(B®B)(B®B)".

As it is not difficult to see that (B ® B)(B ® B)T = £ ® £ the lemma follows. [

LEMMA 5.3. Let 1 denote the p x p-matrix with all entries equal to 1. Fora,b,¢,d €
R it holds that

(i) Ifa # 0 and a + pb # 0, then (aI + b1)~! = (1/a)I + (b/(a(a + pb))) 1.

(i) (cI+ d1)(al+ b1)(cI+ d1) = c%al + (cad + ad(c + pd) + b(c + pd)?)1

ProoF: Straightforward. ]

Proor oF COROLLARY 5.1: Affine equivariance of t, and C, and Lemma 5.2
imply that we may restrict to g = (0,I). Obviously the conditions of Theorem
3.2 hold for elliptical distributions. Therefore in order to apply Theorem 4.1 we are
left with showing that Ap, ;(-) has a nonsingular derivative at 8y. To show this and
to derive (5.4) we first consider the symmetric p X p-matrix C as 1p(p + 1)-vector
(c11,--- 1Cpps €12, ... ,Cp—1,p)T consisting of the upper right triangle elements of the
matrix C.

According to (A.8), A = Eq 1%4(X,80). With Lemma 5.1 it follows from the
expressions found for %,/96 and 9¥,/90 in the proof of Lemma 3.3 that A is of
block form

A

(A.10) A=

Ac

where At = EQ’I(\I’l)t(Xl,oo) and Ac = EO,I('I’Z)C(Xl,GD)-

Using Lemma 5.1 again we see that Ay = —fI and is therefore nonsingular. The
matrix Ac is a 1p(p + 1) x 2p(p + 1)-matrix which consists of two nonzero block
matrices on the main diagonal. The upper left is a p x p-matrix Ac,; = —yI + 7l
and the lower right matrix is a diagonal $p(p— 1) x 1p(p — 1)-matrix Ac ; = —7I,
where

_ Eor[¢ (X DX + (p 4+ D)% X1 DI X ]
7= p+2

_ Eo 24/ (I1Xa DXl + po(lI X2 DI X1 1]
n= 2p(p +2) .
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As the matrix Ac,, has determinant (—y + pn)(—7)?~!, it follows from (5.2) that
A is also nonsingular and hence Theorem 3.1 applies.

To obtain the expressions for the asymptotic covariance matrices first compute
the covariance matrix M of (¥,, ®,)7, with the symmetric matrix ¥, considered
as a 3p(p + 1)-vector. Lemma 5.1 implies that M is also a block matrix

M,

M=

M,

where M1 = Eq ju?(|| X1|[)X1XT = ol and M, = Eq 1%2(X1,00) ¥5(X1,800)7 .
The matrix A~! is of the same structure as M, which immediately implies that
t, and C, are asymptotically independent and that t,, has asymptotic covariance
matrix o
-1 -T
Ay MA;] = ,ﬁl'
To describe the $p(p+ 1) x 1p(p+ 1)-matrix Ag'M2AZ!, consider the covariance
matrix M2 of ®,(X1,8p). Because
TiZj

¥, K] (X 00) - pt/)(”x”)”X” ” |l2 v(llxll)65f

Lemma 5.1 implies that M, is of the same structure as Ac. It also consist of
two nonzero block matrices on the main diagonal. The upper-left is the p x p-
covariance matrix My ; of the diagonal elements ¥ ;;(X;,80) : M2 = 6;1+ 621,
and the lower-right matrix is a diagonal {p(p — 1) x 2p(p — 1)-covariance matrix
M;,; of the off-diagonal elements ¥, ;;(X;,680) (1 <i<j<p): Myp = -611
where 6, = 2p(p -+ 2) 'Ea, ¥ (IXa DI and & = ~6:/p + Eor(p(I Xl = )2
Therefore, AC and M3 are of the same structure and hence AC MzAC is. It
follows immediately that the lower-right matrix is a 3 Ip(p-1)x B 1p(p — 1)-diagonal
matrix with diagonal element

A12) o= 2(p + DEo s (X DX 12
292 5.
! {Eo,1[¢'(||X1n>nX1n2 . l)w(nxlu)nxlm}

The upper-left matrix is the p x p-matrix Ag lMg 1AE; - Using Lemma 5.2, easy
but tedious computations show that this equals 2041 + 021 with 02 as in (5. 5)

The expressions that we have found for AC lMg 1AC , and Ac 2M2 2Ac , tell
us that \/n(C, — I) converges in distribution to a symmetric random matrix Z of
which the off-diagonal elements are uncorrelated with each other and uncorrelated
with the diagonal elements, of which each off-diagonal element has variance o,
and of which the diagonal elements all have variance 20, 4+ 02 with the covariance
between any two diagonal elements being o5. In other words

Evec(Z)vec(Z)T = 01(1+ K, p) + oavec(T) vec(I)T

which proves the corollary for the case 8, = (0,I). Lemma 5.2 then implies the
general form (5.4). a
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ProoF oF COROLLARY 5.2: The conditions of Theorem 3.2 hold for elliptical
distributions. According to (5.1), S(P) = (0,I) and from the proof of Corollary 5.1
we have that Ap(-) has the nonsingular derivative A of (A.10) at (0,I). Therefore
Theorem 3.3 applies, which means that IF(x; S, P) exists and its expression can be
obtained from (3.4). As A consists of the two block matrices Ay and Ag on the
main diagonal, IF(x; t, P) and IF(x; C, P) can be treated separately.

Equations (3.4) and (2.8) give

IF(xit, P) = A7 #1(x,(0,1) = Su(lxl)x

which proves (5.7). Let us denote by IF = (IFyy,...,IF,,,IFs, ... ,IFp_l,p)T the
influence function IF(x;C, P) of the covariance estimator. Then (3.4) and (2.8),
together with the expression found for A¢ in the proof of Corollary 5.1, yield

(A.13) ~71F;; + ntrace(IF) = ~pu(||x||)z? + v(||x||)
(A.14) —71F;; = —pu(||x|)z:z;

where 4 and 7 are as in (A.11). Summation of (A.13) over i = 1,2,... ,p gives

_ =py(IxIDlix|| + p(l|xIl)
(A.15) trace(IF) = o+ .

From (A.11) we have 7 + pn = —4Eo g(IX|[IX[l, and when we put in v(y) =
Y(y)y— p(y)+b, we find (5.9). Finally substitute (A.15) into (A.13). Together with
(A.14) this proves (5.8). O
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HIGHLY EFFICIENT ESTIMATORS OF MULTIVARIATE
LOCATION WITH HIGH BREAKDOWN POINT

HENDRIK P. LOPUHAA
Delft University of Technology

We propose a 2-stage procedure to compute a robust estimator of multivariate loca-
tion. The procedure consist of a first stage where an affine equivariant covariance es-
timator is computed, and a second stage that is similar to computing an M-estimator
of location. The resulting location estimator will inherit the breakdown point of the
initial covariance estimator, and within the location-covariance model only the sec-
ond stage will determine the type of influence function and the asymptotic behaviour.
This enables us to combine a high breakdown point and a bounded influence function
with high asymptotic efficiency. In defining the procedure, we will distinguish between
weakly redescending and strongly redescending influence functions. We obtain the
breakdown point and the influence function, and prove consistency and asymptotic
normality.

1. Introduction. Consider the standard location-covariance model, 1.e. one ob-
serves p-dimensional x;,Xs, ... ,X, and assumes these are realizations of indepen-
dent random vectors Xy, Xs,...,X,, with an elliptical distribution P,y with un-
known parameters £ and X, that has a density

(L.1) fux(x) = B[ F(IB~ (x — m)l])

where BBT = . Here x = (z; ---a:p)T € RP, p € RP, ¥ is a positive definite
symmetric p X p-matrix, and f : [0,00) — [0,00) is a known function.

A well known estimator for the location parameter p is the least squares estima-
tor, defined as the value t,, € R? that minimizes )., |[x; — t||%, which results in
the sample mean. In case P, y is a normal distribution, this estimator corresponds
to the maximum likelihood estimator for g and is therefore asymptotically efficient
at P, . However, it is not robust at all, as a single outlier can have a large effect
on the estimator.

To measure the degree of robustness of an estimator, Hampel (1968) introduced
two concepts : the breakdown point ¢* and the influence function IF. Donoho
and Huber (1983) introduced a finite-sample version of the breakdown point based
on contamination of arbitrary subsets of the observations. This finite-sample (re-
placement) breakdown point ¢}, may be interpreted as the minimum fraction of
contamination that spoils the estimator completely and it must be seen as a global
measure of robustness. The influence function IF(x;t, P) describes the effect on the
estimator of a small pertubation locally at point x (see Hampel 1974 and Hampel
et al. 1986 for a discussion). For example, the poor robustness of the sample mean

This research is financially supported by NWO under Grant 10-62-10.
AMS 1980 subject classifications: 62F35, 62H12,
Key words: Multivariate Location, High breakdown point, Bounded influence, High efficiency
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is illustrated by a breakdown point ¢}, = 1/n and an unbounded influence function
IF(x;t, P) = x at any distribution P with mean zero.

We are interested in combining a high breakdown point and a bounded influence
function with high asymptotic efficiency for a multivariate location estimator, that
also commutes with affine transformations of the observations. To our knowledge,
no estimator of a multivariate location parameter combines these four properties.
Location M-estimators are either not affine equivariant (Huber 1964) or, if they
are defined simultaneously with a covariance M-estimator (Maronna 1976), the
breakdown point is at most 1/(p + 1) (see Tyler 1986 for a detailed treatment).
Location and covariance S-estimators are affine equivariant and have a bounded
influence function, however one still has to make a tradeoff between breakdown point
and asymptotic efficiency; unfortunately, a high breakdown point is counterbalanced
by a low asymptotic efficiency and vice versa (Lopuhaa 1989).

In this paper we propose a 2-stage procedure to obtain affine equivariant highly ef-
ficient multivariate location estimators with a high breakdown point and a bounded
influence function. We distinguish between a procedure that yields an influence
function which is strictly positive outside zero, and a procedure that yields a strongly
redescending influence function, i.e. IF(x;t,P) = 0 for ||x|| > ¢. Both proposals
consist of a first stage in which an affine equivariant high breakdown covariance
estimator is computed, and a second stage that is similar to computing an M-
estimator of location. In both cases the resulting location estimator inherits the
breakdown point of the initial covariance estimator, and if we estimate within the
location-covariance model, only the second stage determines the type of influence
function, the rate of convergence as well as the asymptotic efficiency independent
of the initial covariance estimator as long as it is consistent. A typical combination
will be a covariance S-estimator, either the minimum volume ellipsoid estimator or
a smoothed version of it, followed by a location M-estimator.

In Section 2 we discuss the pros and cons of M- and S-estimators, and next we
define the two proposals and briefly summarize the results concerning their robust-
ness and their asymptotic behaviour. All results are then proven in subsequent
sections. In Sections 3 and 4 we obtain the breakdown point and the expression of
the influence function. In Section 5 we show consistency and asymptotic normality.

2. Definition and corresponding M- and S-estimators.

2.1 Location M-estimators. Location M-estimators are a well known robustifi-
cation of the least squares method. Similar to Huber (1964), one may define an
M-estimator of multivariate location as the vector of m,, € R? that minimizes

(2.1) > p(lixi ~ ml).

Typically, p(y) is chosen to be a symmetric function that is quadratic in the middle
and which increases slower than y? as y — co. An example is the function

1,2 <k
y Y Wyl <
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with a bounded monotone derivative

-k ,fory< -k

Yu(y;k) =< y ,for |yl <k
k ,fory>k

known as Huber’s ¥-function.
At distributions P that are spherically symmetric around the origin, the influence
function of the location M-estimator is equal to

: _ wdixID

(2.3) IF(x;m, P) Bl x
where 9 is the derivative of p and where f is a positive constant. (see for instance
Hampel et al. 1986). In general, an unbounded function p in (2.1) which does
not increase too fast, may lead to location M-estimators with a high breakdown
point (Huber 1984), with a bounded influence function, and with good asymptotic
efficiency relative to the maximum likelihood estimator at several spherically sym-
metric distributions (Maronna 1976). Unfortunately, these location M-estimators
are not equivariant with respect to affine transformations of the x;. Maronna (1976)
solves this by defining M-estimators simultaneously for location and covariance, but
these estimators become more sensitive to outliers as the dimension p increases :
ey, <1/(p+ 1), due to breakdown of the covariance M-estimator (Tyler 1986).

Alternatively, one may obtain affine equivariance and retain the good break-
down properties, by estimating the unknown covariance structure with some affine
equivariant covariance estimator C, = A,AT that has a high breakdown point,
and then define the final location estimator as t,, = A,m,, where m,, is a loca-
tion M-estimator based upon scaled observations X; = A;!x; in (2.1). A suitable
class of affine equivariant covariance estimators with a high breakdown point are
S-estimators. We briefly discuss them in the next subsection.

2.2 S-estimators Another robustification of the least squares method, which does
give affine equivariance as well as a high breakdown point, are S-estimators.
Rousseeuw and Yohai (1984) originally introduced them in a regression context,
but these estimators easily generalize to multivariate location and covariance.

S-estimators for multivariate location and covariance are defined as the vector t,,
and the positive definite symmetric matrix C,, that minimize the determinant of C
subject to

(2.4) =3 ol - 7 C A0~ 0} <.

The constant 0 < b < sup p can be chosen in agreement with an assumed underlying
distribution. For instance, when X;,... ,X,, are assumed to be a sample X;,... , X,
from an elliptical distribution (1.1), a natural choice for b is

(@5)  b=Epl{(Xs —wE (6= 7] = [ pllx)AIxl) dx
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which is independent of i and X.
Davies (1987) has investigated some properties of these estimators. When the
function p : R — [0, 00) satisfies

(R1) p(0) = 0, p is symmetric.

(R2) p is continuous at 0 and left-continuous on [0, ).

(R3) p is nondecreasing on [0,00) and there exists a constant ¢ > 0 such that p
equals p(c) on [c, 00).

then at least one pair 8, = (tn, C,) minimizes the determinant of C subject to (2.4),
and consistency of all such pairs can be obtained. Furthermore, the corresponding
S-functional is uniquely defined at elliptical distributions : (t(P, £),C(Pux)) =
(u, Z). Although the S-estimator 8, may not be uniquely defined, it is affine equiv-
ariant in the following sense. For any pair (t,, C,,) that minimizes the determinant
of C subject to (2.4) it holds that (A t, + v, A C,AT) minimizes the determinant
of C subject to constraint (2.4) with observations %; = Ax; + v.

When we use a smooth function p that, in addition to (R1)-(R3), also satisfies

(R4) p is strictly increasing on [0,c].
(R5) p is twice continuously differentiable.

then this will lead to S-estimators with a bounded influence function, which are
asymptotically normal at rate \/n (Lopuhai 1989). When the sample distribu-
tion is elliptical, so that b is chosen according to (2.5), the limiting variance and
the breakdown point [nr]/n of 8, (where r = b/p(c)) will both depend on ¢ (see
Lopuhaa and Rousseeuw 1989). Unfortunately, a high breakdown point is coun-
terbalanced by a low asymptotic efficiency and vice versa. A typical function pin
(2.4) that satisfies (R1)-(R5) would be quadratic in the middle, but as opposed to
pu(y; k), it is constant outside an interval [~ec,c]. A well known example is the
function

2 a4 6
y y y
, 2 23t ea o frhise
(2'6) pB(y’c) = cz
E ’ for |yl 2 ¢

which has a redescending derivative

Yo(u;c) = ”(1“(%)2)2 , for ly] <

0 , for |yl > ¢

known as Tukey’s biweight.

Perhaps one does not immediately recognize the least squares estimator as a
special case of an S-estimator. However, when we take p(y) = 1y? in (2.4), the S-
minimization problem has the sample mean and the sample covariance as a unique
solution (see for instance Griibel 1988).
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2.3 Definition and remarks We will not only study estimators t, and C, as
functions of x;,... ,x,, but we will also consider them as images t(P,) and C(P,)
of the functionals t : P — R? and C : P — PDS(p), where P, is the empirical
distribution that assigns mass 1/n to each x; for 1 < ¢ < n, P is the space of all
probability measures on R?, and PDS(p) denotes the class of all positive definite
symmetric p X p-matrices. Write © = R? x PDS(p). Affine equivariance of t(-) and
C(-) means t (Pax4v) = At(Px)+v and C(Pax+v) = AC(Px)AT, where Px
denotes the distribution of a random vector X.

Location M-estimators defined by minimizing (2.1) are not affine equivariant.
We can obtain affine equivariance by estimating the unknown covariance structure
affinely.

