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Abstract
This report entails one of two subsystems in a system to provide a web-based platform for smartwatch
data acquisition. Human activity recognition is designed and implemented using various machine learn-
ing approaches and then tested on the data acquired using our own platform. Together with the web-
based platform, this provides a solid base for more research using data gathered from smartwatches.

The human activity recognition is implemented first using a classical machine learning approach
with feature extraction and a random forest classifier. Then, both a convolutional neural network and a
recurrent neural network are implemented using Tensorflow [1]. Tests are performed to see how much
data points are needed for sufficient classification accuracy, whether filtering of the data improves the
accuracy of the models, and what model performs best.
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1
Introduction

The presence of smartwatches is expending rapidly with 40 million smartwatches sold in Q4 of 2021
and a year-over-year shipments increase of 21% in the same year [2]. The newest smartwatches con-
tain more types of sensors, which provide lots of new opportunities for engineers and researchers.
Smartwatches become an accessible base for developing suitable applications without requiring ex-
tensive resources. Smartwatch sensors have become increasingly more reliable over time. This has
improved their recognition and acknowledgement in healthcare services and research.

Healthcare
Smartwatches started with simple functions like heart rate detection and setting alerts for medication
reminders. By now they have now progressed to more advanced applications like early detection of
diseases such as arrhythmia, abnormalities in the heart rhythm. The sensors that make those advanced
applications in healthcare possible are the PPG and ECG sensors.

Newer smartwatch models (such as the Apple Watch 7 [3]) use these sensors to detect signs of
arrhythmia in their health app. Multiple studies have been conducted to test the detection accuracy
of atrial fibrillation (a type of arrhythmia) using ECG data and conclude that smartwatches are already
quite accurate [4–6]. The comparison in these studies is made with traditional 12-lead ECG’s, which
are more extensive and time-consuming for the patient and healthcare worker. Recently, Mishra et al.
[7] even used smartwatches for pre-symptomatic detection of COVID-19.

Human activity recognition
Smartwatches also contain other sensors like the the accelerometer and the gyroscope which open the
door to research in human activity recognition (HAR). HAR is an active field of research due to the many
possible applications it has in domains such as healthcare monitoring [8], surveillance, and exercise
tracking. For instance, HAR can recognise early mobility for Intensive Care Unit patients. Early mobility
is essential for ICU patients who suffer from long-time immobilisation [9].

Improvements
More research is still needed to approve or improve the performance of diagnosis based on smartwatch
sensor data. For example, some research questions that still need to be answered are: how good is
the accuracy of the smartwatch sensors compared to traditional methods? How does their reliability
hold up under different conditions such as swimming and jogging?

The first step to investigate these questions, is to collect data using these smartwatches and build
the required database for them. A platform which enables easy and fast data collection from smart-
watches is necessary and highly invaluable for researchers. Therefore the goal of this project is to
provide a stable base for research on smartwatch data. To make this possible, a smartwatch app and
a web based platform are designed and implemented.

Our app ”GetSmart” reads out the sensor data from the smartwatch and sends it to the web-based
platform, where it can be downloaded. This allows for fast and easy collection and generation of data
sets from smartwatches sensors.
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2 1. Introduction

In the second part of the project, which is the main focus of this thesis, we focus on Human Activity
Recognition (HAR). Accelerometer and gyroscope data is collected using the platform and used to
generate a data set. This data set is used to train and test machine learning algorithms for HAR. It is
important to note that initially the algorithms are designed using an existing data set, as the first part of
our project was still in progress.

Human Activity Recognition
As mentioned before, HAR has many applications in domains such as healthcare monitoring, surveil-
lance, and exercise tracking. There are, however, some challenges that HAR faces such as data
collection, privacy and power consumption.

Multiple measuring methods can be applied for HAR. Cameras are one of the possibilities to collect
data for HAR. While cameras provide lots of useful data, the privacy invasion that comes with it causes
big societal problems. Although there are many solutions to reduce collecting sensitive data [10] [11],
they can’t ensure privacy-preserving video’s. Besides privacy, another main problem with collecting
data using a camera is that the participants are bound to the view of the camera.

To overcome these issues, smartphones [12] [13] and wearable sensors are valid solutions. Smart-
phones are less viable if the position change of the smartphone gets taken into account. Changing the
phone’s position, e.g. from pocket to purse, can influence the incoming data of the HAR. In doing so,
the accuracy of the prediction model gets influenced. For wearable sensors, this is not the case. The
privacy infringement in these scenarios is also limited to the user of the device. In contrast to cameras,
an accelerometer does not record it’s surroundings.

Wearable sensors can be divided into two categories: sensors on multiple parts of the body [14],
or smartwatches [15] [16]. The first category is an accurate way to measure human activity, espe-
cially with suitable measuring points. However, depending on the position and the connections, users
may find the sensors uncomfortable and can thereby influence the data by moving differently than nor-
mal. Smartwatches however are the most viable solution as they are relatively comfortable and do not
interfere with movement.

