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Abstract A continuum hypothesis-based, biomechanical
model is presented for the simulation of the collagen bundle
distribution-dependent contraction and subsequent retraction
of healing dermal wounds that cover a large surface area.
Since wound contraction mainly takes place in the dermal
layer of the skin, solely a portion of this layer is included
explicitly into the model. This portion of dermal layer is
modeled as a heterogeneous, orthotropic continuous solid
with bulk mechanical properties that are locally dependent
on both the local concentration and the local geometrical
arrangement of the collagen bundles. With respect to the
dynamic regulation of the geometrical arrangement of the
collagen bundles, it is assumed that a portion of the collagen
molecules are deposited and reoriented in the direction of
movement of (myo)fibroblasts. The remainder of the newly
secreted collagen molecules are deposited by ratio in the
direction of the present collagen bundles. Simulation results
show that the distribution of the collagen bundles influences
the evolution over time of both the shape of the wounded
area and the degree of overall contraction of the wounded
area. Interestingly, these effects are solely a consequence of
alterations in the initial overall distribution of the collagen
bundles, and not a consequence of alterations in the evolution
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over time of the different cell densities and concentrations
of the modeled constituents. In accordance with experimen-
tal observations, simulation results show furthermore that
ultimately the majority of the collagen molecules ends up
permanently oriented toward the center of the wound and in
the plane that runs parallel to the surface of the skin.
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1 Introduction

The overall healing of deep dermal wounds that cover a
large surface area is an extremely complex process (Enoch
and Leaper 2007; O’Toole and Mellerio 2010). Looking
more closely at the healing process, the process can be split
up into an interdependent series of relatively simpler sub-
processes. One of these subprocesses is wound contraction.
Wound contraction is a biomechanical process that causes
the circumferential inward movement of surrounding unin-
jured tissue toward thewounded area (BaumandArpey 2005;
Monaco and Lawrence 2003). Due to this inward movement
of the uninjured tissue, the exposed surface area of thewound
can be decreased substantially and relatively fast without
the production of new tissues. For instance, due to wound
contraction, typical full-thickness wounds in humans may
undergo a reduction in wound surface area of up to 40% over
a period of several weeks, while rapid wound contraction in
rats may even be responsible for up to 90% of the closure of
the wounded area (Li et al. 2007; McGrath and Simon 1983).
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346 D. C. Koppenol et al.

Given the possible extent of wound contraction and the
severity of related complications such as the development of
permanent shortenings of scar tissue, a lot of resources have
been allocated to the research on wound contraction over the
last few decades. This research has resulted in the production
of much knowledge about the biomechanical mechanisms
underlying wound contraction. However, there is still much
that remains understood incompletely about both the mecha-
nisms underlying wound contraction and the etiology of the
complications that may develop as a result of wound con-
traction. Given that fully adequate treatment plans for the
prevention of, for instance, the development of permanent
shortenings of scar tissue do not exist at the moment and a
better understanding of the mechanisms underlying wound
contraction most probably would aid in the development of
better treatment plans, this is an unsatisfactory situation.

In order to help with gaining more insight into the mecha-
nisms underlying wound contraction, Tranquillo andMurray
(1992) formulated the first mathematical framework for the
modeling of themechanical component of thewound healing
response. This framework is based on the continuum hypoth-
esis and the conservation of bothmass and linearmomentum.
In the resulting model, the dermal tissues are modeled
as homogeneous, isotropic, linear viscoelastic solids and
the fibroblasts that are present in these tissues produce an
isotropic stress that works on these tissues. Interestingly,
Tranquillo andMurray were able to replicate with this model
the experimental data on wound contraction in rats that were
collected by McGrath and Simon (1983). Subsequently, the
general framework has been extended and has been adapted
in several more recent modeling studies in order to investi-
gate the impact of the addition and the adaptation of various
different components of the wound healing response (Fried-
man et al. 2012; Javierre et al. 2009; Koppenol et al. 2016;
Murphy et al. 2012; Olsen et al. 1998a, 1995; Tracqui et al.
1995; Ramtani 2004; Ramtani et al. 2002; Valero et al. 2013,
2014; Vermolen and Javierre 2012).

Recently, continuum hypothesis-based models have been
formulated that are based on a morphoelastic framework
(Bowden et al. 2016;Murphy et al. 2011).With thesemodels,
it is possible to simulate simultaneously both the contraction
and the growth of involved dermal tissues during the execu-
tion of the overall healing process. This combination makes
it possible to simulate the permanent deformation of these
tissues and the development of residual stresses within these
tissues.

Although the mathematical models in the above cited
studies contain functional descriptions of several different
components of the wound healing response, they all lack
a description of the dynamic regulation of the geometrical
arrangement of the constituents of the extracellular matrix
(ECM). Given that the behavior of dermal tissues in response
tomechanical forces such as wound contraction is influenced

strongly by the geometrical arrangement of the constituents
of the ECM (Wilkes et al. 1973), we think it is a limitation
of these models that they lack such a description.

The ECM is the non-cellular component of dermal tis-
sues and is composed of two classes of macromolecules:
proteoglycans and fibrous proteins (Jarvelainen et al. 2009;
Schaefer and Schaefer 2010). Taken together these macro-
molecules form a relaxed network of protein fibers embedded
in a hydrated gel. Themost abundant type of fibrous protein is
collagen. These proteins provide most of the tensile strength
to the tissues they are embedded in (Rozario and DeSimone
2010). The majority of the collagen molecules is produced
by fibroblasts and is organized into interconnected sheets and
bundles by these same fibroblasts (Monaco and Lawrence
2003).Due to this organization of the collagenmolecules into
interconnected sheets and bundles, the geometrical arrange-
ment of the collagen bundles, in particular, has a huge impact
on the response of dermal tissues to mechanical forces (Jor
et al. 2011).

Barocas and Tranquillo (1997) formulated the first mathe-
matical framework that includes a description of the dynamic
regulation of the geometrical arrangement of collagen bun-
dles in tissues.This framework is also basedon the continuum
hypothesis and the conservation of both mass and lin-
ear momentum. The ECM is modeled as a heterogeneous,
anisotropic, biphasicmediumconsistingof afibrillar network
and an interstitial solution. The two phases display intraphase
viscoelasticity and interphase frictional drag due to the rel-
ative motion of the two phases. The biphasic medium both
orients and is oriented by fibroblasts. Toward a validation of
the resulting model, Barocas and Tranquillo demonstrated
qualitative agreement between model predictions on the one
hand and various outcomes of experiments performed on
tissue-equivalent systems on the other hand.

Subsequently, Olsen et al. (1998b, 1999) also formu-
lated a continuum hypothesis-based general framework that
includes a description of the dynamic regulation of the geo-
metrical arrangement of either one type or two types of
bundle. In this framework, the ECM is modeled as a het-
erogeneous, anisotropic, viscoelastic medium in which the
bundle type(s) both orient(s) and is (are) oriented by fibrob-
lasts.