METHOD 1
Let p : R — [0,00) be symmetric, increasing towards both sides, with p(0) = 0.
Assume that

(2.7 lim p(y) = oo.

ly|—o0

Furthermore, assume that the functions ¥ = p’ and u(y) = ¥(y)/y are continu-
ous, and that there exists a yg > 0 such that ¢ is nondecreasing on (0,yo) and
nonincreasing on (Yo, 00).

Let C, € PDS(p) be an affine equivariant covariance estimator based upon

X1,... ,Xn. Define t, as the vector that minimizes the function
1 n

(28) Ra(®) = = 3 p[{(x — 7 C7 (i = )17,
i=1

REMARK 2.1: The corresponding location functional t(-) is defined at P as the
vector t(P) that minimizes the function

(29) Re(t) = [ pl{(x - 7 C(P) (x - )/7]aP(x)
where C : P — PDS(p) is an affine equivariant covariance functional.

ExaMPLE 2.1: For C,, one may use the covariance minimum volume ellipsoid
(MVE) estimator. It is defined as the covariance matrix of the smallest ellipsoid
that covers at least [%J observations. The MVE estimator can be seen as an S-
estimator defined with the function 1—1[_. (¥) in (2.4), which satisfies (R1)-(R3),
and it has breakdown point £}, = ["—_gdij /n (Rousseeuw 1983, see also Lopuhaa
and Rousseeuw 1989). A choice for the function p in (2.8) may be the function p,
of (2.2). The location M-estimator defined with p,, turned out to be Huber’s (1964)
robust minimax solution. It has good asymptotic efficiency relative to the maxi-
mum likelihood estimator at several spherically symmetric distributions (Maronna
1976), and a bounded influence function.
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It is not difficult to show that for any P, there always exists at least one
vector t(P) that minimizes (2.9) In particular, there exists at least one vector
tn = t(P,) that minimizes R,(t), but it may not be unique as a function of
X1,...,Xn. If £, is unique, it is obviously affine equivariant; if it is not unique,
it will always be affine equivariant in the following sense. When all x;’s are trans-
formed into X; = A x; + v, then affine equivariance of C,, implies that é,.(t) =
(1/n) 30, pl{(%:i — )T C;1(%; — t)}1/?], where C, = AC, AT, relates to R,(t) as
Ra(t) = Ry (A~1(t - v)). Hence, for any t, that minimizes R, (t), there exists a
value t, = A t, + v that minimizes fZ,,(t). We will show that t,, will inherit the
breakdown point of C,,, and that, if one assumes that the underlying distribution P
is elliptical, the influence function as well as the limiting distribution of t,, will be
similar to those of the corresponding location M-estimator defined by minimizing
(2.1) with the same p-function.

The restrictions imposed on the function p are somewhat weaker than in Huber
(1984) to include the function (2.2). In particular, (2.7) guarantees that the location
estimator inherits the breakdown point of any initial covariance estimator. For
instance, when the function p in (2.1) is bounded, the breakdown point of location
M-estimators at a collection X = (xy,--- ,X,) turns out to depend on the actual
structure of the collection X (Huber 1984). Therefore, in general one can not expect
t, to have a breakdown point that is independent of the breakdown behaviour of
C,. Nonetheless, a bounded p in (2.8) may be of interest, since in that case the
influence function in (2.3) will be redescending in ||x||. In particular, if we use a
function p that is constant outside an interval [—¢, c], the influence function will be
strongly redescending, i.e. it is zero outside the ball {||x|| < ¢}.

Although in general, with bounded p in (2.8), one may have difficulties with
obtaining a high breakdown point, there is a specific combination with bounded P
that avoids this. In that situation we can even differentiate (2.8) with respect to t,
and define the final location estimator as any zero of the derivative. This proposal
then becomes the multivariate version of Yohai’s (1987) regression MM-estimators.

METHOD 2
Let pj : R — [0,00),j = 1,2, be two functions that satisfy conditions (R1)-(R5).
Let 81,0 = (t1,n, C1,n) be an S-estimator based upon x, ... ,x,, defined with the

function p;(-) and constant 0 < b; < pi(cy) in (2.4). Let p2(-) be related to p;(-)
as follows :

(2.10) p1(y) > pa(y)
and
(2.11) p1(c1) = sup py = sup p2 = pa(c2).

Let t5 denote the derivative of p; and let u2(y) = ¥2(y)/y. Define t; , as a solution
of

n

(2.12) 3w [{txi = )TCTAG — )} (i — ) = 0

i=1
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which verifies

(2.13) R n(t2,n) < Ran(tin)
where
(2.14) Ryn(t) = %Z p2 [{(xi = T CTL (i — £))/?] .

Of course, the vector that minimizes the function Ry ,(t) of (2.14) is one solution
of (2.12). However, an advantage of the second proposal may be that, besides the
vector that minimizes Ry n(t), every solution of (2.12) that verifies (2.13) will be an
affine equivariant highly efficient location estimator with a high breakdown point
and a bounded influence function.

REMARK 2.2: The corresponding location functional ty(-) is defined at P as any
solution of [ us[{(x — t)TC1(P)~1(x — t)}!/?)(x — t) dP(x) = 0, which verifies

(2.15) R,p(t2(P)) < Rs,p(t1(P))

where

(2.16) Ry p(t) = ] p [{x = T C1(P)™ (x - )}/?] dP(x)
and 81 (P) = (t1(P), C1(P)) is the S-functional defined with the function p;(-).

It is not difficult to show that for any P, at which 6,(-) is defined, there exists
at least one value ty(P) that minimizes (2.16). Hence, there exists at least one
value t2 , that satisfies (2.12) and (2.13). Any estimator t; , that satisfies (2.12)
and (2.13) will always be affine equivariant in the same sense as t,, of Method 1.

Condition (2.10) is only to avoid that the breakdown point of t3,, depends on
the structure of the x;. We will see that with this condition, t;, will inherit the
breakdown point [nri]/n of 64 ,. All other results can be obtained under weaker
conditions on p;(-), which allow the MVE estimator as initial S-estimator. Condi-
tion (2.11) is not restrictive as we can always multiply (2.4) by a nonzero constant
without changing the S-estimator. Finally, (2.13) is to guarantee consistency of
tan-

We will show that when the underlying distribution P is elliptical, the influence
function as well as the limiting distribution of t; ,, are similar to that of the loca-
tion M-estimator defined by minimizing (2.1) using p2. In particular, when P is
spherically symmetric around the origin, the influence function will be zero outside
the ball {||x|] < c2}.
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EXAMPLE 2.2: One may choose pi(-) and ps(-) as follows. For p2(y) take the
biweight function pg(y;c2). Then for c; large, t2,» will have good asymptotic effi-
ciency relative to the sample mean (see Lopuhai 1989). To obtain a high breakdown
point, take p;(y) = (c2/e1)?pg(y;c1) and choose ¢; < ¢z such that the breakdown
point [nr;]/n of the S-estimator is maximal.

3. Breakdown point. Let X = (x1,X2, - ,X,) be a collection of n points in R?
and let t,,(X) be some location estimator based upon X. When X is contaminated,
some of the points of X might be replaced by other points and one obtains a different
corrupted collection of n points. Denote by Y, such a corrupted collection, where
m points of X have been replaced by arbitrary values. The location estimator based
upon Y, will generally differ from t,(X), and if at most m points are contaminated
the difference is at most

(3.1) sup [[6a(X) — tn (Y,)|

where the supremum is taken over all possible corrupted collections Y,,,. When 3.1)
becomes infinite, it means that ||t, (Y )|| can be made arbitrarily large by replacing
m points of X. In that case t,(Y,,) will no longer give us any information about X,
and we say that t,, breaks down. The breakdown point of a location estimator t,
at a collection X is now defined as the smallest fraction m/n for which breakdown
occurs : '
(6 %) = prin {7 aup en(X) = tn (¥l = o0}

(see Donoho and Huber 1983 for a discussion). Similarly, the breakdown point of a
covariance estimator C, at a collection X is defined as the smallest fraction m/n of
outliers that can either take the largest eigenvalue A;(C,) over all bounds, or take
the smallest eigenvalue \,(C,) arbitrarily close to zero :

€*'(Cn,X) = min {Ln-  sup D((Cn(X),Cn(Ym)) = oo}

1<m<n | n

where D(A,B) = max{[A;(A) — A1(B))],|A,(A)~! — A,(B)~!|}. We restrict our
attention to affine equivariant covariance estimators C,. When the collection X
is in general position, i.e. no p 4 1 points are contained in some hyperplane of
dimension less than p — 1, then the breakdown point of affine equivariant C,, is at
most |2=Etl|/n (Davies 1987).

The breakdown behaviour of a location M-estimator depends on whether one
uses a bounded or unbounded function p in (2.1). Similar to Huber (1984), it is
easy to show that under the restrictions imposed on p in Method 1, the breakdown
point of a location M-estimator is independent of X and attains the maximal value
possible for translation equivariant location estimators : €%, = 242 | /n. This prop-
erty suggests that if we estimate the covariance structure with C, = A,AT, the
resulting location M-estimator based on scaled observations Xi = A;'x;, will have
a breakdown point that is at least equal to £*(Cn, X).
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THEOREM 3.1. Let X = (x1,x2,---,Xn) be a collection of n points in RP. Let
C.(X) € PDS(p) be an affine equivariant covariance estimator based upon X, and
let t,(X) be defined as in Method 1. Then

(3.2) €*(tn, X) > €*(Cn, X).

The proof is an adjustment of the proof of Theorem 4.1 in Huber(1984). To prove
(3.2) we first need two lemmas. Define

(3.3) M(t) = sup |p(llx + t]]) — (x|

LEMMA 3.1. The difference n(t) = M(t)— p(||t]|) is bounded : 0 < 5(t) < yov(yo).

PROOF: By symmetry, we may rotate the vectors x and x+ t in (3.3) and consider
them as multiples of the vector t. Since p is increasing on [0, 00) we may then write
M(t) = supyso {p((1 + @)|It]]) — p(alit]])}. Clearly n(t) > 0. Take t # O fixed and
let g(a) = p((1 + a)lIt]]) — plalltl). We have that

(1+a)|it}f
9(0) = / (v) dy.

a|l¢]

Since v is nonincreasing on (yo,00), it follows that g(wo/|t]l) > g(a), for a >
yo/||tl]]. As g is continuous it follows that it attains its maximum at some o,
0 < a* < yo/||t||. By means of the mean value theorem we then find that (for some
0<y<l)

n(t) = p((1+ a)|Itl]) = p(llel) = ple”litl]) < (1 + ye)lll) il < $(30)vo-

a

LEMMA 3.2. Let 2m < n and let C,(Y,,) € PDS(p) be a covariance estimator
based upon a corrupted collection Y,,. Suppose that there exist ky, ky independent
of Y, such that 0 < k3 < Ap(Cn(Ym)) € A1(Cn(Ym)) < k2 < oo. Let Ay, (t) be
the difference

. - _ 1/2
S { Pl — 7 (Yo (s — 01/2) = p[{yT Cal¥m) i} /1 }.
i=1

Then there exists a constant K that is independent of Y,,, such that

Ay, (t) > (n —2m)p (%tz—”) - K.

ProoF: The collections X and Y,, differ in at most m points. We may assume
that (y1, ..., ¥n-m) = (X1,--- ,Xn-m). Fori =1,2,... ;nlety} = Cn(Yn) 2y,
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and let t* = Cn(Ym)~'/?t. Then Ay, (t) = T0 {p(lly; - t*]l) - p(lly; I}, and

Ez Myl < llyzll < k7 Ylys)) and k5 "le)l < ||t*|| < ETYIt]|. For the summation over
i=1,...,n—-m, wehave that

Bxen(®)= 3 {AllY: = 1) = olllyi D)

= (n—m)p(It*|[) + i: {plly: — 1) = p(lle* 1D} - z_: Uy 1D-
i=1 i=1

According to the mean value theorem

lellys ~ 1D = p(IE*ID] < w(UIE* = %y 1) il < $wo)ki ! x:ll

fori=1,...,n—m and 0 < ¥ < 1, which implies that

B4)  Axo_.(t)> (n—m)p(||t|]) - '“;f) Z el = S p (Ile)

i=1

For the remaining summation over i = n—m+1,... ,n, we find that

Ay, (6) = Ax,_ (O] < D ety = 1) = e(ly; I

i=n—-m+1

< mM(t*)
= mp(([€*|]) + mn(e").

Then together with (3.4) and Lemma 3.1 we conclude that
t
Ay, (t) > (n — 2m)p(||t*]|) = K > (n — 2m)p (Il II) K

where K = k7 9(y0) iy lIxill + iy p(l1xill/ k1) + m yot(o). O

PROOF oF THEOREM 3.1: If we replace at most m < ne*(Cn, X) — 1 points then
C does not break down and we must show that |[t,(Y)|| stays bounded. Since
C., is affine equivariant, €*(C,, X) is at most |2=2+1|/n._ Hence, 2m < n -1 and
according to Lemma 3.2 and (2.7), Ay, (t) is bounded away from 0 for ||t|| suffi-
ciently large uniformly in Y,,. Because Ay, (0) = 0 and since t,(Y,,) minimizes

Ay, (t), ta(Yr) must be within a bounded neighbourhood of 0, uniformly in Y,,
D
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For the second proposal of Section 2.3 the breakdown behaviour is somewhat
different, which has to do with the breakdown behaviour of location M-estimators
defined by minimizing (2.1) using a function p that is constant outside an interval
[—¢,c]. The breakdown point then depends heavily on the actual structure of the
collection X = (x3,X3,... ,X,). If the width 2¢ of the function p is small compared
to the distances between the x;, for instance if the x; are at least 2c apart, then
replacing only one point already forces breakdown of the location M-estimator. On
the other hand, if the width 2¢ of p is large compared to the distances between the
x;, for instance if all x; are the same, then one needs to replace at least half of the
observations to make the M-estimator break down.

Condition (2.10) is to guarantee that one is in the second situation, after scaling
with C; .. For a € R?, A € PDS(p) and & > 0, define the ellipsoid

E(a,A,k) = {x:(x—a)TA"!(x —a) < k?}.

Conditions (2.10) and (2.13), together with constraint (2.4), imply Rg n(t2,n) < b;.
This forces at least n— |nr; | observations (where r; = b;/p;(c;)) inside the ellipsoid
E(t3,n, Cin,c2), which means that at least n — |nr; ] points are more or less close
to each other compared to the width of ps.

THEOREM 3.2. Let X = (x1,Xa2,... ,Xn) be a collection of n points in R? in general
position. Let ta, be the estimator based on X as defined in Method 2, and let
01,n = (t1,n,C1,n) be the initial S-estimator. Suppose that 0 < b1/pi(c1) < 522,
then

(36) E*(tz,nvx) Z E*(el,n) x)

PRroOF: We may assume sup py = sup p; = 1. Replace at most m < ne*(6; ,,X) —
1 points, so that C;, does not break down. Denote by Y, = (yi,...,yn) a
corrupted collection, then we must show that ||t2 »(Ym)|| remains bounded. Choose
0 <6 < (n—m)"! and k > 0 such that pa(y) > (1 — &) for |y| > k. Then
(n—m)(1 = 6) > n—ne* (61, X).

When t € R? is such that all x; of X are outside the ellipsoid E(t, Cy ,(Y ), k),
then

> 2 {36 = 7 Cua(¥m) " (vs = 9} *] 2 (n = m)(1 - §)

i=1

3.7)
> n(1 - £* (81, X)).

On the other hand, because of (2.13),(2.10) and (2.4) we also have that
n
T -
(3.8) sz [{ (Yi - t2,11(\(m)) Cl,n(Ym) 1(}':‘ - tz,n(Ym))}]/Z] < nbl-
i=1

Since 0 < b1/p1(c1) < 5F and sup p; = 1, the S-estimator 8, ,, has breakdown
point £*(8y 5, X) = [nb;]/n, so that 1 — £*(6; ,,X) > 1 — b; > b;. Hence, from
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(3.7) and (3.8) it follows that at least one x; of X must be inside the ellpsoid
E(t2,n(Ym),Ci,n(Ym), k). But then for this x; it holds that

(1% — 2,0 (Ym)II* < E2/2p (C1,n(Ym)).

As C,,, does not break down, A,(Cy,,(Ym)) is bounded away from zero uniformly
in Y5, 50 ||t2 n(Y,m)|| remains bounded, uniformly in Y,,. a

REMARK 3.1: Whether inequalities (3.2) and (3.6) are sharp, will probably depend
on the structure of the collection X, although in general it seems very unlikely that
one could mess up the x; in such a way that the initial covariance estimator breaks
down and simultaneously the final location estimator does not breakdown (see for
instance Rousseeuw and Leroy 1988 p.270-273).