Acquisition
Commercially available smartwatches from manufacturers such as Samsung, Apple, and Garmin al-
ready provide users insight on the recordings such as heart rate, ECG, and blood pressure. They are
presented in a graphical user interface on an app but they do not provide or save continuous record-
ings of raw data that can be used for research and development. Several approaches have been
proposed in literature to gather required data for researchers like the Real-time Online Activity and Mo-
bility Monitor (ROAMM) framework [17], where several characteristics of such a framework are listed.
The ROAMM framework consists of an application for data collection, a server for data storage, and
an online monitoring tool.

Recognition
After acquiring the data from the smartwatch, the next step is to process and use it for activity recogni-
tion. This can be done using machine learning. Many classification models are proposed in literature
that use sensor data to perform human activity classification. They range from traditional machine
learning to deep learning algorithms. It is also possible to combine different classifiers in an ensemble.
Hossain Shuvo et al. [18] propose an ensemble of a support vector machine classifier (SVM) and a
random forest classifier with a Convolutional Neural Network (CNN). The first two models are machine
learning models while the latter is a deep learning model. An ensemble of two deep learning models
is also possible. Verma et al. [19] discuss a combination of a CNN and a Gated recurrent unit (GRU).

Problem description
As described in the previous sections, there are many applications for data recorded by smartwatches.
However, to the best of our knowledge, there is no easy and user friendly platform to collect raw smart-
watch sensor data. In this project we have developed an easy-to-use smartwatch application and a
web-based platform for researchers, to record smartwatch data, send the data to the platform and re-
trieve the data from the platform for their applications. The recordings can be downloaded as a Comma
Separated Value (CSV) file from the server. The recordings made during this project will be used to
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train a machine learning model for HAR, in order to demonstrate the usefulness of raw smartwatch
data collected in this way.

Figure 1.1: Project overview.

Subdivision
To address these problems, the six group members are divided into two subgroups. Figure 1.1 shows
the proposed workflow. One of the subgroups (circled in blue) focuses on the data acquisition and stor-
ing the data on a web-based platform, while the other subgroup (in red) focuses on activity recognition.
This thesis will focus on the human activity recognition subgroup, the thesis of the other subgroup can
be found in [20].

Thesis outline
This thesis is structured as follows. Chapter 2 will describe the program of requirements of the complete
system and the design criteria for the classification algorithms. Chapter 3 describes the recordings used
for the classification models and different algorithms used to preprocess those recordings. In Chapter
4 the algorithms will be designed and implemented. These design choices will be determined by and
referenced back to the requirements. Chapter 5 will describe the verification of the designed algorithms
and present our results. The conclusion and discussion can then be found in Chapter 6.



2
Programme of Requirements

The programme of requirements is split into two parts. First, the general requirements of the complete
system are given. The second part are the requirements for the design criteria of the HAR algorithm.
Themandatory requirementsmust to bemet for the project to be successful. The trade-off requirements
will be fulfilled if time allows, they are designed to improve the system.

General Requirements
The goal of the project is to facilitate research on smartwatch applications. First, we allow for the
easy recording of smartwatch data using an app and web-based platform. The app on the smartwatch
collects and sends raw sensor data to a server. The server receives the data and makes recordings.
These recordings can then be used in various settings. For this thesis, we will focus on a use case for
this data, namely HAR.

1. The smartwatch application must acquire sensor data from a commercially available smartwatch.

2. The smartwatch application must transmit sensor data to the server.

3. The server must be able to record the sensor data.

4. The website of the server must present the active users and recordings.

5. The server must integrate a machine learning algorithm to recognise the wearers’ current activity.

To integrate a successful machine learning algorithm to recognise the wearers’ current activity, the
criteria for the design of the HAR algorithm need to be clarified.

2.1. Design criteria for HAR
The design criteria are dependent both on the general requirements and the design choices of the
other subsystem. Below they will both be briefly discussed and then summarised in a programme of
requirements for the subsystem.

Design Limitations
The first design limitation is the limited time that can be spend on the project. Therefore, only a limited
number of activities are chosen for the models to classify. These activities are sitting, standing, walking,
running and walking stairs. Although limited, these 5 activities do make up a large amount of time
spent wearing a smartwatch. They also pose some interesting design challenges, since there is a lot
of ambiguity in the data for standing and sitting, and walking and walking stairs.

Another limitation is that the model has to be able to predict based on short segments. This limitation
is based on the fact that a user can change activity often and in short intervals. For example, A 5-minute
segment of data from the smartwatch could include the user sitting at their desk, walking to the stairs
and up to get a coffee, and standing there for a chat.

4



2.1. Design criteria for HAR 5

Requirements for Classification
1. Mandatory The software must classify:

• sitting
• standing
• walking
• running
• walking stairs

2. Mandatory The model must be able to continuously classify human activity based on data seg-
ments of no more than 5 seconds length.

3. Trade-off The models will be trained on GetSmart data sets.

4. Trade-off The software must be able to annotate the GetSmart data with the recognised activity
on the web-based platform.

5. Trade-off The software will classify falling.



3
Data and Preprocessing

As has been discussed in the introduction and the programme of requirements, activity recognition will
be done using smartwatch data. In this chapter, the sensors and data sets used and the preprocessing
steps that have been taken will be explained before going into the machine learning models in the next
chapter.