Dallon et al. (1999, 2000, 2001) and McDougall et al.
(2006) also developed a theoretical framework in order to
study the dynamic regulation of the arrangement of collagen
bundles. However, they took a different approach: cells are
modeled as discrete entities, while the ECM is modeled as a
continuum. Here too, the direction of movement of the cells
is influenced by the local orientation of the collagen bundles,
while the reorientation of the bundles is in turn dependent of
the polarity of the cells in the vicinity. A couple of years ago,
this hybrid framework has been extended by Cumming et al.
(2010). More recently, we have extended the model devel-
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oped by Cumming et al. on our part by adding a mechanical
component to this model (Boon et al. 2016).

Although the frameworks and the associated models men-
tioned in the last two paragraphs are very elegant, they either
do not contain a mechanical component at all or they lack an
incorporation of the effect of the geometrical arrangement of
the collagen bundles on the bulk mechanical behavior of the
involved dermal tissues. Hence, these models are not able
to simulate the direct influence of the composition and the
topology of the constituents of the ECM on the behavior
of dermal tissues in response to mechanical forces such as
wound contraction.

Recently, two models have been developed that do incor-
porate the effect of the geometrical arrangement of the
collagen bundles on the bulk mechanical behavior of the
tissues these bundles are embedded in (Valero et al. 2015;
Yang et al. 2013). However, in our opinion, each of these
two models has a serious limitation. Due to the fact that the
model developed by Yang et al. uses a hybrid framework
similar to that developed by Dallon et al. (1999), the domain
of computation, and hence the created wounds, has to be
small so that the computation times and the computer mem-
ory requirements remain acceptable. Therefore, they used a
domain of computation of solely 4mm2 and created circu-
lar wounds with a radius of 400 µm. However, if dermal
wounds cover such a small surface area, then wound con-
traction actually does not play a very substantial role during
the healing process. Because of the fact that the model devel-
oped byValero et al. is a continuum hypothesis-basedmodel,
it is possible to simulate the healing of deep dermal wounds
that cover a large surface area with this model. However, this
latter model lacks a dynamic regulation of the geometrical
arrangement of the collagen bundles. Given that, for instance,
the proportion of the collagen bundles that runs parallel to
the surface of the skin in general increases considerably due
to the execution of the wound healing processes (Welch et al.
1990), we consider it a serious limitation that the dynamic
regulation of the geometrical arrangement of the collagen
bundles is not included in the model developed by Valero et
al.

Because of the fact that we wish to simulate the con-
traction of deep dermal wounds that cover a large surface
area where the contraction process is influenced by the geo-
metrical arrangement of the collagen bundles, and given the
aforementioned limitations associatedwith themodels devel-
oped by Yang et al. and Valero et al., we developed a new,
fully continuum hypothesis-based model for the simulation
of the contraction and the subsequent retraction of healing
dermal wounds. In this model, the bulk mechanical behavior
of the involved dermal tissues is dependent on the geometri-
cal arrangement of the collagen bundles. For this end, we use
a tensorial approach similar to the one proposed by Barocas
and Tranquillo (1997) and Cumming et al. (2010) to repre-

sent the collagen bundles, and we let the bulk mechanical
properties of the tissues such as the Young’s moduli and
Poisson ratios depend locally on both the local concentration
and the local geometrical arrangement of these bundles. Fur-
thermore, we incorporate into this new model the dynamic
change of the geometrical arrangement of the collagen bun-
dles similar to how this process is incorporated in the model
developed by Olsen et al. (1998b). A detailed description of
the full model is presented next in Sect. 2. In Sect. 3, we
give a short overview of the applied numerical algorithm for
obtaining simulation results. The simulation results are pre-
sented in Sect. 4. Finally, themodel and the simulation results
are discussed in Sect. 5.

2 Development of the mathematical model

In order to simulate the contraction and subsequent retraction
of healing dermalwounds, we include into themodel some of
the subprocesses that take place during the proliferative and
remodeling phase of the wound healing cascade (Enoch and
Leaper 2007). With respect to the subprocesses that are exe-
cuted during the proliferative phase, we select the following
subprocesses: wound contraction and fibroplasia. (Fibropla-
sia encompasses the subprocesses that cause the restoration
of the presenceoffibroblasts and the restorationof a collagen-
rich ECM in the injured area.) Since wound contraction
mainly takes place in the dermal layer of the skin, solely
a portion of this layer is included explicitly into the model.

The dermis is modeled as a heterogeneous, anisotropic
continuous solid with bulk mechanical properties that are
locally dependent on both the local concentration and the
local geometrical arrangement of the collagen bundles. Due
to the fact that the collagen bundles are represented bymeans
of a symmetric tensor, the dermal layer has material prop-
erties that differ locally along three mutually orthogonal
twofold axes of rotational symmetry. (The symmetry axes
coincidewith the lines that pass through the individualmater-
ial points of the dermal layer and run parallel to the individual
eigenvectors of the tensor that represents the collagen bun-
dles. See Sect. 2.3 for further details.) Therefore, the dermal
layer is actually modeled as an orthotropic material (Lai
et al. 1999). With respect to the mechanical component of
the model, the displacement of the dermal layer (u) is cho-
sen as the primary model variable. Furthermore, we assume
that it is appropriate to apply the infinitesimal strain theory
in this study. Hence, we take

e ≈ ε = 1

2

[
∇u + (∇u)T

]
, (1)

where e is the Eulerian strain tensor and ε is the infini-
tesimal strain tensor. Finally, we select the following four
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constituents of the dermal layer as primary model variables:
fibroblasts (N ), myofibroblasts (M), collagen bundles (�ρ),
and a generic signaling molecule (c).

The general continuum hypothesis-based mathematical
framework of Tranquillo and Murray (1992) is used as basis
for the model. This framework consists of the following gen-
eral set of conservation equations in local form:

∂zi
∂t

+ ∇ · [ziv] = −∇ · Ji + Ri , (2a)

−∇ · σ = f . (2b)

Equation (2a) is the mass conservation equation for the cell
density/concentration of constituent i of the dermal layer and
Eq. (2b) is the reduced conservation equation for the linear
momentum of the dermal layer. It is assumed that the iner-
tial forces that work on the dermal layer are negligible, and
therefore, the conservation equation for the linear momen-
tum of the dermal layer reduces to the above force balance
equation. Within the above equations, zi represents the cell
density/concentration of constituent i , v represents the dis-
placement velocity of the dermal layer, Ji represents the flux
associated with constituent i per unit area, Ri represents the
(bio)chemical kinetics associated with constituent i , σ rep-
resents the Cauchy stress tensor associated with the dermal
layer, and f represents the total body force working on the
dermal layer. Given the chosen primary model variables, we
have i ∈ {N , M, c,�ρ

jk} with j, k ∈ {1, 2, 3}. In the remain-
der of this text, we replace zN by N , zM by M , zc by c, and
z�ρ

jk
by �

ρ
jk .