If one does not impose conditions (2.10) and (R4)-(R5), one is allowed to use the
MVE estimator as initial S-estimator in Method 2. The breakdown behaviour of
t2 , will then differ from that of Theorem 3.2. Although C, , may not break down
it may still be so small, that the width of p» is small compared to the distances
between the scaled Cl—,;/ %y;, in which case |it2,n(¥m)|| may become infinitely large.
If we relax (2.8) only a little and require

(39) c; < ¢

instead of (2.8), the MVE estimator is allowed as initial S-estimator in Method 2.
Although €*(t2,n, X) may be strictly smaller than £*(6, n, X), it has the following
lower bound.

THEOREM 3.3. Let p; : R — [0,00) only satisfy conditions (R1)-(R3) and let
p2 : R — [0,00) satisfy all conditions (R1)-(R5). Let X = (x1,X3,...,X,) be a
collection of n points in RP in general position. Let ty, be the estimator based
on X as defined in Method 2, where we suppose that (3.9) holds instead of (2.8).
Let 81, = (t1,n, C1,n) be the initial S-estimator defined with the function p; and
constant 0 < by < sup p;. Let m(c1, c2) be the largest integer satisfying

(3.10) m(e1,¢2) < (n— [nry]) (1 - Z:E:;)

where ry = b1/pi(c1). Then

1
£* (2,0, X) > min {5*(91,,,,;(), %} _

PROOF: We may assume supp; = supp, = 1. Because of (3.9), the number
m(c1, ¢2) > 0 is well defined. Replace at most m < min{ne* (8,0, X) —1,m(c1,¢2)}
points of X. Then C, ,, does not break down. Denote by Y,, = (y1,... ,¥n) a cor-
rupted collection, then we must show that ||tz ,(Y,,)|| remains bounded.
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When t € RP is such that all x; € X are outside the ellipsoid E(t, C1,n(Ym), €2),
then

S0z [{s — 7 Cin(¥m) M ys = )} 7] 20— m.
i=1

By definition of 8; »(Y ) at least n— |nb, | points of Y,;; must be inside the ellipsoid
E(t1,n(Ym),C1,n(Ym),c1). Together with (2.11) this implies that

ZP? [{ (yi - ‘;Z,n(Ym))TCl,ﬂ(Ym)‘.l (yi - t2,n(Ym)) }1/2]

< (n = |nby])pa(cr) + |nby

which according (3.10) is strictly smaller than n — m. Then by a similar argument
as in the proof of Theorem 3.2 we see that at least one x; € X must be inside the
ellipsoid E(t2n(Ym),C1,n(Ym), c2), and we conclude that ||t2 »(Y,m)|| is bounded,
uniformly in Y,,. O

REMARK 3.2: The lower bound is sharp in the sense that it is possible to have such
a configuration of X that replacing of m(ec1, c2) + 1 points will lead to breakdown
of t3 , even if C, ,, does not.

4. Influence function. Robustness of an estimator T, = T(P,;) can also be
measured by means of the influence function of the corresponding functional T(:).
Suppose that we pertubate a distribution P by putting a fraction ¢ of its probability
mass at a point x € R?. The breakdown point may then be interpreted as to describe
how large ¢ may be, before the estimator T, becomes completely useless. This
global concept may be complemented by the influence function as a local concept,
which describes the stability of T(:) under small pertubations at x. If 6x denotes
the probability measure that assigns mass 1 to x € R?, then the influence function
of T(-) at P is defined pointwise as

T((1 - €)P + eby) — T(P)
£

(4.1) IF(x; T, P) = lim
€]0

if this limit exists for every x € R? (Hampel 1974). Typically, robust estimators
will have an influence function that is bounded.

We will obtain the IF for the functionals t(-) defined in Remark 2.1, and t5(:)
defined in Remark 2.2. For the latter we only require (R1)-(R3) and (3.9) instead of
(2.10) for the function p;. We will need that the initial covariance functional C(-)
in (2.9) and the initial S-functional 8,(-) in Remark 2.2 are continuous at P, i.e.

(4.2) C(Px) — C(P)
(4.3) 61(Pr) — 6,1(P)
as P, — P weakly. S-functionals 8(P) = (t(P), C(P)) defined with a function p
that satisfies (R1)-(R3) satisfy properties (4.3) and (4.2) as long as 8(P) is uniquely
defined (Lopuhad 1989). When we use such S-functionals for our initial C(-) or

01(-), then at least at elliptical P, t(P) and ty(P) will be uniquely defined, as will
follow from the next lemma.
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LEMMA 4.1. Let P be an elliptical distribution with parameters u and ¥, and
suppose that f in (1.1) is decreasing. Let p : R — [0,00) be a symmetric function
with p(0) = 0 and p(oc0) > 0, which is nondecreasing on [0,00). Let C : P — PDS(p)
be an affine equivariant Fisher-consistent functional :

(4.4) C(P)=%

and define Rp(t) as in (2.9). If Rp(t) is well defined for all t € RP then the value
t(P) that minimizes Rp(t) is unique : t(P) = p.

PROOF: Because C(-) is affine equivariant, we may assume that (,X) = (0,I).
For 5 > 0 define p~!(s) = inf{y > 0 : p(y) > s} and for r > 0 let B(t,r) = {x :
lIx — t|| < r}. Let t # 0, then by Fubini’s theorem we have that

Re())= [[10< s < plllx— )} Al ds dx

(4.5) - / / F(|Ix}) dx ds.
B(t,o=1(s))°

For ACRP and t € R?, write A+t = {x+t:x € A}. Then, for every r > 0 it
follows from Anderson’s theorem (see for instance Tong 1980) that

(4.6) / F(lbxl) dx < / £(lbxll) dx

B(0,r)+t B(0,r)

with equality if and only if [(B(0,r)+t)ND,] = [(B(0,r)NDy) +t], for every level
set Dy, = {x: f(||x]|) > u}, u > 0. Since f is decreasing, for every r > 0 we can find
a u > 0 such that D, = B(0,r). As t # 0, it follows that [(B(0,r)+t)NB(0,r)] #
B(0,r) + t. We conclude that inequality (4.6) is strict for r > 0, hence from (4.5)
we have that Rp(t) > Rp(0). O

Lemma 4.1 applies to the function p(-) in (2.9). Hence, if the initial covariance
functional satisfies (4.4), t(-) will be uniquely defined at elliptical P. Lemma 4.1
also applies to the function p3(-) in (2.16). According to Section 2.2, at elliptical
distributions the S-functional satisfies 8, (P, ) =(s, £). Because Rz p(t2(P)) <
Ra2,p(t1(P)), it follows that t5(P) = t;(P) is uniquely defined at elliptical P. The
functionals t(-) and t2(-) may not be uniquely defined at (1 — €)P + 6. However,
the next two lemmas show that every possible sequence of values for t ((1—€) P+¢£6y)
or t5((1 — )P + £éx), will converge to t(P) or t,( P) respectively, as ¢ | 0.

For the sake of brevity, we will sometimes write

Po) = [ 9(3)dPw)
or just simply Pg.
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LEMMA 4.2, Let p : R — [0,00) satisfy the conditions imposed in Method 1 and
suppose that Ep||X|| < co. Let C : P — PDS(p) be an affine equivariant covariance
functional that satisfies (4.2) for the sequence {(1 — €)P + ¢éx} as ¢ | 0. Consider
the location functional t(-) defined in Remark 2.1 and suppose that the value t(P)
that minimizes the function Rp(t) of (2.9) is unique. Let x € RP, then

Ieilrgt((l —€)P + £bx) = t(P).

PROOF: For 8 = (t,C) € O, write h(x;0) = p[{(x — t)TC~1(x — t)}'/?] and let
H(8) = Ph(:;0). Let P, x = (1 —€)P + €bx and let H. x(8) = P, xh(-;0) =
(1—€)H(8)+ ch(x,8). Because C(-) is affine equivariant, we can restrict ourselves
to (t(P), C(P)) = (0,I). Then, it follows from (4.2) that C(P; x) — I, so that all
eigenvalues of C(P; x) are between 1/4 and 4, say, for ¢ sufficiently small.

We first show that t(P; x) eventually stays inside a fixed bounded set. According
to the mean value theorem, for every M > 0 we have that

(4.7) Epp(2||X|| + 2M) < 2(sup ¢)(Ep||X|| + M) < co.
Let M > 0 be such that
(48) p(M/4)P(IX]| < M/2) > 2Epp(2||X]]).
When t € RP is such that ||t]| > M, then for ¢ sufficiently small we have that
Re x(t) = Pe xh(-,t,C(P: x))
(4.9) > [ ollly = /2 dPexty)
> p(M/4)Pe (IXI| < M/2) — p(M/4)P(|X|| < M/2)
as € | 0, where we use that for symmetric matrices A, it holds that

T
(410) 3(4) < T < M(A).
On the other hand, R, x(0) < [ p(2|ly||) dP: x(y), which tends to Epp(2]|X]|) as
€ | 0. Because t(P; x) minimizes R, x(t) we conclude from (4.8) and (4.9) that
eventually ||t(P. »)|| < M.

Define the set T = {6 : ||t|| < M, 1/4 < A;(C) < 4, forj =1,...,p}, and con-
sider the class of functions 7 = {h(-;6) : @ € T}. Then for every h(-,8) in F, it
holds that

h(x,8) < p(2ljx|| + 2M)

where we use (4.10) and the fact that p(y) is increasing in |y|. According to (4.7),
Epp(2]|X|| + 2M) is finite, so that

Ye,x = Sup |H¢,x(0) - H(O)l
8eT

< eEpp(2|X|| + 2M) + € p(2lIx|| + 2M) — 0

(4.11)
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as ¢ | 0. Because Rp(t) has a unique minimum at t(P) = 0, for all § > 0 there
exist & > 0 and 8 > 0 such that

(4.12) ne H(s, (14 )T) > HO,(1~ o)D) + 5.

Let ¢ be sufficiently small such that 2y, x < 3 and such that
1—a < A(C(P:x)) € M(C(Pex)) <1+a.
Then with (4.11) and (4.12), for ¢ sufficiently small we have that

(4.13) lltiltllif He,x(t: C(Pe,x)) > He,x((oz C(Pe,x))'

Since t(P; x) minimizes He,,,(t, C(Ps,x)), it follows that ||t(P: x)|| < 8. We conclude
that £(P. x) — 0. O

LEMMA 4.3. Let p; : R — [0,00), j = 1,2, satisfly the conditions of Theorem 3.3
and suppose that (3.9) holds instead of (2.10). Let 8, : P — © be the S-functional
defined with the function p;(-) and the constant 0 < by < sup p;, and suppose that
0,(.) satisfies (4.3) for the sequence {(1 —€)P +¢€bx} ase | 0. Consider the location
functional t,(-) defined in Remark 2.2 and suppose that the function R, p(t) of
(2.16) has a unique minimum at t1(P). Then t3(P) = t;(P), and for x € RP jt
holds that
Itifgtg((l —€)P + g6x) = to( P).

PROOF: Because R p(t) has a unique minimum at ¢;(P), and since t2(P) must
satisfy (2.15), it follows that ta(P) = t;(P). Because the S-functional is affine
equivariant, we may restrict to t2(P) = t;(P) = 0 and C1(P) = I. As we can
always rescale the functions p; and p2, we may assume that sup p; = sup ps = 1.

First we show that t2(P. x) eventually stays inside a fixed bounded set. Consider
a generic distribution @ and the corresponding ellipsoid E; = E(t1(Q), C1(Q),¢c1)-
By definition of 8,(-), it holds that the Q-measure of this set is at least 1 — b;. For
8 = (t,C), write ha(x,8) = p2 [{(x — t)TC~*(x — t)}}/2]. We have that

R20(t2(Q)) < Ry,0(t1(Q))
= / ha(y, 61(Q)) dQ(y) + / ha(y,61(Q)) dQ(Y)
El E‘lz
< (1= by)p2(c1) + (Q(E1) — 1+ b1)p2(c1) + 1 — Q(E1)

and since Q(E;) > 1—by, it follows that Ry o(t2(Q)) < (1—b1)p2(c1)+b1. Because
sup p2 = 1, we find that

(4.14) Q(E(t2(Q),C1(Q),¢2)) 21— Rz o(t2(Q)) > 6
where § = (1 — b;)(1 — p2(c1))-
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The inequality in (4.14) holds in particular for Q = P, x = (1 —~ €) P + €6x. We
also have that

(4.15) sup | P x(E(t,C,¢2)) — P(E(t,C,c2))| <2 — 0
t,C

as ¢ | 0. Together with inequality (4.14), for Q = P, x it follows that eventually
(4‘16) P(E(tz(PE.!)7 CI(PC,X)’ 62)) e %6

Suppose that for ¢ sufficiently small, all eigenvalues of C;(P ) are between 1/4
and 4, say. Let M > 0 be such that P(]|X]|| > 2Mc;) < 6. When t € R is such
that ||t|] > 2(1 + M)c;, we would find that

P(E(t,C(P: x),¢2)) < P(||X = t|| < 2c2) < P(J|X|| > 2M¢5) < §6.

Hence, according to (4.16), it follows that ||t2(Pe,x)|| < 2(1+4 M)c; for ¢ sufficiently
small.
Consider a convergent subsequence {ta( P, x)} with

lim tz(ng,x) =tr.
k—o0
Continuity of ps implies that

-0

(4.17)

Pha(-, t2(Pe, x), C(Pey x)) — Epp2(l|X — tell)

as k — oo. Since |ha(x;0)| < 1, we have that

(4.18) sup
6

Pocha(6) = Pha(6)| < 26— 0

as € | 0. Together with (4.17) this means
P, xho ('§t2(P6k,x)x Cl(Pek,X)) — Epp2(|| X — t))-

Similarly, we also have that P, xh2(-;t1(Pe, x), C1(Pe,,x)) — Eppa(||X]|). Then
by using (2.15), we find that

Rp(tr) = Eppa(||X — t.]))
= kllr{.lo Peh,xh2 ('§t2(Pek,x)y Cl(Psk,x))
< kll-r{olo Pek,th ('; tl(Pe;,,x): Cl(Pe;,,x))

= Erpa(lIX1)
= R, p(0).

Because R p(t) has a unique minimum at t2(P) = 0, it follows that t, = 0. Hence,
every convergent subsequence {ta(P;, x)} converges to 0. Since the whole sequence
is eventually inside a compact set, we must have t2(P., x) — 0. a
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REMARK 4.1: Note that in the proofs of Lemmas 4.2 and 4.3, we have only used
the expression (1 — €)P + €65 explicitly in (4.11), (4.15) and (4.18). This means
that if, instead of (4.11), one has

(4.19) sup | Pyh(-,8) — Ph(-,8)| — 0
0eT

for a sequence of distributions {P;} for which (4.2) holds, one may show along the
lines of the proof of Lemma 4.2 that t(P;) — t(P). Similarly, if instead of (4.15)
and (4.18), one has

sup | P (E(t,C, c2)) — P(E(t,C,¢c2))| — 0
(4.20) 5
sup | Pcho(-,0) — th(-,o)' -0
]

for a sequence of distributions {P;} for which (4.3) holds, one may show along the
lines of the proof of Lemma 4.3 that t,(FPg) — to(P).

We may now obtain the expressions for IF(x;t, P) and IF(x;t2, P). Consider
the function p(-) in (2.9). The derivative of p[{(y — t)TC~!(y —t)}'/?] with respect
to t is equal to

(4.21) —u[{y-0Tc iy -} ey - o)

where u(y) = ¥(y)/y. Since ¥ is bounded, also (4.21) is bounded as a function of
t. This means that for any P, the function Rp(t) of (2.9) has derivative

—c(p) [ulte -7y - 0} & - v aPe).
We conclude that 8(P) = (t(P), C(P)) will always be a zero of the function
(4.22) G(8) = Py(-;6)
where for 8 = (t, C)
(4.23) 9(x;8) = u [{(x - )TC (x - 0}"%] (x- o).
A vector v € R? is called a point of symmetry of P, if

P(v + A) = P(v — A), for all P-measurable sets A C R, where for A € R
and v € RP, v 4 A A denotes the set {v+ Ax : x € A}.
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When t(P) is uniquely defined, and when it is also a point of symmetry of P, then
the expression for IF(x; t, P) will be independent of the influence function of the
initial covariance functional C(-), as long as (4.2) holds.