3.1. Sensors
Two of the smartwatch sensors will be used for recognition, namely the accelerometer and the gyro-
scope. The accelerometer in the smartwatch is an electromechanical device that measures accelera-
tion force in the x, y and z direction in meters per second squared.

The gyroscope sensor is a device capable of measuring the angular velocity of an object, by means
of the Corioles acceleration. Together they give a complete description of the way the watch moves
over time.

3.2. Data set
Our goal is for machine learning models to be trained and tested on data sets acquired using the
platform designed by the data acquisition group. However, since both groups are working in parallel, for
the first iterations these models are trained on an already existing data set. This way hyperparameters
of the models can be tweaked and some experiments can already be done before the GetSmart data
is available. The data set we are going to use for this is the WISDM data set.

3.2.1. WISDM Data set
The WISDM Smartphone and Smartwatch Activity and Biometrics Data set was obtained from the UCI
Machine Learning Repository [21] and recorded by Weiss et al. [22].

The data set consists of raw accelerometer and gyroscope data recorded by smartwatch and phone
at a sampling rate 𝑓𝑠 = 20Hz. The data has been collected from 51 subjects as they perform 18 different
tasks for approximately 3 minutes each. The data is labelled with the performed activity and a subject
ID. From this data set, only the raw data recorded by the smartwatch and only 5 out of 18 tasks were
used, namely sitting, standing, walking, jogging and climbing stairs. 5 Seconds of accelerometer data
from 3 activities is visualised in Figure 3.3. The class distribution across the data set is shown in Figure
3.1.

3.2.2. GetSmart Data set
The data recorded by the Data Acquisition subgroup using their GetSmart app consists of the same
5 activities (sitting, standing, walking, jogging and climbing stairs), this time recorded from 4 different
subjects, and for approximately 5 minutes per task. The sample frequency of the data set is 𝑓𝑠 = 50Hz.
The data is visualised in Figure 3.4. Compared to Figure 3.3, a lot more detail can be seen in the
graphs. The class distribution across the data set is shown in figure 3.2.

6



3.3. Processing 7

Figure 3.3: 5 seconds of accelerometer data of different activities, from left to right: sitting, walking, jogging (WISDM data set)

Figure 3.4: 5 seconds of accelerometer data of different activities, from left to right: sitting, walking, jogging (GetSmart data set)

Figure 3.1: Class distribution WISDM data set. Figure 3.2: Class distribution GetSmart data set.

3.3. Processing
Before using the data set as input for the classification algorithms, the data set might have to be filtered
to remove noise and artefacts. Besides filtering, the recordings have to be cut into smaller segments
to account for the fast change of activities of the user and improve recognition results.

3.3.1. Filtering
An example of unfiltered accelerometer data of a subject sitting is shown on the left in figure 3.5. All
three signals have a clear DC component, with magnitude |𝑎| = √𝑥2 + 𝑦2 + 𝑧2 ≈ 9.78𝑚𝑠−2, approxi-
mately the gravity of Earth 𝑔.

An argument could thus be made to filter the data. This filtering is done using a Butterworth high-
pass filter with a cut-off frequency at 0.3Hz [23]. After filtering (see second subfigure in 3.5), |𝑎| ≈
1.6 × 10−4 and the DC component is indeed removed from the data. This does, however, also remove
information from the data, mostly the orientation of the watch. Therefore, we will later investigate if the
filtering really improves the accuracy of activity detection or not.
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Figure 3.5: left: 50 seconds of unfiltered accelerometer data; right: the same data after filtering

3.3.2. Sliding Window
As described in Section 2.1, a user can change activity often and in short intervals. Therefore, their ac-
tivity should be recognised based on only a short segment. To do so, a sliding window is implemented.
This way only the last 𝑛 samples of the data will be considered for the classification, as illustrated in
Figure 3.6.

The amount of samples 𝑛 to be considered is dependent on the sample rate of the data and the
minimal duration in seconds needed by the model to differentiate between different activities. Recent
papers [23, 24] suggest segment sizes of around 3 seconds, which would mean 𝑛 = 𝑓𝑠×𝑡 = 60 samples
for the WISDM set.

The other variable to be considered is the amount of samples the window shifts, 𝑘 samples. Using
the sample frequency 𝑓𝑠 = 20𝐻𝑧 of the WISDM data set described in Section 3.2 and 𝑘 = 1, the model
classifies every 50 milliseconds. This can be computationally expensive, especially at higher sampling
frequencies. A trade-off between accuracy and used resources should therefore be made.

Figure 3.6: An example of a sliding window

3.3.3. Train and test sets
After slicing the data set into segments, it is split into a train and a test set. The train set will be used
to train the different machine learning models, while the test set will be used to independently test the
model’s accuracy: it will not be used when training the models. The data set is split into 70% train and
30% test set. The same ’random state’ is used in Python every run, to make sure the test and train set
are the same between different runs.



4
Design and Implementation

To recognise the human activities mentioned in chapter 2.1, different recognition models are imple-
mented. This chapter starts with a description of the proposed workflow. Next to that, the implementa-
tion and design choices of the machine-and-deep learning models are addressed.