2.1 The cell populations

The functional forms for the movement of the (myo)fibrob-
lasts and the functional forms for the biochemical kinetics
associated with these cells are identical to functional forms
used previously (Koppenol et al. 2016). For completeness
we present these functional forms here as well. More details
about the functional forms can be found in the cited article.
The functional forms for the cell fluxes are

JN = −DF F∇N + χF N∇c, (3)

JM = −DF F∇M + χFM∇c, (4)

where

F = N + M. (5)

Parameter DF is the cell density-dependent random motility
coefficient of the (myo)fibroblast, and χF is the chemotactic
coefficient. The functional forms for the biochemical kinetics
associated with the (myo)fibroblasts are

RN = rF

[
1 + rmax

F c

aI
c + c

]
[1 − κF F]N 1+q − kFcN − δN N ,

(6)

RM = rF

[[
1+rmax

F

]
c

aI
c +c

]
[1−κF F]M1+q+kFcN − δMM,

(7)

where rF is the cell division rate, rmax
F is the maximum fac-

tor with which the cell division rate can be enhanced due to
the presence of the signaling molecule, aI

c is the concentra-
tion of the signaling molecule that causes the half-maximum
enhancement of the cell division rate, κF F represents the
reduction in the cell division rate due to crowding, q is a
fixed constant, kF is the signaling molecule-dependent cell
differentiation rate of fibroblasts into myofibroblasts, δN is
the apoptosis rate of fibroblasts, and δM is the apoptosis rate
of myofibroblasts.

2.2 The generic signaling molecule

The functional form for the dispersion of the generic signal-
ing molecule and the functional forms for the release, the
consumption, and the removal of the generic signaling mole-
cule are also identical to functional forms used previously
(Koppenol et al. 2016):

Jc = −Dc∇c, (8)

Rc = kc

[
c

aI I
c + c

]
[N + ηM] − δc

[
tr (�ρ) Fc

1 + aI I I
c c

]
. (9)

The parameter Dc represents the randomdiffusion coefficient
of the generic signalingmolecule, kc represents themaximum
net secretion rate of the signaling molecule, η is the ratio of
myofibroblasts to fibroblasts in the maximum net secretion
rate of the signaling molecule, aI I

c is the concentration of
the signaling molecule that causes the half-maximum net
secretion rate of the signaling molecule, δc is the proteolytic
breakdown rate of the signalingmolecules, 1/(1+aI I I

c c) rep-
resents the inhibition of the removal of signaling molecules
and collagen molecules (See Sect. 2.3) due to the presence
of the signaling molecule, and tr (�ρ) represents the concen-
tration of the collagen molecules (See Sect. 2.3).

2.3 The collagen bundles

As has been mentioned in the introduction, we use a ten-
sorial approach similar to the one proposed by Barocas and
Tranquillo (1997) and Cumming et al. (2010) to represent the
collagen bundles. The orientation of the collagen bundles and
the concentration of the collagen molecules at location x and
time t within the dermal layer are represented together by the
symmetric tensor
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�ρ(x, t) =
∫ π/2

0

∫ π

0[
p(θ, ϕ) (p(θ, ϕ))T ρ(x, θ, ϕ, t)

]
d θ d ϕ,

(10)

with (p(θ, ϕ))T = [sin(ϕ) cos(θ), sin(ϕ) sin(θ), cos(ϕ)] the
unit vector in the direction of the azimuthal angle θ and polar
angle ϕ, and ρ(x, θ, ϕ, t) the concentration of the bundles at
location x and time t with angle θ and angle ϕ.

Due to the symmetry of the above tensor, the tensor is
orthogonal diagonalizable. Hence, the tensor can be decom-
posed as a sum of weighed outer products of orthonormal
eigenvectors:

�ρ(x, t) =
3∑

i=1

λi (x, t)
[
qi (x, t) (qi (x, t))T

]
, (11)

where (λi , qi ) are the eigenpairs of the tensor. These eigen-
pairs can be used to measure the degree of anisotropy of the
dermal layer. That is, the larger the difference between the
different (positive, real) eigenvalues, the more anisotropic
the dermal layer. If all eigenvalues are equal, then the dermal
layer is perfectly isotropic (See also Sect. 2.4). The eigen-
vector corresponding to the largest eigenvalue provides the
dominant direction of the collagen bundles. The concentra-
tion of the collagen molecules at location x and time t can be
recovered from the above tensor by either adding its eigen-
values or determining its trace. In the remainder of the text,
we order the eigenvalues such that λ3 ≥ λ2 ≥ λ1.

We assume that the secreted collagen molecules are
attached to the ECM instantaneously. Hence, the flux asso-
ciated with the ( j, k)th entry of the tensor �ρ is

J�
ρ
jk

= 0. (12)

Furthermore, we incorporate into the model the production
of collagen molecules by both fibroblasts and myofibrob-
lasts. Similar to the mechanism proposed by Olsen et al.
(1998b), we assume that a portion of the collagen molecules
are deposited and reoriented in the direction of movement
of the (myo)fibroblasts. The remainder of the newly secreted
collagen molecules are deposited by ratio in the direction
of the present collagen bundles. The ratio of the amount of
molecules that are deposited in the direction of movement of
the cells to the amount of molecules that are deposited in the
direction of the present collagen bundles is determined by
the walking speed of the cells (i.e., the magnitude of the cell
fluxes). We assume that the secretion rate of the molecules is
enhanced in the presence of the signaling molecule. Finally,
we use the same general functional form for the removal
of the collagen molecules as was used previously (Koppenol

et al. 2016). This removal takes place by ratio. Taken together,
we obtain for the ( j, k)th entry of the tensor �ρ

R�
ρ
jk

= kρ

{
1 +

[
kmax
ρ c

aIV
c + c

] }

{[
N

[
e−βρ‖JN ‖] + ηM

[
e−βρ‖JM‖]]

[
�

ρ
jk

tr (�ρ)

]

+ N

[
1 − e−βρ‖JN ‖

[
max (‖JN‖ , γ )

]2
] [

JN (JN )T
]
jk

+ ηM

[
1 − e−βρ‖JM‖

[
max (‖JM‖ , γ )

]2
] [

JM (JM )T
]
jk

}

− δρ

[
tr (�ρ) F

1 + aI I I
c c

]
�

ρ
jk, (13)

where kρ is the collagen molecule secretion rate, kmax
ρ is the

maximum factor with which this rate can be enhanced due to
the presence of the signaling molecule, aIV

cN is the concentra-
tion of the signaling molecule that causes the half-maximum
enhancement of the secretion rate, βρ represents the sen-
sitivity of (myo)fibroblasts to deposit and reorient (newly
secreted) collagen molecules in the direction of cell move-
ment, η is the ratio of myofibroblasts to fibroblasts in the
maximum net secretion rate of collagen molecules, and δρ is
the degradation rate of the collagen molecules. The constant
γ is a small positive value that is added to the model to pre-
vent the division by zero in the case of no flux of either cell
type. In this study, we take γ = 10−8 cells/(cm2 day).