THEOREM 4.1. Let p : R — [0,00) satisfy the conditions of Method 1. Let C :
P — PDS(p) be an affine equivariant covariance functional that satisfies (4.2) for
the sequence {(1—¢€)P +¢céx} ase | 0. Let t(-) be the location functional defined in
Remark 2.1, and suppose that t(P) minimizes the function Rp(t) of (2.9) uniquely.
Suppose that t(P) is a point of symmetry of P, and assume that Ep|X]|| < oo.
Define G(8) by (4.22) and (4.23). Suppose that G has a partial derivative G /0t
that is continuous at 8, = (t(P), C(P)), and suppose that A = (8G/dt)(0o) is
nonsingular. Then for x € RP it holds that

IF(x;t,P) = A~ u [{ (x - t(P))TC(P)~! (x - t(P)) }‘/2] (x — t(P))

where u(y) = ¢¥(y)/y and ¢ = p'.
PROOF: Write 83 = (2, £). Because 8G/t is continuous at 8y we have that

(4.29) G(£,C) = G(1,C) + 52 (11,C) (6 — ) + (& — 1) (0)

where r(8) — 0 as & — 68,. Furthermore, since p is a point of symmetry of P, it
holds that

(4.25) G(p,C)=0
for all nonsingular C. Write P. x = (1 — €)P + €6x, and with a slight abuse of ’
notation write 8, = (t¢, Ce) = (t(Pe,x), C(P:,x))- Since 8; is a zero of the function
Pe x9(-, ), together with (4.24) and (4.25) it follows that

0 = (1 —¢)G(te, Cc) + £9(x; 6,)

(4.26) =(1—¢) {%—(t;(”" Co)(te — p) + (te — p)r(oe)} +e9(x;6,).

Because G/t and g are continuous at 8y we obtain
(4.27) 0=(1-¢)(A +0(1))(te — p) + O(¢)

as € | 0. Because A is nonsingular, we conclude that t, — pu = O(e), as € | 0. When
we insert this into (4.26) and use that g is continuous, (4.26) reduces to

t(Pe,x) — M -

o —A"1g(x;60) + o(1)

as € | 0, which finishes the proof. ]
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Next consider the location functional ta(-) of Remark 2.2. By definition it holds
that the pair (t2(P), C1(P)) is a zero of the function

(4.28) G2(6) = Pyga(-;6)

where for 6 = (t,C)
(4.29) 92(%8) = s [{(x — )7C™}(x - t)}"’] (x - t).

When t2(P) is uniquely defined and if it is a point of symmetry of P, then the
expression of IF(x; t3, P) will be independent of the influence function of the initial
S-functional 6,(-) as long as (4.3) holds.

THEOREM 4.2. Let p; : R — [0,00), j = 1,2, satisfy the conditions of Theorem 3.3
and suppose that (3.9) holds instead of (2.10). Let 8, : P — © be the S-functional
defined with the function py(-) and the constant 0 < by < sup py. Consider the loca-
tion functional ty(-) defined in Remark 2.2, and suppose that the function R, p(t) of
(2.16) has a unique minimum at t;(P), so that t(P) = t,(P). Suppose that ts( P)
is a point of symmetry of P. Define G2(0) by (4.28) and (4.29) and suppose that
at 8y = (to(P), C1(P)), the partial derivative Ay = (0G4/8t)(8,) is nonsingular.
Then for x € RP it holds that .

IF(x; t2; P) = ~A5 ! uy [{ (x — t2(P)) T C1(P)~ (x — to(P)) }/ 2] (x — to(P)).

where ua(y) = ¥2(y)/y and ¥, = ph.

ProOF: The proof is similar to that of Theorem 4.1. We only have to show that
the conditions on p, imply that G2/t is continuous at 6.
The function g,(x;8) of (4.23) has a partial derivative

(4.30) a—a‘qtz(x; t,C) = —Elzs—d)C'l(x —t)(x—t)7 —up(d)I

where d = /(x — t)TC-1(x —t). Because p, is symmetric and differentiable, its
derivative satisfies 1/2(0) = 0. Since the second derivative ¢ is continuous, we see
that limyo us(y) = limyjo ¥2(y)/y exists. It follows that us(-) is continuous and
because it is 0 outside [—¢, ¢], it must be bounded. The same holds for the function
¥ We also have that yu(y) = ¥(y) — ua(y), and because |ly — t|j/d < |[C]], it
follows that (4.30) is bounded as a function of t. We conclude that

8G;

(4.31) o

©) = [ 222(x,6)aP(x)

and that (4.31) is continuous. From now on the proof is the same as that of Theorem
4.1, =
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When X has an elliptical distribution P with parameters p and X, and when the
function 1 of Theorem 4.1 has a continuous bounded derivative, it is not difficult
to see that

(4.32) A=—pI

where
p=k[(1- 3 )ulIBCx - wl) + ¥ IBCE - i)

(439) = (= 2)etiety + L] rape .

When 9 is not differentiable, such as for instance Huber’s ¥-function v, , the matrix
A may still of type (4.32) under suitable conditions on the function f in (1.1). From
conditions (R1)-(R5), it follows that A; = —f2I with 33 as in (4.33), with ¢ = t».

Hence, we see from Theorems 4.1 and 4.2 that the influence functions of ¢(-)
and to(-) are the same as that of the corresponding affine equivariant location
M-estimator considered in Maronna (1976); in particular, when P is spherically
symmetric, it is the same as that of the location M-estimator defined by minimizing
(2.1) with the same function p or p; respectively. For t(-) the influence function is
weakly redescending, i.e. nondecreasing in ||x|| and nonzero for x # 0. For ta(-) the
influence function is strongly redescending, i.e. it is zero for ||x|| > ¢3.

5. Asymptotic normality. Let X;, X,... be a sequence of independent identi-
cally distributed random vectors X; = (X1 ---X,-,,)T with a distribution P on RP.
Denote by P, the empirical distribution corresponding with the sample X, ..., X,.

We first prove consistency for the location estimators proposed in Section 2.3.
We will need that the initial covariance estimator C, in (2.8) and the initial S-
estimator 6;, in Method 2 are consistent for the values of their corresponding
functionals C(-) and 6(:) at P, i.e.

(5.1) lim C, = C(P)
(52) nlLH(')lo 01,,, = 01(P)

with probability one. S-estimators 8, = (t,, C,), defined with a function p that
satisfies (R1)-(R3), satisfy (5.1) and (5.2).

We will apply a uniform strong law for empirical processes (P, — P)¢, indexed
by functions ¢ in a class F, as is given in Pollard (1984). By the envelope F of
F is meant a function F for which |¢| < F for every ¢ € F. For further concepts
involved, we refer to Pollard (1984).

THEOREM 5.1. Let p : R — [0, 00) satisfy the conditions imposed in Method 1, and
suppose that E||X;|| < oo. Let C,, n =1,2,..., be a sequence of affine equivariant
covariance estimators that satisfies (5.1). Define R,(t) and Rp(t) as in (2.8) and
(2.9) respectively. Suppose that the value t(P) that minimizes Rp(t) is unique.
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Then for any sequence t,, n = 1,2,..., where every t, minimizes the function
Ry (t), it holds that
' lim t, = t(P)
n—o00

with probability one.

PROOF: According to Remark 4.1, it is sufficient to show that
(5.3) sup |Pph(:,8) — Ph(-,8)] — 0
€T

with probability one, where T and h(x,8) are defined in the proof of Lemma 4.2.
Consider the class F = {h(-,0) : 6 € T}. Then F is permissible in the sense of
Pollard (1984, Appendix C). Moreover, according to the proof of Lemma 4.2, it has
a integrable envelope F(x) = p(2||x|| + 2M), where M is defined in (4.8). Because
p(y) is monotone in |y|, it is not difficult to see (see for instance Lemma 22 in
Nolan and Pollard 1987), that the class of graphs of functions in F has polynomial
discrimination (Pollard 1984, p.17). According to Theorem I1.24 and Lemma I1.25
in Pollard (1984), (5.3) holds with probability one. O

THEOREM 5.2. Let p; : R — [0,00), j = 1,2, satisfy the conditions of Theorem
3.3 and suppose that (3.9) holds instead of (2.10) Let 6,,, n = 1,2,..., be a
sequence of S-estimators that are defined with the function p, and the constant
0 < b < suppy, and suppose that 8, , satisfies (5.2). Let Ry p(t) be defined by
(2.16) and suppose that it has a unique minimum at t1(P). Then to(P) = t,(P)
and for any sequence t,,, n = 1,2,..., where every t n satisfies (2.12) and (2.13),
it holds that

Iim tz,n = tg(P)
n—o00
with probability one.

PROOF: According to Remark 4.1, it sufficient to show that

(5.4) tiuc;:) P.(E(t,C,¢p)) — P(E(t,C,c2))| — 0

(5.5) sup
0

Paha(-,6) — th(.,o)‘ -0

with probability one, where ha(x, ) is defined in the proof of Lemma 4.3. Because
the class of ellipsoids has polynomial discrimination, it follows from Theorem II.14
in Pollard (1984) that (5.4) holds with probability one. Since p,(y) is monotone in
|yl and bounded, (5.5) can be shown similar to (5.3). O

We may now show that t, and t,, converge at rate \/n towards a normal
distribution. We will use the following tightness property from Pollard (1984). It
is a combination of the Approximation Lemma (p-27), Lemma I1.36 (p.36) and the
Equicontinuity Lemma (p.150).
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LEMMA 5.1. Let F be a permissible class of real valued functions with envelope
F and suppose that 0 < PF? < co. If the class of graphs of functions in F has
polynomial discrimination, then for each n > 0 and € > 0 there exists a 6 > 0 for
which

limsupP{ sup , |\/1_1(P,. — P)(¢1 — ¢2)| > 1]} <e

n—+c0 $1,42€[8

where [8] = {(¢1,¢2) : #1,02 € F and P(¢$; — $2)? < §2}.

Since Lemma 5.1 is only stated for real valued fucntions, we will apply it to each
component of the functions g(x,8) of (4.23) and g2(x, ) of (4.29) separately. The
following lemma implies that the classes of graphs of the functions which are then
involved, have polynomial discrimination.

LEMMA 5.2. For x = (21 ---zp)T and @ € © let k(x,8) be a real valued function.
Consider the classes functions F = {k(x,8) : 0 € ©} and F; = {k(x,8)z; : 0 € ©}
forj =1,...,p. Denote by G and G;j the corresponding classes of graphs of functions
in F and F; respectively. When G has polynomial discrimination, then also G; has
polynomial discrimination for j = 1,... ,p.

Proor: Consider a finite set N = {(x1,51),... ,(Xm,sm)} in R? x R. Points (x, s)
with z; = 0 and s # 0 can never be in the graph of a function k(x, 8)z;, and points
(x, 0) will always be in the graph of any real-valued function. Therefore without loss
of generality we may assume that for points in N it holds that z;; # 0 and s; # 0
for i =1,...,m. Note that a point (x,s) € R? x R with z; # 0 is picked out by the
graph of the function k(x,8)z; if and only if the point (x, s/z;) is picked out by the
graph of the function k(x, 8). Since G has polynomial discrimination it picks out at
most a polynomial number of subsets of the set {(x1,51/21;),...,(Xm,Sm/Tmj)}.
Then G; picks out at most a polynomial number of subsets of the set N.

To apply Lemma 5.1 we will need that the function u(y) = ¥(y)/y in (4.23) is of
bounded variation. This holds for instance for the function u(y) that corresponds
with the function p, of (2.2).

THEOREM 5.3. Let p : R — [0,00) satisfy the conditions imposed in Method 1,
and suppose that E||X1]|? < co. Let g(x,8) and G(8) be defined in (4.23) and
(4.22) respectively, and suppose that the function u(y) = ¥(y)/y is of bounded
variation. Let C,, n = 1,2,..., be a sequence of affine equivariant covariance
estimators that satisfies (5.1). Let 8o = (t(P),C(P)) and suppose that t(P) and
G(9) satisfy the conditions of Theorem 4.1. Let t, minimize the function R,(t) of
(2.8) forn=1,2,.... Then \/n(t, — t(P)) has a limiting normal distribution with
zero mean and covariance matrix A"'MA~T where M is the covariance matrix of
9(X1,60).

PRroOF: Let 8, = (t,, C,). We first show that

(5.6) —0

V(P = P) (5,62) - o(.,60))
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with probability one.
Write k(x,8) = u[{(x — t)TC~!(x — t)}*/?], and consider the j-th component

9i(x,6) = k(x, 8)(z; —t;)

of function g(x,8). Put t(P) = p = (p1---pp)7 and t,, = (tn; <+ +tnp)T. Decom-
pose as follows

g.‘i(x’ 0") - g; (x’ 00) = k(xv 0,,)2,' - k(xa 00)1:1'
(5.7) — tnj (k(x,8,) — k(x,89))
+ (pj — tnj)k(x, 60).

Consider the second term on the right hand side. Because the function u(y) is of
bounded variation, it follows from Lemma 22 of Nolan and Pollard (1987) that the
class of graphs of the functions {k(x, ) : @ € ©} has polynomial discrimination and
a bounded envelope. It is also permissible in the sense of Pollard (1984), so that
Lemma 5.1 applies. Because 8,, — 6, for each § > 0, the functions k(x, 6..) and
k(x, 8o) are in the class [6] of Lemma 5.1 for n sufficiently large. This means that
if we integrate (5.7) with respect to (P, — P), the second term on the right hand
side is op(1/y/n). Similarly, using Lemma 5.2 and the fact that E||X;||2 is finite
and that k(x,0) is bounded, the first term on the right hand side will op(1/+/n).
Finally, also the last term on the right hand side of (5.7) will be 0p(1/4/n), because
tn — u and (P, — P)k(-,80) is Op(1/+/n) according to the central limit theorem.
It follows that (P, — P)(g;(-,8,) —g;(-,60)) = op(1/+/n). Since this holds for every
j=1,...,p we conclude that

(5.8) (P, — P) (g(~,0,.) - g(-,oo)) = op(1/v/n).

For any vector t,, that minimizes the function R,(t), it holds that the pair
0. = (ts, Cy) is a zero of the function P,g(-;8). Hence, together with (5.8), it
follows that

0= Pn.q("on)
= Pg(-,6n) + (Pn — P)g(-,00) + (Pn — P)(9(:,0n) ~ g(-,80))
= Pg(-, on) + (Pn - P)y(‘,oo) + OP(I/\/;;)

Then use expansion (4.24) for Pg(-,8,), together with property (4.25). This gives
G

(5.9) 0= —2-(1,Cn) (tn — 1) + (ta — 18) r(81) + (Pn — P)g(:,60) + op(1/V/n).

Because G /0t is continuous at 8y and since r(6,) = op(1), (5.9) reduces to

(510) 0= (A+0p(1)(tn~ )+ (Pn — P)g(-80) + 0p(1/v/n).
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According to the central limit theorem (P, — P)g(-,80) = Op(1/+/n), and as A is
nonsingular, it follows that t, — u = Op(1/y/n). When insert this in (5.10), we
find that

0= A(tﬂ - [4) + (Pn - P)g(-, 00) + Op(l/\/f—l).
Because 6 is a zero of (4.22), it follows that

(.11 VA(tn — ) = ~A~ J= 3" 9(Xi,00) + op(1).
i=1

Finally, since E||X;||? is finite and u(y) is bounded, also E||g(X},80)||? is finite.
Hence, the theorem follows after applying the central limit theorem to (5.11). 0O

When P is elliptical with parameters g and ¥, then the matrix M is a multiple
aX, where

19 - - _1 2(lix x||) dx
(5.12) a = JEP (B0 - ) = / (I £(1xI]) dx.

When the matrix A is of type (4.32), the limiting covariance of \/n(t,—u) reduces to
(a/B%)ZE, so that a/B? suffices as an index for the asymptotic efficiency. Moreover,
the limiting distribution is the same as that of the corresponding affine equivari-
ant location M-estimator considered in Maronna (1976); in particular, when P is
spherically symmetric, it is the same as that of the location M-estimator defined
by minimizing (2.1) with the same function p. When we use the function p, (y; k)
in (2.8), the asymptotic efficiency relative to the sample mean tends to 1, when
k — oo. The efficiency relative to the maximum likelihood estimator can be read
from Table 1 in Maronna (1976). It is reasonable at the multivariate normal, as
well at several multivariate student distributions, for moderate values of k.

THEOREM 5.4. Let p; : R — [0,00), j = 1,2, satisfy the conditions of Theorem
3.3 and suppose that (3.9) holds instead of (2.10). Suppose that E[|X1||? < oco.
Let g(x,8) and G2(0) be defined in (4.29) and (4.28) respectively. Let 8, ,, for
n = 1,2,..., be a sequence of S-estimators, defined with the function p;(-) and
the constant 0 < by < supp;. Let Ry p(t) be defined in (2.16) and suppose that
it has a unique minimum at t,(P). Let 8, = (t2(P),C1(P)) and suppose that
t2(P) and Go(8) satisfy the conditions of Theorem 4.2. Let tz,, n =1,2,..., be
any sequence of location estimators, where t, ,, satisfies (2.12) and (2.13). Then
V1 (t2,n — t2(P)) has a limiting normal distribution with zero mean and covariance

matrix A;lMgA;T, where M3 is the covariance matrix of g( X1, 6o).