4.1. Workflow
Figure 4.1 shows the proposed pipeline for human activity recognition. First, the recorded sensor data
is split into a train and a test set. These sets are used to train the model and validate its performance.
Once training is completed, the recognition algorithm is deployed on the web-based platform described
in chapter 1 to perform HAR on real-time sensor data. For this, the sliding window is used to select
a segment upon which the recognition is based. Together with the recognition algorithm, the platform
can gather sensor data from a smartwatch and annotate the sensor data simultaneously.

In the next sections, first a classical machine learning approach and then two deep learning ap-
proaches for the recognition are discussed and implemented.

Figure 4.1: Pipeline for human activity recognition.

4.2. Classical Approach
Using the workflow in Figure 4.1 for the classical machine learning approach, the recorded data (raw
data) for the train and test sets will be used to extract features. These features go through feature
selection to reduce the number of input variables. The selected features are used to train the classical
machine learning algorithm, random forest.

4.2.1. Features Extraction
Raw data from the accelerometer and gyroscope in chapter 3 give little to no information to the classical
machine learning algorithms to build their model on. This is where feature extraction plays a big role.

9



10 4. Design and Implementation

Extracting features from raw data gives statistical insight. With statistical insight, classical machine
learning algorithms can build a better model. The features extracted from the raw data (Table 4.1) are
popular for HAR tasks, due to their simplicity and high performance [25–27]. These features will be
extracted in the time domain, and time-frequency domain using the discrete wavelet transform (DWT).

Features: Description:

Mean The mean is the average value of the window
segment.

Variance The variance is used tomeasure the average de-
viation from the mean.

Median The median is the value in the middle when the
window segment is ordered from the least to the
greatest.

Standard Deviation The standard deviation is used to measure how
far a group of values deviates from the mean.

Maximum The maximum value of the window segment.
Minimum The minimum value of the window segment.
Peak to Peak The peak to peak is a difference between the

maximum and the minimum.
Root Mean Square The root mean square is the root taken from the

average value of the window segment squared.
Skewness The skewness is used to measure the asymme-

try of a distribution.
Kurtosis The kurtosis is used to measure how heavy the

distribution tails differ from a normal distribution.
Impuls Factor The impuls factor is used to compare the maxi-

mum to the mean of the window segment.
Crest Factor The crest factor is used to compare the maxi-

mum to the root mean square of the window seg-
ment.

Interquartile Range The interquartile is used to measure the middle
50 % of the window segment when the window
segment is ordered from small to large.

Correlation Coefficient The correlation coefficient is used to describe the
strength between two relative movements of two
window segments; the accelerometer and the
gyroscope.

Table 4.1: 14 extracted features and description for classical machine learning models.

Time Domain Features
The time domain is a term used to describe the analysis of physical signals or mathematical functions.
Where time domain features extraction is the technique arising from time domain analysis. In related
studies, time domain feature extraction is the most popular. The popularity comes from not having to
perform prepossessing steps on the raw data. This results in having less computational time in the
overall classification algorithm.

Time-frequency Domain Features
Time-frequency domain is a combination of time and frequency domain analysis. It approximates the
sinusoidal frequency and phase content of a local segment while the signal changes over time. Multiple
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techniques are available to analyse such a domain.

Short Term Frequency Transform
This method is introduced by Dennis Gabor [28]. His method decomposes a given signal into a number
of small fixed windows and performs the Fourier transform on those windows.

Each time window of the Short Term Frequency Transform(STFT), has a certain frequency and
time resolution (Figure 4.3). The higher the time resolution, the lower the frequency resolution and vice
versa. The downside to this fixed window is the loss of information in time and frequency.

Figure 4.2: Comparison of a STFT and a Wavelet Transform for time-frequency analysis of a signal [29].

Wavelet Transform
The second technique is the Wavelet Transform, which is built upon the method of Dennis Gabor.
The wavelet transform provides a multi-resolution representation using wavelets(”little waves”). The
wavelet transform can analyse continuous-time signals or discrete-time signals. As for Human Activity,
only discrete signals are dealt with.

The DWT starts with a spectral transformation of the whole signal. This gives high-frequency reso-
lution, but low time resolution. Where after you go up a ’level’ and slice the time window. This gives a
higher time resolution at the expense of frequency resolution. The windows gradually get smaller with
every level, which ends up with a high time resolution, but a low-frequency resolution (Figure 4.3).

Within the DWT there are two types of decomposition, single-level decomposition and multilevel
decomposition. Single level decomposition on the window segment results in two coefficients, the
approximation coefficients (cA) and the detail coefficients (cD). cA is based on lowpass decompositions
and cD is based on a highpass decomposition. multilevel decomposition is executed on cA and results
again in a cA and dA, which gives more detailed information. However, multi-level decomposition will
also negatively influence computational power and can decrease the stability of the model [30]. As a
result, single-level decomposition is used for feature extraction.