2.4 The force balance

Given that we model the dermal layer as a orthotropic mate-
rial, we use the following general constitutive stress–strain
relationship (i.e., σ ′ = C′ε′):

C′ =⎡
⎢⎢⎢⎢⎢⎢⎣

[−1+ν23ν32]E1
�

−[ν21+ν23ν31]E1
�

−[ν31+ν21ν32]E1
�

0 0 0
−[ν12+ν13ν32]E2

�
[−1+ν13ν31]E2

�
−[ν32+ν12ν31]E2

�
0 0 0

−[ν13+ν23ν12]E3
�

−[ν23+ν13ν21]E3
�

[−1+ν12ν21]E3
�

0 0 0
0 0 0 G23 0 0
0 0 0 0 G13 0
0 0 0 0 0 G12

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(14)

with

� = ν13ν21ν32 + ν23ν12ν31 + ν13ν31

+ ν12ν21 + ν23ν32 − 1 (15)

and

G jk = E j

2
[
1 + ν jk

] , (16)
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where (σ ′)T = [σ11, σ22, σ33, σ23, σ13, σ12], ν·· are the Pois-
son ratios, E· are the Young’s moduli, G ·· are the shear
moduli, (ε′)T = [ε11, ε22, ε33, 2ε23, 2ε13, 2ε12] (Lempriere
1968). Here, the axes of the material coordinate system
coincide locally with the principal axes of the sample (i.e.,
the axes of the material coordinate system run parallel to
the eigenvectors of the tensor �ρ). In order to make the
bulk material properties dependent on the local geometrical
arrangement of the collagen bundles, we propose the follow-
ing definitions for these properties:

E j (x, t) = Eλ j (x, t), (17)

ν jk(x, t) = ν

[
λ j (x, t)∑
l λl(x, t)

]
, (18)

where E and ν are constants. Using these definitions have
two nice consequences: The symmetry of the elasticity tensor
C′ is guaranteed and the positivity of the stored strain energy
density in the dermal layer is guaranteed. The elasticity tensor
is symmetric when the equality

ν jk

E j
= νk j

Ek
(19)

holds for j, k ∈ {1, 2, 3} and j �= k (Lempriere 1968). The
stored strain energy density is positive when the elasticity
tensor is positive definite. This is the case when the inequal-
ities

E j > 0, G jk > 0, � < 0, and
E j

Ek
> ν2jk (20)

hold (Lempriere 1968). Together, the dynamics and the ini-
tial conditions of the modeled constituents of the dermal
layer imply λi (x, t) > 0 for all x ∈ �x, for all time t
and i ∈ {1, 2, 3} (with �x the domain of computation in
Eulerian coordinates). Combined with the proposed defini-
tions for the bulk material properties of the dermal layer and
the values chosen for the constants E and ν, these are suf-
ficient conditions to guarantee that the above equalities and
inequalities hold; checking this is straightforward.Hence, the
elasticity tensor is indeed symmetric, positive definite, and
consequently, the stored strain energy density in the system
is always positive.

Notice furthermore that if the distribution of the colla-
gen bundles is uniform (i.e., λ1 = λ2 = λ3), then all Poisson
ratios are equal. Likewise, allYoung’smoduli and shearmod-
uli are equal. This implies that the elasticity tensor becomes
equal to the elasticity tensor of an isotropicmaterial (Lai et al.
1999). This is a nice property because this is exactly what
you would expect given the uniformity of the distribution of
the collagen bundles in the dermal layer.

The tensors from Eq. (14) need to be transformed so that
they coincide with the global coordinate system (i.e., the

Eulerian coordinate system). Due to the made assumptions
with respect to the derivatives of the cell densities (See Sect.
2.5), the chosen initial conditions for the distribution of the
collagen bundles [i.e., Eq. (33)] and the included dynamics
for the production of collagen molecules [i.e., Eq. (13)], the
first axis of the local material coordinate system always runs
parallel to the first axis of the global coordinate system. This
implies that the following transformations can be used to
transform the tensors from Eq. (14):

σ ′ = T1σ (21)

ε′ = T2ε (22)

T1C = C′T2, (23)

with

T1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 m2 n2 −2nm 0 0
0 n2 m2 2nm 0 0
0 nm −nm m2 − n2 0 0
0 0 0 0 m n
0 0 0 0 −n m

⎤
⎥⎥⎥⎥⎥⎥⎦

, (24)

and

T2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 m2 n2 −nm 0 0
0 n2 m2 nm 0 0
0 2nm −2nm m2 − n2 0 0
0 0 0 0 m n
0 0 0 0 −n m

⎤
⎥⎥⎥⎥⎥⎥⎦

, (25)

where σ = Cε, (σ )T = [σxx , σyy, σzz, σyz, σxz, σxy],
(ε)T = [εxx , εyy, εzz, 2εyz, 2εxz, 2εxy], m = cos(ϕr ), n =
sin(ϕr ), and ϕr is the angle of the clockwise rotation that,
respectively, aligns the second and the third axis of the local
material coordinate system (i.e., the second and third eigen-
vector of the tensor �ρ) with the second and the third axis of
the global coordinate system. (Please note that the following
holds: (T1(ϕr ))

−1 = T1(−ϕr ). This equality simplifies the
calculation of the elasticity tensor C from Eq. (23).)

Finally, we incorporate into the model the generation of
an isotropic stress by the myofibroblasts due to their pulling
on the ECM. This stress is proportional to the product of the
cell density of the myofibroblasts and a simple function of
the concentration of the collagen molecules (Koppenol et al.
2016; Olsen et al. 1995). No other forces are incorporated
into the model. Taken together, we obtain

f = ∇ · ψ, (26)

ψ = ξM

[
ρ

R2
ρ + ρ2

]
I, (27)
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where ψ is the total generated stress by the myofibroblast
population, ξ is the generated stress per unit cell density and
the inverse of the unit collagen molecule concentration, and
Rρ is a fixed constant.

2.5 The domain of computation

We assume that u = ∂v/∂x = ∂w/∂x = 0 holds within the
modeled portion of the dermal layer, with the yz-plane run-
ning parallel to the surface of the skin and u = (u, v, w)T.
Furthermore, we assume that the derivatives of the cell densi-
ties and the concentrations of the modeled constituents of the
dermal layer are equal to zero in the direction perpendicular
to the surface of the skin. Taken together, these assumptions
imply that the calculations can be performed on an arbitrary,
infinitely thin slice of dermal layer oriented parallel to the
surface of the skin, and that the results from these calcula-
tions are valid for every infinitely thin slice oriented parallel
to the surface of the skin.UsingLagrangian coordinates (X =
(X,Y, Z)T), the domain of computation �X is described by

�X ∈ {X = 0,−10 ≤ Y ≤ 10,−10 ≤ Z ≤ 10}. (28)

2.6 The initial conditions and the boundary conditions

The initial conditions give a description of the cell densities
and the concentrations at the onset of the proliferative phase
of the wound healing cascade. For the generation of the sim-
ulation results, we use two wound shapes: a circular shape
and a square shape. For the construction of these shapes, we
use the following general indicator function

I (r, s1, s2) =

⎧⎪⎪⎨
⎪⎪⎩

0 if r < [s1 − s2] ,
1
2

[
1 + sin

(
[r−s1]π

2s2

)]
if |r − s1| ≤ s2,

1 if r > [s1 + s2] .