ProoOF: The proof is the same as that of Theorem 5.3. We only have to show
that uz(y) = ¥2(y)/y is of bounded variation and that dG2/8t is continuous at
0. The latter has already been shown in the proof of Theorem 4.2, and conditions
(R1)-(R5) imply that us(y) is of bounded variation. O
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When P is elliptical with parameters pu and ¥, then the matrix M is equal
to ax¥, where a3 is as in (5.12) with ¢ = ¢2. When the matrix A, is of type
(4.32), the limiting covariance of \/n(t2,n — p) reduces to (az/02)E. The limiting
distribution is the same as that of the corresponding affine equivariant location
M-estimator considered in Maronna (1976), or of the location S-estimator defined
with the function p;. When we use the biweight function p,(y;c2) in (2.8), the
asymptotic efficiency relative to the sample mean tends to 1, when ¢; — co. The
efficiency at the multivariate normal and at a contaminated normal relative to the
maximum likelihood estimator can be read from Table 1 in Lopuhai (1989).

REMARK 5.1: If we do not assume that t(P) and t,(P) are a point of symmetry
of P, C, and 6, ,, may influence the limiting behaviour of t,, and ty » respectively.
This can easily be seen from expansion (4.24). If for instance G also has a nonzero
partial derivative 9G/3C at 8, it follows that t, converges at the same rate as C.
does.
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MULTIVARIATE T-ESTIMATORS FOR
LOCATION AND SCATTER

HENDRIK P. LOPUHAA

Delft University of Technology

We discuss the robustness and asymptotic behaviour of T-estimators for multivariate
location and scatter. We show that 7-estimators correspond with multivariate M-
estimators defined by a weighted average of redescending y-functions, where the
weights are adaptive. We prove consistency and asymptotic normality under weak
assumptions on the underlying distribution P, show that r-estimators have a high
breakdown point and obtain the influence function at general distributions P. In the
special case of a location-scatter family T-estimators are asymptotically equivalent to
multivariate S-estimators defined by means of a weighted p-function. This enables
us to combine a high breakdown point and bounded influence with good asymptotic
efficiency for the location and covariance estimator.

1. Introduction. The minimum volume ellipsoid (MVE) estimators are defined
as the center and scatter matrix of the smallest ellipsoid containing at least half
of the observations (Rousseeuw 1983). These estimators are known to have good
robustness properties, but their limiting behaviour is relatively poor, as they con-
verge with rate /n towards a nonnormal limiting distribution (Kim and Pollard
1989, Davies 1989). To retain the robustness and to improve the asymptotic prop-
erties one can ‘smoothen’ the condition of covering half of the observations. This
may result in multivariate S-estimators, defined as the center and scatter matrix of
the smallest ellipsoid that satisfies a condition on the average of smoothly weighted
Mahalanobis distances (Davies 1987, Lopuhad 1989). In the univariate case this
is equivalent to computing an M-estimator of scale as a function of the location
parameter p and to minimize this over p. The S-estimators converge with rate \/n
towards a normal distribution. However, there is a trade-off between robustness and
asymptotic efficiency : a high breakdown point corresponds with a low efficiency
and vice versa.

Yohai and Zamar (1988) investigated an extension of regression S-estimators,
which retains the good robustness and improves the asymptotic efficiency. In the
special case of estimating univariate location and scale their proposal amounts to
the following. To make the M-estimator of scale more efficient they consider an
adaptive multiple of it, which they call a 7-estimator of scale, and minimize this
as a function of the location parameter. Regression r-estimators were studied un-
der the assumption of the usual parametric regression model with random carriers
independent of the error terms. Although the 7-estimator of the error scale was
claimed to be highly efficient, only the limiting distribution of the r-estimator of

This research is financially supported by NWO under Grant 10-62-10.
1980 Mathematics subject classifications : 62F35, 62H12.
Keywords : T-estimators, High breakdown point, Bounded influence, High efficiency.
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the regression coefficient was given. In the special case of univariate location and
scale, the claimed high efficiency of the scale estimator will follow as a corollary of
our results.

In this paper we study the robustness and asymptotic behaviour of r-estimators
for multivariate location and scatter under weak conditions on the underlying dis-
tribution P. In Section 2 we give the definition of multivariate r-functionals and
give sufficient conditions for their existence. Continuity of these functionals, and
hence consistency of the r-estimators, is shown in Section 3. In Section 4 we show
that multivariate T-estimators relate to multivariate M-estimators as defined in
Huber (1981). The location 7-estimator is shown to be equivalent to a location M-
estimator, defined by an adaptively weighted average of redescending y-functions;
for the covariance 7-estimator something similar holds. The corresponding M-
estimator type of score equations therefore, become too complicated to obtain a
limit theorem by means of Huber’s (1967) results. Instead we will use empirical
process theory (Pollard 1984) to obtain the simultaneous limiting distribution for
T-estimators of location and scatter.

The robustness of these estimators will be measured by means of the breakdown
point and the influence function. The breakdown point provides a global measure of
the sensitivity of an estimator to outlying observations. It may be complemented by
measures of the local sensitivity such as the influence function and the corresponding
gross-error sensitivity. In Section 5 we show that r-estimators have the same high
breakdown point as S-estimators, and we obtain the general expression for the
influence function.

In Section 6 we consider a parametric location-scatter family as a special case.
It turns out that in this case the limiting normal distribution and the influence
function of 7-estimators are the same as those of multivariate S-estimators that
are defined by means of a weighted p-function. This enables us to combine a high
breakdown point and a bounded influence function with good asymptotic efficiency.

2. Definition and existence.

2.1. Definition. We will define estimators by means of a functional that acts on
the space P(RP) of all probability distributions on RP, evaluated at the empirical
distribution. Denote by |M| the determinant of a p x p-matrix M, and denote
by Ap(M) < -+ < X;(M) the eigenvalues of M. Let p; and p, be nonnegative
functions on R, and let b, and b5 be positive constants. We define r-functionals for
location and scatter as follows.

For P € P(RP) let t(P) and C(P) be the vector and the positive definite sym-
metric p X p-matrix that minimize

b 4
(2.1) e [ peliex- o7 x - 017 ape)}

subject to

(2.2) / o [{(x — T C\(x — £)}/?] dP(x) = by.
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Denote this minimization problem by (Pp). Take t(P) to be the location 7-
functional and define the covariance T-functional as

V(P) = b;'C(P) /pz [{Gx — 6(P)TC(P)~!(x — t(P))}'/?] dP(x).

Let x1,...,x, be n observations in R? and denote by P, the corresponding
empirical distribution. Multivariate r-estimators are defined as the vector t, =
t(P,) and the matrix

Vo =V(P) = b;lcn% Zn:pz [{(xi = ta)TC7 (xi — ta)}'/7]
i=1
where t, and C, minimize [C| {3"7, p2 [{(x; — t)TC~!(x; — t)}'/2]}” subject to
(2.3) -11; Zpl [{(x,- - t)Tc—l(x,- - t)}1/2] = b;.

Note that constraint (2.3) is the same as the constraint of the minimization
problem that defines multivariate S-estimators with the function p;. In fact, mul-
tivariate S-estimators arise as a special case of T-estimators. Indeed, if p; = po
and by = by, then t, and V,, would just be the ordinairy S-estimators. Instead
of minimizing the determinant of C over all pairs (t, C) that satisfy (2.3), we now
minimize the determinant of an adaptive multiple of such C, i.e. the determinant
of the covariance r-estimator V.

The least squares estimators can also be obtained as a special case, namely with
p1(y) = p2(y) = ¥* and b; = by = p (see for instance Griibel 1988), as well as the
MVE estimators with p; = p2 an indicator function and b; = b5 roughly % To
get the good robustness from the MVE estimators and the good limiting properties
from the least squares estimators, we will take functions p; and p, that are so to
speak ‘in between’ these two cases. Throughout the paper we will assume that p,
and p, both satisfy the following conditions.

(R1) px(0) = 0, px is symmetric and pg is twice continuously differentiable.
Denote by ;. the derivative of p.

(R2) There exists a finite constant cx > 0 such that p; is strictly increasing on
[0, cx] and constant on [cg, 00). Write ar = pi(ck).

In addition we impose the following condition only on the function ps.

(A) 2p2(y) — ¥2(y)y > 0, for y > 0.
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It will guarantee that the loss function in (2.1) is a strictly increasing function of
the magnitude of C (see Remark 2.1). Together with the boundedness condition
in (R2), i.e. ax = sup px < 00, this provides the good breakdown properties of the
T-estimators. To guarantee the existence of solutions of (Pp), the constant b, in
(2.2) must be chosen such that 0 < &; < a;. A typical function p that satisfies all
conditions above is Tukey’s biweight function p, (y; ).

The breakdown point of the 7-estimators turns out to be an increasing function
of the constant ;. However, when x;,...,x, are assumed to be a sample from
an elliptical distribution with density |B|~!f(||B~!(x — p)||), where BBT = 3,
then a natural choice for by is by = [ p1(|Ix||)f(||x]|) dx. In this case the breakdown
point will only be a function of ¢;, where small values of ¢; correspond with a
high breakdown point and vice versa. The smoothness conditions on p; and p,
are needed to obtain asymptotic normality and a bounded influence function. The
constant by > 0 is only a normalizing constant to obtain consistency of V, for
the ‘true’ scatter parameter. In case of elliptically distributed observations one
should choose by = [ p2(||x|[)f(|x||) dx for V, to be consistent for £. In this
case the limiting variances of the r-estimators turn out to depend on both ¢, and
¢2. However, for any ¢, fixed and ¢, large these variances will be close to those
corresponding with the sample mean and the sample covariance. This enables us
to combine a high breakdown point and bounded influence with a good efficiency
for both t,, and V,,, for instance at the normal distribution. Possible choices for p;
and py are the biweight functions p1(y) = pu(y;¢1) and p2(y) = pg(y; ¢2).

REMARK 2.1: When the distribution P does not have all its mass concentrated in
one point, then any pair (t(P), C(P)) that is a solution of minimization problem
(Pp) will also be a solution to the problem of minimizing the same loss function
subject to

(24) [orliexe-07 e x - 011 dpex) < b

This property will be useful as it will be more convenient to deal with constraint
(2.4) then with constraint (2.2). That this property holds can be seen as follows.
Consider the function h : (0,00) — R

P

@) b =lcl{ [plix- 760y x - 147 ap(x) |

Note that |sC| = s?|C| and that the derivative of spa(ys—%) with respect to s is
pa(ys— %) — %1/)2(ys"12")ys‘§. Since P can not have all its mass at t condition (A)
implies that h’(s) > 0, so that h is strictly increasing in s > 0. By means of a
standard argument it follows that any solution of (Pp) will be a solution of the
same minimization problem, except with (2.4) instead of (2.2).

2.2. Ezistence. Denote by PDS(p) the class of all positive definite symmetric
P X p-matrices and let © be the parameter space R? x PDS(p) which can be seen as
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an open subset of RP+3P(P+1)_ Solutions of (Pp) in © exist when P does not have
too much mass concentrated at some hyperplane of dimension < p— 1, that is when
P satisfies the following property for small enough ¢.

(H¢) For every hyperplane H with dim(H) < p — 1, it holds that P(H) < €.
This condition is equivalent with

(Ce) The value 6§, = inf{6 : P(H(a,v,8)) > ¢,|lall = 1,6 > 0,v € RP} is
strictly positive

which was used in Lopuhaa (1989), where H(a, v,8) = {x : aTv < aTx < aTv+6}
is a strip of width é and with a direction perpendicular to a, which has the point v
on its boundary. Since we will refer to some parts of the proofs in Lopuhai (1989)
we briefly show the equivalence of (H,) and (C,).

Clearly, condition (C.) implies (H.). That (H,) implies §. > 0 can be seen as
follows. Suppose that §; = 0. Then there is a sequence of strips Sy = H(ag, v, 6k)
with 6r | 0 for which P(Si) > ¢. Because P is tight there exists a nested collection
of compact balls { By : 0 < v < 1} with P(B,) > 1—+~. First consider the ball B, .
Then every Sy must intersect B/, and hence, we assume without loss of generality
that the sequence {v} is contained in every B, for 0 < ¥ < €/2. The sequence
{ak} is contained in the compact set A = {|la|| = 1} and the sequence {;} is
contained in a compact subset D of [0,00). Therefore, the sequence {(a,vi,6;)}
is contained in the compact set A x B.y2 X D and has a density point (a,v,0)
in A x B.jp x D and hence, in every A x By, x D for 0 < ¥ < ¢/2. This means
that the hyperplane H(a,v,0) has a nonempty intersection with each ball B, for
0 <y <¢€/2. Let €¢/2 < n < ¢ and consider the ball B._,. Then P(Sx N B._,) > 7
and H(a,v,0) has a nonempty intersection with B,_,. By a standard argument it
follows that P(H (o, v,0)NB._,) > 1, so that P(H(a,v, 0)) > 1. As this holds for
1 arbitrarily close to € it follows that P(H(a,v,0)) > ¢ which is in contradiction
with (H.).

THEOREM 2.1. Suppose that P satisfies property (H.) for some 0 < ¢ < 1 —ry,
where ry = by/ay. Then (Pp) has at least one solution.

Before we prove Theorem 2.1 we first show some preliminary lemmas. These
lemmas will imply that all possible solutions of (Pp) are contained in a compact
subset of ©. We will denote ellipsoids {x : (x — t)TC~!(x — t) < ¢?} by E(t,C,c).

LEMMA 2.1. Suppose that (t,C) € O satisfies constraint (2.2). Then there exists
a constant ¢ > 0, which only depends on the functions p; and p3, and the constant
by such that [ py[{(x — t)TC~(x — t)}}/?] dP(x) > q.

PrOOF: Consider the set B = {x : /(x — t)TC~1(x — t) > p7'(b:1/2)}. Then it
holds that

b= [ (G- 07CT - )7 dP(x) < (1 - P(B)) + a1 P(B)
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Since b, satisfies 0 < b < ay, it follows that P(B) > by/(2a; —b;) > 0. This means
that [ p2[{(x — t)TC~1(x — t)}}/?] dP(x) > p2(p7 ' (61/2))b1/(2a; — b)) > 0. OO

LEMMA 2.2. Let (t,C)€6,0<mp<o00,0<c<ooand0<e<l.

(i) If P satisfies (H,) and if P(E(t,C,c1)) > ¢, then there exists a constant
ki > 0, which only depends on ¢, P and c,, such that \,(C) > k;.

(ii) Suppose that [ p;(||x||/mo) dP(x) < by and suppose that Ap(C) > k1 > 0.
Then there exists a constant k; < oo, which only depends on k,, my, p,,
p2 and by, such that if X,(C) > ks, the pair (t,C) can not be a solution of
(Pp).

(iii) Let P satisfy (H¢) and suppose that P(E(t,C,c)) > €. Suppose that 0 <
k1 < Ap(C) £ M(C) < k2 < 0o0. Then there exists a compact set K C ©,
which only depends on ¢, P, ¢y, ky and ky, such that (t,C) is contained in
K.

PROOF: Since condition (H,) is equivalent with condition (C,), the proof is similar
to the proof of Lemma 3.1 in Lopuhaa (1989). The proof of (i) and (jii) remains
the same. For (ii) note that according to Lemma, 2.1

1< [ pl{x- 976 (x - )/ dP() < o

Therefore, since (0, m3I) satisfies constraint (2.3), according to Remark 2.1 every
possible solution of (Pp) must satisfy |C| < (m2a,/q)P, which means that A;(C) <
(m3az/q)? /™" < oo. O
PROOF OF THEOREM 2.1: Along the lines of the proof of Theorem 3.1 in Lopuhai
(1989) it follows with Lemma 2.2 that there exists a compact subset K C O to

which we can restrict ourselves for solving (Pp). Since the loss function in (Pp) is
‘a continuous function of t and C it must attain a minimum on K. O

The finite sample situation is of course a special case of Theorem 2.1. Let
kmaz be the maximum number of x;’s that are contained in some hyperplane of
dimension < p — 1. Obviously, kmaz > p and if x3,... ,X, are in general position,
i.e. no p+ 1 points lie in some lower dimensional hyperplane, then kg4 = p. An
immediate consequence of Theorem 2.1 is that if n(1 — ry) > kmaz + 1, problem
(Pp,) has at least one solution (t,, C,). To show that every solution (t,, C,) of
(Pp,) converges to a solution (t(P), C(P)) of (Pp) we will need that (t(P), C(P))
is uniquely defined. This will be the case for instance for any elliptical distribution
P, =, which satisfies the following condition.

(F) f is nonincreasing and has at least one point of decrease on [0, min(cy, ¢3)].

Note that P, » satisfies property (H,) for every 0 < € < 1, so that according to
Theorem 2.1 at least one solution of (Pp, ) exists.