4.2.2. Feature Selection
The features extracted from each window segment in the time domain and time-frequency domain are
combined into a ”feature space”. With the feature space, the classical machine learning algorithm can
use it as input for training and testing the model. As mentioned in the last section features give more
statistical insight into the raw data, which can result in building a better model, which is not always the
case. Features within the feature space can also have a negative effect on the model. Some features
become redundant based or are irrelevant from the start. If the model bases the prediction on those
features, it yields a lower accuracy.

This is where feature selection comes into play. Random forest uses a build-in technique to calculate
the score for all features for a certain model. This score represents the ”importance” of each feature
based on the model. The technique iterates over multiple decision trees and takes the average of all
models and indicates the range of importance for every feature. The results can be seen in Figure
A.1,A.3 and A.2.

From there, Recursive Feature Elimination (RFE) is used [31]. RFE is a feature selection method
that is based on the feature importance defined by the build-in technique of the random forest model.
It does this by repeatedly training on the feature space by removing the least significant feature in
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every iteration until all the features are cut. Figure ?? shows the number of features plotted against the
cross-validation accuracy.

Figure 4.3: Number of selected features plotted against the f1-score.The blue margins represent the range of variety which the
model iterates over different feature subsets. The blue dots represent the average of all iterations for a specific number of

features used. The black line represents the number of features which yield the highest f1-score.

While 54 features result in the highest f1-score of 0.763. 41 features results in approximately the
same score. Taking computational power into consideration, only the 41 most important features will
be used in training and testing the classical machine learning algorithm.

4.2.3. Random Forest
Random forest is a supervised learning algorithm and was first created by Tin Kam Ho [32]. Random
Forest is an ensemble of multiple Decision trees, where every classification of every decision tree
has the same weight [33]. This results in a classification system based on the majority of the votes
(Figure 4.4).

Figure 4.4: Diagram of a Random Forest Tree Classification Algorithm[34].

A single decision tree works as follows. It starts at the root node and decides on a feature boundary
whether it should branch to the left or right to another node. This is continued until it branches into a
leaf and classifies the data. A single decision tree defines its classification based on the best features
when splitting on nodes.
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Random forest introduces extra randomness when growing the decision trees and thereby defines
a decision tree on random combinations of features. Random forest is also less influenced by outliers
than other classification algorithms, because of recursive partitioning and local model fitting.

Before the implementation of the random forest model, a closer look at the parameters has to be
taken. By performing hyper parameter tuning, the most favourable parameters can be chosen to yield
the highest accuracy. The parameters, their definition and the variables over which the tuning iterates
are shown in the following table:

Parameters: Description: Tuning range:

n_estimators: Number of trees in the forest. 5, 20, 50, 100, 200,
500, 750, 1000

min_samples_split: Minimum samples required to split an internal
node

2, 6 or 10

min_samples_leaf: Minimum samples required to be at a leaf node 1, 3 or 4
max_depth: Maximum depth of a tree. 10, 20, 30, ..., 110, 120
bootstrap: Whether bootstrap samples are used when

building trees. If False, the whole data set is
used to build each tree.

True or False

Table 4.2: Parameters with description and the variables over which hyper parameter tuning occurs of the random forest model.

Hyper parameter tuning resulted in the following variables:

• n_estimators = 750

• min_samples_split = 2

• min_samples_leaf = 1

• max_depth = 20

• bootstrap = False

The implementation of the random forest model is built with the resulted variables mentioned above.
The input to build the model is based on feature importance and selection, where the 41 most important
features are used.

4.3. Deep Learning
The advantage of deep learning over classical machine learning is that no handcrafted features have
to be inserted into the classification algorithms. Deep learning models learn patterns from the data
themselves, thus making it possible to learn very complex relations in the data. Based on the com-
plex time-series nature of the sensor data, two types of deep learning algorithms are considered for
classification, namely convolutional neural networks (CNN) and recurrent neural networks (RNN).

4.3.1. Convolutional Neural Network
CNN is a class of neural networks (NN) that can be used for pattern recognition within data, e.g. images
and time series. A traditional CNN consists of a convolutional layer, pooling layer and a fully connected
layer [35] as shown in figure ??. In contrast to traditional NN, CNN is great at extracting features from
data with its convolutional layers to find complex relationships within the data. The CNN architecture
used in this thesis is the Fully Convolutional Network (FCN). It was proposed by Wang et al. [36], who
tested a multilayer perceptron (MLP), the FCN, and Residual network (ResNet) models on 44 UCR
time-series data sets [37] and compared their performance against other state-of-the-art models. The
authors concluded that the FCN has a superior performance compared to the other models.

The architecture of an FCN is shown in figure 4.5. It mainly consists of three blocks containing
a 1-dimensional convolutional layer, a batch normalization layer, and an activation function. Batch
normalization normalizes the output of the convolutional layer before passing it to the ReLu activation
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function. This makes the model more stable by tackling the vanishing/exploding gradient problem and
it reduces the training time. Global average-pooling is used in this architecture as pooling layer. The
resulting vector flows into the softmax layer for the classification.

Figure 4.5: Fully convolutional Network [36].