(29)

The values for the parameters s1 and s2 determine, respec-
tively, the location and the steepness of the boundary of the
wounded area. In order to construct the circular wounds, we
use the following function

wc(X) = I
(
‖X‖ ,

√
16/π, 0.10

)
, (30)

In order to construct square wounds with the same surface
area, we use the following function

ws(Xr ) = 1 − [1 − I (Yr , 2, 0.10)] [1 − I (Zr , 2, 0.10)]

×I (Yr , 2, 0.10) I (Zr , 2, 0.10) , (31)

with Xr = R(θr )X = (Xr ,Yr , Zr )
T and θr = π/4 rad,

where R(θ) is the counterclockwise rotation matrix that

rotates vectors by an angle θ about the X -axis. For i ∈ {c, s},
wi = 0 corresponds to completely wounded dermis and
wi = 1 corresponds to unwounded dermis.

Based on these general functions for the shapes of the
wound, we take the following initial conditions for the cell
densities and the concentration of the signaling molecules:

N (X, 0) = [
Iw + [

1 − Iw
]
wi (X)

]
N ,

M(X, 0) = M,

c(X, 0) = [1 − wi (X)] cw, (32)

where N andM are, respectively, the equilibrium cell density
of thefibroblast population and the equilibriumcell density of
the myofibroblast population of the unwounded dermis. The
constant cw represents the maximum initial concentration of
the signaling molecule in the wounded area. We assume that
there are some fibroblasts and collagen bundles present in the
wounded area; the parameter Iw determines the minimum
amount of fibroblasts and collagen bundles present initially
in the wounded area.

For the initial distribution of the collagen bundles, we take
the following:

�ρ(X, 0)=
{[

Iw+[
1− Iw

]
wi (X)

] {
1

1+ra

[
êX

(
êX

)T]

+ ra
1+ra

[
rb

1+rb

[
êY

(
êY

)T]
+ 1

1+rb

[
êZ

(
êZ

)T]]}}
ρ,

(33)

with

ê j = R(θb)e j , (34)

for j ∈ {X,Y, Z}, where e j is the unit vector that runs paral-
lel to the j th coordinate axis. The value for the parameter ra
determines which proportion of the collagen bundles are ori-
ented in the direction perpendicular to the surface of the skin
andwhich proportion of the collagen bundles are running par-
allel to the surface of the skin. In uninjured skin, the majority
of the collagen bundles of the dermal layer run parallel to the
surface of the skin, while only a small portion of the fibers are
oriented out-of-plane (Holzapfel 2001; Annaidh et al. 2012).
Therefore, we set ra to a relatively large value. The values
for the parameter rb and the angle θb together determine the
overall distribution of the collagen bundles that run paral-
lel to the surface of the skin. Over simulations, we vary the
values for these latter two parameters in order to investigate
the effect of such a variation on the contraction of wounds.
The used (ranges of) values are depicted in Table 1 in the
appendix. The parameter ρ is the equilibrium concentration
of the collagen molecules in the unwounded dermis.
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Fig. 1 Graphical representations of the initial conditions. Depicted are
in both subfigures, the initial shape of the wound and, in color scale,
the initial cell density of the fibroblasts (cells/cm3). In both subfigures,
the scale along both axes is in centimeters. a The white dots mark the
material points where the evolution of the cell density/concentration of
the individual modeled constituents was traced over time for the gen-
eration of some of the figures in Sect. 4. In both subfigures, the green

dots mark the material points that were used to trace the evolution over
time of the surface area of the wound. That is, at each time point, the
area of the polygon with vertices located at the displaced green material
points has been determined. Finally, the material points labeled with a
letter have been used to study the evolution over time of the shape of
the wound. See Sect. 4 for more details on this matter

With respect to the initial conditions for the displacement
of the dermal layer, we observe the following. The initial cell
density of the myofibroblasts is equal to zero everywhere in
the domain of computation. Looking at Eq. (27), this implies
f(x, 0) = 0. Therefore,

u(x, 0) = 0 ∀x ∈ �x . (35)

See Fig. 1 for graphical representations of the initial condi-
tions that have been used in this study.

With respect to the boundary conditions for the modeled
constituents of the dermal layer,we take the followingDirich-
let boundary conditions

N = N , M = M, c = c, (36)

where c is the equilibrium concentration of the signaling
molecules in the unwounded dermis. Finally, we take the
following Dirichlet boundary condition for the mechanical
component of the model

u = 0. (37)

2.7 The (ranges of the) values for the parameters

Table 1 in the appendix provides an overview of the dimen-
sional (ranges of the) values for the parameters of the model.
Most of these values were either obtained directly from
previously conducted studies or estimated from results of
previously conducted studies. In addition, we were able to

determine the values for three more parameters due to the
fact that these values are a necessary consequence of the val-
ues chosen for other parameters (Koppenol et al. 2016).

3 The applied numerical algorithm

In order to express the kernel of the algorithm and gen-
erate simulation results, we used MATLAB together with
MATLAB’s Parallel ComputingToolbox (TheMathWorks Inc
2014). Furthermore, we interfaced the kernel consecutively
with a slightly adapted version of the mesh generator devel-
oped by Persson and Strang (2004) for the generation of a
base triangulation of the domain of computation, the element
resolution refinement/recoarsement tool of the computa-
tional fluid dynamics (CFD) software package FEATFLOW2
for the adjustment of the resolution of the elements of the base
triangulation (Turek 1998), and the scaling and permutation
routine HSL_MC64 for the scaling and permutation of the
linear systems (HSL 2013). The equations of the model were
non-dimensionalized furthermore by applying the following
non-dimensionalization:

x=Lx∗, t=
[
L2/

[
DFN

]]
t∗, �ρ =ρ�ρ∗

,

N =NN∗, M=NM∗, c=cwc∗,
u=Lu∗, v=[[

DFN
]
/L

]
v∗, σ =[[

ξN
]
/ρ

]
σ ∗,
(38)
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where L = 1 cm is the length scale of the model. The
variables with the asterisks are the non-dimensionalized vari-
ables.