THEOREM 2.2. Let P,y be an elliptical distribution that satisfies (F). Choose
by = [ p1(|IxI) £(l|x||) dx in (2.2). Then (Pp, z) has a unique solution (ps, T).
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PROOF: First note that by means of a suitable rescaling it is sufficient to con-
sider the problem (Pp,,) : find a vector B in R? and a diagonal matrix A =
diag(Ay,...,Ap) with A; > 0 for j = 1,...,p that minimize

)4
(H Aj) { [ mlttx—pm A= = 91 11l dx )

subject to [ p1 [{(x—B)T A~1(x—B)}/?] f(|Ix|l) dx = b;. To show that (Pp, ,.) has
a unique solution (u, ) it is equivalent to show that (Pp, ,) has a unique solution
(0,X). The proof of this is a subtle variation on the proof of Theorem 1 of Davies
(1987), who shows that the ordinairy S-minimization problem (P ,) of minimizing
H?=1 A; over all B € R? and positive definite diagonal matrices A satisfying

@6) [ plitx=BYT A" x = MY/ flixiD dx = [ aixiDslxl) dx

has a unique solution (0,I). This holds under conditions on the function p in (2.6)
which are weaker than (R1)-(R2) and f nonincreasing with at least one common
point of decrease with the function —p. Note therefore, that according to condition
(F), Davies’ Theorem 1 applies to the S-minimization problems with the function
p1 or py in (2.6).

Consider the loss function

14 p
e(B,A) = (H /\j) {/Pz[{(x—ﬁ)TA_’(x—ﬂ)}l/zlf(llx”)dx} :
j=1

First note that the constraint in (2.2) of the problem (Pp, ,) is exactly the same
as the constraint (2.6) of the S-minimization problem ('Pg, A) with the function
p1. Since this minimization problem has a unique solution (0,I), we may restrict
to minimizing ¢ over pairs (3, A) that satisfy (2.2) and for which H;',=l Aj > L
Define the sets A = {(8,A) : [[;_; A; > 1 and (B, A) satisfy constraint (2.2)} and
B ={(B,A) : [I’~; Aj = 1}. We are left with showing that the problem

(2.7) o #(B,A)
has a unique solution (0,I). We will consider the smaller set (A N B) C A, first
show that minimizing ¢ over AN B has a unique solution (0,I) and then show that
on the set A\B the loss function ¢ only takes on values that are strictly greater
than ¢(0,I).

Since ;-’=1 Aj = 1for (B,A) € B, it follows that minimizing ¢ over AN B is
equivalent to

o i [ enlie- BTAT - 85 e dx.
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First consider the problem of minimizing ¢ over the larger set B D (AN B) :

2.9) / pal{(x — BT A= (x - B)}/2) £((Ix]l) dx.

min
(8,A)€B
The key observation is that this minimization problem is exactly the transformed
maximization problem considered by Davies (1987, p.1275). It is derived from the
original S-minimization problem with the function p; using that this S-minimization
problem has solution (8*,A*) = (0,I). According to the proof of Theorem 1 of
Davies (1987) the transformed problem has a unique solution (0,I), hence problem
(2.9) has a unique solution (0,I). However, (0,1) is also an element of the set A,
so that minimization problem (2.8) must also have a unique solution (0, I).
Therefore, for showing that the minimization problem (2.7) has a unique solution
(0,I), we are left with showing that »(0,I) < inf{p(B, A) : (B,A) € A\B}. Suppose
there would exist a pair ([‘3,;&) € A\B, with go(ﬁ, fk) < ¢(0,I). Then for some
0 < s < 1 the pair (,B,s;&) € B. The function <p([§,sf\) is equal to the function
h(s) in (2.5) with (t,C) = (B,A) and P spherically symmetric. This function
was already shown to be strictly increasing for s > 0. Therefore we would find

¢(B,sA) < p(B,A) < (0, 1). But this would be in contradiction with the fact
that (0,I) minimizes ¢ over B. O

3. Continuity of r-functionals. Denote by 8(P) = (t(P),C(P)) a solution
of (Pp). For a distribution P € P(R?) and function g : R® — R we will write
Pg(:) = [g(x)dP(x), or just briefly Pg if there can be no confusion about what
the variable of integration is. Finally, for 8 = (¢, C) write

(3.1) d(x,0) = \/(x — )TC-1(x — t).

We first show continuity of the functional (-).

THEOREM 3.1. Let P, k > 0, be a sequence of distributions that converges weakly
to P. Let C be the class of all measurable convex subsets of R? and suppose that
every C € C is a P-continuity set, i.e. P(OC) = 0. Suppose that P satisfies (H,) for
some 0 < € < 1—ry where ry = by/a1, and suppose that 8(P) = (t(P), C(P)) is
uniquely defined. Then for k sufficiently large (Pp,) has at least one solution 8(P;),
and for any sequence of solutions 8(P:), k > 0, it holds that limy_...8( P) = 8(P).

PROOF: The proof is along the lines of the proof of Theorem 3.2 in Lopuhai (1989),
so that a brief sketch suffices. Without loss of generality we may assume that 8(P) =
(0,I). By means of Theorem 4.2 in Rao (1962) it follows that for k sufficiently
large Py satisfies (H;_,,), so that according to Theorem 2.1 at least one solution
6(P:) = 6, = (tx,Cy) exists. By using that 8; satisfies constraint (2.2), one can
show that P (E(tk, Ck,cl)) > 1 —7r; > € and conclude with Theorem 4.2 in Rao
(1962) that for k sufficiently large P(E(ts, Ck,¢1)) > €. According to Lemma 2.2(i)
this means that there exists a constant k; > 0 such that Ap(Ck) 2 k1 eventually.
By using that p, is strictly increasing on [0, ¢;] and that P, — P weakly, it follows
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that for each n > 0 and k sufficiently large Pipsi (|| - ||/(1 + 7)) < b;. This means
that the pair (0,(1 + 7)2I) satisfies (2.4) for k sufficiently large. Using that this
holds for 7 arbitrarily close to 0, it follows from Remark 2.1 that

(32) imsup Cal{ Papa(aC,000)} < {Poa-1)}

Since A,(Cy) > ki, we find with Lemma 2.1 that A;(Ci) is uniformly bounded
above, so that with Lemma 2.2(iii) it follows that there exists a compact subset K
of ©, such that for k sufficiently large 8, will be in K. This means that we are
finished if we can show that every convergent subsequence {6} J.} has limit (0, I).

Let 61, j = 1,2,..., be a subsequence for which lim;j..cc 6x; = 6. According
to Lemma 3.2 in Lopuhaa (1989) it holds that by = limj_c Pk, p1(d(-,8k;)) =
Pp, (d(.,GL)). This means that 8y satisfies constraint (2.2) of (Pp). Since this
problem has solution (0,I) we must have |Cr|{Pp2(d(-,0.))}" > {Pp2(l|-I])}*-
Then with (3.2) it follows that

cul{ Praac. )} = {Poti)}

However, (0, I) is the unique solution of (Pp) so that we conclude that 8, = (0,I).
This finishes the proof. O

Continuity of the location r-functional t(-) is contained in Theorem 3.1. For the
covariance 7-functional V(-), continuity follows immediately from Theorem 3.1.

COROLLARY 3.1. Under the conditions of Theorem 3.1, limg_.o. V(Pi) = V(P).

PROOF: By definition we have V(Py) = b3 1C(Py) { Pep2(d(-,0(P:)))}. According
to Lemma 3.2 in Lopuhai (1989) it holds that Pgp2(d(-,8(Px))) — Pp2(d(-,6(P)),
so that by definition of V(P) the corollary immediately follows from Theorem 3.1.

O

Consistency of the r-estimators (tn, V,,) is a consequence of the continuity of
the functionals t(-) and V(-). Let X;, X, ... be a sequence of independent random
vectors in R? with a distribution P. From now on denote by P, the empirical
distribution corresponding with X;,... ,X,.

COROLLARY 3.2. Suppose that the distribution P satisfies the conditions of The-
orem 3.1. Then limy —.oo(tn, Vi) = (t(P), V(P)) with probability one.

The condition that every convex set is a P-continuity set is in fact not needed
in Corollary 3.2. This was needed in the proof of Theorem 3.1 merely to guarantee
that the class & of all ellipsoids in R? satisfies supg |Px(E) — P(E)| — 0. Since &
has polynomial discrimination (Pollard 1984, p.17), for the empirical distribution
P, this property is a consequence of Theorem II.14 in Pollard (1984).
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When P is an elliptical distribution with parameters p and ¥ the conditions of
Theorem 3.1 are satisfied and hence, (tn, Cn) — (s, £) with probability one. There-
fore, if we want V, to be consistent for © we must choose bz = [ p2(||x||) £ (|| x|}) dx.
Suppose that in general C(P) is considered to be the true scatter parameter to be
estimated. Then one should choose

(33) b= [ pal{(x = ((P)TC(P) (x~ (P dP()

for V, to be consistent for C(P).

4. Limiting distribution. We first investigate the asymptotic behaviour of
(tn, Cn). The limiting distribution of the actual r-estimators (t,, V,,) will then
follow from that of (t,, C,). We assume that P satisfies property (H,) for some
0 < e < 1-r; and that the minimization problem (Pp) has a unique solution
6o = (s, £). In order to let (t,, V;;) be consistent for (s, £) we take b, as in (3.3).

To study the limiting behaviour of solutions (t,, C,) of (Pp,) we first show that
(tn, Cn) are related to multivariate M-estimators as defined in Huber (1981). To
do so, it will be more convenient to consider (t,,C,) as solutions to the problem
of finding a vector t and a positive definite symmetric matrix C that minimize

log(IC|) +p log{% 2_pe[{(Xi —)TC7H(Xi ~ t)}‘”]}

subject to
(4.1) % ipl X —e)TCcY(x; - t)}1/2] = b.
i=1

This problem is equivalent to the one considered in Section 2.1 and will be referred
to as minimization problem (Pp, ) from now on. Because of the frequent appearance
of quadratic forms we will write d; for \/(X,- -t)TC-1(X; —t)fori=1,...,n and
d for /(x — t)TC-1(x — t).

4.1. Relation to M-estimators. The Lagrangean corresponding to minimization
problem (Pp,) is

Ln(t,C, ) = log(|C|) + p log {% sz(d.-)} —A {% d_n(di) - bl}
i=1 i=1

Every solution (t,, C,) of (Pp,) must be a zero of all partial derivatives of L,,. It
then follows that besides constraint (4.1) every solution (t,, Cy,) of (Pp, ) must also
be a solution of the simultaneous equations

s E (o) PR - 20 =0

_21;" {(iz (d))-lp'/’z(d) A¢:1(d)}(X~t)(X—t)T—C

i=1 Jj=1

(4.2)
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We can eliminate A from (4.2) by multiplying the second (matrix) equation with
C~!, take traces and solve for A\. We find

An = (_217/") E?:l PZ(di) + (P/") z:?=1 '/’2(di)di
" (1/n) X0y p2(di)(1/n) 0, ta(di)di

After we substitute A, in (4.2) we obtain simultaneous equations in t and C.
To keep things tidy we first have to fix some more notation before we list these
equations. Define the functions

a(x, 8) = 2pa(d) — Y2(d)d
b(x, 8) = ¥1(d)d

where d is the abbreviation defined before. Let A,(0) = P,a(-,8), B,(0) =
P,b(-,0) and A(8) = Pa(-,0), B(8) = Pb(-,0). Note that because P satisfies
(H¢) we have that A(8) > 0, and since 6 satisfies (2.2) the ellipsoid E(u, X, c;)
must have positive probability, which means that B(6,) > 0.

The simultaneous equations that arise after substitution of A, in equations (4.2)
are perhaps described most conveniently with the function

(4.3) ¥n(-,0) = An(0)¥1(-) + Ba(0)¥2(-)

which is an adaptively weighted average of the functions 11 and ;. We obtain the
equations :

Z ————1/)"(::’ %) (X;s—-t)=0

S {2l o, — 6 - 7 — vl 0)isCh = 0.

i=1

This is of course a system of linear dependent equations. However, by adding a
suitable multiple of the constraint (4.1) to the second (matrix) equation we can
avoid the linear dependence. It follows that every solution 8, = (t,, C,) of (Pp,)
will always be a solution of the simultaneous equations

a n diao
3 el x4 =0
i=1 *

(4.4) i {P—wn (::’_’ 9) (Xi — t)(X; — )T

- — (¢,,(d,-,o)d,- ~ 2by(p1(di) - bl)) c} =0.

These equations look like the M-estimator type score equations as defined in Huber
(1981), except that the function t,(-,8) of (4.3) is an adaptively weighted average
which itself depends on X,...,X,.
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Although 8, is a solution of equations (4.4) defined with the function ¥y,(-,8),
only the limiting expression of ¥,(-,8,) is of importance for the asymptotic be-
haviour of 8,. We will see in the next subsection that the function ,(-,8,) con-
verges with probability one pointwise to the function

(4.5) ¥() = A(80)¥1 (") + B(Bo)¥a(-).

The limiting distribution of (t,, C,) will then be shown to be the same as that of
multivariate M-estimators that are a solution of equations exactly like (4.4) except
with the function (-) instead of the function ¥n(:, ). The limiting distribution of
the actual T-estimators (t,, V,,) can then be obtained from that of (t,, C,).

4.2. Asymptotic normality. We will use the following tightness property from
Pollard (1984) for empirical processes (P, — P)¢ indexed by functions ¢ in a class
F. It is a combination of the Approximation Lemma (p.27), Lemma I1.36 (p.36)
and the Equicontinuity Lemma (p.150). By the envelope F of F is meant a function
F for which |¢| < F for every ¢ € F.

LEMMA 4.1. Let F be a permissible class of real valued functions with envelope
F and suppose that 0 < PF? < oco. If the class of graphs of functions in F has

polynomial discrimination, then for each n > 0 and € > 0 there exists a § > 0 for
which

limsupP{ sup |\/r_z(P,, — P)(¢1 — ¢2)| >’n} <€

n—o0 #1,82€[6)
where [6] = {(¢1,62) : 61,62 € F and P(¢1 — ¢,)? < §2}.

The classes of functions that we will encounter will always be indexed by the pa-
rameter set ©, which can be seen as a subset of RP+3P(P+1)  This means that these
classes will always be permissible in the sense of Pollard (1984, Appendix C). Also
the corresponding classes of graphs will have polynomial discrimination (Pollard
1984, p.17) as will follow from the next lemma.

LEMMA 4.2. Let d(x,0) be defined as in (3.1). Consider the class of functions
A = {2p,(d(-,0)) — ¥2(d(-,6))d(-,8) : 8 € O}, and for k = 1,2 the classes
Ry = {pk(d(-,o)) : 0 € 6}, U, = {1/)),((1(,0))/(1(,0) : 8 ¢ G} and W, =
{¥1(d(-,8))d(-,68) : 8 € ©). Then the classes of graphs of functions in A, R,
Ra, U1, Uz, W, and W, have polynomial discrimination.

PrROOF: Apply Lemma 22 of Nolan and Pollard (1987), which states that for any
function g : [0,00) — R, which is of bounded variation, the class of graphs of the
functions g((x—t)T C~(x—t)) for (t,C) € © has polynomial discrimination. Since
p1 and pz can be written as the sum of two monotone functions, it follows immedi-
ately that the classes R) and Rz have polynomial discrimination. From (R1)-(R2)
it follows that the functions ¥ (y)y and ¢y (y)/y for k = 1,2 are continuous, that
they vanish for y — —oo and that they are almost everywhere differentiable with
an absolutely integrable derivative. This implies that these functions are also of
bounded variation. Hence, A, U;, Us, W; and W, have polynomial discrimination.

O
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For the weights A,(6,) and B,,(0,) of the function (-, 85) the following result
is an immediate consequence of Lemma 4.2.

LEMMA 4.3. Let 8,, = (t,, C,) be a solution of (Pp,). Then A,(6,) — A(6o) and
Bn(6,) — B(6,) with probability one.