4.3.2. Recurrent Neural Network
One of the drawbacks of using feedforward or convolutional neural networks on sequential data is that
the order of the samples is not taken into account. A solution to this problem is the Recurrent Neural
Network (RNN). In the Recurrent Neural Network, the input is fed into the network sequentially, where
it updates a hidden state variable. The state then carries over the information from this step to the next
one.

The way this state gets updated can be as simple as a 𝑡𝑎𝑛ℎ activation, or as complex as the LSTM
[38] or GRU [39]. The drawback of using the simple RNN is that it only has relatively short memory (in
the order of 10 discrete-time steps) due to the vanishing gradient problem in back propagation through
time [40].

LSTM and GRU
Comparison on the performance of the GRU, LSTM and RNN by Chung et al. [41] shows that both
LSTM and GRU outperform the simple RNN, as expected. Results on comparing the LSTM and GRU
were inconclusive, suggesting ”the choice of the type of gated recurrent unit may depend heavily on the
data set and corresponding task” [41, p 7]. One notable difference between the LSTM and GRU is the
amount of hidden layers: where the LSTM has 4, the GRU only has 3. This should make computations
slightly faster.

Preliminary results showed both a shorter training time and a slightly better accuracy using the GRU,
and it has therefore been chosen over the LSTM.

4.3.3. Final designs
Layers and Nodes
Next to the type of deep learningmodel, some hyperparameters have to be chosen before implementing
the final model. The first one is the amount of layers, and the nodes per layer. For the FCN, the topology
as described by Wang et al. [36] is used. For the GRU, a first model with 1 layer and 32 nodes was
used, after which the model was expanded until a balance between complexity and accuracy was
found. Next to that, somethings that improved the accuracy a lot are separate normalisation for the
accelerometer and gyroscope inputs, as well as adding a small (16 nodes) fully connected layer before
going into the GRU layers. Presumably this is because the input range of the accelerometer and the
gyroscope differ a lot. Squashing both together would make all gyroscope data points close to zero.

Regularisation
Regularisation is a way to help models avoid overfitting. There exist different regularisation methods
including dropout and batch normalisation. As mentioned earlier, batch normalisation stabilizes the
model and reduces the training time. Dropout regularisation, on the other hand, works by ”dropping”
neurons and their corresponding connections during training. That prevents neurons to learn the char-
acteristics of the training data, and therefore it prevents overfitting.

When training on the GetSmart data set, considering its relatively small size, dropout layers are
added to the FCN architecture besides batch normalisation to avoid overfitting. The GRU uses batch
normalisation as well as dropout layers in its architecture.
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Layer Nodes # of Parameters
1D Convolution Layer 128 6272
Batch Normalisation 128 512
Dropout Regularisation - -

1D Convolution Layer 256 164096
Batch Normalisation 256 1024
Dropout Regularisation - -

1D Convolution Layer 128 98432
Batch Normalisation 128 512

Max Pooling Layer 128 -
Fully Connected Output Layer 5 645

Table 4.3: The implemented FCN Architecture, total number of parameters: 271,493

Layer Nodes # of Parameters
Gyroscope Batch Normalization 3 12
Accelerometer Batch Normalization 3 12
Fully Connected Layer Gyroscope 16 64
Fully Connected Layer Accelerometer 16 64
Dropout Regularization - -

GRU Layer 128 62208
GRU Layer 64 37248
Fully Connected Output Layer 5 325

Table 4.4: The implemented GRU architecture, total number of parameters: 99,933



5
Testing and Verification

In this chapter the models implemented in Chapter 4 will be tested on both the WISDM data set [22]
as mentioned in Section 3.2, as well as on the data recorded by the data acquisition subgroup. Their
performances will be compared and discussed.

5.1. Metrics
The classification models are assessed against one metric, namely accuracy. Accuracy is defined
as the fraction of the total True Positive(TP) plus the total True Negative(TN) instances over the total
number of predictions:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 ∗ 100% [%] (5.1)

The main problem with using accuracy is that it is ineffective when used on unbalanced data sets. In
a binary classification problem where class A occurs 95% of the time and class B only 5% of the time,
always guessing A gives 95% accuracy.

As the class distribution plots in chapter 3 indicate, the classes in WISDM and the recorded data
set are only slightly unbalanced. The class ”Walking” occurs at approximately 21.4% in the data set,
while the other classes occur at around 19.6%. Using accuracy as the performance metric should thus
suffice.

5.2. Segment size and filtering
To find the right segment size, sample frequency, and the usefulness of filtering, different tests are
conducted. The classification models are analysed on three different segment sizes, two different
sample frequencies, and on (un)filtered data. The segment size is determined to find the minimum
duration of an activity needed to obtain the correct classification. The sampling frequency of the sensor
data is 50 Hz. The data is down-sampled to 25 Hz to investigate what influence the sample density has
on the model’s prediction. A low-pass filter is then needed to filter out frequency components above
12.5 Hz to avoid aliasing. The influence of filtering out earth’s gravity from the accelerometer data by
applying a high pass filter, as mentioned in section 3.3.1, on the classification is also analysed.