In order to find a solution for the system of equations from
Eq. (2), we used the method of lines together with the stan-
dard fixed-point defect correction method (Van Kan et al.
2014). The two equations of the system were solved in a seg-
regated way. That is, each time-step approximations of the
solutions for the modeled constituents of the dermal layer
were determined first, and subsequently, an approximation
of the solution for the displacement of the dermal layer was
determined. This scheme was iterated until certain standard
convergence criteria were met. For the discretization of the
system of equations, the first-order backward Euler time-
integration method was used together with a moving-grid
finite-element method (Madzvamuse et al. 2003). On the dis-
cretized system of equations that describe the dynamics of
the modeled constituents of the dermal layer, we applied a
semi-implicit flux-corrected transport (FCT) limiter and a
source term splitting procedure in order to enforce positivity
of the approximations of the solutions for the constituents of
the dermal layer (Möller et al. 2008; Patankar 1980). Finally,
we used an automatically adaptive time-stepping method to
select the sizes of the individual time steps (Kavetski et al.
2002).

More details about certain aspects of the applied numer-
ical algorithm can be found in one of our previous studies
(Koppenol et al. 2016). More details about the procedure
surrounding the adjustment of the resolution of the elements
of the base triangulation can be found in the studies byMöller
(2008); Möller and Kuzmin (2006).

4 Simulation results

In order to obtain some insight into the dynamics of the
model, we present an overview of a simulation in Fig. 2.
Figure 3 shows what the impact is of changing the initial
distribution of the collagen bundles that run parallel to the
surface of the skin, on the contraction of a circular wound.
Due to the symmetry properties of a circular wound, it is not
interesting to vary the value for the angle θb. (In the case of a
perfectly circular wound, changing the value for the angle θb
willmerely rotate the solution counterclockwisely through an
angle θb.) Hence, solely the value for the ratio rb is changed
over simulations. Note that changing the value for the ratio
rb not only influences the degree of overall contraction of the
wounded area (as measured by the evolution over time of the
relative surface area of the wound compared to the surface
area of the wound at day 0), but also the evolution over time

Fig. 2 An overview of a simulation with a square wound, rb = 5 and
θb = 0 rad. The values for the remaining parameters are equal to those
depicted in Table 1. The first two rows show the evolution over time
of the cell density of, respectively, the fibroblast population and the
myofibroblast population. The color scales represent the cell densities,

measured in cells/cm3. The last two rows show the evolution over time
of the concentration of, respectively, the signaling molecules and the
collagenmolecules. The color scales represent the concentrations, mea-
sured in g/cm3. Within the subfigures, the scale along both axes is in
centimeters
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Fig. 3 An overview of the healing response in the case of a circular
wound, θb = 0 rad and different values for the ratio rb. The values for
the remaining parameters are equal to those depicted in Table 1 in the
appendix. See Fig. 1a for a depiction of the line segments OA and OB,
and a depiction of where the cell densities and the concentrations of the
modeled constituents were measured over time. The subfigures on the

bottom row show the averages of these latter measurements. See also
Fig. 1a for a depiction of how the surface area of the wound was mea-
sured over time. The legend displayed in the top-left subfigure applies to
all subfigures. Due to the fact that the curves depicted in the subfigures
on the bottom row are situated more or less on top of each other, most
of them are hardly visible

of the shape of the wounded area (as measured by the evolu-
tion over time of the (ratio of the) lengths of the line segments
OA and OB). Furthermore, note that the evolution over time
of the cell densities and the concentrations of the different
modeled constituents are hardly influenced by changing the
value for the ratio rb.

Figure 4 shows what the impact is of changing the initial
distribution of the collagen bundles that run parallel to the
surface of the skin, on the contraction of a square wound.
(Note that if rb = 1, then the solution is not dependent on
the value for the angle θb. Looking at Eq. (33), this becomes
clear straight away.) Contrary to the case where the wound
is circular, it is interesting to change both the value for the
angle θb and the value for the ratio rb in the case of a square
wound. Due to the symmetry properties of a square wound, it
is sufficient to vary the angle θb between 0 rad andπ/4 rad. (A
solution for an angle larger thanπ/4 rad can be obtained from
a solution for an angle between 0 rad andπ/4 rad by applying
a proper reflection and/or rotation on this latter solution.)
Similar to the case of a circularwound, changing the value for
the ratio rb influences both the degree of overall contraction
of the wounded area (as measured by the evolution over time
of the relative surface area of the wound compared to the

surface area at day 0) and the evolution over time of the
shape of the wounded area (as measured by the evolution
over time of the ratio of the lengths of the line segments OC
and OE , the ratio of the lengths of the line segments OD
and OF , and the surface area of the wound relative to the
surface area of the quadrilateral CEGH ).

Furthermore, Fig. 4 shows that the evolution over time
of the shape of the wounded area is also influenced by the
orientation of the collagen bundles relative to the position of
the wound in the case of a square wound. Interestingly, this
relative orientation of the collagen bundles has hardly any
influence on the evolution over time of the surface area of
the wound relative to the surface area at day 0. Although not
depicted in Fig. 4, we want to mention here that similar to
the case of a circular wound, the evolution over time of the
cell densities and the concentrations of the different modeled
constituents is hardly influenced by changing the values for
the ratio rb and the angle θb.

Finally, Figs. 5 and 6 show the evolution over time of the
geometrical arrangement of the collagen bundles during the
healing of a circularwound. In order to demonstrate the effect
of either including the deposition/reorientation of collagen
molecules in the direction of cell movement or not, we set
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Fig. 4 An overview of the healing response in the case of a square
wound and different values for both the ratio rb and the angle θb. The
values for the remaining parameters are equal to those depicted in Table
1 in the appendix. See Fig. 1b for a depiction of the line segments OC ,
OD, OE and OF . See also Fig. 1b for a depiction of how the sur-
face area of the wound was measured over time. μ2 equals the surface
area of the quadrilateral CEGH . See again Fig. 1b for a depiction of
the vertices of this quadrilateral. The subfigures on the top row show

overviews for rb = 1 and θb = 0 rad, the subfigures on the middle row
show overviews for rb = 3, and the subfigures on the bottom row show
overviews for rb = 5. The legend displayed in the middle row applies
to all subfigures on the middle row and the bottom row. Due to the fact
that the curves depicted in the subfigures related to the relative surface
area of the wound are situated more or less on top of each other, solely
one curve is mostly visible

βρ to zero for the generation of the simulation results in Fig. 5
and set βρ to the standard value depicted in Table 1 for the
generation of the simulation results in Fig. 6. (See the text
next to Eq. (13) for a description of the parameter βρ .) If
βρ = 0 (cm2 day)/cells, then this will result ultimately in
newly generated tissue with a collagen bundle distribution
that is exactly equal to the collagen bundle distribution of the
surrounding uninjured tissue. If βρ = 10−1 (cm2 day)/cells,
then ultimately the majority of the collagen molecules ends
up permanently oriented toward the center of the wound and
in the plane that runs parallel to the surface of the skin.

5 Discussion

We have presented a continuum hypothesis-based model for
the simulation of the collagen bundle distribution-dependent
contraction and retraction of healing dermal wounds that
cover a large surface area. In order to simulate the con-

traction and subsequent retraction of these wounds, some
of the subprocesses that take place during the proliferative
and remodeling phase of the wound healing cascade were
incorporated into themodel. Sincewound contractionmainly
takes place in the dermal layer of the skin, solely a portion of
this layer is included explicitly into the model. This portion
of dermal layer is modeled as a heterogeneous, orthotropic
continuous solid with bulk mechanical properties that are
locally dependent on both the local concentration and the
local geometrical arrangement of the collagen bundles.