Proor: Consider the class A = {a(-,0) : 8 € ©}. It has a bounded envelope
and according to Lemma 4.2 the corresponding class of graphs has polynomial
discrimination. We may therefore apply Theorem I1.24 in combination with the
Approximation Lemma in Pollard (1984), and it follows that (P, — P)a(:,8,) — 0
with probability one. Because A,(8,) = A(8,) + (P, — P)a(-,6,) and because
a(x, 8) is continuous it follows that A,(68,) — A(8,) with probability one. The
other statement can be shown similarly. O

We can write equations (4.4) briefly as
n
(4.6) S w.(x:,6)=0.
i=1

The function ¥, is then a weighted average An(0)¥;(x,80) + B,(0)¥a(x,6) —
2b,R(x, 8) of the functions ¥ = (¥ 1oc, ¥k, cov), Where

Wy 10c(X,0) = 1/’_"_(1@(,( —t)
4 . ¥i(d) r
k,cov(x, 0) = PT(X —t)(x—t)" - 'l’k(d)dc

for k = 1,2, and of the function R = (Rjoc, Reov), Where

{ Rioc(x,0) =0
Rcov(x, 0) = (pl(d) - bl)C

Let ¥ = (‘i’loc,‘i’cov) be the function that is exactly li~ke W,,, except that instead
of the function ¥, (-, 8) it is defined with the function ¥(-) of (4.5) :

(4.8)

1o (x,0) = ﬂ((;i)(x —t)

(49 9(d)

¥ .o (x,0) = pT(x —t)(x-t)T - (1/)(d)d— 2b2(p1(d) — bl)) C.
REMARK 4.1: Consider the problem (Pp) with solution 8(P). Similar to differen-
tiating L, we can also differentiate the Lagrangean Lp corresponding with (Pp).
Because the functions ¥(y) and ¥i(y)y for k = 1,2 are bounded we may change
the order of integration and differentiation at least on a bounded neighbourhood of
6(P) and conclude that 8(P) is a zero of the equation

A(8)P¥,(-,0) + B(6)P¥(-,8) — 26,PR(-,6) = 0.
In particular this means that P®(-,8,) = 0.
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Since Lemma 4.1 is stated only for real valued functions we will apply it to each
component of the functions ¥,, ¥, and R separately. The following lemma implies
that the classes of graphs of the functions which are then involved have polynomial
discrimination.

LEMMA 4.4. For x = (z,---2,)T and 8 € © let g(x, 0) be a real valued function.
Consider the classes functions F = {g(x,0) : 0 € O}, F; = {g(x,0)z; : 0 € 6}
and F;; = {g(x,0)z;z; : 0 € ©) fori,j = 1,...,p. Denote by G, G; and G;; the
corresponding classes of graphs of functions in F, F; and F;; respectively. If G has
polynomial discrimination, then also G; and G;; have polynomial discrimination for
ij=1,...,p.
PROOF: The lemma is an immediate consequence of Lemma 5.2 in Lopuhai (1988).
a

LEMMA 4.5. Suppose that E||X,||* is finite. Let ®(x,8) for k = 1,2 and R(x, 6)
be defined in (4.7) and (4.8). Then

P (-,0,) = P¥(,6,) + (Py — P)¥i(-,80) + op(1//n).
PaR(:,8,) = PR(-,0,) + (Pa — P)R(-,680) + op(1//n).
PROOF: We only prove the lemma for ¥, as the other cases can be shown similarly.

We first deal with the matrix part ¥ cov Of the function ®,. Consider the (i, j)-th
element of ¥, ., (Where d as defined earlier) :

(4.10) ‘I’l,cov,ij(x, 0) = p¢le(ri - t,')(.’l:j - tj) - (d)d Cij-

Write g(x,8) = py1(d)/d and h(x,8) = y,(d)d. Consider the first term of (4.10)
and decompose g(x, 8,)(%; — tai)(2; — tnj) — g(x, 8o )(zi — p;)(z; — ;) as follows :
9(x,0,)zz; — 9(x,80)z;z;

~tai{g(x,0n)z; — 9(x, 80)z;} — tn;{g(x, On)z: — 9(x,80)x:}

+tnitn;j {9(x,0n) — g(x,00)}

= (tni — pi)9(x,00); — (tnj — p;)g(x,00)2; + (tnitnj — pipsj)9(x, 6o).

(4.11)

Consider the first term of (4.11). According to Lemma 4.2 the class of graphs of
the functions {g(x, 8) : @ € B} has polynomial discrimination. Hence, according to
Lemma 4.4 the class of graphs of the functions {g(x, 8)z;z; : 8 € ©} has polynomial
discrimination. Since g is bounded and E||X,||* is finite this means that Lemma
4.1 applies to the first term of (4.11). As g is continuous, g(x, 8, )ziz; tends to
9(x,80)ziz;, which means that for any § > 0 both functions are in the class [6]
of Lemma 4.1 for n sufficiently large. It follows that if we integrate (4.11) with
respect to P, — P, the first term is 0op(1//n). Similarly the next three terms will
be op(1/+/n). Because t, — p, the central limit theorem implies that also the last
three terms of (4.11) will be op(1/y/n). By a similar reasoning one can show for
the second term of (4.10) that (Pn — P)(h(-,8n)cnij — h(-,00)0i;) = op(1/+/n) and
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it follows that (P — P)(®cov,1,ij(*,0n) — ®cov,1,ij(-,00)) = op(1//n). This holds
for each pair (¢, 7). Similarly one can show for each component of the location part
¥ 1oc of the function ¥, that (P, —P) (\PUOC,.-(-, 6,)— ¥, joc,i(- 00)) = op(1//n).
Putting all parts together gives

(Pa = P)(#1(,80) - #1(:,00)) = 0p(1/ V)
which proves the lemma for ®,. The other two cases can be shown similarly. O

The following theorem states that the limiting behaviour of each solution 8, of
the problem (Pp,) is the same as that of multivariate M-estimators, defined as a
solution of the equation ) ., ¥(X;,8) = 0, where ¥ is given in (4.9).

THEOREM 4.1. Suppose that E||X1]|* is finite and that the function P®¥(-,8) has
a nonsingular derivative A at ;. Let P¥,(-,6p) = 0 for k = 1,2 and let 8, =
(tn, Cp) be a solution of (Pp,) forn =1,2,.... Then it holds that

(@12) R(On = 80) = 2 5" #(X,,00) + 0n(1/vR).
i=1

ProoF: We first determine the rate of convergence of 8,. From equation (4.6) and
definition (4.9) it follows with Lemma 4.3 that

0= An(on) Pn'I’l(';en) + Bn(gn) Pn'I'2(')8n) - 2b2 PnR('y on)
= P,¥(-,6,) + op(1) P,¥,(-,0,) + 0p(1) P, ¥s(-,6,).
By assumption P¥(-,0) is differentiable at 8y and according to Remark 4.1 we

have that P¥(-,80) = 0. Hence, P¥(-,0,) = A(8, — 85) + 0p(]|0n — 80]|). With
Lemma 4.5 we then obtain

(4.14) P, %(-,6,) = (A + 0p(1))(8, — 60) + (Pn — P)¥(-,80) + op(1/+/n).

For k = 1,2 the conditions on p; imply that P¥,(-,8) is differentiable at 8y, so
that similar to (4.14) we find that

(4.15)  op(1) Pa¥®1(-,6n) + 0p(1) Pa¥s(,0,) = 0p(|[6a — 60o) + op(1/v/n)

where we use that (P, — P)%.(-,80) = Op(1/+/n) according to the central limit
theorem. By putting together (4.13), (4.14) and (4.15) we find that

(4.16) 0 = (A + 0p(1))(8, — 60) + (P — P)¥(,80) + op(1/3/n).

According to the central limit theorem (P, — P)¥(-,80) = Op(1/+/n), so that (4.16)
boils down to

(4.13)

0= (A +0p(1))(8n — 8o) + Op(1/V/n).

Since A is nonsingular it follows that 8, — 8¢ = Op(1//n).
If we put this into (4.16), this equation reduces to

0 = A(8n — 60) + (Pa — P)¥(-,80) + 0p(1/v/n)
which proves the theorem as P¥(-,8) = 0. ]
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The simultaneous limiting distribution of the actual r-estimators (t,, V,) may
now be obtained from Theorem 4.1 by means of expressing V,, in terms of 6,, — 6,.
The latter is done in the next lemma.

LEMMA 4.6. Let Ry(x,0) = po(d) — b2 where d is the abbreviation defined before.
Consider the function P Ry(-,6) and let A, be the derivative of P Ry(-,0) at 6.
Then

Va = Cpn +b3'2 (P, — P)Ry(+,00) + b5 ' A3(0,, — 60) + op(1//n).
PRroOF: By definition we have
(4.17) V. =Cpn +b;'S PyRy(+,0,) + b5 (Cn — B) PuRa(+,0n).

According to Lemma 4.2 the class of graphs of the functions {p2(d(-,8)) : 8 € ©}
has polynomial discrimination. Because p; is bounded we may apply Lemma 4.1 and
conclude that P,Ry(-,8,) = PRy(-,0,) + (P, — P)Ra(-,60) + op(1//n). Because
bz is defined as in (3.3), we have that PRy(-,8p) = 0. Furthermore, PRy(-,8) is
differentiable at 8y and therefore it holds that

(4.18) PaR3(:,0n) = A2(6n—60)+0p([|6n —o|l)+ (Pn— P)Ra(+,80) +0p(1/v/n).

Theorem 4.1 implies 8,, — 8o = Op(1/+/n), so that the lemma follows from (4.17)
and (4.18). O

To apply Theorem 4.1 and to obtain a limiting theorem for (t,, V,,) it will be
more convenient to consider the derivatives A and A; as linear mappings on ©.
These mappings are described in the next lemma.

LEMMA 4.7. Let dy = \/(x— u)TE'l(x — p) and let wy, = [i(do)do dP(x) > 0
for k = 1,2. Let P¥(-,8;) = 0 for k = 1,2. Let A and A, be the derivatives
defined in Theorem 4.1 and Lemma 4.6. Write @(y) = ¥(y)/y and gy = W(y)y —

2b, (pl( y) —b1). Then A is the linear mapping (Awocs Acov), where Ajqc is the linear
mapping that maps (t,C) to

- [ B - 75 - )+ 20— WS (x ) AP ()
- /ﬁ(do)t dP(x)
Acov is the linear mapping that maps (t,C) to
-/p’&'(do){ _ p)Tz-lcz—l(x_ l—‘)
+20x = T B (= w)x = )7 dP()
+ / "7'2(7‘:(‘:){(:: —w)TZ7ICE (x — p) + 2(x — p)TE—lt}E dP(x) — 2byw, C
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and A, is the linear mapping that maps (t,C) to —(2p)~lwatrace(CE~1).
PrOOF: First consider the derivative with respect to @ of the function ¥ at 6.
This is the linear mapping D®(x, 8p) = (D'I'loc(x, 69), D¥ov(x,80)).

The first component is the linear mapping D\i’loc(x, 6o) which maps (t,C) to

_#(do)

) { (= )T BB (x - ) 4 2(x = T fx = ) - Ao

The second component of D\i’(x,ao) is the linear map D\ilcov(x,oo) which maps
(t,C) to

_P '”;'fidoo) {(x — )T ETCE T (x - p) + 2(x - M)T‘J'1t}(x — w)(x = m)"

- pa(do>{t(x — )T 4 (x - u)tT}
+ %(joi){(x — )T e~ (x— p)+2(x -~ p)TE‘lt}E — §(do)C

If we integrate both components with respect to P the conditions on ¥; and ¥,
ensure that we may interchange differentiation and integration. The expression
for Ajoc follows immediately. According to Remark 4.1 P\i’.oc(-,oo) = 0 so that
the second term of D% .,(x,8,) vanishes if we integrate with respect to P. By
definition of ¥ it follows that [ §(do) dP(x) reduces to 2byw;.

Finally, the derivative with respect to 8 of the function Ry(x, 6) of Lemma 4.6
at Bp, is the linear mapping that maps (t, C) to

_ %2(do)

4.1
(4.19) 24,

{(x —w)TEICE (x — p) + 2(x — u)TE'lt}.

If we integrate this with respect to P we may again interchange differentiation and
integration. Note that

(4.20) (x — p)TE1CB " (x — p) = trace((x — p)(x — p)T="1CE?)

and that P®,(-,0p) = 0. This means that if we integrate (4.19) with respect to P,
the term with t vanishes whereas the first term reduces to —(2p)~!watrace(CE1).

O

The limiting distribution of the 7-estimators will be an immediate consequence
of the next theorem.

THEOREM 4.2. Let Rya(x, 8) = wi(pa(d) —b2) —wa(p1(d) —b1), where d as defined
in the beginning of this section and wy and wy as defined in Lemma 4.7. Under the
conditions of Theorem 4.1 it holds that

A(‘rn — 00) = —% zn:T(X,',O()) + Op(l/\/ﬁ)
i=1
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where T(x, ) is the function

\i’(x, 9) - (bzwl)_an(x, 6) (mo, My)
and (mo, M) is the pair A(0, £) = (Aioc(0, ), Acov(0, T)).
ProoF: With Lemma 4.7 we find that

(4.21) Ay, — 6)) = —;—;trace((Cn ~3%)sY).

We first determine the asymptotic expansion of this by means of Theorem 4.1.
Consider the covariance part of (4.12) :

(4.22) Reor(Bn — B0) = =23~ $es(Xi, 80) +0p(1/ V).

If we multiply 'i'cov(X,-, 8y) by £~! and take traces it follows from definition (4.9)
that this reduces to 2byp(p1(dio) — b1), where d;p = /(X; —)TE-1(X; — ).
Consider the left hand side of (4.22) of which the expression is given in Lemma
4.7. Multiply by 3~ and take traces. Because —2#'(y)y + 23'(y)/y = p¥(y)/y —
bap1(y)/y we obtain

(€

+2(x — u)TE_l(t,. - u)} dP(x)
— 2b2wltrace((C,, — E)E’l).
This reduces to —bzwltrace((Cn - 2)2'1), where we use (4.20) and the fact that

P\i'(-, 60) = 0 and P¥,(-,0,) = 0. Hence, if we multiply (4.22) with ! and take
traces we find that

(423) ——bzwltrace((Cﬂ - 2)2_1) = —'2—9:—2 Z (Pl(di) - bl) + Op(l/\/f_l).

i=1

According to Lemma 4.6 and (4.21) this means that
V,—-2=C,-X+ (b2w1)_1% iR12(XhOO) E + op(1/v/n)
i=1
and hence,
Tp — 69 = 8, — 6 + (bywy) ™} ;11' Xn:RIZ’(Xi,OO) (0,2) + op(1/+/n).
i=1 :

When we apply the linear map A to both sides, the theorem follows from Theorem
4.1. O
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COROLLARY 4.1. Let T(x, @) be defined in Theorem 4.2. Then under the conditions
of Theorem 4.1 \/n(T, — 0y) has a limiting normal distribution with zero mean

and covariance matrix A=MA~T, where M stands for the covariance matrix of
T(X1,6q).

5. Robustness. We measure the robustness of the T-estimators by means of the
finite-sample breakdown point as defined in Donoho and Huber (1983) and the
influence function as defined in Hampel (1974).

5.1. Breakdown point. The breakdown point of a location estimator t, at a
collection X = (xy,...,x,) is defined as the smallest fraction m/n of outliers that
can take the estimator over all bounds :

(5.1) e*(tn, X) = mlg {—:—?— £ sup 1€ (X) — tna(Yo)|| = oo}
where the supremum is taken over all possible corrupted collections Y,, that can be
obtained from X by replacing m points of X by arbitrary values. The breakdown
point of a covariance estimator C,, at a collection X is defined as the smallest
fraction m/n of outliers that can either take the largest eigenvalue A;(C,) over all
bounds, or take the smallest eigenvalue A\,(C,) arbitrarily close to zero :

* - .
e*'(Cn,X) = Ién"}rsln

{2 500 D(C0 (), oY) = o0}

where the supremum is taken over the same corrupted collections Y, as in (5.1),
and where D(A,B) = max{|A1(A) — A;(B)|,|A,(A)~! = A,(B)~ 1}

We have already seen in Section 2.2 that for x;,...,x, in general position at
least one solution exists if n(1 —r;) > p+ 1. In order to guarantee that at least one
solution exists when we also replace [nr;] — 1 points x; by arbitrary points we need
that every subsample of [n — nr{] points contains at least p + 1 points in general
position, where [y] denotes the smallest integer greater than or equal to y. That this
implies existence of a solution to the finite sample problem can be seen as follows.
For each (t, C) that satisfies (2.3) it holds that P,(E(t,C,c1)) > [n — nry]/n, and
clearly does P, satisfy condition (H,) for € = [n —nr,]/n. Apply Lemma 2.2(i)
and then use an argument similar to that in the proof of Theorem 2.1.

THEOREM 5.1. Let X be a collection of n > p+1 points in R? in general position.
Let ry = by/ay. If ry < (n—p)/(2n) then the r-estimators (t,, V,,) have breakdown
point €*(ty, X) = €*(Vn,X) = [nr] /n.

PROOF: As we can always rescale the function p; we may assume that a; = 1, so
that b; = r; in (2.3). According to Lemma 2.1 there exists a constant ¢ > 0 which
only depends on p;, p2 and by, such that

LS Al — T O i~ )7 2 0
i=1
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Therefore V,, breaks down simultaneously with C,, and it suffices to consider break-
down of t,, and C,,. The rest of the proof is along the lines of the proof of Theorem
3.2 in Lopuhaa and Rousseeuw (1989). We give a brief sketch of the argument.