5.3. WISDM tests
The WISDM data set is tested according to the above set metrics. The resulted accuracy can be seen
in Table 5.1. As the WISDM data set is recorded on a sampling frequency of 20 Hz, there was no
need to downsample and thereby no need to add a low-pass filter to avoid aliasing. The tested models,
discussed in chapter 4, were Random Forest, FCN and GRU. Every model was tested with the following
possibilities:

• no filter or high-pass filter;

• 2, 4 or 6 second segments.

16
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Model Filtering Segment size (s) Accuracy

Random None 2 0.786629
Forest 4 0.832372

6 0.865020
𝑓𝑐 = 0.3𝐻𝑧 2 0.789016

4 0.828200
6 0.865130

FCN None 2 0.906825
4 0.919808
6 0.945457

𝑓𝑐 = 0.3𝐻𝑧 2 0.894176
4 0.923115
6 0.944484

GRU None 2 0.941113
4 0.988501
6 0.998606

𝑓𝑐 = 0.3𝐻𝑧 2 0.930186
4 0.987140
6 0.996113

Table 5.1: Accuracy of 3 different models, depending on segment size and how these were filtered (WISDM Data set).

Table 5.1 shows the results of these tests. The two important things to note are the increase in accuracy
when the segment size increases, and the negligible difference in accuracy with or without filtering. The
segment size will be investigated further later on, but for now these results do indicate there is no reason
to apply a high pass filter to the data set.

5.3.1. Segment size
In Table 5.2 the test results, based on a sampling frequency of 20 Hz and no filter, can be seen. The
accuracy of the models depending on window size has been plotted in 5.1. This test is conducted to
further explore the influence of the sample size.

The random forest classifier seems to improve it’s accuracy almost linearly with window size. The
FCN and GRU however do increase performance initially, but when the window size becomes larger
than 4 seconds, there is almost no more added benefit. Since predicting on a smaller window has
the benefits that a new activity is recognised sooner and training time is shorter, a window size of 4
seconds is chosen.

5.4. Tests on GetSmart data
The recorded data by the data acquisition group, will be tested using the the test plan in Figure 5.2. The
high-pass filter is not included, considering the tests on WISDM data set concluded to lower accuracy’s
compared to not filtering.

5.4.1. Over-fitting
Table 5.3 shows the classification results of the random forest classifier, FCN, and GRU on the GetS-
mart data set. These results are based on the train-test split with ratio 70:30 as described in Section
3.3.3. At a first glance, the high accuracy’s already seems to good to be true. The most obvious ex-
planation would be that the model has over fitted to the data set, which is not unlikely at all since the
data set is relatively small. To test this hypothesis, leave-one-out cross-validation can be used.
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Model 𝑓𝑠 (Hz) Segment size (s) Accuracy

Random 20 2 0.782287
Forest 20 3 0.815384

20 4 0.835347
20 5 0.856403
20 6 0.870503

FCN 20 2 0.977321
20 3 0.98997
20 4 0.994087
20 5 0.990006
20 6 0.99791

GRU 20 2 0.966735
20 3 0.981852
20 4 0.985599
20 5 0.988948
20 6 0.993949

Table 5.2: Accuracy of 3 different models, depending on segment size (WISDM data set).

Model 𝑓𝑠 (Hz) Segment size (s) Accuracy

Random 25 3 0.916530
Forest 4 0.922158

5 0.927474
50 3 0.912258

4 0.924241
5 0.935045

FCN 25 3 0.998795
4 0.998575
5 0.996928

50 3 0.997919
4 0.998794
5 0.999013

GRU 25 3 0.998686
4 0.998355
5 0.998683

50 3 0.998028
4 0.998246
5 0.999122

Table 5.3: Accuracy of 3 different models, depending on segment size and sample frequency (GetSmart data set).
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Figure 5.1: Accuracy vs window size for Random Forest, FCN and GRU

Figure 5.2: Test plan for GetSmart data set
’

5.4.2. Leave one out cross-validation
Leave-One-Out Cross-Validation (LOOCV) is a method to validate the performance of a model. The
data set of size 𝑠, on which the model is tested, is split into a train and test set with sizes 𝑠 − 1 and 1,
respectively. The model is trained 𝑠 times by iterating over every possible combination for the trainset
and tested on every instance.

As mentioned in chapter 3, the data set from the data acquisition subgroup is recorded by four
persons performing five different activities. LOOCV is, for this case, applied by training the model on
three test persons and validating it on the remaining subject. This means that each model has to be
trained and tested 4 times. To save on computation time, the test is only ran using 𝑓𝑠 = 25Hz and a
segment size of 4 seconds. The results can be found in 5.4 and do indeed show that the averaged
accuracy drops to approximately 81% for the random forest classifier, 87% for the FCN and 86% for
the GRU.
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Model 𝑓𝑠 Segment size(s) Train accuracy LOOCV Accuracy Fold

Random 25 4 - 0.671537 0
Forest 25 4 - 0.843829 1

25 4 - 0.826739 2
25 4 - 0.910641 3

FCN 25 4 0.999486 0.877749 0
25 4 0.998617 0.907563 1
25 4 0.999156 0.842761 2
25 4 0.998617 0.867692 3

GRU 25 4 0.999684 0.932337 0
25 4 0.998740 0.816639 1
25 4 0.999015 0.764196 2
25 4 0.998705 0.918128 3

Table 5.4: Train and cross-validation accuracy of 3 different models (GetSmart data set).
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Conclusion and Discussion