The following four constituents of the dermal layer were
selected furthermore as primary model variables: fibroblasts,
myofibroblasts, generic signaling molecules, and collagen
bundles. The functional forms for the movement of the cells,
the biochemical kinetics associated with these cells, the dis-
persion of the generic signaling molecule and the release,
consumption, and removal of the generic signaling molecule
are identical to the functional forms used previously (Kop-
penol et al. 2016).

123



356 D. C. Koppenol et al.

Fig. 5 An overview of the evolution over time of the geometrical
arrangement of the collagen bundles during the healing of a circular
wound. For the generation of these simulation results, we took rb = 1,
θb = 0 rad and βρ = 0 (cm2 day)/cells. The values for the remaining
parameters are equal to those depicted in Table 1. λ1, λ2, and λ3 are the
eigenvalues of the tensor �ρ and θq3 is the angle between the eigenvec-

tor related to the largest eigenvalue λ3 (where the third element of this
eigenvector is larger than/equal to zero) and the positive horizontal axis.
Within the subfigures on the bottom row, the transparency (i.e., α(x, t))
is set to either zero (opaque) or one (fully transparent) based on the fol-
lowing rule: if (λ3(x, t) − λ2(x, t))/λ2(x, t) > 0.2, then α(x, t) = 0,
else α(x, t) = 1

With respect to the way that the cell differentiation of
fibroblasts into myofibroblasts has been incorporated into
the presented model, we want to place some remarks here.
Similar to Olsen et al. (1995), we assume that the rate of
cell differentiation is dependent on the concentration of the
signaling molecule with no differentiation taking place in
the absence of the signaling molecule. Like others such as
Murphy et al. (2012) and Valero et al. (2014), we are aware
of the fact that this cell differentiation can only take place
under conditions of sufficientmechanical stiffness. However,
as is also clearly pointed out by Van de Water et al. (2013),
it is unclear at present what the actual stiffness is that is
perceived by fibroblasts. Furthermore, recent experimental
studies have shown that the differentiation of fibroblasts into
myofibroblasts is also critically dependent on the presence of
particular isoforms of fibronectin (Van de Water et al. 2013).
Taken together, these issues imply that the incorporation of
the cell differentiationmechanism into amathematicalmodel
in a realistic way is basically impossible at present. Hence,
while being aware of the fact that the cell differentiation
process is a very complex process in reality, we decided to
keep things relatively simple in this modeling study.

For the representation of the collagen bundles, we used a
tensorial approach similar to the one proposed by Barocas
and Tranquillo (1997) and Cumming et al. (2010). Com-

pared to the approaches developed by Dallon et al. (1999,
2001, 2000); McDougall et al. (2006) and Olsen et al. (1999,
1998b), this approach has some advantages. Dallon et al.
use a vector-based representation for the representation of
collagen bundles in their models. Using this vector-based
representation has two major disadvantages (Cumming et al.
2010). Firstly, it does not provide any information about the
degree of isotropy of the collagen bundles at individual mate-
rial points within the dermal layer. Secondly, due to the use
of a vector representation, collagen bundles are treated basi-
cally as unidirectional entities. Given that fiber alignment
is bidirectional, this may lead to duality when one wishes
to determine the degree of alignment of collagen bundles.
These two disadvantages are overcome by using a tensorial
approach. Furthermore, Olsen et al. model the alignment of
collagen bundles in their models by considering two orthog-
onal configurations and assuming that the transition between
these two configurations is a dynamic and reversible process.
The major disadvantage of this latter approach is that this
representation cannot provide an accurate representation of
the orientation of the collagen bundles when this orientation
is continuously distributed. The tensorial approach does not
suffer from this drawback.

With respect to the dynamic change of the geometrical
arrangement of the collagen bundles it is assumed that a por-
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Fig. 6 An overview of the evolution over time of the geometrical
arrangement of the collagen bundles during the healing of a circular
wound. For the generation of these simulation results, we took rb = 1,
θb = 0 rad and βρ = 10−1 (cm2 day)/cells. The values for the remain-
ing parameters are equal to those depicted in Table 1. λ1, λ2, and λ3
are the eigenvalues of the tensor �ρ and θq3 is the angle between the

eigenvector related to the largest eigenvalue λ3 (where the third element
of this eigenvector is larger than/equal to zero) and the positive hori-
zontal axis. Within the subfigures on the bottom row the transparency
(i.e., α(x, t)) is set to either zero (opaque) or one (fully transparent)
based on the following rule: if (λ3(x, t) − λ2(x, t))/λ2(x, t) > 0.2,
then α(x, t) = 0, else α(x, t) = 1

tion of the collagen molecules are deposited and reoriented
in the direction of movement of the (myo)fibroblasts (Olsen
et al. 1998b). The remainder of the newly secreted collagen
molecules are deposited by ratio in the direction of the present
collagen bundles. The ratio of the amount of molecules that
are deposited in the direction of movement of the cells to the
amount of molecules that are deposited in the direction of the
present collagen bundles is determined by the walking speed
of the cells.

With the developed model, it is possible to simulate some
general qualitative features of the dermal wound healing
response (Baum and Arpey 2005; Enoch and Leaper 2007;
Li et al. 2007; Monaco and Lawrence 2003). The restoration
of the presence of fibroblasts in the wounded area can be
simulated. Furthermore, the initial expansion and subsequent
reduction of the myofibroblast population in the wounded
area during the execution of the wound healing response can
be simulated, and it is possible to simulate the restoration of a
collagen-rich ECM in the recoveringwounded area. In accor-
dance with experimental observations (Zuijlen et al. 2003;
Welch et al. 1990), it is also possible with this model to
simulate the permanent increase in the proportion of the col-
lagen bundles that runs parallel to the surface of the skin as a
consequence of the execution of the wound healing process.

Finally, the contraction and the subsequent retraction of the
wounded area can also be simulated.

With respect to the simulation of the collagen bundle
distribution-dependent contraction and subsequent retraction
of healing dermal wounds, the following can be observed.
Figures 3 and 4 show clearly the impact of changing the
initial distribution of the collagen bundles that run parallel
to the surface of the skin. The distribution of the collagen
bundles influences the evolution over time of both the shape
of the wounded area and the degree of overall contraction
of the wounded area. Interestingly, Fig. 3 shows that these
effects are solely a consequence of alterations in the ini-
tial overall distribution of the collagen bundles, and not a
consequence of alterations in the evolution over time of the
different cell densities and concentrations of the modeled
constituents. Furthermore, it is very interesting to observe in
Fig. 4 that the evolution over time of the shape of the wound
is also influenced by the orientation of the collagen bundles
relative to the position of the wound, while this relative ori-
entation does not influence the evolution over time of the
relative surface area of the wound compared to the surface
area of the wound at day 0.