First show that £*(t,, X) and £*(C,, X) are at least [nr;]/n. Replace at most
m = [nry]—1 points of X. Since [n — nr,|—[nr,] > pit follows that at least one so-
lution (tn(Ym), Cn(Ym)) in © exists, and that there exists a constant ky > 0, which
only depends on the collection X, such that the smallest eigenvalue A (Cn(Ym )) >
ky. The collection Y,, contains n — m points of X, say x;,... ,Xp_m. Since
nry — [nr,] + 1 is always strictly positive and because p; is continuous, we can find
a constant M > 0 such that 3 /"" p1(lx;]|/M) = nry — [nry] + 1. In that case

> aullyill/M) < i: pr(llx:i|l/M) + [nri] —1 = nry
i=1

Yi€EY,,

which means that the pair (0, M2I) satisfies constraint (2.4). According to Remark
2.1 this means that for the finite sample problem corresponding with the collection
Y, the value of the loss function at (t,(Ym), Cn(Ym)) is at most (M2a;)P. With
Lemma 2.1 it follows that |C,(Y,,)| < (M2a2/q)? and hence, the largest eigenvalue
M (Ca(Ym)) < (M2ay/q)? /K™ which only depends on X. We conclude that
Cn(Ym) does not break down so that ¢*(C,,X) > [nry]/n.

To obtain the same inequality for £*(t,,, X) as well as the two opposite inequal-
ities, only the constraint (2.3) matters whereas the type of loss function in (Pp,) is
of no importance. These inequalities can therefore be obtained similar to those for
S-estimators for multivariate location and scatter (Lopuhaa and Rousseeuw 1989,
Theorem 3.2). O

Obviously the optimal value for the breakdown point is obtained by chosing r; =
(n—p)/(2n) in which case €*(t,,, X) and £*(V,, X)) attain the maximal possible value
for affine equivariant covariance estimators : [%J /n. Note that the breakdown
point of the r-estimators depends only on the constant b;, or only on the constant
¢ if by is chosen as in Theorem 2.2. This means that the tuning constant ¢, of the
function p, can be varried without cha.iging the value of the breakdown point.

5.2. Influence function. The breakdown point of an estimator =, is only a
global measure of robustness. To assess sensitivity of the corresponding functional
7(-) under small pertubations, Hampel (1974) defined the influence function as

7((1 = h)P + héx) — 7(P)
h

2 ; =1
(5.2) _ IF(x; 7, P) lim
where 6, denotes the Dirac measure concentrated in x € RP. A related measure of
robustness is the gross-error sensitivity defined as y* (7, P) = sup, IF(x; r, P).

We assume that P satisfies property (H,) for some 0 < € < 1 — ry, that the
minimization problem (Pp) has a unique solution 89 = (p, X), and we take by as
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in (3.3). For x € R? and 0 < h < 1 write Pyx = (1 — h)P + hé,. For h | 0 the
distribution Pj x converges weakly to P. According to Theorem 4.1 this means that
at least one solution to the problem (Pp, ,) exists for h sufficiently small and that
0(Ph,x) — 69. Before we obtain the influence function for the rfunctionals, we
first need the following equivalent of Theorem 4.1.

LEMMA 5.1. Let x € R? and let 6(Pyx) = (t(Phx), C(Pax)) be a solution of
(Pp, ) for h sufficiently small. Under the conditions of Theorem 4.1 it holds that
forh ] 0

(5.3) A(8(Py x) — 8o) = —h¥(x,8;) + o(h).

PROOF: We can use arguments that are similar to the one used in the proofs in
Section 4, except that one should read Pj x instead of P,. We will go through them
briefly. Suppress the dependence on x and write 8, instead of (P x). We first
show that 8, — 8y = O(h).

Define Ap x(8) = P xa(-,8) and Bj x(0) = Py xb(-,8). According to Remark
4.1 it holds that the solution 8} of the problem (Pp, ,) satisfies

(54) 0= Apx(0n)Pox®1(-,60r)+ Brx(0r)Pnx®2(-,0n) — 2b2Py xR(-,61).

Since the functions a(x,®) and b(x, 8) are bounded and continuous, it follows im-
mediately that Ap x(6n) — A(60) and Bp x(6r) — B(80). Hence, similar to (4.13)
it follows together with (5.4) that

(5.5) 0= Phx¥®(-,01)+0(1) Ppx¥®1(-,01) + o(1) Py x¥2(-,01).

Similar to (4.15) one finds that the last two terms on the right hand side of (5.5) are
o(||@n — 60||) + o(h). The function ¥(x, ) is continuous and bounded on a bounded
neighbourhood of 8y. This implies that \i’(x,O;.) tends to ¥(x,8) as h | 0, and
that P\i'(-,Oh) tends to P'i'(-,Go), which is zero according to Remark 4.1. Hence,
similar to (4.14) one finds that Py x®(-,85) = (A+0(1))(8x—80)+hE(x, 80)+o(h).
If we put this into the first term on the right hand side of (5.5) it follows that

(5.6) 0 = (A +0(1)) (8 — 80) + h¥(x, 80) + o(h).

Since A is nonsingular this means ~that 8, — 8 = O(h). If we substitute this in
(5.6), this equation reduces to 0 = A(6x — 6o) + h¥(x, 80) + o(h), which proves the
lemma. O

THEOREM 5.2. Under the conditions of Theorem 4.1 it holds that the T-functional
7(-) = (t(-), V(-)) has influence function IF(x; T, P) = ~A~1T(x,8,), where the
function T(x, 8) is defined in Theorem 4.2.

PRrRoOF: If one reads Pj x instead of P,, the proof is along the lines of the proof
of Theorem 4.2. Suppress the dependence on x and write t,, Cj and V; instead
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of t(Ph,x), C(Pnx) and V(Pj x). Consider the function Rz(x, 8) and its derivative
A2 at 8 as defined in Lemma 4.6. By definition we have that

(5.7 Vi = Cp + b3 'SPy xRo(+,03) + b3 (Ch — E)Py x Ro(-, 04).

By means of a similar reasoning that leads to (4.18) we obtain

(5.8) Py xRo(-,0) = A2(05 — 80) + 0(]|6s — B9|]) + hR2(x, 80) + o(h).
Lemma 5.1 implies that 8, — 8o = O(h), so that with (5.7) and (5.8) it follows that
(5.9) Vi = Ch + hb; ' ERy(x, 8,) + b5 'ZA,(8) — 60) + ofh).

With Lemma 4.7 and the covariance part of Lemma 5.1, similar to (4.21) and (4.23)
we find that

A2(0,, - 00) = -—%trace((C,. - 2)2_1) = —h::—j (pl(d(x, 00)) - bl) + O(h)

where d(x,8) as defined in (3.1). Similar to the proof of Theorem 4.2 it follows
from (59) that 7, — 0.0 =6,—-6s+h (bzwl)_lRlz(x, 00)(0, E) + O(h) If we then
apply the linear map A to both sides the theorem follows from Lemma 5.1. O

It follows immediately from the expression of T(x,8,) given in Theorem 4.2
that IF(x; 7, P) is bounded and hence, that the gross-error sensitivity v*(r, P) is
finite. A more explicit expression for IF(x; 7, P) and v*(7, P) can be obtained at
elliptical distributions. This will be done in the next section.

6. Elliptical distributions. As a special case we consider elliptical distributions.
In this case it turns out that the limiting distribution of the r-estimators is exactly
the same as that of multivariate S-estimators defined with a weighted p-function

(6.1) A() = A(Bo)ps(-) + B(Bo)p2(-).

To describe the limiting covariance matrix of \/n(V, — £) we use the commutation
matrix K, , and the operator vec(-). The matrix K, , is a p?> x p?>block matrix
with the (i, j)-th block being equal to Aj;, which is a p x p-matrix with entry 1
at (j,7) and 0 everywhere else. The operator vec(-) is a p?-vector that stacks the
columns of a p x p-matrix on top of each other. Finally, by A ® B we mean the
Kronecker product which is a p* x p%-block matrix with the (4, j)-th block a;;B.

COROLLARY 6.1. Let P be an elliptical distribution with parameters s and 3 that
satisfies condition (F) and has a finite fourth moment. Let 8y = (1, ) and let
do = /(X1 — p)TE-Y(X; — ). Let p and ¥ = ' be defined in (6.1) and (4.5),
and suppose that

Ev'(do) > 0

2 - -
(©2) ¥=(p+2)"'E[¢'(do)d] + (p + 1)¥(do)do] > 0.
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Then \/n(T, — 69) has a limiting normal distribution with zero mean and t, and
V, are asymptotically independent. The covariance of the limiting distribution of
V1 (t, — p) is given by (&/3%)E, where

r—-’u|r~

¥*(do)
= ~E[(p — 1)¥(do)/do + ¥'(do)].

’U

The covariance matrix of the limiting distribution of the matrix /n(V, — X) is
given by 51(1+ K, ,)(Z ® ) + &zvec(E) vee(E)T where

5, = PEP’(do)d3
(r+2)7
— h)2
5y = — 25, 4 1EG(do) — b

o2

and where 7 is defined in (6.2) and & = E4(dy)do.

PrOOF: It is not difficult to see that we may restrict to the case (u, ) = (0,I).
(see for instance Lemma 4.1 in Lopuhad 1989). We first determine the expression
of the function T(x, 8p) of Theorem 4.2. With Lemma 4.7 it follows by symmetry
that mo = O and that

- 1_.
Mo = ~ZE@(IXDIXI X XT + SEF UK DI - 2bgen T

Then use that for spherically symmetric distributed X; it holds that X;/{|Xi]|
is independent of ||X1|| and has covariance matrix (1/p)I. Since by definition
—%ﬂ’(y)y3 + g’(y)y = ¥(y)y — bat1 (v)y, it follows that My = —byunI. All to-
gether we find that T(x,80) = S(x,80) where S = (Sicc, Scov) is the function

gloc(x, 0) = M(x - t)

(6.3) (d)
Scov(x,8) = p=7(x — t)(x = t)T — (¥(d)d ~ j(d) + b) C

with 5 defined in (6.1), ¥ defined in (4.5) and b = (2b2 — w2)by +w1by = EF(| X1]]).

At this point we recognize the function S ‘as being the ©-valued function that
defines the M-estimator type of score equations Y ., $(X;,8) = 0, of which the
multivariate S-estimators 85 = (t5,CS) defined by the function § are a solution
(Lopuhaa 1989). If we denote by D the derivative of the function PS(-,8) at 8,
this has the following two consequences. First, note that p satisfies conditions (R1)-
(R2), so that conditions (6.2) imply that D is nonsingular (see the proof of Corollary
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5.1 in Lopuhaid 1989). Secondly, because Dis nonsingular and since 8y is the unique
solution of the S-minimization problem, the following expansion holds for 63 :

(6.4) D(65 - 0)) = —= ﬁjé(x;,oo) +op(1//n)

(proof of Theorem 4.1 in Lopuhad 1989 together with Theorem 3 in Huber 1967).
However, it is easily seen that D = A. This means that also A is nonsingular.

Because 8, is the unique solution of (Pp), Theorem 4.2 applies and we may conclude
that

(6.5) D(r — 65) = -% 3 8(X:, 80) + op(1/V/R).
i=1

It follows from (6.4) and (6.5) that the limiting distribution of v/n(7, — 8y) is the
same as that of multivariate S-estimators \/n(85 — 6o). This is a limiting normal
distribution which is described in Corollary 5.1 in Lopuhaa (1989). Hence, the
expressions for the scalars &, 3, 5; and &, follow immediately from this corollary.

]

Note that because Eg(v/(X; — g7 1(X; = @) = [ g(lxI)f(lx]) dx, the
scalars in Corollary 6.1 do not depend on (s, £). When ¢z — oo then &/32, &, and
62 will tend to the corresponding values for the sample mean and the sample co-
variance. This means that for large values of ¢, one has good asymptotic efficiency
relative to the sample mean and sample covariance. This is true for any fixed value
of ¢1. Hence, we can choose ¢; such that t, and V, have a high breakdown point
(Theorem 5.1) and then vary ¢, to obtain good efficiency for instance at the normal
distribution.

For the influence function we only give the expression at spherically symmetric
distributions. The expressions at general elliptical distributions can be found by
using affine equivariance.

COROLLARY 6.2. Let P be spherically symmetric. Under the conditions of Corol-
lary 6.1 it holds that the location T-functional has influence function

IF(x; t, P) = '/’;”x”)

where 8 is defined in Corollary 6.1. The covariance r-functional has influence
function

IF(x: V., P) = ptgﬂbhn) _ Pl 2=l - b,

where 4 and & are defined in Corollary 6.1.

PROOF: From the proof of Corollary 6.1 we know that the function T(x,8o) =
S(x 6y), and that Ais equal to the derivative D which is nonsingular. Hence,
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with Theorem 5.2 we find that IF(x; 7, P) = —D~'§(x,8,). From Theorem 3.3 in
Lopuhai (1989) we see that the influence function of the 7-functional is the same
as that of the S-functional defined by means of the function p. Therefore, the exact
expressions for IF(x; t, P) and IF(x;V, P) in the case of a spherically symmetric
distribution can be taken from Corollary 5.2 in Lopuhad (1989).
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SCHATTING VAN LOKATIE EN COVARIANTIE
MET HOOG BREEKPUNT

Samenvatting

In dit proefschrift worden de robuustheid en het asymptotisch gedrag van multi-
variate schatters voor lokatie en covariantie bestudeerd. Robuustheid van de schat-
ters wordt op twee verschillende manieren gemeten. De globale robuustheid wordt
gemeten aan de hand van het breekpunt, hetgeen ruwweg de kleinste fraktie van
uitschieters in de collectie is die de schatter voorbij iedere grens kan trekken; het
beschrijft het globale gedrag van een schatter onder grote verstoringen. De lokale
robuustheid wordt gemeten aan de hand van de invloedsfunktie, die de invloed
van één enkele uitschieter op de schatter beschrijft. Voor het onderzoeken van het
asymptotisch gedrag, wordt de collectie opgevat als een steekproef, die gegenereerd
is door een verdeling P op RP, en wordt het gedrag van de schatters bestudeerd als
de steekproefgrootte n naar oneindig gaat. De meeste belangstelling gaat uit naar
de snelheid van convergentie, de limietverdeling en de asymptotische efficiéntie. Als
speciaal geval wordt het gebruikelijke lokatie-covariantie model beschouwd, waarbij
wordt aangenomen dat de verdeling P elliptische contouren heeft met een onbekende
lokatie en spreidingsparameter.

De aandacht richt zich op schatters die commuteren met affiene transformaties
van de punten. De eerste multivariate affien equivariante schatters voor lokatie en
spreiding met een hoog breekpunt werden geintroduceerd in het begin van de jaren
tachtig. Helaas hebben deze schatters relatief slechte asymptotische eigenschappen.
De snelheid van convergentie is in het algemeen langzamer dan de gebruikelijke /n
snelheid, de limietverdeling is niet altijd normaal, of de asymptotische efficientie is
teleurstellend laag.

Het belangrijkste doel van dit proefschrift is om affien equivariante schatters te
construeren voor multivariate lokatie en spreiding die globale en lokale robuustheid
combineren met goede asymptotische eigenschappen. De bevindingen zijn samenge-
vat in vier verschillende artikelen. Deze artikelen zijn gereproduceerd aan het einde
van het proefschrift en worden vooraf gegaan door een inleiding waarin de artikelen
in een kader worden geplaatst.

In het eerste artikel wordt het breekpunt van diverse schatters voor multivari-
ate lokatie en spreiding bestudeerd en wordt de rol van verschillende equivariantie
eigenschappen geillustreerd. Bovendien wordt een relatie tussen het breekpunt van
univariate lokatie schatters en een maat voor grote afwijkingen uitgebreid tot multi-
variate lokatie schatters. Het tweede artikel is gewijd aan multivariate S-schatters.
Deze schatters zijn een gladde versie van Rousseeuw’s minimum volume ellipsoide
schatter en kunnen gezien worden als een eerste stap in de richting van het combi-
neren van robuustheid met goede limiet eigenschappen.

In het derde artikel wordt een affien geschaalde lokatie M-schatter onderzocht.
Dit is min of meer een lokatie M-schatter gebaseerd op de steekproef die onstaat
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na schaling met een affien equivariante covariantie schatter met een hoog breek-
punt. In het vierde artikel wordt de klasse van S-schatters uitgebreid tot de klasse
van multivariate 7-schatters. Zowel van deze schatters als van de affien geschaalde
lokatie M-schatters wordt aangetoond dat ze affien equivariant zijn en een hoog
breekpunt alsmede een begrensde invioedsfunktie hebben. Bovendien wordt bewe-
zen dat deze schatters met snelheid \/n convergeren naar een normale verdeling en
dat ze een goede efficiéntie hebben met betrekking tot het steekproef gemiddelde
en de steekproef covariantie.
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