6.1. Conclusion
In this study, we presented different machine-and deep learning models for human activity recognition.
These are the Random Forest classifier, the Fully Convolutional Network (FCN), and the Gated Re-
current Unit (GRU). The first one being a classical machine learning model while the latter are deep
learning models. The main difference between machine-and deep learning is that in deep learning no
handcrafted features have to be inserted into the classification models. For Random Forest, many fea-
tures were extracted from the smartwatch sensor data. The most relevant features are listed in table
4.2. These features were selected with Random Forest feature importance using Recursive Feature
Elimination (RFE).

WISDM tests
The activities that are considered in this project are sitting, standing, walking, running, and walking
stairs. Themodels are evaluated on theWISDMdata set that contains smartwatch sensor data sampled
at 20 Hz. This data set is used to find the optimal segment size and to investigate the usefulness of
filtering. The models were tested for segment sizes ranging from 2 to 6 seconds and on filtered and
unfiltered data. The test results in Table 5.1 show that filtering with a high-pass filter does not affect the
performance of the models much, therefore unfiltered data is used during further tests on the GetSmart
data set. Table 5.2 indicates that a segment size of 4 seconds is preferred since it is small enough to
recognise new activities and big enough for decent classification accuracy.

GetSmart tests
The models are also evaluated on the data set recorded by the data acquisition subgroup. These
tests showed that our models overfitted drastically on the data set as the results in Table 5.3 and Table
5.4 indicated. However, even when overfitting all models had an average accuracy above 80% using
leave-one-out cross-validation. This does imply there is still a lot of room for improvement when training
the models after gathering data from a larger pool of subjects, such as in the WISDM data set.

Programme of Requirements
To satisfy the mandatory requirements, the models had to be able to recognise 5 different types of
activities: sitting, standing, walking, walking stairs and jogging, and do this based on segments of no
more than 5 seconds length. The trade-off requirements included training the models on the GetSmart
data set, annotating these data sets and training the models to detect falling.

Mandatory Requirements
For the first requirement, the Random Forest, FCN and GRU models are able to classify the WISDM
data set with a respective accuracy of 84%, 99.4% and 98.6%, using 4 seconds segments. For the
GetSmart data set, the models were overfitted, but using leave-one-out cross-validation an average
accuracy of 81%, 87% and 86% respectively was still reached. Therefore, we consider this requirement
reached.

The second requirement dealt with the segment size. A maximum of 5 seconds was set, and since
the segments used for our final results were indeed shorter, this requirement was also reached.

21
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Trade off requirements
For the trade off requirements the models needed to be trained and tested on the recorded GetSmart
dataset. This has been done, but not necessarily as extensive as we would have liked, due to the
relatively small size of the data set. We are therefore not able to draw conclusions about the accuracy
of the model depending on sample frequency for example.

The second trade off requirement had us integrate the machine learning models on the web-based
platform by the Data Acquisition subgroup. This has been implemented, but no tests have been done
to check the accuracy of the system. As of now, we therefore consider this requirement not met.

For the final requirement the models had to be able to predict falling. Due to a lack of data sets and
time, this has not been implemented.

Requirements met
To conclude, both mandatory requirements have been met, and a good deal of the first trade off re-
quirement was also implemented. The implementation of the models on the GetSmart platform needs
more time for testing and validation, but is certainly within reach.

6.2. Discussion
There are several limitations to our research. First of all, there are some issues with the GetSmart data
set. The GetSmart data set (approximately 100 minutes of recording) is quite small compared to the
WISDM data set (approximately 765 minutes of recording). Next to that, the GetSmart data set has
little variety in its recordings, since the data is collected from only 4 different subjects. The WISDM data
set on the other hand consists of data recorded from 51 different subjects. Carrying out such extensive
data collection was also simply not within the scope of this project.

The other limitation of this research is the time we were able to spend on it, which resulted in not
being able to fine tune and explore the data sets andmodels. For example, Table 5.1 took approximately
30 hours to compute. As a consequence we have done very little hyperparameter tuning of the models,
although this can also be attributed to the fact that exploring the impact of segment sizes and filtering
was of higher priority.

Recommendations
The developed models for HAR suffered from overfitting. As mentioned, the GetSmart data set is
not extensive enough. In order to obtain more reliable and accurate models more recordings need
to be added from different subjects. This will subsequently improve the accuracy and reliability of the
machine and deep learning models.

In addition to that, more activities can be considered in the data set so that the models can be
deployed on a larger number of tasks. Furthermore, more hyperparameter tuning can be performed to
increase the accuracy of the models independent of the data sets used.
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Features

Figure A.1: Feature importance of the accelerometer and gyroscope in time domain.
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Figure A.2: Feature importance of the accelerometer and gyroscope in time-frequency domain of the approximation coefficient.

Figure A.3: Feature importance of the accelerometer and gyroscope in time-frequency domain of the detail coefficient.
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