Figures 5 and 6 show clearly the effect of either including
into the model the dependence of the geometrical arrange-
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ment of collagen bundles on themovement of cells or not. If it
is included, then an increased portion of the collagen bundles
ultimately ends up permanently in the plane running parallel
to the surface of the skin, and the majority of these bundles
are oriented toward the center of the wound. If the deposi-
tion/reorientation of collagen molecules in the direction of
cell movement is not included, then all the newly secreted
collagen molecules are deposited by ratio in the direction of
the present collagen bundles. As demonstrated in Fig. 5, this
will result ultimately in newly generated tissue with a colla-
gen bundle distribution that is exactly equal to the collagen
bundle distribution of the surrounding uninjured tissue.

As has been mentioned before, the fact that an increased
portion of the collagen bundles ultimately ends up perma-
nently in the plane running parallel to the surface of the skin
and the fact that the majority of these bundles are oriented
toward the center of the wound when the dependence of
the direction of deposition/reorientation of collagen mole-
cules on the movement of cells is included into the model,
are in accordance with experimental observations (Zuijlen
et al. 2003; Welch et al. 1990). This is an interesting obser-
vation. To the best of our knowledge, it is unknown at present
which wound healing mechanisms cause these experimental
observations. In the presented model, the dynamics related
to the geometrical arrangement of the collagen bundles are
dependent on the speed and the direction of movement of the
(myo)fibroblasts. This direction and speed of movement are
dependent subsequently on the gradient of the concentration
of the signaling molecule and the evolution over time of the
distribution of the cell densities. Taken together, the results
obtained with the presented model suggest that the geomet-
rical arrangement of collagen bundles in scar tissue might be
altered by changing the gradient of the concentration of the
signaling molecule and/or the evolution over time of the dis-
tribution of the cell densities and therewith the direction and
speed of movement of the (myo)fibroblasts, during wound
healing. Given that the geometrical arrangement of the col-
lagen bundles has a huge impact on the response of dermal
tissues to mechanical forces (Jor et al. 2011), this is an inter-
esting suggestion because we think that its offers new ideas
for a better treatment of deep dermal wounds that results in
scar tissue that is more akin to the original tissue. We can
imagine that it must be possible to investigate this sugges-
tion further by means of an experimental study with a tissue
equivalent.

Our ultimate goal is to construct mathematical models
with which the structural properties of healing wounds can
be predicted accurately. Since collagen bundle distribution-
dependent contraction and subsequent retraction are impor-
tant components of the wound healing response in the case
of deep dermal wounds that cover a large surface area, we
consider the development of the presented model as a step
toward the construction of such predictive models.

Obviously, the presentedmodel can be expanded in differ-
ent ways. One relatively simple addition to the model would
be, for instance, to make the direction of cell movement also
dependent on the orientation of the collagen bundles. Previ-
ous experimental studies have demonstrated that fibroblasts
align with collagen bundles, which subsequently influences
the direction of movement of these cells (Guido and Tran-
quillo 1993). In order to incorporate this effect into the
presented model, we could, for example, replace Eqs. (3)
and (4) with

JN = −DF F�c∇N + χF N∇c, (39)

JM = −DF F�c∇M + χFM∇c, (40)

where

�c = �ρ

tr (�ρ)
. (41)

In addition, Verhaegen et al. (2012) have demonstrated
that the stretching of both healthy skin and scar tissue induces
permanent adaptation of the orientation of the collagen bun-
dles in these tissues. Therefore, it might be interesting to
incorporate into the presented model the reorientation of
collagen bundles due to forces. This could be accomplished
perhaps by absorbing into the presented model some of the
ideas that were used for the development of the model by
Olsen et al. (1999). Furthermore, it might also be interesting
to add to the presented model a morphoelastic component.
Adding this component to the model will make it possible to
simulate the often present permanent deformation of recov-
ering dermal tissues. The incorporation of such an effect
into the current model could be accomplished, for instance,
by using the morphoelastic framework developed by Hall
(2009). Finally, it is probably also very interesting to inves-
tigate in a three-dimensional portion of dermal layer what
would happen to the shapes of wounds and the geometrical
arrangement of collagen bundles during healing when the
assumptions made in Sect. 2.5 are removed.
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Appendix: The parameter value estimates

See Table 1.

Table 1 An overview of the dimensional (ranges of the) values for the parameters of the model

Parameter Value Dimensions Reference

DF 10−7 cm5/(cells day) Sillman et al. (2003)

χF 2 × 10−3 cm5/(g day) Murphy et al. (2012)

q −4.2 × 10−1 − NC

rF 9.24 × 10−1 cm3q/(cellsq day) Ghosh et al. (2007)

rmax
F 2 − Strutz et al. (2001)

aI
c 10−8 g/cm3 Grotendorst (1992)

κF 10−6 cm3/cells Vande Berg et al. (1989)

kF 5.4 × 106 cm3/(g day) Desmoulière et al. (1993)

δN 2 × 10−2 /day Olsen et al. (1995)

δM 2 × 10−2 /day Koppenol et al. (2016)

Dc 2.9 × 10−3 cm2/day Murphy et al. (2012)

kc 4 × 10−13 g/(cells day) Olsen et al. (1995)

η 2 − Rudolph and Vande Berg (1991) and Moulin et al. (1998)

aI I
c 10−8 g/cm3 Olsen et al. (1995)

δc 5 × 10−4 cm6/(cells g day) Olsen et al. (1995)

aI I I
c 2 × 108 cm3/g Overall et al. (1991)

kρ 6 × 10−8 g/(cells day) NC

kmax
ρ 10 − Olsen et al. (1998a)

aIV
c 10−9 g/cm3 Roberts et al. (1986)

βρ 10−1 (cm2 day)/cells TW

δρ 6 × 10−6 cm6/(cells g day) Koppenol et al. (2016)

E 3.00 × 102 (N cm)/g Liang and Boppart (2010)

ν 4.9 × 10−1 − Liang and Boppart (2010)

ξ 2 × 10−4 (N g)/(cells cm2) Javierre et al. (2009) and Wrobel et al. (2002)

Rρ 3 × 10−1 g/cm3 Olsen et al. (1995)

N 104 cells/cm3 Olsen et al. (1995)

M 0 cells/cm3 Olsen et al. (1995)

c 0 g/cm3 NC

ρ 10−1 g/cm3 Olsen et al. (1995)

Iw 10−1 − TW

cw 10−8 g/cm3 Olsen et al. (1995)

ra 9 − Annaidh et al. (2012) and Holzapfel (2001)

rb 1 − 5 − TW

θb 0 − π/4 rad TW

The last column contains the references to the articles that were used for obtaining (estimates of) the values for the parameters. If (the range of)
the value for a parameter was estimated in this study, then this is indicated by the abbreviation TW. If the value for a parameter is a necessary
consequence of the values chosen for the other parameters, then this is indicated by the abbreviation NC
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